Arbuscular mycorrhizal fungi in alleviation of salt stres

Annals of Botany 104, 1263-1280 DOI: 10.1093/aob/mcp251

Citation Report

#	Article	IF	CITATIONS
1	The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza, 2010, 20, 445-457.	2.8	79
2	Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 2010, 20, 519-530.	2.8	745
3	The use of mycorrhiza in organically-grown crops under semi arid conditions: a review of benefits, constraints and future challenges. Symbiosis, 2010, 52, 65-74.	2.3	28
4	Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biology, 2010, 12, 563-9.	3.8	262
5	Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant, Soil and Environment, 2010, 56, 470-475.	2.2	109
6	Cloning and Characterization of a Pathogenesis-Related Gene (ThPR10) from Tamarix hispida. Acta Biologica Cracoviensia Series Botanica, 2010, 52, .	0.5	9
7	Role of Arbuscular Mycorrhizal Fungi in Nitrogen Fixation in Legumes. , 2010, , 409-426.		13
8	Interactions Between Plants and Arbuscular Mycorrhizal Fungi. International Review of Cell and Molecular Biology, 2010, 281, 1-48.	3.2	48
9	Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science, 2010, 15, 507-514.	8.8	528
10	Mycorrhiza in floriculture: difficulties and opportunities. Symbiosis, 2010, 52, 55-63.	2.3	16
11	Nutrition of mangroves. Tree Physiology, 2010, 30, 1148-1160.	3.1	429
12	Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics, 2011, 98, 47-55.	2.9	124
13	Arbuscular mycorrhizas in a tropical coastal dune system in Yucatan, Mexico. Fungal Ecology, 2011, 4, 256-261.	1.6	16
14	Effect of Salt, Drought and Metal Stress on Essential Oil Yield and Quality in Plants. Natural Product Communications, 2011, 6, 1934578X1100601.	0.5	13
15	Sodium Chloride Stress Induced Changes in Leaf Osmotic Adjustment of Trifoliate Orange (Poncirus) Tj ETQq0 0 Cluj-Napoca, 2011, 39, 64.	0 rgBT /Ov 1.1	verlock 10 T 11
16	Trehalose and Abiotic Stress in Biological Systems. , 0, , .		10
17	Estimation of the <i>Glomus intraradices</i> nuclear DNA content. New Phytologist, 2011, 192, 794-797.	7.3	30
18	Microbiology is the basis of sustainable agriculture: an opinion. Annals of Applied Biology, 2011, 159, 155-168.	2.5	89

#	Article	IF	Citations
19	The ectomycorrhizal fungus (Paxillus involutus) modulates leaf physiology of poplar towards improved salt tolerance. Environmental and Experimental Botany, 2011, 72, 304-311.	4.2	55
20	Plant Genetics for Study of the Roles of Root Exudates and Microbes in the Soil. , 2011, , 99-111.		0
21	Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant and Soil, 2011, 346, 189-199.	3.7	121
22	Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza, 2011, 21, 117-129.	2.8	153
23	Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L., and Eclipta prostrata (L.) L., grown under three levels of water availability. Mycorrhiza, 2011, 21, 279-288.	2.8	55
24	The sterol biosynthesis inhibitor molecule fenhexamid impacts the vegetative compatibility of Glomus clarum. Mycorrhiza, 2011, 21, 443-449.	2.8	13
25	The Effects of Salinity on Nitrogen Fixation and Trehalose Metabolism in Mycorrhizal Cajanus cajan (L.) Millsp. Plants. Journal of Plant Growth Regulation, 2011, 30, 490-503.	5.1	37
26	Ameliorative symbiosis of endophyte (Penicillium funiculosum LHLO6) under salt stress elevated plant growth of Glycine max L Plant Physiology and Biochemistry, 2011, 49, 852-861.	5.8	155
27	Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochemistry, 2011, 46, 440-447.	3.7	164
28	Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiology, 2011, 31, 139-149.	3.1	146
29	Enhancement of Superoxide Dismutase and Catalase Activities and Salt Tolerance of Euhalophyte Suaeda salsa L. by Mycorrhizal Fungus Glomus mosseae. Pedosphere, 2012, 22, 217-224.	4.0	43
30	Arbuscular mycorrhiza and salt tolerance of plants. Symbiosis, 2012, 58, 7-16.	2.3	69
31	Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants. Mycorrhiza, 2012, 22, 555-564.	2.8	50
32	Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. Journal of Experimental Botany, 2012, 63, 4033-4044.	4.8	435
33	INTERACTIVE EFFECTS OF SALINITY AND PHOSPHORUS NUTRITION ON PHYSIOLOGICAL RESPONSES OF TWO BARLEY SPECIES. Journal of Plant Nutrition, 2012, 35, 1411-1428.	1.9	18
34	Potted mycorrhizal carnation plants and saline stress: Growth, quality and nutritional plant responses. Scientia Horticulturae, 2012, 140, 131-139.	3.6	35
35	Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Science, 2012, 182, 121-133.	3.6	108
36	GiFRD encodes a protein involved in anaerobic growth in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genetics and Biology, 2012, 49, 313-321.	2.1	1

#	ARTICLE	IF	CITATIONS
37	Contribution of Arbuscular Mycorrhizal Symbiosis to Plant Drought Tolerance: State of the Art. , 2012, , 335-362.		33
38	Environmental Stress and Role of Arbuscular Mycorrhizal Symbiosis. , 2012, , 197-214.		11
40	The soil microbial community and plant foliar defences against insects. , 2012, , 170-189.		12
41	Arbuscular Mycorrhizal Fungal Diversity in Sugarcane Rhizosphere in Relation with Soil Properties. Notulae Scientia Biologicae, 2012, 4, 66-74.	0.4	12
42	Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant, Soil and Environment, 2012, 58, 186-191.	2.2	140
43	Microbial amelioration of crop salinity stress. Journal of Experimental Botany, 2012, 63, 3415-3428.	4.8	388
44	Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress. World Journal of Microbiology and Biotechnology, 2012, 28, 2383-2393.	3.6	57
45	Repeated leaf wounding alters the colonization of <i>Medicago truncatula</i> roots by beneficial and pathogenic microorganisms. Plant, Cell and Environment, 2012, 35, 1344-1357.	5.7	68
46	Underground networking: the potential for improving yield and quality of potâ€grown herbs with mycorrhizas. Journal of the Science of Food and Agriculture, 2012, 92, 203-206.	3.5	2
47	Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 2012, 32, 181-200.	5.3	521
48	Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum) Tj ETQq0 0 0 rgB1	[Qyerloc 2.1	R 10 Tf 50 34
49	Contribution of arbuscular mycorrhizal symbiosis to the survival of psammophilic plants after sea water flooding. Plant and Soil, 2012, 351, 97-105.	3.7	26
50	Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza, 2012, 22, 203-217.	2.8	249
51	Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions. Plant and Soil, 2013, 370, 175-185.	3.7	43
52	A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant and Soil, 2013, 366, 333-349.	3.7	63
53	Overcoming Salinity Barriers to Crop Production Using Traditional Methods. Critical Reviews in Plant Sciences, 2013, 32, 250-291.	5.7	83
54	Comparison Between the Water and Salt Stress Effects on Plant Growth and Development. , 0, , .		86
55	Priming of Anti-Herbivore Defense in Tomato by Arbuscular Mycorrhizal Fungus and Involvement of the Jasmonate Pathway. Journal of Chemical Ecology, 2013, 39, 1036-1044.	1.8	124

#	Article	IF	CITATIONS
56	Salt Stress in Plants. , 2013, , .		50
57	Role of Arbuscular Mycorrhizal Symbiosis in Proline Biosynthesis and Metabolism of Cicer arietinum L. (Chickpea) Genotypes Under Salt Stress. Journal of Plant Growth Regulation, 2013, 32, 767-778.	5.1	42
58	Properties of the halophyte microbiome and their implications for plant salt tolerance. Functional Plant Biology, 2013, 40, 940.	2.1	141
59	Modulation of nutrient acquisition and polyamine pool in salt-stressed wheat (Triticum aestivum L.) plants inoculated with arbuscular mycorrhizal fungi. Acta Physiologiae Plantarum, 2013, 35, 2601-2610.	2.1	48
60	Subsoiling and Ridge Tillage Alleviate the High Temperature Stress in Spring Maize in the North China Plain. Journal of Integrative Agriculture, 2013, 12, 2179-2188.	3.5	24
61	AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae, 2013, 164, 77-87.	3.6	248
62	Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biology and Biochemistry, 2013, 67, 285-294.	8.8	94
63	Casuarina in Africa: Distribution, role and importance of arbuscular mycorrhizal, ectomycorrhizal fungi and Frankia on plant development. Journal of Environmental Management, 2013, 128, 204-209.	7.8	37
64	Symbiotic Endophytes. Soil Biology, 2013, , .	0.8	6
65	Fungal root colonization of Puccinellia frigida (Phil.) Johnston, a dominant grass species inhabiting the margins of high-altitude hypersaline Andean wetlands. Aquatic Botany, 2013, 108, 26-32.	1.6	12
66	Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 2013, 170, 47-55.	3.5	299
67	Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agricultural Water Management, 2013, 117, 106-114.	5.6	159
68	Halotolerance in Lichens: Symbiotic Coalition Against Salt Stress. , 2013, , 115-148.		14
69	Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza, 2013, 23, 71-86.	2.8	130
70	The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon. Symbiosis, 2013, 59, 65-76.	2.3	68
71	Abundance of arbuscular mycorrhizal fungi in relation to soil salinity around Lake Urmia in northern Iran analyzed by use of lipid biomarkers and microscopy. Pedobiologia, 2013, 56, 225-232.	1.2	13
72	Flavonoids and amino acid regulation in Capsicum annuum L. by endophytic fungi under different heat stress regimes. Scientia Horticulturae, 2013, 155, 1-7.	3.6	37
73	Arbuscular mycorrhizal fungi native from a <scp>M</scp> editerranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant, Cell and Environment, 2013, 36, 1771-1782.	5.7	195

#	Article	IF	CITATIONS
74	Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Science, 2013, 201-202, 42-51.	3.6	155
75	Taxonomic diversity and community structure of arbuscular mycorrhizal fungi (Phylum) Tj ETQq1 1 0.784314 rgBT 2013, 6, 27-36.	/Overlock 1.6	2 10 Tf 50 27
76	Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Applied Microbiology and Biotechnology, 2013, 97, 3119-3128.	3.6	98
77	Nitrogen and Phosphorus Nutrition Under Salinity Stress. , 2013, , 425-441.		13
78	Arbuscular Mycorrhiza: Approaches for Abiotic Stress Tolerance in Crop Plants for Sustainable Agriculture. , 2013, , 359-401.		58
79	Unravelling Salt Stress in Plants Through Proteomics. , 2013, , 47-61.		12
80	Mycorrhizal inoculation affects arbuscular mycorrhizal diversity in watermelon roots, but leads to improved colonization and plant response under water stress only. Applied Soil Ecology, 2013, 63, 112-119.	4.3	58
81	The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza, 2013, 23, 167-183.	2.8	137
82	Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics-Current achievements and perspectives. Proteomics, 2013, 13, 1885-1900.	2.2	40
83	Mycorrhizal symbiosis enhances tolerance to NaCl stress through selective absorption but not selective transport of K+ over Na+ in trifoliate orange. Scientia Horticulturae, 2013, 160, 366-374.	3.6	24
84	AM fungi ameliorates growth, yield and nutrient uptake in Cicer arietinum L. Under salt stress. Russian Agricultural Sciences, 2013, 39, 321-329.	0.2	12
85	Mitochondrial Genome Rearrangements in Glomus Species Triggered by Homologous Recombination between Distinct mtDNA Haplotypes. Genome Biology and Evolution, 2013, 5, 1628-1643.	2.5	36
86	Role of Arbuscular Mycorrhiza in Amelioration of Salinity. , 2013, , 301-354.		48
87	The greater effectiveness of <i>Glomus mosseae</i> and <i>Glomus intraradices</i> in improving productivity, oil content and tolerance of saltâ€stressed menthol mint (<i>Mentha arvensis</i>). Journal of the Science of Food and Agriculture, 2013, 93, 2154-2161.	3.5	25
88	Getting to the roots of it: Genetic and hormonal control of root architecture. Frontiers in Plant Science, 2013, 4, 186.	3.6	254
89	Communities of Arbuscular Mycorrhizal Fungi in the Roots of <i>Pyrus pyrifolia</i> var. <i>culta</i> (Japanese Pear) in Orchards with Variable Amounts of Soil-Available Phosphorus. Microbes and Environments, 2013, 28, 105-111.	1.6	15
90	Role of mycorrhizal fungi in tolerance of wheat genotypes to salt stress. African Journal of Microbiology Research, 2013, 7, 1286-1295.	0.4	10
91	Response of mycorrhizal hybrid tomato cultivars under saline stress. Journal of Soil Science and Plant Nutrition, 2013, , 0-0.	3.4	5

#	Article	IF	CITATIONS
92	Mitigation of the Adverse Effects of Salt Stress on Maize (Zea Mays L.) Through Organic Amendments. International Journal of Applied Sciences and Biotechnology, 2013, 1, 233-239.	0.8	6
93	Mild Salt Stress Conditions Induce Different Responses in Root Hydraulic Conductivity of Phaseolus vulgaris Over-Time. PLoS ONE, 2014, 9, e90631.	2.5	38
94	Effect of Salinity on Plants and the Role of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria in Alleviation of Salt Stress. , 2014, , 115-144.		30
96	Effects of Salt Stress on Growth, Ion Concentration, and Quality of Pineapple Fruits. Communications in Soil Science and Plant Analysis, 2014, 45, 1949-1960.	1.4	2
97	Growth and physiological responses to arbuscular mycorrhizal fungi and salt stress in dioecious plant <i>Populus tomentosa</i> . Canadian Journal of Forest Research, 2014, 44, 1020-1031.	1.7	16
98	Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology, 2014, , .	0.8	21
99	Metabolic profiles of microorganisms associated with the halophyte <i>Salicornia europaea</i> in soils with different levels of salinity. Ecoscience, 2014, 21, 114-122.	1.4	15
100	Biofertilizers with Arbuscular Mycorrhizal Fungi in Agriculture. Soil Biology, 2014, , 45-66.	0.8	6
101	Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. Frontiers in Plant Science, 2014, 5, 562.	3.6	99
102	Impact of Biochar Modified by HNO ₃ on Plant Growth in Low Nutrient Coastal Saline Soil. Applied Mechanics and Materials, 0, 707, 255-258.	0.2	3
103	Mycorrhizosphere: The Role of PGPR. Soil Biology, 2014, , 107-143.	0.8	4
104	Spatiotemporal changes in arbuscular mycorrhizal fungal communities under different nitrogen inputs over a 5-year period in intensive agricultural ecosystems on the North China Plain. FEMS Microbiology Ecology, 2014, 90, n/a-n/a.	2.7	26
105	A Comparison of Bromus tectorum Growth and Mycorrhizal Colonization in Salt Desert vs. Sagebrush Habitats. Rangeland Ecology and Management, 2014, 67, 275-284.	2.3	13
106	Involvement of ethylene in reversal of saltâ€inhibited photosynthesis by sulfur in mustard. Physiologia Plantarum, 2014, 152, 331-344.	5.2	121
107	Seedling performance of Phragmites australis (Cav.) Trin ex. Steudel in the presence of arbuscular mycorrhizal fungi. Journal of Applied Microbiology, 2014, 116, 1593-1606.	3.1	19
108	Effect of salinity and arbuscular mycorrhizal fungi on growth and some physiological parameters of Citrus jambheri. Archives of Agronomy and Soil Science, 2014, 60, 993-1004.	2.6	12
110	Salinity Stress and Arbuscular Mycorrhizal Symbiosis in Plants. , 2014, , 139-159.		60
111	Arbuscular Mycorrhizal Fungi (AMF) on Growth and Nutrient Uptake of Beach Plum (<i>Prunus) Tj ETQq1</i>	1 0.78431	4 rgJT /Over

#	Article	IF	CITATIONS
112	The Role of Arbuscular Mycorrhizal Fungi in Alleviation of Salt Stress. , 2014, , 23-38.		43
113	Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environmental and Experimental Botany, 2014, 98, 20-31.	4.2	218
114	Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiological Research, 2014, 169, 49-58.	5.3	148
115	Arbuscular Mycorrhizal Fungi Alter Fractal Dimension Characteristics of Robinia pseudoacacia L. Seedlings Through Regulating Plant Growth, Leaf Water Status, Photosynthesis, and Nutrient Concentration Under Drought Stress. Journal of Plant Growth Regulation, 2014, 33, 612-625.	5.1	101
116	Evidence that arbuscular mycorrhizal and phosphate-solubilizing fungi alleviate NaCl stress in the halophyte Kosteletzkya virginica: nutrient uptake and ion distribution within root tissues. Mycorrhiza, 2014, 24, 383-395.	2.8	40
117	Castor bean growth and rhizosphere soil property response to different proportions of arbuscular mycorrhizal and phosphateâ€solubilizing fungi. Ecological Research, 2014, 29, 181-190.	1.5	16
118	Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants. Mycorrhiza, 2014, 24, 339-348.	2.8	43
119	Casuarina: biogeography and ecology of an important tree genus in a changing world. Biological Invasions, 2014, 16, 609-633.	2.4	37
120	RESPONSE OF WHEAT TO INOCULATION WITH MYCORRHIZAE ALONE AND COMBINED WITH SELECTED RHIZOBACTERIA INCLUDING <i>FLAVOBACTERIUM</i> SP. AS A POTENTIAL BIOINOCULANT. Journal of Plant Nutrition, 2014, 37, 76-86.	1.9	19
121	Does Inoculation with Glomus mosseae Improve Salt Tolerance in Pepper Plants?. Journal of Plant Growth Regulation, 2014, 33, 644-653.	5.1	155
123	An ecological technology of coastal saline soil amelioration. Ecological Engineering, 2014, 67, 80-88.	3.6	25
124	Use of Plant Growth-Promoting Rhizobacteria to Alleviate Salinity Stress in Plants. , 2014, , 73-96.		83
125	Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in <i>Cucumis sativus</i> . Journal of Plant Interactions, 2014, 9, 673-682.	2.1	345
126	Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Journal of Plant Physiology, 2014, 171, 76-85.	3.5	104
127	Use of Microbes for the Alleviation of Soil Stresses. , 2014, , .		15
128	Agricultural uses of plant biostimulants. Plant and Soil, 2014, 383, 3-41.	3.7	1,374
129	The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 2014, 32, 429-448.	11.7	754
131	Arbuscular Mycorrhiza in Crop Improvement under Environmental Stress. , 2014, , 69-95.		52

#	Article	IF	CITATIONS
132	Analysis of emergence stage facilitates the evaluation of chickpea (Cicer arietinum L.) genotypes for salinity tolerance imparted by mycorrhizal colonization. Acta Physiologiae Plantarum, 2014, 36, 2651-2669.	2.1	5
133	Water strategy of mycorrhizal rice at low temperature through the regulation of PIP aquaporins with the involvement of trehalose. Applied Soil Ecology, 2014, 84, 185-191.	4.3	38
134	Co-inoculations of arbuscular mycorrhizal fungi and rhizobia under salinity in alfalfa. Soil Science and Plant Nutrition, 2014, 60, 619-629.	1.9	33
135	Characterization of expressed genes in the establishment of arbuscular mycorrhiza between Amorpha fruticosa and Clomus mosseae. Journal of Forestry Research, 2014, 25, 541-548.	3.6	8
136	The plasma membrane transport systems and adaptation to salinity. Journal of Plant Physiology, 2014, 171, 1787-1800.	3.5	70
137	Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza, 2014, 24, 197-208.	2.8	120
138	A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza, 2014, 24, 611-625.	2.8	149
139	Compost alleviates the negative effects of salinity via up-regulation of antioxidants in Solanum lycopersicum L. plants. Plant Growth Regulation, 2014, 74, 299-310.	3.4	34
140	Species composition and diversity of arbuscular mycorrhizal fungi in White Nile state, Central Sudan. Archives of Agronomy and Soil Science, 2014, 60, 377-391.	2.6	20
141	Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land. Soil Biology and Biochemistry, 2014, 72, 1-10.	8.8	76
142	Modulation of the ROSâ€scavenging system in saltâ€stressed wheat plants inoculated with arbuscular mycorrhizal fungi. Journal of Plant Nutrition and Soil Science, 2014, 177, 199-207.	1.9	40
143	ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. Journal of Plant Physiology, 2014, 171, 884-894.	3.5	206
144	Lessons from crop plants struggling with salinity. Plant Science, 2014, 226, 2-13.	3.6	129
145	Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiology Ecology, 2014, 88, 333-344.	2.7	127
146	Effectiveness and persistence of arbuscular mycorrhizal fungi on the physiology, nutrient uptake and yield of Crimson seedless grapevine. Journal of Agricultural Science, 2015, 153, 1084-1096.	1.3	28
147	PHYSIOLOGICAL RESPONSE OF CITRUS MACROPHYLLA INOCULATED WITH ARBUSCULAR MYCORRHIZAL FUNGI UNDER SALT STRESS. Acta Horticulturae, 2015, , 1351-1358.	0.2	1
148	Molecular identification of phosphate-solubilizing native bacteria isolated from the rhizosphere of Prosopis glandulosa in Mexicali valley. Genetics and Molecular Research, 2015, 14, 2793-2798.	0.2	7
149	Arbuscular mycorrhizal colonization and glomalin related soil protein accumulation of five coastal plants in Tottori sand dunes. Journal of the Japanese Society of Revegetation Technology, 2015, 41, 27-32.	0.1	0

#	Article	IF	CITATIONS
150	AMF Inoculation Enhances Growth and Improves the Nutrient Uptake Rates of Transplanted, Salt-Stressed Tomato Seedlings. Sustainability, 2015, 7, 15967-15981.	3.2	115
151	Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science, 2015, 6, 868.	3.6	302
152	Response of Arbuscular Mycorrhizal Fungi to Hydrologic Gradients in the Rhizosphere ofPhragmites australis(Cav.) Trin ex. Steudel Growing in the Sun Island Wetland. BioMed Research International, 2015, 2015, 1-9.	1.9	7
153	Estimation of AM fungal colonization — Comparability and reliability of classical methods. Acta Microbiologica Et Immunologica Hungarica, 2015, 62, 435-451.	0.8	10
154	Research Status on Suaeda heteroptera Kitag. Aquatic Science and Technology, 2015, 3, 23.	0.1	1
155	Protective effects of Glomus iranicum var. tenuihypharum on soil and Viburnum tinus plants irrigated with treated wastewater under field conditions. Mycorrhiza, 2015, 25, 399-409.	2.8	20
156	Physiological responses of halophytic C ₄ grass Aeluropus littoralis to salinity and arbuscular mycorrhizal fungi colonization. Photosynthetica, 2015, 53, 572-584.	1.7	32
157	Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae, 2015, 196, 91-108.	3.6	483
158	Salinity-induced differences in soil microbial communities around the hypersaline Lake Urmia. Soil Research, 2015, 53, 494.	1.1	23
159	Molecular cloning and characterization of salt inducible dehydrin gene from the C4 plant Pennisetum glaucum. Plant Gene, 2015, 4, 55-63.	2.3	30
160	Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology, 2015, 174, 87-96.	3.5	273
161	Arbuscular mycorrhizal inoculation improves growth and antioxidative response of <i>Jatropha curcas</i> (L.) under Na ₂ SO ₄ salt stress. Plant Biosystems, 2015, 149, 260-269.	1.6	40
162	Positive and negative biotic interactions and invasive <i>Triadica sebifera</i> tolerance to salinity: a cross ontinent comparative study. Oikos, 2015, 124, 216-224.	2.7	24
163	Anatomical, Morphological, and Phytochemical Effects of Inoculation with Plant Growth- Promoting Rhizobacteria on Peppermint (Mentha piperita). Journal of Chemical Ecology, 2015, 41, 149-158.	1.8	35
164	Arbuscular mycorrhizal fungi in a voltzialean conifer from the Triassic of Antarctica. Review of Palaeobotany and Palynology, 2015, 215, 76-84.	1.5	11
165	Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environmental Science and Pollution Research, 2015, 22, 6511-6525.	5.3	163
166	Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Mycorrhiza, 2015, 25, 165-180.	2.8	67
167	Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Applied Soil Ecology, 2015, 96, 114-121.	4.3	154

#	ARTICLE Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and	IF	CITATIONS
168	reduces non-photochemical quenching in rice plants subjected to salt stress. Journal of Plant Physiology, 2015, 185, 75-83.	3.5	151
169	Arbuscular mycorrhizal fungal association in Asteraceae plants growing in the arid lands of Saudi Arabia. Journal of Arid Land, 2015, 7, 676-686.	2.3	12
170	Some Morpho-Physiological Characteristics of Mung Bean Mycorrhizal Plants under Different Irrigation Regimes in Field Condition. Journal of Plant Nutrition, 2015, 38, 1754-1767.	1.9	10
171	Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas. Science of the Total Environment, 2015, 533, 488-494.	8.0	81
172	Insight into the Role of Arbuscular Mycorrhizal Fungi in Sustainable Agriculture. , 2015, , 3-37.		4
173	Effects of Sex and Mycorrhizal Fungi on Gas Exchange in the Dioecious Salt Marsh Grass <i>Distichlis spicata</i> . International Journal of Plant Sciences, 2015, 176, 141-149.	1.3	7
174	Arbuscular mycorrhiza inoculum reduces root respiration and improves biomass accumulation of salt-stressed Ulmus glabra seedlings. Urban Forestry and Urban Greening, 2015, 14, 432-437.	5.3	14
175	Naringenin- and Funneliformis mosseae-Mediated Alterations in Redox State Synchronize Antioxidant Network to Alleviate Oxidative Stress in Cicer arietinum L. Genotypes Under Salt Stress. Journal of Plant Growth Regulation, 2015, 34, 595-610.	5.1	19
176	Ectomycorrhizal Community Structure of Salix and Betula spp. at a Saline Site in Central Poland in Relation to the Seasons and Soil Parameters. Water, Air, and Soil Pollution, 2015, 226, 99.	2.4	39
177	Mycorrhizal euonymus plants and reclaimed water: Biomass, water status and nutritional responses. Scientia Horticulturae, 2015, 186, 61-69.	3.6	35
178	Microbially-driven strategies for bioremediation of bauxite residue. Journal of Hazardous Materials, 2015, 293, 131-157.	12.4	99
179	Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiology and Biochemistry, 2015, 90, 64-74.	5.8	88
180	Rhizosphere Microbes Interactions in Medicinal Plants. Soil Biology, 2015, , 19-41.	0.8	11
181	Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Scientia Horticulturae, 2015, 187, 131-141.	3.6	277
182	Plant regeneration from organogenic callus and assessment of clonal fidelity in Elephantopus scaber Linn., an ethnomedicinal herb. Physiology and Molecular Biology of Plants, 2015, 21, 269-277.	3.1	11
183	Influence of arbuscular mycorrhiza on photosynthesis and water status of Populus cathayana Rehder males and females under salt stress. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	39
184	Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective. Critical Reviews in Biotechnology, 2015, 35, 461-474.	9.0	89
185	Arbuscular mycorrhizal colonization of Tamarix ramosissima along a salinity gradient in the southwestern United States. Landscape and Ecological Engineering, 2015, 11, 221-225.	1.5	8

#	Article	IF	CITATIONS
186	A comparative study of phosphate solubilization and the host plant growth promotion ability of Fusarium verticillioides RK01 and Humicola sp. KNU01 under salt stress. Annals of Microbiology, 2015, 65, 585-593.	2.6	55
187	Artificial Inoculation of AM Fungi Improves Nutrient Uptake Efficiency in Salt Stressed Pea (Pissum) Tj ETQq1 1 0.	784314 rg 0.1	gBŢ /Overloc
188	Response of Caper Plant to Drought and Different Ratios of Calcium and Sodium Chloride1. Planta Daninha, 2016, 34, 259-266.	0.5	5
190	Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress – A Meta-Analysis. Frontiers in Microbiology, 2016, 7, 1246.	3.5	47
191	Protein Quantity and Quality of Safflower Seed Improved by NP Fertilizer and Rhizobacteria (Azospirillum and Azotobacter spp.). Frontiers in Plant Science, 2016, 7, 104.	3.6	38
192	Mitigation of NaCl Stress by Arbuscular Mycorrhizal Fungi through the Modulation of Osmolytes, Antioxidants and Secondary Metabolites in Mustard (Brassica juncea L.) Plants. Frontiers in Plant Science, 2016, 7, 869.	3.6	50
193	Grafting: A Technique to Modify Ion Accumulation in Horticultural Crops. Frontiers in Plant Science, 2016, 7, 1457.	3.6	132
194	New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Frontiers in Plant Science, 2016, 7, 1787.	3.6	568
195	Role of Arbuscular Mycorrhiza in Alleviating Salinity Stress in Wheat (<i>Triticum aestivum</i> L.) Grown Under Ambient and Elevated CO ₂ . Journal of Agronomy and Crop Science, 2016, 202, 486-496.	3.5	37
196	Synergistic Interactions Between Salt-tolerant Rhizobia and Arbuscular Mycorrhizal Fungi on Salinity Tolerance of Sesbania cannabina Plants. Journal of Plant Growth Regulation, 2016, 35, 1098-1107.	5.1	33
197	Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia, 2016, 182, 625-641.	2.0	89
198	Optimizing Chemically Induced Resistance in Tomato Against Botrytis cinerea. Plant Disease, 2016, 100, 704-710.	1.4	51
199	The effects of some osmoprotectant compounds on growth parameters of pea plants (<i>Pisum) Tj ETQq0 0 0 rg</i>	BT /Overlo	ock 10 Tf 50
200	Proteomic analysis of symbiotic proteins of Glomus mosseae and Amorpha fruticosa. Scientific Reports, 2016, 5, 18031.	3.3	21
201	Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Applied Soil Ecology, 2016, 105, 137-143.	4.3	46
203	Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza, 2016, 26, 673-684.	2.8	152
204	Nutrient uptake by mulberry and Chinese prickly ash associated with arbuscular mycorrhizal fungi. Acta Geochimica, 2016, 35, 120-129.	1.7	4
205	Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pacific Journal of Tropical Biomedicine, 2016, 6, 886-891.	1.2	90

#	Article	IF	CITATIONS
206	Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review. Journal of Plant Biology, 2016, 59, 407-426.	2.1	188
207	Arsenic stress affects the expression profile of genes of 14-3-3 proteins in the shoot of mycorrhiza colonized rice. Physiology and Molecular Biology of Plants, 2016, 22, 515-522.	3.1	18
208	Potential Benefits of Soil Microorganisms on Medicinal and Aromatic Plants. ACS Symposium Series, 2016, , 75-90.	0.5	5
209	Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture. Biotechnology Advances, 2016, 34, 1245-1259.	11.7	315
210	Mitigating Abiotic Stresses in Crop Plants by Arbuscular Mycorrhizal Fungi. Signaling and Communication in Plants, 2016, , 341-400.	0.7	26
211	Impact of microbial inoculation on biomass accumulation by Sulla carnosa provenances, and in regulating nutrition, physiological and antioxidant activities of this species under non-saline and saline saline conditions. Journal of Plant Physiology, 2016, 201, 28-41.	3.5	89
212	Amelioration of salinity stress in different basil (<i>Ocimum basilicum</i> L.) varieties by vesicular-arbuscular mycorrhizal fungi. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2016, 66, 583-592.	0.6	4
213	Ectomycorrhizal inoculation of Populus nigra modifies the response of absorptive root respiration and root surface enzyme activity to salinity stress. Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 224, 123-129.	1.2	8
214	Belowground Defence Strategies in Plants. Signaling and Communication in Plants, 2016, , .	0.7	6
216	Endophytic and rhizosphere bacteria associated with the roots of the halophyte Salicornia europaea L. – community structure and metabolic potential. Microbiological Research, 2016, 192, 37-51.	5.3	63
217	Salt tolerance in wild relatives of adzuki bean, Vigna angularis (Willd.) Ohwi et Ohashi. Genetic Resources and Crop Evolution, 2016, 63, 627-637.	1.6	34
218	Soil and seasons affect arbuscular mycorrhizal fungi associated with Tamarix rhizosphere in arid and semi-arid steppes. Applied Soil Ecology, 2016, 107, 182-190.	4.3	24
219	Three species of arbuscular mycorrhizal fungi confer different levels of resistance to water stress in <i>Spinacia oleracea</i> L Plant Biosystems, 2016, 150, 851-854.	1.6	12
220	Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.). Plant and Soil, 2016, 402, 247-261.	3.7	55
221	Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress. Plant Growth Regulation, 2016, 80, 5-22.	3.4	31
222	Morpho-Physiological Responses of Grape Rootstock â€ [~] Dogridge' to Arbuscular Mycorrhizal Fungi Inoculation Under Salinity Stress. International Journal of Fruit Science, 2016, 16, 191-209.	2.4	11
223	Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi Journal of Biological Sciences, 2016, 23, 272-281.	3.8	133
224	How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis?. Planta, 2016, 243, 1375-1385.	3.2	79

#	Article	IF	CITATIONS
225	Influence of season and edaphic factors on endorhizal fungal associations in subtropical plantation forest trees of Northeastern India. Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 222, 1-12.	1.2	12
226	Plant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity. Journal of Vegetation Science, 2016, 27, 89-99.	2.2	45
227	The effect of Funnelliformis mosseae inoculation on the phytoremediation of atrazine by the aquatic plant Canna indica L. var. flava Roxb RSC Advances, 2016, 6, 22538-22549.	3.6	11
228	Effects of Arbuscular Mycorrhizal Fungi on Seedling Growth and Physiological Traits of <i>Melilotus officinalis</i> L. Grown Under Salinity Stress Conditions. Communications in Soil Science and Plant Analysis, 2016, 47, 822-831.	1.4	3
229	Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiological Research, 2016, 183, 68-79.	5.3	90
230	Large variation in mycorrhizal colonization among wild accessions, cultivars, and inbreds of sunflower (Helianthus annuus L.). Euphytica, 2016, 207, 331-342.	1.2	29
231	Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields. Plant and Soil, 2016, 398, 195-206.	3.7	69
232	Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regulation, 2016, 78, 371-387.	3.4	115
233	Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza, 2016, 26, 141-152.	2.8	141
234	The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi Journal of Biological Sciences, 2017, 24, 170-179.	3.8	138
235	Impact Assessment of Fertilizers and AM Fungi on Biomass Production of Jatropha curcas Under Alkali Soil Conditions. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2017, 87, 193-200.	1.0	0
236	Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP). Science of the Total Environment, 2017, 581-582, 657-665.	8.0	60
237	Effect of halotolerant endophytic bacteria isolated from <i>Salicornia europaea</i> L. on the growth of fodder beet (<i>Beta vulgaris</i> L.) under salt stress. Archives of Agronomy and Soil Science, 2017, 63, 1404-1418.	2.6	52
238	Influence of <i>Rhizoglomus irregulare</i> on nutraceutical quality and regeneration of <i>Lycium barbarum</i> leaves under salt stress. Canadian Journal of Microbiology, 2017, 63, 365-374.	1.7	5
239	Regulation of plants metabolism in response to salt stress: an omics approach. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	22
240	Brassinosteroid (BR) and arbuscular mycorrhizal (AM) fungi alleviate salinity in wheat. Journal of Plant Nutrition, 2017, 40, 1091-1098.	1.9	13
241	CaCO ₃ and MgCO ₃ Dissolving Halophilic Bacteria. Geomicrobiology Journal, 2017, 34, 804-810.	2.0	9
242	Influence of the root endophyte <i>Piriformospora indica</i> on the plant water relations, gas exchange and growth of <i>Chenopodium quinoa</i> at limited water availability. Journal of Agronomy and Crop Science, 2017, 203, 373-384.	3.5	30

ARTICLE IF CITATIONS Arbuscular Mycorrhizas: An Overview., 2017, , 1-24. 243 7 Arbuscular Mycorrhizas and Ecosystem Restoration., 2017, , 245-292. 244 245 Arbuscular Mycorrhizal Fungi and Tolerance of Salt Stress in Plants., 2017, , 67-97. 31 Arbuscular Mycorrhizal Fungi and Tolerance of Temperature Stress in Plants., 2017, , 163-194. 246 23 Arbuscular Mycorrhizal Fungi and Dark Septate Endophytes in Grapevine: The Potential for 247 2 Sustainable Viticulture?., 2017,, 275-289. Mycorrhiza - Function, Diversity, State of the Art., 2017, , . Nature's potato chip: The role of salty fungi in a changing world. American Journal of Botany, 2017, 249 1.7 17 104, 641-644. Responses of wheat plants to interactions of 24-epibrassinolide and Glomus mosseae in saline 250 3.1 condition. Physiology and Molecular Biology of Plants, 2017, 23, 557-564. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and 251 5.8 171 Biochemistry, 2017, 118, 199-217. Two-Step Salt Stress Acclimatization Confers Marked Salt Tolerance Improvement in Four Rice Genotypes Differing in Salt Tolerance. Arabian Journal for Science and Engineering, 2017, 42, 2191-2200. High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence 253 mechanisms in Cajanus cajan (L) Millsp. genotypes grown under salinity stress. Mycorrhiza, 2017, 27, 2.8 33 669-682. Response of Miscanthus sacchariflorus to zinc stress mediated by arbuscular mycorrhizal fungi. 254 1.2 Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 234, 60-68. Facilitation or Competition? The Effects of the Shrub Species Tamarix chinensis on Herbaceous 255 Communities are Dependent on the Successional Stage in an Impacted Coastal Wetland of North China. 1.5 5 Wetlands, 2017, 37, 899-911. Arbuscular Mycorrhizal Fungi (AMF) for Sustainable Soil and Plant Health in Salt-Affected Soils. 16 2017, , 133-156. 257 Arbuscular Mycorrhizas and Stress Tolerance of Plants., 2017,,. 39 Bioremediation of Salt Affected Soils: An Indian Perspective., 2017,,. 28 Ozone and Nitrogen Effects on Juvenile Subalpine Plants: Complex Interactions with Species and 259 2.4 3 Colonization by Arbuscular Mycorrhizal Fungi (AMF). Water, Air, and Soil Pollution, 2017, 228, 1. Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular 6.5 mycorrhiza. Phytochemistry Reviews, 2017, 16, 677-692.

#	Article	IF	CITATIONS
261	Mycorrhizal colonization of chenopods and its influencing factors in different saline habitats, China. Journal of Arid Land, 2017, 9, 143-152.	2.3	10
262	Salinity induced effects on the growth rates and mycelia composition of basidiomycete and zygomycete fungi. Environmental Pollution, 2017, 231, 1633-1641.	7.5	12
264	Plant Bioregulators: A Stress Mitigation Strategy for Resilient Agriculture. , 2017, , 235-259.		5
265	Arbuscular Mycorrhizal Symbiosis: A Promising Approach for Imparting Abiotic Stress Tolerance in Crop Plants. , 2017, , 377-402.		4
266	Pre-colonized seedlings with arbuscular mycorrhizal fungi: an alternative for the cultivation of Jatropha curcas L. in salinized soils. Theoretical and Experimental Plant Physiology, 2017, 29, 129-142.	2.4	5
267	Respiratory ATP cost and benefit of arbuscular mycorrhizal symbiosis with Nicotiana tabacum at different growth stages and under salinity. Journal of Plant Physiology, 2017, 218, 243-248.	3.5	19
268	Arbuscular Mycorrhizal Symbiosis and Its Role in Plant Nutrition in Sustainable Agriculture. , 2017, , 129-164.		15
269	Physiological responses of crop plants against Trichoderma harzianum in saline environment. Acta Botanica Croatica, 2017, 76, 154-162.	0.7	42
270	Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, 2017, , .	1.1	4
271	Colonization with endo-mycorrhiza affects the resistance of safflower in response to salinity condition. Journal of Plant Nutrition, 2017, 40, 1856-1867.	1.9	3
272	Application of Bioinoculants for Sustainable Agriculture. , 2017, , 473-495.		4
273	Mycorrhizal Fungi Under Biotic and Abiotic Stress. , 2017, , 57-69.		1
274	Role of Arbuscular Mycorrhizal Fungi (AMF) in Salinity Tolerance and Growth Response in Plants Under Salt Stress Conditions. , 2017, , 71-86.		22
276	Rhizotrophs in Saline Agriculture. , 2017, , 101-123.		1
278	Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza, 2017, 27, 639-657.	2.8	113
280	Mitigation of Salt Stress Negative Effects on Sweet Pepper Using Arbuscular Mycorrhizal Fungi (AMF), Bacillus megaterium and Brassinosteroids (BRs). Gesunde Pflanzen, 2017, 69, 91-102.	3.0	30
281	Nitrogen ion form and spatio-temporal variation in root distribution mediate nitrogen effects on lifespan of ectomycorrhizal roots. Plant and Soil, 2017, 411, 261-273.	3.7	12
282	Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Science of the Total Environment, 2017, 576, 234-241.	8.0	152

ARTICLE IF CITATIONS Response of snapdragon (Antirrhinum majus L.) to blended water irrigation and arbuscular mycorrhizal fungi inoculation: uptake of minerals and leaf water relations. Photosynthetica, 2017, 55, 1.7 16 201-209. Arbuscular mycorrhizal fungi enhanced the growth, photosynthesis, and calorific value of black 1.7 28 locust under salt stress. Photosynthetica, 2017, 55, 378-385. Arbuscular mycorrhizal fungal diversity in high-altitude hypersaline Andean wetlands studied by 2.3 9 454-sequencing and morphological approaches. Symbiosis, 2017, 72, 143-152. Responses of field grown fennel (Foeniculum vulgare Mill.) to different mycorrhiza species under varying intensities of drought stress. Journal of Applied Research on Medicinal and Aromatic Plants, 2017, 5, 16-25. Effects of mycorrhiza inoculation on cucumber growth irrigated with saline water. Journal of Plant 1.9 6 Nutrition, 2017, 40, 128-137. Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability, 2017, , . Arbuscular Mycorrhizal Fungi (AMF) for Sustainable Rice Production. Microorganisms for 0.7 11 Sustainability, 2017, , 99-126. Mycorrhizal Symbioses of Cotton Grown on Sodic Soils: A Review from an Australian Perspective. 4.0 Pédosphere, 2017, 27, 1015-1026. Mycoremediation and Environmental Sustainability. Fungal Biology, 2017, , . 38 0.6 Arbuscular Mycorrhizal Fungi Provide Complementary Characteristics that Improve Plant Tolerance to Drought and Salinity: Date Palm as Model. Fungal Biology, 2017, , 189-215. Arbuscular Mycorrhizal Fungi Improve Tolerance of Agricultural Plants to Cope Abiotic Stress 7 Conditions., 2017, , 55-80. Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. 3.5 156 Journal of Integrative Agriculture, 2017, 16, 2357-2374. Association and mycorrhizal dependency in Jatropha curcas L. seedlings under salt stress. Revista 0.4 3 Ceres, 2017, 64, 592-599. Exogenous auxin improves root morphology and restores growth of grafted cucumber seedlings. Zahradnictvi (Prague, Czech Republic: 1992), 2017, 44, 82-90. The Combination of Trichoderma harzianum and Chemical Fertilization Leads to the Deregulation of Phytohormone Networking, Preventing the Adaptive Responses of Tomato Plants to Salt Stress. 3.6 86 Frontiers in Plant Science, 2017, 8, 294. Exogenous Melatonin Confers Salt Stress Tolerance to Watermelon by Improving Photosynthesis and Redox Homeostasis. Frontiers in Plant Science, 2017, 8, 295. Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Increased Potassium Content and Expression 3.6 40 of Genes Encoding Potassium Channels in Lycium barbarum. Frontiers in Plant Science, 2017, 8, 440.

CITATION REPORT

#

283

284

285

286

287

288

289

290

291

293

294

295

297

298

#	Article	IF	CITATIONS
301	Trade-Offs in Arbuscular Mycorrhizal Symbiosis: Disease Resistance, Growth Responses and Perspectives for Crop Breeding. Agronomy, 2017, 7, 75.	3.0	98
302	Diverse Plant-Associated Pleosporalean Fungi from Saline Areas: Ecological Tolerance and Nitrogen-Status Dependent Effects on Plant Growth. Frontiers in Microbiology, 2017, 8, 158.	3.5	48
303	The Fungus Aspergillus aculeatus Enhances Salt-Stress Tolerance, Metabolite Accumulation, and Improves Forage Quality in Perennial Ryegrass. Frontiers in Microbiology, 2017, 8, 1664.	3.5	41
304	Strigolactones. , 2017, , 327-359.		7

305 Could the artificial inoculation of AM fungi improve the benefits of using pea (<i>Pisum sativum</i>) Tj ETQq0 0 0 rgBT /Overlock 10 Tf S

306	Improvement of tree growth in salt-affected soils under greenhouse conditions using a combination of peanut shells and microbial inoculation. Journal of Agricultural Biotechnology and Sustainable Development, 2017, 9, 36-44.	0.7	5
307	The Response of Spring Wheat Cultivars to Arbuscular Mycorrhizal Colonization under Salinity Stresses. Sustainable Agriculture Research, 2017, 6, 58.	0.3	1
309	<i>Phelipanche aegyptiaca</i> parasitism impairs salinity tolerance in young leaves of tomato. Physiologia Plantarum, 2018, 164, 191-203.	5.2	2
310	Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Industrial Crops and Products, 2018, 117, 13-19.	5.2	105
311	Arbuscular mycorrhizal fungi improve photosynthetic energy use efficiency and decrease foliar construction cost under recurrent water deficit in woody evergreen species. Plant Physiology and Biochemistry, 2018, 127, 469-477.	5.8	27
312	Strategies to Mitigate the Salt Stress Effects on Photosynthetic Apparatus and Productivity of Crop Plants. , 2018, , 85-136.		52
313	Role of Indigenous Mycorrhizal Species in Enhancing Physiological and Biochemical Status, Nutrient Acquisition and Yield Pattern of Groundnut (Arachis Hypogaea L.). Journal of Crop Science and Biotechnology, 2018, 21, 23-33.	1.5	7
314	Effects of using arbuscular mycorrhizal fungi to alleviate drought stress on the physiological traits and essential oil yield of fennel. Rhizosphere, 2018, 6, 31-38.	3.0	30
315	Arbuscular Mycorrhizal Fungi and Plant Stress Tolerance. Microorganisms for Sustainability, 2018, , 81-103.	0.7	10
316	Optimizing Growth and Tolerance of Date Palm (Phoenix dactylifera L.) to Drought, Salinity, and Vascular Fusarium-Induced Wilt (Fusarium oxysporum) by Application of Arbuscular Mycorrhizal Fungi (AMF). Soil Biology, 2018, , 239-258.	0.8	32
317	Improvement of Salt Tolerance in Rice Plants by Arbuscular Mycorrhizal Symbiosis. Soil Biology, 2018, , 259-279.	0.8	5
318	Impact of Climate Change on Root–Pathogen Interactions. Soil Biology, 2018, , 409-427.	0.8	8
319	Relationship Between Arbuscular Mycorrhizas and Plant Growth: Improvement or Depression?. Soil Biology, 2018, , 451-464.	0.8	10

#	Article	IF	CITATIONS
320	Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L) rhizosphere microbiome. Microbiological Research, 2018, 211, 13-20.	5.3	26
321	Examining Arbuscular Mycorrhizal Fungi in Saltmarsh Hay (<i>Spartina patens</i>) and Smooth Cordgrass (<i>Spartina alterniflora</i>) in the Minas Basin, Nova Scotia. Northeastern Naturalist, 2018, 25, 72-86.	0.3	14
322	Effect of peanut shells amendment on soil properties and growth of seedlings of Senegalia senegal (L) Britton, Vachellia seyal (Delile) P. Hurter, and Prosopis juliflora (Swartz) DC in salt-affected soils. Annals of Forest Science, 2018, 75, 1.	2.0	10
323	Arbuscular mycorrhizal fungi and foliar phosphorus inorganic supply alleviate salt stress effects in physiological attributes, but only arbuscular mycorrhizal fungi increase biomass in woody species of a semiarid environment. Tree Physiology, 2018, 38, 25-36.	3.1	30
324	Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. Journal of Ecology, 2018, 106, 254-264.	4.0	86
325	Physiological response of Cucurbita pepo var. pepo mycorrhized by Sonoran desert native arbuscular fungi to drought and salinity stresses. Brazilian Journal of Microbiology, 2018, 49, 45-53.	2.0	19
326	Ectomycorrhizal and endophytic fungi associated with Alnus glutinosa growing in a saline area of central Poland. Symbiosis, 2018, 75, 17-28.	2.3	16
327	Do fungi need salt licks? No evidence for fungal contribution to the Sodium Ecosystem Respiration Hypothesis based on lab and field experiments in Southern Ecuador. Fungal Ecology, 2018, 32, 18-28.	1.6	2
328	Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands. Science of the Total Environment, 2018, 616-617, 1101-1123.	8.0	93
329	AMF: The future prospect for sustainable agriculture. Physiological and Molecular Plant Pathology, 2018, 102, 36-45.	2.5	107
330	Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta, 2018, 247, 573-585.	3.2	62
331	Acclimatization of Rhizophagus irregularis Enhances Zn Tolerance of the Fungus and the Mycorrhizal Plant Partner. Frontiers in Microbiology, 2018, 9, 3156.	3.5	18
332	In vitrosalt and thermal tolerance of fungal endophytes ofNicotianaspp. growing in arid regions of north-western Australia. Archives of Phytopathology and Plant Protection, 2018, 51, 602-616.	1.3	4
333	Arbuscular-mycorrhiza-induced salt tolerance and resistance to Fusarium root rot in asparagus plants. Acta Horticulturae, 2018, , 365-372.	0.2	5
334	Cross-Protection to Salt Stress and Fusarium Wilt with the Alleviation of Oxidative Stress in Mycorrhizal Strawberry Plants. Environmental Control in Biology, 2018, 56, 187-192.	0.7	1
335	Antioxidant changes in mycorrhizal inoculated vegetable crops under salt stress. Acta Horticulturae, 2018, , 227-234.	0.2	0
336	Piriformospora indica Alleviates Salinity by Boosting Redox Poise and Antioxidative Potential of Tomato. Russian Journal of Plant Physiology, 2018, 65, 898-907.	1.1	57
337	Beneficial Microorganisms for the Management of Soil Phosphorus. Sustainable Agriculture Reviews, 2018, , 53-75.	1.1	4

		CITATION RE	PORT	
#	Article		IF	CITATIONS
338	Sustainable Agriculture Reviews 32. Sustainable Agriculture Reviews, 2018, , .		1.1	0
339	Comparative Studies on the Role of Organic Biostimulant in Resistant and Susceptible Rice Grown under Saline Stress - Organic Biostimulant Alleviate Saline Stress in Tolerar Susceptible Cultivars of Rice. Journal of Crop Science and Biotechnology, 2018, 21, 45	nt and	1.5	11
340	Environmental sustainability: challenges and viable solutions. Environmental Sustainab 309-340.	ility, 2018, 1,	2.8	162
341	Use of Some Bacteria and Mycorrhizae as Biofertilizers in Vegetable Growing and Bene Salinity and Drought Stress Conditions. , 2018, , .	ficial Effects in		1
342	Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Resp Elevated CO2 and NaCl Stress. Frontiers in Plant Science, 2018, 9, 1363.	onse to	3.6	48
343	Plant-Associated Microbial Interactions in the Soil Environment: Role of Endophytes in Abiotic Stress Tolerance to Crops. , 2018, , 245-284.	Imparting		12
344	Salinity tolerance and sodium localization in mycorrhizal strawberry plants. Communic Science and Plant Analysis, 2018, 49, 2782-2792.	ations in Soil	1.4	7
345	Proline Accumulation Influenced by Osmotic Stress in Arbuscular Mycorrhizal Symbiot Frontiers in Microbiology, 2018, 9, 2525.	c Plants.	3.5	149
346	Arbuscular mycorrhiza enhances nutrient accumulation in wheat exposed to elevated salinity. Journal of Plant Nutrition and Soil Science, 2018, 181, 836-846.	CO2 and soil	1.9	18
347	Mycorrhizal status of some indigenous tree species in the Takamanda rainforest, Sout Cameroon. Journal of Ecology and the Natural Environment, 2018, 10, 41-52.	n West Region,	0.3	1
348	Arbuscular mycorrhizal symbiosis in rice: Establishment, environmental control and im growth and resistance to abiotic stresses. Rhizosphere, 2018, 8, 12-26.	pact on plant	3.0	53
349	An endosymbiont Piriformospora indica reduces adverse effects of salinity by regulatin transporter genes, phytohormones, and antioxidants in Brassica campestris ssp. Chine Environmental and Experimental Botany, 2018, 153, 89-99.		4.2	38
350	The combination of arbuscular mycorrhizal fungi inoculation (<i>Glomus versiforme28â€homobrassinolide spraying intervals improves growth by enhancing photosynthe absorption, and antioxidant system in cucumber (<i>Cucumis sativus</i>L.) under sali and Evolution, 2018, 8, 5724-5740.</i>	sis, nutrient	1.9	39
351	Additional AM Fungi Inoculation Increase Populus cathayana Intersexual Competition. Plant Science, 2018, 9, 607.	Frontiers in	3.6	26
352	Bradyrhizobia-Mediated Drought Tolerance in Soybean and Mechanisms Involved. , 20	18, , 121-139.		6
353	Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distributio Salt-Stressed Elaeagnus angustifolia Seedlings. Frontiers in Microbiology, 2018, 9, 652		3.5	78
354	Responses of Different Panicum miliaceum L. Genotypes to Saline and Water Stress in Mediterranean Environment. Agronomy, 2018, 8, 8.	a Marginal	3.0	18
355	Lifespan and functionality of mycorrhizal fungal mycelium are uncoupled from host pla Scientific Reports, 2018, 8, 10235.	nt lifespan.	3.3	40

#	Article	IF	CITATIONS
356	Fungal Cytochrome P450s and the P450 Complement (CYPome) of Fusarium graminearum. Toxins, 2018, 10, 112.	3.4	101
357	Organic matter dynamics along a salinity gradient in Siberian steppe soils. Biogeosciences, 2018, 15, 13-29.	3.3	23
358	Selection of arbuscular mycorrhizal fungal strains to improve Casuarina equisetifolia L. and Casuarina glauca Sieb. tolerance to salinity. Annals of Forest Science, 2018, 75, 1.	2.0	17
359	Arbuscular mycorrhizal fungi alleviate boron toxicity in Puccinellia tenuiflora under the combined stresses of salt and drought. Environmental Pollution, 2018, 240, 557-565.	7.5	35
360	The impact of salinity on mycorrhizal colonization of a rare legume, Galactia smallii, in South Florida pine rocklands. BMC Research Notes, 2018, 11, 2.	1.4	11
361	Effects of arbuscular mycorrhizal fungi on <i>Leymus chinensis</i> seedlings under salt–alkali stress and nitrogen deposition conditions: from osmotic adjustment and ion balance. RSC Advances, 2018, 8, 14500-14509.	3.6	22
362	Effectiveness of bacterial inoculation in alleviation of salinity on water status, mineral content, gas exchange and photosynthetic parameters of Viburnum tinus L. plants. Scientia Horticulturae, 2018, 237, 303-310.	3.6	5
363	Non-Mycorrhizal Plants: The Exceptions that Prove the Rule. Trends in Plant Science, 2018, 23, 577-587.	8.8	131
364	Salinity Stress Alleviation by Organic and Inorganic Fertilization. , 2018, , 437-476.		4
365	Wetland plant species improve performance when inoculated with arbuscular mycorrhizal fungi: a meta-analysis of experimental pot studies. Mycorrhiza, 2018, 28, 477-493.	2.8	31
366	Community Structure of Rhizomicrobiomes in Four Medicinal Herbs and Its Implication on Growth Management. Microbiology, 2018, 87, 425-436.	1.2	9
367	Nano Zero-Valent Iron Mediated Metal(loid) Uptake and Translocation by Arbuscular Mycorrhizal Symbioses. Environmental Science & Technology, 2018, 52, 7640-7651.	10.0	43
368	Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS ONE, 2018, 13, e0196408.	2.5	103
369	Specific nutrient absorption rates of transplanted cucumber seedlings are highly related to RGR and influenced by grafting method, AMF inoculation and salinity. Scientia Horticulturae, 2019, 243, 177-188.	3.6	40
370	Subterranean Desert Rodents (Genus Ctenomys) Create Soil Patches Enriched in Root Endophytic Fungal Propagules. Microbial Ecology, 2019, 77, 451-459.	2.8	25
371	Managing plant-environment-symbiont interactions to promote plant performance under low temperature stress. Journal of Plant Nutrition, 2019, 42, 2010-2027.	1.9	11
372	Salinity-induced changes in the rhizosphere microbiome improve salt tolerance of Hibiscus hamabo. Plant and Soil, 2019, 443, 525-537.	3.7	31
373	Saline Soil-based Agriculture by Halotolerant Microorganisms. , 2019, , .		19

#	Article	IF	CITATIONS
374	Influence of Native Arbuscular Mycorrhizal Fungi and Pseudomonas fluorescens on Tamarix Shrubs Under Different Salinity Levels. Soil Biology, 2019, , 265-283.	0.8	6
375	Plant-Mycorrhizal and Plant-Rhizobial Interfaces: Underlying Mechanisms and Their Roles in Sustainable Agroecosystems. , 2019, , 27-67.		3
376	Soil Salinity as a Challenge for Sustainable Agriculture and Bacterial-Mediated Alleviation of Salinity Stress in Crop Plants. , 2019, , 1-22.		25
377	Role of Halotolerant Microbes in Plant Growth Promotion Under Salt Stress Conditions. , 2019, , 209-253.		13
378	Halotolerant Plant Growth-Promoting Fungi and Bacteria as an Alternative Strategy for Improving Nutrient Availability to Salinity-Stressed Crop Plants. , 2019, , 103-146.		17
379	Arbuscular Mycorrhizal Fungi Confer Salt Tolerance in Giant Reed (Arundo donax L.) Plants Grown Under Low Phosphorus by Reducing Leaf Na+ Concentration and Improving Phosphorus Use Efficiency. Frontiers in Plant Science, 2019, 10, 843.	3.6	33
380	Influence of Xenobiotics on the Mycorrhizosphere. , 2019, , 111-137.		3
381	Metabarcoding reveals differences in fungal communities between unflooded versus tidal flat soil in coastal saline ecosystem. Science of the Total Environment, 2019, 690, 911-922.	8.0	18
382	Salinity: An Overview. Soil Biology, 2019, , 3-18.	0.8	24
383	Arbuscular Mycorrhizal Fungi Alleviate Soil Salinity Stress in Arid and Semiarid Areas. Soil Biology, 2019, , 375-400.	0.8	9
384	Impact of Salinity Stress on Growth and Development of Aquatic Fungi. Soil Biology, 2019, , 155-168.	0.8	0
385	Microorganisms Aiding Existence and Efficiency of Plants in Saline Environment: What We Know and What to Expect. Soil Biology, 2019, , 211-235.	0.8	2
386	Effect of Salinity on Physiological Processes in Plants. Soil Biology, 2019, , 237-262.	0.8	19
387	The Mechanisms Involved in Improving the Tolerance of Plants to Salt Stress Using Arbuscular Mycorrhizal Fungi. Soil Biology, 2019, , 303-327.	0.8	5
388	Effect of Salt Stress on Plants and Role of Microbes in Promoting Plant Growth Under Salt Stress. Soil Biology, 2019, , 423-435.	0.8	13
389	Strategies for Reclamation of Saline Soils. Soil Biology, 2019, , 439-449.	0.8	15
390	Modulation of C:N:P stoichiometry is involved in the effectiveness of a PGPR and AM fungus in increasing salt stress tolerance of Sulla carnosa Tunisian provenances. Applied Soil Ecology, 2019, 143, 161-172.	4.3	34
391	DIVERSITY OF ARBUSCULAR MYCORRHIZAL FUNGI IN FOREST ECOSYSTEMS OF BRAZIL: A REVIEW. Cerne, 2019, 25, 25-35.	0.9	18

#	Article	IF	CITATIONS
393	Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Frontiers in Plant Science, 2019, 10, 1357.	3.6	189
394	Arbuscular Mycorrhizal Fungi in Alleviation of Cold Stress in Plants. , 2019, , 435-455.		8
396	Water transport and water use efficiency differ among Populus euphratica Oliv. saplings exposed to saline water irrigation. Journal of Arid Land, 2019, 11, 866-879.	2.3	1
397	Geography and habitat predominate over climate influences on arbuscular mycorrhizal fungal communities of mid-European meadows. Mycorrhiza, 2019, 29, 567-579.	2.8	18
398	Arbuscular mycorrhizal colonization increases yield of mungbean (Vigna radiata L.) at moderate level of salinity. Soil Science and Plant Nutrition, 2019, 65, 579-588.	1.9	0
399	Microbial approaches in management and restoration of marginal lands. , 2019, , 295-305.		2
400	Effect of a fungus, <i>Hypoxylon</i> spp., on endophytes in the roots of <i>Asparagus</i> . FEMS Microbiology Letters, 2019, 366, .	1.8	9
401	Physical and Functional Constraints on Viable Belowground Acquisition Strategies. Frontiers in Plant Science, 2019, 10, 1215.	3.6	115
402	Arbuscular Mycorrhiza Enhances Biomass Production and Salt Tolerance of Sweet Sorghum. Microorganisms, 2019, 7, 289.	3.6	37
403	Improving plant growth and alleviating photosynthetic inhibition from salt stress using AMF in alfalfa seedlings. Journal of Plant Interactions, 2019, 14, 482-491.	2.1	31
404	Influence of PGPR-enriched liquid organic fertilizers on the growth and nutrients uptake of maize under drought condition in calcareous soil. Journal of Plant Nutrition, 2019, 42, 2745-2756.	1.9	11
405	Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Frontiers in Plant Science, 2019, 10, 1068.	3.6	783
406	Biogeography of arbuscular mycorrhizal fungal communities in saline ecosystems of northern China. Applied Soil Ecology, 2019, 143, 213-221.	4.3	6
407	The effect of NaCl on some physiological and biochemical parameters in Triticum aestivum L. genotypes. Plant Physiology Reports, 2019, 24, 370-375.	1.5	9
408	The fungal endophyte Fusarium solani provokes differential effects on the fitness of two Lotus species. Plant Physiology and Biochemistry, 2019, 144, 100-109.	5.8	12
409	Bacteria Associated With a Commercial Mycorrhizal Inoculum: Community Composition and Multifunctional Activity as Assessed by Illumina Sequencing and Culture-Dependent Tools. Frontiers in Plant Science, 2018, 9, 1956.	3.6	50
410	The Growth Promotion of Two Salt-Tolerant Plant Groups with PGPR Inoculation: A Meta-Analysis. Sustainability, 2019, 11, 378.	3.2	89
411	Soil-Plant-Microbe Interactions in Salt-affected Soils. , 2019, , 203-235.		5

#	Article	IF	CITATIONS
412	Salicornia europaea L. as an underutilized saline-tolerant plant inhabited by endophytic diazotrophs. Journal of Advanced Research, 2019, 19, 49-56.	9.5	28
413	Mycorrhizal Fungi in South America. Fungal Biology, 2019, , .	0.6	9
414	Variation in arbuscular mycorrhizal fungal communities associated with lowland rice (Oryza sativa) along a gradient of soil salinity and arsenic contamination in Bangladesh. Science of the Total Environment, 2019, 686, 546-554.	8.0	33
415	Arbuscular Mycorrhizal Symbiosis in Salt-Tolerance Species and Halophytes Growing in Salt-Affected Soils of South America. Fungal Biology, 2019, , 295-314.	0.6	5
416	Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Scientia Horticulturae, 2019, 253, 429-438.	3.6	106
417	Effect of Drought Stress and Developmental Stages on Microbial Community Structure and Diversity in Peanut Rhizosphere Soil. International Journal of Molecular Sciences, 2019, 20, 2265.	4.1	63
418	Comparative analysis for understanding salinity tolerance mechanism in Indian Mustard (Brassica) Tj ETQq0 0 0 r	gBT /Overl 2.1	oçk 10 Tf 50
419	Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions. Mycorrhiza, 2019, 29, 291-301.	2.8	40
420	Morphophysiological and molecular evidence supporting the augmentative role of in mitigation of salinity in L. Acta Biochimica Et Biophysica Sinica, 2019, 51, 301-312.	2.0	17
421	Sustainable soybean production and abiotic stress management in saline environments: a critical review. Australian Journal of Crop Science, 2019, 13, 228-236.	0.3	21
422	Impact of Arbuscular Mycorrhizal Fungi on Photosynthesis, Water Status, and Gas Exchange of Plants Under Salt Stress–A Meta-Analysis. Frontiers in Plant Science, 2019, 10, 457.	3.6	109
423	Halophytic Microbiome in Ameliorating the Stress. , 2019, , 171-194.		3
424	Mycorrhizal Fungi: Biodiversity, Ecological Significance, and Industrial Applications. Fungal Biology, 2019, , 181-199.	0.6	13
425	Effects of Arbuscular Mycorrhizal Fungi on Growth, Photosynthesis, and Nutrient Uptake of Zelkova serrata (Thunb.) Makino Seedlings under Salt Stress. Forests, 2019, 10, 186.	2.1	34
426	Molecular Methods for Research on Actinorhiza. Rhizosphere Biology, 2019, , 35-59.	0.6	5
427	The Prospects of Bio-Fertilizer Technology for Productive and Sustainable Agricultural Growth. , 2019, , 233-253.		9
428	Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges. Frontiers in Plant Science, 2019, 10, 470.	3.6	310
429	Gene mobility in microbiomes of the mycosphere and mycorrhizosphere –role of plasmids and bacteriophages. FEMS Microbiology Ecology, 2019, 95, .	2.7	13

#	Article	IF	CITATIONS
430	Role of the Plant Root Microbiome in Abiotic Stress Tolerance. , 2019, , 273-311.		20
431	NaCl Inhibits Citrinin and Stimulates Monascus Pigments and Monacolin K Production. Toxins, 2019, 11, 118.	3.4	32
432	Arbuscular Mycorrhizal Colonization Promotes the Tolerance to Salt Stress in Lettuce Plants through an Efficient Modification of Ionic Balance. Journal of Soil Science and Plant Nutrition, 2019, 19, 321-331.	3.4	68
433	Growth and nutrient element content in mycorrhizae colonized mint plants under saline conditions. Acta Horticulturae, 2019, , 115-122.	0.2	2
435	Effects of environmental and temporal factors on Glomeromycotina spores in sand dunes along the Gulf of Valencia (Spain). Fungal Ecology, 2019, 40, 127-139.	1.6	6
436	Evaluation of the phytotoxicity of coal ash on lettuce (Lactuca sativa L.) germination, growth and metal uptake. Ecotoxicology and Environmental Safety, 2019, 170, 750-762.	6.0	24
437	Rootstocks Shape the Rhizobiome: Rhizosphere and Endosphere Bacterial Communities in the Grafted Tomato System. Applied and Environmental Microbiology, 2019, 85, .	3.1	77
438	Genome-wide identification of the HKT genes in five Rosaceae species and expression analysis of HKT genes in response to salt-stress in Fragaria vesca. Genes and Genomics, 2019, 41, 325-336.	1.4	18
439	Dual RNA-seq reveals large-scale non-conserved genotype × genotype-specific genetic reprograming and molecular crosstalk in the mycorrhizal symbiosis. ISME Journal, 2019, 13, 1226-1238.	9.8	49
440	Arbuscular mycorrhizal fungi from petroleum-impacted sites in the Polish Carpathians. International Biodeterioration and Biodegradation, 2019, 138, 50-56.	3.9	5
441	The rhizosphere of the halophytic grass Sporobolus robustus Kunth hosts rhizobium genospecies that are efficient on Prosopis juliflora (Sw.) DC and Vachellia seyal (Del.) P.J.H. Hurter seedlings. Systematic and Applied Microbiology, 2019, 42, 232-239.	2.8	8
442	Polysaccharides from Grateloupia filicina enhance tolerance of rice seeds (Oryza sativa L.) under salt stress. International Journal of Biological Macromolecules, 2019, 124, 1197-1204.	7.5	41
443	Role of calcium in AMF-mediated alleviation of the adverse impacts of cadmium stress in Bassia indica [Wight] A.J. Scott. Saudi Journal of Biological Sciences, 2019, 26, 828-838.	3.8	31
444	Microbial Volatile Organic Compounds Produced by Bacillus amyloliquefaciens GB03 Ameliorate the Effects of Salt Stress in Mentha piperita Principally Through Acetoin Emission. Journal of Plant Growth Regulation, 2020, 39, 764-775.	5.1	41
445	Effect of commercial arbuscular mycorrhizal fungi inoculant on growth and yield of soybean under controlled and natural field conditions. Journal of Plant Nutrition, 2020, 43, 487-499.	1.9	27
446	Chlorophyll synthesis and the photoprotective mechanism in leaves of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress revealed by TMT-based proteomics analyses. Ecotoxicology and Environmental Safety, 2020, 190, 110164.	6.0	34
447	Arbuscular Mycorrhizal and Dark Septate Endophyte Fungal Associations in Two Dominant Ginger Species of Northeast India. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2020, 90, 885-894.	1.0	2
448	Zinc and potassium fertilizer recommendation for cotton seedlings under salinity stress based on gas exchange and chlorophyll fluorescence responses. South African Journal of Botany, 2020, 130, 155-164.	2.5	30

#	Article	IF	CITATIONS
449	Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. Journal of Environmental Management, 2020, 257, 109982.	7.8	88
450	The composition characteristics of arbuscular mycorrhizal fungal communities associated with barley in saline-alkaline soils in Central Anatolia. Soil Science and Plant Nutrition, 2020, 66, 268-274.	1.9	5
451	Mycorrhizal inoculation mitigates damage from an intermediate, but not severe, frost event for a cool-season perennial bunchgrass. Botany, 2020, 98, 127-135.	1.0	0
452	Auxin and proline producing rhizobacteria mitigate salt-induced growth inhibition of barley plants by enhancing water and nutrient status. South African Journal of Botany, 2020, 128, 209-217.	2.5	44
453	An Overview of Hazardous Impacts of Soil Salinity in Crops, Tolerance Mechanisms, and Amelioration through Selenium Supplementation. International Journal of Molecular Sciences, 2020, 21, 148.	4.1	289
454	The Protective Role of 28-Homobrassinolide and Glomus versiforme in Cucumber to Withstand Saline Stress. Plants, 2020, 9, 42.	3.5	6
455	Arbuscular mycorrhizal fungi (AMF) species and abundance exhibit different effects on saline-alkaline tolerance in <i>Leymus chinensis</i> . Journal of Plant Interactions, 2020, 15, 266-279.	2.1	10
456	Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity, 2020, 12, 370.	1.7	198
457	Consequences of Salinity Stress on the Quality of Crops and Its Mitigation Strategies for Sustainable Crop Production: An Outlook of Arid and Semi-arid Regions. , 2020, , 503-533.		31
458	Effects of Arbuscular Mycorrhization on Fruit Quality in Industrialized Tomato Production. International Journal of Molecular Sciences, 2020, 21, 7029.	4.1	11
459	Synergistic effects between arbuscular mycorrhizal fungi and rhizobium isolated from As-contaminated soils on the As-phytoremediation capacity of the tropical woody legume <i>Anadenanthera peregrina</i> . International Journal of Phytoremediation, 2020, 22, 1362-1371.	3.1	14
460	Salinity changes root occupancy by arbuscular mycorrhizal fungal species. Pedobiologia, 2020, 81-82, 150665.	1.2	9
461	Mediation of arbuscular mycorrhizal fungi on growth and biochemical parameters of Ligustrum vicaryi in response to salinity. Physiological and Molecular Plant Pathology, 2020, 112, 101522.	2.5	19
462	Physiological and proteomics responses of nitrogen assimilation and glutamine/glutamine family of amino acids metabolism in mulberry (<i>Morus alba</i> L.) leaves to NaCl and NaHCO ₃ stress. Plant Signaling and Behavior, 2020, 15, 1798108.	2.4	13
463	A consortium of arbuscular mycorrizal fungi improves nutrient uptake, biochemical response, nodulation and growth of the pea (Pisum sativum L.) under salt stress. Rhizosphere, 2020, 15, 100235.	3.0	10
464	Arbuscular Mycorrhizas Regulate Photosynthetic Capacity and Antioxidant Defense Systems to Mediate Salt Tolerance in Maize. Plants, 2020, 9, 1430.	3.5	13
465	Interactions of Arbuscular Mycorrhizal Fungi with Hyphosphere Microbial Communities in a Saline Soil: Impacts on Phosphorus Availability and Alkaline Phosphatase Gene Abundance. Soil Systems, 2020, 4, 63.	2.6	4
466	Orchard management practices affect arbuscular mycorrhizal fungal root colonisation of almond. Biological Agriculture and Horticulture, 2020, 36, 230-248.	1.0	7

#	Article	IF	CITATIONS
467	A Meta-Analytical Approach on Arbuscular Mycorrhizal Fungi Inoculation Efficiency on Plant Growth and Nutrient Uptake. Agriculture (Switzerland), 2020, 10, 370.	3.1	24
468	Plant Salinity Tolerance Conferred by Arbuscular Mycorrhizal Fungi and Associated Mechanisms: A Meta-Analysis. Frontiers in Plant Science, 2020, 11, 588550.	3.6	46
469	Exogenous melatonin enhances salt secretion from salt glands by upregulating the expression of ion transporter and vesicle transport genes in Limonium bicolor. BMC Plant Biology, 2020, 20, 493.	3.6	34
470	Ericoid mycorrhizal fungi enhance salt tolerance in ericaceous plants. Mycorrhiza, 2020, 30, 419-429.	2.8	13
471	Mutualist and pathogen traits interact to affect plant community structure in a spatially explicit model. Nature Communications, 2020, 11, 2204.	12.8	20
472	The invasive plant Solidago canadensis exhibits partial local adaptation to low salinity at germination but not at later lifeâ€history stages. American Journal of Botany, 2020, 107, 599-606.	1.7	8
473	Comparative physiological mechanisms of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects on leaves and roots of Zelkova serrata. Mycorrhiza, 2020, 30, 341-355.	2.8	17
474	Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza, 2020, 30, 431-444.	2.8	37
476	Salinity and its tolerance strategies in plants. , 2020, , 47-76.		16
477	Effects, tolerance mechanisms and management of salt stress in lucerne (Medicago sativa). Crop and Pasture Science, 2020, 71, 411.	1.5	35
478	Water Availability in Soil Affect Performance of Different Root Fungal Colonizers on Metabolism of Wheat. Iranian Journal of Science and Technology, Transaction A: Science, 2020, 44, 919-931.	1.5	4
479	Insights Into Microbially Induced Salt Tolerance and Endurance Mechanisms (STEM) in Plants. Frontiers in Microbiology, 2020, 11, 1518.	3.5	8
480	Omics applications: towards a sustainable protection of tomato. Applied Microbiology and Biotechnology, 2020, 104, 4185-4195.	3.6	7
481	Plant–soil interactions as a restoration tool. , 2020, , 689-730.		6
482	Influence of Salt Stress on Growth of Spermosphere Bacterial Communities in Different Peanut (Arachis hypogaea L.) Cultivars. International Journal of Molecular Sciences, 2020, 21, 2131.	4.1	11
483	Alleviation of salt stress and expression of stress-responsive gene through the symbiosis of arbuscular mycorrhizal fungi with sour orange seedlings. Scientia Horticulturae, 2020, 268, 109373.	3.6	15
484	Influence of salt stress on the rhizosphere soil bacterial community structure and growth performance of groundnut (Arachis hypogaea L.). International Microbiology, 2020, 23, 453-465.	2.4	34
485	AM fungi enhance the function of ecological floating bed in the treatment of saline industrial wastewater. Environmental Science and Pollution Research, 2020, 27, 16656-16667.	5.3	5

ARTICLE

IF CITATIONS

The Effect of Arbuscular Mycorrhizal Fungi Inoculation in Mitigating Salt Stress of Pea (<i>Pisum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 2

487	Soil bacterial and fungal community structure of a rice monoculture and rice-pasture rotation systems. Applied Soil Ecology, 2020, 151, 103535.	4.3	35
488	Biochemical traits associated with growing sorghum genotypes with saline water in the field. Journal of Plant Nutrition, 2020, 43, 1136-1153.	1.9	7
489	Effects of sand dune, desert and field arbuscular mycorrhizae on lettuce (Lactuca sativa, L.) growth in a natural saline soil. Scientia Horticulturae, 2020, 264, 109191.	3.6	8
490	Photosynthetic Regulation Under Salt Stress and Salt-Tolerance Mechanism of Sweet Sorghum. Frontiers in Plant Science, 2019, 10, 1722.	3.6	179
491	Arbuscular Mycorrhizal Fungi Inoculation to Enhance Chilling Stress Tolerance of Watermelon. Gesunde Pflanzen, 2020, 72, 171-179.	3.0	13
492	Salinity sensitivity and mycorrhizal responsiveness of polyphenolics in â€~Siam Queen' basil grown in soilless substrate. Scientia Horticulturae, 2020, 269, 109394.	3.6	6
493	Salt-regulating genes in wheat. , 2020, , 77-91.		2
494	Arbuscular mycorrhizal symbiosis mitigates oxidative injury in black locust under salt stress through modulating antioxidant defence of the plant. Environmental and Experimental Botany, 2020, 175, 104034.	4.2	22
495	Arbuscular mycorrhiza influences carbonâ€use efficiency and grain yield of wheat grown under pre― and postâ€anthesis salinity stress. Plant Biology, 2020, 22, 863-871.	3.8	26
496	Arbuscular mycorrhizal fungi (AMF) enhance the tolerance of Euonymus maackii Rupr. at a moderate level of salinity. PLoS ONE, 2020, 15, e0231497.	2.5	39
497	Alleviation of Salt Stress in Upland Rice (Oryza sativa L. ssp. indica cv. Leum Pua) Using Arbuscular Mycorrhizal Fungi Inoculation. Frontiers in Plant Science, 2020, 11, 348.	3.6	47
498	Arbuscular mycorrhizal fungi communities associated with wild plants in a coastal ecosystem. Journal of Forestry Research, 2021, 32, 683-695.	3.6	15
499	The potential of arbuscular mycorrhizal fungi to conserve Kalappia celebica, an endangered endemic legume on gold mine tailings in Sulawesi, Indonesia. Journal of Forestry Research, 2021, 32, 675-682.	3.6	10
500	Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant and Soil, 2021, 461, 219-244.	3.7	109
501	Diagnose of Indigenous Arbuscular Mycorrhizal Communities Associated to Cynara cardunculus L. var. altilis and var. sylvestris. Current Microbiology, 2021, 78, 190-197.	2.2	1
502	Ion homeostasis for salinity tolerance in plants: a molecular approach. Physiologia Plantarum, 2021, 171, 578-594.	5.2	63
503	Physiological and molecular responses of wheat plants to mycorrhizal and epibrassinolide interactions under salinity. Plant Biosystems, 2021, 155, 1075-1080.	1.6	1

#	Article	IF	Citations
504	Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions. Plant Physiology and Biochemistry, 2021, 158, 396-409.	5.8	35
505	Potential effects of arbuscular mycorrhizal fungi in mitigating the salinity of treated wastewater in young olive plants (Olea europaea L. cv. Chetoui). Agricultural Water Management, 2021, 245, 106635.	5.6	15
506	Mycorrhizal fungi and its importance in plant health amelioration. , 2021, , 205-223.		2
507	Halotolerant Microorganism Reclamation Industry for Salt-Dominant Soils. , 2021, , 197-210.		0
509	Plant growth promoting myco-stimulation for sustainable agriculture production under abiotic stress. , 2021, , 197-219.		1
510	Arbuscular Mycorrhizal Fungi: The Natural Biotechnological Tools for Sustainable Crop Production Under Saline Soils in the Modern Era of Climate Change. , 2021, , 373-401.		1
511	Deciphering fungal endophytes combating abiotic stresses in crop plants (cereals and vegetables). , 2021, , 131-147.		1
512	Role of microbial communities in restoration disturbed lands. , 2021, , 433-450.		0
513	Effect of sodium chloride on the expression of genes involved in the salt tolerance of <i>Bacillus</i> sp. strain "SX4―isolated from salinized greenhouse soil. Open Chemistry, 2021, 19, 9-22.	1.9	3
514	Microbial amelioration of salinity stress in HD 2967 wheat cultivar by up-regulating antioxidant defense. Communicative and Integrative Biology, 2021, 14, 136-150.	1.4	20
515	Role of AM Fungi and PGPR in Alleviating Stress Responses and Inducing Defense Mechanism. , 2021, , 355-371.		0
516	Arbuscular Mycorrhizal Fungi: Biodiversity, Interaction with Plants, and Potential Applications. Fungal Biology, 2021, , 35-83.	0.6	0
517	Mitigation Rice Yield Scaled Methane Emission and Soil Salinity Stress with Feasible Soil Amendments. Journal of Agricultural Chemistry and Environment, 2021, 10, 16-36.	0.5	5
518	Nitrogen Fixing Fungi for Development of Biofertilizer and Future Strategies. Soil Biology, 2021, , 437-458.	0.8	0
519	Nitrogen uptake and dynamics in plants under stress condition. , 2021, , 167-194.		1
520	Functional Niche Under Abiotic Stress. , 2021, , 311-342.		0
521	Alteration in microbial population density composition in different land use systems. , 2021, , 109-119.		0
522	Bio-fertilizers for Sustainable Agriculture Development Under Salinity Stress. Springer Water, 2021, , 237-263.	0.3	1

#	Article	IF	CITATIONS
523	Potential of Plant Growth-Promoting Microbes in Disease Reduction by Influencing the Antioxidant Enzymes of Medicinal and Spice Plants. , 2021, , 221-250.		1
524	Arbuscular mycorrhizal symbiosis: plant growth improvement and induction of resistance under stressful conditions. Journal of Plant Nutrition, 2021, 44, 1993-2028.	1.9	40
525	A Plant-Fungus Bioassay Supports the Classification of Quinoa (Chenopodium quinoa Willd.) as Inconsistently Mycorrhizal. Microbial Ecology, 2021, 82, 135-144.	2.8	10
526	Aspergillus awamori ameliorates the physicochemical characteristics and mineral profile of mung bean under salt stress. Chemical and Biological Technologies in Agriculture, 2021, 8, .	4.6	20
527	The Potential of Rhizoctonia-Like Fungi for the Biological Protection of Cereals against Fungal Pathogens. Plants, 2021, 10, 349.	3.5	6
528	Colonization by arbuscular mycorrhizal fungi improves salinity tolerance of eucalyptus (Eucalyptus) Tj ETQq1 1 0	.784314 r	gBT_/Overloc
529	Sex-Specific Differences in the Physiological and Biochemical Performance of Arbuscular Mycorrhizal Fungi-Inoculated Mulberry Clones Under Salinity Stress. Frontiers in Plant Science, 2021, 12, 614162.	3.6	3
530	Comparative physiological and metabolic analyzes of two Italian ryegrass (Lolium multiflorum) cultivars with contrasting salinity tolerance. Physiologia Plantarum, 2021, 172, 1688-1699.	5.2	11
531	Soil Salinity and Its Management. , 0, , .		4
532	Comprehensive Assessment of Ameliorative Effects of AMF in Alleviating Abiotic Stress in Tomato Plants. Journal of Fungi (Basel, Switzerland), 2021, 7, 303.	3.5	28
533	Effects of arbuscular mycorrhizae Glomus iranicum var. tenuihypharum on strawberry fruit yield and quality. Acta Horticulturae, 2021, , 613-620.	0.2	1
535	Effects of saline-alkali soil conditioner on the recovery of growth and physiology of Chinese seabuckthorn. Plant Physiology Reports, 2021, 26, 301-310.	1.5	3
536	Characterization of Plant Growth-Promoting Traits and Inoculation Effects on Triticum durum of Actinomycetes Isolates under Salt Stress Conditions. Soil Systems, 2021, 5, 26.	2.6	14
537	Comparative physiological and full-length transcriptome analyses reveal the molecular mechanism of melatonin-mediated salt tolerance in okra (Abelmoschus esculentus L.). BMC Plant Biology, 2021, 21, 180.	3.6	27
538	Appraising soil carbon storage potential under perennial and annual Chenopodiaceae in salt marsh of NE Spain. Estuarine, Coastal and Shelf Science, 2021, 252, 107240.	2.1	8
539	Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express, 2021, 11, 74.	3.0	17
540	Impact of Mycorrhization on Phosphorus Utilization Efficiency of Acacia gummifera and Retama monosperma under Salt Stress. Forests, 2021, 12, 611.	2.1	4
541	Role of Local Biofertilizer in Enhancing the Oxidative Stress Defence Systems of Date Palm Seedling (Phoenix dactylifera) against Abiotic Stress. Applied and Environmental Soil Science, 2021, 2021, 1-13.	1.7	13

#	Article	IF	CITATIONS
542	Response of Soil Fungal Diversity and Community Composition to Varying Levels of Bamboo Biochar in Red Soils. Microorganisms, 2021, 9, 1385.	3.6	29
543	Arbuscular mycorrhizal fungal abundance in elevation belts of the hyperarid Atacama Desert. Fungal Ecology, 2021, 51, 101060.	1.6	3
544	Role of Mycorrhizal Pathways in Plant Phosphorous and Zinc Uptake. Biomedical Journal of Scientific & Technical Research, 2021, 36, .	0.1	1
545	Arbuscular mycorrhizal fungal status in mangroves of Pichavaram Forest, Tamil Nadu, India. Tropical Ecology, 0, , 1.	1.2	2
546	Arbuscular Mycorrhiza-Mediated Regulation of Polyamines and Aquaporins During Abiotic Stress: Deep Insights on the Recondite Players. Frontiers in Plant Science, 2021, 12, 642101.	3.6	29
547	Arbuscular mycorrhizal and dark septate endophytic fungal symbioses in Parkia timoriana (DC.) Merr. and Solanum betaceum Cav. plants growing in North East India. Vegetos, 0, , 1.	1.5	1
548	The Arbuscular Mycorrhizal Fungus Glomus viscosum Improves the Tolerance to Verticillium Wilt in Artichoke by Modulating the Antioxidant Defense Systems. Cells, 2021, 10, 1944.	4.1	21
549	Beneficial effects of arbuscular mycorrhizal fungi on wheat (<i>Triticum aestivum</i> L.) nutritional status and tolerance indices under soil salinity stress. Journal of Plant Nutrition, 2022, 45, 185-201.	1.9	6
550	Early Physiological Response of Potato Plants to Entomopathogenic Fungi under Hydroponic Conditions. Horticulturae, 2021, 7, 217.	2.8	6
551	Microbiota do solo na tolerância de doenças em plantas: Uma revisão. Research, Society and Development, 2021, 10, e25910817161.	0.1	1
552	Endophytic halotolerant Bacillus velezensis FMH2 alleviates salt stress on tomato plants by improving plant growth and altering physiological and antioxidant responses. Plant Physiology and Biochemistry, 2021, 165, 217-227.	5.8	35
553	Arbuscular mycorrhizal symbiosis regulates the physiological responses, ion distribution and relevant gene expression to trigger salt stress tolerance in pistachio. Physiology and Molecular Biology of Plants, 2021, 27, 1765-1778.	3.1	14
554	Homo- and Dikaryons of the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Differ in Life History Strategy. Frontiers in Plant Science, 2021, 12, 715377.	3.6	14
555	Arbuscular Mycorrhizal Fungus Stimulates Young Field-Grown Nectarine Trees. Sustainability, 2021, 13, 8804.	3.2	1
556	Screening of the plant growth-promoting mycorrhizal fungi in Guizhou blueberry. Rhizosphere, 2021, 19, 100389.	3.0	8
557	Ion-specific Limitations of Sodium Chloride and Calcium Chloride on Growth, Nutrient Uptake, and Mycorrhizal Colonization in Northern and Southern Highbush Blueberry. Journal of the American Society for Horticultural Science, 2021, 146, 399-410.	1.0	7
558	Comparative study of the effect of salt stress, Alternaria alternata attack or combined stress on the Cakile maritima growth and physiological performance. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12446.	1.1	3
559	Saltwater and nutrient legacies reduce net ecosystem carbon storage despite freshwater restoration: insights from experimental wetlands. Restoration Ecology, 2022, 30, e13524.	2.9	3

ARTICLE IF CITATIONS # Influence of the seedlings emergence and initial growth of palmarosa (Cymbopogon martinii (Roxb.)) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 560 1.5 3 Research on Medicinal and Aromatic Plants, 2021, 24, 100317. Salt Stress Amelioration in Maize Plants through Phosphogypsum Application and Bacterial 3.5 Inoculation. Plants, 2021, 10, 2024. Mycorrhizal fungi induced activation of tomato defense system mitigates Fusarium wilt stress. Saudi 562 3.8 19 Journal of Biological Sciences, 2021, 28, 5442-5450. Influence of biochar and biochar-based fertilizer on yield, quality of tea and microbial community in an acid tea orchard soil. Applied Soil Ecology, 2021, 166, 104005. Effects of arbuscular mycorrhizal fungi on growth and Na+ accumulation of Suaeda glauca (Bunge) 564 4.3 6 grown in salinized wetland soils. Applied Soil Ecology, 2021, 166, 104065. Arbuscular mycorrhizal and dark septate endophyte colonization in Artemisia roots responds differently to environmental gradients in eastern and central China. Science of the Total 8.0 Environment, 2021, 795, 148808. Biocrust islands enhance infiltration, and reduce runoff and sediment yield on a heavily salinized 566 5.1 12 dryland soil. Geoderma, 2021, 404, 115329. The role of soil microorganisms in plant adaptation to abiotic stresses: Current scenario and future perspectives. , 2022, , 233-278. Arbuscular Mycorrhizal Fungi: Interactions with Plant and Their Role in Agricultural Sustainability. 568 0.6 0 Fungal Biology, 2021, , 45-67. Arbuscular Mycorrhizal Fungi for Sustainable Crop Protection and Production. Microorganisms for Sustainability, 2021, , 147-188. Molecular basis of cerium oxide nanoparticle enhancement of rice salt tolerance and yield. 570 4.336 Environmental Science: Nano, 2021, 8, 3294-3311. Physiological and molecular mechanisms in improving salinity stress tolerance by beneficial 571 microorganisms in plants., 2021, , 13-43. Arbuscular Mycorrhizal Fungi-Mediated Mycoremediation of Saline Soil: Current Knowledge and 574 0.6 2 Future Prospects. Fungal Biology, 2019, , 319-348. Soil Health in India: Past History and Future Perspective. Soil Biology, 2020, , 1-19. 0.8 Soil Salinity and Its Alleviation Using Plant Growthâ€"Promoting Fungi. Fungal Biology, 2020, , 101-148. 576 0.6 3 Interaction of Mycorrhizal Fungi and Azotobacter with Root-Knot Nematodes and Root-Chewing 1.1 Insects. Sustainable Agriculture Reviews, 2017, , 277-302. 578 The Impact of AMF Symbiosis in Alleviating Drought Tolerance in Field Crops., 2017,, 211-234. 8 Arbuscular Mycorrhizal Fungi: Green Approach/Technology for Sustainable Agriculture and 579 Environment., 2017, , 355-386.

#	Article	IF	CITATIONS
580	Mycorrhizae: A Sustainable Industry for Plant and Soil Environment. , 2017, , 473-502.		32
581	Arbuscular Mycorrhizal Fungi and Heavy Metal Tolerance in Plants: An Insight into Physiological and Molecular Mechanisms. , 2017, , 75-97.		13
582	Arbuscular Mycorrhiza Mediated Control of Plant Pathogens. , 2017, , 131-160.		22
583	Mycorrhizal Fungi as Control Agents Against Plant Pathogens. , 2017, , 161-178.		8
584	Microbial Products and Soil Stresses. , 2012, , 65-75.		3
585	Arbuscular Mycorrhizal Fungi and the Tolerance of Plants to Drought and Salinity. Soil Biology, 2013, , 271-288.	0.8	9
586	Application of AM Fungi to Improve the Value of Medicinal Plants. Soil Biology, 2014, , 171-187.	0.8	3
587	Microbial Products and Soil Stresses. , 2012, , 65-75.		1
588	Potential of Arbuscular Mycorrhizal Technology in Date Palm Production. , 2011, , 449-476.		5
589	Saltmarshes. Encyclopedia of Earth Sciences Series, 2016, , 515-535.	0.1	5
590	Plant Growth-Promoting Rhizobacteria (PGPRs): Functions and Benefits. , 2019, , 205-227.		17
591	Impact of Salinity Stress in Crop Plants and Mitigation Strategies. , 2020, , 49-63.		3
592	Microbes-Mediated Nutrient Use Efficiency in Pulse Crops. , 2019, , 447-460.		3
593	Investigation of the mycelial morphology of Monascus and the expression of pigment biosynthetic genes in high-salt-stress fermentation. Applied Microbiology and Biotechnology, 2020, 104, 2469-2479.	3.6	24
594	Plantâ \in "microbe interactions in plants and stress tolerance. , 2020, , 355-396.		14
595	Na ⁺ accumulation alleviates drought stress induced photosynthesis inhibition of PSII and PSI in leaves of <i>Medicago sativa</i> . Journal of Plant Interactions, 2021, 16, 1-11.	2.1	14
597	Do halophytes and glycophytes differ in their interactions with arbuscular mycorrhizal fungi under salt stress? A meta-analysis. , 2020, 61, 13.		36
598	Effect of Arbuscular Mycorrhiza Fungi Inoculation on Growth and Uptake of Mineral Nutrition in Ipomoea aquatica. Current World Environment Journal, 2015, 10, 67-75.	0.5	11

#	Article	IF	CITATIONS
599	Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste, 2016, 103, 229-238.	0.8	109
600	Identification and relative abundance of native arbuscular mycorrhizal fungi associated with oil-seed crops and maize (Zea mays L.) in derived savannah of Nigeria. Acta Fytotechnica Et Zootechnica, 2019, 22, 84-89.	0.2	8
601	Colonização micorrÃzica e nodulação radicular em mudas de sabiá (Mimosa caesalpiniaefolia Benth.) sob diferentes nÃveis de salinidade. Revista Ciencia Agronomica, 2012, 43, 409-416.	0.3	8
602	Arbuscular mycorrhizal association in Conocarpus erectus (Combretaceae) in mangroves from Yucatán, MA©xico. Botanical Sciences, 2020, 98, 66-75.	0.8	2

 $_{603}$ Effects of Soil Chemical Properties and Seasonality on Mycorrhizal Status of Prickly Pear (Opuntia) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 $_{0.5}^{603}$

604	The Influence of Arbuscular Mycorrhizal Fungi Inoculation on Micro-Propagated Hybrid Yam (Dioscorea spp.) Growth and Root Knot Nematode (Meloidogyne spp.) Suppression. International Journal of Current Microbiology and Applied Sciences, 2016, 5, 267-281.	0.1	2
605	Species Diversity of Arbuscular Mycorrhizal (AM) Fungi in Dalli-Rajhara Iron Mine Overburden Dump of Chhattisgarh (Central India). International Journal of Current Microbiology and Applied Sciences, 2017, 6, 2766-2781.	0.1	6
606	Effect of water stress and AM fungi on the growth performance of pea. International Journal of Applied Biology, 2020, 4, 36-43.	0.3	1
607	Using Cellulolytic Nitrogen Fixing Bacterium, Azomonas agilis for Effective Degradation of Agricultural Residues. Open Microbiology Journal, 2018, 12, 154-162.	0.7	18
608	Effect of Salt Stress on Medicinal Plants and its Amelioration by Plant Growth Promoting Microbes. International Journal of Bio-resource and Stress Management, 2017, 8, 316-326.	0.2	6
609	Neutral lipid fatty acid analysis is a sensitive marker for quantitative estimation of arbuscular mycorrhizal fungi in agricultural soil with crops of different mycotrophy. Agricultural and Food Science, 2012, 21, 12-27.	0.9	28
610	Influence of colonization by arbuscular mycorrhizal fungi on three strawberry cultivars under salty conditions. Agricultural and Food Science, 2014, 23, 146-158.	0.9	36
611	MYCORRHIZAL INOCULATION AND PHOSPHORUS FERTILIZERS TO IMPROVE ONION PRODUCTIVITY IN SALINE SOIL. Acta Scientiarum Polonorum, Hortorum Cultus, 2019, 18, 57-66.	0.6	2
612	Mutualistic and Endophytic Microorganisms of <i>Artemisia Annua</i> : Description, Role and Use. Acta Biologica Marisiensis, 2018, 1, 5-21.	0.3	5
613	Arbuscular Mycorrhizal Fungi – Their Life and Function in Ecosystem. Agriculture, 2019, 65, 3-15.	0.4	8
614	Mycorrhiza and Stress Tolerance of Vegetables: A Review. Acta Horticulturae Et Regiotecturae, 2018, 21, 30-35.	1.0	7
615	Metabolic potential of microorganisms associated with the halophyte Aster tripolium L. in saline soils. Ecological Questions, 2013, 18, .	0.3	5
616	Arbuscular mycorrhizal symbiosis and alleviation of salinity stress. Journal of Applied and Natural Science, 2012, 4, 144-155.	0.4	33

#	Article	IF	CITATIONS
617	Towards a Sustainable Agriculture: Strategies Involving Phytoprotectants against Salt Stress. Agronomy, 2020, 10, 194.	3.0	41
618	Mycorrhiza Modulates Morphology, Color and Duration of Flowers in Hyacinth. Biotechnology, 2017, 16, 116-122.	0.1	3
619	Enhancing Rice Salt Stress Tolerance by Priming with Validamycin A. International Journal of Botany, 2013, 10, 1-12.	0.2	3
620	Mycorrhiza and Seed Priming Effect to improve the Balance of Sodium and Potassium and Some Changes in Antioxidants in the Leaves of Maize (Zea mays L.) Under Soil Salinity. Journal of Agronomy, 2017, 17, 18-27.	0.4	3
621	Nano-Zinc Oxide and Arbuscular mycorrhiza Effects on Physiological and Biochemical Aspects of Wheat Cultivars under Saline Conditions. Pakistan Journal of Biological Sciences, 2020, 23, 478-490.	0.5	11
622	Investigating the Association of Arbuscular Mycorrhizal Fungi with Selected Ornamental Plants Collected from District Charsadda, KPK, Pakistan. Science Technology and Development, 2016, 35, 141-147.	0.3	3
623	Inoculation with arbuscular mycorrhizal fungi improves seedlings growth of two sahelian date palm cultivars (<i>Phoenix dactylifera</i> L., cv. Nakhla hamra and cv. Tijib) under salinity stresses. Advances in Bioscience and Biotechnology (Print), 2014, 05, 64-72.	0.7	13
624	Mutual Information Flow between Beneficial Microorganisms and the Roots of Host Plants Determined the Bio-Functions of Biofertilizers. American Journal of Plant Sciences, 2012, 03, 1115-1120.	0.8	22
625	Functional Diversity of Mycorrhizal Fungi Has Differential Effects on Salinity Tolerance of <i>Acacia seyal</i> (Del.) Seedlings. Open Journal of Soil Science, 2017, 07, 315-332.	0.8	7
626	Strategies of two tropical woody species to tolerate salt stress. Pesquisa Florestal Brasileira, 2017, 37, 63.	0.1	2
627	Growth and development responses of some legume species inoculated with a mycorrhiza-based biofertilizer. Agriculture and Biology Journal of North America, 2010, 1, 748-754.	0.2	2
628	NaCl Effects on <i>In Vitro</i> Germination and Growth of Some Senegalese Cowpea (<i>Vigna) Tj ETQq1</i>	1 0.784314 rgBT	Overlock 26
629	Influence of salinity on the development of the banana colonised by arbuscular mycorrhizal fungi. Revista Ciencia Agronomica, 2016, 47, 421-428.	0.3	6
630	Species richness and composition of arbuscular mycorrhizal fungi occurring on eucalypt trees (Eucalyptus camaldulensis Dehnh.) in rainy and dry season. Current Research in Environmental and Applied Mycology, 0, , 282-292.	0.6	7
631	Plant growth promoting rhizobacteria for ameliorating abiotic stresses triggered due to climatic variability. Climate Change and Environmental Sustainability, 2013, 1, 95.	0.3	15
632	Soil bacterial and fungal communities of six bahiagrass cultivars. PeerJ, 2019, 7, e7014.	2.0	10
633	Synergistic Effects of Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria for Sustainable Agricultural Production. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2011, 44, 637-649.	0.9	22
634	Spore Associated Bacteria (SAB) of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth Promoting Rhizobacteria (PGPR) Increase Nutrient Uptake and Plant Growth Under Stress Conditions. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2012, 45, 582-592.	0.9	21

#	Article	IF	CITATIONS
635	Growth and Physiological Response of Three Evergreen Shrubs to De-icing Salt(CaCl2) at Different Concentrations in Winter - Focusing on Euonymus japonica, Rhodoendron indicum, and Buxus koreana Journal of the Korean Institute of Landscape Architecture, 2016, 44, 122-129.	0.6	4
636	The effects of AM fungi and nitrogen fixation bacteria on growth and root morphology parameters of pea (Pisum sativum) plants. Acta Horticulturae, 2021, , 295-302.	0.2	0
637	Arbuscular mycorrhizal fungal communities of a mangrove forest along a salinity gradient on Iriomote Island. Plant and Soil, 2022, 472, 145-159.	3.7	3
638	Arbuscular mycorrhizal symbioses alleviating salt stress in maize is associated with a decline in root-to-leaf gradient of Na+/K+ ratio. BMC Plant Biology, 2021, 21, 457.	3.6	16
639	Response of Sugarcane Rhizosphere Bacterial Community to Drought Stress. Frontiers in Microbiology, 2021, 12, 716196.	3.5	13
640	Peran mikoriza pada <i>Acacia auriculiformis</i> yang ditumbuhkan pada tanah salin. Agrikan Jurnal Agribisnis Perikanan, 2014, 7, 35-43.	0.1	0
641	Pengaruh inokulasi mikoriza dan salinitas terhadap pertumbuhan semai <i>Acacia auriculiformis</i> . Agrikan Jurnal Agribisnis Perikanan, 2014, 7, 51-59.	0.1	0
642	Mycorrhizal inoculation can decreases negative effect of salinity on safflower varieties. International Journal of Biosciences, 2014, 5, 76-85.	0.1	0
643	DEFICIT WATERING REDUCES PLANT GROWTH TO A SMALLER EXTENT WITH ARBUSCULAR MYCORRHIZAL ASSOCIATION THAN WITHOUT IT FOR NON-INVASIVE GRASS SPECIES BUT NOT FOR INVASIVE GRASS SPECIES. Applied Ecology and Environmental Research, 2015, 13, .	0.5	0
644	Potential Application of Glomus Intraradices (AMF) and Different Isolates of PGPR (Biotol) to Enhance the Yield and Quality of Wheat Grown in The Field in Calcareous Soil Under Different Salinity Levels. Journal of the Advances in Agricultural Researches, 2016, 21, 150-181.	0.1	0
645	Mycorrhizal Colonization Status and Rhizosphere Soil Properties of BCSIR Reserve Forest Rajshahi, Bangladesh. Current World Environment Journal, 2016, 11, 720-727.	0.5	0
646	Effects of Salt Stress on Physiological Indexes of 'Canmi 6' and 'Hayward' Kiwifruit Seedlings. , 2018, , .		0
648	Microbial Applications for Sustainable Agriculture. , 2019, , 43-77.		0
649	EVALUATION USE OF BACILLUS MUCILAGINOSUS AS BIOFERTILIZER INTERFERE WITH GLOMUS MOSSEAE ON GROWTH AND YIELD OF CORN. Iraqi Journal of Agricultural Sciences, 2019, 50, .	0.7	0
650	Plant-Microbe Communication: New Facets for Sustainable Agriculture. , 2019, , 547-573.		2
651	Plants Growing Under Salinity Stress Can Be Eased Through Mycorrhizal Association. , 2019, , 237-248.		1
652	Microbial Diversity in Soil: Biological Tools for Abiotic Stress Management in Plants. , 2019, , 283-321.		2
653	Halophilic Microbe Interactions with Plants to Mitigate Salt Stress. , 2019, , 249-272.		0

#	Article	IF	CITATIONS
654	Vpliv koristnih talnih mikroorganizmov in endofitov na rastlinsko obrambo pred žuželkami. Acta Agriculturae Slovenica, 2019, 113, 187.	0.3	0
655	Isolation, Characterization and Identification of Salt Tolerant Nitrogen Fixing Bacteria. Journal of Agricultural Chemistry and Biotechnology, 2019, 10, 73-78.	0.1	0
656	Tuzlu koşullarda mikoriza uygulamasının kapya biberde (Capsicum annuum L.) fide gelişimi ve antioksidant enzimler üzerine etkisi. Ege Ŝniversitesi Ziraat Fakültesi Dergisi, 0, , 1-10.	0.4	3
657	Enhancement of Salt Tolerance via <i>Glomus geosporum</i> Inoculation in <i>Telfairia occidentalis</i> Hook. F. Seedlings. International Letters of Natural Sciences, 0, 76, 13-22.	1.0	1
658	Role of Arbuscular Mycorrhizal Fungi in Mulberry Ecosystem Development. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 13-37.	0.1	0
659	Effect of mycorrhiza application and different irrigation level on yield and yield components of cucumber grown in late period. Harran Tarım Ve Gıda Bilimleri Dergisi, 2020, 24, 241-249.	0.5	3
660	Different responses of the halophyte Carex pumila to salt stress. Biologia Plantarum, 0, 64, 519-528.	1.9	1
661	Induce of Plant Growth Regulators with and without Bio-fertilizer for Enhances the Adverse Effect of Salinity on Germination, Growth and Photosynthetic Pigments. Journal of Applied Life Sciences International, 0, , 14-38.	0.2	0
662	Role of Fungi in Adaptation of Agricultural Crops to Abiotic Stresses. Fungal Biology, 2020, , 55-80.	0.6	1
663	Tuz Stresi Altındaki Biberde (Capsicum annuum L.) Mikoriza ve Rizobakteri Uygulamasının Bitki Gelişimi ve Bazı Fizyolojik Parametreler Aœzerine Etkisi. Ege Aœniversitesi Ziraat FakA1⁄4ltesi Dergisi, 2020, 57, 501-510.	0.4	2
664	Effects of Nitroxin and arbuscular mycorrhizal fungi on the agro-physiological traits and grain yield of sorghum (Sorghum bicolor L.) under drought stress conditions. PLoS ONE, 2020, 15, e0243824.	2.5	16
665	Arbuscular mycorrhizal fungal association boosted the arsenic resistance in crops with special responsiveness to rice plant. Environmental and Experimental Botany, 2022, 193, 104681.	4.2	20
666	Prospect of Application of Arbuscular mycorrhizal Fungi in the Improvement of Saline Land. Hans Journal of Soil Science, 2020, 08, 185-189.	0.0	0
667	Developing Organic Minimum Tillage Farming Systems for Central and Northern European Conditions. , 2020, , 173-192.		4
668	Mighty Microbes: Plant Growth Promoting Microbes in Soil Health and Sustainable Agriculture. Soil Biology, 2020, , 243-264.	0.8	6
669	Contribution of Beneficial Fungi for Maintaining Sustainable Plant Growth and Soil Fertility. , 2020, , 105-113.		1
670	Diversity and Community Structure of Arbuscular Mycorrhizal Fungi in the Rhizosphere of Salt-Affected Soils. Microorganisms for Sustainability, 2020, , 453-470.	0.7	2
671	ALLEVIATION OF SOIL SALINITY ON PHYSIOLOGICAL AND AGRONOMIC TRAITS OF RICE CULTIVARS USING Arbuscular mycorrhizal fungi AND Pseudomonas STRAINS UNDER FIELD CONDITIONS. Revista De Agricultura Neotropical, 2020, 7, 25-42.	0.5	4

# 672	ARTICLE The Role of Symbiotic Fungi in Nutri-Farms. Soil Biology, 2021, , 171-183.	IF 0.8	Citations 0
673	Do Mycorrhizal Fungi Enable Plants to Cope with Abiotic Stresses by Overcoming the Detrimental Effects of Salinity and Improving Drought Tolerance?. Soil Biology, 2021, , 391-428.	0.8	11
674	Sampling Microbiomes Associated with Different Plant Compartments. Methods in Molecular Biology, 2021, 2232, 23-29.	0.9	2
675	Physiological and Molecular Aspects of Retrieving Environmental Stress in Plants by Microbial Interactions. Rhizosphere Biology, 2021, , 107-125.	0.6	3
676	Plant–Microbe Interactions: An Insight into the Underlying Mechanisms to Mitigate Diverse Environmental Stresses. Rhizosphere Biology, 2021, , 127-150.	0.6	0
677	Arbuscular Mycorrhizal Communities in the Roots of Sago Palm in Mineral and Shallow Peat Soils. Agriculture (Switzerland), 2021, 11, 1161.	3.1	5
679	The effects of light availability on plant-soil interactions and salinity tolerance of invasive tree species, Triadica sebifera. Forest Ecology and Management, 2022, 506, 119964.	3.2	4
680	Abiotic Stress and Belowground Microbiome: The Potential of Omics Approaches. International Journal of Molecular Sciences, 2022, 23, 1091.	4.1	26
681	Ozone does not diminish the beneficial effects of arbuscular mycorrhizas on Medicago sativa L. in a low phosphorus soil. Mycorrhiza, 2022, 32, 33-43.	2.8	6
682	Generalist herbivore response to volatile chemical induction varies along a gradient in soil salinization. Scientific Reports, 2022, 12, 1689.	3.3	5
683	Effect of symbiotic associations with Frankia and arbuscular mycorrhizal fungi on antioxidant activity and cell ultrastructure in C. equisetifolia and C. obesa under salt stress. Journal of Forest Research, O, , 1-11.	1.4	4
684	Application of plant–soil feedbacks in the selection of crop rotation sequences. Ecological Applications, 2022, 32, e2501.	3.8	21
685	Arbuscular mycorrhizal fungi enhanced salt tolerance of Gleditsia sinensis by modulating antioxidant activity, ion balance and P/N ratio. Plant Growth Regulation, 2022, 97, 33-49.	3.4	17
687	Claroideoglomus etunicatum improved the growth and saline– alkaline tolerance of Potentilla anserina by altering physiological and biochemical properties. Biocell, 2022, 46, 1967-1978.	0.7	4
688	Soil and phytomanagement for adaptive phytoremediation practices. , 2022, , 135-179.		0
689	Arbuscular mycorrhizaâ \in "A health engineer for abiotic stress alleviation. , 2022, , 171-198.		1
691	The Microbiome of Coastal Sediments. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 479-534.	0.6	5
692	Tolerance and Recovery Capacity to Reclaimed Wastewater Irrigation of Salvia officinalis and Asteriscus maritimus Plants Inoculated with Arbuscular Mycorrhizae. Horticulturae, 2022, 8, 159.	2.8	1

#	Article	IF	CITATIONS
693	Salt Stress in Plants and Mitigation Approaches. Plants, 2022, 11, 717.	3.5	58
694	Plant-Microbial Symbioses in Coastal Systems: Their Ecological Importance and Role in Coastal Restoration. Estuaries and Coasts, 2022, 45, 1805-1822.	2.2	12
695	Hydrology shapes microbial communities and microbiomeâ€nediated growth of an Everglades tree island species. Restoration Ecology, 2023, 31, .	2.9	0
696	Yield, irrigation water productivity and nutrient uptake of arbuscular mycorrhiza inoculated sesame under drought stress conditions. Agricultural Water Management, 2022, 266, 107569.	5.6	14
697	Overexpression of Plant-Specific Insert from Cardosin B (PSI B) in Arabidopsis Correlates with Cell Responses to Stresses. , 2021, 11, .		1
698	Divergence in Corn Mycorrhizal Colonization Patterns Due to Organic Treatment. Plants, 2021, 10, 2760.	3.5	1
699	Inoculum Sources Modulate Mycorrhizal Inoculation Effect on TamarixÂarticulata Development and Its Associated Rhizosphere Microbiota. Plants, 2021, 10, 2716.	3.5	1
700	Comprehensive effects of salt stress and peanut cultivars on the rhizosphere bacterial community diversity of peanut. Archives of Microbiology, 2022, 204, 15.	2.2	3
701	The combined use of silicon/nanosilicon and arbuscular mycorrhiza for effective management of stressed agriculture: Action mechanisms and future prospects. , 2022, , 241-264.		3
714	Beneficial Rhizobacteria Unveiling Plant Fitness Under Climate Change. , 2022, , 281-321.		0
715	Nutrient availability in temperate fruit species: new approaches in bacteria and mycorrhizae. , 2022, , 39-54.		0
716	Microbial behavior, responses toward salinity stress, mechanism of microbe-mediated remediation for sustainable crop production. , 2022, , 103-127.		1
718	Seed application with microbial inoculants for enhanced plant growth. , 2022, , 333-368.		1
719	Extremophilic Fungi: Potential Applications in Sustainable Agriculture. , 2022, , 581-614.		1
720	Role of exopolysaccharide and biofilms in microorganisms for alleviating salt stress. , 2022, , 205-230.		1
722	Endophytic aspergillus oryzae reprograms Abelmoschus esculentus L. to higher growth under salt stress via regulation of physiochemical attributes and antioxidant system. , 0, , 1.		5
723	Arbuscular Mycorrhizal Fungi Promote Gleditsia sinensis Lam. Root Growth under Salt Stress by Regulating Nutrient Uptake and Physiology. Forests, 2022, 13, 688.	2.1	10
724	A Perspective on Developing a Plant â€~Holobiont' for Future Saline Agriculture. Frontiers in Microbiology, 2022, 13, .	3.5	3

#	Article	IF	CITATIONS
725	Vermicompost and its role in alleviation of salt stress in plants – I. Impact of vermicompost on growth and nutrient uptake of salt-stressed plants. Journal of Plant Nutrition, 2023, 46, 1446-1457.	1.9	9
726	Using plant growth-promoting microorganisms (PGPMs) to improve plant development under in vitro culture conditions. Planta, 2022, 255, 117.	3.2	13
727	Arbuscular Mycorrhizal Fungi Influence Crop Productivity, Plant Diversity, and Ecosystem Services. Fungal Biology, 2022, , 345-362.	0.6	3
729	Arbuscular mycorrhizal colonization increases plant above-belowground feedback in a northwest Chinese coal mining–degraded soil by increasing photosynthetic carbon assimilation and allocation to maize. Environmental Science and Pollution Research, 2022, 29, 72612-72627.	5.3	2
730	Arbuscular Mycorrhizal Symbiosis Leads to Differential Regulation of Genes and miRNAs Associated with the Cell Wall in Tomato Leaves. Biology, 2022, 11, 854.	2.8	3
731	Mechanistic assessment of tolerance to iron deficiency mediated by Trichoderma harzianum in soybean roots. Journal of Applied Microbiology, 2022, 133, 2760-2778.	3.1	9
732	Evaluation of rice (<i>Oryza sativa</i> L.) genotypes grown under combined salinity and submergence stresses based on vegetative stage phenotyping. Acta Biologica Szegediensis, 2022, 2, 145-162.	0.3	0
733	Arbuscular mycorrhizal fungi for salinity stress: Anti-stress role and mechanisms. Pedosphere, 2023, 33, 212-224.	4.0	3
734	The combined use of silicon and arbuscular mycorrhizas to mitigate salinity and drought stress in rice. Environmental and Experimental Botany, 2022, 201, 104955.	4.2	29
735	Dual effects of nZVI on maize growth and water use are positively mediated by arbuscular mycorrhizal fungi via rhizosphere interactions. Environmental Pollution, 2022, 308, 119661.	7.5	9
736	Enrichment of Sugarcane Rhizosphere Bacterial Community Under Different Drought Stress is Driven by Plant Survival Strategies. SSRN Electronic Journal, 0, , .	0.4	0
737	Processes and mechanisms of coastal woodyâ€plant mortality. Global Change Biology, 2022, 28, 5881-5900.	9.5	22
738	Interactive Effects of Salinity, Drought, and Heat Stresses on Physiological Process and Selection Criteria for Breeding Stress-Resistant Cotton. , 0, , .		0
739	Arbuscular Mycorrhizal Fungi and Fertilization Influence Yield, Growth and Root Colonization of Different Tomato Genotype. Plants, 2022, 11, 1743.	3.5	9
740	Allelopathic Impact of Rhazya stricta Dence and Artemisia monosperma Delile on Plant Growth and the Structural Colonization of AM Fungi. Arab Gulf Journal of Scientific Research, 2014, , 41-50.	0.6	0
741	Screening of salt tolerance traits and the salt tolerance evaluation method in Brassica napus at the seed germination stage. Italian Journal of Agronomy, 2022, 17, .	1.0	0
742	Climate-Smart Technologies for Improving Sugarcane Sustainability in India–A Review. Sugar Tech, 2023, 25, 1-14.	1.8	1
743	Soil sodicity affected the arbuscular mycorrhizal community and its interactions with bacteria in the Western Songnen Plain. Applied Soil Ecology, 2022, 180, 104602.	4.3	3

#	Article	IF	CITATIONS
744	Significance of Arbuscular Mycorrhizal Fungi in Mitigating Abiotic Environmental Stress in Medicinal and Aromatic Plants: A Review. Foods, 2022, 11, 2591.	4.3	15
745	The Roles of Arbuscular Mycorrhizal Fungi in Influencing Plant Nutrients, Photosynthesis, and Metabolites of Cereal Crops—A Review. Agronomy, 2022, 12, 2191.	3.0	23
746	Biostimulants as Regulators of Stress Metabolites to Enhance Drought and Salinity Stress Tolerance in Plants. , 2022, , 265-294.		1
747	Conservation Strategies for Rhizobiome in Sustainable Agriculture. Rhizosphere Biology, 2022, , 37-61.	0.6	0
748	Impact of Mycorrhizal Fungi from Different Rhizospheric Soils on Fungal Colonization, Growth, and Chlorophyll Contents of Cenchrus ciliaris. Agronomy, 2022, 12, 2644.	3.0	3
749	Molecular and Physiological Mechanisms to Mitigate Abiotic Stress Conditions in Plants. Life, 2022, 12, 1634.	2.4	23
750	Mitigation of salt stress on low temperature in bermudagrass: resistance and forage quality. Frontiers in Plant Science, 0, 13, .	3.6	3
751	Impact of Gypsum and Bio-Priming of Maize Grains on Soil Properties, Physiological Attributes and Yield under Saline–Sodic Soil Conditions. Agronomy, 2022, 12, 2550.	3.0	2
752	Insights into the molecular aspects of salt stress tolerance in mycorrhizal plants. World Journal of Microbiology and Biotechnology, 2022, 38, .	3.6	5
753	Rhizosphere effect of nanoscale zeroâ€valent iron on mycorrhizaâ€dependent maize assimilation. Plant, Cell and Environment, 2023, 46, 251-267.	5.7	7
754	Enhancement of Salt Tolerance via <i>Glomus geosporum</i> Inoculation in <i>Telfairia occidentalis</i> Hook. F. Seedlings. International Letters of Natural Sciences, 0, 76, 13-22.	1.0	0
755	Impacts of the Inoculation of Piriformospora indica on Photosynthesis, Osmoregulatory Substances, and Antioxidant Enzymes of Alfalfa Seedlings under Cadmium Stress. Agriculture (Switzerland), 2022, 12, 1928.	3.1	2
756	Mycorrhizal Benefits of Salt-Stressed Cinnamomum camphora (L.) Presl. May Be Related to P and Mn2+ Contents in Shoots, Biomass Allocation, and K+/Na+ in Roots and Shoots. Forests, 2022, 13, 1882.	2.1	1
757	Use of Biostimulants to Improve Salinity Tolerance in Cereals. , 2022, , 471-517.		2
758	Response to Inoculation with Arbuscular Mycorrhizal Fungi of Two Tomato (<i>Solanum lycopersicum</i> L.) Varieties Subjected to Salt Stress under Semi-Controlled Conditions. Agricultural Sciences, 2022, 13, 1334-1362.	0.3	0
759	The influence of NaCl salinity on evapotranspiration, yield traits, antioxidant status, and mineral composition of lettuce grown under deficit irrigation. Scientia Horticulturae, 2023, 310, 111776.	3.6	4
760	Arbuscular Mycorrhizal Fungi for Sustainable Agriculture Ecosystem. , 2022, , 1-8.		0
761	Tasa fotosintética y producción de biomasa por inoculación de Scleroderma sp. con diferentes concentraciones de NaCl en nogal pecanero. Revista Mexicana De Ciencias Agricolas, 2022, 13, 1209-1220.	0.2	0

#	Article	IF	Citations
762	Sex-specific photosynthetic capacity and Na+ homeostasis in Populus euphratica exposed to NaCl stress and AMF inoculation. Frontiers in Plant Science, 0, 13, .	3.6	4
763	Assessment of the potential of Vachellia seyal and Prosopis chilensis for the reclamation of saline soil lands in the peanut basin production of Senegal. Frontiers in Plant Science, 0, 13, .	3.6	0
764	Functions of Soil Microbes Under Stress Environment. , 2022, , 373-381.		0
765	Effects of Sodium Salinity on Rice (Oryza sativa L.) Cultivation: A Review. Sustainability, 2023, 15, 1804.	3.2	13
766	Physical and Biochemical Changes Induced by Strigolactones on Calcareous Environments in Grapevine. Erwerbs-Obstbau, 2023, 65, 1941-1953.	1.3	0
767	Label-free quantitative proteomics of arbuscular mycorrhizal Elaeagnus angustifolia seedlings provides insights into salt-stress tolerance mechanisms. Frontiers in Plant Science, 0, 13, .	3.6	3
768	Effect of benomyl-mediated mycorrhizal association on the salinity tolerance of male and monoecious mulberry clones. Plant Physiology and Biochemistry, 2023, 195, 67-76.	5.8	0
769	Boosting Sustainable Agriculture by Arbuscular Mycorrhiza under Stress Condition: Mechanism and Future Prospective. BioMed Research International, 2022, 2022, 1-28.	1.9	6
770	Effects of arbuscular mycorrhizal fungi on plant growth and herbivore infestation depend on availability of soil water and nutrients. Frontiers in Plant Science, 0, 14, .	3.6	5
771	Soil microbial inocula: an eco-friendly and sustainable solution for mitigating salinity stress in plants. , 2023, , 341-357.		3
772	Strigolactones: diversity, perception, and hydrolysis. Phytochemistry Reviews, 2023, 22, 339-359.	6.5	12
773	Ameliorative symbiosis of Serratia fonticola (S1T1) under salt stress condition enhance growth-promoting attributes of Cucumis sativus L. Symbiosis, 2023, 89, 283-297.	2.3	6
774	Effects of Arbuscular Mycorrhizal Fungi on Leaf N: P: K Stoichiometry in Agroecosystem. Agronomy, 2023, 13, 358.	3.0	1
775	Some physio-biochemical traits of sunflower (Helianthus annuus L.) as affected by arbuscular mycorrhizal fungi inoculation under different irrigation treatments. Italian Journal of Agronomy, 2023, 18, .	1.0	0
776	Mycorrhizae Enhance Soybean Plant Growth and Aluminum Stress Tolerance by Shaping the Microbiome Assembly in an Acidic Soil. Microbiology Spectrum, 2023, 11, .	3.0	4
777	Overexpression of GmNF-YA14 produced multiple phenotypes in soybean. Environmental and Experimental Botany, 2023, 210, 105316.	4.2	2
778	Effect of biochar addition and reduced irrigation regimes on growth, physiology and water use efficiency of cotton plants under salt stress. Industrial Crops and Products, 2023, 198, 116702.	5.2	7
779	Mycorrhizas in citrus : Beyond soil fertility and plant nutrition. , 2017, 87, .		8

#	Article	IF	CITATIONS
780	Role of Arbuscular Mycorrhizal Fungi and Phosphate Solubilizing Bacteria in Improving Yield, Yield Components, and Nutrients Uptake of Barley under Salinity Soil. Agriculture (Switzerland), 2023, 13, 537.	3.1	7
781	Mycorrhizal Symbiosis for Sustainable Optimization of Tropical Agriculture: A Review of Research. , 0,		1
782	Arbuscular mycorrhizal fungi alleviates salt stress in Xanthoceras sorbifolium through improved osmotic tolerance, antioxidant activity, and photosynthesis. Frontiers in Microbiology, 0, 14, .	3.5	2
783	AM Fungi as a Potential Biofertilizer for Abiotic Stress Management. , 0, , .		1
784	Improvement of Nutritional Quality of Tomato Fruit with Funneliformis mosseae Inoculation under Greenhouse Conditions. Horticulturae, 2023, 9, 448.	2.8	2
785	Genome-Wide Identification and Gene Expression Analysis of Sweet Cherry Aquaporins (PrunusÂavium) Tj ETQq1	10,7843	14 rgBT /Ove
786	Arbuscular Mycorrhizal Fungi: Role as Biofertilizers, Technology Development, and Economics. , 2023, , 3-30.		0
787	Arbuscular mycorrhiza: advances and retreats in our understanding of the ecological functioning of the mother of all root symbioses. Plant and Soil, 2023, 489, 41-88.	3.7	14
788	Arbuscular Mycorrhizal Fungi Driven Phosphorus Nutrients in Paddy Soil under the Greenhouse Condition. Asian Journal of Plant Sciences, 2023, 22, 414-422.	0.4	0
789	PGPR and vermicompost with reduced chemical fertilizer enhances biodiesel production, nutrient uptake and improve oil composition of rapeseed grown under water deficit stress. South African Journal of Botany, 2023, 159, 17-25.	2.5	2
790	Effect of NaCl on Secondary Metabolites of Oscillatoria willei. International Journal of Scientific Research in Science and Technology, 2023, , 391-397.	0.1	0
791	Multi-omics reveals the sugarcane rhizosphere soil metabolism-microbiota interactions affected by drought stress. Applied Soil Ecology, 2023, 190, 104994.	4.3	0
792	Revealing ecotype influences on Cistanche sinensis: from the perspective of endophytes to metabolites characteristics. Frontiers in Microbiology, 0, 14, .	3.5	1
793	Comprehensive Transcriptome Analysis in Okra (Abelmoschus esculentus L. Moench): Analysis of LncRNA and Transcription Factors Involved in Abiotic Stress. Russian Journal of Plant Physiology, 2023, 70, .	1.1	0
794	A Survey of Modern Greenhouse Technologies and Practices for Commercial Cannabis Cultivation. IEEE Access, 2023, 11, 62077-62090.	4.2	0
795	Multi-Omics Approaches in Plant–Microbe Interactions Hold Enormous Promise for Sustainable Agriculture. Agronomy, 2023, 13, 1804.	3.0	2
797	Bauxite Mining Waste Pollution and Its Sustainable Management through Bioremediation. Geomicrobiology Journal, 0, , 1-10.	2.0	8
798	Inoculation response of mycorrhizas on morphology and physiological behaviour of trifoliate orange (Poncirus trifoliata) roots under salt stress. , 2016, 86, .		0

#	Article	IF	CITATIONS
799	The halophilic bacteria Gracilibacillus dipsosauri GDHT17 alleviates salt stress on perennial ryegrass seedlings. Frontiers in Microbiology, 0, 14, .	3.5	0
800	Biostimulants: an introduction. , 2023, , 21-50.		0
801	An Overview of Biostimulants' Effects in Saline Soils. Agronomy, 2023, 13, 2092.	3.0	4
802	Promising Role of Fungal Symbiosis for Eco-friendly Green Technology for Environmental Health. , 2023, , 237-266.		0
803	Diversity of Endomycorrhizal Fungi in Argan Forest Stands: Implications for the Success of Reforestation Programs. Forests, 2023, 14, 1649.	2.1	1
804	Selection of Salinity-Adapted Endorhizal Fungal Consortia from Two Inoculum Sources and Six Halophyte Plants. Journal of Fungi (Basel, Switzerland), 2023, 9, 893.	3.5	0
805	Mitigating Salinity Stress and Improving Cotton Productivity with Agronomic Practices. Agronomy, 2023, 13, 2486.	3.0	1
806	Plant health: Feedback effect of root exudates and rhizobiome interactions. , 2023, , 345-375.		0
807	Intercropping of Echinochloa frumentacea with Leguminous Forages Improves Hay Yields, Arbuscular Mycorrhizal Fungi Diversity, and Soil Enzyme Activities in Saline–Alkali Soil. Agronomy, 2023, 13, 2356.	3.0	0
808	Evaluation of the Mycorrhizal Potential of Date Palm (Phoenix dactylifera L.) Rhizosphere Soils in the Figuig Oasis (Southeastern Morocco). Journal of Fungi (Basel, Switzerland), 2023, 9, 931.	3.5	0
809	Arbuscular mycorrhizal fungi enhance active ingredients of medicinal plants: a quantitative analysis. Frontiers in Plant Science, 0, 14, .	3.6	3
810	Making partners in the city: impact of urban soil P enrichment on the partnership between an invasive herb and arbuscular mycorrhizal fungi in a tropical city. Plant Biology, 2024, 26, 51-62.	3.8	0
812	The Complex Interplay between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions. International Journal of Molecular Sciences, 2023, 24, 16774.	4.1	1
813	Managing Soil Salinity for Sustainable Agriculture. , 2023, , 915-925.		0
814	RL-WG26 mediated salt stress tolerance in rice seedlings: A new insight into molecular mechanisms. Plant Stress, 2024, 11, 100306.	5.5	1
816	The symbiotic association with Piriformospora indica and Pseudomonas fluorescens improves salt tolerance in sage (Salvia officinalis) plants. Plant and Soil, 0, , .	3.7	0
817	Bruguiera gymnorhiza forms mycorrhizal associations but Rhizophora stylosa does not: A pot experiment using mangrove soil and Rhizophoraceae seedlings. Aquatic Botany, 2024, 192, 103748.	1.6	0
818	Plant–soil biota interactions. , 2024, , 303-328.		0

#	Article	IF	CITATIONS
819	Enhancing Salt Tolerance in Poplar Seedlings through Arbuscular Mycorrhizal Fungi Symbiosis. Plants, 2024, 13, 233.	3.5	0
820	Influence of the endophytic fungus <i>Metarhizium robertsii</i> on the growth and development of forage beans siberian varieties. Bulletin of NSAU (Novosibirsk State Agrarian) Tj ETQq1 1 0.7843	140r.øBT /C	Dverlock 10
821	Responses of growth, yield and chemical composition of tomato to phosphorus nutrition under different saline environments. Journal of Plant Nutrition, 2024, 47, 1390-1407.	1.9	0
822	Bacillus pumilus isolated from sabkha rhizosphere ameliorates the behavior of the facultative halophyte Hordeum marinum when salt-challenged by improving nutrient uptake and soil health-related traits. Plant Stress, 2024, 11, 100383.	5.5	0
823	GLOBAL AGRICULTURAL LOSSES AND THEIR CAUSES. , 2024, 2024, 66.		0
824	The Impact of Salinity on Crop Yields and the Confrontational Behavior of Transcriptional Regulators, Nanoparticles, and Antioxidant Defensive Mechanisms under Stressful Conditions: A Review. International Journal of Molecular Sciences, 2024, 25, 2654.	4.1	0
825	Arbuscular mycorrhizae reduced arsenic induced oxidative stress by coordinating nutrient uptake and proline-glutathione levels in Cicer arietinum L. (chickpea). Ecotoxicology, 2024, 33, 205-225.	2.4	0
826	Root exudation drives abiotic stress tolerance in plants by recruiting beneficial microbes. Applied Soil Ecology, 2024, 198, 105351.	4.3	0
827	Strigolactones as plant hormone: An overview. , 2024, , 1-13.		0
828	Effects of mycorrhizal fungi application on some growth parameters of Monterey strawberry cultivars under different salt stress conditions. International Journal of Agriculture Environment and Food Sciences, 2024, 8, 158-168.	0.6	0