Regionalization of transit time estimates in montane ca controls

Water Resources Research 45, DOI: 10.1029/2008wr007496

Citation Report

#	Article	IF	CITATIONS
1	Towards a simple dynamic process conceptualization in rainfall–runoff models using multiâ€criteria calibration and tracers in temperate, upland catchments. Hydrological Processes, 2010, 24, 260-275.	1.1	60
2	Tracers and transit times: windows for viewing catchment scale storage?. Hydrological Processes, 2009, 23, 3503-3507.	1.1	90
3	Catchment transit times and landscape controls—does scale matter?. Hydrological Processes, 2010, 24, 117-125.	1.1	85
4	Truncation of stream residence time: how the use of stable isotopes has skewed our concept of streamwater age and origin. Hydrological Processes, 2010, 24, 1646-1659.	1.1	181
5	Controls on snowmelt water mean transit times in northern boreal catchments. Hydrological Processes, 2010, 24, 1672-1684.	1.1	62
6	Are transit times useful processâ€based tools for flow prediction and classification in ungauged basins in montane regions?. Hydrological Processes, 2010, 24, 1685-1696.	1.1	29
7	Isotopic and geochemical tracers reveal similarities in transit times in contrasting mesoscale catchments. Hydrological Processes, 2010, 24, 1211-1224.	1.1	36
8	Assessing the impact of mixing assumptions on the estimation of streamwater mean residence time. Hydrological Processes, 2010, 24, 1730-1741.	1.1	83
9	Comparing chloride and water isotopes as hydrological tracers in two Scottish catchments. Hydrological Processes, 2010, 24, 1631-1645.	1.1	121
10	Storm flow and baseflow response to reduced acid deposition—using Bayesian compositional analysis in hydrograph separation with changing end members. Hydrological Processes, 2010, 24, 2300-2312.	1.1	10
11	Preferential flows and travel time distributions: defining adequate hypothesis tests for hydrological process models. Hydrological Processes, 2010, 24, 1537-1547.	1.1	90
12	Assessing the value of highâ€resolution isotope tracer data in the stepwise development of a lumped conceptual rainfall–runoff model. Hydrological Processes, 2010, 24, 2335-2348.	1.1	67
13	Catchment processes and heterogeneity at multiple scales—benchmarking observations, conceptualization and prediction. Hydrological Processes, 2010, 24, 2203-2208.	1.1	25
14	How old is streamwater? Open questions in catchment transit time conceptualization, modelling and analysis. Hydrological Processes, 2010, 24, 1745-1754.	1.1	276
15	Spatial distribution of transit times in montane catchments: conceptualization tools for management. Hydrological Processes, 2010, 24, 3283-3288.	1.1	24
16	Factors influencing chloride deposition in a coastal hilly area and application to chloride deposition mapping. Hydrology and Earth System Sciences, 2010, 14, 801-813.	1.9	53
17	Integrated response and transit time distributions of watersheds by combining hydrograph separation and long-term transit time modeling. Hydrology and Earth System Sciences, 2010, 14, 1537-1549.	1.9	81
18	Gamma distribution models for transit time estimation in catchments: Physical interpretation of parameters and implications for timeâ€variant transit time assessment. Water Resources Research, 2010, 46	1.7	146

#	Article	IF	CITATIONS
19	Using time domain and geographic source tracers to conceptualize streamflow generation processes in lumped rainfallâ€runoff models. Water Resources Research, 2011, 47, .	1.7	86
20	Effect of spatial heterogeneity of runoff generation mechanisms on the scaling behavior of event runoff responses in a natural river basin. Water Resources Research, 2011, 47, .	1.7	44
21	Landscape structure and climate influences on hydrologic response. Water Resources Research, 2011, 47, .	1.7	76
22	Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment. Hydrology and Earth System Sciences, 2011, 15, 3275-3291.	1.9	121
23	Relative influence of upland and lowland headwaters on the isotope hydrology and transit times of larger catchments. Journal of Hydrology, 2011, 400, 438-447.	2.3	51
24	Sensitivity of mean transit time estimates to model conditioning and data availability. Hydrological Processes, 2011, 25, 980-990.	1.1	62
25	Storage as a Metric of Catchment Comparison. Hydrological Processes, 2011, 25, 3364-3371.	1.1	142
26	Catchmentâ€scale estimates of flow path partitioning and water storage based on transit time and runoff modelling. Hydrological Processes, 2011, 25, 3960-3976.	1.1	64
27	Water storage in a till catchment. II: Implications of transmissivity feedback for flow paths and turnover times. Hydrological Processes, 2011, 25, 3950-3959.	1.1	80
28	Using lumped conceptual rainfall–runoff models to simulate daily isotope variability with fractionation in a nested mesoscale catchment. Advances in Water Resources, 2011, 34, 383-394.	1.7	40
30	The master transit time distribution of variable flow systems. Water Resources Research, 2012, 48, .	1.7	135
31	A comparison of similarity indices for catchment classification using a cross-regional dataset. Advances in Water Resources, 2012, 40, 11-22.	1.7	85
32	Quantifying catchmentâ€scale mixing and its effect on timeâ€varying travel time distributions. Water Resources Research, 2012, 48, .	1.7	124
33	Do timeâ€variable tracers aid the evaluation of hydrological model structure? A multimodel approach. Water Resources Research, 2012, 48, .	1.7	86
34	Scaling relationships for event water contributions and transit times in smallâ€forested catchments in Eastern Quebec. Water Resources Research, 2012, 48, .	1.7	32
35	The â€~hidden streamflow' challenge in catchment hydrology: a call to action for stream water transit time analysis. Hydrological Processes, 2012, 26, 2061-2066.	1.1	59
36	Linking metrics of hydrological function and transit times to landscape controls in a heterogeneous mesoscale catchment. Hydrological Processes, 2012, 26, 405-420.	1.1	49
37	Highâ€frequency storm event isotope sampling reveals timeâ€variant transit time distributions and influence of diurnal cycles. Hydrological Processes, 2012, 26, 308-316.	1.1	96

#	Article	IF	CITATIONS
38	Precipitationâ€runoff processes in Shimen hillslope microâ€catchment of Taihang Mountain, north China. Hydrological Processes, 2012, 26, 1332-1341.	1.1	20
39	Catchment-scale herbicides transport: Theory and application. Advances in Water Resources, 2013, 52, 232-242.	1.7	45
40	What can flux tracking teach us about water age distribution patterns and their temporal dynamics?. Hydrology and Earth System Sciences, 2013, 17, 533-564.	1.9	217
41	Functional approach to exploring climatic and landscape controls on runoff generation: 2 Timing of runoff storm response. Water Resources Research, 2014, 50, 9323-9342.	1.7	8
42	HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments. Hydrology and Earth System Sciences, 2014, 18, 4635-4655.	1.9	78
43	Reevaluation of transit time distributions, mean transit times and their relation to catchment topography. Hydrology and Earth System Sciences, 2014, 18, 4751-4771.	1.9	67
44	Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration. Hydrology and Earth System Sciences, 2014, 18, 4839-4859.	1.9	106
45	ASSESSING THE CUMULATIVE IMPACTS OF HYDROPOWER REGULATION ON THE FLOW CHARACTERISTICS OF A LARGE ATLANTIC SALMON RIVER SYSTEM. River Research and Applications, 2014, 30, 456-475.	0.7	20
46	A comparison of wetness indices for the prediction of observed connected saturated areas under contrasting conditions. Earth Surface Processes and Landforms, 2014, 39, 399-413.	1.2	62
47	Evaluation of High-Frequency Mean Streamwater Transit-Time Estimates Using Groundwater Age and Dissolved Silica Concentrations in a Small Forested Watershed. Aquatic Geochemistry, 2014, 20, 183-202.	1.5	44
48	Quantifying the differential contributions of deep groundwater to streamflow in nested basins, using both water quality characteristics and water balance. Hydrology Research, 2014, 45, 200-212.	1.1	7
49	A comparison of travel-time based catchment transport models, with application to numerical experiments. Journal of Hydrology, 2014, 511, 605-618.	2.3	36
50	Seasonal soil moisture patterns: Controlling transit time distributions in a forested headwater catchment. Water Resources Research, 2014, 50, 5270-5289.	1.7	45
51	Influence of lowland aquifers and anthropogenic impacts on the isotope hydrology of contrasting mesoscale catchments. Hydrological Processes, 2014, 28, 793-808.	1.1	12
52	Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions. Water Resources Research, 2014, 50, 969-985.	1.7	216
53	Stream water age distributions controlled by storage dynamics and nonlinear hydrologic connectivity: Modeling with high-resolution isotope data. Water Resources Research, 2015, 51, 7759-7776.	1.7	134
54	Interception effects on stable isotope driven streamwater transit time estimates. Geophysical Research Letters, 2015, 42, 5299-5308.	1.5	29
55	Storage selection functions: A coherent framework for quantifying how catchments store and release water and solutes. Water Resources Research, 2015, 51, 4840-4847.	1.7	170

#	Article	IF	CITATIONS
56	Comparison of threshold hydrologic response across northern catchments. Hydrological Processes, 2015, 29, 3575-3591.	1.1	55
57	Transit times of water under steady stormflow conditions in the Gårdsjön G1 catchment. Hydrological Processes, 2015, 29, 4657-4665.	1.1	2
58	Resistance and resilience to droughts: hydropedological controls on catchment storage and runâ€off response. Hydrological Processes, 2015, 29, 4579-4593.	1.1	33
59	Catchment Classification Framework in Hydrology: Challenges and Directions. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	58
60	The relative role of soil type and tree cover on water storage and transmission in northern headwater catchments. Hydrological Processes, 2015, 29, 1844-1860.	1.1	87
61	Conceptual Modelling to Assess Hydrological Impacts and Evaluate Environmental Flow Scenarios in Montane River Systems Regulated for Hydropower. River Research and Applications, 2015, 31, 1066-1081.	0.7	18
62	Aggregation in environmental systems – PartÂ1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments. Hydrology and Earth System Sciences, 2016, 20, 279-297.	1.9	242
63	Insights into the water mean transit time in a high-elevation tropical ecosystem. Hydrology and Earth System Sciences, 2016, 20, 2987-3004.	1.9	48
64	Effect of bedrock permeability on stream base flow mean transit time scaling relations: 1. A multiscale catchment intercomparison. Water Resources Research, 2016, 52, 1358-1374.	1.7	86
65	Travel times in the vadose zone: Variability in space and time. Water Resources Research, 2016, 52, 5727-5754.	1.7	103
66	Dynamic storage: a potential metric of inter-basin differences in storage properties. Hydrological Processes, 2016, 30, 4644-4653.	1.1	25
67	A GLUEâ€based uncertainty assessment framework for tritiumâ€inferred transit time estimations under baseflow conditions. Hydrological Processes, 2016, 30, 4741-4760.	1.1	10
68	Inferring changes in water cycle dynamics of intensively managed landscapes via the theory of timeâ€variant travel time distributions. Water Resources Research, 2016, 52, 7593-7614.	1.7	27
69	A novel approach for designing large-scale river temperature monitoring networks. Hydrology Research, 2016, 47, 569-590.	1.1	34
70	Transit times—the link between hydrology and water quality at the catchment scale. Wiley Interdisciplinary Reviews: Water, 2016, 3, 629-657.	2.8	184
71	Hydroclimatic influences on non-stationary transit time distributions in a boreal headwater catchment. Journal of Hydrology, 2016, 543, 7-16.	2.3	25
72	Constitution of a catchment virtual observatory for sharing flow and transport models outputs. Journal of Hydrology, 2016, 543, 59-66.	2.3	14
73	Erosion mechanisms and sediment sources in a peatland forest after ditch cleaning. Earth Surface Processes and Landforms, 2016, 41, 1841-1853.	1.2	13

#	Article	IF	CITATIONS
74	Importance of tritiumâ€based transit times in hydrological systems. Wiley Interdisciplinary Reviews: Water, 2016, 3, 145-154.	2.8	30
75	Effect of bedrock permeability on stream base flow mean transit time scaling relationships: 2. Process study of storage and release. Water Resources Research, 2016, 52, 1375-1397.	1.7	45
76	Catchment water storage variation with elevation. Hydrological Processes, 2017, 31, 2000-2015.	1.1	103
77	Water storage dynamics in a till hillslope: the foundation for modeling flows and turnover times. Hydrological Processes, 2017, 31, 4-14.	1.1	16
78	Deuteriumâ€excess determination of evaporation to inflow ratios of an alpine lake: Implications for water balance and modeling. Hydrological Processes, 2017, 31, 1034-1046.	1.1	43
79	Spatially distributed characterization of soil-moisture dynamics using travel-time distributions. Hydrology and Earth System Sciences, 2017, 21, 549-570.	1.9	16
80	Bridging the gap between numerical solutions of travel time distributions and analytical storage selection functions. Hydrological Processes, 2018, 32, 1063-1076.	1.1	34
81	Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands. Environmental Research Letters, 2018, 13, 034028.	2.2	32
82	How can streamflow and climate-landscape data be used to estimate baseflow mean response time?. Journal of Hydrology, 2018, 557, 916-930.	2.3	8
83	Assessing the controls and uncertainties on mean transit times in contrasting headwater catchments. Journal of Hydrology, 2018, 557, 16-29.	2.3	22
84	Combination of CFCs and stable isotopes to characterize the mechanism of groundwater–surface water interactions in a headwater basin of the North China Plain. Hydrological Processes, 2018, 32, 1571-1587.	1.1	10
85	Linking transit times to catchment sensitivity to atmospheric deposition of acidity and nitrogen in mountains of the western United States. Hydrological Processes, 2018, 32, 2456-2470.	1.1	19
86	Mean transit times in headwater catchments: insights from the Otway Ranges, Australia. Hydrology and Earth System Sciences, 2018, 22, 635-653.	1.9	14
87	Timeâ€Varying Storage–Water Age Relationships in a Catchment With a Mediterranean Climate. Water Resources Research, 2018, 54, 3988-4008.	1.7	47
88	Sensitivity of young water fractions to hydro-climatic forcing and landscape properties across 22ÂSwiss catchments. Hydrology and Earth System Sciences, 2018, 22, 3841-3861.	1.9	77
89	Employing stable isotopes to determine the residence times of soil water and the temporal origin of water taken up by <i>Fagus sylvatica</i> and <i>Picea abies</i> in a temperate forest. New Phytologist, 2018, 219, 1300-1313.	3.5	115
90	Global Isotope Hydrogeology―Review. Reviews of Geophysics, 2019, 57, 835-965.	9.0	165
91	New water fractions and transit time distributions at Plynlimon, Wales, estimated from stable water isotopes in precipitation and streamflow. Hydrology and Earth System Sciences, 2019, 23, 4367-4388.	1.9	31

#	Article	IF	CITATIONS
92	Hydrology at Aberdeen – thinking about water locally and globally. Scottish Geographical Journal, 2019, 135, 267-286.	0.4	1
93	Variability of transit time distributions with climate and topography: A modelling approach. Journal of Hydrology, 2019, 569, 37-50.	2.3	18
94	Using isotopes to understand the evolution of water ages in disturbed mixed landâ€use catchments. Hydrological Processes, 2020, 34, 972-990.	1.1	17
95	Wetlands and lowâ€gradient topography are associated with longer hydrologic transit times in Precambrian Shield headwater catchments. Hydrological Processes, 2020, 34, 598-614.	1.1	15
96	State, source and triggering mechanism of iron and manganese pollution in groundwater of Changchun, Northeastern China. Environmental Monitoring and Assessment, 2020, 192, 619.	1.3	21
97	Dependence of annual runoff coefficients on basin size and other properties in a climate transition zone from semi-humid to arid and semi-arid on the Loess Plateau, China. Journal of Hydrology, 2020, 591, 125727.	2.3	7
98	Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe. Nature Communications, 2020, 11, 6302.	5.8	40
99	Characterizing the variability of transit time distributions and young water fractions in karst catchments using flux tracking. Hydrological Processes, 2020, 34, 3156-3174.	1.1	16
100	Travel times for snowmeltâ€dominated headwater catchments: Influences of wetlands and forest harvesting, and linkages to stream water quality. Hydrological Processes, 2020, 34, 2154-2175.	1.1	15
101	Assessing basin storage: Comparison of hydrometric―and tracerâ€based indices of dynamic and total storage. Hydrological Processes, 2020, 34, 2012-2031.	1.1	4
102	The variation and controls of mean transit times in Australian headwater catchments. Hydrological Processes, 2020, 34, 4034-4048.	1.1	11
103	Nitrate removal and young stream water fractions at the catchment scale. Hydrological Processes, 2020, 34, 2725-2738.	1.1	30
104	Simulating flash flood hydrographs and behavior metrics across China: Implications for flash flood management. Science of the Total Environment, 2021, 763, 142977.	3.9	17
105	Linking nitrate dynamics to water age in underground conduit flows in a karst catchment. Journal of Hydrology, 2021, 596, 125699.	2.3	10
106	An improved practical approach for estimating catchmentâ€scale response functions through wavelet analysis. Hydrological Processes, 2021, 35, e14082.	1.1	1
107	Supporting, Regulating, and Provisioning Hydrological Services. Ecological Studies, 2013, , 107-116.	0.4	6
109	Seasonal Subsurface Water Contributions to Baseflow in the Mountainous UhlÃÅ™ská Catchment (Czech) Tj E	TQg0 0 0 r 0.7	gBT /Overloc

117Caractérisation de la mémoire des bassins versants par approche croisée entre piézométrie et
séparation d'hydrogramme. Houille Blanche, 2020, 106, 30-37.0.31

		EPUKI	
#	Article	IF	CITATIONS
118	Snow drought reduces water transit times in headwater streams. Hydrological Processes, 2021, 35, .	1.1	12
119	Tracerâ€aided modelling reveals quick runoff generation and young streamflow ages in a tropical rainforest catchment. Hydrological Processes, 2022, 36, .	1.1	7
120	The Variability of Stable Water Isotopes and the Young Water Fraction in a Mountainous Catchment. Clean - Soil, Air, Water, 2022, 50, .	0.7	2
121	Assessing land use influences on isotopic variability and stream water ages in urbanising rural catchments. Isotopes in Environmental and Health Studies, 2022, 58, 277-300.	0.5	4
122	Tandem Use of Multiple Tracers and Metrics to Identify Dynamic and Slow Hydrological Flowpaths. Frontiers in Water, 2022, 4, .	1.0	1
123	Sources and mean transit times of stream water in an intermittent river system: the upper Wimmera River, southeast Australia. Hydrology and Earth System Sciences, 2022, 26, 4497-4513.	1.9	1
124	Transit Time Estimation in Catchments: Recent Developments and Future Directions. Water Resources Research, 2022, 58, .	1.7	28
125	Estimation of stream water components and residence time in a permafrost catchment in the central Tibetan Plateau using long-term water stable isotopic data. Cryosphere, 2022, 16, 5023-5040.	1.5	1
126	Using stable water isotopes to evaluate water flow and nonpoint source pollutant contributions in three southern Ontario agricultural headwater streams. Hydrological Processes, 2023, 37, .	1.1	4
127	Insights into the streamwater age in the headwater catchments covered by glaciers and permafrost, Central Tibetan Plateau. Science of the Total Environment, 2023, 866, 161337.	3.9	0
128	Isotopic approach to linking landscape and catchment storage across multiple spatial scales. Catena, 2023, 224, 106967.	2.2	0
129	Assessment of streamwater age using water stable isotopes in a headwater catchment of the central Tibetan Plateau. Journal of Hydrology, 2023, 618, 129175.	2.3	0