Late Miocene onset of the Amazon River and the Amazo Foz do Amazonas Basin

Geology 37, 619-622 DOI: 10.1130/g25567a.1

Citation Report

#	Article	IF	CITATIONS
1	Movimentos de massa multiescala na bacia da foz do Amazonas - margem equatorial brasileira. Revista Brasileira De Geofisica, 2009, 27, 485-508.	0.2	9
2	O processo de colapso gravitacional da seção marinha da bacia da foz do Amazonas - margem equatorial brasileira. Revista Brasileira De Geofisica, 2009, 27, 459-484.	0.2	16
3	Global Miocene tectonics and the modern world. Earth-Science Reviews, 2009, 96, 279-295.	9.1	151
4	Rapid Climatic Signal Propagation from Source to Sink in a Southern California Sedimentâ€Routing System. Journal of Geology, 2010, 118, 247-259.	1.4	88
5	Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science, 2010, 330, 927-931.	12.6	1,826
6	Reinforcing and expanding the predictions of the disturbance vicariance hypothesis in Amazonian harlequin frogs: a molecular phylogenetic and climate envelope modelling approach. Biodiversity and Conservation, 2010, 19, 2125-2146.	2.6	20
7	The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth-Science Reviews, 2010, 99, 99-124.	9.1	297
8	Miocene drainage reversal of the Amazon River driven by plate–mantle interaction. Nature Geoscience, 2010, 3, 870-875.	12.9	160
9	Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin: Reply. Geology, 2010, 38, e213-e213.	4.4	37
10	Two-scale gravitational collapse in the Amazon Fan: a coupled system of gravity tectonics and mass-transport processes. Journal of the Geological Society, 2010, 167, 593-604.	2.1	35
11	Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin: COMMENT. Geology, 2010, 38, e212-e212.	4.4	15
12	Amazonian magnetostratigraphy: Dating the first pulse of the Great American Faunal Interchange. Journal of South American Earth Sciences, 2010, 29, 619-626.	1.4	60
13	Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: Insights from an eightâ€locus plastid phylogeny. American Journal of Botany, 2011, 98, 872-895.	1.7	401
17	The Amazonian Craton and its Influence on Past Fluvial Systems (Mesozoic-Cenozoic, Amazonia). , 2011, , 101-122.		5
19	Long-Term Landscape Development Processes in Amazonia. , 2011, , 185-197.		2
20	A Review of Tertiary Mammal Faunas and Birds from Western Amazonia. , 2011, , 243-258.		12
22	On the Origin of Amazonian Landscapes and Biodiversity: A Synthesis. , 2011, , 419-431.		18
23	Molecular Signatures of Neogene Biogeographical Events in the Amazon Fish Fauna. , 2011, , 405-417.		4

#		IF	CITATIONS
#	ARTICLE	IF	CHATIONS
24	Journal of South American Earth Sciences, 2011, 32, 169-181.	1.4	56
25	Evidence for a prolonged retroflection of the North Brazil Current during glacial stages. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 301, 86-96.	2.3	26
26	Estratigrafia sÃsmica da porção NW do Leque Superior do Amazonas. , 2011, , .		0
27	Geological control of floristic composition in Amazonian forests. Journal of Biogeography, 2011, 38, 2136-2149.	3.0	167
28	Andean uplift promotes lowland speciation through vicariance and dispersal in Dendrocincla woodcreepers. Molecular Ecology, 2011, 20, 4550-4563.	3.9	103
29	LINEAGE DIVERSIFICATION AND MORPHOLOGICAL EVOLUTION IN A LARGE-SCALE CONTINENTAL RADIATION: THE NEOTROPICAL OVENBIRDS AND WOODCREEPERS (AVES: FURNARIIDAE). Evolution; International Journal of Organic Evolution, 2011, 65, 2973-2986.	2.3	275
30	Ontogeny of osmoregulatory patterns in the South American shrimp Macrobrachium amazonicum: Loss of hypo-regulation in a land-locked population indicates phylogenetic separation from estuarine ancestors. Journal of Experimental Marine Biology and Ecology, 2011, 396, 89-98.	1.5	66
31	Mitochondrial phylogeny of tamarins (<i>Saguinus</i> , Hoffmannsegg 1807) with taxonomic and biogeographic implications for the <i>S. nigricollis</i> species group. American Journal of Physical Anthropology, 2011, 144, 564-574.	2.1	65
32	Temporal and spatial diversification of Pteroglossus araçaris (AVES: Ramphastidae) in the neotropics: Constant rate of diversification does not support an increase in radiation during the Pleistocene. Molecular Phylogenetics and Evolution, 2011, 58, 105-115.	2.7	54
33	Tectonic and climatic influence on the evolution of the Surveyor Fan and Channel system, Gulf of Alaska. , 2011, 7, 830-844.		51
34	Deposition and deformation in the deepwater sediment of the offshore Barreirinhas Basin, Brazil. , 2012, 8, 1606-1631.		11
36	Inferring the origins of lowland Neotropical birds. Auk, 2012, 129, 367-376.	1.4	41
37	Comment by J.P. Figueiredo, & Hoorn, C. on â€~Late Miocene sedimentary environments in south-western Amazonia (Solimões Formation; Brazil)' by Martin Gross, Werner E. Piller, Maria Ines Ramos, Jackson Douglas da Silva Paz. Journal of South American Earth Sciences, 2012, 35, 74-75.	1.4	4
38	Neotectonics in the northern equatorial Brazilian margin. Journal of South American Earth Sciences, 2012, 37, 175-190.	1.4	27
39	Indications of regional scale groundwater flows in the Amazon Basins: Inferences from results of geothermal studies. Journal of South American Earth Sciences, 2012, 37, 214-227.	1.4	12
40	Phylogeography of the Teiid Lizard Kentropyx calcarata and the Sphaerodactylid Gonatodes humeralis (Reptilia: Squamata): Testing A Geological Scenario for the Lower Amazon–Tocantins Basins, Amazonia, Brazil. Herpetologica, 2012, 68, 272.	0.4	11
41	Use of Landsat and SRTM Data to Detect Broad-Scale Biodiversity Patterns in Northwestern Amazonia. Remote Sensing, 2012, 4, 2401-2418.	4.0	34
42	From gullies to mountain belts: A review of sediment budgets at various scales. Sedimentary Geology, 2012, 280, 21-59.	2.1	158

#	Article	IF	CITATIONS
43	The final phase of tropical lowland conditions in the axial zone of the Eastern Cordillera of Colombia: Evidence from three palynological records. Journal of South American Earth Sciences, 2012, 39, 157-169.	1.4	41
44	A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 681-689.	2.6	340
45	Lutzomyia umbratilis, the Main Vector of Leishmania guyanensis, Represents a Novel Species Complex?. PLoS ONE, 2012, 7, e37341.	2.5	37
46	Paleodrainage Systems. , 2012, , .		0
47	The Cenozoic tectonostratigraphic evolution of the Barracuda Ridge and Tiburon Rise, at the western end of the North America–South America plate boundary zone. Marine Geology, 2012, 303-306, 154-171.	2.1	24
48	Divergent natural selection with gene flow along major environmental gradients in Amazonia: insights from genome scans, population genetics and phylogeography of the characin fish <i>Triportheus albus</i> . Molecular Ecology, 2012, 21, 2410-2427.	3.9	60
49	Late Cretaceous–Cenozoic sediment and turbidite reservoir supply to South Atlantic margins. Geological Society Special Publication, 2013, 369, 109-128.	1.3	17
50	Neogene Eastern Amazon carbonate platform and the palaeoenvironmental interpretation. Swiss Journal of Palaeontology, 2013, 132, 99-118.	1.7	12
51	Ariid sea catfishes from the coeval Pirabas (Northeastern Brazil), Cantaure, Castillo (Northwestern) Tj ETQq0 0 0 new species. Swiss Journal of Palaeontology, 2013, 132, 45-68.	rgBT /Ove 1.7	rlock 10 Tf 50 32
52	Provenance of Pliocene and recent sedimentary deposits in western Amazônia, Brazil: Consequences for the paleodrainage of the Solimões-Amazonas River. Sedimentary Geology, 2013, 296, 9-20.	2.1	27
53	The quantification of methane formation in Amazon Fan sediments (ODP Leg 155, Site 938) by hydrogeochemical modeling solid – Aqueous solution – Gas interactions. Journal of South American Earth Sciences, 2013, 42, 205-215.	1.4	6
54	The Early Stages of Speciation in Amazonian Forest Frogs: Phenotypic Conservatism Despite Strong Genetic Structure. Evolutionary Biology, 2013, 40, 228-245.	1.1	43
55	Phylogeny and comparative phylogeography of <i>Sclerurus</i> (Aves: Furnariidae) reveal constant and cryptic diversification in an old radiation of rain forest understorey specialists. Journal of Biogeography, 2013, 40, 37-49.	3.0	84
56	Ostracods (Crustacea) and their palaeoenvironmental implication for the Solimões Formation (Late) Tj ETQq1 1	0.784314 1.4	l rggT /Overld
57	Geochemical and isotopic characterization of the Bodélé Depression dust source and implications for transatlantic dust transport to the Amazon Basin. Earth and Planetary Science Letters, 2013, 380, 112-123.	4.4	106
58	A molecular sequence proxy for Muusoctopus januarii and calibration of recent divergence among a group of mesobenthic octopuses. Journal of Experimental Marine Biology and Ecology, 2013, 447, 106-122.	1.5	18
59	Marine dispersal and barriers drive Atlantic seahorse diversification. Journal of Biogeography, 2013, 40, 1839-1849.	3.0	47
60	Dynamic topography in South America. Journal of South American Earth Sciences, 2013, 43, 127-144.	1.4	49

#	Article	IF	CITATIONS
61	Revisiting Amazonian phylogeography: insights into diversification hypotheses and novel perspectives. Organisms Diversity and Evolution, 2013, 13, 639-664.	1.6	73
62	Influence of the Amazon River development and constriction of the Central American Seaway on Middle/Late Miocene oceanic conditions at the Ceara Rise. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 386, 599-606.	2.3	11
63	Neogene–Quaternary sedimentary and paleovegetation history of the eastern Solimões Basin, central Amazon region. Journal of South American Earth Sciences, 2013, 46, 89-99.	1.4	66
64	Neotropical Macrobrachium (Caridea: Palaemonidae): on the biology, origin, and radiation of freshwater-invading shrimp. Journal of Crustacean Biology, 2013, 33, 151-183.	0.8	103
65	Biodiversity from mountain building. Nature Geoscience, 2013, 6, 154-154.	12.9	195
66	Molecular Identification and Historic Demography of the Marine Tucuxi (Sotalia guianensis) at the Amazon River's Mouth by Means of Mitochondrial Control Region Gene Sequences and Implications for Conservation. Diversity, 2013, 5, 703-723.	1.7	1
67	Palaeontological Evidence for the Last Temporal Occurrence of the Ancient Western Amazonian River Outflow into the Caribbean. PLoS ONE, 2013, 8, e76202.	2.5	29
68	Before the flood: Miocene otoliths from eastern Amazon Pirabas Formation reveal a Caribbean-type fish fauna. Journal of South American Earth Sciences, 2014, 56, 422-446.	1.4	32
69	Late Neogene sequence stratigraphic evolution of the <i>Foz do Amazonas</i> Basin, Brazil. Terra Nova, 2014, 26, 179-185.	2.1	51
70	Reassessment of the systematics of the widespread Neotropical genus <i>Cercomacra</i> (Aves:) Tj ETQq1 1 0.75	84314 rgB 2.3	T /Overlock 1
71	The emerging field of geogenomics: Constraining geological problems with genetic data. Earth-Science Reviews, 2014, 135, 38-47.	9.1	68
72	Erosion of an active fault scarp leads to drainage capture in the Amazon region, Brazil. Earth Surface Processes and Landforms, 2014, 39, 1062-1074.	2.5	27
73	The role of tectonics in the late Quaternary evolution of Brazil's Amazonian landscape. Earth-Science Reviews, 2014, 139, 362-389.	9.1	48
74	Provenance of quaternary and modern alluvial deposits of the Amazonian floodplain (Brazil) inferred from major and trace elements and Pb–Nd–Sr isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 411, 144-154.	2.3	15
76	Drainage reversal of the Amazon River due to the coupling of surface and lithospheric processes. Earth and Planetary Science Letters, 2014, 401, 301-312.	4.4	56
77	Influence of Peruvian flat-subduction dynamics on the evolution of western Amazonia. Earth and Planetary Science Letters, 2014, 404, 250-260.	4.4	59
78	Reconstruction of the evolution of the Niger River and implications for sediment supply to the Equatorial Atlantic margin of Africa during the Cretaceous and the Cenozoic. Geological Society Special Publication, 2014, 386, 327-349.	1.3	7
79	Foraminifera on the Demerara Rise offshore Surinam: crustal subsidence or shallowing of an oxygen minimum zone?. Geological Magazine, 2015, 152, 788-801.	1.5	1

#	Article	IF	CITATIONS
80	Late Pleistocene sea-level changes recorded in tidal and fluvial deposits from Itaubal Formation, onshore portion of the Foz do Amazonas Basin, Brazil. Brazilian Journal of Geology, 2015, 45, 63-78.	0.7	7
81	Speciation in the Leishmania guyanensis Vector Lutzomyia umbratilis (Diptera: Psychodidae) from Northern Brazil — Implications for Epidemiology and Vector Control. , 2015, , .		3
82	Andean Forearc Dynamics, As Recorded By Detrital Zircon From the Eocene Talara Basin, Northwest Peru. Journal of Sedimentary Research, 2015, 85, 646-659.	1.6	16
83	Historical relationship of the Caribbean and Amazonian Miocene ichthyofaunas: A hypothesis reviewed under a biogeographical approach. Geobios, 2015, 48, 309-320.	1.4	6
84	Palm diversification in two geologically contrasting regions of western Amazonia. Journal of Biogeography, 2015, 42, 1503-1513.	3.0	16
85	Palynology of the Middle Miocene—Pliocene Novo Remanso Formation, Central Amazonia, Brazil. Ameghiniana, 2015, 52, 107-134.	0.7	11
86	Historical Biogeography Using Species Geographical Ranges. Systematic Biology, 2015, 64, 1059-1073.	5.6	46
87	Mid-Late Pleistocene OSL chronology in western Amazonia and implications for the transcontinental Amazon pathway. Sedimentary Geology, 2015, 330, 1-15.	2.1	52
88	Population structure and identification of two matrilinear and one patrilinear mitochondrial lineages in the mussel Mytella charruana. Estuarine, Coastal and Shelf Science, 2015, 156, 165-174.	2.1	13
89	Provenance of sands from the confluence of the Amazon and Madeira rivers based on detrital heavy minerals and luminescence of quartz and feldspar. Sedimentary Geology, 2015, 316, 1-12.	2.1	33
90	Butterfly dispersal across Amazonia and its implication for biogeography. Ecography, 2015, 38, 410-418.	4.5	15
91	Biogeography of the marmosets and tamarins (Callitrichidae). Molecular Phylogenetics and Evolution, 2015, 82, 413-425.	2.7	82
92	Role of <scp>C</scp> aribbean Islands in the diversification and biogeography of Neotropical <i><scp>H</scp>eraclides</i> swallowtails. Cladistics, 2015, 31, 291-314.	3.3	30
93	Spatial and temporal patterns of diversification on the Amazon: A test of the riverine hypothesis for all diurnal primates of Rio Negro and Rio Branco in Brazil. Molecular Phylogenetics and Evolution, 2015, 82, 400-412.	2.7	157
94	Cryptic speciation in the white-shouldered antshrike (Thamnophilus aethiops, Aves – Thamnophilidae): The tale of a transcontinental radiation across rivers in lowland Amazonia and the northeastern Atlantic Forest. Molecular Phylogenetics and Evolution, 2015, 82, 95-110.	2.7	66
95	Continuous Miocene, Pliocene and Pleistocene Influences on Mitochondrial Diversification of the Capybara (Hydrochoerus Hydrochoeris; Hydrochoeridae, Rodentia): Incapacity to Determine Exclusive Hypotheses on the Origins of the Amazon and Orinoco Diversity for This Species. Journal of Phylogenetics & Evolutionary Biology, 2016, 04	0.2	7
96	Eustatic and tectonic change effects in the reversion of the transcontinental Amazon River drainage system. Brazilian Journal of Geology, 2016, 46, 301-328.	0.7	37
98	Age and provenance of Late Miocene-Early Pliocene sedimentary rocks from the Patao high hydrocarbon reservoir offshore NE Venezuela – U-Pb detrital zircon age, Sm-Nd isotope, and biostratigraphic data. Journal of Natural Gas Science and Engineering, 2016, 31, 459-473.	4.4	2

#	Article	IF	CITATIONS
99	Scorched mussels (<i>Brachidontes</i> spp., Bivalvia: Mytilidae) from the tropical and warmâ€ŧemperate southwestern Atlantic: the role of the Amazon River in their speciation. Ecology and Evolution, 2016, 6, 1778-1798.	1.9	18
100	Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition. Earth and Planetary Science Letters, 2016, 454, 132-141.	4.4	24
101	Andean topographic growth and basement uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon river systems. , 2016, 12, 1235-1256.		67
102	The role of tectonics and climate in the late Quaternary evolution of a northern Amazonian River. Geomorphology, 2016, 271, 22-39.	2.6	43
103	Dental remains of cebid platyrrhines from the earliest late Miocene of Western Amazonia, Peru: Macroevolutionary implications on the extant capuchin and marmoset lineages. American Journal of Physical Anthropology, 2016, 161, 478-493.	2.1	13
104	Hydrothermal versus active margin sediment supply to the eastern equatorial Pacific over the past 23 million years traced by radiogenic Pb isotopes: Paleoceanographic and paleoclimatic implications. Geochimica Et Cosmochimica Acta, 2016, 190, 213-238.	3.9	2
105	Effects of a regional décollement level for gravity tectonics on late Neogene to recent large-scale slope instabilities in the Foz do Amazonas Basin, Brazil. Marine and Petroleum Geology, 2016, 75, 29-52.	3.3	33
106	(U-Th)/He thermochronology records late Miocene accelerated cooling in the north-central Peruvian Andes. Lithosphere, 2016, 8, 103-115.	1.4	10
107	Spreading dynamics and sedimentary process of the Southwest Sub-basin, South China Sea: Constraints from multi-channel seismic data and IODP Expedition 349. Journal of Asian Earth Sciences, 2016, 115, 97-113.	2.3	76
108	Molecular phylogeny of the Neotropical fish genus Tetragonopterus (Teleostei: Characiformes:) Tj ETQq1 1 0.784	314 rgBT / 2.7	Overlock 10 14
109	A minute ostracod (Crustacea: Cytheromatidae) from the Miocene Solimões Formation (western) Tj ETQq0 0 0 r 581-602.	gBT /Over 1.5	lock 10 Tf 5 24
110	On the origins of marineâ€derived freshwater fishes in South America. Journal of Biogeography, 2017, 44, 1927-1938.	3.0	58
111	Documenting diversity in the Amazonian butterfly genus Bia (Lepidoptera, Nymphalidae). Zootaxa, 2017, 4258, 201.	0.5	8
112	The effects of the inception of Amazonian transcontinental drainage during the Neogene on the landscape and vegetation of the Solimĵes Basin, Brazil. Palynology, 2017, 41, 412-422.	1.5	19
113	Birth and evolution of the Rio Grande fluvial system in the past 8 Ma: Progressive downward integration and the influence of tectonics, volcanism, and climate. Earth-Science Reviews, 2017, 168, 113-164.	9.1	70
114	Response of Cenozoic turbidite system to tectonic activity and sea-level change off the Zambezi Delta. Marine Geophysical Researches, 2017, 38, 209-226.	1.2	15
115	The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Global and Planetary Change, 2017, 153, 51-65.	3.5	165
116	Systematics and biogeography of the Automolus infuscatus complex (Aves; Furnariidae): Cryptic diversity reveals western Amazonia as the origin of a transcontinental radiation. Molecular Phylogenetics and Evolution, 2017, 107, 503-515	2.7	22

#	Article	IF	CITATIONS
117	Ostracods biostratigraphy of the Oligocene-Miocene carbonate platform in the Northeastern Amazonia coast and its correlation with the Caribbean region. Journal of South American Earth Sciences, 2017, 80, 389-403.	1.4	12
118	A tectonically-triggered late Holocene seismite in the southern Amazonian lowlands, Brazil. Sedimentary Geology, 2017, 358, 70-83.	2.1	26
119	Sedimentology and Palynostratigraphy of a Pliocene-Pleistocene (Piacenzian to Gelasian) deposit in the lower Negro River: Implications for the establishment of large rivers in Central Amazonia. Journal of South American Earth Sciences, 2017, 79, 215-229.	1.4	10
120	Drulia cristinae, new species of sponge from the rio Xingu, Amazonas Basin, Brazil (Porifera:) Tj ETQq1 1 0.784314 Natural Sciences of Philadelphia, 2017, 166, 1.	ł rgBT /Ov 0.5	erlock 10 4
121	Lack of a weathering signal with increased Cenozoic erosion?. Terra Nova, 2017, 29, 265-272.	2.1	11
122	A 30 Ma history of the Amazon River inferred from terrigenous sediments and organic matter on the CearÃ _i Rise. Earth and Planetary Science Letters, 2017, 474, 40-48.	4.4	45
123	A complete molecular phylogeny of <i>Claravis</i> confirms its paraphyly within small New World groundâ€doves (Aves: Peristerinae) and implies multiple plumage state transitions. Journal of Avian Biology, 2017, 48, 459-464.	1.2	7
124	Divergence of cryptic species of Doryteuthis plei Blainville, 1823 (Loliginidae, Cephalopoda) in the Western Atlantic Ocean is associated with the formation of the Caribbean Sea. Molecular Phylogenetics and Evolution, 2017, 106, 44-54.	2.7	33
125	Predicting Sediment Thickness on Vanished Ocean Crust Since 200 Ma. Geochemistry, Geophysics, Geosystems, 2017, 18, 4586-4603.	2.5	23
126	Tempo and rates of diversification in the South American cichlid genus Apistogramma (Teleostei:) Tj ETQq1 1 0.78	4314 rgB 2.5	T /Overlock
127	Detrital zircon and apatite constraints on depositional ages, sedimentation rates and provenance: Pliocene Productive Series, South Caspian Basin, Azerbaijan. Basin Research, 2018, 30, 835-862.	2.7	8
128	Biogeography and diversification of <i>Rhegmatorhina</i> (Aves: Thamnophilidae): Implications for the evolution of Amazonian landscapes during the Quaternary. Journal of Biogeography, 2018, 45, 917-928.	3.0	40
129	Sedimentary budget of the Southwest Subâ€basin, South China Sea: Controlling factors and geological implications. Geological Journal, 2018, 53, 3082-3092.	1.3	9
130	Combined dating of goethites and kaolinites from ferruginous duricrusts. Deciphering the Late Neogene erosion history of Central Amazonia. Chemical Geology, 2018, 479, 136-150.	3.3	35
131	Neogene tropical sea catfish (Siluriformes; Ariidae), with insights into paleo and modern diversity within northeastern South America. Journal of South American Earth Sciences, 2018, 82, 108-121.	1.4	4
132	Morphological and molecular systematics of the â€ [~] Monanchora arbuscula complex' (Poecilosclerida :) Tj ETQ the Tropical Western Atlantic. Invertebrate Systematics, 2018, 32, 457.	q1 1 0.784 1.3	4314 rgBT 9
133	Evolutionary history of Bathygobius (Perciformes: Gobiidae) in the Atlantic biogeographic provinces: a new endemic species and old mitochondrial lineages. Zoological Journal of the Linnean Society, 2018, 182, 360-384.	2.3	13
134	Punctuated Sediment Discharge during Early Pliocene Birth of the Colorado River: Evidence from Regional Stratigraphy, Sedimentology, and Paleontology. Sedimentary Geology, 2018, 363, 1-33.	2.1	26

		roiti	
#	Article	IF	Citations
135	Molecular systematics and biogeography of lowland antpittas (Aves, Grallariidae): The role of vicariance and dispersal in the diversification of a widespread Neotropical lineage. Molecular Phylogenetics and Evolution, 2018, 120, 375-389.	2.7	24
136	Sedimentary record of Andean mountain building. Earth-Science Reviews, 2018, 178, 279-309.	9.1	222
137	Controls on submarine channel-modifying processes identified through morphometric scaling relationships. , 2018, 14, 2171-2187.		35
138	Mixed-energy Process Interactions Read from a Compound-clinoform Delta (paleo–orinoco Delta,) Tj ETQq1 1 C Sedimentary Research, 2018, 88, 75-90.	.784314 1.6	rgBT /Overic 40
139	Gas seeps and gas hydrates in the Amazon deep-sea fan. Geo-Marine Letters, 2018, 38, 429-438.	1.1	18
140	The changing course of the Amazon River in the Neogene: center stage for Neotropical diversification. Neotropical Ichthyology, 2018, 16, .	1.0	125
141	Amazon fluid mud impact on tide- and wave-dominated Pliocene lobes of the Orinoco Delta. Marine Geology, 2018, 406, 57-71.	2.1	23
142	First Report of Peridiscaceae for the Vascular Flora of Colombia. Harvard Papers in Botany, 2018, 23, 109-121.	0.2	2
143	Meter-Scale Early Diagenesis of Organic Matter Buried Within Deep-Sea Sediments Beneath the Amazon River Plume. Frontiers in Marine Science, 2018, 5, .	2.5	2
144	Ongoing River Capture in the Amazon. Geophysical Research Letters, 2018, 45, 5545-5552.	4.0	33
145	Cretaceous-early Paleocene drainage shift of Amazonian rivers driven by Equatorial Atlantic Ocean opening and Andean uplift as deduced from the provenance of northern Peruvian sedimentary rocks (Huallaga basin). Gondwana Research, 2018, 63, 152-168.	6.0	33
146	Mass Balance of Cenozoic Andes-Amazon Source to Sink System—Marañón Basin, Peru. Geosciences (Switzerland), 2018, 8, 167.	2.2	8
147	Time-calibrated molecular phylogeny reveals a Miocene–Pliocene diversification in the Amazon miniature killifish genus Fluviphylax (Cyprinodontiformes: Cyprinodontoidei). Organisms Diversity and Evolution, 2018, 18, 345-353.	1.6	8
148	Primary productivity in the western tropical Atlantic follows Neogene Amazon River evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 506, 12-21.	2.3	5
149	Testing main Amazonian rivers as barriers across time and space within widespread taxa. Journal of Biogeography, 2019, 46, 2444-2456.	3.0	30
150	Andean Tectonics and Mantle Dynamics as a Pervasive Influence on Amazonian Ecosystem. Scientific Reports, 2019, 9, 16879.	3.3	63
151	A legacy of geo limatic complexity and genetic divergence along the lower Colorado River: Insights from the geological record and 33 desertâ€adapted animals. Journal of Biogeography, 2019, 46, 2479-2505.	3.0	19
152	Record of the rare Caribbean mud eel, Pythonichthys sanguineus (Heterenchelyidae, Anguilliformes), in the region of the Amazon Reef. Acta Amazonica, 2019, 49, 131-138.	0.7	1

ARTICLE IF CITATIONS Unexpected species diversity in electric eels with a description of the strongest living bioelectricity 153 12.8 45 generator. Nature Communications, 2019, 10, 4000. Detrital zircons reveal sea-level and hydroclimate controls on Amazon River to deep-sea fan sediment 154 4.4 transfer. Geology, 2019, 47, 563-567. 155 Measuring dynamic topography in South America., 2019, , 35-66. 6 Exploring geophysical and palynological proxies for paleoenvironmental reconstructions in the Miocene of western Amazonia (SolimAµes Formation, Brazil). Journal of South American Earth Sciences, 2019, 94, 102223. Gas Seeps at the Edge of the Gas Hydrate Stability Zone on Brazil's Continental Margin. Geosciences 157 2.2 13 (Switzerland), 2019, 9, 193. Provenance of the Neogene sediments from the Solimões Formation (Solimões and Acre Basins), Brazil. Journal of South American Earth Sciences, 2019, 93, 232-241. 1.4 A new conceptual methodology for interpretation of mass transport processes from seismic data. 159 3.3 7 Marine and Petroleum Geology, 2019, 103, 438-455. New insights into the phylogeographic distribution of the 3FTx/PLA2 venom dichotomy across genus 2.4 34 Micrurus in South America. Journal of Proteomics, 2019, 200, 90-101. Phylogeographic structuring of the amphidromous shrimp Atya scabra (Crustacea, Decapoda, Atyidae) 161 1.3 11 unveiled by range-wide mitochondrial DNA sampling. Marine and Freshwater Research, 2019, 70, 1078. Deep-sea fans: tapping into Earth's changing landscapes. Journal of Sedimentary Research, 2019, 89, 1.6 1171-1179. Population genetic structure and species delimitation of a widespread, Neotropical dwarf gecko. 163 2.7 29 Molecular Phylogenetics and Evolution, 2019, 133, 54-66. The Genesis of the Modern Amazon River Basin and Andean Uplift and Their Roles in Mammalian 164 0.5 Diversification. Topics in Geobiology, 2019, , 235-257. Past Amazon Basin fluvial systems, insight into the Cenozoic sequences using seismic geomorphology 165 1.4 9 (MarañÃ³n Basin, Peru). Journal of South American Earth Sciences, 2019, 90, 440-452. Depositional environments and landscapes of the upper Miocene Ipururo Formation at Shumanza, Subandean Zone, northern Peru. Palaeobiodiversity and Palaeoenvironments, 2020, 100, 719-735. 1.5 Crustal structure of the central sector of the NE Brazilian equatorial margin. Geological Society 167 1.3 5 Special Publication, 2020, 476, 163-191. Palaeontological framework from Pirabas Formation (North Brazil) used as potential model for 1.2 equatorial carbonate platform. Marine Micropaleontology, 2020, 154, 101813. Miocene heterozoan carbonate systems from the western Atlantic equatorial margin in South 169 2.113 America: The Pirabas formation. Sedimentary Geology, 2020, 407, 105739. Rapid diversification rates in Amazonian Chrysobalanaceae inferred from plastid genome 170 1.6 phylogenetics. Botanical Journal of the Linnean Society, 2020, 194, 271-289.

#	ARTICLE	IF	CITATIONS
171	Chronology of Miocene terrestrial deposits and fossil vertebrates from Quebrada Honda (Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560, 110013.	2.3	6
172	Modeling the Evolution of Aquatic Organisms in Dynamic River Basins. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005652.	2.8	9
173	Amphi-American Neogene teleostean tropical fishes. Journal of South American Earth Sciences, 2020, 102, 102657.	1.4	2
174	Dating kaolinite from the Neogene IçÃ; Formation and overlying laterites, central Amazonia, Brazil: Constraints for a stratigraphic correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 554, 109818.	2.3	5
175	Historical demography and climate driven distributional changes in a widespread Neotropical freshwater species with high economic importance. Ecography, 2020, 43, 1291-1304.	4.5	10
176	Ichnological analysis of the Lower Morne L'Enfer Formation, Cedros Bay, Trinidad, West Indies: evidence of delta asymmetry. Journal of South American Earth Sciences, 2020, 101, 102634.	1.4	4
177	Evolutionary biogeography of the freshwater fish family Anablepidae (Teleostei: Cyprinodontiformes), a marine-derived Neotropical lineage. Organisms Diversity and Evolution, 2020, 20, 439-449.	1.6	6
178	Reappraisal of the relative importance of dynamic topography and Andean orogeny on Amazon landscape evolution. Earth and Planetary Science Letters, 2020, 546, 116423.	4.4	16
179	Controls on overpressure evolution during the gravitational collapse of the Amazon deep-sea fan. Marine and Petroleum Geology, 2020, 121, 104576.	3.3	4
180	Re-investigating Miocene age control and paleoenvironmental reconstructions in western Amazonia (northwestern Solimões Basin, Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545, 109652.	2.3	11
181	The onset of grasses in the Amazon drainage basin, evidence from the fossil record. Frontiers of Biogeography, 2020, 12, .	1.8	23
182	Geomorphometric Seabed Classification and Potential Megahabitat Distribution in the Amazon Continental Margin. Frontiers in Marine Science, 2020, 7, .	2.5	21
183	Amazon Sediment Transport and Accumulation Along the Continuum of Mixed Fluvial and Marine Processes. Annual Review of Marine Science, 2021, 13, 501-536.	11.6	25
184	Continuous canyon-river connection on a passive margin: The case of São Francisco Canyon (eastern) Tj ETQq1	1 0.7843 2.6	14 ₇ rgBT /Ove
185	Upper Oligocene-Miocene deposits of Eastern Amazonia: Implications for the collapse of Neogene carbonate platforms along the coast of northern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 563, 110178.	2.3	10
186	Overpressure evolution controlled by spatial and temporal changes in the sedimentation rate: Insights from a basin modelling study in offshore Suriname. Basin Research, 2021, 33, 1293-1314.	2.7	4
187	Compositional and diversity comparisons between the palynological records of the Neogene (Solimões Formation) and Holocene sediments of Western Amazonia. Palynology, 2021, 45, 3-14.	1.5	8
188	Linking modern-day relicts to a Miocene mangrove community of western Amazonia. Palaeobiodiversity and Palaeoenvironments, 2021, 101, 123-140.	1.5	7

		CITATION REPORT		
#	Article		IF	Citations
189	The evolutionary history of manatees told by their mitogenomes. Scientific Reports, 20)21, 11, 3564.	3.3	11
190	Potential distribution of Guiana dolphin (<i>Sotalia guianensis</i>): a coastal-estuarine habitat specialist. Journal of Mammalogy, 2021, 102, 308-318.	e and tropical	1.3	3
191	Deep-water depositional systems supplied by shelf-incising submarine canyons: Recogn significance in the geologic record. Earth-Science Reviews, 2021, 214, 103531.	nition and	9.1	26
192	Biogeography of the neotropical freshwater stingrays (Myliobatiformes: Potamotrygor effects of continentâ \in scale paleogeographic change and drainage evolution. Journal of 2021, 48, 1406-1419.	iinae) reveals f Biogeography,	3.0	31
193	Provenance constraints on the Cretaceous-Paleocene erosional history of the Guiana S determined from the geochemistry of clay-size fraction of sediments from the Arapaim (Guyana-Suriname basin). Marine Geology, 2021, 434, 106433.	ihield as 1a-1 well	2.1	8
194	Identifying marine and freshwater overprints on soil-derived branched GDGT temperatu Pliocene Mississippi and Amazon River fan sediments. Organic Geochemistry, 2021, 15	ure signals in 54, 104200.	1.8	7
198	Fossil isotopic constraints (C, O and 87Sr/86Sr) on Miocene shallow-marine incursions Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 573, 110422.	in Amazonia.	2.3	12
199	Multiple evolutionary lineages for the main vector of Leishmania guyanensis, Lutzomyi (Diptera: Psychodidae), in the Brazilian Amazon. Scientific Reports, 2021, 11, 15323.	a umbratilis	3.3	2
201	Transcontinental retroarc sediment routing controlled by subduction geometry and cli (Central and Southern Andes, Argentina). Basin Research, 2021, 33, 3406-3437.	mate change	2.7	13
202	Tropical Weathering History Recorded in the Silicon Isotopes of Lateritic Weathering P Geophysical Research Letters, 2021, 48, e2021GL092957.	rofiles.	4.0	7
203	Late Neogene megariver captures and the Great Amazonian Biotic Interchange. Global Change, 2021, 205, 103554.	and Planetary	3.5	19
204	Marine influence in western Amazonia during the late Miocene. Global and Planetary C 205, 103600.	hange, 2021,	3.5	10
205	Provenance of the Middle Jurassic-Cretaceous sedimentary rocks of the Arequipa Basin and implications for the geodynamic evolution of the Central Andes. Gondwana Resea 59-76.	(South Peru) rch, 2022, 101,	6.0	5
206	Evaluating the segmented post-rift stratigraphic architecture of the Guyanas continent Petroleum Geoscience, 2021, 27, .	tal margin.	1.5	10
207	Spatial and temporal uplift history of <scp>S</scp> outh <scp>A</scp> merica from cal analysis. Geochemistry, Geophysics, Geosystems, 2017, 18, 2321-2353.	librated drainage	2.5	38
208	Avian Diversity in Humid Tropical and Subtropical South American Forests, with a Discu Their Related Climatic and Geological Underpinnings. Fascinating Life Sciences, 2020, ;	ussion About , 145-188.	0.9	7
209	The Fishes of the Amazon: Distribution and Biogeographical Patterns, with a Comprehe Species. Bulletin of the American Museum of Natural History, 2019, 2019, 1.	ensive List of	3.4	160
210	Phylogenetic Status and Timescale for the Diversification of Steno and Sotalia Dolphin 2011, 6, e28297.	s. PLoS ONE,	2.5	29

#	Article	IF	Citations
211	Five Cryptic Species in the Amazonian Catfish Centromochlus existimatus Identified Based on Biogeographic Predictions and Genetic Data. PLoS ONE, 2012, 7, e48800.	2.5	25
212	Neogene Proto-Caribbean porcupinefishes (Diodontidae). PLoS ONE, 2017, 12, e0181670.	2.5	16
213	Neogene sharks and rays from the Brazilian â€~Blue Amazon'. PLoS ONE, 2017, 12, e0182740.	2.5	24
214	Genetic diversity and structuring in the arapaima (Osteoglossiformes, Osteoglossidae) population reveal differences between the Amazon and the Tocantins-Araguaia basins. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20180496.	0.8	3
215	Venomics and antivenomics of the poorly studied Brazil's lancehead, Bothrops brazili (Hoge, 1954), from the Brazilian State of ParÃi. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2020, 26, e20190103.	1.4	14
216	Três Forquilhas Valley in Southern Brazil - evidence for the uplift of the volcanic plateau. Pesquisas Em Geociencias, 2013, 40, 189.	0.1	3
217	Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics. Scientific Drilling, 0, 20, 41-49.	0.6	11
218	A Pan-Amazonian species delimitation: high species diversity within the genus <i>Amazophrynella</i> (Anura: Bufonidae). PeerJ, 2018, 6, e4941.	2.0	32
219	Conceptual and empirical advances in Neotropical biodiversity research. PeerJ, 2018, 6, e5644.	2.0	107
220	Molecular diversity and historical phylogeography of the widespread genus <i>Mastiglanis</i> (Siluriformes: Heptapteridae) based on palaeogeographical events in South America. Biological Journal of the Linnean Society, 2022, 135, 322-335.	1.6	3
221	The Inachoididae spider crabs (Crustacea, Brachyura) from the Neogene of the tropical Americas. Journal of Paleontology, 2022, 96, 334-354.	0.8	1
222	Non-linear hydrologic organization. Nonlinear Processes in Geophysics, 2021, 28, 599-614.	1.3	4
223	Modelagem fÃsica experimental de mecanismos de deformação gravitacional simulando mêltiplos intervalos superpressurizados: Aplicação à bacia da foz do Amazonas*. Revista Brasileira De Geofisica, 2012, 29, .	0.2	0
224	Kontinentale Fazies. , 2019, , 71-318.		0
227	The Miocene wetland of western Amazonia and its role in Neotropical biogeography. Botanical Journal of the Linnean Society, 2022, 199, 25-35.	1.6	27
228	Phylogeography of <i>Agathistoma</i> (Turbinidae, Tegulinae) snails in tropical and southwestern Atlantic. Zoologica Scripta, 2022, 51, 76-90.	1.7	0
229	Mud Begets Mud: Autogenesis of a Mud-Dominated Coastal Sequence. , 2017, , 198-216.		0
230	Biogeographic evidence supports the Old Amazon hypothesis for the formation of the Amazon fluvial system. PeerJ, 2021, 9, e12533.	2.0	8

#	Article	IF	CITATIONS
231	Incision and aggradation phases of the Amazon River in central-eastern Amazonia during the late Neogene and Quaternary. Geomorphology, 2022, 399, 108073.	2.6	7
232	Provenance of Miocene-Pleistocene siliciclastic deposits in the Eastern Amazonia coast (Brazil) and paleogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 587, 110799.	2.3	4
234	Out of the shadows: Multilocus systematics and biogeography of night monkeys suggest a Central Amazonian origin and a very recent widespread southeastward expansion in South America. Molecular Phylogenetics and Evolution, 2022, 170, 107426.	2.7	4
235	Cyclic sediment deposition by orbital forcing in the Miocene wetland of western Amazonia? New insights from a multidisciplinary approach. Global and Planetary Change, 2022, 210, 103717.	3.5	8
236	Riverscape Genomics Clarifies Neutral and Adaptive Evolution in an Amazonian Characin Fish (Triportheus albus). Frontiers in Ecology and Evolution, 2022, 10, .	2.2	2
237	Reading the climate signals hidden in bauxite. Geochimica Et Cosmochimica Acta, 2022, 323, 40-73.	3.9	9
239	Drivers of phylogenetic structure in Amazon freshwater fish assemblages. Journal of Biogeography, 2022, 49, 310-323.	3.0	3
240	Evolution and biogeography of <i>Anablepsoides</i> killifishes shaped by Neotropical geological events (Cyprinodontiformes, Aplocheilidae). Zoologica Scripta, 2022, 51, 434-446.	1.7	3
241	Cenozoic weathering of fluvial terraces and emergence of biogeographic boundaries in Central Amazonia. Global and Planetary Change, 2022, 212, 103815.	3.5	5
244	The <scp>Amazonâ€Orinoco</scp> Barrier as a driver of reefâ€fish speciation in the Western Atlantic through time. Journal of Biogeography, 2022, 49, 1407-1419.	3.0	10
245	Two hundred and five newly assembled mitogenomes provide mixed evidence for rivers as drivers of speciation for Amazonian primates. Molecular Ecology, 2022, 31, 3888-3902.	3.9	10
246	Phylogeography of a Typical Forest Heliothermic Lizard Reveals the Combined Influence of Rivers and Climate Dynamics on Diversification in Eastern Amazonia. Frontiers in Ecology and Evolution, 0, 10, .	2.2	0
247	Revised Species Delimitation in the Giant Water Lily Genus Victoria (Nymphaeaceae) Confirms a New Species and Has Implications for Its Conservation. Frontiers in Plant Science, 0, 13, .	3.6	9
248	Regional assessment of gravityâ€driven deformation offshore Namibia (West Africa)—Styles, distribution and controlling factors. Basin Research, 2022, 34, 2013-2041.	2.7	2
249	The challenges and potential of geogenomics for biogeography and conservation in Amazonia. Journal of Biogeography, 2022, 49, 1839-1847.	3.0	11
250	Fossil frogs from the upper Miocene of southwestern Brazilian Amazonia (Solimões Formation, Acre) Tj ETQq1 1	0,784314 1.0	rgBT /Overl
251	Palaeoenvironment of the Miocene Pirabas Formation mixed carbonate–siliciclastic deposits, Northern Brazil: Insights from skeletal assemblages. Marine and Petroleum Geology, 2022, 145, 105855.	3.3	9
252	Berge über abtauchenden Platten: Subduktionszonen. , 2022, , 205-291.		0

		CITATION REPORT		
#	Article	I	F	Citations
253	Characteristics and Process Interactions in Natural Fluvial–Riparian Ecosystems: A Synopsis of t Watershed-Continuum Model. , 0, , .	าย		0
254	A Review of the Ecological and Biogeographic Differences of Amazonian Floodplain Forests. Wate (Switzerland), 2022, 14, 3360.		2.7	4
255	Diversification of the <i>Pristimantis conspicillatus</i> group (Anura: Craugastoridae) within distinct neotropical areas throughout the Neogene. Systematics and Biodiversity, 2022, 20, 1-16.	:	1.2	7
256	How did sediments disperse and accumulate in the oceanic basin, South China Sea. Marine and Petroleum Geology, 2023, 147, 105979.		3.3	5
257	Mountains and Plunging Plates: Subduction Zones. , 2022, , 207-302.			0
258	Diversification of Amazonian spiny tree rats in genus Makalata (Rodentia, Echimyidae): Cryptic diversity, geographic structure and drivers of speciation. PLoS ONE, 2022, 17, e0276475.		2.5	1
259	Genomic Analyses Implicate the Amazon–Orinoco Plume as the Driver of Cryptic Speciation in a Swimming Crab. Genes, 2022, 13, 2263.	f	2.4	4
260	A new species of jupati, genus <i>Metachirus</i> Burmeister 1854 (Didelphimorphia, Didelphidae the Brazilian Amazon. Mammalia, 2023, .	for	0.7	1
261	Taphonomic feedback, paleoecology, and ostracod biostratigraphy of the Oligocene-Miocene carbonate deposits in the onshore ParÃj-Maranhão Basin, Northern Brazil. Journal of South Amer Earth Sciences, 2023, 122, 104189.	ican :	1.4	0
262	A different path to the Negro River in the Chibanian as a window to temporalize the eastward-flow transcontinental Amazon. Journal of South American Earth Sciences, 2023, 122, 104187.	ving	1.4	0
263	Evolutionary History and Taxonomic Reclassification of the Critically Endangered Daggernose Sha a Species Endemic to the Western Atlantic. Journal of Zoological Systematics and Evolutionary Research, 2023, 2023, 1-16.	rk,	1.4	3
264	Biostratigraphy and Paleoenvironments of the Pirabas Formation (Neogene, ParÃ; State-Brazil). M Micropaleontology, 2023, 180, 102218.	arine	1.2	7
265	The Amazon paleoenvironment resulted from geodynamic, climate, and sea-level interactions. Ear and Planetary Science Letters, 2023, 605, 118033.	:h ,	4.4	3
266	New stratigraphic and paleoenvironmental constraints on the Paleogene paleogeography of West Amazonia. Journal of South American Earth Sciences, 2023, 124, 104256.	ern	1.4	2
267	The chronology of mysticete diversification (Mammalia, Cetacea, Mysticeti): Body size, morpholog evolution and global change. Earth-Science Reviews, 2023, 239, 104373.	gical	9.1	5
268	Miocene tropical storms: Carbonate framework approaches and geochemistry proxies in a reserve model. Marine and Petroleum Geology, 2023, 154, 106333.	ir	3.3	3
269	New insights into the Cretaceous evolution of the Western Amazonian paleodrainage system. Sedimentary Geology, 2023, 453, 106434.	:	2.1	3

Differences between the central Andean and Himalayan orogenic wedges: A matter of climate. Earth and Planetary Science Letters, 2023, 616, 118216.

		CITATION R	CITATION REPORT		
#	ARTICLE		IF	CITATIONS	
271	Neogene History of the Amazonian Flora: A Perspective Based on Geological, Palynolog Molecular Phylogenetic Data. Annual Review of Earth and Planetary Sciences, 2023, 51	rical, and , 419-446.	11.0	0	
272	Understanding the Geology of the Colombian Amazon Through Indigenous Eyes: Usefu Approaches for Teaching Earth Sciences in the Colombian Amazon. , 2023, , 223-238.	Il Metaphors and		Ο	
273	Phylogenetic relationships and biogeography of the ancient genus <i>Onychorhynchus</i>	s (Aves:) Tj ETQq0 0 0	rgBT/Ove 1.2	rlogk 10 Tf 50	
274	Integrative Cytogenetics, A Conservation Approach in Atlantic Fish: Concepts, Estimate 2023, , 167-199.	es, and Uses. ,		1	
275	Freshwater fish diversity in the western Amazon basin shaped by Andean uplift since th Cretaceous. Nature Ecology and Evolution, 0, , .	ne Late	7.8	0	
276	Impacts of Inherited Morphology and Offshore Suspended-Sediment Load in an Amazo Estuaries and Coasts, 2023, 46, 1709-1722.	n Estuary.	2.2	2	
277	Amazonian forest termites: a species checklist from the State of Acre, Brazil. Biota Nec 23, .	tropica, 2023,	0.5	0	
279	Closure of tropical seaways favors the climate and vegetation in tropical Africa and So approaching their present conditions. Global and Planetary Change, 2024, 233, 10435	uth America 1.	3.5	0	
280	Geodiversity in the Amazon drainage basin. Philosophical Transactions Series A, Mathe Physical, and Engineering Sciences, 2024, 382, .	matical,	3.4	2	

282	The vicariant role of Caribbean formation in driving speciation in American loliginid squids: the case of Doryteuthis pealeii (Lesueur 1821). Marine Biology, 2024, 171, .	1.5	0	
-----	--	-----	---	--