Abscisic Acid Inhibits Type 2C Protein Phosphatases via

Science 324, 1068-1071

DOI: 10.1126/science.1173041

Citation Report

#	Article	IF	CITATIONS
1	Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8380-8385.	3.3	787
2	Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21425-21430.	3.3	787
3	Phospholipase DÎ ± 1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure in (i) Arabidopsis (li) Â Â Â. Plant Cell, 2009, 21, 2357-2377.	3.1	517
4	The Nuclear Interactor PYL8/RCAR3 of i>Fagus sylvatica / i>FsPP2C1 Is a Positive Regulator of Abscisic Acid Signaling in Seeds and Stress. Plant Physiology, 2009, 152, 133-150.	2.3	99
5	How Plant Cells Go to Sleep for a Long, Long Time. Science, 2009, 326, 1356-1357.	6.0	9
6	ABA Hypersensitive Germination2-1 Causes the Activation of Both Abscisic Acid and Salicylic Acid Responses in Arabidopsis. Plant and Cell Physiology, 2009, 50, 2112-2122.	1.5	32
7	Role of PP2C-mediated ABA signaling in the mossPhyscomitrella patens. Plant Signaling and Behavior, 2009, 4, 887-889.	1.2	17
8	Embryogenesis: Pattern Formation from a Single Cell. The Arabidopsis Book, 2009, 7, e0126.	0.5	85
9	RACK1 is a negative regulator of ABA responses in Arabidopsis. Journal of Experimental Botany, 2009, 60, 3819-3833.	2.4	100
10	The Magnesium-Chelatase H Subunit Binds Abscisic Acid and Functions in Abscisic Acid Signaling: New Evidence in Arabidopsis Â. Plant Physiology, 2009, 150, 1940-1954.	2.3	143
11	Arabidopsis proline-rich extensin-like receptor kinase 4 modulates the early event toward abscisic acid response in root tip growth. Plant Signaling and Behavior, 2009, 4, 1075-1077.	1.2	21
12	Protein Phosphatases 2C Regulate the Activation of the Snf1-Related Kinase OST1 by Abscisic Acid in <i>Arabidopsis</i> Plant Cell, 2009, 21, 3170-3184.	3.1	500
13	A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21419-21424.	3.3	565
14	Advances in the regulation and crosstalks of phytohormones. Science Bulletin, 2009, 54, 4069-4082.	1.7	10
15	Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade $\hat{a} \in fA$ PP2Cs. Plant Journal, 2009, 60, 575-588.	2.8	476
16	A protein phosphatase 2C, responsive to the bacterial effector AvrRpm1 but not to the AvrB effector, regulates defense responses in Arabidopsis. Plant Journal, 2010, 61, 249-258.	2.8	47
17	TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO Journal, 2009, 28, 3745-3757.	3.5	298
18	Recent advances and emerging trends in plant hormone signalling. Nature, 2009, 459, 1071-1078.	13.7	805

#	Article	IF	Citations
19	Structural basis of abscisic acid signalling. Nature, 2009, 462, 609-614.	13.7	490
20	The abscisic acid receptor PYR1 in complex with abscisic acid. Nature, 2009, 462, 665-668.	13.7	457
21	In vitro reconstitution of an abscisic acid signalling pathway. Nature, 2009, 462, 660-664.	13.7	1,113
22	A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature, 2009, 462, 602-608.	13.7	608
23	Signal advance for abscisic acid. Nature, 2009, 462, 575-576.	13.7	69
25	Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nature Structural and Molecular Biology, 2009, 16, 1230-1236.	3.6	381
26	The Past, Present, and Future of Chemical Biology in Auxin Research. ACS Chemical Biology, 2009, 4, 987-998.	1.6	60
27	Water Balance and the Regulation of Stomatal Movements. , 2009, , 283-305.		4
28	Stress Signaling I: The Role of Abscisic Acid (ABA). , 2009, , 33-73.		16
29	Three Arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, Involved in ABA Signaling are Essential for the Control of Seed Development and Dormancy. Plant and Cell Physiology, 2009, 50, 1345-1363.	1.5	636
30	Three SnRK2 Protein Kinases are the Main Positive Regulators of Abscisic Acid Signaling in Response to Water Stress in Arabidopsis. Plant and Cell Physiology, 2009, 50, 2123-2132.	1.5	599
31	Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17588-17593.	3.3	980
32	Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science, 2009, 324, 1064-1068.	6.0	2,017
33	Structural Mechanism of Abscisic Acid Binding and Signaling by Dimeric PYR1. Science, 2009, 326, 1373-1379.	6.0	457
34	A Stressful Episode in Plant Biology Are you a real ABA receptor?-Give me a break!. Kagaku To Seibutsu, 2009, 47, 446-449.	0.0	0
35	Mechanisms of Action and Medicinal Applications of Abscisic Acid. Current Medicinal Chemistry, 2010, 17, 467-478.	1.2	65
36	The PP2C–SnRK2 complex. Plant Signaling and Behavior, 2010, 5, 160-163.	1.2	42
37	Boolean modeling of transcriptome data reveals novel modes of heterotrimeric Gâ€protein action. Molecular Systems Biology, 2010, 6, 372.	3.2	117

#	Article	IF	CITATIONS
38	ãf−ãf©ã,∙ãfŽã,¹ãf†ãfã,∰f‰. Kagaku To Seibutsu, 2010, 48, 409-418.	0.0	1
39	$ ilde{a}$, $ ilde{a}$, $ ilde{a}$, $ ilde{a}$, $ ilde{a}$ f 3 é, Kagaku To Seibutsu, 2010, 48, 555-563.	0.0	0
40	AtNEK6 interacts with ARIA and is involved in ABA response during seed germination. Molecules and Cells, 2010, 29, 559-566.	1.0	20
41	Cloning and characterization of the Gossypium hirsutum major latex protein gene and functional analysis in Arabidopsis thaliana. Planta, 2010, 231, 861-873.	1.6	87
42	Multilevel regulation and signalling processes associated with adaptation to terminal drought in wild emmer wheat. Functional and Integrative Genomics, 2010, 10, 167-186.	1.4	67
43	Advances in dissecting endomembrane trafficking with small molecules. Current Opinion in Plant Biology, 2010, 13, 706-713.	3.5	40
44	Structural and functional insights into core ABA signaling. Current Opinion in Plant Biology, 2010, 13, 495-502.	3.5	234
45	Modelling dynamic plant cells. Current Opinion in Plant Biology, 2010, 13, 744-749.	3.5	16
46	Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling. Current Opinion in Structural Biology, 2010, 20, 722-729.	2.6	64
47	Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics, 2010, 11, 630.	1.2	179
48	Biotechnology of water and salinity stress tolerance. Current Opinion in Biotechnology, 2010, 21, 185-196.	3.3	182
49	Crystallization of the plant hormone receptors PYL9/RCAR1, PYL5/RCAR8 and PYR1/RCAR11 in the presence of (+)-abscisic acid. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 456-459.	0.7	8
50	Plant chemical genetics. New Phytologist, 2010, 185, 15-26.	3.5	49
51	Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant, Cell and Environment, 2010, 33, 627-635.	2.8	168
52	Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kasâ€l and Tsuâ€l accessions of <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2010, 33, 1268-1284.	2.8	40
53	Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant Journal, 2010, 61, 25-35.	2.8	170
54	PYR/PYL/RCAR family members are major <i>inâ€vivo</i> ABI1 protein phosphatase 2Câ€interacting proteins in Arabidopsis. Plant Journal, 2010, 61, 290-299.	2.8	451
55	AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant Journal, 2010, 61, 672-685.	2.8	871

#	ARTICLE	IF	CITATIONS
56	Arabidopsis seed secrets unravelled after a decade of genetic and omicsâ€driven research. Plant Journal, 2010, 61, 971-981.	2.8	161
57	The ubiquitinâ€proteasome system regulates plant hormone signaling. Plant Journal, 2010, 61, 1029-1040.	2.8	340
58	ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant Journal, 2010, 63, 417-429.	2.8	421
59	ABA overly-sensitive $\hat{a} \in f$ 5 (ABO5), encoding a pentatric opeptide repeat protein required for cis-splicing of mitochondrial nad2 intron $\hat{a} \in f$ 3, is involved in the abscisic acid response in Arabidopsis. Plant Journal, 2010, 63, 749-765.	2.8	179
60	AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant Journal, 2010, 63, 1054-1062.	2.8	314
61	ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. Plant Journal, 2010, 64, 764-774.	2.8	182
62	Identification and mechanism of ABA receptor antagonism. Nature Structural and Molecular Biology, 2010, 17, 1102-1108.	3.6	145
63	Structural basis for selective activation of ABA receptors. Nature Structural and Molecular Biology, 2010, 17, 1109-1113.	3.6	104
64	Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature, 2010, 467, 1074-1080.	13.7	118
65	Research on plant abiotic stress responses in the postâ€genome era: past, present and future. Plant Journal, 2010, 61, 1041-1052.	2.8	1,021
66	Ca2+-dependent activation of guard cell anion channels, triggered by hyperpolarization, is promoted by prolonged depolarization. Plant Journal, 2010, 62, 265-276.	2.8	33
67	Phospho-site mapping, genetic and in planta activation studies reveal key aspects of the different phosphorylation mechanisms involved in activation of SnRK2s. Plant Journal, 2010, 63, 778-790.	2.8	69
68	Stop press. Nature Chemistry, 2010, 2, 791-791.	6.6	5
69	A small-molecule screen identifies new functions for the plant hormone strigolactone. Nature Chemical Biology, 2010, 6, 741-749.	3.9	207
70	The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biology, 2010, 12, 242-258.	1.8	141
71	The Arabidopsis ABA-Activated Kinase OST1 Phosphorylates the bZIP Transcription Factor ABF3 and Creates a 14-3-3 Binding Site Involved in Its Turnover. PLoS ONE, 2010, 5, e13935.	1.1	197
72	Nonspecific Phospholipase C NPC4 Promotes Responses to Abscisic Acid and Tolerance to Hyperosmotic Stress in <i>Arabidopsis</i> i>Â. Plant Cell, 2010, 22, 2642-2659.	3.1	150
73	PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2355-2360.	3.3	614

#	ARTICLE	IF	CITATIONS
74	The Mg-Chelatase H Subunit of (i) Arabidopsis (i) Antagonizes a Group of WRKY Transcription Repressors to Relieve ABA-Responsive Genes of Inhibition Â. Plant Cell, 2010, 22, 1909-1935.	3.1	475
75	Understanding Plant Vacuolar Trafficking from a Systems Biology Perspective. Plant Physiology, 2010, 154, 545-550.	2.3	1
76	Hope for Humpty Dumpty: Systems Biology of Cellular Signaling. Plant Physiology, 2010, 152, 470-479.	2.3	4
77	Single Amino Acid Alteration between Valine and Isoleucine Determines the Distinct Pyrabactin Selectivity by PYL1 and PYL2. Journal of Biological Chemistry, 2010, 285, 28953-28958.	1.6	63
78	Two Closely Related Subclass II SnRK2 Protein Kinases Cooperatively Regulate Drought-Inducible Gene Expression. Plant and Cell Physiology, 2010, 51, 842-847.	1.5	123
79	Evolutionarily Conserved Regulatory Mechanisms of Abscisic Acid Signaling in Land Plants: Characterization of <i>ABSCISIC ACID INSENSITIVE1</i> Like Type 2C Protein Phosphatase in the Liverwort <i>Marchantia polymorpha</i> . Plant Physiology, 2010, 152, 1529-1543.	2.3	96
80	Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca ²⁺ affinities. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8023-8028.	3.3	500
81	Metabolic Networks: How to Identify Key Components in the Regulation of Metabolism and Growth. Plant Physiology, 2010, 152, 428-444.	2.3	155
82	<i>In planta</i> changes in protein phosphorylation induced by the plant hormone abscisic acid. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15986-15991.	3.3	213
83	Overproduction of the Membrane-bound Receptor-like Protein Kinase 1, RPK1, Enhances Abiotic Stress Tolerance in Arabidopsis. Journal of Biological Chemistry, 2010, 285, 9190-9201.	1.6	133
84	Abscisic acid and the control of seed dormancy and germination. Seed Science Research, 2010, 20, 55-67.	0.8	369
85	The Arabidopsis Mitogen-Activated Protein Kinase Phosphatase PP2C5 Affects Seed Germination, Stomatal Aperture, and Abscisic Acid-Inducible Gene Expression Â. Plant Physiology, 2010, 153, 1098-1111.	2.3	172
86	RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5669-5674.	3.3	100
87	Functional Mechanism of the Abscisic Acid Agonist Pyrabactin. Journal of Biological Chemistry, 2010, 285, 28946-28952.	1.6	48
88	ABA transport factors found in Arabidopsis ABC transporters. Plant Signaling and Behavior, 2010, 5, 1124-1126.	1.2	47
89	An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development. Journal of Experimental Botany, 2010, 61, 3599-3613.	2.4	93
90	2009: Signaling Breakthroughs of the Year. Science Signaling, 2010, 3, eg1.	1.6	7
91	Cytosolic Alkalization and Cytosolic Calcium Oscillation in Arabidopsis Guard Cells Response to ABA and MeJA. Plant and Cell Physiology, 2010, 51, 1721-1730.	1.5	72

#	Article	IF	Citations
92	Nitric oxide modulates sensitivity to ABA. Plant Signaling and Behavior, 2010, 5, 314-316.	1.2	25
93	The Sterol Methyltransferases SMT1, SMT2, and SMT3 Influence Arabidopsis Development through Nonbrassinosteroid Products Â. Plant Physiology, 2010, 153, 741-756.	2.3	141
94	The Lesion-Mimic Mutant <i>cpr22</i> Shows Alterations in Abscisic Acid Signaling and Abscisic Acid Insensitivity in a Salicylic Acid-Dependent Manner. Plant Physiology, 2010, 152, 1901-1913.	2.3	117
95	Calcium Signals: The Lead Currency of Plant Information Processing. Plant Cell, 2010, 22, 541-563.	3.1	918
96	Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO ₂ , and Ca ²⁺ Signaling. Annual Review of Plant Biology, 2010, 61, 561-591.	8.6	1,165
97	Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 2010, 61, 651-679.	8.6	2,506
98	ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2361-2366.	3.3	494
99	Seed Germination., 2010,, 383-404.		3
100	Plant Nuclear Hormone Receptors: A Role for Small Molecules in Protein-Protein Interactions. Annual Review of Cell and Developmental Biology, 2010, 26, 445-469.	4.0	93
101	Arabidopsis zinc-finger protein 2 is a negative regulator of ABA signaling during seed germination. Journal of Plant Physiology, 2010, 167, 1418-1421.	1.6	20
102	Crystal structure of Hyp-1, a St. John's wort protein implicated in the biosynthesis of hypericin. Journal of Structural Biology, 2010, 169, 161-171.	1.3	49
103	Integration of Brassinosteroid Signal Transduction with the Transcription Network for Plant Growth Regulation in Arabidopsis. Developmental Cell, 2010, 19, 765-777.	3.1	790
104	Emerging principles in plant chemical genetics. Trends in Plant Science, 2010, 15, 81-88.	4.3	80
105	Emerging functions for plant MAP kinase phosphatases. Trends in Plant Science, 2010, 15, 322-329.	4.3	101
106	ABA perception and signalling. Trends in Plant Science, 2010, 15, 395-401.	4.3	1,106
107	Plastidial retrograde signalling – a true "plastid factor―or just metabolite signatures?. Trends in Plant Science, 2010, 15, 427-435.	4.3	150
108	Barley Grain Development. International Review of Cell and Molecular Biology, 2010, 281, 49-89.	1.6	75
109	ABA receptors: the START of a new paradigm in phytohormone signalling. Journal of Experimental Botany, 2010, 61, 3199-3210.	2.4	248

#	Article	IF	CITATIONS
110	Abscisic acid (ABA) receptors: light at the end of the tunnel. F1000 Biology Reports, 2010, 2, .	4.0	9
111	Abscisic Acid Receptors: Figure 1 Plant Physiology, 2010, 154, 479-482.	2.3	46
112	Narrowing Down the Targets: Towards Successful Genetic Engineering of Drought-Tolerant Crops. Molecular Plant, 2010, 3, 469-490.	3.9	359
113	Molecular Basis of the Core Regulatory Network in ABA Responses: Sensing, Signaling and Transport. Plant and Cell Physiology, 2010, 51, 1821-1839.	1.5	800
114	Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes and Development, 2010, 24, 1695-1708.	2.7	592
115	Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany, 2010, 61, 1959-1968.	2.4	646
116	<i>Arabidopsis</i> Floral Initiator SKB1 Confers High Salt Tolerance by Regulating Transcription and Pre-mRNA Splicing through Altering Histone H4R3 and Small Nuclear Ribonucleoprotein LSM4 Methylation Â. Plant Cell, 2011, 23, 396-411.	3.1	166
117	Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in <i>Arabidopsis</i> and tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5891-5896.	3.3	228
118	FaPYR1 is involved in strawberry fruit ripening. Journal of Experimental Botany, 2011, 62, 5079-5089.	2.4	227
120	Mécanismes et stratégies cellulaires de tolérance à la salinité (NaCl) chez les plantes. Environmental Reviews, 2011, 19, 121-140.	2.1	14
121	Plant ABC Transporters. The Arabidopsis Book, 2011, 9, e0153.	0.5	401
122	New Insights into the Regulation of Stomatal Opening by Blue Light and Plasma Membrane H+-ATPase. International Review of Cell and Molecular Biology, 2011, 289, 89-115.	1.6	52
123	Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells. Journal of Experimental Botany, 2011, 62, 2371-2379.	2.4	114
124	Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: interaction between ABA and primary metabolism. Journal of Experimental Botany, 2011, 62, 1229-1239.	2.4	35
126	Jasmonate-Dependent and COI1-Independent Defense Responses Against Sclerotinia sclerotiorum in Arabidopsis thaliana: Auxin is Part of COI1-Independent Defense Signaling. Plant and Cell Physiology, 2011, 52, 1941-1956.	1.5	56
127	A Small-Molecule Screen Identifies <scp>l</scp> -Kynurenine as a Competitive Inhibitor of TAA1/TAR Activity in Ethylene-Directed Auxin Biosynthesis and Root Growth in <i>Arabidopsis</i> À Â. Plant Cell, 2011, 23, 3944-3960.	3.1	364
128	Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1. Science Signaling, 2011, 4, ra32.	1.6	338
129	A Brand New START: Abscisic Acid Perception and Transduction in the Guard Cell. Science Signaling, 2011, 4, re4.	1.6	140

#	Article	IF	CITATIONS
130	The Molecular Basis of ABA-Independent Inhibition of PP2Cs by a Subclass of PYL Proteins. Molecular Cell, 2011, 42, 662-672.	4.5	241
131	K252a-sensitive protein kinases but not okadaic acid-sensitive protein phosphatases regulate methyl jasmonate-induced cytosolic Ca2+ oscillation in guard cells of Arabidopsis thaliana. Journal of Plant Physiology, 2011, 168, 1901-1908.	1.6	7
132	Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis. Journal of Plant Physiology, 2011, 168, 2048-2055.	1.6	68
133	The Structure of Arabidopsis thaliana OST1 Provides Insights into the Kinase Regulation Mechanism in Response to Osmotic Stress. Journal of Molecular Biology, 2011, 414, 135-144.	2.0	40
134	Achievements and Challenges in Understanding Plant Abiotic Stress Responses and Tolerance. Plant and Cell Physiology, 2011, 52, 1569-1582.	1.5	451
135	Recent Advances in Photosynthesis Under Drought and Salinity. Advances in Botanical Research, 2011, 57, 49-104.	0.5	101
136	The Regulatory Networks of Plant Responses to Abscisic Acid. Advances in Botanical Research, 2011, , 201-248.	0.5	6
137	Sequence Variation and Expression Analysis of Seed Dormancy- and Germination-Associated ABA- and GA-Related Genes in Rice Cultivars. Frontiers in Plant Science, 2011, 2, 17.	1.7	26
138	A Nucleotide Metabolite Controls Stress-Responsive Gene Expression and Plant Development. PLoS ONE, 2011, 6, e26661.	1.1	45
139	æ ए ‰ ©āf>āf ¢āf³ā®å⊷容ā•ā,•ā,°āfŠāf «ä⅓鳳⮿§‹é€åŸºç>¤Kagaku To Seibutsu, 2011, 49, 161-169.	0.0	0
140	Title is missing!. Kagaku To Seibutsu, 2011, 49, 74-76.	0.0	0
141	Perspectives on Systematic Analyses of Gene Function in Arabidopsis thaliana: New Tools, Topics and Trends. Current Genomics, 2011, 12, 1-14.	0.7	38
142	Genetic engineering of woody plants: current and future targets in a stressful environment. Physiologia Plantarum, 2011, 142, 105-117.	2.6	57
143	Plant Uâ€box armadillo repeat proteins AtPUB18 and AtPUB19 are involved in salt inhibition of germination in <i>Arabidopsis</i>	1.8	65
144	Identification of the abscisic acid receptor <i>VvPYL1</i> in <i>Vitis vinifera</i> . Plant Biology, 2012, 14, 244-248.	1.8	29
145	Quantitative transcriptomic analysis of abscisic acidâ€induced and reactive oxygen speciesâ€dependent expression changes and proteomic profiling in Arabidopsis suspension cells. Plant Journal, 2011, 67, 105-118.	2.8	83
146	Arabidopsis mutants of <i>AtABCG22</i> , an ABC transporter gene, increase water transpiration and drought susceptibility. Plant Journal, 2011, 67, 885-894.	2.8	164
147	Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. Plant Journal, 2011, 68, 249-261.	2.8	229

#	Article	IF	CITATIONS
148	Barley mildew and its elicitor chitosan promote closed stomata by stimulating guard ell S ype anion channels. Plant Journal, 2011, 68, 670-680.	2.8	61
149	NONEXPRESSOR OF PATHOGENESISâ€RELATED PROTEINS1 (NPR1) and some NPR1â€related proteins are sensitive to salicylic acid. Molecular Plant Pathology, 2011, 12, 73-91.	2.0	88
150	cGMPâ€dependent ABAâ€induced stomatal closure in the ABAâ€insensitive Arabidopsis mutant <i>abi1â€1</i> . New Phytologist, 2011, 191, 57-69.	3.5	107
151	The Arabidopsis Ca ²⁺ â€dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and postâ€germination growth. New Phytologist, 2011, 192, 61-73.	3.5	121
152	Anion channels in plant cells. FEBS Journal, 2011, 278, 4277-4292.	2.2	57
153	Abscisic Acid Receptors: Past, Present and Future < sup > F < / sup > . Journal of Integrative Plant Biology, 2011, 53, 469-479.	4.1	82
154	Auxinâ€Oxylipin Crosstalk: Relationship of Antagonists < sup > F < / sup > . Journal of Integrative Plant Biology, 2011, 53, 429-445.	4.1	62
155	Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO ₂ signal transduction in guard cell. EMBO Journal, 2011, 30, 1645-1658.	3.5	167
156	A small molecule with differential effects on the PTS1 and PTS2 peroxisome matrix import pathways. Plant Journal, 2011, 65, 980-990.	2.8	11
157	Quantitative plant phosphoproteomics. Current Opinion in Plant Biology, 2011, 14, 507-511.	3.5	44
158	Evolution of Abscisic Acid Synthesis and Signaling Mechanisms. Current Biology, 2011, 21, R346-R355.	1.8	425
159	Regulatory Mechanism Controlling Stomatal Behavior Conserved across 400 Million Years of Land Plant Evolution. Current Biology, 2011, 21, 1025-1029.	1.8	180
160	Chemical Genetics Reveals Negative Regulation of Abscisic Acid Signaling by a Plant Immune Response Pathway. Current Biology, 2011, 21, 990-997.	1.8	152
161	Occurrence, function and potential medicinal applications of the phytohormone abscisic acid in animals and humans. Biochemical Pharmacology, 2011, 82, 701-712.	2.0	79
162	Arabidopsis Seed Germination Under Abiotic Stress as a Concert of Action of Phytohormones. OMICS A Journal of Integrative Biology, 2011, 15, 763-774.	1.0	68
163	Microbially Mediated Plant Functional Traits. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 23-46.	3.8	447
164	Na+ and K+ Transporters in Plant Signaling. Signaling and Communication in Plants, 2011, , 65-98.	0.5	27
166	The CBL–CIPK Network for Decoding Calcium Signals in Plants. Signaling and Communication in Plants, 2011, , 235-258.	0.5	8

#	Article	IF	CITATIONS
167	Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annual Review of Phytopathology, 2011, 49, 317-343.	3.5	1,564
168	Identification and characterization of interactions between abscisic acid and mitochondrial adenine nucleotide translocators. Biochemical Journal, 2011, 437, 117-123.	1.7	18
169	A Chemical Genetics Method to Uncover Small Molecules for Dissecting the Mechanism of ABA Responses in Arabidopsis Seed Germination. Methods in Molecular Biology, 2011, 876, 107-116.	0.4	5
170	Transient Expression Assays for Quantifying Signaling Output. Methods in Molecular Biology, 2011, 876, 195-206.	0.4	18
171	Cytokinin and abscisic acid control plastid gene transcription during barley seedling de-etiolation. Plant Growth Regulation, 2011, 64, 173-183.	1.8	17
172	Direct targets of the transcription factors ABA-Insensitive (ABI)4 and ABI5 reveal synergistic action by ABI4 and several bZIP ABA response factors. Plant Molecular Biology, 2011, 75, 347-363.	2.0	142
173	A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta, 2011, 234, 47-59.	1.6	189
174	Overexpression of AtMYB52 Confers ABA Hypersensitivity and Drought Tolerance. Molecules and Cells, 2011, 31, 447-454.	1.0	97
175	Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Functional and Integrative Genomics, 2011, 11, 565-583.	1.4	74
176	The roles of ABA in plant–pathogen interactions. Journal of Plant Research, 2011, 124, 489-499.	1.2	305
177	ABA in bryophytes: how a universal growth regulator in life became a plant hormone?. Journal of Plant Research, 2011, 124, 437-453.	1.2	122
178	Transport of ABA from the site of biosynthesis to the site of action. Journal of Plant Research, 2011, 124, 501-507.	1.2	120
179	Chemical biology of abscisic acid. Journal of Plant Research, 2011, 124, 549-557.	1.2	21
180	Systems biology approaches to abscisic acid signaling. Journal of Plant Research, 2011, 124, 539-548.	1.2	22
181	Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana. Journal of Plant Research, 2011, 124, 527-538.	1.2	73
182	ABA signaling in stomatal guard cells: lessons from Commelina and Vicia. Journal of Plant Research, 2011, 124, 477-487.	1.2	15
183	Opening a new era of ABA research. Journal of Plant Research, 2011, 124, 431-435.	1.2	13
184	A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.). Theoretical and Applied Genetics, 2011, 122, 95-108.	1.8	59

#	Article	IF	CITATIONS
185	Group 3 late embryogenesis abundant protein in Arabidopsis: structure, regulation, and function. Acta Physiologiae Plantarum, 2011, 33, 1063-1073.	1.0	16
186	Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 2011, 11, 163.	1.6	1,005
187	SnRK2.6/OST1 from <i> Arabidopsis thaliana </i> : cloning, expression, purification, crystallization and preliminary X-ray analysis of K50N and D160A mutants. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 364-368.	0.7	8
188	Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics, 2011, 12, 216.	1.2	189
189	Reboot the system thanks to protein postâ€translational modifications and proteome diversity: How quiescent seeds restart their metabolism to prepare seedling establishment. Proteomics, 2011, 11, 1606-1618.	1.3	100
190	Sortin1-Hypersensitive Mutants Link Vacuolar-Trafficking Defects and Flavonoid Metabolism in Arabidopsis Vegetative Tissues. Chemistry and Biology, 2011, 18, 187-197.	6.2	38
191	Arabidopsis thaliana lipid phosphate phosphatase 2 is involved in abscisic acid signalling in leaves. Plant Physiology and Biochemistry, 2011, 49, 357-362.	2.8	36
192	EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. Journal of Experimental Botany, 2011, 62, 5547-5560.	2.4	113
193	Crosstalk between blue-light- and aba-signaling pathways in stomatal guard cells. Plant Signaling and Behavior, 2011, 6, 1662-1664.	1.2	14
194	Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20838-20843.	3.3	89
195	Engineering the ABA Plant Stress Pathway for Regulation of Induced Proximity. Science Signaling, 2011, 4, rs2.	1.6	210
196	AtPUB19, a U-Box E3 Ubiquitin Ligase, Negatively Regulates Abscisic Acid and Drought Responses in Arabidopsis thaliana. Molecular Plant, 2011, 4, 938-946.	3.9	130
197	SnRK2 Protein Kinasesâ€"Key Regulators of Plant Response to Abiotic Stresses. OMICS A Journal of Integrative Biology, 2011, 15, 859-872.	1.0	382
198	Abscisic Acid Signal off the STARTing Block. Molecular Plant, 2011, 4, 562-580.	3.9	101
199	Abscisic Acid Plays an Important Role in the Regulation of Strawberry Fruit Ripening \hat{A} \hat{A} . Plant Physiology, 2011, 157, 188-199.	2.3	590
200	The Cytosolic/Nuclear HSC70 and HSP90 Molecular Chaperones Are Important for Stomatal Closure and Modulate Abscisic Acid-Dependent Physiological Responses in Arabidopsis Â. Plant Physiology, 2011, 156, 1481-1492.	2.3	113
201	Age-Dependent Action of an ABA-Inducible Receptor Kinase, RPK1, as a Positive Regulator of Senescence in Arabidopsis Leaves. Plant and Cell Physiology, 2011, 52, 651-662.	1.5	198
202	Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes. Journal of Experimental Botany, 2011, 62, 4787-4803.	2.4	63

#	Article	IF	CITATIONS
203	The Arabidopsis RING Finger E3 Ligase RHA2b Acts Additively with RHA2a in Regulating Abscisic Acid Signaling and Drought Response Å Â Â. Plant Physiology, 2011, 156, 550-563.	2.3	122
204	Plant Hormone Perception at the Plasma Membrane. Plant Cell Monographs, 2011, , 401-422.	0.4	0
205	Regulatory mechanism of abscisic acid signaling. Biophysics (Nagoya-shi, Japan), 2011, 7, 123-128.	0.4	9
206	The <i>Arabidopsis</i> Multistress Regulator TSPO Is a Heme Binding Membrane Protein and a Potential Scavenger of Porphyrins via an Autophagy-Dependent Degradation Mechanism Â. Plant Cell, 2011, 23, 785-805.	3.1	176
207	The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. Journal of Experimental Botany, 2011, 62, 883-893.	2.4	161
208	Immunohistochemical Detection of Blue Light-Induced Phosphorylation of the Plasma Membrane H+-ATPase in Stomatal Guard Cells. Plant and Cell Physiology, 2011, 52, 1238-1248.	1.5	110
209	The <i>Arabidopsis </i> C2H2 Zinc Finger INDETERMINATE DOMAIN1/ENHYDROUS Promotes the Transition to Germination by Regulating Light and Hormonal Signaling during Seed Maturation. Plant Cell, 2011, 23, 1772-1794.	3.1	120
210	Drought, Desiccation, and Oxidative Stress. Ecological Studies, 2011, , 209-231.	0.4	41
211	Molecular Mechanisms of Abscisic Acid Action in Plants and Its Potential Applications to Human Health. Advances in Botanical Research, 2011, , 249-292.	0.5	1
212	E3 ubiquitin ligases and abscisic acid signaling. Plant Signaling and Behavior, 2011, 6, 344-348.	1.2	38
213	SnRK2 acts within an intricate network that links sucrose metabolic and stress signaling in wheat. Plant Signaling and Behavior, 2011, 6, 652-654.	1.2	14
214	A Per-ARNT-Sim-Like Sensor Domain Uniquely Regulates the Activity of the Homeodomain Leucine Zipper Transcription Factor REVOLUTA in <i>Arabidopsis</i> Plant Cell, 2011, 23, 567-582.	3.1	36
215	Control of stomatal aperture. Plant Signaling and Behavior, 2011, 6, 1305-1311.	1.2	92
216	A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15492-15497.	3.3	108
217	Identification of an important site for function of the type 2C protein phosphatase ABI2 in abscisic acid signalling in Arabidopsis. Journal of Experimental Botany, 2011, 62, 5713-5725.	2.4	28
218	<i>Arabidopsis</i> decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1717-1722.	3.3	291
219	Action of Natural Abscisic Acid Precursors and Catabolites on Abscisic Acid Receptor Complexes Â. Plant Physiology, 2011, 157, 2108-2119.	2.3	49
220	Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21259-21264.	3.3	160

#	ARTICLE	IF	Citations
221	The Plant Cuticle Is Required for Osmotic Stress Regulation of Abscisic Acid Biosynthesis and Osmotic Stress Tolerance in <i>Arabidopsis</i> A. Plant Cell, 2011, 23, 1971-1984.	3.1	147
222	Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. Plant Signaling and Behavior, 2011, 6, 939-941.	1.2	67
223	Modulation of Abscisic Acid Signaling in Vivo by an Engineered Receptor-Insensitive Protein Phosphatase Type 2C Allele Â. Plant Physiology, 2011, 156, 106-116.	2.3	104
224	Mechanistic Analysis of AKT1 Regulation by the CBL–CIPK–PP2CA Interactions. Molecular Plant, 2011, 4, 527-536.	3.9	136
225	Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)-dependent and independent pathways in Medicago truncatula during post-germination. Journal of Experimental Botany, 2011, 62, 605-615.	2.4	39
226	A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO Journal, 2011, 30, 4171-4184.	3.5	161
227	Transcriptional regulation of SIPYL, SIPP2C, and SISnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. Journal of Experimental Botany, 2011, 62, 5659-5669.	2.4	151
228	Rice ABI5-Like1 Regulates Abscisic Acid and Auxin Responses by Affecting the Expression of ABRE-Containing Genes Â. Plant Physiology, 2011, 156, 1397-1409.	2.3	119
229	Inducible Gene Expression in Mammals: Plants Add to the Menu. Science Signaling, 2011, 4, pe13.	1.6	4
230	Arabidopsis 3-Ketoacyl-CoA Thiolase-2 (KAT2), an Enzyme of Fatty Acid \hat{I}^2 -Oxidation, is Involved in ABA Signal Transduction. Plant and Cell Physiology, 2011, 52, 528-538.	1.5	65
231	Two Arabidopsis guard cell-preferential MAPK genes, <i>MPK9 </i> stress response. Plant Signaling and Behavior, 2011, 6, 1875-1877.	1.2	54
232	Genome-wide responses to drought in forest trees. Forestry, 2011, 84, 273-283.	1.2	105
233	The beginnings of crop phosphoproteomics: exploring early warning systems of stress. Frontiers in Plant Science, 2012, 3, 144.	1.7	39
234	Molecular Evolution of Slow and Quick Anion Channels (SLACs and QUACs/ALMTs). Frontiers in Plant Science, 2012, 3, 263.	1.7	104
235	Accelerating forward genetics for cell wall deconstruction. Frontiers in Plant Science, 2012, 3, 119.	1.7	7
236	Isolation of Arabidopsis ahg11, a weak ABA hypersensitive mutant defective in nad4 RNA editing. Journal of Experimental Botany, 2012, 63, 5301-5310.	2.4	61
237	Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus) Tj ETQq0 0 2753-2767.	0 rgBT /Ov 2.4	verlock 10 Tf 48
238	Molecular and Physiological Characterization of the Arabidopsis thaliana Oxidation-Related Zinc Finger 2, a Plasma Membrane Protein Involved in ABA and Salt Stress Response Through the ABI2-Mediated Signaling Pathway. Plant and Cell Physiology, 2012, 53, 193-203.	1.5	67

#	Article	IF	Citations
239	The ARP2/3 Complex Mediates Guard Cell Actin Reorganization and Stomatal Movement in <i>Arabidopsis </i> . Plant Cell, 2012, 24, 2031-2040.	3.1	74
240	Constitutive Activation of Transcription Factor OsbZIP46 Improves Drought Tolerance in Rice Â. Plant Physiology, 2012, 158, 1755-1768.	2.3	305
241	Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9653-9658.	3.3	421
242	Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. Journal of Experimental Botany, 2012, 63, 1095-1106.	2.4	259
243	Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in <i>Arabidopsis thaliana</i> of the United States of America, 2012, 109, 12822-12827.	3.3	193
244	New Technologies for 21st Century Plant Science. Plant Cell, 2012, 24, 374-394.	3.1	58
245	Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10593-10598.	3.3	393
246	Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Research, 2012, 40, 8240-8254.	6.5	145
247	Discovery of New Modules in Metabolic Biology Using ChemoMetabolomics. Plant Physiology, 2012, 160, 1160-1163.	2.3	10
248	Isolation and Characterization of Novel Mutant Loci Suppressing the ABA Hypersensitivity of the Arabidopsis coronatine insensitive 1-16 (coi1-16) Mutant During Germination and Seedling Growth. Plant and Cell Physiology, 2012, 53, 53-63.	1.5	26
249	Pyrabactin, an ABA agonist, induced stomatal closure and changes in signalling components of guard cells in abaxial epidermis of Pisum sativum. Journal of Experimental Botany, 2012, 63, 1349-1356.	2.4	35
250	<i>Arabidopsis</i> PYR/PYL/RCAR Receptors Play a Major Role in Quantitative Regulation of Stomatal Aperture and Transcriptional Response to Abscisic Acid. Plant Cell, 2012, 24, 2483-2496.	3.1	493
251	FIA functions as an early signal component of abscisic acid signal cascade in Vicia faba guard cells. Journal of Experimental Botany, 2012, 63, 1357-1365.	2.4	20
252	Suppression of 9 <i>-</i> cis <i>-</i> Epoxycarotenoid Dioxygenase, Which Encodes a Key Enzyme in Abscisic Acid Biosynthesis, Alters Fruit Texture in Transgenic Tomato Â. Plant Physiology, 2012, 158, 283-298.	2.3	228
253	Reactive Oxygen Species Are Involved in Gibberellin/Abscisic Acid Signaling in Barley Aleurone Cells Â. Plant Physiology, 2012, 158, 1705-1714.	2.3	131
254	A Vacuolar Î ² -Glucosidase Homolog That Possesses Glucose-Conjugated Abscisic Acid Hydrolyzing Activity Plays an Important Role in Osmotic Stress Responses in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2184-2199.	3.1	251
255	A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. Journal of Experimental Botany, 2012, 63, 1013-1024.	2.4	244
256	Controlling Hormone Action by Subversion and Deception. Science, 2012, 335, 46-47.	6.0	2

#	Article	IF	CITATIONS
257	Unique Drought Resistance Functions of the <i>Highly ABA-Induced </i> Clade A Protein Phosphatase 2Cs Â. Plant Physiology, 2012, 160, 379-395.	2.3	261
258	ImprimatinC1, a novel plant immune-priming compound, functions as a partial agonist of salicylic acid. Scientific Reports, 2012, 2, 705.	1.6	22
259	FERONIA receptor kinase pathway suppresses abscisic acid signaling in <i>Arabidopsis</i> by activating ABI2 phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14693-14698.	3.3	220
260	Molecular Mechanism for Inhibition of a Critical Component in the Arabidopsis thaliana Abscisic Acid Signal Transduction Pathways, SnRK2.6, by Protein Phosphatase ABI1. Journal of Biological Chemistry, 2012, 287, 794-802.	1.6	76
261	Seasonal Abscisic Acid Signal and a Basic Leucine Zipper Transcription Factor, DkbZIP5, Regulate Proanthocyanidin Biosynthesis in Persimmon Fruit Â. Plant Physiology, 2012, 158, 1089-1102.	2.3	66
262	A Plasma Membrane Receptor Kinase, GHR1, Mediates Abscisic Acid- and Hydrogen Peroxide-Regulated Stomatal Movement in <i>Arabidopsis</i> Plant Cell, 2012, 24, 2546-2561.	3.1	341
263	Of Blades and Branches: Understanding and Expanding the Arabidopsis Ad/Abaxial Regulatory Network through Target Gene Identification. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 31-45.	2.0	17
264	Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches. Plant Cell, 2012, 24, 2262-2278.	3.1	155
265	Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. Journal of Experimental Botany, 2012, 63, 4191-4212.	2.4	72
266	The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. Journal of Experimental Botany, 2012, 63, 4931-4945.	2.4	86
267	The lysine-rich motif of intrinsically disordered stress protein CDeT11-24 from Craterostigma plantagineum is responsible for phosphatidic acid binding and protection of enzymes from damaging effects caused by desiccation. Journal of Experimental Botany, 2012, 63, 4919-4929.	2.4	41
268	From Bench to Bountiful Harvests: A Road Map for the Next Decade of Arabidopsis Research. Plant Cell, 2012, 24, 2240-2247.	3.1	19
270	Hormonal regulation of leaf senescence in Lilium. Journal of Plant Physiology, 2012, 169, 1542-1550.	1.6	12
271	The Snf1â€related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant Journal, 2012, 72, 436-449.	2.8	161
272	Disruption of Abscisic Acid Signaling Constitutively Activates Arabidopsis Resistance to the Necrotrophic Fungus <i>Plectosphaerella cucumerina </i> li>Â Â. Plant Physiology, 2012, 160, 2109-2124.	2.3	132
273	Hormone symphony during root growth and development. Developmental Dynamics, 2012, 241, 1867-1885.	0.8	76
274	Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. Planta, 2012, 236, 1351-1366.	1.6	98
275	Wheat ABA-insensitive mutants result in reduced grain dormancy. Euphytica, 2012, 188, 35-49.	0.6	16

#	Article	lF	CITATIONS
276	Lego NXT information on test dimensionality using Kolb's innovative learning cycle. Natural Hazards, 2012, 64, 1527-1548.	1.6	17
277	The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Molecular Biology, 2012, 80, 405-418.	2.0	144
278	Roles of the different components of magnesium chelatase in abscisic acid signal transduction. Plant Molecular Biology, 2012, 80, 519-537.	2.0	72
279	Direct interactions of ABA-insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Molecular Biology, 2012, 80, 647-658.	2.0	107
280	Over-expression of GsZFP1, an ABA-responsive C2H2-type zinc finger protein lacking a QALGGH motif, reduces ABA sensitivity and decreases stomata size. Journal of Plant Physiology, 2012, 169, 1192-1202.	1.6	34
281	The expression profiling of the CsPYL, CsPP2C and CsSnRK2 gene families during fruit development and drought stress in cucumber. Journal of Plant Physiology, 2012, 169, 1874-1882.	1.6	59
282	Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics, 2012, 100, 110-115.	1.3	139
283	Ion Channels in Plants. Physiological Reviews, 2012, 92, 1777-1811.	13.1	398
284	Controlled nuclear import of the transcription factor NTL6 reveals a cytoplasmic role of SnRK2.8Âin the drought-stress response. Biochemical Journal, 2012, 448, 353-363.	1.7	103
285	Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Science, 2012, 182, 3-11.	1.7	102
286	ERD15â€"An attenuator of plant ABA responses and stomatal aperture. Plant Science, 2012, 182, 19-28.	1.7	34
287	N-Acylethanolamines and related compounds: Aspects of metabolism and functions. Plant Science, 2012, 184, 129-140.	1.7	32
288	Functional roles of the protein phosphatase 2C, AtAIP1, in abscisic acid signaling and sugar tolerance in Arabidopsis. Plant Science, 2012, 187, 83-88.	1.7	35
289	Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Science, 2012, 187, 89-96.	1.7	92
290	Anion channels: master switches of stress responses. Trends in Plant Science, 2012, 17, 221-229.	4.3	129
291	Diversity in Genetic <i>In Vivo</i> Methods for Protein-Protein Interaction Studies: from the Yeast Two-Hybrid System to the Mammalian Split-Luciferase System. Microbiology and Molecular Biology Reviews, 2012, 76, 331-382.	2.9	172
292	Abscisic Acid Signaling in Plants. , 2012, , 359-368.		2
293	Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases. Science, 2012, 335, 85-88.	6.0	439

#	Article	IF	Citations
294	Phospholipase Dδ is involved in nitric oxide-induced stomatal closure. Planta, 2012, 236, 1899-1907.	1.6	72
296	ABA signal transduction from ABA receptors to ion channels. Genes and Genomics, 2012, 34, 345-353.	0.5	12
297	Crystal structures of the Arabidopsis thaliana abscisic acid receptor PYL10 and its complex with abscisic acid. Biochemical and Biophysical Research Communications, 2012, 418, 122-127.	1.0	28
298	AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner. Biochemical and Biophysical Research Communications, 2012, 422, 710-715.	1.0	83
299	The Arabidopsis NPR1 Protein Is a Receptor for the Plant Defense Hormone Salicylic Acid. Cell Reports, 2012, 1, 639-647.	2.9	684
300	Identification and expression analysis of the Glycine max CYP707A gene family in response to drought and salt stresses. Annals of Botany, 2012, 110, 743-756.	1.4	46
301	Small Molecules Present Large Opportunities in Plant Biology. Annual Review of Plant Biology, 2012, 63, 261-282.	8.6	99
302	Genetic and genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit. BMC Genomics, 2012, 13, 187.	1.2	33
303	Protocol: optimised electrophyiological analysis of intact guard cells from Arabidopsis. Plant Methods, 2012, 8, 15.	1.9	13
304	Marker-assisted selection in plant breeding. , 2012, , 163-184.		45
305	Molecular responses to extreme temperatures. , 2012, , 287-307.		10
306	Contrapuntal role of ABA: Does it mediate stress tolerance or plant growth retardation under long-term drought stress?. Gene, 2012, 506, 265-273.	1.0	250
307	ABA says NO to UV-B: a universal response?. Trends in Plant Science, 2012, 17, 510-517.	4.3	85
308	Phosphorylation in the plant circadian system. Trends in Plant Science, 2012, 17, 575-583.	4.3	57
309	Chemical biology approaches in plant stress research. Journal of Plant Biochemistry and Biotechnology, 2012, 21, 52-57.	0.9	0
313	Role of Ion Channels in Plants. Springer Protocols, 2012, , 295-322.	0.1	7
314	Protein phosphatases: a genomic outlook to understand their function in plants. Journal of Plant Biochemistry and Biotechnology, 2012, 21, 100-107.	0.9	24
315	Compound stress response in stomatal closure: a mathematical model of ABA and ethylene interaction in guard cells. BMC Systems Biology, 2012, 6, 146.	3.0	36

#	Article	IF	Citations
316	Osmotic stress signaling via protein kinases. Cellular and Molecular Life Sciences, 2012, 69, 3165-3173.	2.4	85
317	GsAPK, an ABA-Activated and Calcium-Independent SnRK2-Type Kinase from G. soja, Mediates the Regulation of Plant Tolerance to Salinity and ABA Stress. PLoS ONE, 2012, 7, e33838.	1.1	51
318	Chemical PARP Inhibition Enhances Growth of Arabidopsis and Reduces Anthocyanin Accumulation and the Activation of Stress Protective Mechanisms. PLoS ONE, 2012, 7, e37287.	1.1	47
319	Abscisic Acid Signaling: Thermal Stability Shift Assays as Tool to Analyze Hormone Perception and Signal Transduction. PLoS ONE, 2012, 7, e47857.	1.1	19
320	Multiple hormone treatment revealed novel cooperative relationships between abscisic acid and biotic stress hormones in cultured cells. Plant Biotechnology, 2012, 29, 19-34.	0.5	7
321	Combinatorial Networks Regulating Seed Development and Seed Filling. , 2012, , .		4
322	ABA signal in rice under stress conditions. Rice, 2012, 5, 1.	1.7	215
323	ROP11 GTPase Negatively Regulates ABA Signaling by Protecting ABI1 Phosphatase Activity from Inhibition by the ABA Receptor RCAR1/PYL9 in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2012, 54, 180-188.	4.1	50
324	Connections between Sphingosine Kinase and Phospholipase D in the Abscisic Acid Signaling Pathway in Arabidopsis. Journal of Biological Chemistry, 2012, 287, 8286-8296.	1.6	99
325	Signal Transduction of Phytohormones Under Abiotic Stresses. , 2012, , 1-48.		27
326	The stomata frontline of plant interaction with the environment-perspectives from hormone regulation. Frontiers in Biology, 2012, 7, 96-112.	0.7	22
327	The ABA signal transduction mechanism in commercial crops: learning from Arabidopsis. Plant Cell Reports, 2012, 31, 1357-1369.	2.8	40
328	Circadian clock-dependent gating in ABA signalling networks. Protoplasma, 2012, 249, 445-457.	1.0	67
329	A novel role for histone methyltransferase KYP/SUVH4 in the control of <i>Arabidopsis</i> primary seed dormancy. New Phytologist, 2012, 193, 605-616.	3.5	104
330	WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnology Journal, 2012, 10, 2-11.	4.1	485
331	ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant, Cell and Environment, 2012, 35, 53-60.	2.8	584
332	<i>SKP1</i> is involved in abscisic acid signalling to regulate seed germination, stomatal opening and root growth in <i>Arabidopsis thaliana</i> Plant, Cell and Environment, 2012, 35, 952-965.	2.8	50
333	The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K ⁺ channel activity with vegetative growth. Plant Journal, 2012, 69, 241-251.	2.8	115

#	Article	IF	CITATIONS
334	AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in Arabidopsis. Plant Journal, 2012, 69, 809-821.	2.8	160
335	ROPGEF1 and ROPGEF4 are functional regulators of ROP11 GTPase in ABAâ€mediated stomatal closure in ⟨i>Arabidopsis⟨ i>. FEBS Letters, 2012, 586, 1253-1258.	1.3	47
336	ROP11 GTPase is a Negative Regulator of Multiple ABA Responses in <i>Arabidopsis</i> Journal of Integrative Plant Biology, 2012, 54, 169-179.	4.1	46
337	Complex Structures of the Abscisic Acid Receptor PYL3/RCAR13 Reveal a Unique Regulatory Mechanism. Structure, 2012, 20, 780-790.	1.6	71
338	Comparison of phytohormone signaling mechanisms. Current Opinion in Plant Biology, 2012, 15, 84-91.	3.5	135
339	Electrolytic reduction of abscisic acid methyl ester and its free acid. Phytochemistry, 2012, 80, 89-98.	1.4	5
340	Crystallization and preliminary X-ray diffraction studies of the abscisic acid receptor PYL3 and its complex with pyrabactin. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 479-482.	0.7	1
341	Purification, crystallization and preliminary X-ray analysis of OsAREB8 from rice, a member of the AREB/ABF family of bZIP transcription factors, in complex with its cognate DNA. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 491-494.	0.7	6
342	Phytochrome B increases drought tolerance by enhancing ABA sensitivity in <i>Arabidopsis thaliana</i> Plant, Cell and Environment, 2012, 35, 1958-1968.	2.8	95
343	Molecular mechanisms of seed dormancy. Plant, Cell and Environment, 2012, 35, 1769-1786.	2.8	449
344	Comparison of salt stress resistance genes in transgenic <i>Arabidopsis thaliana</i> indicates that extent of transcriptomic change may not predict secondary phenotypic or fitness effects. Plant Biotechnology Journal, 2012, 10, 284-300.	4.1	34
345	The role of the Arabidopsis FUSCA3transcription factor during inhibition of seed germination at high temperature. BMC Plant Biology, 2012, 12, 15.	1.6	70
346	Roles of mitogen-activated protein kinase cascades in ABA signaling. Plant Cell Reports, 2012, 31, 1-12.	2.8	102
347	Characterization of potential ABA receptors in Vitis vinifera. Plant Cell Reports, 2012, 31, 311-321.	2.8	93
348	Protein Ser/ Thr phosphatases – the ugly ducklings of cell signalling. FEBS Journal, 2013, 280, 324-325.	2.2	194
349	Type 2C protein phosphatases in plants. FEBS Journal, 2013, 280, 681-693.	2.2	200
350	Molecular character of a phosphatase 2C (PP2C) gene relation to stress tolerance in Arabidopsis thaliana. Molecular Biology Reports, 2013, 40, 2633-2644.	1.0	39
351	Cochaperonin CPN20 negatively regulates abscisic acid signaling in Arabidopsis. Plant Molecular Biology, 2013, 83, 205-218.	2.0	40

#	Article	IF	CITATIONS
352	A Novel Nuclear Protein Phosphatase 2C Negatively Regulated by ABL1 is Involved in Abiotic Stress and Panicle Development in Rice. Molecular Biotechnology, 2013, 54, 703-710.	1.3	33
353	Characterization of the first tuber mustard calmodulin-like gene, BjAAR1, and its functions in responses to abiotic stress and abscisic acid in Arabidopsis. Journal of Plant Biology, 2013, 56, 168-175.	0.9	3
354	Strategies and future trends to identify the mode of action of phytotoxic compounds. Plant Science, 2013, 212, 60-71.	1.7	12
355	Functional analysis of the ABA-responsive protein family in ABA and stress signal transduction in Arabidopsis. Science Bulletin, 2013, 58, 3721-3730.	1.7	22
356	Group A PP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance. Nature Communications, 2013, 4, 2219.	5.8	142
357	<scp>BLH</scp> 1 and <scp>KNAT</scp> 3 modulate <scp>ABA</scp> responses during germination and early seedling development in Arabidopsis. Plant Journal, 2013, 75, 755-766.	2.8	93
360	A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2013, 71, 112-120.	2.8	112
361	A Spatio-Temporal Understanding of Growth Regulation during the Salt Stress Response in Arabidopsis. Plant Cell, 2013, 25, 2132-2154.	3.1	351
362	Flower Development under Drought Stress: Morphological and Transcriptomic Analyses Reveal Acute Responses and Long-Term Acclimation in <i>Arabidopsis</i>): Plant Cell, 2013, 25, 3785-3807.	3.1	176
367	Comparative transcriptome analysis of tomato (Solanum lycopersicum) in response to exogenous abscisic acid. BMC Genomics, 2013, 14, 841.	1.2	84
368	Open Stomata 1 (<scp>OST</scp> 1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytologist, 2013, 200, 1049-1063.	3.5	171
369	Abscisic acid binds to recombinant Arabidopsis thaliana G-protein coupled receptor-type G-protein 1 in Sacaromycese cerevisiae and inÂvitro. Plant Physiology and Biochemistry, 2013, 68, 32-36.	2.8	6
370	Molecular basis for the selective and ABA-independent inhibition of PP2CA by PYL13. Cell Research, 2013, 23, 1369-1379.	5.7	80
371	Uniconazole, a cytochrome P450 inhibitor, inhibits trans-zeatin biosynthesis in Arabidopsis. Phytochemistry, 2013, 87, 30-38.	1.4	30
372	Structure and function of abscisic acid receptors. Trends in Plant Science, 2013, 18, 259-266.	4.3	164
373	Green and Scalable Aldehydeâ€Catalyzed Transition Metalâ€Free Dehydrative <i>Nâ€</i> Alkylation of Amides and Amines with Alcohols. Advanced Synthesis and Catalysis, 2013, 355, 73-80.	2.1	97
374	Overexpression of Arabidopsis acylâ€CoAâ€binding protein ACBP2 enhances drought tolerance. Plant, Cell and Environment, 2013, 36, 300-314.	2.8	73
375	ABI4: versatile activator and repressor. Trends in Plant Science, 2013, 18, 125-132.	4.3	142

#	Article	IF	CITATIONS
376	Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK). Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1582-1589.	1.9	146
377	Arabidopsis suppressor mutant of abh1 shows a new face of the already known players: ABH1 (CBP80) and ABI4â€"in response to ABA and abiotic stresses during seed germination. Plant Molecular Biology, 2013, 81, 189-209.	2.0	32
378	Ratiometric monitoring of transient apoplastic alkalinizations in the leaf apoplast of living <i><scp>V</scp>icia faba</i> plants: chloride primes and <scp>PM</scp> â€" <scp>H</scp> ⁺ â€ <scp>ATP</scp> ase shapes <scp>N</scp> a <scp>C</scp> lâ€induced systemic alkalinizations. New Phytologist, 2013, 197, 1117-1129.	3.5	37
379	A chemical genetics approach reveals a role of brassinolide and cellulose synthase in hypocotyl elongation of etiolated Arabidopsis seedlings. Plant Science, 2013, 209, 46-57.	1.7	24
380	AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling. Plant Cell Reports, 2013, 32, 1953-1963.	2.8	35
381	Pathogen and Circadian Controlled 1 (PCC1) regulates polar lipid content, ABA-related responses, and pathogen defence in Arabidopsis thaliana. Journal of Experimental Botany, 2013, 64, 3385-3395.	2.4	42
382	Abscisic Acid Suppresses the Highly Occurred Somatic Homologous Recombination in Arabidopsis rfc1 Mutant. Journal of Genetics and Genomics, 2013, 40, 465-471.	1.7	9
383	Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange. Plant Science, 2013, 201-202, 66-73.	1.7	127
384	Plant hormone signaling during development: insights from computational models. Current Opinion in Plant Biology, 2013, 16, 19-24.	3.5	15
385	Differential Expression of MicroRNAs in Response to Drought Stress in Maize. Journal of Integrative Agriculture, 2013, 12, 1414-1422.	1.7	50
386	Stress Tolerance in Plants: A Proteomics Approach. , 2013, , 359-386.		3
387	A Dof Transcription Factor, SCAP1, Is Essential for the Development of Functional Stomata in Arabidopsis. Current Biology, 2013, 23, 479-484.	1.8	125
388	Mutations in the <scp>SLAC</scp> 1 anion channel slow stomatal opening and severely reduce K ⁺ uptake channel activity via enhanced cytosolic [Ca ²⁺] and increased Ca ²⁺ sensitivity of K ⁺ uptake channels. New Phytologist, 2013, 197, 88-98.	3.5	50
389	Protein Conformation Ensembles Monitored by HDX Reveal a Structural Rationale for Abscisic Acid Signaling Protein Affinities and Activities. Structure, 2013, 21, 229-235.	1.6	31
390	<scp>ABA</scp> inhibits entry into stomatalâ€lineage development in <scp>A</scp> rabidopsis leaves. Plant Journal, 2013, 74, 448-457.	2.8	117
391	Endodermal ABA Signaling Promotes Lateral Root Quiescence during Salt Stress in <i>Arabidopsis</i>	3.1	367
392	Nitrated Cyclic GMP Modulates Guard Cell Signaling in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 558-571.	3.1	136
393	Synthetic molecules: helping to unravel plant signal transduction. Journal of Chemical Biology, 2013, 6, 43-50.	2.2	16

#	Article	IF	CITATIONS
394	Gibberellins and abscisic acid signal crosstalk: living and developing under unfavorable conditions. Plant Cell Reports, 2013, 32, 1007-1016.	2.8	106
395	Open stomata 1 (<scp>OST</scp> 1) kinase controls <scp>R</scp> –type anion channel <scp>QUAC</scp> 1 in <scp>A</scp> rabidopsis guard cells. Plant Journal, 2013, 74, 372-382.	2.8	184
396	Nitric oxide as a key component in hormone-regulated processes. Plant Cell Reports, 2013, 32, 853-866.	2.8	112
397	Protein Contribution to Plant Salinity Response and Tolerance Acquisition. International Journal of Molecular Sciences, 2013, 14, 6757-6789.	1.8	170
398	Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar  Zak'. Theoretical and Applied Genetics, 2013, 126, 791-803.	1.8	31
399	Dormancy and the Control of Germination. , 2013, , 247-297.		28
400	The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Reports, 2013, 32, 945-957.	2.8	218
401	ABA homeostasis and signaling involving multiple subcellular compartments and multiple receptors. Plant Cell Reports, 2013, 32, 807-813.	2.8	89
402	Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Molecular Biology Reports, 2013, 40, 4759-4767.	1.0	95
403	ABA signaling in stress-response and seed development. Plant Cell Reports, 2013, 32, 959-970.	2.8	631
404	The glutamate carboxypeptidase AMP 1 mediates abscisic acid and abiotic stress responses in A rabidopsis. New Phytologist, 2013, 199, 135-150.	3.5	35
405	Quantitative Proteomics-Based Analysis Supports a Significant Role of GTG Proteins in Regulation of ABA Response in <i>Arabidopsis</i>	1.8	38
406	Functional analysis of TaABF1 during abscisic acid and gibberellin signalling in aleurone cells of cereal grains. Seed Science Research, 2013, 23, 89-98.	0.8	9
407	Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiology and Biochemistry, 2013, 62, 41-46.	2.8	242
408	Differential expression of the Citrus sinensis ABA perception system genes during postharvest fruit dehydration. Postharvest Biology and Technology, 2013, 76, 65-73.	2.9	22
409	Interactions between soybean ABA receptors and type 2C protein phosphatases. Plant Molecular Biology, 2013, 83, 651-664.	2.0	77
410	Multiple roles of the transcription factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf senescence. BMC Plant Biology, 2013, 13, 192.	1.6	163
411	Enzyme Action in the Regulation of Plant Hormone Responses. Journal of Biological Chemistry, 2013, 288, 19304-19311.	1.6	64

#	Article	IF	Citations
412	ABI1 and PP2CA Phosphatases Are Negative Regulators of Snf1-Related Protein Kinase1 Signaling in <i>Arabidopsis</i> . Plant Cell, 2013, 25, 3871-3884.	3.1	266
413	The role of abscisic acid in fruit ripening and responses to abiotic stress. Journal of Experimental Botany, 2013, 65, 4577-4588.	2.4	280
414	Arabidopsis acylâ€CoAâ€binding protein <scp>ACBP</scp> 1 participates in the regulation of seed germination and seedling development. Plant Journal, 2013, 74, 294-309.	2.8	85
415	Selective Mimics of Strigolactone Actions and Their Potential Use for Controlling Damage Caused by Root Parasitic Weeds. Molecular Plant, 2013, 6, 88-99.	3.9	71
416	PYR/RCAR Receptors Contribute to Ozone-, Reduced Air Humidity-, Darkness-, and CO2-Induced Stomatal Regulation Â. Plant Physiology, 2013, 162, 1652-1668.	2.3	190
417	Difference in Abscisic Acid Perception Mechanisms between Closure Induction and Opening Inhibition of Stomata Â. Plant Physiology, 2013, 163, 600-610.	2.3	58
418	Interplay between Sucrose and Folate Modulates Auxin Signaling in Arabidopsis. Plant Physiology, 2013, 162, 1552-1565.	2.3	71
419	Chemical genetics to examine cellulose biosynthesis. Frontiers in Plant Science, 2012, 3, 309.	1.7	46
420	Overexpression of the Mg-chelatase H subunit in guard cells confers drought tolerance via promotion of stomatal closure in Arabidopsis thaliana. Frontiers in Plant Science, 2013, 4, 440.	1.7	30
421	Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione. Frontiers in Plant Science, 2013, 4, 472.	1.7	60
422	Natural Variation in Small Molecule–Induced TIR-NB-LRR Signaling Induces Root Growth Arrest via EDS1- and PAD4-Complexed R Protein VICTR in <i>Arabidopsis</i> A. Plant Cell, 2013, 24, 5177-5192.	3.1	64
423	Open or Close the Gate – Stomata Action Under the Control of Phytohormones in Drought Stress Conditions. Frontiers in Plant Science, 2013, 4, 138.	1.7	417
424	ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis. PLoS Genetics, 2013, 9, e1003577.	1.5	330
425	ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Frontiers in Plant Science, 2013, 4, 63.	1.7	220
426	Structural Biology of a Major Signaling Network that Regulates Plant Abiotic Stress: The CBL-CIPK Mediated Pathway. International Journal of Molecular Sciences, 2013, 14, 5734-5749.	1.8	79
427	Molecular Mechanisms in the Activation of Abscisic Acid Receptor PYR1. PLoS Computational Biology, 2013, 9, e1003114.	1.5	17
428	<i>Arabidopsis</i> nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8296-8301.	3.3	210
429	Going Green: Phytohormone Mimetics for Drought Rescue. Plant Physiology, 2013, 163, 1087-1088.	2.3	7

#	Article	IF	Citations
430	HONSU, a Protein Phosphatase 2C, Regulates Seed Dormancy by Inhibiting ABA Signaling in Arabidopsis. Plant and Cell Physiology, 2013, 54, 555-572.	1.5	74
431	Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin–proteasome system. Journal of Experimental Botany, 2013, 64, 2779-2791.	2.4	136
432	Can prolonged exposure to low VPD disturb the ABA signalling in stomatal guard cells?. Journal of Experimental Botany, 2013, 64, 3551-3566.	2.4	74
433	A Genomic-Scale Artificial MicroRNA Library as a Tool to Investigate the Functionally Redundant Gene Space in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 2848-2863.	3.1	62
434	ABA Signaling in Guard Cells Entails a Dynamic Protein–Protein Interaction Relay from the PYL-RCAR Family Receptors to Ion Channels. Molecular Plant, 2013, 6, 528-538.	3.9	139
435	bHLH Transcription Factors That Facilitate K ⁺ Uptake During Stomatal Opening Are Repressed by Abscisic Acid Through Phosphorylation. Science Signaling, 2013, 6, ra48.	1.6	97
436	Calcium-Dependent and -Independent Stomatal Signaling Network and Compensatory Feedback Control of Stomatal Opening via Ca2+ Sensitivity Priming. Plant Physiology, 2013, 163, 504-513.	2.3	47
437	Genetics and Phosphoproteomics Reveal a Protein Phosphorylation Network in the Abscisic Acid Signaling Pathway in <i>Arabidopsis thaliana</i> Science Signaling, 2013, 6, rs8.	1.6	355
438	Expression profiles and genomic organisation of group A protein phosphatase <scp>2C</scp> genes in <i>Brassica oleracea</i> . Annals of Applied Biology, 2013, 163, 124-134.	1.3	6
439	Purification, crystallization and preliminary X-ray analysis of the strawberry allergens Fra a 1E and Fra a 3 in the presence of catechin. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 510-514.	0.7	12
440	Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11205-11210.	3.3	394
441	The role of <i>Fa<scp>BG</scp>3</i> in fruit ripening and <ib.âcinerea< i=""> fungal infection of strawberry. Plant Journal, 2013, 76, 24-35.</ib.âcinerea<>	2.8	69
442	Defenseâ€related transcription factors <scp>WRKY</scp> 70 and <scp>WRKY</scp> 54 modulate osmotic stress tolerance by regulating stomatal aperture in <i><scp>A</scp>rabidopsisNew Phytologist, 2013, 200, 457-472.</i>	3.5	223
443	The Strawberry Pathogenesis-related 10 (PR-10) Fra a Proteins Control Flavonoid Biosynthesis by Binding to Metabolic Intermediates. Journal of Biological Chemistry, 2013, 288, 35322-35332.	1.6	77
444	The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling. Cell Research, 2013, 23, 1380-1395.	5.7	125
445	PYR/PYL/RCAR Abscisic Acid Receptors Regulate K+ and Clâ^' Channels through Reactive Oxygen Species-Mediated Activation of Ca2+ Channels at the Plasma Membrane of Intact Arabidopsis Guard Cells Â. Plant Physiology, 2013, 163, 566-577.	2.3	82
446	PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root \hat{A} \hat{A} . Plant Physiology, 2013, 161, 931-941.	2.3	244
447	Abscisic Acid Synthesis and Response. The Arabidopsis Book, 2013, 11, e0166.	0.5	815

#	Article	IF	CITATIONS
448	An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Research, 2013, 23, 1043-1054.	5.7	167
450	The PYL4 A194T Mutant Uncovers a Key Role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA Interaction for Abscisic Acid Signaling and Plant Drought Resistance Â. Plant Physiology, 2013, 163, 441-455.	2.3	150
451	Crystallization and initial X-ray data of abscisic acid receptor PYL3 in the presence of (â^')-ABA. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 540-543.	0.7	0
452	Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12132-12137.	3.3	262
453	The PP6 Phosphatase Regulates ABI5 Phosphorylation and Abscisic Acid Signaling in <i>Arabidopsis</i> Plant Cell, 2013, 25, 517-534.	3.1	98
454	Abiotic Stress in Plants. , 0, , .		2
455	Molecular Mechanisms Controlling Dormancy and Germination in Barley. , 2013, , .		1
456	mRNA-seq Analysis of the Gossypium arboreum transcriptome Reveals Tissue Selective Signaling in Response to Water Stress during Seedling Stage. PLoS ONE, 2013, 8, e54762.	1.1	45
457	Overexpression of the Artemisia Orthologue of ABA Receptor, AaPYL9, Enhances ABA Sensitivity and Improves Artemisinin Content in Artemisia annua L. PLoS ONE, 2013, 8, e56697.	1.1	61
458	Directly Transforming PCR-Amplified DNA Fragments into Plant Cells Is a Versatile System That Facilitates the Transient Expression Assay. PLoS ONE, 2013, 8, e57171.	1.1	35
459	miR172b Controls the Transition to Autotrophic Development Inhibited by ABA in Arabidopsis. PLoS ONE, 2013, 8, e64770.	1.1	25
460	Structural Insights into the Abscisic Acid Stereospecificity by the ABA Receptors PYR/PYL/RCAR. PLoS ONE, 2013, 8, e67477.	1.1	38
461	Regulation of Wheat Seed Dormancy by After-Ripening Is Mediated by Specific Transcriptional Switches That Induce Changes in Seed Hormone Metabolism and Signaling. PLoS ONE, 2013, 8, e56570.	1.1	85
462	Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination. International Journal of Molecular Sciences, 2013, 14, 13403-13432.	1.8	6
463	The Molecular Basis of ABA-Mediated Plant Response to Drought. , 0, , .		21
464	Cloning and Characterization of TaPP2AbB"- \hat{l}_{\pm} , a Member of the PP2A Regulatory Subunit in Wheat. PLoS ONE, 2014, 9, e94430.	1.1	17
465	Acetobixan, an Inhibitor of Cellulose Synthesis Identified by Microbial Bioprospecting. PLoS ONE, 2014, 9, e95245.	1.1	12
466	Identification and Characterization of ABA Receptors in Oryza sativa. PLoS ONE, 2014, 9, e95246.	1.1	103

#	Article	IF	Citations
467	Cloning of Gossypium hirsutum Sucrose Non-Fermenting 1-Related Protein Kinase 2 Gene (GhSnRK2) and Its Overexpression in Transgenic Arabidopsis Escalates Drought and Low Temperature Tolerance. PLoS ONE, 2014, 9, e112269.	1.1	29
468	H2O2 Inhibits ABA-Signaling Protein Phosphatase HAB1. PLoS ONE, 2014, 9, e113643.	1.1	25
469	Type 2C Phosphatase 1 of <i> Artemisia annua < li > L. Is a Negative Regulator of ABA Signaling. BioMed Research International, 2014, 2014, 1-9.</i>	0.9	14
470	Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. ELife, 2014, 3, e01741.	2.8	203
471	The Arabidopsis ZINC FINGER PROTEIN3 Interferes with Abscisic Acid and Light Signaling in Seed Germination and Plant Development Â. Plant Physiology, 2014, 165, 1203-1220.	2.3	89
473	Phosphorylation Networks in the Abscisic Acid Signaling Pathway. The Enzymes, 2014, 35, 27-56.	0.7	12
474	Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5741-5746.	3.3	100
475	FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. ELife, 2014, 3, e01739.	2.8	213
476	ABD1 Is an <i>Arabidopsis</i> i>DCAF Substrate Receptor for CUL4-DDB1â€"Based E3 Ligases That Acts as a Negative Regulator of Abscisic Acid Signaling. Plant Cell, 2014, 26, 695-711.	3.1	152
477	The <i>Arabidopsis</i> Abiotic Stress-Induced TSPO-Related Protein Reduces Cell-Surface Expression of the Aquaporin PIP2;7 through Protein-Protein Interactions and Autophagic Degradation. Plant Cell, 2014, 26, 4974-4990.	3.1	128
478	Abscisic Acid Suppresses Hypocotyl Elongation by Dephosphorylating Plasma Membrane H+-ATPase in Arabidopsis thaliana. Plant and Cell Physiology, 2014, 55, 845-853.	1.5	85
479	Arabidopsis pentatricopeptide repeat protein SOAR1 plays a critical role in abscisic acid signalling. Journal of Experimental Botany, 2014, 65, 5317-5330.	2.4	37
480	The Basic Leucine Zipper Transcription Factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 Is an Important Transcriptional Regulator of Abscisic Acid-Dependent Grape Berry Ripening Processes Â. Plant Physiology, 2014, 164, 365-383.	2.3	136
481	Towards personalized agriculture: what chemical genomics can bring to plant biotechnology. Frontiers in Plant Science, 2014, 5, 344.	1.7	9
482	Plant chemical biology: are we meeting the promise?. Frontiers in Plant Science, 2014, 5, 455.	1.7	38
483	Signaling Components of ABA-dependent Transcriptional Regulation. Han'guk Yukchong Hakhoe Chi, 2014, 46, 1-9.	0.2	0
484	Extracellular signals and receptor-like kinases regulating ROP GTPases in plants. Frontiers in Plant Science, 2014, 5, 449.	1.7	33
485	Arabidopsis ABA Receptor RCAR1/PYL9 Interacts with an R2R3-Type MYB Transcription Factor, AtMYB44. International Journal of Molecular Sciences, 2014, 15, 8473-8490.	1.8	40

#	Article	IF	CITATIONS
486	The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Frontiers in Plant Science, 2014, 5, 135.	1.7	251
487	Antagonistic Regulation of Arabidopsis Growth by Brassinosteroids and Abiotic Stresses. Molecules and Cells, 2014, 37, 795-803.	1.0	62
488	Molecular locks and keys: the role of small molecules in phytohormone research. Frontiers in Plant Science, 2014, 5, 709.	1.7	35
489	Drying without senescence in resurrection plants. Frontiers in Plant Science, 2014, 5, 36.	1.7	90
490	Target identification strategies in plant chemical biology. Frontiers in Plant Science, 2014, 5, 352.	1.7	26
491	The Arabidopsis thaliana FASCICLIN LIKE ARABINOGALACTAN PROTEIN 4 gene acts synergistically with abscisic acid signalling to control root growth. Annals of Botany, 2014, 114, 1125-1133.	1.4	69
492	Regulation of Drought Tolerance by the F-Box Protein MAX2 in Arabidopsis. Plant Physiology, 2014, 164, 424-439.	2.3	254
493	Mechanism of highâ€affinity abscisic acid binding to <scp>PYL</scp> 9/ <scp>RCAR</scp> 1. Genes To Cells, 2014, 19, 386-404.	0.5	18
494	Behind the scenes: the roles of reactive oxygen species in guard cells. New Phytologist, 2014, 201, 1121-1140.	3.5	224
495	C2-Domain Abscisic Acid-Related Proteins Mediate the Interaction of PYR/PYL/RCAR Abscisic Acid Receptors with the Plasma Membrane and Regulate Abscisic Acid Sensitivity in <i>Arabidopsis</i> Cell, 2014, 26, 4802-4820.	3.1	127
496	Gate control: guard cell regulation by microbial stress. New Phytologist, 2014, 203, 1049-1063.	3.5	77
497	Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. New Phytologist, 2014, 202, 376-391.	3.5	117
498	<scp>WRKY</scp> 41 controls Arabidopsis seed dormancy via direct regulation of <i><i><scp>ABI</scp>3</i> transcript levels not downstream of ABA. Plant Journal, 2014, 79, 810-823.</i>	2.8	140
499	Identification of the Regulator of G-Protein Signaling Protein Responsive to Plant Hormones and Abiotic Stresses in Brassica napus. Journal of Integrative Agriculture, 2014, 13, 2634-2644.	1.7	4
500	ATP-Binding Cassette and Multidrug and Toxic Compound Extrusion Transporters in Plants. International Review of Cell and Molecular Biology, 2014, 309, 303-346.	1.6	58
501	<i>REDUCED DORMANCY5</i> Encodes a Protein Phosphatase 2C That Is Required for Seed Dormancy in <i>Arabidopsis</i> ÂÂÂ. Plant Cell, 2014, 26, 4362-4375.	3.1	79
502	A hub for ABA signaling to the nucleus: Significance of a cytosolic and nuclear dual-localized PPR protein SOAR1 acting downstream of Mg-chelatase H subunit. Plant Signaling and Behavior, 2014, 9, e972899.	1.2	18
503	ABA Regulation of Plant Responses to Drought and Salt Stresses. , 2014, , 315-336.		7

#	Article	IF	CITATIONS
504	Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science, 2014, 5, 151.	1.7	897
505	Transcriptome of the inflorescence meristems of the biofuel plant Jatropha curcas treated with cytokinin. BMC Genomics, 2014, 15, 974.	1.2	49
506	Shared functions of plant and mammalian StAR-related lipid transfer (START) domains in modulating transcription factor activity. BMC Biology, 2014, 12, 70.	1.7	62
507	Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana. Journal of Experimental Botany, 2014, 65, 1637-1649.	2.4	16
508	Unraveling plant hormone signaling through the use of small molecules. Frontiers in Plant Science, 2014, 5, 373.	1.7	51
509	Abscisic Acid Implication in Plant Growth and Stress Responses. , 2014, , 37-54.		6
510	ABA Metabolism and Signaling in Fleshy Fruits. , 2014, , 271-286.		10
511	The Remodeling of Seedling Development in Response to Long-Term Magnesium Toxicity and Regulation by ABA–DELLA Signaling in Arabidopsis. Plant and Cell Physiology, 2014, 55, 1713-1726.	1.5	43
512	The ABA Receptor PYL8 Promotes Lateral Root Growth by Enhancing MYB77-Dependent Transcription of Auxin-Responsive Genes. Science Signaling, 2014, 7, ra53.	1.6	274
513	Multiple Roles of the Plasma Membrane H+-ATPase and Its Regulation. The Enzymes, 2014, 35, 191-211.	0.7	9
514	ABA Regulation of the Cold Stress Response in Plants. , 2014, , 337-363.		34
515	ABA mediates PEG-mediated premature differentiation of root apical meristem in plants. Plant Signaling and Behavior, 2014, 9, e977720.	1.2	12
516	Membrane Bound: C2-Domain Abscisic Acid-Related Proteins Help Abscisic Acid Receptors Get Where They Need to Go. Plant Cell, 2014, 26, 4566-4566.	3.1	2
517	Abscisic Acid Regulates Early Seed Development in <i>Arabidopsis</i> by ABI5-Mediated Transcription of <i>SHORT HYPOCOTYL UNDER BLUE1</i> Plant Cell, 2014, 26, 1053-1068.	3.1	172
518	Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. Science Signaling, 2014, 7, ra86.	1.6	168
519	A Mesoscale Abscisic Acid Hormone Interactome Reveals a Dynamic Signaling Landscape in Arabidopsis. Developmental Cell, 2014, 29, 360-372.	3.1	109
520	Structurally diverse low molecular weight activators of the mammalian pre-mRNA 3′ cleavage reaction. Bioorganic and Medicinal Chemistry, 2014, 22, 834-841.	1.4	0
521	Mechanism of ABA signal transduction: Agricultural highlights for improving drought tolerance. Journal of Plant Biology, 2014, 57, 1-8.	0.9	50

#	Article	IF	CITATIONS
522	Arabidopsis co-chaperonin CPN20 antagonizes Mg-chelatase H subunit to derepress ABA-responsive WRKY40 transcription repressor. Science China Life Sciences, 2014, 57, 11-21.	2.3	31
523	Molecular cloning and characterization of CrNCED1, a gene encoding 9-cis-epoxycarotenoid dioxygenase in Citrus reshni, with functions in tolerance to multiple abiotic stresses. Planta, 2014, 239, 61-77.	1.6	68
524	Abscisic acid (<scp>ABA</scp>) sensitivity regulates desiccation tolerance in germinated <scp>A</scp> rabidopsis seeds. New Phytologist, 2014, 203, 81-93.	3.5	111
525	Glutamate signalling in roots. Journal of Experimental Botany, 2014, 65, 779-787.	2.4	114
526	Gene Family Analysis of the Arabidopsis NF-YA Transcription Factors Reveals Opposing Abscisic Acid Responses During Seed Germination. Plant Molecular Biology Reporter, 2014, 32, 971-986.	1.0	51
527	Over-expression of ArathEULS3 confers ABA sensitivity and drought tolerance in Arabidopsis. Plant Cell, Tissue and Organ Culture, 2014, 117, 431-442.	1.2	21
528	Plant hormones and seed germination. Environmental and Experimental Botany, 2014, 99, 110-121.	2.0	521
529	Homeodomain leucineâ€zipper proteins and their role in synchronizing growth and development with the environment. Journal of Integrative Plant Biology, 2014, 56, 518-526.	4.1	46
530	Life and death under salt stress: same players, different timing?. Journal of Experimental Botany, 2014, 65, 2963-2979.	2.4	240
531	Quantitative Proteomics Reveals the Role of Protein Phosphorylation in Rice Embryos during Early Stages of Germination. Journal of Proteome Research, 2014, 13, 1766-1782.	1.8	63
532	Overexpression of <i>PYL5 </i> ii> in rice enhances drought tolerance, inhibits growth, and modulates gene expression. Journal of Experimental Botany, 2014, 65, 453-464.	2.4	204
533	Role of chromatin in water stress responses in plants. Journal of Experimental Botany, 2014, 65, 2785-2799.	2.4	80
534	The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology Advances, 2014, 32, 40-52.	6.0	528
535	ABA as a Universal Plant Hormone. Progress in Botany Fortschritte Der Botanik, 2014, , 57-96.	0.1	37
536	Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis. Planta, 2014, 239, 565-575.	1.6	73
537	The singleâ€subunit <scp>RING</scp> â€type E3 ubiquitin ligase <scp>RSL</scp> 1 targets <scp>PYL</scp> 4 and <scp>PYR</scp> 1 <scp>ABA</scp> receptors in plasma membrane to modulate abscisic acid signaling. Plant Journal, 2014, 80, 1057-1071.	2.8	177
538	The tumor necrosis factor receptorâ€associated factor (TRAF)â€like family protein SEVEN IN ABSENTIA 2 (SINA2) promotes drought tolerance in an <scp>ABA</scp> â€dependent manner in <scp>A</scp> rabidopsis. New Phytologist, 2014, 202, 174-187.	3.5	64
539	Closing gaps: linking elements that control stomatal movement. New Phytologist, 2014, 203, 44-62.	3.5	292

#	Article	IF	CITATIONS
540	Phosphoproteomic Analyses Reveal Early Signaling Events in the Osmotic Stress Response \hat{A} \hat{A} . Plant Physiology, 2014, 165, 1171-1187.	2.3	77
541	Abscisic Acid Flux Alterations Result in Differential Abscisic Acid Signaling Responses and Impact Assimilation Efficiency in Barley under Terminal Drought Stress. Plant Physiology, 2014, 164, 1677-1696.	2.3	85
542	Functional Genomics of Drought Tolerance in Bioenergy Crops. Critical Reviews in Plant Sciences, 2014, 33, 205-224.	2.7	25
543	Arabidopsis <scp>RAV</scp> 1 transcription factor, phosphorylated by <scp>S</scp> n <scp>RK</scp> 2 kinases, regulates the expression of <i><scp>ABI</scp>3</i> <scp>ABI</scp> 4 and <i><scp>ABI</scp>5</i> during seed germination and early seedling development. Plant Journal, 2014, 80. 654-668.	2.8	224
544	SINCED1 and SICYP707A2: key genes involved in ABA metabolism during tomato fruit ripening. Journal of Experimental Botany, 2014, 65, 5243-5255.	2.4	95
545	Hydrogen Sulfide Generated by <scp>l < /scp>-Cysteine Desulfhydrase Acts Upstream of Nitric Oxide to Modulate Abscisic Acid-Dependent Stomatal Closure Â. Plant Physiology, 2014, 166, 2065-2076.</scp>	2.3	238
546	PLASTID MOVEMENT IMPAIRED1 mediates ABA sensitivity during germination and implicates ABA in light-mediated Chloroplast movements. Plant Physiology and Biochemistry, 2014, 83, 185-193.	2.8	9
547	Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. Journal of Experimental Botany, 2014, 65, 4451-4464.	2.4	173
548	Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiology, 2014, 34, 1181-1198.	1.4	144
549	Interaction between abscisic acid receptor PYL3 and protein phosphatase type 2C in response to ABA signaling in maize. Gene, 2014, 549, 179-185.	1.0	24
550	A Prominent Role for RCAR3-Mediated ABA Signaling in Response to Pseudomonas syringae pv. tomato DC3000 Infection in Arabidopsis. Plant and Cell Physiology, 2014, 55, 1691-1703.	1.5	83
551	Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). Journal of Proteomics, 2014, 109, 290-308.	1.2	131
552	Major alterations in transcript profiles between C3–C4 and C4 photosynthesis of an amphibious species Eleocharis baldwinii. Plant Molecular Biology, 2014, 86, 93-110.	2.0	14
553	A chemical inhibitor of jasmonate signaling targets JAR1 in Arabidopsis thaliana. Nature Chemical Biology, 2014, 10, 830-836.	3.9	76
554	Identification and validation of reference genes for <i>Populus euphratica</i> gene expression analysis during abiotic stresses by quantitative realâ€time <scp>PCR</scp> . Physiologia Plantarum, 2014, 152, 529-545.	2.6	87
555	Overexpression of a novel Arabidopsis PP2C isoform, AtPP2CF1, enhances plant biomass production by increasing inflorescence stem growth. Journal of Experimental Botany, 2014, 65, 5385-5400.	2.4	51
556	Copper amine oxidase and phospholipase D act independently in abscisic acid (ABA)-induced stomatal closure in Vicia faba and Arabidopsis. Journal of Plant Research, 2014, 127, 533-544.	1.2	31
557	Mg-chelatase I subunit 1 and Mg-protoporphyrin IX methyltransferase affect the stomatal aperture in Arabidopsis thaliana. Journal of Plant Research, 2014, 127, 553-563.	1.2	21

#	Article	IF	CITATIONS
558	Protein kinase structure, expression and regulation in maize drought signaling. Molecular Breeding, 2014, 34, 583-602.	1.0	16
559	Transcriptional regulation of ABA core signaling component genes in sorghum (Sorghum bicolor L.) Tj ETQq $1\ 1\ 0$.784314 r _j	gBT_/Overlock
560	Cloning and characterization of SnRK2 subfamily II genes from Nicotiana tabacum. Molecular Biology Reports, 2014, 41, 5701-5709.	1.0	15
561	Reactive Oxygen Species and Plant Hormones. , 2014, , 65-88.		19
562	Abscisic acid perception and signaling: structural mechanisms and applications. Acta Pharmacologica Sinica, 2014, 35, 567-584.	2.8	174
563	SAUR Inhibition of PP2C-D Phosphatases Activates Plasma Membrane H+-ATPases to Promote Cell Expansion in <i>Arabidopsis</i> Aâ. Plant Cell, 2014, 26, 2129-2142.	3.1	392
565	Cloning and characterization of NtSnRK2.7 and NtSnRK2.8 genes involved in abiotic stress responses from Nicotiana tabacum. Acta Physiologiae Plantarum, 2014, 36, 1673-1682.	1.0	5
566	Abscisic Acid Regulates Root Elongation Through the Activities of Auxin and Ethylene in <i>Arabidopsis thaliana</i>	0.8	96
568	Designed abscisic acid analogs as antagonists of PYL-PP2C receptor interactions. Nature Chemical Biology, 2014, 10, 477-482.	3.9	98
569	The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 Regulates the Cross Talk between Immunity and Abscisic Acid Responses Â. Plant Physiology, 2014, 165, 262-276.	2.3	71
570	Abscisic acid and abiotic stress tolerance – Different tiers of regulation. Journal of Plant Physiology, 2014, 171, 486-496.	1.6	164
571	Transcriptional regulation of abscisic acid signal core components during cucumber seed germination and under Cu2+, Zn2+, NaCl and simulated acid rain stresses. Plant Physiology and Biochemistry, 2014, 76, 67-76.	2.8	41
572	GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9651-9656.	3.3	211
573	Molecular mechanisms in the selective basal activation of pyrabactin receptor 1: Comparative analysis of mutants. FEBS Open Bio, 2014, 4, 496-509.	1.0	3
574	The soluble ABA receptor PYL8 regulates drought resistance by controlling ABA signaling in Arabidopsis. Plant Biotechnology Reports, 2015, 9, 319-330.	0.9	17
575	Guard cell <scp>SLAC</scp> 1â€type anion channels mediate flagellinâ€induced stomatal closure. New Phytologist, 2015, 208, 162-173.	3.5	138
576	The formation mechanism of the abscisic acid transport channel in PYL2 protein: A molecular dynamics study. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2015, 9, 218-227.	0.3	1
577	Dynamic subnuclear relocalisation of WRKY40 in response to Abscisic acid in Arabidopsis thaliana. Scientific Reports, 2015, 5, 13369.	1.6	21

#	Article	IF	CITATIONS
578	The HAB1 PP2C is inhibited by ABA-dependent PYL10 interaction. Scientific Reports, 2015, 5, 10890.	1.6	23
579	Abscisic acid and other plant hormones: Methods to visualize distribution and signaling. BioEssays, 2015, 37, 1338-1349.	1.2	41
580	Using proteomic analysis to investigate uniconazole-induced phytohormone variation and starch accumulation in duckweed (Landoltia punctata). BMC Biotechnology, 2015, 15, 81.	1.7	28
581	RopGEF2 is involved in ABAâ€suppression of seed germination and postâ€germination growth of <i>Arabidopsis</i> . Plant Journal, 2015, 84, 886-899.	2.8	23
582	Guard cell hydrogen peroxide and nitric oxide mediate elevated <scp>CO</scp> ₂ â€induced stomatal movement in tomato. New Phytologist, 2015, 208, 342-353.	3.5	95
583	Novel Abscisic Acid Antagonists Identified with Chemical Array Screening. ChemBioChem, 2015, 16, 2471-2478.	1.3	14
584	Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus <i>Piriformospora indica</i> on <i>Arabidopsis thaliana</i> roots. New Phytologist, 2015, 208, 873-886.	3.5	52
585	Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2Câ€dependent activation of nuclear genes: repression by guanosineâ€3′â€5′â€bisdiphosphate and activation by sigma factor Plant Journal, 2015, 82, 1030-1041.	OZ. 5 .	79
586	Network Candidate Genes in Breeding for Drought Tolerant Crops. International Journal of Molecular Sciences, 2015, 16, 16378-16400.	1.8	60
587	Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress. International Journal of Molecular Sciences, 2015, 16, 18752-18777.	1.8	48
588	Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress. International Journal of Molecular Sciences, 2015, 16, 19195-19224.	1.8	62
589	Keeping Control: The Role of Senescence and Development in Plant Pathogenesis and Defense. Plants, 2015, 4, 449-488.	1.6	71
590	Abscisic Acid: Hidden Architect of Root System Structure. Plants, 2015, 4, 548-572.	1.6	120
591	Transcriptome analysis of Arabidopsis seedlings responses to high concentrations of glucose. Genetics and Molecular Research, 2015, 14, 4784-4801.	0.3	9
592	Transcriptome Analysis and Gene Expression Profiling of Abortive and Developing Ovules during Fruit Development in Hazelnut. PLoS ONE, 2015, 10, e0122072.	1.1	25
593	ABA Inducible Rice Protein Phosphatase 2C Confers ABA Insensitivity and Abiotic Stress Tolerance in Arabidopsis. PLoS ONE, 2015, 10, e0125168.	1.1	150
594	Analyzing the Expression Profile of AREB/ABF and DREB/CBF Genes under Drought and Salinity Stresses in Grape (Vitis vinifera L.). PLoS ONE, 2015, 10, e0134288.	1.1	64
595	DCA1 Acts as a Transcriptional Co-activator of DST and Contributes to Drought and Salt Tolerance in Rice. PLoS Genetics, 2015, 11, e1005617.	1.5	92

#	ARTICLE	IF	CITATIONS
596	Considerations for designing chemical screening strategies in plant biology. Frontiers in Plant Science, 2015, 6, 131.	1.7	36
597	Phosphoproteomics technologies and applications in plant biology research. Frontiers in Plant Science, 2015, 6, 430.	1.7	32
598	Functional characterization and reconstitution of ABA signaling components using transient gene expression in rice protoplasts. Frontiers in Plant Science, 2015, 6, 614.	1.7	57
599	Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Frontiers in Plant Science, 2015, 6, 615.	1.7	136
600	Chloroplast signaling within, between and beyond cells. Frontiers in Plant Science, 2015, 6, 781.	1.7	163
601	The Arabidopsis a zinc finger domain protein ARS1 is essential for seed germination and ROS homeostasis in response to ABA and oxidative stress. Frontiers in Plant Science, 2015, 6, 963.	1.7	34
602	Emerging roles of protein kinase CK2 in abscisic acid signaling. Frontiers in Plant Science, 2015, 6, 966.	1.7	23
603	Function of ABA in Stomatal Defense against Biotic and Drought Stresses. International Journal of Molecular Sciences, 2015, 16, 15251-15270.	1.8	376
604	Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. ELife, 2015, 4, .	2.8	172
605	Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants*. Molecular and Cellular Proteomics, 2015, 14, 1169-1182.	2.5	40
606	The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress Â. Plant Physiology, 2015, 168, 292-306.	2.3	63
607	Molecular Approaches in Deciphering Abiotic Stress Signaling Mechanisms in Plants., 2015, , 41-73.		1
608	Towards Understanding Abiotic Stress Signaling in Plants: Convergence of Genomic, Transcriptomic, Proteomic, and Metabolomic Approaches., 2015,, 3-40.		13
609	Precise protein post-translational modifications modulate ABI5 activity. Trends in Plant Science, 2015, 20, 569-575.	4.3	111
610	ABA Receptors: Prospects for Enhancing Biotic and Abiotic Stress Tolerance of Crops., 2015,, 271-298.		3
611	MicroRNAs play an important role in the regulation of strawberry fruit senescence in low temperature. Postharvest Biology and Technology, 2015, 108, 39-47.	2.9	25
612	Molecular and Hormonal Regulation of Thermoinhibition of Seed Germination., 2015,, 3-33.		16
613	Abscisic acid induces ectopic outgrowth in epidermal cells through cortical microtubule reorganization in Arabidopsis thaliana. Scientific Reports, 2015, 5, 11364.	1.6	17

#	Article	IF	CITATIONS
614	PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance. Journal of Experimental Botany, 2015, 66, 3765-3774.	2.4	57
615	Integration of C/N-nutrient and multiple environmental signals into the ABA signaling cascade. Plant Signaling and Behavior, 2015, 10, e1048940.	1.2	3
616	Transcriptional regulation of PaPYLs, PaPP2Cs and PaSnRK2s during sweet cherry fruit development and in response to abscisic acid and auxin at onset of fruit ripening. Plant Growth Regulation, 2015, 75, 455-464.	1.8	39
617	Regulation of Carotenoid Metabolism in Tomato. Molecular Plant, 2015, 8, 28-39.	3.9	270
618	Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 613-618.	3.3	318
619	Diverse Stomatal Signaling and the Signal Integration Mechanism. Annual Review of Plant Biology, 2015, 66, 369-392.	8.6	321
620	OST1 Kinase Modulates Freezing Tolerance by Enhancing ICE1 Stability in Arabidopsis. Developmental Cell, 2015, 32, 278-289.	3.1	491
621	Competitive Science: Is Competition Ruining Science?. Infection and Immunity, 2015, 83, 1229-1233.	1.0	79
622	Structure-dependent tautomerization induced catalyst-free autocatalyzed N-alkylation of heteroaryl amines with alcohols. Green Chemistry, 2015, 17, 3260-3265.	4.6	67
623	Agrochemical control of plant water use using engineered abscisic acid receptors. Nature, 2015, 520, 545-548.	13.7	217
624	GsSKP21, a Glycine soja S-phase kinase-associated protein, mediates the regulation of plant alkaline tolerance and ABA sensitivity. Plant Molecular Biology, 2015, 87, 111-124.	2.0	29
625	Two Distinct Families of Protein Kinases Are Required for Plant Growth under High External Mg ²⁺ Concentrations in Arabidopsis. Plant Physiology, 2015, 167, 1039-1057.	2.3	51
626	The RING Finger Ubiquitin E3 Ligase SDIR1 Targets SDIR1-INTERACTING PROTEIN1 for Degradation to Modulate the Salt Stress Response and ABA Signaling in <i>Arabidopsis</i>	3.1	136
627	Molecular systems governing leaf growth: from genes to networks. Journal of Experimental Botany, 2015, 66, 1045-1054.	2.4	49
628	Physiological and transcriptional memory in guard cells during repetitive dehydration stress. New Phytologist, 2015, 205, 596-607.	3.5	130
629	Conformationally restricted $3\hat{a}\in^2$ -modified ABA analogs for controlling ABA receptors. Organic and Biomolecular Chemistry, 2015, 13, 4278-4288.	1.5	25
630	Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 2015, 16, 237-251.	7.7	796
631	Oxidative post-translational modifications of cysteine residues in plant signal transduction. Journal of Experimental Botany, 2015, 66, 2923-2934.	2.4	163

#	Article	IF	Citations
632	Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control. Plant, Cell and Environment, 2015, 38, 1457-1470.	2.8	31
633	Selection for Improved Energy Use Efficiency and Drought Tolerance in Canola Results in Distinct Transcriptome and Epigenome Changes. Plant Physiology, 2015, 168, 1338-1350.	2.3	49
634	Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize. Frontiers in Plant Science, 2014, 5, 801.	1.7	30
635	Redox Strategies for Crop Improvement. Antioxidants and Redox Signaling, 2015, 23, 1186-1205.	2.5	22
636	Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses. Plant Physiology, 2015, 169, 760-779.	2.3	100
637	The selectivity of 6-nor-ABA and $7\hat{a}\in^2$ -nor-ABA for abscisic acid receptor subtypes. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3507-3510.	1.0	26
638	Insights into the Small RNA-Mediated Networks in Response to Abiotic Stress in Plants., 2015,, 45-91.		6
639	Foliar Application of Abscisic Acid and Sulfonamide Compounds Induced Drought Tolerance in Watermelon. Applied Mechanics and Materials, 0, 723, 705-710.	0.2	2
640	Abscisic Acid Transport and Homeostasis in the Context of Stomatal Regulation. Molecular Plant, 2015, 8, 1321-1333.	3.9	98
641	Facile high-throughput forward chemical genetic screening by in situ monitoring of glucuronidase-based reporter gene expression in Arabidopsis thaliana. Frontiers in Plant Science, 2015, 6, 13.	1.7	32
642	The mechanism underlying fast germination of tomato cultivar LA2711. Plant Science, 2015, 238, 241-250.	1.7	7
643	PtrABF of i>Poncirus trifoliata / i>functions in dehydration tolerance by reducing stomatal density and maintaining reactive oxygen species homeostasis. Journal of Experimental Botany, 2015, 66, 5911-5927.	2.4	60
644	A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)-related protein kinase SnRK2.6/OST1 in <i>Arabidopsis</i> guard cell signalling in response to abscisic acid. Journal of Experimental Botany, 2015, 66, 6355-6369.	2.4	19
645	Molecular and biochemical characterization of the UDP-glucose: Anthocyanin 5-O-glucosyltransferase from Vitis amurensis. Phytochemistry, 2015, 117, 363-372.	1.4	18
646	Phytoremediation and Environmental Factors. , 2015, , 45-55.		8
647	Quantitative Circadian Phosphoproteomic Analysis of Arabidopsis Reveals Extensive Clock Control of Key Components in Physiological, Metabolic, and Signaling Pathways. Molecular and Cellular Proteomics, 2015, 14, 2243-2260.	2.5	99
648	Structural basis and functions of abscisic acid receptors PYLs. Frontiers in Plant Science, 2015, 6, 88.	1.7	47
649	Small and Large G Proteins in Biotic and Abiotic Stress Responses in Plants. , 2015, , 231-270.		6

#	Article	IF	Citations
650	Omics Approaches Toward Defining the Comprehensive Abscisic Acid Signaling Network in Plants. Plant and Cell Physiology, 2015, 56, 1043-1052.	1.5	100
651	The ABA-Deficiency Suppressor Locus HAS2 Encodes the PPR Protein LOI1/MEF11 Involved in Mitochondrial RNA Editing. Molecular Plant, 2015, 8, 644-656.	3.9	37
652	Identification and characterization of an <scp>ABA</scp> â€activated <scp>MAP</scp> kinase cascade in <i>Arabidopsis thaliana</i> . Plant Journal, 2015, 82, 232-244.	2.8	187
653	ABI1 regulates carbon/nitrogen-nutrient signal transduction independent of ABA biosynthesis and canonical ABA signalling pathways in Arabidopsis. Journal of Experimental Botany, 2015, 66, 2763-2771.	2.4	53
654	Plasma membrane receptor-like kinase leaf panicle 2 acts downstream of the DROUGHT AND SALT TOLERANCE transcription factor to regulate drought sensitivity in rice. Journal of Experimental Botany, 2015, 66, 271-281.	2.4	88
655	Unnatural agrochemical ligands for engineered abscisic acid receptors. Trends in Plant Science, 2015, 20, 330-332.	4. 3	10
656	Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk. Biotechnology for Biofuels, 2015, 8, 64.	6.2	72
657	Open Stomata 1 Kinase is Essential for Yeast Elicitor-Induced Stomatal Closure in Arabidopsis. Plant and Cell Physiology, 2015, 56, 1239-1248.	1.5	18
658	Pyrabactin regulates root hydraulic properties in maize seedlings by affecting PIP aquaporins in a phosphorylation-dependent manner. Plant Physiology and Biochemistry, 2015, 94, 28-34.	2.8	18
659	Arabidopsis abscisic acid receptors play an important role in disease resistance. Plant Molecular Biology, 2015, 88, 313-324.	2.0	40
660	Dissection of the style's response to pollination using transcriptome profiling in self-compatible (Solanum pimpinellifolium) and self-incompatible (Solanum chilense) tomato species. BMC Plant Biology, 2015, 15, 119.	1.6	20
661	Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 2015, 66, 2839-2856.	2.4	572
662	Regulation of seed dormancy by abscisic acid and <i>DELAY OF GERMINATION 1</i> . Seed Science Research, 2015, 25, 82-98.	0.8	28
663	Tetrapyrroleâ€based drought stress signalling. Plant Biotechnology Journal, 2015, 13, 447-459.	4.1	71
664	The Roles of ROS and ABA in Systemic Acquired Acclimation. Plant Cell, 2015, 27, 64-70.	3.1	450
665	Pre-maturity \hat{l}_{\pm} -amylase in wheat: The role of abscisic acid and gibberellins. Journal of Cereal Science, 2015, 63, 95-108.	1.8	18
666	The guard cell metabolome: functions in stomatal movement and global food security. Frontiers in Plant Science, 2015, 6, 334.	1.7	71
667	Phosphonamide pyrabactin analogues as abscisic acid agonists. Organic and Biomolecular Chemistry, 2015, 13, 5260-5264.	1.5	25

#	Article	IF	CITATIONS
668	Characterization and Functional Analysis of Pyrabactin Resistance-Like Abscisic Acid Receptor Family in Rice. Rice, 2015, 8, 28.	1.7	130
669	Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Molecular Biology, 2015, 88, 369-385.	2.0	110
670	ABA signalling is fine-tuned by antagonistic HAB1 variants. Nature Communications, 2015, 6, 8138.	5.8	95
671	An Arabidopsis PWI and RRM motif-containing protein is critical for pre-mRNA splicing and ABA responses. Nature Communications, 2015, 6, 8139.	5.8	105
672	New players in ABA signaling: identification of PUB12/13 involved in degradation of ABA co-receptor ABI1. Science China Life Sciences, 2015, 58, 1173-1174.	2.3	4
673	Arabidopsis BNT1, an atypical TIR–NBS–LRR gene, acting as a regulator of the hormonal response to stress. Plant Science, 2015, 239, 216-229.	1.7	19
674	Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6388-96.	3.3	137
675	Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nature Communications, 2015, 6, 8630.	5.8	256
676	Arabidopsis RZFP34/CHYR1, a Ubiquitin E3 Ligase, Regulates Stomatal Movement and Drought Tolerance via SnRK2.6-Mediated Phosphorylation. Plant Cell, 2015, 27, 3228-3244.	3.1	129
677	From pond slime to rain forest: the evolution of <scp>ABA</scp> signalling and the acquisition of dehydration tolerance. New Phytologist, 2015, 206, 5-7.	3.5	12
678	Thylakoid membrane oxidoreductase <scp>LTO1</scp> / <i>At</i> <scp>VKOR</scp> is involved in ABAâ€mediated response to osmotic stress in <i>Arabidopsis</i> Physiologia Plantarum, 2015, 154, 28-38.	2.6	12
679	Chlorideâ€inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in saltâ€stressed ⟨i⟩Vicia faba⟨/i⟩. New Phytologist, 2015, 208, 803-816.	3.5	77
680	Arabidopsis ABA-Activated Kinase MAPKKK18 is Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin–Proteasome Pathway. Plant and Cell Physiology, 2015, 56, 2351-2367.	1.5	99
681	Elevated CO 2 -Induced Responses in Stomata Require ABA and ABA Signaling. Current Biology, 2015, 25, 2709-2716.	1.8	201
682	An efficient one-pot access to N-(pyridin-2-ylmethyl) substituent biphenyl-4-sulfonamides through water-promoted, palladium-catalyzed, microwave-assisted reactions. RSC Advances, 2015, 5, 75182-75186.	1.7	14
683	Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling, 2015, 8, ra89.	1.6	129
684	The SnRK2-APC/CTE regulatory module mediates the antagonistic action of gibberellic acid and abscisic acid pathways. Nature Communications, 2015, 6, 7981.	5.8	96
685	Crosstalk between Two bZIP Signaling Pathways Orchestrates Salt-Induced Metabolic Reprogramming in Arabidopsis Roots. Plant Cell, 2015, 27, 2244-2260.	3.1	115

#	Article	IF	Citations
686	Acclimation and Tolerance Strategies of Rice under Drought Stress. Rice Science, 2015, 22, 147-161.	1.7	278
687	A balanced JA/ABA status may correlate with adaptation to osmotic stress in Vitis cells. Journal of Plant Physiology, 2015, 185, 57-64.	1.6	17
688	Stress Tolerance Profiling of a Collection of Extant Salt-Tolerant Rice Varieties and Transgenic Plants Overexpressing Abiotic Stress Tolerance Genes. Plant and Cell Physiology, 2015, 56, 1867-1876.	1.5	32
689	The roles of tetrapyrroles in plastid retrograde signaling and tolerance to environmental stresses. Planta, 2015, 242, 1263-1276.	1.6	26
690	Ectopic expression a tomato KNOX Gene Tkn4 affects the formation and the differentiation of meristems and vasculature. Plant Molecular Biology, 2015, 89, 589-605.	2.0	19
691	ABA Regulates Subcellular Redistribution of OsABI-LIKE2, a Negative Regulator in ABA Signaling, to Control Root Architecture and Drought Resistance in <i>Oryza sativa</i> . Plant and Cell Physiology, 2015, 56, 2396-2408.	1.5	58
692	Mechanisms of abscisic acid-mediated control of stomatal aperture. Current Opinion in Plant Biology, 2015, 28, 154-162.	3.5	438
693	The AtLRK10L1.2, Arabidopsis ortholog of wheat LRK10, is involved in ABA-mediated signaling and drought resistance. Plant Cell Reports, 2015, 34, 447-455.	2.8	80
694	The <i><scp>IBO</scp></i> germination quantitative trait locus encodes a phosphatase 2 <scp>C</scp> â€related variant with a nonsynonymous amino acid change that interferes with abscisic acid signaling. New Phytologist, 2015, 205, 1076-1082.	3.5	32
695	Soybean <scp>DREB</scp> 1/ <scp>CBF</scp> â€type transcription factors function in heat and drought as well as cold stressâ€responsive gene expression. Plant Journal, 2015, 81, 505-518.	2.8	255
696	Positive feedback regulation of a Lycium chinense-derived VDE gene by drought-induced endogenous ABA, and over-expression of this VDE gene improve drought-induced photo-damage in Arabidopsis. Journal of Plant Physiology, 2015, 175, 26-36.	1.6	30
697	Four <scp><i>A</i></scp> <i>rabidopsis</i> ê€ <scp>AREB</scp> / <scp>ABF</scp> transcription factors function predominantly in gene expression downstream of <scp>SnRK2</scp> kinases in abscisic acid signalling in response to osmotic stress. Plant, Cell and Environment, 2015, 38, 35-49.	2.8	491
698	Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana. Phytochemistry, 2015, 113, 96-107.	1.4	31
699	<scp>AtM</scp> yb7, a subgroup 4 <scp>R</scp> 2 <scp>R</scp> 3 <scp>M</scp> yb, negatively regulates <scp>ABA</scp> â€induced inhibition of seed germination by blocking the expression of the <scp>bZIP</scp> transcription factor <scp>ABI</scp> 5. Plant, Cell and Environment, 2015, 38, 559-571.	2.8	66
700	Phenotypic plasticity toward water regime: response of leaf growth and underlying candidate genes in <i>Populus</i> . Physiologia Plantarum, 2015, 154, 39-53.	2.6	18
701	Traversing organizational scales in plant salt-stress responses. Current Opinion in Plant Biology, 2015, 23, 70-75.	3.5	58
702	Arabidopsis Putative MAP Kinase Kinase Kinases Raf10 and Raf11 are Positive Regulators of Seed Dormancy and ABA Response. Plant and Cell Physiology, 2015, 56, 84-97.	1.5	61
703	Abscisic Acid Signaling System in Plant Innate Immunity. Signaling and Communication in Plants, 2015, , 245-309.	0.5	2

#	Article	IF	CITATIONS
704	Activation of auxin signalling counteracts photorespiratory <scp><scp>H₂O₂</scp></scp> â€dependent cell death. Plant, Cell and Environment, 2015, 38, 253-265.	2.8	44
705	Signaling events in plants: Stress factors in combination change the picture. Environmental and Experimental Botany, 2015, 114, 4-14.	2.0	151
706	Plant signalling in acute ozone exposure. Plant, Cell and Environment, 2015, 38, 240-252.	2.8	166
707	Abscisic Acid Signalling as a Target for Enhancing Drought Tolerance., 0, , .		2
708	The Fundamental Role of NOX Family Proteins in Plant Immunity and Their Regulation. International Journal of Molecular Sciences, 2016, 17, 805.	1.8	21
709	Synergistic Activation of <i>RD29A </i> Via Integration of Salinity Stress and Abscisic Acid in <i>Arabidopsis thaliana </i> Plant and Cell Physiology, 2016, 57, 2147-2160.	1.5	33
710	Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in <i>Arabidopsis</i> . International Journal of Biological Sciences, 2016, 12, 257-269.	2.6	70
711	Identification of Mild Freezing Shock Response Pathways in Barley Based on Transcriptome Profiling. Frontiers in Plant Science, 2016, 7, 106.	1.7	22
712	Abscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll. Acta Biochimica Polonica, 2016, 63, 449-58.	0.3	6
713	Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs. PLoS Biology, 2016, 14, e1002461.	2.6	45
714	Arabidopsis WRKY6 Transcription Factor Acts as a Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development. PLoS Genetics, 2016, 12, e1005833.	1.5	101
715	The miR165/166 Mediated Regulatory Module Plays Critical Roles in ABA Homeostasis and Response in Arabidopsis thaliana. PLoS Genetics, 2016, 12, e1006416.	1.5	91
716	CmWRKY1 Enhances the Dehydration Tolerance of Chrysanthemum through the Regulation of ABA-Associated Genes. PLoS ONE, 2016, 11, e0150572.	1.1	53
717	Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress. PLoS ONE, 2016, 11, e0152294.	1.1	19
718	MAPK Cascades in Guard Cell Signal Transduction. Frontiers in Plant Science, 2016, 7, 80.	1.7	100
719	Transcriptomic Changes Drive Physiological Responses to Progressive Drought Stress and Rehydration in Tomato. Frontiers in Plant Science, 2016, 7, 371.	1.7	93
720	Differential Activation of the Wheat SnRK2 Family by Abiotic Stresses. Frontiers in Plant Science, 2016, 7, 420.	1.7	63
721	The Dual Role of Nitric Oxide in Guard Cells: Promoting and Attenuating the ABA and Phospholipid-Derived Signals Leading to the Stomatal Closure. Frontiers in Plant Science, 2016, 7, 476.	1.7	39

#	Article	IF	CITATIONS
722	Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Frontiers in Plant Science, 2016, 7, 571.	1.7	929
723	Microbe Associated Molecular Pattern Signaling in Guard Cells. Frontiers in Plant Science, 2016, 7, 583.	1.7	27
724	Phytohormones Signaling Pathways and ROS Involvement in Seed Germination. Frontiers in Plant Science, 2016, 7, 864.	1.7	106
725	Transcriptome Profile Analysis from Different Sex Types of Ginkgo biloba L Frontiers in Plant Science, 2016, 7, 871.	1.7	21
726	Identification and Comparative Analysis of Differential Gene Expression in Soybean Leaf Tissue under Drought and Flooding Stress Revealed by RNA-Seq. Frontiers in Plant Science, 2016, 7, 1044.	1.7	116
727	Commentary: Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants. Frontiers in Plant Science, 2016, 7, 1062.	1.7	0
728	Dual Function of NAC072 in ABF3-Mediated ABA-Responsive Gene Regulation in Arabidopsis. Frontiers in Plant Science, 2016, 7, 1075.	1.7	27
729	Proteomic Response of Hordeum vulgare cv. Tadmor and Hordeum marinum to Salinity Stress: Similarities and Differences between a Glycophyte and a Halophyte. Frontiers in Plant Science, 2016, 07, 1154.	1.7	51
730	Genome-Wide Analysis of MicroRNA Responses to the Phytohormone Abscisic Acid in Populus euphratica. Frontiers in Plant Science, 2016, 7, 1184.	1.7	28
731	Transcriptional Regulation of Tetrapyrrole Biosynthetic Genes Explains Abscisic Acid-Induced Heme Accumulation in the Unicellular Red Alga Cyanidioschyzon merolae. Frontiers in Plant Science, 2016, 7, 1300.	1.7	7
732	Insights from the Cold Transcriptome and Metabolome of Dendrobium officinale: Global Reprogramming of Metabolic and Gene Regulation Networks during Cold Acclimation. Frontiers in Plant Science, 2016, 7, 1653.	1.7	75
733	Comparative Transcriptomics of Strawberries (Fragaria spp.) Provides Insights into Evolutionary Patterns. Frontiers in Plant Science, 2016, 7, 1839.	1.7	33
734	Global Scale Transcriptional Profiling of Two Contrasting Barley Genotypes Exposed to Moderate Drought Conditions: Contribution of Leaves and Crowns to Water Shortage Coping Strategies. Frontiers in Plant Science, 2016, 7, 1958.	1.7	28
735	Integration of calcium and ABA signaling. Current Opinion in Plant Biology, 2016, 33, 83-91.	3.5	132
736	Shaping Small Bioactive Molecules to Untangle Their Biological Function: A Focus on Fluorescent Plant Hormones. Molecular Plant, 2016, 9, 1099-1118.	3.9	34
737	Nitrate reductase mutation alters potassium nutrition as well as nitric oxideâ€mediated control of guard cell ion channels in <i>Arabidopsis</i> . New Phytologist, 2016, 209, 1456-1469.	3.5	93
738	ROS signalling in a destabilised world: A molecular understanding of climate change. Journal of Plant Physiology, 2016, 203, 69-83.	1.6	45
739	Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes. Plant Physiology, 2016, 171, 2810-2825.	2.3	245

#	Article	IF	CITATIONS
740	ABF2, ABF3, and ABF4 Promote ABA-Mediated Chlorophyll Degradation and Leaf Senescence by Transcriptional Activation of Chlorophyll Catabolic Genes and Senescence-Associated Genes in Arabidopsis. Molecular Plant, 2016, 9, 1272-1285.	3.9	275
741	Arabidopsis <scp>YAK</scp> 1 regulates abscisic acid response and drought resistance. FEBS Letters, 2016, 590, 2201-2209.	1.3	28
742	Effect of prior drought and pathogen stress on <i>Arabidopsis</i> transcriptome changes to caterpillar herbivory. New Phytologist, 2016, 210, 1344-1356.	3 . 5	53
743	An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling. Scientific Reports, 2016, 6, 28941.	1.6	155
744	Protein phosphatase type 2C PP2CA together with ABI1 inhibits SnRK2.4 activity and regulates plant responses to salinity. Plant Signaling and Behavior, 2016, 11, e1253647.	1.2	36
745	Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress. Scientific Reports, 2016, 6, 25698.	1.6	85
746	GEM, a member of the GRAM domain family of proteins, is part of the ABA signaling pathway. Scientific Reports, 2016, 6, 22660.	1.6	44
747	Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity. Scientific Reports, 2016, 6, 20212.	1.6	57
748	Genomics of Drought., 2016,, 85-135.		4
749	Acyl-CoA-Binding Proteins (ACBPs) in Plant Development. Sub-Cellular Biochemistry, 2016, 86, 363-404.	1.0	15
7 50			
	50Âyears of Arabidopsis research: highlights and future directions. New Phytologist, 2016, 209, 921-944.	3. 5	186
751	50Âyears of Arabidopsis research: highlights and future directions. New Phytologist, 2016, 209, 921-944. The LEA protein, ABR, is regulated by ABI5 and involved in dark-induced leaf senescence in Arabidopsis thaliana. Plant Science, 2016, 247, 93-103.	3.5	186
751 752	The LEA protein, ABR, is regulated by ABI5 and involved in dark-induced leaf senescence in Arabidopsis		
	The LEA protein, ABR, is regulated by ABI5 and involved in dark-induced leaf senescence in Arabidopsis thaliana. Plant Science, 2016, 247, 93-103. Involvement of OST1 Protein Kinase and PYR/PYL/RCAR Receptors in Methyl Jasmonate-Induced Stomatal	1.7	58
752	The LEA protein, ABR, is regulated by ABI5 and involved in dark-induced leaf senescence in Arabidopsis thaliana. Plant Science, 2016, 247, 93-103. Involvement of OST1 Protein Kinase and PYR/PYL/RCAR Receptors in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis Guard Cells. Plant and Cell Physiology, 2016, 57, 1779-1790. Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley. BMC	1.7	58
752 753	The LEA protein, ABR, is regulated by ABI5 and involved in dark-induced leaf senescence in Arabidopsis thaliana. Plant Science, 2016, 247, 93-103. Involvement of OST1 Protein Kinase and PYR/PYL/RCAR Receptors in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis Guard Cells. Plant and Cell Physiology, 2016, 57, 1779-1790. Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley. BMC Genomics, 2016, 17, 386. Transcriptomic network analyses of leaf dehydration responses identify highly connected ABA and ethylene signaling hubs in three grapevine species differing in drought tolerance. BMC Plant Biology,	1.7 1.5	58 42 81
752 753 754	The LEA protein, ABR, is regulated by ABI5 and involved in dark-induced leaf senescence in Arabidopsis thaliana. Plant Science, 2016, 247, 93-103. Involvement of OST1 Protein Kinase and PYR/PYL/RCAR Receptors in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis Guard Cells. Plant and Cell Physiology, 2016, 57, 1779-1790. Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley. BMC Genomics, 2016, 17, 386. Transcriptomic network analyses of leaf dehydration responses identify highly connected ABA and ethylene signaling hubs in three grapevine species differing in drought tolerance. BMC Plant Biology, 2016, 16, 118. Wheat WRKY Type Transcription Factor Gene TaWRKY1 is Essential in Mediating Drought Tolerance	1.7 1.5 1.2	58 42 81 62

#	Article	IF	Citations
758	The pleiotropic effects of the seed germination inhibitor germostatin. Plant Signaling and Behavior, 2016, 11, e1144000.	1.2	5
7 59	A new look at stress: abscisic acid patterns andÂdynamics at highâ€resolution. New Phytologist, 2016, 210, 38-44.	3.5	77
760	Abscisic Acid Participates in the Control of Cell Cycle Initiation Through Heme Homeostasis in the Unicellular Red Alga <i>Cyanidioschyzon merolae</i>): Plant and Cell Physiology, 2016, 57, 953-960.	1.5	39
761	A chemical genetic strategy identify the <scp>PHOSTIN</scp> , a synthetic molecule that triggers phosphate starvation responses in <i>Arabidopsis thaliana</i> . New Phytologist, 2016, 209, 161-176.	3.5	15
762	The Arabidopsis Fâ€box E3 ligase RIFP1 plays a negative role in abscisic acid signalling by facilitating ABA receptor RCAR3 degradation. Plant, Cell and Environment, 2016, 39, 571-582.	2.8	73
763	Overexpression of the MYB transcription factor MYB28 or MYB99 confers hypersensitivity to abscisic acid in arabidopsis. Journal of Plant Biology, 2016, 59, 152-161.	0.9	8
764	The Arabidopsis AtPP2CA Protein Phosphatase Inhibits the GORK K+ Efflux Channel and Exerts a Dominant Suppressive Effect on Phosphomimetic-activating Mutations. Journal of Biological Chemistry, 2016, 291, 6521-6533.	1.6	43
765	The Cotton <i>Mitogen-Activated Protein Kinase Kinase 3</i> Regulating Stomatal Responses and Root Growth. Plant and Cell Physiology, 2016, 57, 1629-1642.	1.5	83
766	Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in <i>Talinum triangulare </i> . Plant Physiology, 2016, 170, 102-122.	2.3	93
767	The De-Etiolated 1 Homolog of Arabidopsis Modulates the ABA Signaling Pathway and ABA Biosynthesis in Rice. Plant Physiology, 2016, 171, 1259-1276.	2.3	16
768	The Role of MAPK Modules and ABA during Abiotic Stress Signaling. Trends in Plant Science, 2016, 21, 677-685.	4.3	326
769	Role of Arabidopsis NHL family in ABA and stress response. Plant Signaling and Behavior, 2016, 11, e1180493.	1.2	12
770	ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background. BMC Plant Biology, 2016, 16, 91.	1.6	54
771	Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis. Plant Signaling and Behavior, 2016, 11, e1183088.	1.2	32
772	Arabidopsis COP1-interacting protein 1 is a positive regulator of ABA response. Biochemical and Biophysical Research Communications, 2016, 477, 847-853.	1.0	15
773	Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in coldâ€shock response in wheat. Plant Science, 2016, 253, 86-97.	1.7	21
774	OsDi19â€4 acts downstream of OsCDPK14 to positively regulate ABA response in rice. Plant, Cell and Environment, 2016, 39, 2740-2753.	2.8	46
775	Regulation of Stomatal Responses to Abiotic and Biotic Stresses by Redox State. , 2016, , 331-347.		0

#	ARTICLE	IF	CITATIONS
776	Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance. Journal of Experimental Botany, 2016, 67, 5009-5027.	2.4	77
777	The wheat ABA hypersensitive ERA8 mutant is associated with increased preharvest sprouting tolerance and altered hormone accumulation. Euphytica, 2016, 212, 229-245.	0.6	20
778	A Dominant Mutation in the HT1 Kinase Uncovers Roles of MAP Kinases and GHR1 in CO ₂ -Induced Stomatal Closure. Plant Cell, 2016, 28, 2493-2509.	3.1	89
779	Characterization of the calcineurin B-Like (CBL) gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments. Plant Science, 2016, 253, 118-129.	1.7	34
780	Spatial Regulation of ABCG25, an ABA Exporter, Is an Important Component of the Mechanism Controlling Cellular ABA Levels. Plant Cell, 2016, 28, 2528-2544.	3.1	46
781	Abiotic Stress Signaling and Responses in Plants. Cell, 2016, 167, 313-324.	13.5	3,491
782	FaABI4 is involved in strawberry fruit ripening. Scientia Horticulturae, 2016, 210, 34-40.	1.7	17
784	FYVE1/FREE1 Interacts with the PYL4 ABA Receptor and Mediates Its Delivery to the Vacuolar Degradation Pathway. Plant Cell, 2016, 28, 2291-2311.	3.1	129
786	Co-evolution of Hormone Metabolism and Signaling Networks Expands Plant Adaptive Plasticity. Cell, 2016, 166, 881-893.	13.5	125
787	Understanding How Plants Respond to Drought Stress at the Molecular and Whole Plant Levels. , 2016, , 1-37.		4
788	Genetics of Drought Stress Tolerance in Crop Plants. , 2016, , 39-70.		16
789	Drought Stress and Chromatin: An Epigenetic Perspective. , 2016, , 571-586.		3
790	Tolerance to Drought Stress in Plants: Unravelling the Signaling Networks., 2016,, 71-90.		2
791	The Role of Abscisic Acid in Drought Stress: How ABA Helps Plants to Cope with Drought Stress. , 2016, , 123-151.		46
792	Ubiquitin Ligases RGLG1 and RGLG5 Regulate Abscisic Acid Signaling by Controlling the Turnover of Phosphatase PP2CA. Plant Cell, 2016, 28, 2178-2196.	3.1	100
793	Interactions of ABA signaling core components (SIPYLs, SIPP2Cs, and SISnRK2s) in tomato (Solanum) Tj ETQq1	l 0,78431 1.6	4 rgBT /Over
794	Repression of ARF10 by microRNA160 plays an important role in the mediation of leaf water loss. Plant Molecular Biology, 2016, 92, 313-336.	2.0	26
795	Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway. Plant Cell Reports, 2016, 35, 2309-2323.	2.8	60

#	Article	IF	CITATIONS
796	Expression of a grape (Vitis vinifera) bZIP transcription factor, VlbZIP36, in Arabidopsis thaliana confers tolerance of drought stress during seed germination and seedling establishment. Plant Science, 2016, 252, 311-323.	1.7	31
797	Abscisic Acid Analogues That Act as Universal or Selective Antagonists of Phytohormone Receptors. Biochemistry, 2016, 55, 5155-5164.	1.2	22
798	Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2. Current Opinion in Plant Biology, 2016, 33, 157-167.	3.5	181
799	Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis. Journal of Experimental Botany, 2016, 67, 6297-6308.	2.4	68
801	OsREM4.1 Interacts with OsSERK1 to Coordinate the Interlinking between Abscisic Acid and Brassinosteroid Signaling in Rice. Developmental Cell, 2016, 38, 201-213.	3.1	114
802	ABA-dependent control of <i>GIGANTEA </i> signalling enables drought escape via up-regulation of <i>FLOWERING LOCUS T </i> in <i>Arabidopsis thaliana </i> Sournal of Experimental Botany, 2016, 67, 6309-6322.	2.4	137
803	ESCRT-I Component VPS23A Affects ABA Signaling by Recognizing ABA Receptors for Endosomal Degradation. Molecular Plant, 2016, 9, 1570-1582.	3.9	87
804	The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth. Scientific Reports, 2016, 6, 27177.	1.6	121
805	Dynamic Phosphoproteome Analysis of Seedling Leaves in Brachypodium distachyon L. Reveals Central Phosphorylated Proteins Involved in the Drought Stress Response. Scientific Reports, 2016, 6, 35280.	1.6	20
806	Plant synthetic biology for molecular engineering of signalling and development. Nature Plants, 2016, 2, 16010.	4.7	51
807	Inhibition of FUSCA3 degradation at high temperature is dependent on ABA signaling and is regulated by the ABA/GA ratio. Plant Signaling and Behavior, 2016, 11, e1247137.	1.2	13
808	Identification of Methylosome Components as Negative Regulators of Plant Immunity Using Chemical Genetics. Molecular Plant, 2016, 9, 1620-1633.	3.9	15
809	Gene expression and physiological responses associated to stomatal functioning in Rosa×hybrida grown at high relative air humidity. Plant Science, 2016, 253, 154-163.	1.7	8
810	A transcription factor hierarchy defines an environmental stress response network. Science, 2016, 354, .	6.0	394
811	Genetic analysis of Physcomitrella patens identifies ABSCISIC ACID NON-RESPONSIVE (ANR), a regulator of ABA responses unique to basal land plants and required for desiccation tolerance. Plant Cell, 2016, 28, tpc.00091.2016.	3.1	98
812	Leveraging abscisic acid receptors for efficient water use in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6791-6796.	3.3	106
813	S-Type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K ⁺ Channels and Stomatal Opening in Arabidopsis. Plant Cell, 2016, 28, 949-965.	3.1	80
814	Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. BMC Plant Biology, 2016, 16, 99.	1.6	78

#	Article	IF	CITATIONS
815	Salinity stress induces the production of 2-(2-phenylethyl)chromones and regulates novel classes of responsive genes involved in signal transduction in Aquilaria sinensis calli. BMC Plant Biology, 2016, 16, 119.	1.6	39
816	Phosphatase ABI1 and okadaic acid-sensitive phosphoprotein phosphatases inhibit salt stress-activated SnRK2.4 kinase. BMC Plant Biology, 2016, 16, 136.	1.6	32
817	Ubiquitinâ€specific protease 24 negatively regulates abscisic acid signalling in <scp><i>Arabidopsis thaliana</i></scp> . Plant, Cell and Environment, 2016, 39, 427-440.	2.8	33
818	Pepper protein phosphatase type 2C, CaADIP1 and its interacting partner CaRLP1 antagonistically regulate ABA signalling and drought response. Plant, Cell and Environment, 2016, 39, 1559-1575.	2.8	70
819	Sequence Polymorphisms at the <i>REDUCED DORMANCY5</i> Pseudophosphatase Underlie Natural Variation in Arabidopsis Dormancy. Plant Physiology, 2016, 171, 2659-2670.	2.3	52
820	Mapping transcription factor interactome networks using HaloTag protein arrays. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4238-47.	3.3	67
821	Reactive Oxygen Species in the Regulation of Stomatal Movements. Plant Physiology, 2016, 171, 1569-1580.	2.3	199
822	High throughput selection of novel plant growth regulators: Assessing the translatability of small bioactive molecules from Arabidopsis to crops. Plant Science, 2016, 245, 50-60.	1.7	22
823	Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in Arabidopsis thaliana. Plant Molecular Biology, 2016, 90, 267-279.	2.0	49
824	A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Reports, 2016, 35, 1519-1533.	2.8	193
825	S-type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K+ Channels and Stomatal Opening in Arabidopsis. Plant Cell, 2016, 28, tpc.01050.2016.	3.1	33
826	Plant nuclear proteomics for unraveling physiological function. New Biotechnology, 2016, 33, 644-654.	2.4	15
827	Hormones and nitrate: a two-way connection. Plant Molecular Biology, 2016, 91, 599-606.	2.0	111
828	Molecular and systems approaches towards droughtâ€ŧolerant canola crops. New Phytologist, 2016, 210, 1169-1189.	3.5	70
829	<i>Germostatin resistance locus 1</i> encodes a <scp>PHD</scp> finger protein involved in auxinâ€mediated seed dormancy and germination. Plant Journal, 2016, 85, 3-15.	2.8	27
830	Chemical manipulation of plant water use. Bioorganic and Medicinal Chemistry, 2016, 24, 493-500.	1.4	58
831	Drought physiology and gene expression characteristics of Fraxinus interspecific hybrids. Plant Growth Regulation, 2016, 78, 179-193.	1.8	17
832	ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 functions as a negative regulator in ABA-mediated inhibition of germination in Arabidopsis. Plant Molecular Biology, 2016, 90, 303-315.	2.0	29

#	ARTICLE	IF	CITATIONS
833	Effects of exogenous abscisic acid on the expression of citrus fruit ripening-related genes and fruit ripening. Scientia Horticulturae, 2016, 201, 175-183.	1.7	60
834	Regulation of Arabidopsis MAPKKK18 by ABI1 and SnRK2, components of the ABA signaling pathway. Plant Signaling and Behavior, 2016, 11, e1139277.	1.2	34
835	Abscisic acid and pyrabactin improve vitamin C contents in raspberries. Food Chemistry, 2016, 203, 216-223.	4.2	26
836	Novel Vein Patterns in Arabidopsis Induced by Small Molecules. Plant Physiology, 2016, 170, 338-353.	2.3	11
837	Type B Heterotrimeric G Protein $\langle i \rangle \hat{i}^3 \langle i \rangle$ -Subunit Regulates Auxin and ABA Signaling in Tomato. Plant Physiology, 2016, 170, 1117-1134.	2.3	38
838	ABA receptor PYL9 promotes drought resistance and leaf senescence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1949-1954.	3.3	508
839	Environmental Nitrate Stimulates Abscisic Acid Accumulation in Arabidopsis Root Tips by Releasing It from Inactive Stores. Plant Cell, 2016, 28, 729-745.	3.1	98
840	A Dual-FunctionÂTranscription Factor, AtYY1, Is a Novel Negative Regulator of the Arabidopsis ABA Response Network. Molecular Plant, 2016, 9, 650-661.	3.9	53
841	To Grow or not to Grow?. Trends in Plant Science, 2016, 21, 498-505.	4.3	53
842	Protein kinase OsSAPK8 functions as an essential activator of S-type anion channel OsSLAC1, which is nitrate-selective in rice. Planta, 2016, 243, 489-500.	1.6	43
843	Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E396-405.	3.3	72
844	Deciphering the roles of acyl-CoA-binding proteins in plant cells. Protoplasma, 2016, 253, 1177-1195.	1.0	37
845	The WD40 Domain Protein MSI1 Functions in a Histone Deacetylase Complex to Fine-Tune Abscisic Acid Signaling. Plant Cell, 2016, 28, 42-54.	3.1	116
846	BRI1-Associated Receptor Kinase 1 Regulates Guard Cell ABA Signaling Mediated by Open Stomata 1 in Arabidopsis. Molecular Plant, 2016, 9, 447-460.	3.9	170
847	Improved drought and salt tolerance of Arabidopsis thaliana by ectopic expression of a cotton (Gossypium hirsutum) CBF gene. Plant Cell, Tissue and Organ Culture, 2016, 124, 583-598.	1.2	30
848	Microarray-based gene expression analysis of strong seed dormancy in rice cv. N22 and less dormant mutant derivatives. Plant Physiology and Biochemistry, 2016, 99, 27-38.	2.8	14
849	Efficient and practical catalyst-free-like dehydrative N-alkylation of amines and sulfinamides with alcohols initiated by aerobic oxidation of alcohols under air. Tetrahedron, 2016, 72, 264-272.	1.0	33
850	Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Critical Reviews in Biotechnology, 2016, 36, 1023-1035.	5.1	87

#	Article	IF	Citations
851	<i>Major latex protein-like protein $43 < i > (i > MLP43 < i >)$ functions as a positive regulator during abscisic acid responses and confers drought tolerance in <i> Arabidopsis thaliana </i> . Journal of Experimental Botany, 2016, 67, 421-434.</i>	2.4	78
852	A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components. Molecular Plant, 2016, 9, 136-147.	3.9	100
853	Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Molecular Plant, 2016, 9, 34-45.	3.9	709
854	Characterization of Molecular and Physiological Responses Under Water Deficit of Genetically Modified Soybean Plants Overexpressing the AtAREB1 Transcription Factor. Plant Molecular Biology Reporter, 2016, 34, 410-426.	1.0	22
855	Ubiquitin–Proteasome System in ABA Signaling: From Perception to Action. Molecular Plant, 2016, 9, 21-33.	3.9	130
856	The Arabidopsis Kelch Repeat F-box E3 Ligase ARKP1 Plays a Positive Role for the Regulation of Abscisic Acid Signaling. Plant Molecular Biology Reporter, 2016, 34, 582-591.	1.0	10
857	What are the evolutionary origins of stomatal responses to abscisic acid in land plants?. Journal of Integrative Plant Biology, 2017, 59, 240-260.	4.1	66
858	Transposable elements (<scp>TE</scp> s) contribute to stressâ€related long intergenic noncoding <scp>RNA</scp> s in plants. Plant Journal, 2017, 90, 133-146.	2.8	116
859	Overexpression of oligouridylate binding protein $1b$ results in ABA hypersensitivity. Plant Signaling and Behavior, 2017 , 12 , $e1282591$.	1.2	15
860	ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants. Nature Plants, 2017, 3, 16204.	4.7	97
861	Characterization of an ABA-Induced and K+ Channel Gene FaKAT1 that Regulates Strawberry Fruit Ripening. Journal of Plant Growth Regulation, 2017, 36, 312-322.	2.8	19
862	Production of ABA responses requires both the nuclear and cytoplasmic functional involvement of PYR1. Biochemical and Biophysical Research Communications, 2017, 484, 34-39.	1.0	7
863	MISSA 2.0: an updated synthetic biology toolbox for assembly of orthogonal CRISPR/Cas systems. Scientific Reports, 2017, 7, 41993.	1.6	17
864	Environmental nitrate signals through abscisic acid in the root tip. Plant Signaling and Behavior, 2017, 12, e1273303.	1.2	19
865	Priming of rice (Oryza sativa L.) seedlings with abscisic acid enhances seedling survival, plant growth, and grain yield in saline-alkaline paddy fields. Field Crops Research, 2017, 203, 86-93.	2.3	48
866	Plant Chemical Genetics: From Phenotype-Based Screens to Synthetic Biology. Plant Physiology, 2017, 174, 5-20.	2.3	69
867	Evolutionary Conservation of ABA Signaling for Stomatal Closure. Plant Physiology, 2017, 174, 732-747.	2.3	158
868	The Pepper RING-Type E3 Ligase CaAIRF1 Regulates ABA and Drought Signaling via CaADIP1 Protein Phosphatase Degradation. Plant Physiology, 2017, 173, 2323-2339.	2.3	56

#	Article	IF	CITATIONS
869	A Novel Chemical Inhibitor of ABA Signaling Targets All ABA Receptors. Plant Physiology, 2017, 173, 2356-2369.	2.3	47
870	Evolution of the Stomatal Regulation of Plant Water Content. Plant Physiology, 2017, 174, 639-649.	2.3	138
871	Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination. Plant Molecular Biology, 2017, 94, 197-213.	2.0	79
872	Endosperm-specific OsPYL8 and OsPYL9 act as positive regulators of the ABA signaling pathway in rice seed germination. Functional Plant Biology, 2017, 44, 635.	1.1	16
873	Abscisic acid signaling is involved in regulating the mitogen-activated protein kinase cascade module, AIK1-MKK5-MPK6. Plant Signaling and Behavior, 2017, 12, e1321188.	1.2	14
874	Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature Plants, 2017, 3, 17057.	4.7	183
875	Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. Journal of Experimental Botany, 2017, 68, 2913-2918.	2.4	92
876	Abscisic acid — An enigma in the abiotic stress tolerance of crop plants. Plant Gene, 2017, 11, 90-98.	1.4	24
877	Blue Light Regulation of Stomatal Opening and the Plasma Membrane H ⁺ -ATPase. Plant Physiology, 2017, 174, 531-538.	2.3	181
878	Advances in methods for identification and characterization of plant transporter function. Journal of Experimental Botany, 2017, 68, 4045-4056.	2.4	35
879	Structural basis for the regulation of phytohormone receptors. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1261-1273.	0.6	5
880	Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark. Nucleic Acids Research, 2017, 45, 7137-7150.	6.5	89
881	Reconstitution of Abscisic Acid Signaling from the Receptor to DNA via bHLH Transcription Factors. Plant Physiology, 2017, 174, 815-822.	2.3	36
882	Regulation of the turnover of <scp>ACC</scp> synthases by phytohormones and heterodimerization in Arabidopsis. Plant Journal, 2017, 91, 491-504.	2.8	48
883	Transcriptome-Based Identification of the Desiccation Response Genes in Marine Red Algae Pyropia tenera (Rhodophyta) and Enhancement of Abiotic Stress Tolerance by PtDRG2 in Chlamydomonas. Marine Biotechnology, 2017, 19, 232-245.	1.1	33
884	Arabidopsis thaliana RECEPTOR DEAD KINASE1 Functions as a Positive Regulator in Plant Responses to ABA. Molecular Plant, 2017, 10, 223-243.	3.9	91
885	Substituted Phthalimide AC94377 Is a Selective Agonist of the Gibberellin Receptor GID1. Plant Physiology, 2017, 173, 825-835.	2.3	13
886	AIK1, A Mitogen-Activated Protein Kinase, Modulates Abscisic Acid Responses through the MKK5-MPK6 Kinase Cascade. Plant Physiology, 2017, 173, 1391-1408.	2.3	117

#	Article	IF	Citations
887	AtAIRP2 E3 Ligase Affects ABA and High-Salinity Responses by Stimulating Its ATP1/SDIRIP1 Substrate Turnover. Plant Physiology, 2017, 174, 2515-2531.	2.3	46
888	Evaluating the involvement and interaction of abscisic acid and miRNA156 in the induction of anthocyanin biosynthesis in drought-stressed plants. Planta, 2017, 246, 299-312.	1.6	50
889	Transcriptomic analysis of rice aleurone cells identified a novel abscisic acid response element. Plant, Cell and Environment, 2017, 40, 2004-2016.	2.8	15
890	The Membrane Transport System of the Guard Cell and Its Integration for Stomatal Dynamics. Plant Physiology, 2017, 174, 487-519.	2.3	231
891	Integrated mRNA and microRNA transcriptome variations in the multi-tepal mutant provide insights into the floral patterning of the orchid Cymbidium goeringii. BMC Genomics, 2017, 18, 367.	1.2	30
893	Characterization and expression of abscisic acid signal transduction genes during mulberry fruit ripening. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	19
894	Pyrazinamide and derivatives block ethylene biosynthesis by inhibiting ACC oxidase. Nature Communications, 2017, 8, 15758.	5.8	67
895	Identification and characterization of the abscisic acid (ABA) receptor gene family and its expression in response to hormones in the rubber tree. Scientific Reports, 2017, 7, 45157.	1.6	32
896	The Role of ENHANCED RESPONSES TO ABA1 (ERA1) in Arabidopsis Stomatal Responses Is Beyond ABA Signaling. Plant Physiology, 2017, 174, 665-671.	2.3	23
903	Overexpression of cotton PYL genes in Arabidopsis enhances the transgenic plant tolerance to drought stress. Plant Physiology and Biochemistry, 2017, 115, 229-238.	2.8	48
904	The First Broad-Spectrum Abscisic Acid Antagonist. Plant Physiology, 2017, 173, 1939-1939.	2.3	1
905	Hormonal control of the floral transition: Can one catch them all?. Developmental Biology, 2017, 430, 288-301.	0.9	112
906	Ligand Receptor-Mediated Regulation of Growth in Plants. Current Topics in Developmental Biology, 2017, 123, 331-363.	1.0	15
907	Abscisic acid and transpiration rate are involved in the response to boron toxicity in <i>Arabidopsis</i> plants. Physiologia Plantarum, 2017, 160, 21-32.	2.6	26
908	Combining chemical and genetic approaches to increase drought resistance in plants. Nature Communications, 2017, 8, 1183.	5.8	108
909	WRKY43 regulates polyunsaturated fatty acid content and seed germination under unfavourable growth conditions. Scientific Reports, 2017, 7, 14235.	1.6	21
910	Structure determination and activity manipulation of the turfgrass ABA receptor FePYR1. Scientific Reports, 2017, 7, 14022.	1.6	16
911	Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds. Crop Journal, 2017, 5, 459-477.	2.3	78

#	Article	IF	CITATIONS
912	Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8930-E8939.	3.3	135
913	A Rationally Designed Agonist Defines Subfamily IIIA Abscisic Acid Receptors As Critical Targets for Manipulating Transpiration. ACS Chemical Biology, 2017, 12, 2842-2848.	1.6	57
914	Abscisic Acid-Induced Reactive Oxygen Species Are Modulated by Flavonols to Control Stomata Aperture. Plant Physiology, 2017, 175, 1807-1825.	2.3	168
915	A survey of the pyrabactin resistance-like abscisic acid receptor gene family in poplar. Plant Signaling and Behavior, 2017, 12, e1356966.	1.2	5
916	CRISPR/Cas9-Enabled Multiplex Genome Editing and Its Application. Progress in Molecular Biology and Translational Science, 2017, 149, 111-132.	0.9	71
917	A novel family of transcription factors conserved in angiosperms is required for <scp>ABA</scp> signalling. Plant, Cell and Environment, 2017, 40, 2958-2971.	2.8	51
918	Non-26S Proteasome Endomembrane Trafficking Pathways in ABA Signaling. Trends in Plant Science, 2017, 22, 976-985.	4.3	32
919	Cloning and expression profiling of the PacSnRK2 and PacPP2C gene families during fruit development, ABA treatment, and dehydration stress in sweet cherry. Plant Physiology and Biochemistry, 2017, 119, 275-285.	2.8	33
920	Transcription Profiles of Genes Related to Hormonal Regulations Under Salt Stress in Sweet Sorghum. Plant Molecular Biology Reporter, 2017, 35, 586-599.	1.0	73
921	A Nucleus-Localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance. Plant Physiology, 2017, 175, 1321-1336.	2.3	251
922	Nonâ€redundant functions of the dimeric <scp>ABA</scp> receptor Bd <scp>PYL</scp> 1 in the grass Brachypodium. Plant Journal, 2017, 92, 774-786.	2.8	32
923	Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis. Plant Molecular Biology, 2017, 95, 425-439.	2.0	37
924	Combinatorial interaction network of abscisic acid receptors and coreceptors from <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10280-10285.	3.3	142
925	Biology of <scp>SLAC</scp> 1â€type anion channels – from nutrient uptake to stomatal closure. New Phytologist, 2017, 216, 46-61.	3.5	110
926	Enzyme That Makes You Cry–Crystal Structure of Lachrymatory Factor Synthase from <i>Allium cepa</i> . ACS Chemical Biology, 2017, 12, 2296-2304.	1.6	16
927	The desert plant <i>Phoenix dactylifera</i> closes stomata via nitrateâ€regulated <scp>SLAC</scp> 1 anion channel. New Phytologist, 2017, 216, 150-162.	3.5	62
928	Soybean plant height <scp>QTL</scp> mapping and metaâ€analysis for mining candidate genes. Plant Breeding, 2017, 136, 688-698.	1.0	19
929	Unravelling the Function of a Bacterial Effector from a Non-cultivable Plant Pathogen Using a Yeast Two-hybrid Screen. Journal of Visualized Experiments, 2017, , .	0.2	6

#	Article	IF	CITATIONS
930	Genome-wide identification, characterization, and expression analysis of SnRK2 family in Hevea brasiliensis. Tree Genetics and Genomes, 2017, 13, 1.	0.6	9
931	Cross-talk of Brassinosteroid signaling in controlling growth and stress responses. Biochemical Journal, 2017, 474, 2641-2661.	1.7	183
932	Interaction network of <scp>ABA</scp> receptors in grey poplar. Plant Journal, 2017, 92, 199-210.	2.8	23
934	ACCERBATIN, a small molecule at the intersection of auxin and reactive oxygen species homeostasis with herbicidal properties. Journal of Experimental Botany, 2017, 68, 4185-4203.	2.4	7
935	Towards <scp>CRISPR</scp> /Cas crops – bringing together genomics and genome editing. New Phytologist, 2017, 216, 682-698.	3.5	235
936	Expression of a monothiol glutaredoxin, AtGRXS17, in tomato (Solanum lycopersicum) enhances drought tolerance. Biochemical and Biophysical Research Communications, 2017, 491, 1034-1039.	1.0	37
937	Intergenic transformation of AtMYB44 confers drought stress tolerance in rice seedlings. Applied Biological Chemistry, 2017, 60, 447-455.	0.7	10
938	The OsABF1 transcription factor improves drought tolerance by activating the transcription of COR413-TM1 in rice. Journal of Experimental Botany, 2017, 68, 4695-4707.	2.4	61
939	Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9200-9205.	3.3	281
940	Abscisic acid., 2017, , 161-202.		26
941	Members of the abscisic acid coâ€receptor <scp>PP</scp> 2C protein family mediate salicylic acidâ€"abscisic acid crosstalk. Plant Direct, 2017, 1, e00020.	0.8	55
942	Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure. Scientific Reports, 2017, 7, 15950.	1.6	64
943	Signalling regulators of abscisic and gibberellic acid pathways are involved in dormancy breaking of Norway maple (Acer platanoides L.) seeds. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	9
944	UBIQUITIN-SPECIFIC PROTEASES function in plant development and stress responses. Plant Molecular Biology, 2017, 94, 565-576.	2.0	55
945	DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nature Communications, 2017, 8, 72.	5.8	190
946	Control of Plant Water Use by ABA Induction of Senescence and Dormancy: An Overlooked Lesson from Evolution. Plant and Cell Physiology, 2017, 58, 1319-1327.	1.5	51
947	Herboxidiene triggers splicing repression and abiotic stress responses in plants. BMC Genomics, 2017, 18, 260.	1.2	31
948	The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology. Plant Methods, 2017, 13, 10.	1.9	18

#	Article	IF	CITATIONS
949	Postâ€translational control of <scp>ABA</scp> signalling: the roles of protein phosphorylation and ubiquitination. Plant Biotechnology Journal, 2017, 15, 4-14.	4.1	131
950	Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings. Molecular Plant, 2017, 10, 456-469.	3.9	107
951	ABI4 represses the expression of typeâ€A <i>ARRs</i> to inhibit seed germination in Arabidopsis. Plant Journal, 2017, 89, 354-365.	2.8	100
952	Brevicoryne brassicae aphids interfere with transcriptome responses of Arabidopsis thaliana to feeding by Plutella xylostella caterpillars in a density-dependent manner. Oecologia, 2017, 183, 107-120.	0.9	14
953	Molecular Evolution of Grass Stomata. Trends in Plant Science, 2017, 22, 124-139.	4.3	202
954	The spatio-temporal specificity of PYR1/PYL/RCAR ABA receptors in response to developmental and environmental cues. Plant Signaling and Behavior, 2017, 12, e1214793.	1.2	21
955	Preâ€ <scp>mRNA</scp> splicing repression triggers abiotic stress signaling in plants. Plant Journal, 2017, 89, 291-309.	2.8	68
956	Variation in carbohydrates and screening of related differential proteins during the seed germination of Magnolia sieboldii K. Koch. Trees - Structure and Function, 2017, 31, 63-75.	0.9	6
957	Wheat nuclear factor Y (NF-Y) B subfamily gene TaNF-YB3;l confers critical drought tolerance through modulation of the ABA-associated signaling pathway. Plant Cell, Tissue and Organ Culture, 2017, 128, 97-111.	1.2	38
958	Iron deficiency response gene Femu2 plays a positive role in protecting Chlamydomonas reinhardtii against salt stress. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3345-3354.	1.1	14
959	The pivotal role of abscisic acid signaling during transition from seed maturation to germination. Plant Cell Reports, 2017, 36, 689-703.	2.8	66
960	SnapShot: Abscisic Acid Signaling. Cell, 2017, 171, 1708-1708.e0.	13.5	109
961	Identification of differentially expressed genes during bud dormancy release inPaeonia lactifloraâ€~Dafugui'. Acta Horticulturae, 2017, , 163-174.	0.1	1
962	The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. BMC Plant Biology, 2017, 17, 145.	1.6	51
963	Overexpression of MpCYS4, A Phytocystatin Gene from Malus prunifolia (Willd.) Borkh., Enhances Stomatal Closure to Confer Drought Tolerance in Transgenic Arabidopsis and Apple. Frontiers in Plant Science, 2017, 8, 33.	1.7	48
964	Brachypodium distachyon BdPP2CA6 Interacts with BdPYLs and BdSnRK2 and Positively Regulates Salt Tolerance in Transgenic Arabidopsis. Frontiers in Plant Science, 2017, 8, 264.	1.7	36
965	Abscisic Acid as Pathogen Effector and Immune Regulator. Frontiers in Plant Science, 2017, 8, 587.	1.7	145
966	A Taylor-Made Design of Phenoxyfuranone-Type Strigolactone Mimic. Frontiers in Plant Science, 2017, 8, 936.	1.7	33

#	Article	IF	CITATIONS
967	Mutation in HvCBP20 (Cap Binding Protein 20) Adapts Barley to Drought Stress at Phenotypic and Transcriptomic Levels. Frontiers in Plant Science, 2017, 8, 942.	1.7	48
968	Overexpression of the PeaT1 Elicitor Gene from Alternaria tenuissima Improves Drought Tolerance in Rice Plants via Interaction with a Myo-Inositol Oxygenase. Frontiers in Plant Science, 2017, 8, 970.	1.7	19
969	OsSAPK2 Confers Abscisic Acid Sensitivity and Tolerance to Drought Stress in Rice. Frontiers in Plant Science, 2017, 8, 993.	1.7	244
970	Genome-Wide Association Study Reveals Natural Variations Contributing to Drought Resistance in Crops. Frontiers in Plant Science, 2017, 8, 1110.	1.7	72
971	Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation. Frontiers in Plant Science, 2017, 8, 1121.	1.7	75
972	Global Gene Expression Analysis Reveals Crosstalk between Response Mechanisms to Cold and Drought Stresses in Cassava Seedlings. Frontiers in Plant Science, 2017, 8, 1259.	1.7	37
973	Activation of ABA Receptors Gene GhPYL9-11A Is Positively Correlated with Cotton Drought Tolerance in Transgenic Arabidopsis. Frontiers in Plant Science, 2017, 8, 1453.	1.7	38
974	Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors. Frontiers in Plant Science, 2017, 8, 1647.	1.7	28
975	Overexpression of Pyrabactin Resistance-Like Abscisic Acid Receptors Enhances Drought, Osmotic, and Cold Tolerance in Transgenic Poplars. Frontiers in Plant Science, 2017, 8, 1752.	1.7	57
976	Effect of the Winter Wheat Cheyenne 5A Substituted Chromosome on Dynamics of Abscisic Acid and Cytokinins in Freezing-Sensitive Chinese Spring Genetic Background. Frontiers in Plant Science, 2017, 8, 2033.	1.7	9
977	Genome-Wide Identification and Characterization of the GmSnRK2 Family in Soybean. International Journal of Molecular Sciences, 2017, 18, 1834.	1.8	30
978	Arabidopsis E3 Ubiquitin Ligases PUB22 and PUB23 Negatively Regulate Drought Tolerance by Targeting ABA Receptor PYL9 for Degradation. International Journal of Molecular Sciences, 2017, 18, 1841.	1.8	78
979	Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity. Plants, 2017, 6, 54.	1.6	28
980	Comparative Transcriptome Analysis of Male and Female Conelets and Development of Microsatellite Markers in Pinus bungeana, an Endemic Conifer in China. Genes, 2017, 8, 393.	1.0	18
981	Improving Plant Water Use Efficiency through Molecular Genetics. Horticulturae, 2017, 3, 31.	1.2	73
982	A Comprehensive Proteomic Survey of ABA-Induced Protein Phosphorylation in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 2017, 18, 60.	1.8	31
983	The Phosphoproteomic Response of Rice Seedlings to Cadmium Stress. International Journal of Molecular Sciences, 2017, 18, 2055.	1.8	32
984	Screening and identification of key genes regulating fall dormancy in alfalfa leaves. PLoS ONE, 2017, 12, e0188964.	1.1	11

#	Article	IF	CITATIONS
985	Transcriptome Analysis of ABA/JA-Dual Responsive Genes in Rice Shoot and Root. Current Genomics, 2017, 19, 4-11.	0.7	8
986	Genome-wide transcriptome profiling provides overwintering mechanism of Agropyron mongolicum. BMC Plant Biology, 2017, 17, 138.	1.6	5
987	A plant-based chemical genomics screen for the identification of flowering inducers. Plant Methods, 2017, 13, 78.	1.9	6
988	Chemical genetics and strigolactone perception. F1000Research, 2017, 6, 975.	0.8	7
989	Genome-wide identification of ABA receptor PYL family and expression analysis of <i>PYLs</i> in response to ABA and osmotic stress in <i>Gossypium</i> . PeerJ, 2017, 5, e4126.	0.9	47
990	OsDSSR1, a novel small peptide, enhances drought tolerance in transgenic rice. Plant Science, 2018, 270, 85-96.	1.7	22
991	Coordinating the overall stomatal response of plants: Rapid leaf-to-leaf communication during light stress. Science Signaling, 2018, 11, .	1.6	150
992	Characterization of thiolâ€based redox modifications of Brassica napus SNF 1â€related protein kinase 2.6â€2C. FEBS Open Bio, 2018, 8, 628-645.	1.0	12
993	Functional analysis of overexpressed PtDRS1 involved in abiotic stresses enhances growth in transgenic poplar. Plant Physiology and Biochemistry, 2018, 126, 22-31.	2.8	14
994	Transcriptome and physiological analyses reveal that AM1 as an ABA-mimicking ligand improves drought resistance in Brassica napus. Plant Growth Regulation, 2018, 85, 73-90.	1.8	13
995	Hydrotropism: how roots search for water. Journal of Experimental Botany, 2018, 69, 2759-2771.	2.4	76
996	Glucohexaose-induced protein phosphatase 2C regulates cell redox status of cucumber seedling. Journal of Biosciences, 2018, 43, 117-126.	0.5	2
997	Regulation of stomatal movement by cortical microtubule organization in response to darkness and ABA signaling in Arabidopsis. Plant Growth Regulation, 2018, 84, 467-479.	1.8	32
998	Chemical regulators of plant hormones and their applications in basic research and agriculture*. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1265-1300.	0.6	83
999	A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development. Nature Communications, 2018, 9, 1604.	5.8	130
1000	Abscisic acid-induced degradation of <i>Arabidopsis</i> guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4522-E4531.	3.3	36
1001	Spatio-temporal aspects of Ca2+ signalling: lessons from guard cells and pollen tubes. Journal of Experimental Botany, 2018, 69, 4195-4214.	2.4	25
1002	SPINDLY is involved in ABA signaling bypassing the PYR/PYLs/RCARs-mediated pathway and partly through functional ABAR. Environmental and Experimental Botany, 2018, 151, 43-54.	2.0	6

#	Article	IF	CITATIONS
1003	Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 2018, 60, 805-826.	4.1	397
1004	EAR1 Negatively Regulates ABA Signaling by Enhancing 2C Protein Phosphatase Activity. Plant Cell, 2018, 30, 815-834.	3.1	111
1005	The <scp>PP</scp> 2Aâ€interactor <scp>TIP</scp> 41 modulates <scp>ABA</scp> responses in <i>Arabidopsis thaliana</i> . Plant Journal, 2018, 94, 991-1009.	2.8	28
1006	Phosphoproteomic profiling reveals <scp>ABA</scp> â€responsive phosphosignaling pathways in <i>Physcomitrella patens</i> . Plant Journal, 2018, 94, 699-708.	2.8	48
1007	Insights into the in Vitro and in Vivo SAR of Abscisic Acid – Exploring Unprecedented Variations of the Side Chain via Crossâ€Couplingâ€Mediated Syntheses. European Journal of Organic Chemistry, 2018, 2018, 1403-1415.	1.2	16
1008	A DEADâ€box RNA helicase, RH8, is critical for regulation of ABA signalling and the drought stress response via inhibition of PP2CA activity. Plant, Cell and Environment, 2018, 41, 1593-1604.	2.8	45
1009	Identification and Characterization of Compounds that Affect Stomatal Movements. Plant and Cell Physiology, 2018, 59, 1568-1580.	1.5	34
1010	The Arabidopsis Mediator Complex Subunit MED19a is Involved in ABI5-mediated ABA Responses. Journal of Plant Biology, 2018, 61, 97-110.	0.9	15
1011	The functional analysis of SINCED1 in tomato pollen development. Cellular and Molecular Life Sciences, 2018, 75, 3457-3472.	2.4	28
1012	Arabidopsis Aspartic Protease ASPG1 Affects Seed Dormancy, Seed Longevity and Seed Germination. Plant and Cell Physiology, 2018, 59, 1415-1431.	1.5	29
1013	Glucose triggers stomatal closure mediated by basal signaling through HXK1 and PYR/RCAR receptors in Arabidopsis. Journal of Experimental Botany, 2018, 69, 1471-1484.	2.4	37
1014	Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement. Plant Science, 2018, 273, 110-119.	1.7	106
1015	Exogenous strigolactone interacts with abscisic acid-mediated accumulation of anthocyanins in grapevine berries. Journal of Experimental Botany, 2018, 69, 2391-2401.	2.4	64
1016	<i>Sâ€</i> Nitrosoglutathione works downstream of nitric oxide to mediate ironâ€deficiency signaling in Arabidopsis. Plant Journal, 2018, 94, 157-168.	2.8	32
1017	Functional analysis of a type 2C protein phosphatase gene from Ammopiptanthus mongolicus. Gene, 2018, 653, 29-42.	1.0	5
1018	An unusual strategy of stomatal control in the desert shrub Ammopiptanthus mongolicus. Plant Physiology and Biochemistry, 2018, 125, 13-26.	2.8	7
1019	Thermostability of the PYL–PP2C Heterodimer Is Dependent on Magnesium: ⟨i>In Silico⟨/i> Insights into the Link between Heat Stress Response and Magnesium Deficiency in Plants. Journal of Chemical Information and Modeling, 2018, 58, 661-672.	2.5	6
1020	Cold and Water Deficit Regulatory Mechanisms in Rice: Optimizing Stress Tolerance Potential by Pathway Integration and Network Engineering., 2018, 317-359.		8

#	Article	IF	CITATIONS
1021	Advances and current challenges in calcium signaling. New Phytologist, 2018, 218, 414-431.	3.5	423
1022	Interaction network of core ABA signaling components in maize. Plant Molecular Biology, 2018, 96, 245-263.	2.0	51
1023	An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis. Scientific Reports, 2018, 8, 2707.	1.6	30
1024	The Asparagine-Rich Protein NRP Facilitates theÂDegradation of the PP6-type Phosphatase FyPP3 to Promote ABA Response in Arabidopsis. Molecular Plant, 2018, 11, 257-268.	3.9	7
1025	Abscisic Acid Signaling Inhibits Brassinosteroid Signaling through Dampening the Dephosphorylation of BIN2 by ABI1 and ABI2. Molecular Plant, 2018, 11, 315-325.	3.9	160
1026	Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response. Molecular Cell, 2018, 69, 100-112.e6.	4.5	385
1027	Trithoraxâ€group proteins ARABIDOPSIS TRITHORAX4 (ATX4) and <scp>ATX</scp> 5 function in abscisic acid and dehydration stress responses. New Phytologist, 2018, 217, 1582-1597.	3.5	59
1028	Abscisic acid is involved in aromatic ester biosynthesis related with ethylene in green apples. Journal of Plant Physiology, 2018, 221, 85-93.	1.6	41
1029	Suppressing Type 2C Protein Phosphatases Alters Fruit Ripening and the Stress Response in Tomato. Plant and Cell Physiology, 2018, 59, 142-154.	1.5	47
1030	A leu-rich repeat receptor-like protein kinase, FaRIPK1, interacts with the ABA receptor, FaABAR, to regulate fruit ripening in strawberry. Journal of Experimental Botany, 2018, 69, 1569-1582.	2.4	21
1031	Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress. Plant Science, 2018, 272, 276-293.	1.7	73
1032	Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5223-5228.	3.3	64
1033	EL1-like Casein Kinases Suppress ABA Signaling and Responses by Phosphorylating and Destabilizing the ABA Receptors PYR/PYLs in Arabidopsis. Molecular Plant, 2018, 11, 706-719.	3.9	72
1034	BPH1, a novel substrate receptor of CRL3, plays a repressive role in ABA signal transduction. Plant Molecular Biology, 2018, 96, 593-606.	2.0	7
1035	Soybean TCP transcription factors: Evolution, classification, protein interaction and stress and hormone responsiveness. Plant Physiology and Biochemistry, 2018, 127, 129-142.	2.8	38
1036	Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis. BMC Plant Biology, 2018, 18, 40.	1.6	48
1037	Ectopic Expression of Rice PYL3 Enhances Cold and Drought Tolerance in Arabidopsis thaliana. Molecular Biotechnology, 2018, 60, 350-361.	1.3	58
1038	Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants. Plant Science, 2018, 271, 108-116.	1.7	54

#	Article	IF	CITATIONS
1039	Identification of new abscisic acid receptor agonists using a wheat cell-free based drug screening system. Scientific Reports, 2018, 8, 4268.	1.6	23
1040	<scp>ABA</scp> signalling manipulation suppresses senescence of a leafy vegetable stored at room temperature. Plant Biotechnology Journal, 2018, 16, 530-544.	4.1	23
1041	Regulation of abscisic acid biosynthesis and signal transduction during carrot growth and development. Journal of Horticultural Science and Biotechnology, 2018, 93, 167-174.	0.9	3
1042	<scp>AtRAE1</scp> is involved in degradation of <scp>ABA</scp> receptor <scp>RCAR1</scp> and negatively regulates <scp>ABA</scp> signalling in <i>Arabidopsis</i> Plant, Cell and Environment, 2018, 41, 231-244.	2.8	41
1043	Stomatal VPD Response: There Is More to the Story Than ABA. Plant Physiology, 2018, 176, 851-864.	2.3	144
1044	Strigolactoneâ€triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acidâ€independent manner. New Phytologist, 2018, 217, 290-304.	3.5	121
1045	Genome-wide analysis and expression profiling of PP2C clade D under saline and alkali stresses in wild soybean and Arabidopsis. Protoplasma, 2018, 255, 643-654.	1.0	35
1046	The Energy-Signaling Hub SnRK1 Is Important for Sucrose-Induced Hypocotyl Elongation. Plant Physiology, 2018, 176, 1299-1310.	2.3	62
1047	Ethylene Receptors Signal via a Noncanonical Pathway to Regulate Abscisic Acid Responses. Plant Physiology, 2018, 176, 910-929.	2.3	45
1048	Protein degradation mechanisms modulate abscisic acid signaling and responses during abiotic stress. Plant Science, 2018, 267, 48-54.	1.7	18
1049	The role of <i>Arabidopsis thaliana <scp>RASD</scp>1</i> gene in <scp>ABA</scp> â€dependent abiotic stress response. Plant Biology, 2018, 20, 307-317.	1.8	5
1050	Conserved function of mediator in regulating nuclear hormone receptor activation between plants and animals. Plant Signaling and Behavior, 2018, 13, e1403709.	1.2	8
1051	An Evolutionarily Conserved Abscisic Acid Signaling Pathway Regulates Dormancy in the Liverwort Marchantia polymorpha. Current Biology, 2018, 28, 3691-3699.e3.	1.8	68
1052	A Functional Connection between the Circadian Clock and Hormonal Timing in Arabidopsis. Genes, 2018, 9, 567.	1.0	27
1053	TIP41 network analysis and mutant phenotypes predict interactions between the TOR and ABA pathways. Plant Signaling and Behavior, 2018, 13, e1537698.	1.2	14
1054	Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time. Plant Molecular Biology, 2018, 98, 471-493.	2.0	18
1055	Molecular Dynamics Simulations Reveal Differentiated Context-Dependent Conformational Dynamics of Two Proteins of the Same Family. Journal of Physical Chemistry B, 2018, 122, 10686-10699.	1.2	0
1056	RSM1, an Arabidopsis MYB protein, interacts with HY5/HYH to modulate seed germination and seedling development in response to abscisic acid and salinity. PLoS Genetics, 2018, 14, e1007839.	1.5	66

#	Article	IF	CITATIONS
1057	Novel Pathway Regulates ABA Perception: How ESCRTs Regulate Stability of ABA Receptors. Journal of Cell Signaling, $2018, 03, .$	0.3	0
1058	Multiple Links between HD-Zip Proteins and Hormone Networks. International Journal of Molecular Sciences, 2018, 19, 4047.	1.8	31
1059	AtMYB44 interacts with TOPLESS-RELATED corepressors to suppress protein phosphatase 2C gene transcription. Biochemical and Biophysical Research Communications, 2018, 507, 437-442.	1.0	19
1060	Sulfate is Incorporated into Cysteine to Trigger ABA Production and Stomatal Closure. Plant Cell, 2018, 30, 2973-2987.	3.1	85
1061	Mechanisms Underlying Freezing and Desiccation Tolerance in Bryophytes. Advances in Experimental Medicine and Biology, 2018, 1081, 167-187.	0.8	10
1062	Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress. Advances in Experimental Medicine and Biology, 2018, 1081, 215-232.	0.8	161
1063	Genome-wide characterization of protein phosphatase 2C genes in Populus euphratica and their expression profiling under multiple abiotic stresses. Tree Genetics and Genomes, 2018, 14, 1.	0.6	7
1064	Regulatory Gene Networks in Drought Stress Responses and Resistance in Plants. Advances in Experimental Medicine and Biology, 2018, 1081, 189-214.	0.8	91
1065	Abscisic acid-independent stomatal CO ₂ signal transduction pathway and convergence of CO ₂ and ABA signaling downstream of OST1 kinase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9971-E9980.	3.3	91
1066	Identification of Auxin Activity Like 1, a chemical with weak functions in auxin signaling pathway. Plant Molecular Biology, 2018, 98, 275-287.	2.0	2
1067	A seed resource for screening functionally redundant genes and isolation of new mutants impaired in CO2 and ABA responses. Journal of Experimental Botany, 2019, 70, 641-651.	2.4	12
1068	The Receptor-like Pseudokinase GHR1 Is Required for Stomatal Closure. Plant Cell, 2018, 30, 2813-2837.	3.1	95
1069	Hofmann <i>N</i> àêelkylation of aniline derivatives with alcohols using ferric perchlorate immobilized on SiO ₂ as a catalyst through Box–Behnken experimental design. Applied Organometallic Chemistry, 2018, 32, e4591.	1.7	9
1070	Ectopic expression of mutated type 2C protein phosphatase OsABI-LIKE2 decreases abscisic acid sensitivity in Arabidopsis and rice. Scientific Reports, 2018, 8, 12320.	1.6	6
1071	Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. Frontiers in Plant Science, 2018, 9, 1387.	1.7	232
1072	Protein kinase CK2α subunits constitutively activate ABA signaling in Arabidopsis. Plant Signaling and Behavior, 2018, 13, e1525998.	1.2	3
1073	Circadian control of abscisic acid biosynthesis and signalling pathways revealed by genomeâ€wide analysis of <scp>LHY</scp> binding targets. New Phytologist, 2018, 220, 893-907.	3.5	140
1074	Overexpression of BoNAC019, a NAC transcription factor from Brassica oleracea, negatively regulates the dehydration response and anthocyanin biosynthesis in Arabidopsis. Scientific Reports, 2018, 8, 13349.	1.6	46

#	Article	IF	CITATIONS
1075	Information Processing and Distributed Computation in Plant Organs. Trends in Plant Science, 2018, 23, 994-1005.	4.3	40
1076	Comparative proteomics analysis of whitetop (Lepidium draba L.) seedlings in response to exogenous glucose. International Journal of Biological Macromolecules, 2018, 120, 2458-2465.	3.6	9
1077	Targeted Genome Editing for Cotton Improvement. , 0, , .		8
1078	Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure. Biochemical and Biophysical Research Communications, 2018, 504, 143-148.	1.0	22
1079	Casein kinase 2 \hat{l}_{\pm} and \hat{l}^{2} subunits inversely modulate ABA signal output in Arabidopsis protoplasts. Planta, 2018, 248, 571-578.	1.6	14
1080	Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6058-6063.	3.3	284
1081	Potent Analogues of Abscisic Acid – Identifying Cyanoâ€Cyclopropyl Moieties as Promising Replacements for the Cyclohexenone Headgroup. European Journal of Organic Chemistry, 2018, 2018, 1416-1425.	1.2	19
1082	Endosperm sugar accumulation caused by mutation of <i><scp>PHS</scp>8</i> <scp>ISA</scp> 1 leads to preâ€harvest sprouting in rice. Plant Journal, 2018, 95, 545-556.	2.8	55
1083	FnCpf1-Mediated Targeted Mutagenesis in Plants. Methods in Molecular Biology, 2018, 1795, 223-239.	0.4	2
1084	Identification of genes involved in metabolism and signalling of abscisic acid and gibberellins during Epimedium pseudowushanense B.L.Guo seed morphophysiological dormancy. Plant Cell Reports, 2018, 37, 1061-1075.	2.8	9
1085	Chemical Screening for Strigolactone Receptor Antagonists Using Arabidopsis thaliana. Methods in Molecular Biology, 2018, 1795, 117-126.	0.4	5
1086	Chemical Control of ABA Receptors to Enable Plant Protection Against Water Stress. Methods in Molecular Biology, 2018, 1795, 127-141.	0.4	8
1087	Modes of Action Study of Seed Germination Inhibitor Germostatin by Forward Genetics Screening. Methods in Molecular Biology, 2018, 1795, 143-148.	0.4	1
1088	Overexpression of AtPYL5 under the control of guard cell specific promoter improves drought stress tolerance in Arabidopsis. Plant Physiology and Biochemistry, 2018, 129, 150-157.	2.8	34
1089	Identification of Chemical Inducers of the Phosphate-Starvation Signaling Pathway in A. thaliana Using Chemical Genetics. Methods in Molecular Biology, 2018, 1795, 65-84.	0.4	1
1090	Genome-Wide Expression Profiles of Hemp (Cannabis sativa L.) in Response to Drought Stress. International Journal of Genomics, 2018, 2018, 1-13.	0.8	23
1091	The Antagonistic Action of Abscisic Acid and Cytokinin Signaling Mediates Drought Stress Response in Arabidopsis. Molecular Plant, 2018, 11, 970-982.	3.9	217
1092	Chemical Activation of EDS1/PAD4 Signaling Leading to Pathogen Resistance in Arabidopsis. Plant and Cell Physiology, 2018, 59, 1592-1607.	1.5	31

#	Article	IF	CITATIONS
1093	Small Molecule Toolbox for Strigolactone Biology. Plant and Cell Physiology, 2018, 59, 1511-1519.	1.5	10
1094	The Expression of CARK1 or RCAR11 Driven by Synthetic Promoters Increases Drought Tolerance in Arabidopsis thaliana. International Journal of Molecular Sciences, 2018, 19, 1945.	1.8	12
1095	Isolation of a novel protein phosphatase 2C in rice and its response to gibberellin. Biochemical and Biophysical Research Communications, 2018, 503, 1987-1992.	1.0	6
1096	RNA-seq Analysis Reveals Gene Expression Profiling of Female Fertile and Sterile Ovules of Pinus Tabulaeformis Carr. during Free Nuclear Mitosis of the Female Gametophyte. International Journal of Molecular Sciences, 2018, 19, 2246.	1.8	7
1097	Physiological and Molecular Processes Associated with Long Duration of ABA Treatment. Frontiers in Plant Science, 2018, 9, 176.	1.7	22
1098	Wheat miRNA TaemiR408 Acts as an Essential Mediator in Plant Tolerance to Pi Deprivation and Salt Stress via Modulating Stress-Associated Physiological Processes. Frontiers in Plant Science, 2018, 9, 499.	1.7	76
1099	Characterization of the ABA Receptor VIPYL1 That Regulates Anthocyanin Accumulation in Grape Berry Skin. Frontiers in Plant Science, 2018, 9, 592.	1.7	32
1100	The Arabidopsis AtUNC-93 Acts as a Positive Regulator of Abiotic Stress Tolerance and Plant Growth via Modulation of ABA Signaling and K+ Homeostasis. Frontiers in Plant Science, 2018, 9, 718.	1.7	12
1101	Arabidopsis IQM4, a Novel Calmodulin-Binding Protein, Is Involved With Seed Dormancy and Germination in Arabidopsis. Frontiers in Plant Science, 2018, 9, 721.	1.7	23
1102	Regulation of Seed Germination and Abiotic Stresses by Gibberellins and Abscisic Acid. Frontiers in Plant Science, 2018, 9, 838.	1.7	197
1103	Plant Chemical Biology. Plant and Cell Physiology, 2018, 59, 1483-1486.	1.5	11
1104	Genome-Wide Analysis of the PYL Gene Family and Identification of PYL Genes That Respond to Abiotic Stress in Brassica napus. Genes, 2018, 9, 156.	1.0	55
1105	Transcription factor HAT1 is a substrate of SnRK2.3 kinase and negatively regulates ABA synthesis and signaling in Arabidopsis responding to drought. PLoS Genetics, 2018, 14, e1007336.	1.5	92
1106	Abscisic Acid (ABA) Promotes the Induction and Maintenance of Pear (Pyrus pyrifolia White Pear) Tj ETQq $1\ 1\ 0.7$	'84314 rgl 1.8	BT-/Qverlock
1107	ABA Receptor Subfamily III Enhances Abscisic Acid Sensitivity and Improves the Drought Tolerance of Arabidopsis. International Journal of Molecular Sciences, 2018, 19, 1938.	1.8	43
1108	Transcriptome Analyses in Different Cucumber Cultivars Provide Novel Insights into Drought Stress Responses. International Journal of Molecular Sciences, 2018, 19, 2067.	1.8	30
1109	The Maize ABA Receptors ZmPYL8, 9, and 12 Facilitate Plant Drought Resistance. Frontiers in Plant Science, 2018, 9, 422.	1.7	69
1110	Small Molecule Probes of ABA Biosynthesis and Signaling. Plant and Cell Physiology, 2018, 59, 1490-1499.	1.5	70

#	Article	IF	Citations
1111	The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell, 2018, 174, 448-464.e24.	13.5	420
1112	The Ubiquitin E3 Ligase RHA2b Promotes Degradation of MYB30 in Abscisic Acid Signaling. Plant Physiology, 2018, 178, 428-440.	2.3	38
1113	Exploration of ABA Responsive miRNAs Reveals a New Hormone Signaling Crosstalk Pathway Regulating Root Growth of Populus euphratica. International Journal of Molecular Sciences, 2018, 19, 1481.	1.8	22
1114	A Tandem Amino Acid Residue Motif in Guard Cell SLAC1 Anion Channel of Grasses Allows for the Control of Stomatal Aperture by Nitrate. Current Biology, 2018, 28, 1370-1379.e5.	1.8	46
1115	Design, Synthesis, Antiviral Bioactivity, and Defense Mechanisms of Novel Dithioacetal Derivatives Bearing a Strobilurin Moiety. Journal of Agricultural and Food Chemistry, 2018, 66, 5335-5345.	2.4	56
1116	Genome-wide identification and analyses of the rice <i>OsDUF936</i> family. Biotechnology and Biotechnological Equipment, 2018, 32, 309-315.	0.5	11
1117	Molecular characterization and function analysis of the rice OsDUF829 family. Biotechnology and Biotechnological Equipment, 2018, 32, 550-557.	0.5	4
1118	Transcriptomic Analyses of Root Restriction Effects on Phytohormone Content and Signal Transduction during Grape Berry Development and Ripening. International Journal of Molecular Sciences, 2018, 19, 2300.	1.8	12
1119	Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environmental and Experimental Botany, 2018, 155, 619-627.	2.0	45
1120	Phytochrome and Phytohormones: Working in Tandem for Plant Growth and Development. Frontiers in Plant Science, 2018, 9, 1037.	1.7	75
1121	Mechanisms for Abscisic Acid Inhibition of Primary Root Growth. Plant Signaling and Behavior, 2018, 13, e1500069.	1,2	61
1122	The Rice OsDUF810 Family: OsDUF810.7 May be Involved in the Tolerance to Salt and Drought. Molecular Biology, 2018, 52, 489-496.	0.4	23
1123	Comparative transcriptome analysis of the interaction between Actinidia chinensis var. chinensis and Pseudomonas syringae pv. actinidiae in absence and presence of acibenzolar-S-methyl. BMC Genomics, 2018, 19, 585.	1.2	33
1124	Role of <i>LBD14</i> during ABA-mediated control of root system architecture in Arabidopsis. Plant Signaling and Behavior, 2018, 13, 1-3.	1.2	8
1125	Abscisic Acid Signaling and Biosynthesis: Protein Structures and Molecular Probes., 2018,, 113-146.		1
1126	High-Throughput Screening of Chemical Compound Libraries for Modulators of Salicylic Acid Signaling by In Situ Monitoring of Glucuronidase-Based Reporter Gene Expression. Methods in Molecular Biology, 2018, 1795, 49-63.	0.4	1
1127	Arabidopsis Duodecuple Mutant of PYL ABA Receptors Reveals PYL Repression of ABA-Independent SnRK2 Activity. Cell Reports, 2018, 23, 3340-3351.e5.	2.9	153
1128	Involvement of an ABI-like protein and a Ca2+-ATPase in drought tolerance as revealed by transcript profiling of a sweetpotato somatic hybrid and its parents Ipomoea batatas (L.) Lam. and I. triloba L PLoS ONE, 2018, 13, e0193193.	1.1	13

#	Article	IF	Citations
1129	Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nature Communications, 2018, 9, 2132.	5.8	138
1130	Identifying differentially expressed proteins in sorghum cell cultures exposed to osmotic stress. Scientific Reports, 2018, 8, 8671.	1.6	26
1131	The <i>6xABRE</i> Synthetic Promoter Enables the Spatiotemporal Analysis of ABA-Mediated Transcriptional Regulation. Plant Physiology, 2018, 177, 1650-1665.	2.3	63
1132	Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2â€ketoâ€4â€methylthiobutyric acid production. PLoS Genetics, 2018, 14, e1007273.	1.5	95
1133	SlPti4 Affects Regulation of Fruit Ripening, Seed Germination and Stress Responses by Modulating ABA Signaling in Tomato. Plant and Cell Physiology, 2018, 59, 1956-1965.	1.5	30
1134	Abscisic acid negatively modulates plant defence against rice blackâ€streaked dwarf virus infection by suppressing the jasmonate pathway and regulating reactive oxygen species levels in rice. Plant, Cell and Environment, 2018, 41, 2504-2514.	2.8	70
1135	CARK1 mediates ABA signaling by phosphorylation of ABA receptors. Cell Discovery, 2018, 4, 30.	3.1	50
1136	Quantitative phosphoproteomics of lectin receptorâ€ike kinase VI.4 dependent abscisic acid response in Arabidopsis thaliana. Physiologia Plantarum, 2019, 165, 728-745.	2.6	10
1137	Role of the Ubiquitin Proteasome System in Plant Response to Abiotic Stress. International Review of Cell and Molecular Biology, 2019, 343, 65-110.	1.6	86
1138	<scp>ABRE</scp> â€ <scp>BINDING FACTORS</scp> play a role in the feedback regulation of <scp>ABA</scp> signaling by mediating rapid <scp>ABA</scp> induction of <scp>ABA</scp> coâ€receptor genes. New Phytologist, 2019, 221, 341-355.	3.5	151
1139	Abiotic stress modulates root patterning via ABA-regulated <i>microRNA</i> expression in the endodermis initials. Development (Cambridge), 2019, 146, .	1.2	38
1140	At <scp>ERF</scp> #111/ <scp>ABR</scp> 1 is a transcriptional activator involved in the wounding response. Plant Journal, 2019, 100, 969-990.	2.8	27
1141	The Roles of GmERF135 in Improving Salt Tolerance and Decreasing ABA Sensitivity in Soybean. Frontiers in Plant Science, 2019, 10, 940.	1.7	28
1142	Rebuilding core abscisic acid signaling pathways of <i>Arabidopsis</i> in yeast. EMBO Journal, 2019, 38, e101859.	3.5	25
1143	Genomic analysis of the core components of ABA signaling reveals their possible role in abiotic stress response in cassava. Environmental and Experimental Botany, 2019, 167, 103855.	2.0	11
1144	Comparative Phosphoproteomic Analysis Reveals a Decay of ABA Signaling in Barley Embryos during After-Ripening. Plant and Cell Physiology, 2019, 60, 2758-2768.	1.5	14
1145	The ABA receptor-like gene VyPYL9 from drought-resistance wild grapevine confers drought tolerance and ABA hypersensitivity in Arabidopsis. Plant Cell, Tissue and Organ Culture, 2019, 138, 543-558.	1.2	13
1146	Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis. BMC Genomics, 2019, 20, 624.	1.2	82

#	Article	IF	CITATIONS
1147	The flip side of phosphoâ€signalling: Regulation of protein dephosphorylation and the protein phosphatase 2Cs. Plant, Cell and Environment, 2019, 42, 2913-2930.	2.8	42
1148	Genome-wide identification and characterization of ABA receptor PYL/RCAR gene family reveals evolution and roles in drought stress in Nicotiana tabacum. BMC Genomics, 2019, 20, 575.	1.2	36
1149	Transcriptional regulation of abscisic acid biosynthesis and signal transduction, and anthocyanin biosynthesis in †Bluecrop' highbush blueberry fruit during ripening. PLoS ONE, 2019, 14, e0220015.	1.1	24
1150	De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress. BMC Plant Biology, 2019, 19, 321.	1.6	42
1153	Nitric oxide molecular targets: reprogramming plant development upon stress. Journal of Experimental Botany, 2019, 70, 4441-4460.	2.4	78
1154	Cell death regulation but not abscisic acid signaling is required for enhanced immunity to Botrytis in Arabidopsis cuticle-permeable mutants. Journal of Experimental Botany, 2019, 70, 5971-5984.	2.4	38
1155	The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15725-15734.	3.3	56
1156	Comparative transcriptome analysis of the regulation of ABA signaling genes in different rootstock grafted tomato seedlings under drought stress. Environmental and Experimental Botany, 2019, 166, 103814.	2.0	38
1157	Molecular evolution and lineage-specific expansion of the PP2C family in Zea mays. Planta, 2019, 250, 1521-1538.	1.6	51
1158	Role of calreticulin in biotic and abiotic stress signalling and tolerance mechanisms in plants. Gene, 2019, 714, 144004.	1.0	33
1159	<scp>GSK</scp> 3â€like kinase <scp>BIN</scp> 2 phosphorylates <scp>RD</scp> 26 to potentiate drought signaling in <i>Arabidopsis</i> Plant Journal, 2019, 100, 923-937.	2.8	87
1160	Transcriptome profiling of Gerbera hybrida reveals that stem bending is caused by water stress and regulation of abscisic acid. BMC Genomics, 2019, 20, 600.	1.2	14
1161	PYR/PYL/RCAR ABA receptors. Advances in Botanical Research, 2019, , 51-82.	0.5	23
1162	Abscisic acid metabolism and transport. Advances in Botanical Research, 2019, 92, 1-49.	0.5	23
1163	Genome-Wide Identification and Gene Expression Analysis of ABA Receptor Family Genes in Brassica juncea var. tumida. Genes, 2019, 10, 470.	1.0	7
1164	Somatic Embryogenesis in Wheat and Barley Calli in vitro Is Determined by the Level of Indoleacetic and Abscisic Acids. Russian Journal of Developmental Biology, 2019, 50, 124-135.	0.1	11
1165	The fungal sesquiterpenoid pyrenophoric acid B uses the plant ABA biosynthetic pathway to inhibit seed germination. Journal of Experimental Botany, 2019, 70, 5487-5494.	2.4	7
1166	Discovery of Interacting Proteins of ABA Receptor PYL5 via Covalent Chemical Capture. ACS Chemical Biology, 2019, 14, 2557-2563.	1.6	3

#	Article	IF	CITATIONS
1167	AtPR5K2, a PR5-Like Receptor Kinase, Modulates Plant Responses to Drought Stress by Phosphorylating Protein Phosphatase 2Cs. Frontiers in Plant Science, 2019, 10, 1146.	1.7	31
1168	The C-Terminal Domains SnRK2 Box and ABA Box Have a Role in Sugarcane SnRK2s Auto-Activation and Activity. Frontiers in Plant Science, 2019, 10, 1105.	1.7	5
1169	Protein partners of plant ubiquitin-specific proteases (UBPs). Plant Physiology and Biochemistry, 2019, 145, 227-236.	2.8	13
1170	Overexpressing the Myrosinase Gene TGG1 Enhances Stomatal Defense Against Pseudomonas syringae and Delays Flowering in Arabidopsis. Frontiers in Plant Science, 2019, 10, 1230.	1.7	18
1171	Rheostatic Control of ABA Signaling through HOS15-Mediated OST1 Degradation. Molecular Plant, 2019, 12, 1447-1462.	3.9	58
1173	CEPR2 phosphorylates and accelerates the degradation of PYR/PYLs in Arabidopsis. Journal of Experimental Botany, 2019, 70, 5457-5469.	2.4	65
1174	Abscisic Acid Receptors Modulate Metabolite Levels and Phenotype in Arabidopsis Under Normal Growing Conditions. Metabolites, 2019, 9, 249.	1.3	6
1175	Melatonin-Induced Transcriptome Variation of Rapeseed Seedlings under Salt Stress. International Journal of Molecular Sciences, 2019, 20, 5355.	1.8	42
1176	Toward Development of Fluorescence-Quenching-Based Biosensors for Drought Stress in Plants. Analytical Chemistry, 2019, 91, 15644-15651.	3.2	7
1178	ABA signaling in guard cells. Advances in Botanical Research, 2019, , 115-170.	0.5	7
1179	ABA responses during seed development and germination. Advances in Botanical Research, 2019, 92, 171-217.	0.5	17
1180	Evolution of ABA signaling pathways. Advances in Botanical Research, 2019, 92, 281-313.	0.5	7
1181	Interactions between abscisic acid and other hormones. Advances in Botanical Research, 2019, 92, 255-280.	0.5	9
1182	Abscisic acid as a gateway for the crops of tomorrow. Advances in Botanical Research, 2019, 92, 341-370.	0.5	4
1184	RPK1 and BAK1 sequentially form complexes with OST1 to regulate ABA-induced stomatal closure. Journal of Experimental Botany, 2019, 71, 1491-1502.	2.4	11
1185	Functional analysis of SINCED1 in pistil development and fruit set in tomato (Solanum lycopersicum) Tj ETQq $1\ 1$	0.784314 1.6	rgBT /Overlo
1186	Identifying new lead structures to enhance tolerance towards drought stress via high-throughput screening giving crops a quantum of solace. Bioorganic and Medicinal Chemistry, 2019, 27, 115142.	1.4	11
1187	Understanding the language of drugged plants. Nature Chemical Biology, 2019, 15, 1025-1028.	3.9	9

#	Article	IF	CITATIONS
1188	Wheat F-box Protein TaFBA1 Positively Regulates Plant Drought Tolerance but Negatively Regulates Stomatal Closure. Frontiers in Plant Science, 2019, 10, 1242.	1.7	41
1189	Transcriptome analysis in different chieh-qua cultivars provides new insights into drought-stress response. Plant Biotechnology Reports, 2019, 13, 663-675.	0.9	7
1190	Role of guard-cell ABA in determining steady-state stomatal aperture and prompt vapor-pressure-deficit response. Plant Science, 2019, 281, 31-40.	1.7	25
1191	Dynamic control of plant water use using designed ABA receptor agonists. Science, 2019, 366, .	6.0	107
1192	Plant hydraulics and agrichemical genomics. Science, 2019, 366, 416-417.	6.0	1
1193	Physiological responses and transcriptome analysis of the Kochia prostrata (L.) Schrad. to seedling drought stress. AIMS Genetics, 2019, 06, 017-035.	1.9	3
1194	VqbZIP1 isolated from Chinese wild Vitis quinquangularis is involved in the ABA signaling pathway and regulates stilbene synthesis. Plant Science, 2019, 287, 110202.	1.7	16
1195	The RING finger E3 ligases PIR1 and PIR2 mediate PP2CA degradation to enhance abscisic acid response in Arabidopsis. Plant Journal, 2019, 100, 473-486.	2.8	29
1196	The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nature Plants, 2019, 5, 1002-1011.	4.7	115
1197	PYL9 is involved in the regulation of ABA signaling during tomato fruit ripening. Journal of Experimental Botany, 2019, 70, 6305-6319.	2.4	53
1198	Abscisic Acid Derivatives with Different Alkyl Chain Lengths Activate Distinct Abscisic Acid Receptor Subfamilies. ACS Chemical Biology, 2019, 14, 1964-1971.	1.6	13
1199	Responses of PYR/PYL/RCAR ABA Receptors to Contrasting stresses, Heat and Cold in Arabidopsis. Plant Signaling and Behavior, 2019, 14, 1670596.	1.2	28
1200	3,4-Dibromo-7-Azaindole Modulates Arabidopsis Circadian Clock by Inhibiting Casein Kinase 1 Activity. Plant and Cell Physiology, 2019, 60, 2360-2368.	1.5	17
1201	TaZFP1, a C2H2 type-ZFP gene of T. aestivum, mediates salt stress tolerance of plants by modulating diverse stress-defensive physiological processes. Plant Physiology and Biochemistry, 2019, 136, 127-142.	2.8	25
1202	Increased water use efficiency and water productivity of arabidopsis by abscisic acid receptors from Populus canescens. Annals of Botany, 2019, 124, 581-589.	1.4	15
1203	Chemical genetic identification of a lectin receptor kinase that transduces immune responses and interferes with abscisic acid signaling. Plant Journal, 2019, 98, 492-510.	2.8	19
1204	SnRK2 protein kinases represent an ancient system in plants for adaptation to a terrestrial environment. Communications Biology, 2019, 2, 30.	2.0	76
1205	Dewetting Controls Plant Hormone Perception and Initiation of Drought Resistance Signaling. Structure, 2019, 27, 692-702.e3.	1.6	44

#	Article	IF	Citations
1206	Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 2019, 8, 34.	1.6	901
1207	Brassinosteroids, the Sixth Class of Phytohormones: A Molecular View from the Discovery to Hormonal Interactions in Plant Development and Stress Adaptation. International Journal of Molecular Sciences, 2019, 20, 331.	1.8	131
1208	Comparative Phosphoproteomic Analysis of Barley Embryos with Different Dormancy during Imbibition. International Journal of Molecular Sciences, 2019, 20, 451.	1.8	11
1209	Reversible Histone H2B Monoubiquitination Fine-Tunes Abscisic Acid Signaling and Drought Response in Rice. Molecular Plant, 2019, 12, 263-277.	3.9	53
1210	A microwave-assisted approach to N-(2-nitrophenyl)benzenesulfonamides that enhanced peroxidase activity in response to excess cadmium. Tetrahedron Letters, 2019, 60, 626-629.	0.7	5
1211	TaSnRK2.9, a Sucrose Non-fermenting 1-Related Protein Kinase Gene, Positively Regulates Plant Response to Drought and Salt Stress in Transgenic Tobacco. Frontiers in Plant Science, 2018, 9, 2003.	1.7	39
1212	Transcriptional regulatory activity of the cereal grain bZip protein TaABF1 can be either stimulated or inhibited by phosphorylation. Seed Science Research, 2019, 29, 21-28.	0.8	0
1213	Genome-Wide Identification and Characterization of the AREB/ABF/ABI5 Subfamily Members from Solanum tuberosum. International Journal of Molecular Sciences, 2019, 20, 311.	1.8	23
1214	Transcriptome analysis reveals a complex array of differentially expressed genes accompanying a sourceâ€toâ€sink change in phytoplasmaâ€infected sweet cherry leaves. Annals of Applied Biology, 2019, 175, 69-82.	1.3	4
1215	Genome-Wide Identification and Homoeologous Expression Analysis of PP2C Genes in Wheat (Triticum) Tj ETQq1	1 0.78431 1.1	l4 rgBT /Ov
1216	Photoaffinity palladium reagents for capture of protein–protein interactions. Organic and Biomolecular Chemistry, 2019, 17, 6369-6373.	1.5	4
1217	Calcium signals in guard cells enhance the efficiency by which abscisic acid triggers stomatal closure. New Phytologist, 2019, 224, 177-187.	3.5	62
1218	Chemistry and chemical biology of ABA. Advances in Botanical Research, 2019, 92, 315-339.	0.5	4
1219	LOWER TEMPERATURE 1 Enhances ABA Responses and Plant Drought Tolerance by Modulating the Stability and Localization of C2-Domain ABA-Related Proteins in Arabidopsis. Molecular Plant, 2019, 12, 1243-1258.	3.9	28
1220	Revisiting the Basal Role of ABA – Roles Outside of Stress. Trends in Plant Science, 2019, 24, 625-635.	4.3	189
1221	Emerging strategies for the identification of protein–metabolite interactions. Journal of Experimental Botany, 2019, 70, 4605-4618.	2.4	23
1222	ABA signaling rather than ABA metabolism is involved in trehalose-induced drought tolerance in tomato plants. Planta, 2019, 250, 643-655.	1.6	49
1223	The MdWRKY31 transcription factor binds to the MdRAV1 promoter to mediate ABA sensitivity. Horticulture Research, 2019, 6, 66.	2.9	42

#	Article	IF	Citations
1224	CHITINASE LIKE1 Regulates Root Development of Dark-Grown Seedlings by Modulating Ethylene Biosynthesis in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 600.	1.7	14
1225	Recent Advances in Hormonal Regulation and Cross-Talk during Non-Climacteric Fruit Development and Ripening. Horticulturae, 2019, 5, 45.	1.2	69
1226	Young seedlings adapt to stress by retaining starch and retarding growth through ABA-Dependent and -independent pathways in Arabidopsis. Biochemical and Biophysical Research Communications, 2019, 515, 699-705.	1.0	20
1227	Chromatin remodeling for the transcription of type 2C protein phosphatase genes in response to salt stress. Plant Physiology and Biochemistry, 2019, 141, 325-331.	2.8	27
1228	Transcript and metabolite changes during the early phase of abscisic acid-mediated induction of crassulacean acid metabolism in Talinum triangulare. Journal of Experimental Botany, 2019, 70, 6581-6596.	2.4	19
1229	Phylogenetic, Molecular, and Functional Characterization of PpyCBF Proteins in Asian Pears (Pyrus) Tj ETQq1 10.	.784314 r 1.8	gBT _g /Overlo
1230	Abiotic Stress Signaling in Wheat Crop. , 2019, , 261-282.		4
1231	GNI-A1 mediates trade-off between grain number and grain weight in tetraploid wheat. Theoretical and Applied Genetics, 2019, 132, 2353-2365.	1.8	43
1232	The Transcription Factor INDUCER OF CBF EXPRESSION1 Interacts with ABSCISIC ACID INSENSITIVE5 and DELLA Proteins to Fine-Tune Abscisic Acid Signaling during Seed Germination in Arabidopsis. Plant Cell, 2019, 31, 1520-1538.	3.1	88
1233	Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signaling and Behavior, 2019, 14, 1613131.	1.2	142
1234	Casein kinase 1 family regulates PRR5 and TOC1 in the Arabidopsis circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11528-11536.	3.3	77
1235	Exploring the adaptive mechanism of Passiflora edulis in karst areas via an integrative analysis of nutrient elements and transcriptional profiles. BMC Plant Biology, 2019, 19, 185.	1.6	7
1236	Profiling of Seed Proteome in Pea (Pisum sativum L.) Lines Characterized with High and Low Responsivity to Combined Inoculation with Nodule Bacteria and Arbuscular Mycorrhizal Fungi. Molecules, 2019, 24, 1603.	1.7	30
1237	Exploring Oxidative Stress in Plants: Proteomic and Genomic Approaches. , 2019, , 155-187.		0
1238	Soil Salinity Limits Plant Shade Avoidance. Current Biology, 2019, 29, 1669-1676.e4.	1.8	52
1239	Arabidopsis translation initiation factors <scp>elF</scp> iso4G1/2 link repression of <scp>mRNA</scp> capâ€binding complex <scp>elF</scp> iso4F assembly with <scp>RNA</scp> â€binding protein <scp>SOAR</scp> 1â€mediated <scp>ABA</scp> signaling. New Phytologist, 2019, 223, 1388-1406.	3.5	19
1240	Abscisic acid signalling mediates biomass tradeâ€off and allocation in poplar. New Phytologist, 2019, 223, 1192-1203.	3.5	32
1241	ABA signaling components in Phelipanche aegyptiaca. Scientific Reports, 2019, 9, 6476.	1.6	3

#	Article	IF	CITATIONS
1242	Brachypodium histone deacetylase BdHD1 positively regulates ABA and drought stress responses. Plant Science, 2019, 283, 355-365.	1.7	23
1243	Salinity and ABA Seed Responses in Pepper: Expression and Interaction of ABA Core Signaling Components. Frontiers in Plant Science, 2019, 10, 304.	1.7	20
1244	Precise control of ABA signaling through post-translational protein modification. Plant Growth Regulation, 2019, 88, 99-111.	1.8	18
1245	Comparative transcriptome analysis provides insights into the distinct germination in sheepgrass (Leymus chinensis) during seed development. Plant Physiology and Biochemistry, 2019, 139, 446-458.	2.8	14
1246	Re-localization of hormone effectors is associated with dormancy alleviation by temperature and after-ripening in sunflower seeds. Scientific Reports, 2019, 9, 4861.	1.6	14
1247	Abscisic Acid Receptors and Coreceptors Modulate Plant Water Use Efficiency and Water Productivity. Plant Physiology, 2019, 180, 1066-1080.	2.3	48
1248	Role of the Ring Methyl Groups in 2′,3′-Benzoabscisic Acid Analogues. Journal of Agricultural and Food Chemistry, 2019, 67, 4995-5007.	2.4	6
1249	Mechanism of salt-inhibited early seed germination analysed by transcriptomic sequencing. Seed Science Research, 2019, 29, 73-84.	0.8	5
1250	Mesophyll Abscisic Acid Restrains Early Growth and Flowering But Does Not Directly Suppress Photosynthesis. Plant Physiology, 2019, 180, 910-925.	2.3	29
1251	Mal de R $ ilde{A}$ o Cuarto virus infection causes hormone imbalance and sugar accumulation in wheat leaves. BMC Plant Biology, 2019, 19, 112.	1.6	18
1252	Abscisic acidâ€dependent histone demethylation during postgermination growth arrest in ⟨i>Arabidopsis⟨ i>. Plant, Cell and Environment, 2019, 42, 2198-2214.	2.8	46
1253	Identification and characterization of core abscisic acid (ABA) signaling components and their gene expression profile in response to abiotic stresses in Setaria viridis. Scientific Reports, 2019, 9, 4028.	1.6	30
1254	CARK6 is involved in abscisic acid to regulate stress responses in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2019, 513, 460-464.	1.0	6
1255	Engineering Signaling Molecules to Improve Abiotic Stress Tolerance in Crop Plants. , 2019, , 43-62.		0
1256	Abscisic Acid, a Principal Regulator of Plant Abiotic Stress Responses. , 2019, , 341-353.		4
1257	Role and Regulation of Osmolytes and ABA Interaction in Salt and Drought Stress Tolerance. , 2019, , 417-436.		19
1258	Histone demethylases control root elongation in response to stress-signaling hormone abscisic acid. Plant Signaling and Behavior, 2019, 14, 1604019.	1.2	19
1259	Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. Theoretical and Applied Genetics, 2019, 132, 1607-1638.	1.8	89

#	Article	IF	CITATIONS
1260	Structural determinants for pyrabactin recognition in ABA receptors in Oryza sativa. Plant Molecular Biology, 2019, 100, 319-333.	2.0	6
1261	Heterologous overexpression of the Arabidopsis SnRK2.8 gene enhances drought and salt tolerance in Populus × euramericana cv †Nanlin895'. Plant Biotechnology Reports, 2019, 13, 245-261.	0.9	14
1262	Populus trichocarpa clade A PP2C protein phosphatases: their stress-induced expression patterns, interactions in core abscisic acid signaling, and potential for regulation of growth and development. Plant Molecular Biology, 2019, 100, 303-317.	2.0	17
1263	Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nature Plants, 2019, 5, 153-159.	4.7	203
1264	Optimized smallâ€molecule pullâ€downs define <scp>MLBP</scp> 1 as an acylâ€lipidâ€binding protein. Plant Journal, 2019, 98, 928-941.	2.8	5
1265	<scp>ABA</scp> inhibits myristoylation and induces shuttling of the <scp>RGLG</scp> 1 E3 ligase to promote nuclear degradation of <scp>PP</scp> 2 <scp>CA</scp> . Plant Journal, 2019, 98, 813-825.	2.8	59
1266	Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress. BMC Plant Biology, 2019, 19, 66.	1.6	98
1267	A Nckâ€associated protein 1â€like protein affects drought sensitivity by its involvement in leaf epidermal development and stomatal closure in rice. Plant Journal, 2019, 98, 884-897.	2.8	19
1268	The Complex Fine-Tuning of K+ Fluxes in Plants in Relation to Osmotic and Ionic Abiotic Stresses. International Journal of Molecular Sciences, 2019, 20, 715.	1.8	43
1269	A novel ABA functional analogue B2 enhances drought tolerance in wheat. Scientific Reports, 2019, 9, 2887.	1.6	21
1270	Comparative Transcriptome Analysis of Tree Peony Petals on Two Different Rootstocks. Journal of Plant Growth Regulation, 2019, 38, 1287-1299.	2.8	2
1271	Acquiring Control: The Evolution of Stomatal Signalling Pathways. Trends in Plant Science, 2019, 24, 342-351.	4.3	56
1272	Transcriptome sequencing of Antarctic moss under salt stress emphasizes the important roles of the ROS-scavenging system. Gene, 2019, 696, 122-134.	1.0	50
1273	Fluorescence lifetime based distance measurement illustrates conformation changes of PYL10-CL2 upon ABA binding in solution state. Chinese Chemical Letters, 2019, 30, 1067-1070.	4.8	10
1274	A ligand-independent origin of abscisic acid perception. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24892-24899.	3.3	84
1275	Overexpression of ABA Receptor PYL10 Gene Confers Drought and Cold Tolerance to Indica Rice. Frontiers in Plant Science, 2019, 10, 1488.	1.7	55
1276	Genetic strategies for improving crop yields. Nature, 2019, 575, 109-118.	13.7	799
1277	Integration of Abscisic Acid Signaling with Other Signaling Pathways in Plant Stress Responses and Development. Plants, 2019, 8, 592.	1.6	79

#	Article	IF	CITATIONS
1278	ZmOST1 mediates abscisic acid regulation of guard cell ion channels and drought stress responses. Journal of Integrative Plant Biology, 2019, 61, 478-491.	4.1	43
1279	Synthesis of All Stereoisomers of RK460 and Evaluation of Their Activity and Selectivity as Abscisic Acid Receptor Antagonists. Chemistry - A European Journal, 2019, 25, 3496-3500.	1.7	4
1280	Modulation of ABA responses by the protein kinase WNK8. FEBS Letters, 2019, 593, 339-351.	1.3	10
1281	Electrophysiological Identification and Activity Analyses of Plasma Membrane K+ Channels in Maize Guard Cells. Plant and Cell Physiology, 2019, 60, 765-777.	1.5	6
1282	New insight into the molecular basis of cadmium stress responses of wild paper mulberry plant by transcriptome analysis. Ecotoxicology and Environmental Safety, 2019, 171, 301-312.	2.9	69
1283	Seed germination and dormancy: The classic story, new puzzles, and evolution. Journal of Integrative Plant Biology, 2019, 61, 541-563.	4.1	109
1284	The RCC 1 family protein SAB 1 negatively regulates ABI 5 through multidimensional mechanisms during postgermination in Arabidopsis. New Phytologist, 2019, 222, 907-922.	3.5	26
1285	<pre><scp>EGR</scp> 2 phosphatase regulates <scp>OST</scp> 1 kinase activity and freezing tolerance in <i>Arabidopsis</i>. EMBO Journal, 2019, 38, .</pre>	3.5	100
1286	Insights into ABA-mediated regulation of guard cell primary metabolism revealed by systems biology approaches. Progress in Biophysics and Molecular Biology, 2019, 146, 37-49.	1.4	26
1287	Archetypal Roles of an Abscisic Acid Receptor in Drought and Sugar Responses in Liverworts. Plant Physiology, 2019, 179, 317-328.	2.3	46
1288	Pol III-Dependent Cabbage (i>BoNR8 (i>Long ncRNA Affects Seed Germination and Growth in Arabidopsis. Plant and Cell Physiology, 2019, 60, 421-435.	1.5	19
1289	CARK1 phosphorylates subfamily III members of ABA receptors. Journal of Experimental Botany, 2019, 70, 519-528.	2.4	27
1290	Abiotic Stresses Intervene with ABA Signaling to Induce Destructive Metabolic Pathways Leading to Death: Premature Leaf Senescence in Plants. International Journal of Molecular Sciences, 2019, 20, 256.	1.8	71
1291	Overexpression of MhYTP2 enhances apple water-use efficiency by activating ABA and ethylene signaling. Environmental and Experimental Botany, 2019, 157, 260-268.	2.0	19
1292	Expression profiling of ABA and GA signaling cascades regulating bud dormancy in grape. Scientia Horticulturae, 2019, 246, 44-50.	1.7	7
1293	Leaf epidermis transcriptome reveals drought-Induced hormonal signaling for stomatal regulation in wild barley. Plant Growth Regulation, 2019, 87, 39-54.	1.8	29
1294	Abscisic Acid Inhibits Rice Protein Phosphatase PP45 via H ₂ O ₂ and Relieves Repression of the Ca ²⁺ /CaM-Dependent Protein Kinase DMI3. Plant Cell, 2019, 31, 128-152.	3.1	64
1295	Overexpression of the RNA binding protein MhYTP1 in transgenic apple enhances drought tolerance and WUE by improving ABA level under drought condition. Plant Science, 2019, 280, 397-407.	1.7	39

#	Article	IF	Citations
1296	GhNAC83 inhibits corm dormancy release by regulating ABA signaling and cytokinin biosynthesis in Gladiolus hybridus. Journal of Experimental Botany, 2019, 70, 1221-1237.	2.4	18
1298	Dissecting plant hormone signaling with synthetic molecules: perspective from the chemists. Current Opinion in Plant Biology, 2019, 47, 32-37.	3.5	9
1299	Reactive Oxygen Species, Photosynthesis, and Environment in the Regulation of Stomata. Antioxidants and Redox Signaling, 2019, 30, 1220-1237.	2.5	38
1300	The Genetic Basis of Plant Functional Traits and the Evolution of Plant-Environment Interactions. International Journal of Plant Sciences, 2020, 181, 56-74.	0.6	5
1301	SnRK2 Protein Kinases and mRNA Decapping Machinery Control Root Development and Response to Salt. Plant Physiology, 2020, 182, 361-377.	2.3	62
1302	Overexpression of PtHMGR enhances drought and salt tolerance of poplar. Annals of Botany, 2020, 125, 785-803.	1.4	14
1303	Arabidopsis thaliana SEED DORMANCY 4-LIKE regulates dormancy and germination by mediating the gibberellin pathway. Journal of Experimental Botany, 2020, 71, 919-933.	2.4	26
1304	Form, development and function of grass stomata. Plant Journal, 2020, 101, 780-799.	2.8	143
1305	A yeast surface display platform for plant hormone receptors: Toward directed evolution of new biosensors. AICHE Journal, 2020, 66, e16767.	1.8	6
1306	Tools of the Ethylene Trade: A Chemical Kit to Influence Ethylene Responses in Plants and Its Use in Agriculture. Small Methods, 2020, 4, 1900267.	4.6	15
1307	Droughtâ€inducible changes in the histone modification H3K9ac are associated with droughtâ€responsive gene expression in Brachypodium distachyon. Plant Biology, 2020, 22, 433-440.	1.8	8
1308	Element content and expression of genes of interest in guard cells are connected to spatiotemporal variations in stomatal conductance. Plant, Cell and Environment, 2020, 43, 87-102.	2.8	7
1309	Genome-wide Target Mapping Shows Histone Deacetylase Complex1 Regulates Cell Proliferation in Cucumber Fruit. Plant Physiology, 2020, 182, 167-184.	2.3	47
1310	In silico study revealed major conserve architectures and novel features of pyrabactin binding to Oryza sativa ABA receptors compare to the Arabidopsis thaliana. Journal of Biomolecular Structure and Dynamics, 2020, 38, 3211-3224.	2.0	2
1311	Overview of Sustainable Plant Growth and Differentiation and the Role of Hormones in Controlling Growth and Development of Plants Under Various Stresses. Recent Patents on Food, Nutrition & Agriculture, 2020, 11, 105-114.	0.5	13
1312	ABA signaling is negatively regulated by GbWRKY1 through JAZ1 and ABI1 to affect salt and drought tolerance. Plant Cell Reports, 2020, 39, 181-194.	2.8	58
1313	Agonist, antagonist and signaling modulators of ABA receptor for agronomic and post-harvest management. Plant Physiology and Biochemistry, 2020, 148, 10-25.	2.8	26
1314	MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nature Communications, 2020, 11, 12.	5.8	202

#	Article	IF	CITATIONS
1315	Genome-wide analysis of <i>PYL-PP2C-SnRK2s</i> family in <i>Camellia sinensis</i> Bioengineered, 2020, 11, 103-115.	1.4	22
1316	Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 2020, 62, 25-54.	4.1	771
1317	Abscisic acidâ€triggered guard cell <scp>l</scp> â€cysteine <i>desulfhydrase</i> function and in situ hydrogen sulfide production contributes to heme oxygenaseâ€modulated stomatal closure. Plant, Cell and Environment, 2020, 43, 624-636.	2.8	57
1318	Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnology Advances, 2020, 40, 107503.	6.0	144
1319	The Sucrose Non-Fermenting 1-Related Protein Kinase 2 (SnRK2) Genes Are Multifaceted Players in Plant Growth, Development and Response to Environmental Stimuli. Plant and Cell Physiology, 2020, 61, 225-242.	1.5	25
1320	Root Growth Adaptation is Mediated by PYLs ABA Receptorâ€PP2A Protein Phosphatase Complex. Advanced Science, 2020, 7, 1901455.	5.6	32
1321	RBR-Type E3 Ligases and the Ubiquitin-Conjugating Enzyme UBC26 Regulate Abscisic Acid Receptor Levels and Signaling. Plant Physiology, 2020, 182, 1723-1742.	2.3	33
1322	The Arabidopsis kinase-associated protein phosphatase KAPP, interacting with protein kinases SnRK2.2/2.3/2.6, negatively regulates abscisic acid signaling. Plant Molecular Biology, 2020, 102, 199-212.	2.0	14
1323	Two Chloroplast Proteins Negatively Regulate Plant Drought Resistance Through Separate Pathways. Plant Physiology, 2020, 182, 1007-1021.	2.3	32
1324	Genome-wide phylogenetic and structural analysis reveals the molecular evolution of the ABA receptor gene family. Journal of Experimental Botany, 2020, 71, 1322-1336.	2.4	19
1325	Transcriptome Response to Drought, Rehydration and Re-Dehydration in Potato. International Journal of Molecular Sciences, 2020, 21, 159.	1.8	61
1326	Genome-wide identification and characterization of ABA receptor PYL gene family in rice. BMC Genomics, 2020, 21, 676.	1.2	42
1327	The UBC27–AIRP3 ubiquitination complex modulates ABA signaling by promoting the degradation of ABI1 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27694-27702.	3.3	36
1328	Correlation Analysis of Expression Profile and Quantitative iTRAQ-LC-MS/MS Proteomics Reveals Resistance Mechanism Against TuMV in Chinese Cabbage (Brassica rapa ssp. pekinensis). Frontiers in Genetics, 2020, 11, 963.	1.1	10
1329	Tetrahydroquinolinyl phosphinamidates and phosphonamidates enhancing tolerance towards drought stress in crops via interaction with ABA receptor proteins. Bioorganic and Medicinal Chemistry, 2020, 28, 115725.	1.4	8
1330	RNA-seq reveals the salt tolerance of Ipomoea pes-caprae, a wild relative of sweet potato. Journal of Plant Physiology, 2020, 255, 153276.	1.6	17
1331	How does nitrate regulate plant senescence?. Plant Physiology and Biochemistry, 2020, 157, 60-69.	2.8	36
1332	A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth. Nature Plants, 2020, 6, 1345-1353.	4.7	122

#	Article	IF	CITATIONS
1333	BONZAI Proteins Control Global Osmotic Stress Responses in Plants. Current Biology, 2020, 30, 4815-4825.e4.	1.8	39
1334	Functional polymorphism among members of abscisic acid receptor family (ZmPYL) in maize. Journal of Integrative Agriculture, 2020, 19, 2165-2176.	1.7	4
1335	Improved reproductive growth of euhalophyte Suaeda salsa under salinity is correlated with altered phytohormone biosynthesis and signal transduction. Functional Plant Biology, 2020, 47, 170.	1.1	35
1336	Transcriptional and physiological analyses of reduced density in apple provide insight into the regulation involved in photosynthesis. PLoS ONE, 2020, 15, e0239737.	1.1	4
1337	Proteomics and phosphoproteomics revealed molecular networks of stomatal immune responses. Planta, 2020, 252, 66.	1.6	17
1338	Balancing growth and adaptation to stress: Crosstalk between brassinosteroid and abscisic acid signaling. Plant, Cell and Environment, 2020, 43, 2325-2335.	2.8	43
1339	Evolution of Abscisic Acid Signaling for Stress Responses to Toxic Metals and Metalloids. Frontiers in Plant Science, 2020, 11, 909.	1.7	68
1340	AIW1 and AIW2, two ABA-induced WD40 repeat-containing transcription repressors function redundantly to regulate ABA and salt responses in Arabidopsis. Journal of Plant Interactions, 2020, 15, 196-206.	1.0	8
1341	The Wild Rice Locus CTS-12 Mediates ABA-Dependent Stomatal Opening Modulation to Limit Water Loss Under Severe Chilling Stress. Frontiers in Plant Science, 2020, 11, 575699.	1.7	7
1342	Root Adaptation via Common Genetic Factors Conditioning Tolerance to Multiple Stresses for Crops Cultivated on Acidic Tropical Soils. Frontiers in Plant Science, 2020, 11, 565339.	1.7	19
1343	Thriving under Stress: How Plants Balance Growth and the Stress Response. Developmental Cell, 2020, 55, 529-543.	3.1	283
1344	Characterization of abscisic acid (ABA) receptors and analysis of genes that regulate rutin biosynthesis in response to ABA in Fagopyrum tataricum. Plant Physiology and Biochemistry, 2020, 157, 432-440.	2.8	8
1345	Evolution of environmental stress responses in plants. Plant, Cell and Environment, 2020, 43, 2827-2831.	2.8	11
1346	Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants. Nature Communications, 2020, 11, 6184.	5.8	59
1347	Chemical Manipulation of Abscisic Acid Signaling: A New Approach to Abiotic and Biotic Stress Management in Agriculture. Advanced Science, 2020, 7, 2001265.	5.6	67
1348	Genome-wide identification of abscisic acid (ABA) receptor pyrabactin resistance 1-like protein (PYL) family members and expression analysis of PYL genes in response to different concentrations of ABA stress in Glycyrrhiza uralensis. Chinese Journal of Natural Medicines, 2020, 18, 606-611.	0.7	7
1349	Mediator subunit MED25: at the nexus of jasmonate signaling. Current Opinion in Plant Biology, 2020, 57, 78-86.	3 . 5	39
1350	AcoMYB4, an Ananas comosus L. MYB Transcription Factor, Functions in Osmotic Stress through Negative Regulation of ABA Signaling. International Journal of Molecular Sciences, 2020, 21, 5727.	1.8	27

#	Article	IF	CITATIONS
1351	APA <i>n</i> , a Class of ABA Receptor Agonism/Antagonism Switching Probes. Journal of Agricultural and Food Chemistry, 2020, 68, 8524-8534.	2.4	7
1352	Abiotic stress signalling in extremophile land plants. Journal of Experimental Botany, 2020, 71, 5771-5785.	2.4	14
1353	The Role of ROS Homeostasis in ABA-Induced Guard Cell Signaling. Frontiers in Plant Science, 2020, 11, 968.	1.7	94
1354	Evolution of Abscisic Acid Signaling Module and Its Perception. Frontiers in Plant Science, 2020, 11, 934.	1.7	40
1355	SIEAD1, an EAR motif-containing ABA down-regulated novel transcription repressor regulates ABA response in tomato. GM Crops and Food, 2020, 11, 275-289.	2.0	13
1356	Natural variation analysis of perennial ryegrass in response to abiotic stress highlights LpHSFC1b as a positive regulator of heat stress. Environmental and Experimental Botany, 2020, 179, 104192.	2.0	17
1357	ABA-Dependent and ABA-Independent Functions of RCAR5/PYL11 in Response to Cold Stress. Frontiers in Plant Science, 2020, 11, 587620.	1.7	14
1358	Identification, Evolutionary and Expression Analysis of PYL-PP2C-SnRK2s Gene Families in Soybean. Plants, 2020, 9, 1356.	1.6	22
1359	GmNFYA13 Improves Salt and Drought Tolerance in Transgenic Soybean Plants. Frontiers in Plant Science, 2020, 11, 587244.	1.7	16
1360	Precise Editing of the OsPYL9 Gene by RNA-Guided Cas9 Nuclease Confers Enhanced Drought Tolerance and Grain Yield in Rice (Oryza sativa L.) by Regulating Circadian Rhythm and Abiotic Stress Responsive Proteins. International Journal of Molecular Sciences, 2020, 21, 7854.	1.8	66
1361	Cytosine methylations in the promoter regions of genes involved in the cellular oxidation equilibrium pathways affect rice heat tolerance. BMC Genomics, 2020, 21, 560.	1.2	5
1362	GhWRKY21 regulates ABA-mediated drought tolerance by fine-tuning the expression of GhHAB in cotton. Plant Cell Reports, 2021, 40, 2135-2150.	2.8	26
1363	The Role of ABA in Plant Immunity is Mediated through the PYR1 Receptor. International Journal of Molecular Sciences, 2020, 21, 5852.	1.8	35
1364	Genome-Wide Identification of the ABA Receptors Genes and Their Response to Abiotic Stress in Apple. Plants, 2020, 9, 1028.	1.6	12
1365	Decoding <scp>ABA</scp> and osmostress signalling in plants from an evolutionary point of view. Plant, Cell and Environment, 2020, 43, 2894-2911.	2.8	39
1366	Fine mapping of qKRN8, a QTL for maize kernel row number, and prediction of the candidate gene. Theoretical and Applied Genetics, 2020, 133, 3139-3150.	1.8	9
1367	Comparative transcriptional analysis reveled genes related to short winter-dormancy regulation in Camellia sinensis. Plant Growth Regulation, 2020, 92, 401-415.	1.8	8
1368	Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. Frontiers in Plant Science, 2020, 11, 556972.	1.7	199

#	ARTICLE	IF	CITATIONS
1369	Abscisic Acid Biosynthesis and Signaling in Plants: Key Targets to Improve Water Use Efficiency and Drought Tolerance. Applied Sciences (Switzerland), 2020, 10, 6322.	1.3	44
1370	Chemical Genetics Approach Identifies Abnormal Inflorescence Meristem 1 as a Putative Target of a Novel Sulfonamide That Protects Catalase2-Deficient Arabidopsis against Photorespiratory Stress. Cells, 2020, 9, 2026.	1.8	2
1371	Transcriptional profiling analysis of OsDT11-mediated ABA-dependent signal pathway for drought tolerance in rice. Plant Biotechnology Reports, 2020, 14, 613-626.	0.9	1
1372	Genome-wide identification and expression analysis of SnRK2 gene family in mungbean (Vigna radiata) in response to drought stress. Crop and Pasture Science, 2020, 71, 469.	0.7	14
1373	Transcriptional Regulation of Protein Phosphatase 2C Genes to Modulate Abscisic Acid Signaling. International Journal of Molecular Sciences, 2020, 21, 9517.	1.8	38
1374	Promoted ABA Hydroxylation by Capsicum annuum CYP707As Overexpression Suppresses Pollen Maturation in Nicotiana tabacum. Frontiers in Plant Science, 2020, 11, 583767.	1.7	9
1375	Abscisic Acid and Flowering Regulation: Many Targets, Different Places. International Journal of Molecular Sciences, 2020, 21, 9700.	1.8	28
1376	Isolation and characterization of maize ZmPP2C26 gene promoter in drought-response. Physiology and Molecular Biology of Plants, 2020, 26, 2189-2197.	1.4	9
1377	Distinct Preflowering Drought Tolerance Strategies of Sorghum bicolor Genotype RTx430 Revealed by Subcellular Protein Profiling. International Journal of Molecular Sciences, 2020, 21, 9706.	1.8	10
1378	Histone Demethylases Coordinate the Antagonistic Interaction Between Abscisic Acid and Brassinosteroid Signaling in Arabidopsis. Frontiers in Plant Science, 2020, 11, 596835.	1.7	9
1379	Genome-wide analysis of the AREB/ABF gene lineage in land plants and functional analysis of TaABF3 in Arabidopsis. BMC Plant Biology, 2020, 20, 558.	1.6	11
1380	Mediator Complex: A Pivotal Regulator of ABA Signaling Pathway and Abiotic Stress Response in Plants. International Journal of Molecular Sciences, 2020, 21, 7755.	1.8	25
1381	Abscisic acid-mimicking ligand AMF4 induced cold tolerance in wheat by altering the activities of key carbohydrate metabolism enzymes. Plant Physiology and Biochemistry, 2020, 157, 284-290.	2.8	9
1382	Identification and expression analysis of abscisic acid signal transduction genes during peach fruit ripening. Scientia Horticulturae, 2020, 270, 109402.	1.7	7
1383	The pepper <scp>RING</scp> â€type <scp>E3</scp> ligase, <scp>CaATIR1</scp> , positively regulates abscisic acid signalling and drought response by modulating the stability of <scp>CaATBZ1</scp> . Plant, Cell and Environment, 2020, 43, 1911-1924.	2.8	23
1384	Roles of the Brassica napus DELLA Protein BnaA6.RGA, in Modulating Drought Tolerance by Interacting With the ABA Signaling Component BnaA10.ABF2. Frontiers in Plant Science, 2020, 11, 577.	1.7	66
1385	Carbohydrate, phytohormone, and associated transcriptome changes during storage root formation in alligatorweed (<i>Alternanthera philoxeroides</i>). Weed Science, 2020, 68, 382-395.	0.8	9
1386	HOS15: A missing link that fine-tunes ABA signaling and drought tolerance in <i>Arabidopsis</i> Signaling and Behavior, 2020, 15, 1770964.	1.2	7

#	Article	IF	CITATIONS
1387	OsPP2C09, a negative regulatory factor in abscisic acid signalling, plays an essential role in balancing plant growth and drought tolerance in rice. New Phytologist, 2020, 227, 1417-1433.	3.5	38
1388	Native Plants to Arid Areas: A Genetic Reservoir for Drought-Tolerant Crops. , 2020, , .		1
1389	Arabidopsis Lectin EULS3 Is Involved in ABA Signaling in Roots. Frontiers in Plant Science, 2020, 11, 437.	1.7	13
1390	Does Molecular and Structural Evolution Shape the Speedy Grass Stomata?. Frontiers in Plant Science, 2020, 11, 333.	1.7	11
1391	OsABAR1, a novel GRAM domain-containing protein, confers drought and salt tolerance via an ABA-dependent pathway in rice. Plant Physiology and Biochemistry, 2020, 152, 138-146.	2.8	14
1392	Quantitative phosphoproteomics analysis reveals that protein modification and sugar metabolism contribute to sprouting in potato after BR treatment. Food Chemistry, 2020, 325, 126875.	4.2	22
1393	ABI5 modulates seed germination via feedback regulation of the expression of the <i>PYR/PYL/RCAR</i> ABA receptor genes. New Phytologist, 2020, 228, 596-608.	3.5	78
1394	Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation(China), 2020, 1, 100017.	5. 2	387
1395	The effect of ABRE BINDING FACTOR 4-mediated FYVE1 on salt stress tolerance in Arabidopsis. Plant Science, 2020, 296, 110489.	1.7	12
1396	De novo RNA sequencing analysis of Aeluropus littoralis halophyte plant under salinity stress. Scientific Reports, 2020, 10, 9148.	1.6	14
1397	Ectopic Expression of OsPYL/RCAR7, an ABA Receptor Having Low Signaling Activity, Improves Drought Tolerance without Growth Defects in Rice. International Journal of Molecular Sciences, 2020, 21, 4163.	1.8	16
1398	Links between drought stress and autophagy in plants. Plant Signaling and Behavior, 2020, 15, 1779487.	1.2	8
1399	A Clathrin-Related Protein, SCD2/RRP1, Participates in Abscisic Acid Signaling in Arabidopsis. Frontiers in Plant Science, 2020, 11, 892.	1.7	2
1400	Design of potent ABA receptor antagonists based on a conformational restriction approach. Organic and Biomolecular Chemistry, 2020, 18, 4988-4996.	1.5	6
1401	WRKY Transcription Factor OsWRKY29 Represses Seed Dormancy in Rice by Weakening Abscisic Acid Response. Frontiers in Plant Science, 2020, 11, 691.	1.7	38
1402	Low temperature stimulates spatial molecular reprogramming of the Arabidopsis seed germination programme. Seed Science Research, 2020, 30, 2-12.	0.8	4
1403	Molecular Determinants Elucidate the Selectivity in Abscisic Acid Receptor and HAB1 Protein Interactions. Frontiers in Chemistry, 2020, 8, 425.	1.8	11
1404	Analysis of Dynamic Global Transcriptional Atlas Reveals Common Regulatory Networks of Hormones and Photosynthesis Across Nicotiana Varieties in Response to Long-Term Drought. Frontiers in Plant Science, 2020, 11, 672.	1.7	13

#	Article	IF	CITATIONS
1405	Functional Characterization of the Arabidopsis Abscisic Acid Transporters NPF4.5 and NPF4.6 in Xenopus Oocytes. Frontiers in Plant Science, 2020, 11, 144.	1.7	20
1406	Bast fibres. , 2020, , 93-162.		17
1407	COST1 regulates autophagy to control plant drought tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7482-7493.	3.3	71
1408	Abscisic acid suppresses thermomorphogenesis in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2020, 15, 1746510.	1.2	7
1409	Hoechst-tagged Fluorescein Diacetate for the Fluorescence Imaging-based Assessment of Stomatal Dynamics in Arabidopsis thaliana. Scientific Reports, 2020, 10, 5333.	1.6	5
1410	Cell wall/vacuolar inhibitor of fructosidase 1 regulates ABA response and salt tolerance in Arabidopsis. Plant Signaling and Behavior, 2020, 15, 1744293.	1.2	18
1411	REVERSAL OF RDO5 1, a Homolog of Rice Seed Dormancy4, Interacts with bHLH57 and Controls ABA Biosynthesis and Seed Dormancy in Arabidopsis. Plant Cell, 2020, 32, 1933-1948.	3.1	44
1412	Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020, 63, 635-674.	2.3	689
1413	Plant Raf-like kinases regulate the mRNA population upstream of ABA-unresponsive SnRK2 kinases under drought stress. Nature Communications, 2020, 11, 1373.	5.8	104
1414	OsMFT2 is involved in the regulation of ABA signalingâ€mediated seed germination through interacting with OsbZIP23/66/72 in rice. Plant Journal, 2020, 103, 532-546.	2.8	58
1415	WOOLLY, interacting with MYB transcription factor MYB31, regulates cuticular wax biosynthesis by modulating <i>CER6</i> expression in tomato. Plant Journal, 2020, 103, 323-337.	2.8	44
1416	Expression profiling of the genes encoding ABA route components and the ACC oxidase isozymes in the senescing leaves of Populus tremula. Journal of Plant Physiology, 2020, 248, 153143.	1.6	3
1417	Abscisic Acidâ€"Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses?. International Journal of Molecular Sciences, 2020, 21, 4607.	1.8	40
1418	The modulation of stomatal conductance and photosynthetic parameters is involved in Fusarium head blight resistance in wheat. PLoS ONE, 2020, 15, e0235482.	1.1	27
1419	A Chloroplast COR413 Protein From Physcomitrella patens Is Required for Growth Regulation Under High Light and ABA Responses. Frontiers in Plant Science, 2020, 11, 845.	1.7	5
1420	CDK8 is associated with RAP2.6 and SnRK2.6 and positively modulates abscisic acid signaling and drought response in <i>Arabidopsis</i> . New Phytologist, 2020, 228, 1573-1590.	3.5	50
1421	The abscisic acid receptor gene VvPYL4 positively regulates grapevine resistance to Plasmopara viticola. Plant Cell, Tissue and Organ Culture, 2020, 142, 483-492.	1.2	19
1422	The photosynthesis game is in the "inter-play": Mechanisms underlying CO2 diffusion in leaves. Environmental and Experimental Botany, 2020, 178, 104174.	2.0	28

#	Article	IF	CITATIONS
1423	Counteraction of ABA-Mediated Inhibition of Seed Germination and Seedling Establishment by ABA Signaling Terminator in Arabidopsis. Molecular Plant, 2020, 13, 1284-1297.	3.9	63
1424	Associations between phytohormones and cellulose biosynthesis in land plants. Annals of Botany, 2020, 126, 807-824.	1.4	16
1425	Arabidopsis BRCA1 represses RRTF1â€mediated ROS production and ROSâ€responsive gene expression under dehydration stress. New Phytologist, 2020, 228, 1591-1610.	3.5	10
1426	A Tale of Two Isoforms: Calcium-Dependent Inhibition of SnRK2 by SnRK-Calcium-Binding Sensor. Plant Physiology, 2020, 182, 683-684.	2.3	0
1427	Two marine natural products, penicillide and verrucarin J, are identified from a chemical genetic screen for neutral lipid accumulation effectors in Phaeodactylum tricornutum. Applied Microbiology and Biotechnology, 2020, 104, 2731-2743.	1.7	6
1428	Endophytic microbes in abiotic stress management. , 2020, , 91-123.		6
1429	Recent Advances in Plant Chemical Biology of Jasmonates. International Journal of Molecular Sciences, 2020, 21, 1124.	1.8	21
1430	NADPH Oxidases: The Vital Performers and Center Hubs during Plant Growth and Signaling. Cells, 2020, 9, 437.	1.8	74
1431	Quantitative Imaging Reveals Distinct Contributions of SnRK2 and ABI3 in Plasmodesmatal Permeability in Physcomitrella patens. Plant and Cell Physiology, 2020, 61, 942-956.	1.5	10
1432	Enhanced Vitamin C Production Mediated by an ABA-Induced PTP-like Nucleotidase Improves Plant Drought Tolerance in Arabidopsis and Maize. Molecular Plant, 2020, 13, 760-776.	3.9	47
1433	$\langle i \rangle$ KalanchoÃ $\langle i \rangle$ PPC1 Is Essential for Crassulacean Acid Metabolism and the Regulation of Core Circadian Clock and Guard Cell Signaling Genes. Plant Cell, 2020, 32, 1136-1160.	3.1	52
1434	Arabidopsis HOS15 is a multifunctional protein that negatively regulate ABA-signaling and drought stress. Plant Biotechnology Reports, 2020, 14, 163-167.	0.9	11
1435	Comparative transcriptome analysis reveals an ABA-responsive regulation network associated with cell wall organization and oxidation reduction in sugar beet. Plant Growth Regulation, 2020, 91, 127-141.	1.8	11
1436	Transcriptomics analyses reveal that OsMIOX improves rice drought tolerance by regulating the expression of plant hormone and sugar related genes. Plant Biotechnology Reports, 2020, 14, 339-349.	0.9	9
1437	Metabolite/phytohormone–gene regulatory networks in soybean organs under dehydration conditions revealed by integration analysis. Plant Journal, 2020, 103, 197-211.	2.8	10
1438	Overexpression of CsSnRK2.5 increases tolerance to drought stress in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2020, 150, 162-170.	2.8	16
1439	Coupling of Cell Division and Differentiation in Arabidopsis thaliana Cultured Cells with Interaction of Ethylene and ABA Signaling Pathways. Life, 2020, 10, 15.	1.1	4
1440	PHYTOCHROME-INTERACTING FACTORS Interact with the ABA Receptors PYL8 and PYL9 to Orchestrate ABA Signaling in Darkness. Molecular Plant, 2020, 13, 414-430.	3.9	69

#	Article	IF	CITATIONS
1441	The Arabidopsis Nodulin Homeobox Factor AtNDX Interacts with AtRING1A/B and Negatively Regulates Abscisic Acid Signaling. Plant Cell, 2020, 32, 703-721.	3.1	29
1442	Selection and functional identification of a synthetic partial ABA agonist, S7. Scientific Reports, 2020, 10, 4.	1.6	13
1443	Hydrogen Sulfide Positively Regulates Abscisic Acid Signaling through Persulfidation of SnRK2.6 in Guard Cells. Molecular Plant, 2020, 13, 732-744.	3.9	155
1444	Overexpression of the persimmon abscisic acid βâ€glucosidase gene (<i>DkBG1</i>) alters fruit ripening in transgenic tomato. Plant Journal, 2020, 102, 1220-1233.	2.8	24
1445	A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants. Nature Communications, 2020, 11, 613.	5.8	147
1446	Desensitization of ABA-Signaling: The Swing From Activation to Degradation. Frontiers in Plant Science, 2020, 11, 379.	1.7	69
1447	The potential of antitranspirants in drought management of arable crops: A review. Agricultural Water Management, 2020, 236, 106143.	2.4	52
1448	The APC/C ^{TE} E3 Ubiquitin Ligase Complex Mediates the Antagonistic Regulation of Root Growth and Tillering by ABA and GA. Plant Cell, 2020, 32, 1973-1987.	3.1	45
1449	Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits. Plant Journal, 2020, 103, 1025-1048.	2.8	65
1450	Analysis of differentially expressed genes and pathways associated with male sterility lines in watermelon via bulked segregant RNA-seq. 3 Biotech, 2020, 10, 222.	1.1	9
1451	Arabidopsis Rafâ€like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling. Plant Journal, 2020, 103, 634-644.	2.8	71
1452	Phytohormonal signaling under abiotic stress. , 2020, , 397-466.		5
1453	Phytochrome-interacting factors regulate seedling growth through ABA signaling. Biochemical and Biophysical Research Communications, 2020, 526, 1100-1105.	1.0	12
1454	Arabidopsis RING E3 ubiquitin ligase JUL1 participates in ABAâ€mediated microtubule depolymerization, stomatal closure, and tolerance response to drought stress. Plant Journal, 2020, 103, 824-842.	2.8	36
1455	Identification of MicroRNAs and Their Targets That Respond to Powdery Mildew Infection in Cucumber by Small RNA and Degradome Sequencing. Frontiers in Genetics, 2020, 11, 246.	1.1	16
1456	Comparative Transcriptome Analysis of Gene Expression and Regulatory Characteristics Associated with Different Vernalization Periods in Brassica rapa. Genes, 2020, 11, 392.	1.0	13
1457	Interactions Between Strawberry ABA Receptor PYR/PYLs and Protein Phosphatase PP2Cs on Basis of Transcriptome and Yeast Two-Hybrid Analyses. Journal of Plant Growth Regulation, 2021, 40, 594-602.	2.8	9
1458	Plant protein phosphatases: What do we know about their mechanism of action?. FEBS Journal, 2021, 288, 756-785.	2.2	44

#	Article	IF	Citations
1459	The evolving role of abscisic acid in cell function and plant development over geological time. Seminars in Cell and Developmental Biology, 2021, 109, 39-45.	2.3	13
1460	ABA signaling plays a key role in regulated deficit irrigation-driven anthocyanins accumulation in â€̃Cabernet Sauvignon' grape berries. Environmental and Experimental Botany, 2021, 181, 104290.	2.0	14
1461	Signaling mechanisms in abscisic acidâ€mediated stomatal closure. Plant Journal, 2021, 105, 307-321.	2.8	214
1462	ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple. Journal of Experimental Botany, 2021, 72, 1460-1472.	2.4	68
1463	On the biosynthesis and evolution of apocarotenoid plant growth regulators. Seminars in Cell and Developmental Biology, 2021, 109, 3-11.	2.3	52
1464	Improving drought tolerance in rice: Ensuring food security through multiâ€dimensional approaches. Physiologia Plantarum, 2021, 172, 645-668.	2.6	48
1465	Connecting vacuolar and plasma membrane transport networks. New Phytologist, 2021, 229, 755-762.	3.5	10
1466	Leaf Transcriptome and Weight Gene Co-expression Network Analysis Uncovers Genes Associated with Photosynthetic Efficiency in Camellia oleifera. Biochemical Genetics, 2021, 59, 398-421.	0.8	8
1467	PYL8 ABA receptors of <i>Phoenix dactylifera </i> play a crucial role in response to abiotic stress and are stabilized by ABA. Journal of Experimental Botany, 2021, 72, 757-774.	2.4	10
1468	Whole-Seedling-Based in Arabidopsis. Methods in Molecular Biology, 2021, 2213, 29-37.	0.4	1
1469	MAPK11 regulates seed germination and ABA signaling in tomato by phosphorylating SnRKs. Journal of Experimental Botany, 2021, 72, 1677-1690.	2.4	20
1470	The PalWRKY77 transcription factor negatively regulates salt tolerance and abscisic acid signaling in <i>Populus</i> . Plant Journal, 2021, 105, 1258-1273.	2.8	49
1471	Identification of ABA Receptor Using aÂMultiplexed Chemical Screening. Methods in Molecular Biology, 2021, 2213, 99-111.	0.4	1
1472	Transcriptional variation analysis of Arabidopsis ecotypes in response to drought and salt stresses dissects commonly regulated networks. Physiologia Plantarum, 2021, 172, 77-90.	2.6	8
1473	Abscisic acid receptors maintain abscisic acid homeostasis by modulating UGT71C5 glycosylation activity. Journal of Integrative Plant Biology, 2021, 63, 543-552.	4.1	9
1474	Genome-wide identification of PYL gene family in wheat: Evolution, expression and 3D structure analysis. Genomics, 2021, 113, 854-866.	1.3	37
1475	Role of ATPâ€binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiologia Plantarum, 2021, 171, 785-801.	2.6	81
1476	Ligand–receptor interactions in plant hormone signaling. Plant Journal, 2021, 105, 290-306.	2.8	27

#	Article	IF	CITATIONS
1477	Science as collaborative knowledge generation. British Journal of Social Psychology, 2021, 60, 1-28.	1.8	27
1478	MdABI5 works with its interaction partners to regulate abscisic acidâ€mediated leaf senescence in apple. Plant Journal, 2021, 105, 1566-1581.	2.8	32
1479	Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture, 2021, 20, 4-23.	1.7	76
1480	Arabidopsis Uâ€box E3 ubiquitin ligase PUB11 negatively regulates drought tolerance by degrading the receptorâ€like protein kinases LRR1 and KIN7. Journal of Integrative Plant Biology, 2021, 63, 494-509.	4.1	52
1481	Tomato protein phosphatase 2C influences the onset of fruit ripening and fruit glossiness. Journal of Experimental Botany, 2021, 72, 2403-2418.	2.4	25
1482	ABA signaling pathway genes and function during abiotic stress and berry ripening in Vitis vinifera. Gene, 2021, 769, 145226.	1.0	12
1483	Two homologous <i>LHY</i> pairs negatively control soybean drought tolerance by repressing the abscisic acid responses. New Phytologist, 2021, 229, 2660-2675.	3.5	61
1484	Phytochrome type B family: The abiotic stress responses signaller in plants. Annals of Applied Biology, 2021, 178, 135-148.	1.3	17
1485	Comprehensive transcriptome profiling of Caragana microphylla in response to salt condition using de novo assembly. Biotechnology Letters, 2021, 43, 317-327.	1.1	3
1486	Major latex protein-like encoding genes contribute to Rhizoctonia solani defense responses in sugar beet. Molecular Genetics and Genomics, 2021, 296, 155-164.	1.0	20
1487	Rice NINâ€LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnology Journal, 2021, 19, 448-461.	4.1	72
1488	<i>Brachypodium</i> BdABCG25 is a homolog of <i>Arabidopsis</i> AtABCG25 involved in the transport of abscisic acid. FEBS Letters, 2021, 595, 954-959.	1.3	8
1489	Abscisic Acid and Plant Response Under Adverse Environmental Conditions., 2021,, 17-47.		3
1490	Functional Study of BpPP2C1 Revealed Its Role in Salt Stress in Betula platyphylla. Frontiers in Plant Science, 2020, 11, 617635.	1.7	14
1491	Transcriptional Regulation of Drought Response in Arabidopsis and Woody Plants. Frontiers in Plant Science, 2020, 11, 572137.	1.7	43
1492	Hydrogen Sulfide and Stomatal Movement. Plant in Challenging Environments, 2021, , 87-107.	0.4	O
1493	Mechanisms of the Morphological Plasticity Induced by Phytohormones and the Environment in Plants. International Journal of Molecular Sciences, 2021, 22, 765.	1.8	21
1494	Protein kinases in plant responses to drought, salt, and cold stress. Journal of Integrative Plant Biology, 2021, 63, 53-78.	4.1	273

#	Article	IF	CITATIONS
1495	Cloning and expression analyses of a <i>Pyrabactin Resistance 1 (PYR1)</i> gene from <i>Magnolia sieboldii</i> K. Koch. Bioengineered, 2021, 12, 3358-3366.	1.4	0
1497	AITRL, an evolutionarily conserved plant specific transcription repressor regulates ABA response in Arabidopsis. Scientific Reports, $2021, 11, 721$.	1.6	5
1498	The role of signal production and transduction in induced resistance of harvested fruits and vegetables. Food Quality and Safety, 2021, 5, .	0.6	8
1499	3′-(Phenyl alkynyl) analogs of abscisic acid: synthesis and biological activity of potent ABA antagonists. Organic and Biomolecular Chemistry, 2021, 19, 2978-2985.	1.5	5
1500	Bacterial Quorum-Sensing Signaling-Related drr 1 Mutant Influences Abscisic Acid Responsiveness in Arabidopsis thaliana L Journal of Plant Growth Regulation, 0 , , 1 .	2.8	2
1503	Characterization on the physiological traits of plants and yield formation capacity upon water- and N-saving conditions in wheat (T. aestivum L.). Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	2
1504	Foes or Friends: ABA and Ethylene Interaction under Abiotic Stress. Plants, 2021, 10, 448.	1.6	57
1505	Stomatal morphology and physiology explain varied sensitivity to abscisic acid across vascular plant lineages. Plant Physiology, 2021, 186, 782-797.	2.3	30
1506	Rice calcium/calmodulin-dependent protein kinase directly phosphorylates a mitogen-activated protein kinase kinase to regulate abscisic acid responses. Plant Cell, 2021, 33, 1790-1812.	3.1	34
1508	Model-guided design of mammalian genetic programs. Science Advances, 2021, 7, .	4.7	23
1509	Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling. Frontiers in Plant Science, 2021, 12, 644823.	1.7	32
1511	Updated role of ABA in seed maturation, dormancy, and germination. Journal of Advanced Research, 2022, 35, 199-214.	4.4	104
1512	Genetic Engineering and Chemical Control Related to Abscisic Acid for Improving Plant Drought Tolerance. Journal of Agricultural and Food Chemistry, 2021, 69, 3563-3565.	2.4	1
1513	OsCBE1, a Substrate Receptor of Cullin4-Based E3 Ubiquitin Ligase, Functions as a Regulator of Abiotic Stress Response and Productivity in Rice. International Journal of Molecular Sciences, 2021, 22, 2487.	1.8	5
1514	Computational Identification of Functional Centers in Complex Proteins: A Step-by-Step Guide With Examples. Frontiers in Bioinformatics, 2021, 1, .	1.0	8
1516	ABA influences color initiation timing in P. avium L. fruits by sequentially modulating the transcript levels of ABA and anthocyanin-related genes. Tree Genetics and Genomes, 2021, 17, 1.	0.6	9
1517	ABA-INDUCED expression 1 is involved in ABA-inhibited primary root elongation via modulating ROS homeostasis in Arabidopsis. Plant Science, 2021, 304, 110821.	1.7	20
1518	Physiological changes and transcriptome profiling in Saccharum spontaneum L. leaf under water stress and re-watering conditions. Scientific Reports, 2021, 11, 5525.	1.6	11

#	Article	IF	CITATIONS
1519	Stomata: the holey grail of plant evolution. American Journal of Botany, 2021, 108, 366-371.	0.8	20
1520	ABA signalling and metabolism are not essential for dark-induced stomatal closure but affect response speed. Scientific Reports, 2021, 11, 5751.	1.6	12
1521	Chemical activation of Arabidopsis SnRK2.6 by pladienolide B. Plant Signaling and Behavior, 2021, 16, 1885165.	1.2	1
1522	Low ABA concentration promotes root growth and hydrotropism through relief of ABA INSENSITIVE 1-mediated inhibition of plasma membrane H ⁺ -ATPase 2. Science Advances, 2021, 7, .	4.7	78
1523	A Raf-like kinase is required for smoke-induced seed dormancy in $\langle i \rangle$ Arabidopsis thaliana $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	3
1524	Maize ZmbZIP33 Is Involved in Drought Resistance and Recovery Ability Through an Abscisic Acid-Dependent Signaling Pathway. Frontiers in Plant Science, 2021, 12, 629903.	1.7	15
1525	Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nature Communications, 2021, 12, 2456.	5.8	86
1526	Structural dynamics and determinants of abscisic acid–receptor binding preference in different aggregation states. Journal of Experimental Botany, 2021, 72, 5051-5065.	2.4	4
1527	Potent ABAâ€independent activation of engineered PYL3. FEBS Open Bio, 2021, 11, 1428-1439.	1.0	1
1528	ABCG transporter proteins with beneficial activity on plants. Phytochemistry, 2021, 184, 112663.	1.4	33
1529	Photochemical efficiency correlated with candidate gene expression promote coffee drought tolerance. Scientific Reports, 2021, 11, 7436.	1.6	11
1530	Effect of ABA on physiological characteristics and expression of salt tolerance-related genes in Tartary buckwheat. Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	2
1531	Cellular Phosphorylation Signaling and Gene Expression in Drought Stress Responses: ABA-Dependent and ABA-Independent Regulatory Systems. Plants, 2021, 10, 756.	1.6	64
1532	Chemical control of stomatal function and development. Current Opinion in Plant Biology, 2021, 60, 102010.	3.5	13
1533	Salt tolerance in rice: Physiological responses and molecular mechanisms. Crop Journal, 2022, 10, 13-25.	2.3	94
1534	Structure and activity of SLAC1 channels for stomatal signaling in leaves. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
1535	In Arabidopsis thaliana Cd differentially impacts on hormone genetic pathways in the methylation defective ddc mutant compared to wild type. Scientific Reports, 2021, 11, 10965.	1.6	16
1536	Review: Biological functions of major latex-like proteins in plants. Plant Science, 2021, 306, 110856.	1.7	34

#	Article	IF	CITATIONS
1537	A ras-related small GTP-binding protein, RabE1c, regulates stomatal movements and drought stress responses by mediating the interaction with ABA receptors. Plant Science, 2021, 306, 110858.	1.7	14
1538	MdBZR1 regulates ABA response by modulating the expression of MdABI5 in apple. Plant Cell Reports, 2021, 40, 1127-1139.	2.8	4
1539	The Soybean Transcriptogram Allows a Wide Genome-to-Single-Gene Analysis That Evinces Time-Dependent Drought Response. Plant Molecular Biology Reporter, 0, , 1.	1.0	2
1540	Photoperiod- and temperature-mediated control of the ethylene response and winter dormancy induction in Prunus mume. Horticultural Plant Journal, 2021, 7, 232-242.	2.3	9
1541	CmMLO17 and its partner CmKIC potentially support Alternaria alternata growth in Chrysanthemum morifolium. Horticulture Research, 2021, 8, 101.	2.9	13
1542	Interconnection of iron and osmotic stress signalling in plants: is FIT a regulatory hub to crossâ€connect abscisic acid responses?. Plant Biology, 2021, 23, 31-38.	1.8	16
1543	An Update on Crop ABA Receptors. Plants, 2021, 10, 1087.	1.6	15
1544	Gene Expression Characteristics in Response to Abscisic Acid Under Shade. Plant Molecular Biology Reporter, 2022, 40, 43-67.	1.0	1
1545	The chemical compound â€ ⁻ Heatinâ€ ^{-M} stimulates hypocotyl elongation and interferes with the Arabidopsis NIT1â€subfamily of nitrilases. Plant Journal, 2021, 106, 1523-1540.	2.8	7
1546	Melatonin promotes seed germination under salt stress by regulating ABA and GA3 in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry, 2021, 162, 506-516.	2.8	81
1547	OsGATA16, a GATA Transcription Factor, Confers Cold Tolerance by Repressing OsWRKY45–1 at the Seedling Stage in Rice. Rice, 2021, 14, 42.	1.7	38
1549	Synthesis and regulation of auxin and abscisic acid in maize. Plant Signaling and Behavior, 2021, 16, 1891756.	1.2	10
1550	Synthesis and Exploration of Abscisic Acid Receptor Agonists Against Dought Stress by Adding Constraint to a Tetrahydroquinolineâ∈Based Lead Structure. European Journal of Organic Chemistry, 2021, 2021, 3442-3457.	1.2	8
1551	TMK4 receptor kinase negatively modulates ABA signaling by phosphorylating ABI2 and enhancing its activity. Journal of Integrative Plant Biology, 2021, 63, 1161-1178.	4.1	10
1552	Under salt stress guard cells rewire ion transport and abscisic acid signaling. New Phytologist, 2021, 231, 1040-1055.	3.5	23
1553	Overproduction of <scp>ABA</scp> in rootstocks alleviates salinity stress in tomato shoots. Plant, Cell and Environment, 2021, 44, 2966-2986.	2.8	30
1554	Transcriptome Analysis of Chloris virgata, Which Shows the Fastest Germination and Growth in the Major Mongolian Grassland Plant. Frontiers in Plant Science, 2021, 12, 684987.	1.7	1
1555	Transcriptome Reveals Roles of Lignin-Modifying Enzymes and Abscisic Acid in the Symbiosis of Mycena and Gastrodia elata. International Journal of Molecular Sciences, 2021, 22, 6557.	1.8	6

#	Article	IF	CITATIONS
1556	Engineering of Crassulacean Acid Metabolism. Annual Review of Plant Biology, 2021, 72, 77-103.	8.6	21
1557	Different Phytohormonal Responses on Satsuma Mandarin (Citrus unshiu) Leaves Infected with Host-Compatible or Host-Incompatible Elsinoë fawcettii. Plant Pathology Journal, 2021, 37, 268-279.	0.7	2
1558	ABA signalling promotes cell totipotency in the shoot apex of germinating embryos. Journal of Experimental Botany, 2021, 72, 6418-6436.	2.4	18
1559	TMK1-based auxin signaling regulates abscisic acid responses via phosphorylating ABI1/2 in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
1560	The Arabidopsis circadian clock protein PRR5 interacts with and stimulates ABI5 to modulate abscisic acid signaling during seed germination. Plant Cell, 2021, 33, 3022-3041.	3.1	45
1561	Hydrogen sulfide signaling in plant adaptations to adverse conditions: molecular mechanisms. Journal of Experimental Botany, 2021, 72, 5893-5904.	2.4	55
1562	Abscisic Acid Priming Creates Alkaline Tolerance in Alfalfa Seedlings (Medicago sativa L.). Agriculture (Switzerland), 2021, 11, 608.	1.4	6
1563	Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit. New Phytologist, 2021, 232, 468-475.	3.5	26
1564	Integrative Identification of Crucial Genes Associated With Plant Hormone-Mediated Bud Dormancy in Prunus mume. Frontiers in Genetics, 2021, 12, 698598.	1.1	6
1565	Arabidopsis OSMOTIN 34 Functions in the ABA Signaling Pathway and Is Regulated by Proteolysis. International Journal of Molecular Sciences, 2021, 22, 7915.	1.8	11
1566	Integration of mRNA and miRNA analysis reveals the molecular mechanism of potato (Solanum) Tj ETQq0 0 0 rgBT 182, 938-949.	/Overlock 3.6	10 Tf 50 34 22
1567	Plant adaptability in karst regions. Journal of Plant Research, 2021, 134, 889-906.	1.2	32
1568	Research on the drought tolerance mechanism of Pennisetum glaucum (L.) in the root during the seedling stage. BMC Genomics, 2021, 22, 568.	1.2	19
1569	Sorghum's Whole-Plant Transcriptome and Proteome Responses to Drought Stress: A Review. Life, 2021, 11, 704.	1.1	13
1571	Arabidopsis OXS3 family proteins repress ABA signaling through interactions with AFP1 in the regulation of <i>ABI4</i> expression. Journal of Experimental Botany, 2021, 72, 5721-5734.	2.4	13
1572	MIR156-Targeted SPL9 Is Phosphorylated by SnRK2s and Interacts With ABI5 to Enhance ABA Responses in Arabidopsis. Frontiers in Plant Science, 2021, 12, 708573.	1.7	20
1573	Arabidopsis Hypocotyl Adventitious Root Formation Is Suppressed by ABA Signaling. Genes, 2021, 12, 1141.	1.0	13
1574	Global Profiling of Phosphorylation Reveals the Barley Roots Response to Phosphorus Starvation and Resupply. Frontiers in Plant Science, 2021, 12, 676432.	1.7	6

#	Article	IF	CITATIONS
1575	Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. Nature Plants, 2021, 7, 1108-1118.	4.7	49
1576	Genome-wide identification of ZmSnRK2 genes and functional analysis of ZmSnRK2.10 in ABA signaling pathway in maize (Zea mays L). BMC Plant Biology, 2021, 21, 309.	1.6	8
1577	Longâ€term abscisic acid promotes golden2â€like1 degradation through constitutive photomorphogenic 1 in a light intensityâ€dependent manner to suppress chloroplast development. Plant, Cell and Environment, 2021, 44, 3034-3048.	2.8	20
1578	Abscisic acid receptors are involves in the Jasmonate signaling in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2021, 16, 1948243.	1.2	10
1579	Comparative transcriptome analysis of NaCl and KCl stress response in Malus hupehensis Rehd. Provide insight into the regulation involved in Na+ and K+ homeostasis. Plant Physiology and Biochemistry, 2021, 164, 101-114.	2.8	5
1580	Growth Promotion or Osmotic Stress Response: How SNF1-Related Protein Kinase 2 (SnRK2) Kinases Are Activated and Manage Intracellular Signaling in Plants. Plants, 2021, 10, 1443.	1.6	16
1581	Persulfidation-induced structural change in SnRK2.6 establishes intramolecular interaction between phosphorylation and persulfidation. Molecular Plant, 2021, 14, 1814-1830.	3.9	42
1582	<i>Arabidopsis</i> SSB1, a Mitochondrial Single-Stranded DNA-Binding Protein, is Involved in ABA Response and Mitochondrial RNA Splicing. Plant and Cell Physiology, 2021, 62, 1321-1334.	1.5	7
1583	Comparative methylome reveals regulatory roles of DNA methylation in melon resistance to Podosphaera xanthii. Plant Science, 2021, 309, 110954.	1.7	11
1584	Rhizobium symbiosis modulates the accumulation of arsenic in Medicago truncatula via nitrogen and NRT3.1-like genes regulated by ABA and linalool. Journal of Hazardous Materials, 2021, 415, 125611.	6.5	12
1585	Red and blue light treatments of ripening bilberry fruits reveal differences in signalling through abscisic acidâ€regulated anthocyanin biosynthesis. Plant, Cell and Environment, 2021, 44, 3227-3245.	2.8	51
1586	Virus-induced gene silencing of SIPYL4 decreases the drought tolerance of tomato. Horticultural Plant Journal, 2022, 8, 361-368.	2.3	10
1587	Jasmonic acid and salicylic acid play minor roles in stomatal regulation by CO ₂ , abscisic acid, darkness, vapor pressure deficit and ozone. Plant Journal, 2021, 108, 134-150.	2.8	18
1588	Thaumatin-like genes function in the control of both biotic stress signaling and ABA signaling pathways. Biochemical and Biophysical Research Communications, 2021, 567, 17-21.	1.0	9
1589	Association Analysis Revealed That TaPYL4 Genes Are Linked to Plant Growth Related Traits in Multiple Environment. Frontiers in Plant Science, 2021, 12, 641087.	1.7	4
1590	RNAi-mediated suppression of the abscisic acid catabolism gene OsABA8ox1 increases abscisic acid content and tolerance to saline–alkaline stress in rice (Oryza sativa L.). Crop Journal, 2022, 10, 354-367.	2.3	11
1591	Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. Plant Communications, 2022, 3, 100228.	3.6	48
1592	New Abscisic Acid Derivatives Revealed Adequate Regulation of Stomatal, Transcriptional, and Developmental Responses to Conquer Drought. ACS Chemical Biology, 2021, 16, 1566-1575.	1.6	5

#	Article	IF	CITATIONS
1593	Cytokinin regulates apical hook development via the coordinated actions of EIN3/EIL1 and PIF transcription factors in Arabidopsis. Journal of Experimental Botany, 2022, 73, 213-227.	2.4	7
1594	Characterization of Yields, Osmotic Stress-associated Traits, and Expression Patterns of ABA Receptor Genes in Winter Wheat Under Deficit Irrigation. International Journal of Plant Production, 2021, 15, 419-429.	1.0	1
1595	Wheat TaPUB1 protein mediates ABA response and seed development through ubiquitination. Plant Science, 2021, 309, 110913.	1.7	3
1596	Nitrogen stress inhibits root growth by regulating cell wall and hormone changes in cotton (<i>GossypiumÂhirsutum</i> L.). Journal of Agronomy and Crop Science, 2021, 207, 1006-1023.	1.7	10
1597	Conditional stomatal closure in a fern shares molecular features with flowering plant active stomatal responses. Current Biology, 2021, 31, 4560-4570.e5.	1.8	12
1598	A small molecule antagonizes jasmonic acid perception and auxin responses in vascular and nonvascular plants. Plant Physiology, 2021, 187, 1399-1413.	2.3	13
1599	Exploitation of Drought Tolerance-Related Genes for Crop Improvement. International Journal of Molecular Sciences, 2021, 22, 10265.	1.8	22
1600	Autophagy during drought: function, regulation, and potential application. Plant Journal, 2022, 109, 390-401.	2.8	28
1601	Functional divergence of Brassica napus BnaABI1 paralogs in the structurally conserved PP2CA gene subfamily of Brassicaceae. Genomics, 2021, 113, 3185-3197.	1.3	3
1602	Protease Inhibitor-Dependent Inhibition of Light-Induced Stomatal Opening. Frontiers in Plant Science, 2021, 12, 735328.	1.7	1
1603	An Anecdote on Prospective Protein Targets for Developing Novel Plant Growth Regulators. Molecular Biotechnology, 2022, 64, 109-129.	1.3	0
1604	<scp>OsPSKR15</scp> , a phytosulfokine receptor from rice enhances abscisic acid response and drought stress tolerance. Physiologia Plantarum, 2022, 174, .	2.6	12
1605	Populus euphratica Apyrases Increase Drought Tolerance by Modulating Stomatal Aperture in Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 9892.	1.8	8
1606	Genome-wide identification of ABA receptor PYL/RCAR gene family and their response to cold stress in Medicago sativa L. Physiology and Molecular Biology of Plants, 2021, 27, 1979-1995.	1.4	19
1607	Wood Formation under Severe Drought Invokes Adjustment of the Hormonal and Transcriptional Landscape in Poplar. International Journal of Molecular Sciences, 2021, 22, 9899.	1.8	17
1608	Functional Involvement of Highly Abscisic Acid-Induced Clade A Protein Phosphatase 2Cs in Delayed Seed Germination Under Cold Stress. Journal of Plant Biology, 2021, 64, 543-553.	0.9	4
1609	Click-to-lead design of a picomolar ABA receptor antagonist with potent activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
1611	New Insights into Stress-Induced \hat{l}^2 -Ocimene Biosynthesis in Tea (<i>Camellia sinensis</i>) Leaves during Oolong Tea Processing. Journal of Agricultural and Food Chemistry, 2021, 69, 11656-11664.	2.4	21

#	Article	lF	CITATIONS
1612	TaFDL2-1A interacts with TabZIP8-7A protein to cope with drought stress via the abscisic acid signaling pathway. Plant Science, 2021, 311, 111022.	1.7	7
1613	A type-2C protein phosphatase (GhDRP1) participates in cotton (Gossypium hirsutum) response to drought stress. Plant Molecular Biology, 2021, 107, 499-517.	2.0	15
1614	Molecular mechanisms of mesocotyl elongation induced by brassinosteroid in maize under deep-seeding stress by RNA-sequencing, microstructure observation, and physiological metabolism. Genomics, 2021, 113, 3565-3581.	1.3	17
1615	A small molecule inhibits cell elongation by modulating cell wall polysaccharide composition in Arabidopsis. Cell Surface, 2021, 7, 100049.	1.5	2
1616	Hormone mediated cell signaling in plants under changing environmental stress. Plant Gene, 2021, 28, 100335.	1.4	6
1617	GmbZIP1 negatively regulates ABA-induced inhibition of nodulation by targeting GmENOD40–1 in soybean. BMC Plant Biology, 2021, 21, 35.	1.6	10
1618	Identification, Gene Structure, and Expression of BnMicEmUP: A Gene Upregulated in Embryogenic Brassica napus Microspores. Frontiers in Plant Science, 2020, 11, 576008.	1.7	7
1619	Transcriptomic Profiling Revealed Genes Involved in Response to Drought Stress in Alfalfa. Journal of Plant Growth Regulation, 2022, 41, 92-112.	2.8	7
1620	Insight into abscisic acid perception and signaling to increase plant tolerance to abiotic stress. Journal of Plant Interactions, 2021, 16, 222-237.	1.0	21
1624	Recent Advances of Metabolomics to Reveal Plant Response During Salt Stress. , 2013, , 1-14.		15
1625	Protein Phosphorylation Network in Abscisic Acid Signaling. , 2013, , 155-164.		1
1626	Chemical Genomics Screening for Biomodulators of Endomembrane System Trafficking. Methods in Molecular Biology, 2014, 1209, 251-264.	0.4	4
1627	Chemical Genetic Screens Using Arabidopsis thaliana Seedlings Grown on Solid Medium. Methods in Molecular Biology, 2015, 1263, 111-125.	0.4	2
1628	Phosphatases in Plants. Methods in Molecular Biology, 2015, 1306, 25-46.	0.4	26
1629	Approaches to the Identification of ABAR as an Abscisic Acid Receptor. Methods in Molecular Biology, 2011, 773, 83-97.	0.4	6
1630	Screening for Bioactive Small Molecules by In Vivo Monitoring of Luciferase-Based Reporter Gene Expression in Arabidopsis thaliana. Methods in Molecular Biology, 2014, 1056, 19-31.	0.4	5
1631	Application of Yeast-Two Hybrid Assay to Chemical Genomic Screens: A High-Throughput System to Identify Novel Molecules Modulating Plant Hormone Receptor Complexes. Methods in Molecular Biology, 2014, 1056, 35-43.	0.4	19
1632	Response and Recovery of Grapevine to Water Deficit: From Genes to Physiology. Compendium of Plant Genomes, 2019, , 223-245.	0.3	8

#	Article	IF	CITATIONS
1633	Plant Protein Phosphatase 2C: Critical Negative Regulator of ABA Signaling., 2020, , 83-102.		4
1634	Circadian Rhythms in Stomata: Physiological and Molecular Aspects. , 2015, , 231-255.		14
1635	Signaling Role of ROS in Modulating Drought Stress Tolerance. , 2016, , 309-330.		5
1636	Sulfur Metabolism and Drought Stress Tolerance in Plants. , 2016, , 227-249.		14
1637	Long-Distance Signals Produced by Water-Stressed Roots. Signaling and Communication in Plants, 2013, , 105-124.	0.5	1
1638	Phospholipases in Nitric Oxide-Mediated Plant Signaling. Signaling and Communication in Plants, 2014, , 135-158.	0.5	3
1639	Reactive Oxygen Species (ROS) and ABA Signalling. , 2014, , 191-223.		4
1640	ABA and the Floral Transition. , 2014, , 365-384.		14
1641	ABA Transmembrane Transport and Transporters. , 2014, , 47-59.		4
1642	ABA Signal Perception and ABA Receptors. , 2014, , 89-116.		6
1643	Biochemical and Molecular Mechanisms of Abiotic Stress Tolerance. , 2020, , 187-230.		2
1644	Small-Molecule Probes of Plant Glycopolymer Metabolism. , 2017, , .		2
1645	Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling. Essays in Biochemistry, 2015, 58, 29-48.	2.1	183
1646	Comparison of plant hormone signalling systems. Essays in Biochemistry, 2015, 58, 165-181.	2.1	52
1647	Activation of SnRK2 by Raf-like kinase ARK represents a primary mechanism of ABA and abiotic stress responses. Plant Physiology, 2021, 185, 533-546.	2.3	14
1652	Functional analysis of the pepper protein phosphatase, CaAIPP1, and its interacting partner CaAIRF1: Modulation of ABA signalling and the drought stress response. Plant, Cell and Environment, 2017, 40, 2359-2368.	2.8	38
1654	SAPK2 contributes to rice yield by modulating nitrogen metabolic processes under reproductive stage drought stress. Rice, 2020, 13, 35.	1.7	14
1655	A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops. PLoS Biology, 2017, 15, e2003451.	2.6	75

#	Article	IF	CITATIONS
1656	Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling. PLoS Genetics, 2016, 12, e1005835.	1.5	61
1657	Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1. PLoS Genetics, 2017, 13, e1006703.	1.5	32
1658	SCFAtPP2-B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana. PLoS Genetics, 2017, 13, e1006947.	1.5	90
1659	NFX1-LIKE2 (NFXL2) Suppresses Abscisic Acid Accumulation and Stomatal Closure in Arabidopsis thaliana. PLoS ONE, 2011, 6, e26982.	1.1	13
1660	The Maize OST1 Kinase Homolog Phosphorylates and Regulates the Maize SNAC1-Type Transcription Factor. PLoS ONE, 2013, 8, e58105.	1.1	30
1661	Dynamic QTL Analysis and Candidate Gene Mapping for Waterlogging Tolerance at Maize Seedling Stage. PLoS ONE, 2013, 8, e79305.	1.1	70
1662	A Distal ABA Responsive Element in AtNCED3 Promoter Is Required for Positive Feedback Regulation of ABA Biosynthesis in Arabidopsis. PLoS ONE, 2014, 9, e87283.	1.1	19
1663	Cross-Family Translational Genomics of Abiotic Stress-Responsive Genes between Arabidopsis and Medicago truncatula. PLoS ONE, 2014, 9, e91721.	1.1	19
1664	A Putative PP2C-Encoding Gene Negatively Regulates ABA Signaling in Populus euphratica. PLoS ONE, 2015, 10, e0139466.	1.1	33
1665	Overexpression of the NDR1/HIN1-Like Gene NHL6 Modifies Seed Germination in Response to Abscisic Acid and Abiotic Stresses in Arabidopsis. PLoS ONE, 2016, 11, e0148572.	1.1	39
1666	Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening. PLoS ONE, 2016, 11, e0154072.	1.1	119
1667	Characterization of Triticum aestivum Abscisic Acid Receptors and a Possible Role for These in Mediating Fusairum Head Blight Susceptibility in Wheat. PLoS ONE, 2016, 11, e0164996.	1.1	49
1668	Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis. PLoS ONE, 2016, 11, e0168040.	1.1	43
1669	Comparative transcription analysis of different Antirrhinum phyllotaxy nodes identifies major signal networks involved in vegetative-reproductive transition. PLoS ONE, 2017, 12, e0178424.	1.1	3
1670	Transcriptome analysis of Crossostephium chinensis provides insight into the molecular basis of salinity stress responses. PLoS ONE, 2017, 12, e0187124.	1.1	10
1671	Arabidopsis MAP3K16 and Other Salt-Inducible MAP3Ks Regulate ABA Response Redundantly. Molecules and Cells, 2017, 40, 230-242.	1.0	21
1672	Arabidopsis Raf-Like Kinase Raf10 Is a Regulatory Component of Core ABA Signaling. Molecules and Cells, 2019, 42, 646-660.	1.0	28
1673	The calcium transporter ANNEXIN1 mediates coldâ€induced calcium signaling and freezing tolerance in plants. EMBO Journal, 2021, 40, e104559.	3.5	99

#	Article	IF	CITATIONS
1674	Heat Stress Responses and Thermotolerance. Advances in Plants & Agriculture Research, 2014, 1, .	0.3	58
1675	Phytohormonal regulation of seed germination. Fiziologia Rastenij I Genetika, 2019, 51, 187-206.	0.1	9
1676	Overexpression of AtNCED3 gene improved drought tolerance in soybean in greenhouse and field conditions. Genetics and Molecular Biology, 2020, 43, e20190292.	0.6	21
1677	Options for Developing Salt-tolerant Crops. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 1085-1092.	0.5	19
1678	Transcriptome Analysis of Chrysanthemum lavandulifolium Response to Salt Stress and Overexpression a K+ Transport ClAKT Gene-enhanced Salt Tolerance in Transgenic Arabidopsis. Journal of the American Society for Horticultural Science, 2019, 144, 219-235.	0.5	4
1679	Genomics of Metal Stress-Mediated Signalling and Plant Adaptive Responses in Reference to Phytohormones. Current Genomics, 2017, 18, 512-522.	0.7	22
1680	Role of ABA in Triggering Ethylene Production in the Gynoecium of Senescing Carnation Flowers: Changes in ABA Content and Expression of Genes for ABA Biosynthesis and Action. Japanese Society for Horticultural Science, 2013, 82, 242-254.	0.8	6
1681	Arabidopsis KIN gamma subunit 1 has a potential to regulate activity of sucrose nonfermenting 1-related protein kinase 2s (SnRK2s) in vitro. Biologia Plantarum, 2019, 63, 54-58.	1.9	4
1682	The yeast three-hybrid system as an experimental platform to identify proteins interacting with small signaling molecules in plant cells: Potential and limitations. Frontiers in Plant Science, 2011, 2, 101.	1.7	28
1683	Cytokinin cross-talking during biotic and abiotic stress responses. Frontiers in Plant Science, 2013, 4, 451.	1.7	251
1685	RNA-Binding Proteins as Targets to Improve Salt Stress Tolerance in Crops. Agronomy, 2020, 10, 250.	1.3	10
1686	A Functional Network of Novel Barley MicroRNAs and Their Targets in Response to Drought. Genes, 2020, 11, 488.	1.0	5
1687	Biosystems Design to Accelerate C ₃ -to-CAM Progression. Biodesign Research, 2020, 2020, .	0.8	16
1688	Plant Hormone Signalling: Current Perspectives on Perception and Mechanisms of Action. Ceylon Journal of Science (Biological Sciences), 2013, 42, 1.	0.2	12
1689	Putative fructose-1,6-bisphosphate aldolase 1 (AtFBA1) affects stress tolerance in yeast and Arabidopsis. Journal of Plant Biotechnology, 2012, 39, 106-113.	0.1	8
1690	Design and Synthesis of Function Regulators of Plant Hormones and their Application to Physiology and Genetics. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 36-49.	0.0	3
1691	Arabidopsis PYL8 Plays an Important Role for ABA Signaling and Drought Stress Responses. Plant Pathology Journal, 2013, 29, 471-476.	0.7	52
1692	The Shaker Type Potassium Channel, GORK, Regulates Abscisic Acid Signaling in Arabidopsis. Plant Pathology Journal, 2019, 35, 684-691.	0.7	6

#	Article	IF	CITATIONS
1693	Abiotic Stress - Plant Responses and Applications in Agriculture. , 2013, , .		54
1694	Plant biologists FRET over stress. ELife, 2014, 3, e02763.	2.8	5
1695	The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence. ELife, $2016,5,.$	2.8	70
1696	A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination. ELife, 2017, 6, .	2.8	132
1697	A widespread family of serine/threonine protein phosphatases shares a common regulatory switch with proteasemal proteases. ELife, 2017, 6 , .	2.8	28
1698	Transcriptome analysis of osmotic-responsive genes in ABA-dependent and -independent pathways in wheat (<i>Triticum aestivum</i> L.) roots. PeerJ, 2019, 7, e6519.	0.9	18
1699	Genome-wide characterization and expression analysis of <i>PP2CA</i> family members in response to ABA and osmotic stress in <i <="" gossypium="" i=""> </i>	0.9	11
1700	Abiotic stress responses in plants. Nature Reviews Genetics, 2022, 23, 104-119.	7.7	710
1701	Genome-wide association study revealed genetic variations of ABA sensitivity controlled by multiple stress-related genes in rice. Stress Biology, 2021, $1, 1$.	1.5	1
1702	Plants Saline Environment in Perception with Rhizosphere Bacteria Containing 1-Aminocyclopropane-1-Carboxylate Deaminase. International Journal of Molecular Sciences, 2021, 22, 11461.	1.8	17
1703	Salt Stress Promotes Abscisic Acid Accumulation to Affect Cell Proliferation and Expansion of Primary Roots in Rice. International Journal of Molecular Sciences, 2021, 22, 10892.	1.8	30
1704	OsANN4 modulates ROS production and mediates Ca2+ influx in response to ABA. BMC Plant Biology, 2021, 21, 474.	1.6	12
1706	Lossâ€ofâ€function of <scp>ARABIDOPSIS Fâ€BOX PROTEIN HYPERSENSITIVE TO ABA</scp> 1 enhances drought tolerance and delays germination. Physiologia Plantarum, 2021, 173, 2376-2389.	2.6	10
1707	A Transcriptome Analysis Revealing the New Insight of Green Light on Tomato Plant Growth and Drought Stress Tolerance. Frontiers in Plant Science, 2021, 12, 649283.	1.7	8
1708	<i>Thinopyrum intermedium</i> TiAP1 interacts with a chitin deacetylase from <i>Blumeria graminis</i> f. sp. <i>tritici</i> and increases the resistance to <i>Bgt</i> in wheat. Plant Biotechnology Journal, 2022, 20, 454-467.	4.1	7
1710	ABA and Bud Dormancy in Perennials: Current Knowledge and Future Perspective. Genes, 2021, 12, 1635.	1.0	36
1711	Increasing yield on dry fields: molecular pathways with growing potential. Plant Journal, 2022, 109, 323-341.	2.8	13
1712	O-fucosylation of CPN20 by SPINDLY Derepresses Abscisic Acid Signaling During Seed Germination and Seedling Development. Frontiers in Plant Science, 2021, 12, 724144.	1.7	12

#	Article	IF	CITATIONS
1713	Molecular design of strigolactone biosynthetic inhibitors for plant chemical biology. Journal of Pesticide Sciences, 2009, 34, 319-323.	0.8	1
1714	Mechanistic Basis for Plant Responses to Drought Stress: Regulatory Mechanism of Abscisic Acid Signaling. Nihon Kessho Gakkaishi, 2011, 53, 178-185.	0.0	O
1715	Recent Progress in Abscisic Acid Receptor Research. Seibutsu Butsuri, 2011, 51, 026-027.	0.0	0
1716	Functional Analysis of a type-2C Protein Phosphatase (AtPP2C52) in <i>Arabidopsis thaliana</i> Genomics and Applied Biology, 0, , .	0.0	0
1717	Investigating the Phytohormone Ethylene Response Pathway by Chemical Genetics. Methods in Molecular Biology, 2014, 1056, 63-77.	0.4	0
1718	ABA and Its Derivatives: Chemistry and Physiological Functions. , 2014, , 1-20.		1
1719	ABA Transport by ABCG Transporter Proteins. Signaling and Communication in Plants, 2014, , 39-47.	0.5	0
1721	Protein Kinases and Phosphatases Involved in ABA Signaling. , 2014, , 137-175.		2
1722	ABA Regulation of Stomatal Movement. , 2014, , 287-313.		2
1723	Structural Basis of ABA Perception by PYR/PYL/RCAR Receptors. , 2014, , 117-135.		3
1724	ABA Regulation of Plant Response to Biotic Stresses. , 2014, , 409-429.		4
1725	ABA Signal Transduction Pathway in Plants: ABA Transport, Perception, Signaling and Post-Translational Modification. Journal of Life Science, 2014, 24, 196-208.	0.2	1
1726	Emergent Oscillatory Properties in Modelling Ion Transport of Guard Cells., 2015,, 323-342.		0
1727	Protein tweak boosts plants' drought tolerance. Nature, 0, , .	13.7	0
1731	Hormonal changes in spring barley after triazine herbicide treatment and its mixtures of regulators of polyamine biosynthesis. Potravinarstvo, 2017, 11, 156-161.	0.5	3
1733	Seed Dormancy at Molecular Level. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 3095-3106.	0.0	0
1745	Toward a better understanding of signaling networks in plants: yeast has the power!. EMBO Journal, 2019, 38, e102478.	3.5	2
1746	On the nature of non-protein receptors from the conceptual point of view. Paradigm for abscisic acid. Faktori Eksperimental Noi Evolucii Organizmiv, 0, 25, 131-136.	0.0	0

#	Article	IF	CITATIONS
1747	A Prelude of Plant Strategies to Deal with the Peril of Salinity: An Archive of Regulatory Responses. , 2020, , 221-252.		0
1750	Overexpression of a sour jujube gene ZjPYR1, encoding a putative abscisic acid receptor, increases sensitivity of the stomata and roots to ABA in Arabidopsis thaliana. Gene Expression Patterns, 2020, 36, 119117.	0.3	1
1752	Differential Regulation of Drought Responses in Two Phaseolus vulgaris Genotypes. Plants, 2020, 9, 1815.	1.6	7
1753	Metabolome and transcriptome analyses unravel the inhibition of embryo germination by abscisic acid in pear. Scientia Horticulturae, 2022, 292, 110652.	1.7	9
1754	Integrating transcriptome and physiological analyses to elucidate the molecular responses of buckwheat to graphene oxide. Journal of Hazardous Materials, 2022, 424, 127443.	6.5	11
1755	$1\hat{a}$ e 2 -OH of ABA and its analogs is a crucial functional group correspondence to seed germination and development of plants. Journal of Molecular Structure, 2022, 1249, 131650.	1.8	2
1756	How Can We Interpret the Large Number and Diversity of ABA Transporters?. Progress in Botany Fortschritte Der Botanik, 2020, , 233-257.	0.1	1
1757	Methods of Gene Expression Profiling to Understand Abiotic Stress Perception and Response in Legume Crops. Methods in Molecular Biology, 2020, 2107, 99-126.	0.4	2
1759	Type 2C Protein Phosphatases in Plant Signaling Pathways under Abiotic Stress., 2020,, 67-82.		0
1763	AtHAD1, A haloacid dehalogenase-like phosphatase, is involved in repressing the ABA response. Biochemical and Biophysical Research Communications, 2022, 587, 119-125.	1.0	4
1764	The ABA receptor gene MdPYL9 confers tolerance to drought stress in transgenic apple (Malus) Tj ETQq0 0 0 rgB	T /Oyerloc	k 10 Tf 50 3
1765	Plant Dehydrins: Expression, Regulatory Networks, and Protective Roles in Plants Challenged by Abiotic Stress. International Journal of Molecular Sciences, 2021, 22, 12619.	1.8	39
1766	Delineating Calcium Signaling Machinery in Plants: Tapping the Potential through Functional Genomics. Current Genomics, 2021, 22, 404-439.	0.7	6
1767	Activation of the ABA Signal Pathway Mediated by GABA Improves the Drought Resistance of Apple Seedlings. International Journal of Molecular Sciences, 2021, 22, 12676.	1.8	18
1768	Role of Basal ABA in Plant Growth and Development. Genes, 2021, 12, 1936.	1.0	69
1769	Sensor histidine kinases mediate ABA and osmostress signaling in the moss Physcomitrium patens. Current Biology, 2022, 32, 164-175.e8.	1.8	11
1770	HbSnRK2.6 Functions in ABA-Regulated Cold Stress Response by Promoting HbICE2 Transcriptional Activity in Hevea brasiliensis. International Journal of Molecular Sciences, 2021, 22, 12707.	1.8	4
1771	Adaptation of plants to salt stress: the role of the ion transporters. Journal of Plant Biochemistry and Biotechnology, 2021, 30, 668-683.	0.9	13

#	Article	IF	CITATIONS
1772	An ABA Functional Analogue B2 Enhanced Salt Tolerance by Inducing the Root Elongation and Reducing Peroxidation Damage in Maize Seedlings. International Journal of Molecular Sciences, 2021, 22, 12986.	1.8	4
1773	Raf-like kinases and receptor-like (pseudo)kinase GHR1 are required for stomatal vapor pressure difference response. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
1774	Hydrogen sulphide signalling in plant response to abiotic stress. Plant Biology, 2022, 24, 523-531.	1.8	9
1775	Genome-Wide Association Studies of Soybean Yield-Related Hyperspectral Reflectance Bands Using Machine Learning-Mediated Data Integration Methods. Frontiers in Plant Science, 2021, 12, 777028.	1.7	26
1776	PaPYL9 is involved in the regulation of apricot fruit ripening through ABA signaling pathway. Horticultural Plant Journal, 2022, 8, 461-473.	2.3	5
1777	Specialized metabolism and development: An unexpected friendship. Current Opinion in Plant Biology, 2021, 64, 102142.	3.5	4
1778	Diverse regulatory mechanisms of StARkin domains in land plants and mammals. Current Opinion in Plant Biology, 2021, 64, 102148.	3.5	3
1779	Molecular basis of the activation and dissociation of dimeric PYL2 receptor in abscisic acid signaling. Physical Chemistry Chemical Physics, 2022, 24, 724-734.	1.3	12
1780	Walnut JrGSTU23 and JrVHAc4 involve in drought tolerance via JrWRKY2-mediated upstream regulatory pathway. Scientia Horticulturae, 2022, 295, 110871.	1.7	3
1782	CIN-like TCP13 is essential for plant growth regulation under dehydration stress. Plant Molecular Biology, 2022, 108, 257-275.	2.0	16
1783	The Rice Abscisic Acid-Responsive RING Finger E3 Ligase OsRF1 Targets OsPP2C09 for Degradation and Confers Drought and Salinity Tolerance in Rice. Frontiers in Plant Science, 2021, 12, 797940.	1.7	9
1784	Phosphorylation of RNA Polymerase II by CDKC;2 Maintains the Arabidopsis Circadian Clock Period. Plant and Cell Physiology, 2022, 63, 450-462.	1.5	10
1785	Abscisic Acid Machinery Is under Circadian Clock Regulation at Multiple Levels. Stresses, 2022, 2, 65-78.	1.8	5
1786	Genome-wide identification and expression analysis of the cucumber <i>PYL</i> gene family. PeerJ, 2022, 10, e12786.	0.9	8
1787	Tripartite hormonal regulation of plasma membrane H+-ATPase activity. Trends in Plant Science, 2022, 27, 588-600.	4.3	16
1788	Photostable Abscisic Acid Agonists with a Geometrically Rigid Cyclized Side Chain. Journal of Agricultural and Food Chemistry, 2022, 70, 869-876.	2.4	5
1789	Increased abscisic acid sensitivity and drought tolerance of Arabidopsis by overexpression of poplar abscisic acid receptors. Plant Cell, Tissue and Organ Culture, 2022, 148, 231-245.	1.2	4
1790	Physiological, biochemical, and molecular mechanisms of plant steroid hormones brassinosteroids under drought-induced oxidative stress in plants. , 2022, , 99-130.		1

#	Article	IF	CITATIONS
1791	SiMYB19 from Foxtail Millet (Setaria italica) Confers Transgenic Rice Tolerance to High Salt Stress in the Field. International Journal of Molecular Sciences, 2022, 23, 756.	1.8	19
1792	The PYRâ€PP2Câ€CKL2 module regulates ABAâ€mediated actin reorganization during stomatal closure. New Phytologist, 2022, 233, 2168-2184.	3.5	21
1793	Calcium-dependent ABA signaling functions in stomatal immunity by regulating rapid SA responses in guard cells. Journal of Plant Physiology, 2022, 268, 153585.	1.6	12
1794	Inhibition of ABA-mediated Responses by Dithiothreitol in Plants. Journal of Plant Growth Regulation, 0, , 1.	2.8	0
1796	Plant carotenoids: recent advances and future perspectives. Molecular Horticulture, 2022, 2, .	2.3	118
1797	Biological Parts for Engineering Abiotic Stress Tolerance in Plants. Biodesign Research, 2022, 2022, .	0.8	21
1798	SKIP Regulates ABA Signaling through Alternative Splicing in Arabidopsis. Plant and Cell Physiology, 2022, 63, 494-507.	1.5	7
1799	Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants. EMBO Journal, 2022, 41, e108664.	3.5	39
1800	Identification of stomatal-regulating molecules from de novo arylamine collection through aromatic C–H amination. Scientific Reports, 2022, 12, 949.	1.6	5
1801	Physiological and Multi-Omics Approaches for Explaining Drought Stress Tolerance and Supporting Sustainable Production of Rice. Frontiers in Plant Science, 2021, 12, 803603.	1.7	9
1802	Genome-wide association analysis provides molecular insights into natural variation in watermelon seed size. Horticulture Research, 2022, 9, .	2.9	16
1803	Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes. Plants, 2022, 11, 386.	1.6	115
1804	Functional Characterization of Tomato Phytochrome A and B1B2 Mutants in Response to Heat Stress. International Journal of Molecular Sciences, 2022, 23, 1681.	1.8	11
1805	A NAC transcription factor, TaNAC5D-2, acts as a positive regulator of drought tolerance through regulating water loss in wheat (Triticum aestivum L.). Environmental and Experimental Botany, 2022, 196, 104805.	2.0	12
1806	ABA-induced phosphorylation of basic leucine zipper 29, ABSCISIC ACID INSENSITIVE 19, and Opaque2 by SnRK2.2 enhances gene transactivation for endosperm filling in maize. Plant Cell, 2022, 34, 1933-1956.	3.1	16
1807	Chemical Approaches for Improving Plant Water Use. Methods in Molecular Biology, 2022, 2462, 221-230.	0.4	4
1808	Inhibition of Type 2C Protein Phosphatases by ABA Receptors in Abscisic Acid–Mediated Plant Stress Responses. Methods in Molecular Biology, 2022, 2462, 1-16.	0.4	1
1809	Inhibition of SnRK2 Kinases by Type 2C Protein Phosphatases. Methods in Molecular Biology, 2022, 2462, 17-30.	0.4	1

#	Article	IF	CITATIONS
1810	The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. Plant Cell, 2022, , .	3.1	8
1811	ABA Transport Assay in Plant Single-Cell System. Methods in Molecular Biology, 2022, 2462, 71-84.	0.4	0
1812	Reconstitution of the Core in : Transcriptional Activators. Methods in Molecular Biology, 2022, 2462, 31-43.	0.4	1
1813	Live Imaging of Abscisic Acid Dynamics Using Genetically Encoded Fluorescence Resonance Energy Transfer (FRET)-Based ABA Biosensors. Methods in Molecular Biology, 2022, 2462, 135-154.	0.4	2
1814	Screening of by a Yeast Two-Hybrid System-Based Screening Using the Receptor Complex as a Sensor. Methods in Molecular Biology, 2022, 2462, 85-99.	0.4	0
1815	Affinity Purification of Ubiquitinated Proteins Using p62-Agarose to Assess Ubiquitination of Clade A PP2Cs. Methods in Molecular Biology, 2022, 2462, 45-57.	0.4	0
1816	Transcriptomic analysis reveals phytohormone and photosynthetic molecular mechanisms of a submerged macrophyte in response to microcystin-LR stress. Aquatic Toxicology, 2022, 245, 106119.	1.9	5
1817	Parental and Environmental Control of Seed Dormancy in <i>Arabidopsis thaliana</i> . Annual Review of Plant Biology, 2022, 73, 355-378.	8.6	28
1818	Genome-Wide Analysis of U-box E3 Ubiquitin Ligase Family in Response to ABA Treatment in Salvia miltiorrhiza. Frontiers in Plant Science, 2022, 13, 829447.	1.7	5
1819	CmABF1 and CmCBF4 cooperatively regulate putrescine synthesis to improve cold tolerance of melon seedlings. Horticulture Research, 2022, 9, .	2.9	8
1820	Dynamic transcriptome profiling revealed key genes and pathways associated with cold stress in castor (Ricinus communis L.). Industrial Crops and Products, 2022, 178, 114610.	2.5	5
1821	Rice functional genomics: decades' efforts and roads ahead. Science China Life Sciences, 2022, 65, 33-92.	2.3	107
1822	The interface of central metabolism with hormone signaling in plants. Current Biology, 2021, 31, R1535-R1548.	1.8	22
1823	Genome-wide association study identifies variants of <i>GhSAD1</i> conferring cold tolerance in cotton. Journal of Experimental Botany, 2022, 73, 2222-2237.	2.4	9
1824	Interâ€issue and interâ€organ signaling in drought stress response and phenotyping of drought tolerance. Plant Journal, 2022, 109, 342-358.	2.8	50
1825	Glucohexaose-induced protein phosphatase 2C regulates cell redox status of cucumber seedling. Journal of Biosciences, 2018, 43, 117-126.	0.5	1
1826	A BPL3-nalncFL7-FL7 Module Regulates HAI1-Medaited Dephosphorylation of MPK3/6 in Plant Immunity. SSRN Electronic Journal, 0, , .	0.4	0
1827	Salty or sweet? Guard cell signaling and osmotic control under saline conditions. Advances in Botanical Research, 2022, , 61-87.	0.5	0

#	Article	IF	CITATIONS
1828	Modulation of abscisic acid signaling for stomatal operation under salt stress conditions. Advances in Botanical Research, 2022, , 89-121.	0.5	2
1829	Stomatal regulation and adaptation to salinity in glycophytes and halophytes. Advances in Botanical Research, 2022, , .	0.5	0
1830	Application of omics technologies in single-type guard cell studies for understanding the mechanistic basis of plant adaptation to saline conditions. Advances in Botanical Research, 2022, , 249-270.	0.5	2
1831	The Involvement of Abscisic Acid-Insensitive Mutants in Low Phosphate Stress Responses During Rhizosphere Acidification, Anthocyanin Accumulation and Pi Homeostasis in Arabidopsis. SSRN Electronic Journal, 0, , .	0.4	0
1832	Signaling molecules and transcriptional reprogramming for stomata operation under salt stress. Advances in Botanical Research, 2022, , .	0.5	0
1833	Transcriptome analysis of oil palm pistil during pollination and fertilization to unravel the role of phytohormone biosynthesis and signaling genes. Functional and Integrative Genomics, 2022, 22, 261-278.	1.4	4
1834	PYL1- and PYL8-like ABA Receptors of Nicotiana benthamiana Play a Key Role in ABA Response in Seed and Vegetative Tissue. Cells, 2022, 11, 795.	1.8	5
1835	Protein structure determination as a powerful tool for the sustainable development of agriculture field (and its potential relevance in Indonesia). IOP Conference Series: Earth and Environmental Science, 2022, 978, 012021.	0.2	1
1836	BnaA03.MKK5-BnaA06.MPK3/BnaC03.MPK3 Module Positively Contributes to Sclerotinia sclerotiorum Resistance in Brassica napus. Plants, 2022, 11, 609.	1.6	10
1838	PpNUDX8, a Peach NUDIX Hydrolase, Plays a Negative Regulator in Response to Drought Stress. Frontiers in Plant Science, 2021, 12, 831883.	1.7	7
1839	Integrative analysis of the pharmaceutical active ingredient and transcriptome of the aerial parts of Glycyrrhiza uralensis under salt stress reveals liquiritin accumulation via ABA-mediated signaling. Molecular Genetics and Genomics, 2022, 297, 333-343.	1.0	5
1840	COP1 positively regulates ABA signaling during Arabidopsis seedling growth in darkness by mediating ABA-induced ABI5 accumulation. Plant Cell, 2022, 34, 2286-2308.	3.1	17
1841	BAK1 plays contrasting roles in regulating abscisic acidâ€induced stomatal closure and abscisic acidâ€inhibited primary root growth in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2022, 64, 1264-1280.	4.1	18
1842	OsNAC016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8. Plant Physiology, 2022, 189, 1296-1313.	2.3	27
1843	Genome-Wide Characterization and Expression Analysis of the Abscisic Acid Receptors PYR/PYL/RCAR (PYLs) in Chinese Cabbage during Abiotic Stresses. Russian Journal of Plant Physiology, 2022, 69, 1.	0.5	0
1844	Genome-wide identification and comparative analysis of the PYL gene family in eight Rosaceae species and expression analysis of seeds germination in pear. BMC Genomics, 2022, 23, 233.	1.2	8
1845	Differential gene expression in tall fescue tissues in response to water deficit. Plant Genome, 2022, 15, e20199.	1.6	9
1846	SALT AND ABA RESPONSE ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice. Plant Physiology, 2022, 189, 1110-1127.	2.3	30

#	Article	IF	CITATIONS
1847	<i>OsHIPL1</i> , a hedgehogâ€interacting proteinâ€like 1 protein, increases seed vigour in rice. Plant Biotechnology Journal, 2022, 20, 1346-1362.	4.1	11
1848	Protoplast Dissociation and Transcriptome Analysis Provides Insights to Salt Stress Response in Cotton. International Journal of Molecular Sciences, 2022, 23, 2845.	1.8	13
1850	Regulatory Role of Circadian Clocks on ABA Production and Signaling, Stomatal Responses, and Water-Use Efficiency under Water-Deficit Conditions. Cells, 2022, 11, 1154.	1.8	15
1851	FERONIA Receptor Kinase Integrates with Hormone Signaling to Regulate Plant Growth, Development, and Responses to Environmental Stimuli. International Journal of Molecular Sciences, 2022, 23, 3730.	1.8	14
1853	DNA and Histone Methylation Regulates Different Types of Fruit Ripening by Transcriptome and Proteome Analyses. Journal of Agricultural and Food Chemistry, 2022, 70, 3541-3556.	2.4	12
1854	Synthesis and SAR of 2,3â€Dihydroâ€1â€benzofuranâ€4â€carboxylates: Potent Salicylic Acidâ€Based Lead Structi against Plant Stress. European Journal of Organic Chemistry, 2022, 2022, .	ures 1.2	2
1855	Non-Expresser of PR-Genes 1 Positively Regulates Abscisic Acid Signaling in ArabidopsisÂthaliana. Plants, 2022, 11, 815.	1.6	3
1856	ZmPP2C26 Alternative Splicing Variants Negatively Regulate Drought Tolerance in Maize. Frontiers in Plant Science, 2022, 13, 851531.	1.7	19
1857	Integrated transcriptome and proteome analyses provide insight into abiotic stress crosstalks in bermudagrass. Environmental and Experimental Botany, 2022, 199, 104864.	2.0	3
1858	Monomerization of abscisic acid receptors through CARKsâ€mediated phosphorylation. New Phytologist, 2022, 235, 533-549.	3.5	5
1859	Phosphorylation of DUF1639 protein by osmotic stress/ABA-activated protein kinase 10 regulates abscisic acid-induced antioxidant defense in rice. Biochemical and Biophysical Research Communications, 2022, 604, 30-36.	1.0	3
1860	Orphan gene PpARDT positively involved in drought tolerance potentially by enhancing ABA response in Physcomitrium (Physcomitrella) patens. Plant Science, 2022, 319, 111222.	1.7	7
1861	GRAS-type transcription factor CaGRAS1 functions as a positive regulator of the drought response in Capsicum annuum. Environmental and Experimental Botany, 2022, 198, 104853.	2.0	2
1862	Development of small molecules that improve drought stress tolerance in plants. Japanese Journal of Pesticide Science, 2021, 46, 122-128.	0.0	О
1863	The wheat ABA receptor gene <i>TaPYL1‶B</i> contributes to drought tolerance and grain yield by increasing waterâ€use efficiency. Plant Biotechnology Journal, 2022, 20, 846-861.	4.1	55
1864	Designed ABA receptor agonists: A new tool to improve crop quality. Reproduction and Breeding, 2021, 1, 210-212.	0.8	2
1865	Molecular and Physiological Perspectives of Abscisic Acid Mediated Drought Adjustment Strategies. Plants, 2021, 10, 2769.	1.6	3
1867	Plant target of rapamycin signaling network: Complexes, conservations, and specificities. Journal of Integrative Plant Biology, 2022, 64, 342-370.	4.1	24

#	Article	IF	CITATIONS
1868	Structural and Functional Insights into the Role of Guard Cell Ion Channels in Abiotic Stress-Induced Stomatal Closure. Plants, 2021, 10, 2774.	1.6	15
1869	Phosphorylation of SWEET sucrose transporters regulates plant root:shoot ratio under drought. Nature Plants, 2022, 8, 68-77.	4.7	91
1870	Identification of Abscisic Acid-Dependent Phosphorylated Basic Helix-Loop-Helix Transcription Factors in Guard Cells of Vicia faba by Mass Spectrometry. Frontiers in Plant Science, 2021, 12, 735271.	1.7	3
1871	Abscisic acid negatively regulates the Polycombâ€mediated H3K27me3 through the PHDâ€finger protein, VIL1. New Phytologist, 2022, 235, 1057-1069.	3.5	8
1872	Phosphorylation of the plasma membrane H+-ATPase AHA2 by BAK1 is required for ABA-induced stomatal closure in Arabidopsis. Plant Cell, 2022, 34, 2708-2729.	3.1	40
1873	PYR/PYL/RCAR Receptors Play a Vital Role in the Abscisic-Acid-Dependent Responses of Plants to External or Internal Stimuli. Cells, 2022, 11, 1352.	1.8	23
2009	Interactions between autophagy and phytohormone signaling pathways in plants. FEBS Letters, 2022, 596, 2198-2214.	1.3	9
2010	Etiolated Hypocotyls: A New System to Study the Impact of Abiotic Stress on Cell Expansion. Methods in Molecular Biology, 2022, 2494, 195-205.	0.4	0
2012	Synthesis and characterization of abscisic acid receptor modulators. Methods in Enzymology, 2022, , .	0.4	0
2013	Brassinosteroid-Insensitive 1-Associated Receptor Kinase 1 Modulates Abscisic Acid Signaling by Inducing PYR1 Monomerization and Association With ABI1 in Arabidopsis. Frontiers in Plant Science, 2022, 13, 849467.	1.7	5
2014	Roles of Natural Abscisic Acids in Fruits during Fruit Development and under Environmental Stress. Frontiers in Natural Product Chemistry, 2022, , 43-72.	0.1	0
2015	ABA activated SnRK2 kinases: an emerging role in plant growth and physiology. Plant Signaling and Behavior, 2022, 17, 2071024.	1.2	31
2016	Identification of PP2C Genes in Tibetan Hulless Barley (Hordeum vulgare var. nudum) Under Dehydration Stress and Initiatory Expression and Functional Analysis of HvPP2C59. Plant Molecular Biology Reporter, 2022, 40, 611-627.	1.0	3
2017	Abscisic Acid: Role in Fruit Development and Ripening. Frontiers in Plant Science, 2022, 13, .	1.7	22
2018	Coumarin Derivatives Containing Sulfonamide and Dithioacetal Moieties: Design, Synthesis, Antiviral Activity, and Mechanism. Journal of Agricultural and Food Chemistry, 2022, 70, 5773-5783.	2.4	12
2019	Unraveling the importance of EF-hand-mediated calcium signaling in plants. South African Journal of Botany, 2022, 148, 615-633.	1.2	13
2020	Coordination of plant growth and abiotic stress responses by tryptophan synthase \hat{l}^2 subunit 1 through modulation of tryptophan and ABA homeostasis in Arabidopsis. Molecular Plant, 2022, 15, 973-990.	3.9	43
2021	Overexpression of PpSnRK1α in Tomato Increased Autophagy Activity under Low Nutrient Stress. International Journal of Molecular Sciences, 2022, 23, 5464.	1.8	1

#	Article	IF	CITATIONS
2022	Integrated physiological, transcriptomic and metabolomic analysis of the response of Trifolium pratense L. to Pb toxicity. Journal of Hazardous Materials, 2022, 436, 129128.	6.5	48
2023	Molecular communication network and its applications in crop sciences. Planta, 2022, 255, 128.	1.6	4
2025	GhHAI2, GhAHG3, and GhABI2 Negatively Regulate Osmotic Stress Tolerance via ABA-Dependent Pathway in Cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2022, 13, .	1.7	5
2026	Genome-wide identification, characterization and expression analysis of the ABA receptor PYL gene family in response to ABA, photoperiod, and chilling in vegetative buds of Liriodendron chinense. Scientia Horticulturae, 2022, 303, 111200.	1.7	8
2027	Genetic loci associated with freezing tolerance in a European rapeseed (<scp> <i>Brassica napus</i>) Tj ETQq0</scp>	0 OrgBT /0	Ovgrlock 10 T
2028	Transcriptomic Analysis Reveals That Exogenous Indole-3-Butyric Acid Affects the Rooting Process During Stem Segment Culturing of Cinnamomum camphora Linalool Type. Plant Molecular Biology Reporter, 2022, 40, 661-673.	1.0	3
2029	Core Components of Abscisic Acid Signaling and Their Post-translational Modification. Frontiers in Plant Science, 2022, 13 , .	1.7	9
2030	Genomic and Transcriptomic Dissection of the Large-Effect Loci Controlling Drought-Responsive Agronomic Traits in Wheat. Agronomy, 2022, 12, 1264.	1.3	0
2031	Exogenous melatonin improves the resistance to cucumber bacterial angular leaf spot caused by <i>Pseudomonas syringae</i> pv. <i>Lachrymans</i> Physiologia Plantarum, 2022, 174, .	2.6	5
2032	Experimental and conceptual approaches to root water transport. Plant and Soil, 2022, 478, 349-370.	1.8	10
2033	Overexpression of grape ABA receptor gene VaPYL4 enhances tolerance to multiple abiotic stresses in Arabidopsis. BMC Plant Biology, 2022, 22, .	1.6	16
2034	Real-Time Fluorescence Imaging of the Abscisic Acid Receptor Allows Nondestructive Visualization of Plant Stress. ACS Applied Materials & Samp; Interfaces, 2022, 14, 28489-28500.	4.0	7
2035	Leucine-rich repeat receptor-like kinase OsASLRK regulates abscisic acid and drought responses via cooperation with S-like RNase OsRNS4 in rice. Environmental and Experimental Botany, 2022, 201, 104949.	2.0	5
2036	Co-silencing of ABA receptors (SIRCAR) reveals interactions between ABA and ethylene signaling during tomato fruit ripening. Horticulture Research, 2022, 9, .	2.9	11
2037	Inference of a Boolean Network From Causal Logic Implications. Frontiers in Genetics, 0, 13, .	1.1	5
2038	Ubiquitin ligases at the nexus of plant responses to biotic and abiotic stresses. Essays in Biochemistry, 2022, 66, 123-133.	2.1	6
2039	RAF22, ABI1 and OST1 form a dynamic interactive network that optimizes plant growth and responses to drought stress in Arabidopsis. Molecular Plant, 2022, 15, 1192-1210.	3.9	22
2040	Vernalization attenuates dehydration tolerance in winter-annual Arabidopsis. Plant Physiology, 0, , .	2.3	3

#	Article	IF	CITATIONS
2041	Mitogenâ€activated protein kinase <scp>TaMPK3</scp> suppresses <scp>ABA</scp> response by destabilising <scp>TaPYL4</scp> receptor in wheat. New Phytologist, 2022, 236, 114-131.	3.5	14
2042	Actual directions of modern biotechnologies of wheat. Fiziologia Rastenij I Genetika, 2022, 54, 187-213.	0.1	1
2043	Origin of the genome editing systems: application for crop improvement., 2022, 77, 3353-3383.		1
2044	Proteomic analysis of Euryale ferox Salisb seeds at different developmental stages. Gene, 2022, 834, 146645.	1.0	3
2045	The involvement of abscisic acid-insensitive mutants in low phosphate stress responses during rhizosphere acidification, anthocyanin accumulation and Pi homeostasis in Arabidopsis. Plant Science, 2022, 322, 111358.	1.7	3
2046	Construction of Arabidopsis At2g34610 Gene Editing and Overexpression Vector. Botanical Research, 2022, 11, 486-493.	0.0	O
2047	Efficient Ultrasound-Assisted Approach to <i>N</i> -Benzensulfonyl Phenylacetamide via CuSO ₄ /NaAsc Catalysis in Water and Its Inhibition Activity of Seed Germination. Chinese Journal of Organic Chemistry, 2022, 42, 1667.	0.6	1
2048	Overexpression of GhABF3 increases cotton(Gossypium hirsutum L.) tolerance to salt and drought. BMC Plant Biology, 2022, 22, .	1.6	9
2049	Characterization of Organellar-Specific ABA Responses during Environmental Stresses in Tobacco Cells and Arabidopsis Plants. Cells, 2022, 11, 2039.	1.8	4
2050	Abscisic acid influences ammonium transport via regulation of kinase CIPK23 and ammonium transporters. Plant Physiology, 0, , .	2.3	7
2051	Comparative transcriptomics reveals new insights into melatonin-enhanced drought tolerance in naked oat seedlings. PeerJ, 0, 10, e13669.	0.9	6
2052	Molecular Mechanisms of Plant Responses to Salt Stress. Frontiers in Plant Science, 0, 13, .	1.7	26
2053	Mining the Roles of Wheat (Triticum aestivum) SnRK Genes in Biotic and Abiotic Responses. Frontiers in Plant Science, $0,13,13$	1.7	2
2054	Overexpression VaPYL9 improves cold tolerance in tomato by regulating key genes in hormone signaling and antioxidant enzyme. BMC Plant Biology, 2022, 22, .	1.6	12
2055	QTL Mapping and Candidate Gene Analysis for Seed Germination Response to Low Temperature in Rice. International Journal of Molecular Sciences, 2022, 23, 7379.	1.8	2
2056	Red and Blue Light Affect the Formation of Adventitious Roots of Tea Cuttings (Camellia sinensis) by Regulating Hormone Synthesis and Signal Transduction Pathways of Mature Leaves. Frontiers in Plant Science, 0, 13, .	1.7	5
2057	Cold stress regulates accumulation of flavonoids and terpenoids in plants by phytohormone, transcription process, functional enzyme, and epigenetics. Critical Reviews in Biotechnology, 2023, 43, 680-697.	5.1	23
2058	Participation of Proline in Plant Adaptation to Stress Factors and Its Application in Agrobiotechnology (Review). Applied Biochemistry and Microbiology, 2022, 58, 347-360.	0.3	4

#	Article	IF	CITATIONS
2059	PtoNF-YC9-SRMT-PtoRD26 module regulates the high saline tolerance of a triploid poplar. Genome Biology, 2022, 23, .	3.8	10
2060	The Arabidopsis <scp>IDD14</scp> transcription factor interacts with <scp>bZIP</scp> â€type <scp>ABFs</scp> / <scp>AREBs</scp> and cooperatively regulates <scp>ABA</scp> â€mediated drought tolerance. New Phytologist, 2022, 236, 929-942.	3.5	13
2061	AtGAP1 Promotes the Resistance to Pseudomonas syringae pv. tomato DC3000 by Regulating Cell-Wall Thickness and Stomatal Aperture in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 7540.	1.8	2
2062	Allele mining of wheat ABA receptor at TaPYL4 suggests neo-functionalization among the wheat homoeologs. Journal of Integrative Agriculture, 2022, 21, 2183-2196.	1.7	3
2063	The F-Box/DUF295 Brassiceae specific 2 is involved in ABA-inhibited seed germination and seedling growth in Arabidopsis. Plant Science, 2022, 323, 111369.	1.7	1
2064	A briefly overview of the research progress for the abscisic acid analogues. Frontiers in Chemistry, 0, 10, .	1.8	2
2065	Genome-Wide Identification and Expression Analysis of SnRK2 Gene Family in Dormant Vegetative Buds of Liriodendron chinense in Response to Abscisic Acid, Chilling, and Photoperiod. Genes, 2022, 13, 1305.	1.0	4
2066	Melatonin Promotes Seed Germination via Regulation of ABA Signaling Under Low Temperature Stress in Cucumber. Journal of Plant Growth Regulation, 2023, 42, 2232-2245.	2.8	10
2067	A Modified Yeast Two-Hybrid Platform Enables Dynamic Control of Expression Intensities to Unmask Properties of Protein–Protein Interactions. ACS Synthetic Biology, 2022, 11, 2589-2598.	1.9	0
2068	Three strategies of transgenic manipulation for crop improvement. Frontiers in Plant Science, 0, 13, .	1.7	5
2069	Underlying Biochemical and Molecular Mechanisms for Seed Germination. International Journal of Molecular Sciences, 2022, 23, 8502.	1.8	23
2070	Differential regulations of abscisic acid-induced desiccation tolerance and vegetative dormancy by group B3 Raf kinases in liverworts. Frontiers in Plant Science, 0, 13, .	1.7	2
2071	Dynamic modeling of ABA-dependent expression of the Arabidopsis RD29A gene. Frontiers in Plant Science, $0, 13, \ldots$	1.7	4
2072	Genome-Wide Identification of the PYL Gene Family in Chenopodium quinoa: From Genes to Protein 3D Structure Analysis. Stresses, 2022, 2, 290-307.	1.8	2
2073	Combining Physio-Biochemical Characterization and Transcriptome Analysis Reveal the Responses to Varying Degrees of Drought Stress in Brassica napus L International Journal of Molecular Sciences, 2022, 23, 8555.	1.8	5
2074	DELLAs directed gibberellins responses orchestrate crop development: A brief review. Crop Science, 0,	0.8	1
2075	Comparative transcriptomic profiling in the pulp and peel of pitaya fruit uncovers the gene networks regulating pulp color formation. Frontiers in Plant Science, 0, 13, .	1.7	1
2076	Genome-wide identification and expression analysis of the cucumber PP2C gene family. BMC Genomics, 2022, 23, .	1.2	11

#	Article	IF	Citations
2078	Network of the transcriptome and metabolomics reveals a novel regulation of drought resistance during germination in wheat. Annals of Botany, 2022, 130, 717-735.	1.4	6
2079	A comparative study on the effects of strong light stress on the photosynthetic characteristics of the shade plant Camellia petelotii (Merr.) Sealy. , 0, , .		3
2080	Directed Evolution of Herbicide Biosensors in a Fluorescence-Activated Cell-Sorting-Compatible Yeast Two-Hybrid Platform. ACS Synthetic Biology, 2022, 11, 2880-2888.	1.9	4
2081	Comprehensive functional analysis of the PYL-PP2C-SnRK2s family in Bletilla striata reveals that BsPP2C22 and BsPP2C38 interact with BsPYLs and BsSnRK2s in response to multiple abiotic stresses. Frontiers in Plant Science, 0, 13, .	1.7	4
2082	NUCLEAR PORE ANCHOR and EARLY IN SHORT DAYS 4 negatively regulate abscisic acid signaling by inhibiting Snf1â€related protein kinase2 activity and stability in <i>Arabidopsis</i> Plant Biology, 2022, 64, 2060-2074.	4.1	8
2083	AtEAU1 and AtEAU2, Two EAR Motif-Containing ABA Up-Regulated Novel Transcription Repressors Regulate ABA Response in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 9053.	1.8	2
2084	A novel ABA-insensitive mutant in Arabidopsis reveals molecular network of ABA-induced anthocyanin accumulation and abiotic stress tolerance. Journal of Plant Physiology, 2022, 278, 153810.	1.6	9
2085	AtS40-1, a group I DUF584 protein positively regulates ABA response and salt tolerance in Arabidopsis. Gene, 2022, 846, 146846.	1.0	3
2086	Crosstalk of Putrescine Synthetic Pathway with Abscisic Acid Signaling Pathway in Cold Tolerance of Potato. SSRN Electronic Journal, 0, , .	0.4	0
2087	Receptor-like kinases induced by abscisic acid in plants. , 2023, , 305-328.		0
2088	The Examination of the Role of Rice Lysophosphatidic Acid Acyltransferase 2 in Response to Salt and Drought Stresses. International Journal of Molecular Sciences, 2022, 23, 9796.	1.8	0
2089	The key clock component ZEITLUPE (ZTL) negatively regulates ABA signaling by degradation of CHLH in Arabidopsis. Frontiers in Plant Science, $0,13,.$	1.7	1
2091	The cell biology of primary cell walls during salt stress. Plant Cell, 2023, 35, 201-217.	3.1	38
2092	Abscisic acid modulates neighbor proximity-induced leaf hyponasty in Arabidopsis. Plant Physiology, 2023, 191, 542-557.	2.3	13
2093	Later Growth Cessation and Increased Freezing Tolerance Potentially Result in Later Dormancy in Evergreen Iris Compared with Deciduous Iris. International Journal of Molecular Sciences, 2022, 23, 11123.	1.8	2
2094	<scp><i>TaFDL2‶A</i></scp> confers drought stress tolerance by promoting <scp>ABA</scp> biosynthesis, <scp>ABA</scp> responses, and <scp>ROS</scp> scavenging in transgenic wheat. Plant Journal, 2022, 112, 722-737.	2.8	24
2095	<i>PePYL4</i> enhances drought tolerance by modulating water-use efficiency and ROS scavenging in <i>Populus</i> . Tree Physiology, 2023, 43, 102-117.	1.4	9
2096	Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomatal closure in Arabidopsis. Plant Cell, 2023, 35, 239-259.	3.1	20

#	Article	IF	CITATIONS
2097	TaPYL4, an ABA receptor gene of wheat, positively regulates plant drought adaptation through modulating the osmotic stress-associated processes. BMC Plant Biology, 2022, 22, .	1.6	6
2098	Genome-Wide Identification, Gene Structure, and Expression Analyses of the NtPP2C Gene Family in Nicotiana tabacum in Response to Low Temperature, Salt, and Drought Conditions. Russian Journal of Plant Physiology, 2022, 69, .	0.5	0
2099	Melatonin-induced physiology and transcriptome changes in banana seedlings under salt stress conditions. Frontiers in Plant Science, $0,13,\ldots$	1.7	16
2100	B2, an abscisic acid mimic, improves salinity tolerance in winter wheat seedlings via improving activity of antioxidant enzymes. Frontiers in Plant Science, 0, 13 , .	1.7	1
2101	Transcription factors ABF4 and ABR1 synergistically regulate amylase-mediated starch catabolism in drought tolerance. Plant Physiology, 2023, 191, 591-609.	2.3	15
2102	CycC1;1 negatively modulates ABA signaling by interacting with and inhibiting ABI5 during seed germination. Plant Physiology, 2022, 190, 2812-2827.	2.3	5
2103	Anlysis and Identification of Hormone Changes and Related Regulatory Genes of Ziziphus jujuba Mill. at the Peak of Abortion. Russian Journal of Plant Physiology, 2022, 69, .	0.5	0
2104	A bHLH transcription factor, SlbHLH96, promotes drought tolerance in tomato. Horticulture Research, 2022, 9, .	2.9	24
2105	Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato. Journal of Integrative Plant Biology, 2023, 65, 10-24.	4.1	19
2106	Crosstalk of Putrescine Synthetic Pathway with Abscisic Acid Signaling Pathway in Cold Tolerance of Potato. Environmental and Experimental Botany, 2022, , 105085.	2.0	2
2107	Guard cell anion channel PbrSLAC1 regulates stomatal closure through PbrSnRK2.3 protein kinases. Plant Science, 2022, 325, 111487.	1.7	1
2108	Abscisic Acid Signaling in the Regulation of Postharvest Physiological Deterioration of Sliced Cassava Tuberous Roots. Journal of Agricultural and Food Chemistry, 2022, 70, 12830-12840.	2.4	3
2109	Design, Synthesis and Seed Germination Inhibition Activity of Quinoline-6-sulfonamide Compounds. Chinese Journal of Organic Chemistry, 2022, 42, 2947.	0.6	1
2110	Functional genomics in plant abiotic stress responses and tolerance: From gene discovery to complex regulatory networks and their application in breeding. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2022, 98, 470-492.	1.6	10
2111	The RNA <i>N</i> ⁶ â€methyladenosine demethylase ALKBH9B modulates ABA responses in <i>Arabidopsis</i> <. Journal of Integrative Plant Biology, 2022, 64, 2361-2373.	4.1	13
2112	BPL3 binds the long non-coding RNA <i>nalncFL7</i> to suppress <i>FORKED-LIKE7</i> and modulate HAI1-mediated MPK3/6 dephosphorylation in plant immunity. Plant Cell, 2023, 35, 598-616.	3.1	14
2114	Stomata at the crossroad of molecular interaction between biotic and abiotic stress responses in plants. Frontiers in Plant Science, $0,13,.$	1.7	13
2115	<scp>SnRK2</scp> .4â€mediated phosphorylation of <scp>ABF2</scp> regulates <scp><i>ARGININE DECARBOXYLASE</i></scp> expression and putrescine accumulation under drought stress. New Phytologist, 2023, 238, 216-236.	3.5	22

#	Article	IF	CITATIONS
2116	Editorial: Roles and regulatory mechanisms of ABA in plant development. Frontiers in Plant Science, 0, 13, .	1.7	0
2117	The OPEN STOMATA1–SPIRAL1 module regulates microtubule stability during abscisic acid-induced stomatal closure in Arabidopsis. Plant Cell, 2023, 35, 260-278.	3.1	19
2118	CKL2 mediates the crosstalk between abscisic acid and brassinosteroid signaling to promote swift growth recovery after stress in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2023, 65, 64-81.	4.1	4
2119	Role of biostimulants in mitigating the effects of climate change on crop performance. Frontiers in Plant Science, 0, 13, .	1.7	35
2120	Transcriptome Analysis Reveals Genes and Pathways Associated with Salt Tolerance during Seed Germination in Suaeda liaotungensis. International Journal of Molecular Sciences, 2022, 23, 12229.	1.8	5
2122	Overexpression of CsPP2-A1 in cucumber enhanced salt tolerance by participating ABA-JA signaling pathway and antioxidant system. Environmental and Experimental Botany, 2022, 204, 105095.	2.0	5
2123	Transcriptome responses to salt stress in roots and leaves of Lilium pumilum. Scientia Horticulturae, 2023, 309, 111622.	1.7	5
2124	Gene–Environment Interaction During Bioremediation. Environmental Contamination Remediation and Management, 2022, , 391-423.	0.5	1
2125	Characterization and expression analysis of key abscisic acid signal transduction genes during kiwifruit development. Scientia Horticulturae, 2023, 309, 111672.	1.7	2
2126	Transcriptome profiling revealed salt stress-responsive genes in Lilium pumilum bulbs. Frontiers in Plant Science, 0, 13, .	1.7	2
2127	New insights into the molecular mechanism of low-temperature stratification on dormancy release and germination of Saposhnikovia divaricata seeds. Revista Brasileira De Botanica, 0, , .	0.5	0
2128	Expression of Genes Involved in ABA and Auxin Metabolism and LEA Gene during Embryogenesis in Hemp. Plants, 2022, 11, 2995.	1.6	2
2129	Comprehensive Genomic Characterization of the NAC Transcription Factors and Their Response to Drought Stress in Dendrobium catenatum. Agronomy, 2022, 12, 2753.	1.3	6
2130	Insights into the Jasmonate Signaling in Basal Land Plant Revealed by the Multi-Omics Analysis of an Antarctic Moss Pohlia nutans Treated with OPDA. International Journal of Molecular Sciences, 2022, 23, 13507.	1.8	3
2131	Targeted inÂvivo mutagenesis of a sensor histidine kinase playing an essential role in ABA signaling of the moss Physcomitrium patens. Biochemical and Biophysical Research Communications, 2022, 637, 93-99.	1.0	0
2132	The mir390-GhCEPR2 module confers salt tolerance in cotton and Arabidopsis. Industrial Crops and Products, 2022, 190, 115865.	2.5	0
2133	The GhMAP3K62-GhMKK16-GhMPK32 kinase cascade regulates drought tolerance by activating GhEDT1-mediated ABA accumulation in cotton. Journal of Advanced Research, 2023, 51, 13-25.	4.4	6
2134	Overexpression of the Zoysia japonica ZjABR1/ERF10 regulates plant growth and salt tolerance in transgenic Oryza sativa. Environmental and Experimental Botany, 2023, 206, 105171.	2.0	3

#	Article	IF	CITATIONS
2135	An open source plant kinase chemogenomics set. Plant Direct, 2022, 6, .	0.8	1
2136	Rice OsPUB16 modulates the â€~SAPK9-OsMADS23-OsAOC' pathway to reduce plant water-deficit tolerance by repressing ABA and JA biosynthesis. PLoS Genetics, 2022, 18, e1010520.	1.5	5
2137	Wheat TaSnRK2.10 phosphorylates TaERD15 and TaENO1 and confers drought tolerance when overexpressed in rice. Plant Physiology, 2023, 191, 1344-1364.	2.3	8
2138	The interaction of ABA and ROS in plant growth and stress resistances. Frontiers in Plant Science, 0, 13, .	1.7	17
2139	The Re-Localization of Proteins to or Away from Membranes as an Effective Strategy for Regulating Stress Tolerance in Plants. Membranes, 2022, 12, 1261.	1.4	1
2140	A regulatory loop establishes the link between the circadian clock and abscisic acid signaling in rice. Plant Physiology, 2023, 191, 1857-1870.	2.3	3
2141	Abscisic acid promotes auxin biosynthesis to inhibit primary root elongation in rice. Plant Physiology, 2023, 191, 1953-1967.	2.3	13
2143	Auxin contributes to jasmonate-mediated regulation of abscisic acid signaling during seed germination in Arabidopsis. Plant Cell, 2023, 35, 1110-1133.	3.1	26
2144	Abscisic acid increases hydrogen peroxide in mitochondria to facilitate stomatal closure. Plant Physiology, 2023, 192, 469-487.	2.3	17
2145	A comparative transcriptomic analysis reveals a coordinated mechanism activated in response to cold acclimation in common vetch (Vicia sativa L.). BMC Genomics, 2022, 23, .	1.2	2
2146	Abscisic Acid Perception and Signaling in Chenopodium quinoa. Stresses, 2023, 3, 22-32.	1.8	1
2147	Transcriptome analysis reveals differential transcription in tomato (Solanum lycopersicum) following inoculation with Ralstonia solanacearum. Scientific Reports, 2022, 12, .	1.6	2
2148	Pepper <scp>SnRK2</scp> .6â€activated <scp>MEKK</scp> protein <scp>CaMEKK23</scp> is directly and indirectly modulated by clade A <scp>PP2Cs</scp> in response to drought stress. New Phytologist, 2023, 238, 237-251.	3.5	4
2150	The battle of crops against drought: Genetic dissection and improvement. Journal of Integrative Plant Biology, 2023, 65, 496-525.	4.1	25
2151	Evolutionary Analysis of StSnRK2 Family Genes and Their Overexpression in Transgenic Tobacco Improve Drought Tolerance. International Journal of Molecular Sciences, 2023, 24, 1000.	1.8	1
2152	Root ABA Accumulation Delays Lateral Root Emergence in Osmotically Stressed Barley Plants by Decreasing Root Primordial IAA Accumulation. International Journal of Plant Biology, 2023, 14, 77-90.	1.1	7
2153	A Medicago truncatula lncRNA MtCIR1 negatively regulates response to salt stress. Planta, 2023, 257, .	1.6	5
2154	ROS-hormone interaction in regulating integrative dé—'ense signaling of plant cell. Biocell, 2023, 47, 503-521.	0.4	2

#	Article	IF	CITATIONS
2155	Immune Mechanism of Ethylicin-Induced Resistance to <i>Xanthomonas oryzae</i> pv. oryzae in Rice. Journal of Agricultural and Food Chemistry, 2023, 71, 288-299.	2.4	3
2156	Elucidating the unknown transcriptional responses and PHR1-mediated biotic and abiotic stress tolerance during phosphorus limitation. Journal of Experimental Botany, 2023, 74, 2083-2111.	2.4	2
2157	Discovery of 2,6-Dihalopurines as Stomata Opening Inhibitors: Implication of an LRX-Mediated H ⁺ -ATPase Phosphorylation Pathway. ACS Chemical Biology, 2023, 18, 347-355.	1.6	1
2158	The C ₂ H ₂ â€type zinc finger transcription factor OSIC1 positively regulates stomatal closure under osmotic stress in poplar. Plant Biotechnology Journal, 2023, 21, 943-960.	4.1	3
2159	Responsive Transcriptome Analysis of Senecio vulgaris L. Under Different Drought Stresses. Journal of Plant Growth Regulation, 0, , .	2.8	0
2160	Functions and interaction of plant lipid signalling under abiotic stresses. Plant Biology, 2023, 25, 361-378.	1.8	8
2162	Abscisic acid agonists suitable for optimizing plant water use. Frontiers in Plant Science, 0, 13, .	1.7	1
2163	Transcriptome analysis reveals the key pathways and candidate genes involved in salt stress responses in Cymbidium ensifolium leaves. BMC Plant Biology, 2023, 23, .	1.6	1
2164	Role of phytohormones in plant response to drought and salinity stresses., 2023,, 109-128.		0
2165	Do Opposites Attract? Auxin-Abscisic Acid Crosstalk: New Perspectives. International Journal of Molecular Sciences, 2023, 24, 3090.	1.8	5
2167	ASR1 and ASR2, Two Closely Related ABA-Induced Serine-Rich Transcription Repressors, Function Redundantly to Regulate ABA Responses in Arabidopsis. Plants, 2023, 12, 852.	1.6	1
2169	The abscisic acid–responsive element binding factors MAPKKK18 module regulates abscisic acid–induced leaf senescence in Arabidopsis. Journal of Biological Chemistry, 2023, 299, 103060.	1.6	8
2170	Genome-wide identification of the ABA receptor PYL gene family and expression analysis in Prunus avium L Scientia Horticulturae, 2023, 313, 111919.	1.7	5
2171	Male and female poplars exhibited sex-specific differences in metabolic and transcriptional responses to two levels of water deficit. Industrial Crops and Products, 2023, 196, 116441.	2.5	0
2172	Pepper clade A PP2C, CaSIP1, negatively modulates drought resistance by suppressing CaSnRK2.6 kinase activity. Environmental and Experimental Botany, 2023, 209, 105275.	2.0	1
2173	Molecular mechanism of saline-alkali stress tolerance in the green manure crop Sophora alopecuroides. Environmental and Experimental Botany, 2023, 210, 105321.	2.0	0
2174	Polyamines inhibit abscisic acidâ€induced stomatal closure by scavenging hydrogen peroxide. Physiologia Plantarum, 2023, 175, .	2.6	2
2175	Fruit crops combating drought: Physiological responses and regulatory pathways. Plant Physiology, 2023, 192, 1768-1784.	2.3	4

#	ARTICLE	IF	CITATIONS
2177	A hierarchical model of ABA-mediated signal transduction in tea plant revealed by systematic genome mining analysis and interaction validation. Tree Physiology, 0, , .	1.4	0
2178	The roles of abscisic acid and ethylene in cadmium accumulation and tolerance in plants. Plant and Soil, 0, , .	1.8	1
2179	U-box E3 ubiquitin ligase PUB8 attenuates abscisic acid responses during early seedling growth. Plant Physiology, 2023, 191, 2519-2533.	2.3	3
2180	Hydathode immunity protects the Arabidopsis leaf vasculature against colonization by bacterial pathogens. Current Biology, 2023, 33, 697-710.e6.	1.8	5
2181	Exogenous abscisic acid prolongs the dormancy of recalcitrant seed of Panax notoginseng. Frontiers in Plant Science, 0, 14, .	1.7	3
2182	Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. Advances in Protein Chemistry and Structural Biology, 2023, , 307-370.	1.0	1
2183	Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat. Nature Communications, 2023, 14, .	5.8	12
2184	Genome-Wide Identification and Abiotic Stress Response Analysis of PP2C Gene Family in Woodland and Pineapple Strawberries. International Journal of Molecular Sciences, 2023, 24, 4049.	1.8	6
2185	Biosensors for phytohormone Abscisic acid and its role in humans: A review. Sensors International, 2023, 4, 100234.	4.9	1
2186	Identification of Pyrabactin resistance 1-like (PYL) genes in Brachypodium distachyon and functional characterization of BdPYL5. Journal of Plant Physiology, 2023, 283, 153949.	1.6	0
2188	The main fungal pathogens and defense-related hormonal signaling in crops., 2023,, 307-331.		0
2189	Traces of Introgression from cAus into Tropical Japonica Observed in African Upland Rice Varieties. Rice, 2023, 16, .	1.7	1
2190	Novel flavin-containing monooxygenase protein FMO1 interacts with CAT2 to negatively regulate drought tolerance through ROS homeostasis and ABA signaling pathway in tomato. Horticulture Research, 2023, 10, .	2.9	4
2191	Role of Plant Hormones in Mitigating Abiotic Stress. , 0, , .		1
2192	The START domain potentiates HD-ZIPIII transcriptional activity. Plant Cell, 2023, 35, 2332-2348.	3.1	3
2194	The NAC transcription factor MdNAC4 positively regulates nitrogen deficiency-induced leaf senescence by enhancing ABA biosynthesis in apple. Molecular Horticulture, 2023, 3, .	2.3	3
2195	Response of ABA and JA to Salt Stress in Plants. Bioprocess, 2023, 13, 33-38.	0.1	0
2196	Disruption of the ABA1 encoding zeaxanthin epoxidase caused defective suberin layers in Arabidopsis seed coats. Frontiers in Plant Science, 0, 14, .	1.7	1

#	Article	IF	CITATIONS
2197	Genome-wide association mapping and transcriptomic analysis reveal key drought-responding genes in barley seedlings. Current Plant Biology, 2023, 33, 100277.	2.3	8
2199	Pol III-dependent <i>BoNR8</i> IncRNA and <i>AtR8</i> IncRNA contribute to hypocotyl elongation in response to light and abscisic acid. Plant and Cell Physiology, 0, , .	1.5	0
2200	Stomatal Responses of Two Drought-Tolerant Barley Varieties with Different ROS Regulation Strategies under Drought Conditions. Antioxidants, 2023, 12, 790.	2.2	4
2201	Subtype-selective agonists of plant hormone co-receptor COI1-JAZs identified from the stereoisomers of coronatine. Communications Biology, 2023, 6, .	2.0	1
2202	Genome-Wide Identification and Expression Analysis of the R2R3-MYB Gene Family in Rubber Trees. Forests, 2023, 14, 710.	0.9	1
2203	The bZIP transcription factor SIAREB1 regulates anthocyanin biosynthesis in response to low temperature in tomato. Plant Journal, 2023, 115, 205-219.	2.8	6
2204	Uncovering early transcriptional regulation during adventitious root formation in Medicago sativa. BMC Plant Biology, 2023, 23, .	1.6	2
2205	Phosphorylation of OsRbohB by the protein kinase OsDMI3 promotes H2O2 production to potentiate ABA responses in rice. Molecular Plant, 2023, 16, 882-902.	3.9	13
2206	Structure-guided engineering of a receptor-agonist pair for inducible activation of the ABA adaptive response to drought. Science Advances, 2023, 9, .	4.7	6
2207	Nonâ€specific effects of the <scp>CINNAMATEâ€4â€HYDROXYLASE</scp> inhibitor piperonylic acid. Plant Journal, 0, , .	2.8	2
2208	Meta-QTLs, ortho-meta QTLs and related candidate genes for yield and its component traits under water stress in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 0, , .	1.4	2
2209	The evolution and diurnal expression patterns of photosynthetic pathway genes of the invasive alien weed, Mikania micrantha. Journal of Integrative Agriculture, 2024, 23, 590-604.	1.7	0
2210	Transcriptome and metabolome analysis reveals the potential mechanism of tuber dynamic development in yam (Dioscorea polystachya Turcz.). LWT - Food Science and Technology, 2023, 181, 114764.	2.5	3
2226	Inspired by Nature: Isostere Concepts in Plant Hormone Chemistry. Journal of Agricultural and Food Chemistry, 2023, 71, 18141-18168.	2.4	5
2233	Plant NADPH Oxidases. , 2023, , 445-465.		1
2234	Use of plant-defense hormones against pathogen diseases. , 2023, , 305-334.		0
2240	Insight into the Interaction of Strigolactones, Abscisic Acid, and Reactive Oxygen Species Signals. , 2023, , 179-211.		1
2250	Deciphering the complex cotton genome for improving fiber traits and abiotic stress resilience in sustainable agriculture. Molecular Biology Reports, 2023, 50, 6937-6953.	1.0	3

#	Article	IF	CITATIONS
2260	Physiological Effects of Bicarbonate on Plants. , 2023, , 15-54.		0
2270	Plant physiological and molecular responses triggered by humic based biostimulants - A way forward to sustainable agriculture. Plant and Soil, 2023, 492, 31-60.	1.8	3
2293	Role of Abscisic Acid in Plant Stress., 0,,.		0
2321	Understanding Molecular Mechanisms of Plant Physiological Responses Under Drought and Salt Stresses., 2023,, 156-184.		0
2350	H2S in guard cell signaling. , 2024, , 211-229.		0
2383	Unveiling the dynamics of crop growth: Chemical versus biofertilizers in the context of internal and external factors., 2024,, 367-387.		0