Progress and perspective of polymer white light-emitting

Chemical Society Reviews 38, 3391

DOI: 10.1039/b816352a

Citation Report

#	Article	IF	CITATIONS
1	A New Class of Semiconducting Polymers for Bulk Heterojunction Solar Cells with Exceptionally High Performance. Accounts of Chemical Research, 2010, 43, 1227-1236.	7.6	674
2	Hexathienoacene: Synthesis, Characterization, and Thinâ€Film Transistors. Chemistry - an Asian Journal, 2010, 5, 1550-1554.	1.7	24
3	Robust and highly efficient blue light-emitting hosts based on indene-substituted anthracene. Journal of Materials Chemistry, 2010, 20, 3768.	6.7	64
4	Highâ€Performance Allâ€Polymer Whiteâ€Lightâ€Emitting Diodes Using Polyfluorene Containing Phosphonate Groups as an Efficient Electronâ€Injection Layer. Advanced Functional Materials, 2010, 20, 2951-2957.	7.8	87
7	Polymers for Organic Electronics. Macromolecular Chemistry and Physics, 2010, 211, 2460-2463.	1.1	10
8	Promising Optoelectronic Materials: Polymers Containing Phosphorescent Iridium(<scp>III</scp>) Complexes. Macromolecular Rapid Communications, 2010, 31, 794-807.	2.0	100
9	Recent progress and current challenges in phosphorescent white organic light-emitting diodes (WOLEDs). Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010, 11, 133-156.	5.6	299
10	Realization of highly efficient white polymer light-emitting devices via interfacial energy transfer from poly(N-vinylcarbazole). Organic Electronics, 2010, 11, 529-534.	1.4	33
11	A polythiophene derivative with octyl diphenylamine-vinylene side chains: synthesis and its applications in field-effect transistors and solar cells. Polymer Chemistry, 2010, 1, 678.	1.9	18
12	High performance organic light-emitting diodes based on tetra(methoxy)-containing anthracene derivatives as a hole transport and electron-blocking layer. Journal of Materials Chemistry, 2010, 20, 8382.	6.7	19
13	Lyotropic Hexagonal Ordering in Aqueous Media by Conjugated Hairy-Rod Supramolecules. Macromolecules, 2010, 43, 7549-7555.	2.2	25
14	Synthesis and Photophysical Properties of 2-Donor-7-acceptor-9-silafluorenes: Remarkable Fluorescence Solvatochromism and Highly Efficient Fluorescence in Doped Polymer Films. Journal of Physical Chemistry C, 2010, 114, 10004-10014.	1.5	66
15	Highly efficient white polymer light-emitting devices based on wide bandgap polymer doped with blue and yellow phosphorescent dyes. Optics Letters, 2010, 35, 2436.	1.7	14
16	Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chemical Society Reviews, 2010, 39, 2500.	18.7	431
17	High efficiency single-doped white phosphorescent light-emitting diodes. , 2010, , .		0
18	White Electroluminescence from a Single Fluorene-Based Copolymer. Advanced Materials Research, 0, 160-162, 732-736.	0.3	0
19	Metallophosphors of platinum with distinct main-group elements: a versatile approach towards color tuning and white-light emission with superior efficiency/color quality/brightness trade-offs. Journal of Materials Chemistry, 2010, 20, 7472.	6.7	210
20	Highly efficient solution-processed green and red electrophosphorescent devices enabled by small-molecule bipolar host material. Journal of Materials Chemistry, 2011, 21, 9326.	6.7	59

#	Article	IF	Citations
21	Heteroleptic Ir(<scp>iii</scp>) complexes containing both azolate chromophoric chelate and diphenylphosphinoaryl cyclometalates; Reactivities, electronic properties and applications. Dalton Transactions, 2011, 40, 1132-1143.	1.6	44
22	Conjugated rod–coil and rod–rod block copolymers for photovoltaic applications. Journal of Materials Chemistry, 2011, 21, 17039.	6.7	119
23	p–n Metallophosphor based on cationic iridium(iii) complex for solid-state light-emitting electrochemical cells. Journal of Materials Chemistry, 2011, 21, 13999.	6.7	28
24	Exciplex Electroluminescence Induced by Cross-Linked Hole-Transporting Materials for White Light Polymer Light-Emitting Diodes. Macromolecules, 2011, 44, 5968-5976.	2.2	42
25	Suppression of HOMO–LUMO Transition in a Twist Form of Oligo(phenyleneethynylene) Clamped by a Right-Handed Helical Peptide. Journal of Physical Chemistry A, 2011, 115, 8960-8968.	1.1	12
26	Synthesis and photo- and electroluminescence properties of 3,6-disubstituted phenanthrenes: alternative host material for blue fluorophores. Chemical Communications, 2011, 47, 8865.	2.2	28
27	Materials and Devices toward Fully Solution Processable Organic Light-Emitting Diodes. Chemistry of Materials, 2011, 23, 326-340.	3.2	399
28	Red electroluminescent polyfluorenes containing highly efficient 2,1,3-benzoselenadiazole- and 2,1,3-naphthothiadiazole-based red dopants in the side chain. Journal of Materials Chemistry, 2011, 21, 15773.	6.7	15
29	2,7-Carbazole-1,4-phenylene Copolymers with Polar Side Chains for Cathode Modifications in Polymer Light-Emitting Diodes. Macromolecules, 2011, 44, 4204-4212.	2.2	45
30	Arylene bisimides with triarylamine N-substituents as new solution processable organic semiconductors: Synthesis, spectroscopic, electrochemical and electronic properties. Synthetic Metals, 2011, 161, 1600-1610.	2.1	20
31	Efficient three-color white light-emitting diodes from a single polymer with PFN/Al bilayer cathode. Synthetic Metals, 2011, 161, 1982-1986.	2.1	7
32	New Design Tactics in OLEDs Using Functionalized 2â€Phenylpyridineâ€Type Cyclometalates of Iridium(III) and Platinum(II). Chemistry - an Asian Journal, 2011, 6, 1706-1727.	1.7	353
33	Highly efficient pure white polymer light-emitting devices based on poly(N-vinylcarbazole) doped with blue and red phosphorescent dyes. Science China Chemistry, 2011, 54, 671-677.	4.2	8
34	The β Phase Formation Limit in Two Poly(9,9â€diâ€ <i>n</i> à€octylfluorene) based Copolymers. Macromolecular Rapid Communications, 2011, 32, 983-987.	2.0	12
35	A Series of Energyâ€Transfer Copolymers Derived from Fluorene and 4,7â€Dithienylbenzotriazole for High Efficiency Yellow, Orange, and White Lightâ€Emitting Diodes. Advanced Functional Materials, 2011, 21, 3760-3769.	7.8	45
36	White Organic Lightâ€Emitting Diodes with Evenly Separated Red, Green, and Blue Colors for Efficiency/Colorâ€Rendition Tradeâ€Off Optimization. Advanced Functional Materials, 2011, 21, 3785-3793.	7.8	162
37	White Electroluminescence from Starâ€like Single Polymer Systems: 2,1,3â€Benzothiadiazole Derivatives Dopant as Orange Cores and Polyfluorene Host as Six Blue Arms. Advanced Materials, 2011, 23, 2986-2990.	11.1	60
38	Simultaneous Optimization of Chargeâ€Carrier Balance and Luminous Efficacy in Highly Efficient White Polymer Lightâ€Emitting Devices. Advanced Materials, 2011, 23, 2976-2980.	11.1	204

#	Article	IF	CITATIONS
39	Advanced Organic Optoelectronic Materials: Harnessing Excitedâ€State Intramolecular Proton Transfer (ESIPT) Process. Advanced Materials, 2011, 23, 3615-3642.	11.1	992
40	Wideâ€Range Color Tuning of Iridium Biscarbene Complexes from Blue to Red by Different <i>N</i> â∢i>N Ligands: an Alternative Route for Adjusting the Emission Colors. Advanced Materials, 2011, 23, 4933-4937.	11.1	201
41	A Robust Yellowâ€Emitting Metallophosphor with Electronâ€Injection/â€Transporting Traits for Highly Efficient White Organic Lightâ€Emitting Diodes. ChemPhysChem, 2011, 12, 2836-2843.	1.0	31
43	Iridium(III) Complexes of a Dicyclometalated Phosphite Tripod Ligand: Strategy to Achieve Blue Phosphorescence Without Fluorine Substituents and Fabrication of OLEDs. Angewandte Chemie - International Edition, 2011, 50, 3182-3186.	7.2	128
44	Efficient multilayer electrophosphorescence white polymer light-emitting diodes with aluminum cathodes. Organic Electronics, 2011, 12, 154-160.	1.4	16
46	Spectrally stable deep blue-emitting polyfluorenes containing <inline-formula><math display="inline" overflow="scroll"><mrow><mtext>dibenzothiophene</mtext><mtext>-</mtext><mi>S</mi><mo>,</mo><mi>S<moiety. 021212.<="" 2,="" 2012,="" energy,="" for="" journal="" of="" photonics="" td=""><td>ং/ক্রাষ্ট < mte</td><td>:x•>-</td></moiety.></mi></mrow></math></inline-formula>	ং /ক্রা ষ্ট < mte	: x •>-
47	Efficient hybrid white polymer light-emitting devices with electroluminescence covered the entire visible range and reduced efficiency roll-off. Applied Physics Letters, 2012, 100, 063304.	1.5	19
48	Hybrid white organic light-emitting diodes with a double light-emitting layer structure for high color-rendering index. Journal of Applied Physics, 2012, 112, 084504.	1.1	42
49	Design, Synthesis and Photophysical Properties of Novel Tetrahedral Carbazole-Bridged Silanes with Benzimidazole Groups. Applied Mechanics and Materials, 2012, 268-270, 23-27.	0.2	0
50	Highly Efficient White Polymer Light-Emitting Diodes with a Conjugated Polyelectrolyte as Host Polymer. Advanced Materials Research, 2012, 516-517, 1881-1884.	0.3	0
51	White Light Emission and Second Harmonic Generation from Secondary Group Participation (SGP) in a Coordination Network. Journal of the American Chemical Society, 2012, 134, 1553-1559.	6.6	142
52	A butterfly-like yellow luminescent Ir(iii) complex and its application in highly efficient polymer light-emitting devices. Journal of Materials Chemistry, 2012, 22, 22496.	6.7	34
53	Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics. Progress in Polymer Science, 2012, 37, 1192-1264.	11.8	280
54	A new benzo[1,2-b:4,5-b′]difuran-based copolymer for efficient polymer solar cells. Journal of Materials Chemistry, 2012, 22, 17724.	6.7	61
55	White polymer light-emitting diode materials with efficient electron injection backbone containing polyfluorene, oxadiazole and quinoxaline derivatives. Synthetic Metals, 2012, 162, 2294-2301.	2.1	9
56	Carbazole-based coplanar molecule (CmInF) as a universal host for multi-color electrophosphorescent devices. Journal of Materials Chemistry, 2012, 22, 215-224.	6.7	111
57	White Electroluminescence from All-Phosphorescent Single Polymers on a Fluorinated Poly(arylene) Tj ETQq0 0 0 r the American Chemical Society, 2012, 134, 20290-20293.	rgBT /Over 6.6	rlock 10 Tf 5 140
58	Analytical model for current distribution in large-area organic light emitting diodes with parallel metal grid lines. Journal of Applied Physics, 2012, 112, 054507.	1.1	4

#	ARTICLE	IF	CITATIONS
59	Study of \hat{l}^2 phase and Chains Aggregation Degrees in Poly(9,9-dioctylfluorene) (PFO) Solution. Journal of Physical Chemistry C, 2012, 116, 7993-7999.	1.5	75
60	Development of a new diindenopyrazine–benzotriazole copolymer for multifunctional application in organic field-effect transistors, polymer solar cells and light-emitting diodes. Organic Electronics, 2012, 13, 1671-1679.	1.4	21
61	Versatile control of the optical bandgap in heterobimetallic polymers through complexation of bithiazole-containing polyplatinynes with ReCl(CO)5. Journal of Organometallic Chemistry, 2012, 703, 43-50.	0.8	16
62	Synthesis of Diimidazolylstilbenes as nâ€Type Blue Fluorophores: Alternative Dopant Materials for Highly Efficient Electroluminescent Devices. Advanced Materials, 2012, 24, 5867-5871.	11.1	110
63	Thiazole-based metallophosphors of iridium with balanced carrier injection/transporting features and their two-colour WOLEDs fabricated by both vacuum deposition and solution processing-vacuum deposition hybrid strategy. Journal of Materials Chemistry, 2012, 22, 7136.	6.7	64
64	Ratiometric optical oxygen sensing: a review in respect of material design. Analyst, The, 2012, 137, 4885.	1.7	198
65	Highly efficient single-layer white polymer light-emitting devices employing triphenylamine-based iridium dendritic complexes as orange emissive component. Journal of Materials Chemistry, 2012, 22, 361-366.	6.7	51
66	Simple Phenanthroimidazole/Carbazole Hybrid Bipolar Host Materials for Highly Efficient Green and Yellow Phosphorescent Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2012, 116, 19458-19466.	1.5	124
67	High-efficiency conjugated-polymer-hosted blue phosphorescent light-emitting diodes. Science Bulletin, 2012, 57, 3639-3643.	1.7	7
68	Efficient phosphorescent polymer light-emitting diodes by suppressing triplet energy back transfer. Chemical Society Reviews, 2012, 41, 4797.	18.7	113
69	Synthesis of Oligo(thiophene)-Coated Star-Shaped ROMP Polymers: Unique Emission Properties by the Precise Integration of Functionality. Journal of the American Chemical Society, 2012, 134, 7892-7895.	6.6	45
70	Stable and good color purity white lightâ€emitting devices based on random fluorene/spirofluorene copolymers doped with iridium complex. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 180-188.	2.4	10
71	White electroluminescent singleâ€polymer achieved by incorporating three polyfluorene blue arms into a starâ€shaped orange core. Journal of Polymer Science Part A, 2012, 50, 2854-2862.	2.5	33
72	Tunable Fluorescent/Phosphorescent Platinum(II) Porphyrin–Fluorene Copolymers for Ratiometric Dual Emissive Oxygen Sensing. Inorganic Chemistry, 2012, 51, 5208-5212.	1.9	102
73	Tuning the energy levels and photophysical properties of triphenylamine-featured iridium(iii) complexes: application in high performance polymer light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 11128.	6.7	31
74	Simple Tuning of the Optoelectronic Properties of Ir ^{III} and Pt ^{II} Electrophosphors Based on Linkage Isomer Formation with a Naphthylthiazolyl Moiety. European Journal of Inorganic Chemistry, 2012, 2012, 2278-2288.	1.0	28
75	Alkali metal salts doped pluronic block polymers as electron injection/transport layers for high performance polymer light-emitting diodes. Science China Chemistry, 2012, 55, 766-771.	4.2	9
76	Highly Efficient and Fully Solutionâ€Processed White Electroluminescence Based on Fluorescent Small Molecules and a Polar Conjugated Polymer as the Electronâ€Injection Material. Advanced Functional Materials, 2012, 22, 1092-1097.	7.8	39

#	Article	IF	CITATIONS
77	Highâ€Efficiency Single Emissive Layer White Organic Lightâ€Emitting Diodes Based on Solutionâ€Processed Dendritic Host and New Orangeâ€Emitting Iridium Complex. Advanced Materials, 2012, 24, 1873-1877.	11.1	345
78	Photoluminescence of Alq ₃ †and Tbâ€activated aluminium–tris(8â€hydroxyquinoline) complex for blue chipâ€excited OLEDs. Luminescence, 2013, 28, 63-68.	1.5	19
79	A new method to make polymers with flexible main chains and photoelectric pendants for organic semiconductors. Polymer Chemistry, 2013, 4, 4245.	1.9	5
80	Nanostructured Inorganic–Organic Hybrid Semiconductor Materials. , 2013, , 375-415.		2
81	Red, Green, and Blue Lightâ€Emitting Polyfluorenes Containing a Dibenzothiopheneâ€ <i>S,S</i> â€Dioxide Unit and Efficient Highâ€Colorâ€Renderingâ€Index Whiteâ€Lightâ€Emitting Diodes Made Therefrom. Advanced Functional Materials, 2013, 23, 4366-4376.	7.8	121
82	Binary solvent mixture-induced crystallization enhancement for a white emissive polyfluorene copolymer toward improving its electroluminescence. Polymer, 2013, 54, 6236-6241.	1.8	10
83	An orange iridium(iii) complex with wide-bandwidth in electroluminescence for fabrication of high-quality white organic light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 7371.	2.7	52
84	Mixed bipolar fluorescent small molecules for solution processable white light-emitting devices with excellent efficiency roll-off. Journal of Materials Chemistry C, 2013, 1, 7175.	2.7	5
85	High-Efficiency Small-Molecule-Based Organic Light Emitting Devices with Solution Processes and Oxadiazole-Based Electron Transport Materials. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10614-10622.	4.0	24
86	Realizing Molecular Pixel System for Full-Color Fluorescence Reproduction: RGB-Emitting Molecular Mixture Free from Energy Transfer Crosstalk. Journal of the American Chemical Society, 2013, 135, 11239-11246.	6.6	165
87	Precise Synthesis of Poly(fluorene vinylene)s Capped with Chromophores: Efficient Fluorescent Polymers Modified by Conjugation Length and End-Groups. ACS Macro Letters, 2013, 2, 980-984.	2.3	30
88	Constructing Low-Triplet-Energy Hosts for Highly Efficient Blue PHOLEDs: Controlling Charge and Exciton Capture in Doping Systems. Chemistry of Materials, 2013, 25, 4966-4976.	3.2	46
89	Tetrahedral silicon-based luminescent molecules: Synthesis and comparison of thermal and photophysical properties by various effect factors. Journal of Organometallic Chemistry, 2013, 735, 58-64.	0.8	11
90	Interfacial triplet confinement for achieving efficient solution-processed deep-blue and white electrophosphorescent devices with underestimated poly(N-vinylcarbazole) as the host. Journal of Materials Chemistry C, 2013, 1, 4933.	2.7	32
91	Enhancement of external quantum efficiency through steric hindrance of phenazine derivative for white polymer light-emitting diode materials. Synthetic Metals, 2013, 181, 98-103.	2.1	7
92	Iridium(iii) complexes with enhanced film amorphism as guests for efficient orange solution-processed single-layer PhOLEDs with low efficiency roll-off. Dalton Transactions, 2013, 42, 10559.	1.6	21
93	Bright far-red/near-infrared fluorescent conjugated polymer nanoparticles for targeted imaging of HER2-positive cancer cells. Polymer Chemistry, 2013, 4, 4326.	1.9	54
94	White light emission from InGaN/organic molecule light-emitting diode. , 2013, , .		0

#	Article	IF	CITATIONS
95	Rollâ€toâ€Roll fabrication of large area functional organic materials. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 16-34.	2.4	890
96	Dithieno[3,2- <i>>c</i> :2′,3′- <i>e</i>]-2,7-diketophosphepin: A Unique Building Block for Multifunctional π-Conjugated Materials. Journal of the American Chemical Society, 2013, 135, 1137-1147.	6.6	77
97	Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine. Angewandte Chemie - International Edition, 2013, 52, 3086-3109.	7.2	954
98	Novel cyclometalated platinum (II) complex containing carrier-transporting groups: Synthesis, luminescence and application in single dopant white PLEDs. Dyes and Pigments, 2013, 96, 732-737.	2.0	19
99	Highly ordered structural organization of organic semiconductor monolayers on HOPG and Au(111) — STM studies of alkylphenyl N-substituted perylene diimide at liquid–solid interface. Surface Science, 2013, 607, 61-67.	0.8	8
100	Solution processed phosphorescent white organic light emitting diodes using a small molecule host material. Journal of Luminescence, 2013, 143, 432-435.	1.5	1
101	Highly efficient red phosphorescent organic light-emitting diodes based on solution processed emissive layer. Journal of Luminescence, 2013, 142, 35-39.	1.5	22
102	Highly efficient blue and all-phosphorescent white polymer light-emitting devices based on polyfluorene host. Organic Electronics, 2013, 14, 1909-1915.	1.4	20
103	Morphology-dependent electroluminescence in poly(N-vinyl carbazole)-based multi-component single emissive layer polymer light-emitting diodes. Organic Electronics, 2013, 14, 55-61.	1.4	24
104	A red-emissive aminobenzopyrano-xanthene dye: elucidation of fluorescence emission mechanisms in solution and in the aggregate state. Physical Chemistry Chemical Physics, 2013, 15, 2131.	1.3	36
105	Highly efficient green phosphorescent OLEDs based on a novel iridium complex. Journal of Materials Chemistry C, 2013, 1, 560-565.	2.7	86
107	Halochromic generation of white light emission using a single dithienophosphole luminophore. Chemical Communications, 2013, 49, 4899.	2.2	64
108	Synthesis and device application of hybrid host materials of carbazole and benzofuran for high efficiency solution processed blue phosphorescent organic light-emitting diodes. Organic Electronics, 2013, 14, 1009-1014.	1.4	33
109	Spin–Orbit Coupling Analyses of the Geometrical Effects on Phosphorescence in Ir(ppy)3 and Its Derivatives. Journal of Physical Chemistry C, 2013, 117, 5314-5327.	1.5	21
110	Low Current Density Driving Leads to Efficient, Bright and Stable Green Electroluminescence. Advanced Energy Materials, 2013, 3, 1338-1343.	10.2	47
112	Fluorene/tridurylborane hybrids as solution-processible hosts for phosphorescent organic light-emitting diodes. Dyes and Pigments, 2013, 97, 155-161.	2.0	6
113	Highly Efficient Solutionâ€Processable Organic Lightâ€Emitting Devices with Pincerâ€Type Cyclometalated Platinum(II) Arylacetylide Complexes. Chemistry - an Asian Journal, 2013, 8, 1754-1759.	1.7	18
114	Versatile phosphorescent color tuning of highly efficient borylated iridium(iii) cyclometalates by manipulating the electron-accepting capacity of the dimesitylboron group. Journal of Materials Chemistry C, 2013, 1, 3317.	2.7	70

#	Article	IF	CITATIONS
115	Dicyano-Substituted Poly(phenylenevinylene) (DiCN–PPV) and the Effect of Cyano Substitution on Photochemical Stability. Macromolecules, 2013, 46, 4247-4254.	2.2	11
116	Efficient white emitting copolymers based on bipolar fluorene-co-dibenzothiophene-S,S-dioxide-co-carbazole backbone. Chinese Journal of Polymer Science (English Edition), 2013, 31, 88-97.	2.0	21
117	Facile electrochemical synthesis of a conducting copolymer from 5-aminoindole and EDOT and its use as Pt catalyst support for formic acid electrooxidation. Journal of Solid State Electrochemistry, 2013, 17, 751-760.	1.2	15
118	Recent Progress in Polymer White Lightâ€Emitting Materials and Devices. Macromolecular Chemistry and Physics, 2013, 214, 314-342.	1.1	84
119	Solutionâ€Processible Carbazole Dendrimers as Host Materials for Highly Efficient Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2013, 23, 619-628.	7.8	126
120	Hybrid GaN/Organic white light emitters with aggregation induced emission organic molecule. Optical Materials Express, 2013, 3, 1906.	1.6	21
121	High efficient white organic light-emitting diodes with single emissive layer using phosphorescent red, green, and blue dopants. Applied Physics Letters, 2013, 103, .	1.5	12
122	Luminescence Colorâ€Tuning through Polymorph Doping: Preparation of a Whiteâ€Emitting Solid from a Single Gold(I)–Isocyanide Complex by Simple Precipitation. Chemistry - A European Journal, 2013, 19, 16214-16220.	1.7	33
123	Highâ€Efficiency Polymer Lightâ€Emitting Devices with Robust Phosphorescent Platinum(II) Emitters Containing Tetradentate Dianionic O ^{â^§} N ^{â^§} C ^{â^§} N Ligands. Advanced Materials, 2013, 25, 6765-6770.	11,1	107
124	Recent Progresses of Iridium Complex-Containing Macromolecules for Solution-Processed Organic Light-Emitting Diodes. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 905-926.	1.9	19
125	Deep-Red Phosphorescent Iridium(III) Complexes Containing 1-(Benzo[b] Thiophen-2-yl) Isoquinoline Ligand: Synthesis, Photophysical and Electrochemical Properties and DFT Calculations. Journal of Fluorescence, 2014, 24, 1545-1552.	1.3	27
126	Organic Host Materials for Solutionâ€Processed Phosphorescent Organic Lightâ€Emitting Diodes. Israel Journal of Chemistry, 2014, 54, 867-884.	1.0	12
127	Colour-tunable fluorescent multiblock micelles. Nature Communications, 2014, 5, 3372.	5.8	243
128	White polymer light emitting diode materials introducing dendritic quinoxaline derivative: Synthesis, optical and electroluminescent properties. Synthetic Metals, 2014, 190, 1-7.	2.1	10
129	High efficiency solution processed inverted white organic light emitting diodes with a cross-linkable amino-functionalized polyfluorene as a cathode interlayer. Journal of Materials Chemistry C, 2014, 2, 3270-3277.	2.7	41
130	Recent progress in metal–organic complexes for optoelectronic applications. Chemical Society Reviews, 2014, 43, 3259-3302.	18.7	996
131	White Polymer Lightâ€Emitting Devices for Solidâ€State Lighting: Materials, Devices, and Recent Progress. Advanced Materials, 2014, 26, 2459-2473.	11.1	464
132	Whiteâ€Lightâ€Emitting Supramolecular Gels. Angewandte Chemie - International Edition, 2014, 53, 365-368.	7.2	223

#	Article	IF	Citations
133	Color Tunable Organic Lightâ€Emitting Devices with External Quantum Efficiency over 20% Based on Strongly Luminescent Gold(III) Complexes having Longâ€Lived Emissive Excited States. Advanced Materials, 2014, 26, 2540-2546.	11.1	145
134	Improved electroluminescence efficiency of polyfluorenes by simultaneously incorporating dibenzothiophene-S,S-dioxide unit in main chain and oxadiazole moiety in side chain. Polymer, 2014, 55, 1698-1706.	1.8	22
135	Highâ€Performance Hybrid White Organic Lightâ€Emitting Devices without Interlayer between Fluorescent and Phosphorescent Emissive Regions. Advanced Materials, 2014, 26, 1617-1621.	11.1	231
136	Hydrogenâ€Bonded Supramolecular Conjugated Polymer Nanoparticles for White Lightâ€Emitting Devices. Macromolecular Rapid Communications, 2014, 35, 895-900.	2.0	37
137	Recent Advances in Solutionâ€Processed White Organic Lightâ€Emitting Materials and Devices. Israel Journal of Chemistry, 2014, 54, 897-917.	1.0	18
138	Novel heteroleptic iridium(III) complexes with a 2-(1H-pyrazol-5-yl)pyridine derivative containing a carbazole group as ancillary ligand: Synthesis and application for polymer light-emitting diodes. Synthetic Metals, 2014, 187, 209-216.	2.1	12
139	Syntheses, photoluminescence and electroluminescence of four heteroleptic iridium complexes with 2-(5-phenyl-1,3,4-oxadiazol-2-yl)-phenol derivatives as ancillary ligands. Journal of Materials Chemistry C, 2014, 2, 1116-1124.	2.7	35
140	Self-host homoleptic green iridium dendrimers based on diphenylamine dendrons for highly efficient single-layer PhOLEDs. Journal of Materials Chemistry C, 2014, 2, 1104-1115.	2.7	40
141	Recent design tactics for high performance white polymer light-emitting diodes. Journal of Materials Chemistry C, 2014, 2, 1760.	2.7	247
142	A systematic identification of efficiency enrichment between thiazole and benzothiazole based yellow iridium(iii) complexes. Journal of Materials Chemistry C, 2014, 2, 9398-9405.	2.7	22
143	Conjugated Polymer Dots for Ultraâ€Stable Fullâ€Color Fluorescence Patterning. Small, 2014, 10, 4270-4275.	5.2	78
144	White organic light-emitting diodes based on a single-emissive layer using electrophosphorescent dopants in a fluorescent host. Journal of Information Display, 2014, 15, 119-126.	2.1	3
145	CaGdAlO ₄ :Tb ³⁺ /Eu ³⁺ as promising phosphors for full-color field emission displays. Journal of Materials Chemistry C, 2014, 2, 9924-9933.	2.7	107
146	Multifunctional materials for OFETs, LEFETs and NIR PLEDs. Journal of Materials Chemistry C, 2014, 2, 5133-5141.	2.7	38
147	Improving the efficiency and spectral stability of white-emitting polycarbazoles by introducing a dibenzothiophene-S,S-dioxide unit into the backbone. Journal of Materials Chemistry C, 2014, 2, 7881.	2.7	17
148	Highly efficient and color-stable hybrid warm white organic light-emitting diodes using a blue material with thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2014, 2, 8191-8197.	2.7	131
149	Novel phosphorescent polymers containing both ambipolar segments and functionalized Ir ^{III} phosphorescent moieties: synthesis, photophysical, redox, and electrophosphorescence investigation. Journal of Materials Chemistry C, 2014, 2, 9523-9535.	2.7	17
150	The influence of numbers and ligation positions of the triphenylamine unit on the photophysical and electroluminescent properties of homoleptic iridium(iii) complexes: a theoretical perspective. Dalton Transactions, 2014, 43, 11915.	1.6	16

#	Article	IF	CITATIONS
151	Synthesis of dual-emissive organometallic complexes containing heterogeneous metal elements. Tetrahedron Letters, 2014, 55, 6477-6481.	0.7	14
152	Selective Ag(I) Binding, H ₂ S Sensing, and White-Light Emission from an Easy-to-Make Porous Conjugated Polymer. Journal of the American Chemical Society, 2014, 136, 2818-2824.	6.6	117
153	High-efficiency deep blue fluorescent emitters based on phenanthro [9,10-d] imidazole substituted carbazole and their applications in organic light emitting diodes. Organic Electronics, 2014, 15, 2667-2676.	1.4	94
154	Polymer light-emitting diodes based on cationic iridium(III) complexes with a 1,10-phenanthroline derivative containing a bipolar carbazole–oxadiazole unit as the auxiliary ligand. Optical Materials, 2014, 37, 679-687.	1.7	8
155	Blue, Green, and Orange-Red Emission from Polystyrene Microbeads for Solid-State White-Light and Multicolor Emission. Journal of Physical Chemistry B, 2014, 118, 9467-9475.	1.2	21
156	Quantum chemical characterization and design of homoleptic Ir(III) complexes employing triphenylamine-featured thiazole-based ligand for efficient phosphors in OLEDs. Synthetic Metals, 2014, 198, 67-75.	2.1	6
157	Imparting Tunable and White-Light Luminescence to a Nanosized Metal–Organic Framework by Controlled Encapsulation of Lanthanide Cations. Inorganic Chemistry, 2014, 53, 3456-3463.	1.9	109
158	Localized surface plasmon resonance enhanced blue light-emission of polyfluorene copolymer. Journal of Physics and Chemistry of Solids, 2014, 75, 1340-1346.	1.9	12
159	Solutionâ€Processable Hosts Constructed by Carbazole/PO Substituted Tetraphenylsilanes for Efficient Blue Electrophosphorescent Devices. Advanced Functional Materials, 2014, 24, 5881-5888.	7.8	45
160	Towards Deep-Blue Phosphorescence: Molecular Design, Synthesis and Theoretical Study of Iridium Complexes with Cyclometalating 2-Phenyl-2H-[1,2,3]triazole Ligands. European Journal of Inorganic Chemistry, 2014, 2014, 4843-4851.	1.0	5
161	Solution-Processed White Organic Light-Emitting Diodes with Enhanced Efficiency by Using Quaternary Ammonium Salt Doped Conjugated Polyelectrolyte. ACS Applied Materials & Diterfaces, 2014, 6, 8631-8638.	4.0	11
162	Obtaining highly efficient single-emissive-layer orange and two-element white organic light-emitting diodes by the solution process. Journal of Materials Chemistry C, 2014, 2, 5036.	2.7	21
163	A hybrid white organic light-emitting diode with above 20% external quantum efficiency and extremely low efficiency roll-off. Journal of Materials Chemistry C, 2014, 2, 7494-7504.	2.7	41
164	Solutionâ€Processible 2,2â€2â€Dimethylâ€biphenyl Cored Carbazole Dendrimers as Universal Hosts for Efficient Blue, Green, and Red Phosphorescent OLEDs. Advanced Functional Materials, 2014, 24, 3413-3421.	7.8	67
165	Study of the \hat{l} ±-Conformation of the Conjugated Polymer Poly(9,9-dioctylfluorene) in Dilute Solution. Journal of Physical Chemistry B, 2014, 118, 791-799.	1.2	20
166	Furopyridine derivatives as host materials for solution processed blue phosphorescent organic light-emitting diodes. Thin Solid Films, 2014, 562, 608-611.	0.8	1
167	Multifunctional homoleptic iridium(III) dendrimers towards solution-processed nondoped electrophosphorescence with low efficiency roll-off. Organic Electronics, 2014, 15, 1598-1606.	1.4	26
169	Solution-Processed Phosphorescent Organic Light-Emitting Diodes with Ultralow Driving Voltage and Very High Power Efficiency. Scientific Reports, 2015, 5, 12487.	1.6	122

#	ARTICLE	IF	CITATIONS
170	Ultrahigh Colorâ€Stable, Solutionâ€Processed, White OLEDs Using a Dendritic Binary Host and Longâ€Wavelength Dopants with Different Charge Trapping Depths. Advanced Optical Materials, 2015, 3, 1349-1354.	3.6	30
171	Dibenzosiloles and 12 <i>H</i> àâ€Indololo[3,2â€ <i>d</i>]naphtho[1,2â€ <i>b</i>][1]siloles: Exploration of Organic Chromophores Exhibiting Efficient Solidâ€State Fluorescence. Chemical Record, 2015, 15, 73-85.	2.9	21
172	Photochemical stability of dicyanoâ€substituted poly(phenylenevinylenes) with different side chains. Journal of Polymer Science Part A, 2015, 53, 2820-2828.	2.5	4
173	Isoindigo-Based Small Molecules with Varied Donor Components for Solution-Processable Organic Field Effect Transistor Devices. Molecules, 2015, 20, 17362-17377.	1.7	8
174	Luminescent zinc(<scp>ii</scp>) and copper(<scp>i</scp>) complexes for high-performance solution-processed monochromic and white organic light-emitting devices. Chemical Science, 2015, 6, 4623-4635.	3.7	133
175	Multistimuliâ€responsive White Luminescent Fluids Using Hybrid Lanthanide Metal–Coordinate Complex Probes. Advanced Optical Materials, 2015, 3, 1041-1046.	3.6	31
176	<i>tris</i> â€Heteroleptic Cyclometalated Iridium(III) Complexes with Ambipolar or Electron Injection/Transport Features for Highly Efficient Electrophosphorescent Devices. Chemistry - an Asian Journal, 2015, 10, 252-262.	1.7	53
177	Organic Optoelectronic Materials. Lecture Notes in Quantum Chemistry II, 2015, , .	0.3	33
178	High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch. Chinese Physics Letters, 2015, 32, 107805.	1.3	1
179	3D Microporous Lanthanide-Organic Frameworks Constructed from Left- and Right-Handed Helical Chains: Synthesis, Crystal Structure, and Tunable PhotoÂłuminescence. European Journal of Inorganic Chemistry, 2015, 2015, 852-858.	1.0	8
180	Solution-Processed Blue/Deep Blue and White Phosphorescent Organic Light-Emitting Diodes (PhOLEDs) Hosted by a Polysiloxane Derivative with Pendant mCP (1,3-bis(9-carbazolyl)benzene). ACS Applied Materials & Derivative with Pendant mCP (1,3-bis(9-carbazolyl)benzene). ACS Applied Materials & Derivative with Pendant mCP (1,3-bis(9-carbazolyl)benzene).	4.0	44
181	Synthesis of dual-emissive polymers based on ineffective energy transfer through cardo fluorene-containing conjugated polymers. Polymer, 2015, 60, 228-233.	1.8	25
182	A transformation process and mechanism between the $\hat{l}\pm$ -conformation and \hat{l}^2 -conformation of conjugated polymer PFO in precursor solution. Soft Matter, 2015, 11, 2627-2638.	1.2	18
183	Recent Advances in Solutionâ€Processable Dendrimers for Highly Efficient Phosphorescent Organic Lightâ€Emitting Diodes (PHOLEDs). Asian Journal of Organic Chemistry, 2015, 4, 394-429.	1.3	105
184	New deep-red heteroleptic iridium complex with 3-hexylthiophene for solution-processed organic light-emitting diodes emitting saturated red and high CRI white colors. Organic Electronics, 2015, 21, 1-8.	1.4	46
185	Ce ³⁺ and Tb ³⁺ singly- and co-doped MgGd ₄ Si ₃ O ₁₃ for ultraviolet light emitting diodes and field emission displays. Journal of Materials Chemistry C, 2015, 3, 3676-3683.	2.7	36
186	Photoluminescence and white-light emission in two series of heteronuclear Pb(<scp>ii</scp>)–Ln(<scp>iii</scp>) complexes. New Journal of Chemistry, 2015, 39, 3770-3776.	1.4	23
187	Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices. Chemical Society Reviews, 2015, 44, 8484-8575.	18.7	752

#	Article	IF	CITATIONS
188	Novel carbazole dendronized oligofluorenes for solution-processed organic light-emitting diodes. Dyes and Pigments, 2015, 122, 295-301.	2.0	7
189	Facilitating triplet energy-transfer in polymetallayne-based phosphorescent polymers with iridium(III) units and the great potential in achieving high electroluminescent performances. Journal of Organometallic Chemistry, 2015, 794, 1-10.	0.8	11
190	Solution-processed interlayer of n-type small molecules for organic photovoltaic devices: Enhancement of the fill factor due to ordered orientation. Solar Energy Materials and Solar Cells, 2015, 141, 232-239.	3.0	13
191	Silica-encapsulated semiconductor polymer dots as stable phosphors for white light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 7281-7285.	2.7	13
192	Exploration of phosphorescent platinum(II) complexes functionalized by distinct main-group units to search for highly efficient blue emitters applied in organic light-emitting diodes: A theoretical study. Inorganica Chimica Acta, 2015, 435, 109-116.	1.2	13
193	Superhydrophobic and Highly Luminescent Polyfluorene/Silica Hybrid Coatings Deposited onto Glass and Cellulose-Based Substrates. Langmuir, 2015, 31, 3718-3726.	1.6	15
194	Solution-processed oxadiazole-based electron-transporting layer for white organic light-emitting diodes. RSC Advances, 2015, 5, 36568-36574.	1.7	14
195	Color tunable and near white-light emission of two solvent-induced 2D lead(<scp>ii</scp>) coordination networks based on a rigid ligand 1-tetrazole-4-imidazole-benzene. Dalton Transactions, 2015, 44, 10089-10096.	1.6	31
196	Platinum(ii) polymetallayne-based phosphorescent polymers with enhanced triplet energy-transfer: synthesis, photophysical, electrochemistry, and electrophosphorescent investigation. RSC Advances, 2015, 5, 36507-36519.	1.7	20
197	Bipolar Host with Multielectron Transport Benzimidazole Units for Low Operating Voltage and High Power Efficiency Solution-Processed Phosphorescent OLEDs. ACS Applied Materials & Interfaces, 2015, 7, 7303-7314.	4.0	60
198	Efficient binary white light-emitting polymers grafted with iridium complexes as side groups. RSC Advances, 2015, 5, 89888-89894.	1.7	6
199	Energy transfer through heterogeneous dyesâ€substituted fluoreneâ€containing alternating copolymers and their dualâ€emission properties in the films. Journal of Polymer Science Part A, 2015, 53, 2026-2035.	2.5	17
200	Efficient saturated red electrophosphorescence by using solution-processed 1-phenylisoquinoline-based iridium phosphors with peripheral functional encapsulation. Organic Electronics, 2015, 26, 400-407.	1.4	20
201	Color tuning in inverted blue light-emitting diodes based on a polyfluorene derivative by adjusting the thickness of the light-emitting layer. Journal of Materials Chemistry C, 2015, 3, 9819-9826.	2.7	17
202	Construction of multi-layered white emitting organic nanoparticles by clicking polymers. Journal of Materials Chemistry C, 2015, 3, 10277-10284.	2.7	7
203	Conjugated Polymer Electroluminescent Materials. Lecture Notes in Quantum Chemistry II, 2015, , 303-358.	0.3	1
204	Solution-processed organic light-emitting diodes with enhanced efficiency by using a non-conjugated polymer doped small-molecule hole-blocking layer. RSC Advances, 2015, 5, 98075-98079.	1.7	5
205	Deep-blue electroluminescence from nondoped and doped organic light-emitting diodes (OLEDs) based on a new monoaza[6]helicene. RSC Advances, 2015, 5, 75-84.	1.7	81

#	Article	IF	CITATIONS
206	A high triplet energy, high thermal stability oxadiazole derivative as the electron transporter for highly efficient red, green and blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2015, 3, 1491-1496.	2.7	61
207	Novel Red Phosphorescent Polymers Bearing Both Ambipolar and Functionalized Ir ^{III} Phosphorescent Moieties for Highly Efficient Organic Light-Emitting Diodes. Macromolecular Rapid Communications, 2015, 36, 71-78.	2.0	16
208	Thermo-responsive white-light emission based on tetraphenylethylene- and rhodamine B-containing boronate nanoparticles. Chemical Communications, 2015, 51, 118-121.	2.2	44
209	Manipulating efficiencies through modification of N-heterocyclic phenyltriazole ligands for blue iridium(III) complexes. Dyes and Pigments, 2015, 113, 655-663.	2.0	11
210	Solution-processed interlayer of discotic-based small molecules for organic photovoltaic devices: Enhancement of both the open-circuit voltage and the fill factor. Dyes and Pigments, 2015, 113, 210-218.	2.0	16
211	A Redâ€Emissive Sextuple Hydrogenâ€Bonding Selfâ€Assembly Molecular Duplex Bearing Perylene Diimide Fluorophores for Warmâ€White Organic Lightâ€Emitting Diode Application. Chinese Journal of Chemistry, 2016, 34, 387-396.	2.6	14
212	Tunable Whiteâ€Light Emission from Conjugated Polymerâ€Diâ€Ureasil Materials. Advanced Functional Materials, 2016, 26, 532-542.	7.8	33
213	Recent advances in white organic light-emitting diodes. Materials Science and Engineering Reports, 2016, 107, 1-42.	14.8	181
214	White Light Emission in Butadiyne Bridged Pyrene–Phenyl Hybrid Fluorophore: Understanding the Photophysical Importance of Diyne Spacer and Utilizing the Excited-State Photophysics for Vapor Detection. Journal of Physical Chemistry A, 2016, 120, 5838-5847.	1.1	27
215	Cucurbit[7]uril-threaded fluorene–thiophene-based conjugated polyrotaxanes. RSC Advances, 2016, 6, 98109-98116.	1.7	12
216	Quantitative Study on \hat{l}^2 -Phase Heredity Based on Poly(9,9-dioctylfluorene) from Solutions to Films and the Effect on Hole Mobility. Journal of Physical Chemistry C, 2016, 120, 27820-27828.	1.5	35
217	Solution processed single-emissive-layer white organic light-emitting diodes based on fluorene host: Balanced consideration for color quality and electroluminescent efficiency. Organic Electronics, 2016, 33, 235-245.	1.4	12
218	An Azole-Based Metal–Organic Framework toward Direct White-Light Emissions by the Synergism of Ligand-Centered Charge Transfer and Interligand π–π Interactions. Crystal Growth and Design, 2016, 16, 3969-3975.	1.4	39
219	Evaporation―and Solutionâ€Processâ€Feasible Highly Efficient Thianthreneâ€9,9′,10,10′â€Tetraoxideâ€Ba Thermally Activated Delayed Fluorescence Emitters with Reduced Efficiency Rollâ€Off. Advanced Materials, 2016, 28, 181-187.	ised 11.1	291
220	Modular Synthesis of Spirocyclic Germafluorene–Germoles: A New Family of Tunable Luminogens. Chemistry - A European Journal, 2016, 22, 248-257.	1.7	22
221	Superior upconversion fluorescence dopants for highly efficient deep-blue electroluminescent devices. Chemical Science, 2016, 7, 4044-4051.	3.7	76
222	Recent development in phosphors with different emitting colors via energy transfer. Journal of Materials Chemistry C, 2016, 4, 5507-5530.	2.7	269
223	Fabrication of efficient polymer light-emitting diodes using water/alcohol soluble poly(vinyl) Tj ETQq1 1 0.784314 51, 7286-7299.	rgBT /Ove 1.7	erlock 10 Tf 4

#	Article	IF	CITATIONS
224	White electroluminescence from a single polymer system: phenothiazine derivatives as a red emissive dopant and polyfluorene as a blue host. RSC Advances, 2016, 6, 92778-92785.	1.7	5
226	Red–Green–Blue Trichromophoric Nanoparticles with Dual Fluorescence Resonance Energy Transfer: Highly Sensitive Fluorogenic Response Toward Polyanions. Chemistry - A European Journal, 2016, 22, 13014-13018.	1.7	9
227	Self-assembly of a white-light emitting polymer with aggregation induced emission enhancement using simplified derivatives of tetraphenylethylene. Journal of Materials Chemistry C, 2016, 4, 8027-8040.	2.7	21
228	Multiple emissions from indenofluorenedione in solution and polymer films. RSC Advances, 2016, 6, 80867-80871.	1.7	1
229	Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive. Science Advances, 2016, 2, e1600076.	4.7	139
230	An alcohol-soluble and ion-free electron transporting material functionalized with phosphonate groups for solution-processed multilayer PLEDs. Chemical Communications, 2016, 52, 12052-12055.	2.2	12
231	Recent advances in high performance solution processed WOLEDs for solid-state lighting. Journal of Materials Chemistry C, 2016, 4, 10993-11006.	2.7	84
232	Management of Singlet and Triplet Excitons: A Universal Approach to Highâ€Efficiency All Fluorescent WOLEDs with Reduced Efficiency Rollâ€Off Using a Conventional Fluorescent Emitter. Advanced Optical Materials, 2016, 4, 1067-1074.	3.6	84
233	Improving efficiency and color purity of poly(9,9-dioctylfluorene) through addition of a high boiling-point solvent of 1-chloronaphthalene. Nanotechnology, 2016, 27, 284001.	1.3	27
234	Molecular Materials That Can Both Emit Light and Conduct Charges: Strategies and Perspectives. Chemistry - A European Journal, 2016, 22, 462-471.	1.7	43
235	Extremely condensing triplet states of DPEPO-type hosts through constitutional isomerization for high-efficiency deep-blue thermally activated delayed fluorescence diodes. Chemical Science, 2016, 7, 2870-2882.	3.7	92
236	Polymer based on benzothiadiazole-bridged bis-isoindigo for organic field-effect transistor applications. Dyes and Pigments, 2016, 125, 407-413.	2.0	12
237	Pyridyl-substituted anthracene derivatives with solid-state emission and charge transport properties. Journal of Materials Chemistry C, 2016, 4, 3621-3627.	2.7	28
238	White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer. ACS Applied Materials & Single Polymer. ACS Applie	4.0	34
239	Pure white-light and colour-tuning of Eu ³⁺ –Gd ³⁺ -containing metallopolymer. Chemical Communications, 2016, 52, 3713-3716.	2.2	54
240	Recent advances in organic thermally activated delayed fluorescence materials. Chemical Society Reviews, 2017, 46, 915-1016.	18.7	1,815
241	Triphenylamine-based electroactive compounds: synthesis, properties and application to organic electronics. Chemical Papers, 2017, 71, 243-268.	1.0	33
242	Novel hyperbranched polymers as host materials for green thermally activated delayed fluorescence OLEDs. Chinese Journal of Polymer Science (English Edition), 2017, 35, 490-502.	2.0	11

#	Article	IF	CITATIONS
243	Efficient phenanthroimidazole-styryl-triphenylamine derivatives for blue OLEDs: a combined experimental and theoretical study. New Journal of Chemistry, 2017, 41, 2443-2457.	1.4	25
244	A New Benzodithiopheneâ€Based Cruciform Electronâ€Donor–Electronâ€Acceptor Molecule with Ambipolar/Photoresponsive Semiconducting and Redâ€Lightâ€Emissive Properties. Asian Journal of Organic Chemistry, 2017, 6, 1277-1284.	1.3	4
245	Efficient white-light emission from a single polymer system with "spring-like―self-assemblies induced emission enhancement and intramolecular charge transfer characteristics. Journal of Materials Chemistry C, 2017, 5, 4763-4774.	2.7	41
246	Red to white polymer light-emitting diode (PLED) based on Eu3+–Zn2+–Gd3+-containing metallopolymer. Journal of Materials Chemistry C, 2017, 5, 4780-4787.	2.7	22
247	High Triplet Energy Level Achieved by Tuning the Arrangement of Building Blocks in Phosphorescent Polymer Backbones for Furnishing High Electroluminescent Performances in Both Blue and White Organic Light-Emitting Devices. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16360-16374.	4.0	27
248	Amphipathic metal-containing macromolecules with photothermal properties. Polymer Chemistry, 2017, 8, 3674-3678.	1.9	27
249	Optical, dielectrical properties and conduction mechanism of copolymer (N,N′-bissulphinyl-m-benzenediamine-p-phenylenediamine). European Polymer Journal, 2017, 93, 8-20.	2.6	5
250	Copolyphenylenes with pendant benzimidazolyl and diethanolaminohexyloxy groups: Synthesis and electron-transporting application in PLEDs. Journal of Polymer Science Part A, 2017, 55, 2494-2505.	2.5	3
251	Highly efficient inverted blue light-emitting diodes by thermal annealing and interfacial modification. Organic Electronics, 2017, 49, 1-8.	1.4	11
252	Rationally Designed Carbon Nanodots towards Pure White‣ight Emission. Angewandte Chemie, 2017, 129, 4234-4237.	1.6	22
253	Regioregular narrow-bandgap-conjugated polymers for plastic electronics. Nature Communications, 2017, 8, 14047.	5.8	182
254	Rationally Designed Carbon Nanodots towards Pure White‣ight Emission. Angewandte Chemie - International Edition, 2017, 56, 4170-4173.	7.2	99
255	High-color-quality white electroluminescence and amplified spontaneous emission from a star-shaped single-polymer system with simultaneous three-color emission. Polymer Chemistry, 2017, 8, 851-859.	1.9	10
256	Thermally Activated Delayed Fluorescent Polymers. Journal of Polymer Science Part A, 2017, 55, 575-584.	2.5	62
257	Synthesis and optical and electrochemical properties of water-soluble cationic fluorophores based on bispyridinium and dibenzothiophene-S,S-dioxide. New Journal of Chemistry, 2017, 41, 1696-1703.	1.4	5
258	Improving the Power Efficiency of Solutionâ€Processed Phosphorescent WOLEDs with a Selfâ€Host Blue Iridium Dendrimer. Advanced Optical Materials, 2017, 5, 1700514.	3.6	19
259	Precise Exciton Allocation for Highly Efficient White Organic Lightâ€Emitting Diodes with Low Efficiency Rollâ€Off Based on Blue Thermally Activated Delayed Fluorescent Exciplex Emission. Advanced Optical Materials, 2017, 5, 1700415.	3.6	95
260	New Molecular Design Concurrently Providing Superior Pure Blue, Thermally Activated Delayed Fluorescence and Optical Out-Coupling Efficiencies. Journal of the American Chemical Society, 2017, 139, 10948-10951.	6.6	361

#	Article	IF	CITATIONS
261	Substituent-effect investigation of facial and meridional tris(phenylbenzimidazolinato) Ir(III) carbene complexes: A theoretical perspective. Synthetic Metals, 2017, 232, 31-38.	2.1	0
262	Saturated and Stable White Electroluminescence from Linear Single Polymer Systems Based on Polyfluorene and Mono-Substituted Dibenzofulvene Derivatives. Journal of Physical Chemistry C, 2017, 121, 18137-18143.	1.5	10
263	Efficient non-doped blue organic light-emitting diodes: donor–acceptor type host materials. RSC Advances, 2017, 7, 54078-54086.	1.7	3
264	Synthesis and Design of Conjugated Polymers for Organic Electronics. , 2017, , 9-61.		7
265	Aggregation induced enhanced and exclusively highly Stokes shifted emission from an excited state intramolecular proton transfer exhibiting molecule. Faraday Discussions, 2017, 196, 71-90.	1.6	28
266	Homoleptic thiazole-based Ir ^{III} phosphorescent complexes for achieving both high EL efficiencies and an optimized trade-off among the key parameters of solution-processed WOLEDs. Journal of Materials Chemistry C, 2017, 5, 208-219.	2.7	21
267	A Lanthanide Luminescent Cation Exchange Material Derived from a Flexible Tricarboxylic Acid 2,6-Bis(1,2,3-triazol-4-yl)pyridine (btp) Tecton. Inorganic Chemistry, 2018, 57, 3920-3930.	1.9	16
268	Synthesis, Properties, Calculations and Applications of Small Molecular Host Materials Containing Oxadiazole Units with Different Nitrogen and Oxygen Atom Orientations for Solution-Processable Blue Phosphorescent OLEDs. Electronic Materials Letters, 2018, 14, 89-100.	1.0	8
269	Realizing performance improvement of blue thermally activated delayed fluorescence molecule DABNA by introducing substituents on the para-position of boron atom. Chemical Physics Letters, 2018, 701, 98-102.	1.2	17
270	Efficient electroluminescence of bluish green iridium complexes with 2-(3,5-bis(trifluoromethyl)phenyl)pyrimidine and 2-(3,5-bis(trifluoromethyl)phenyl)-5-fluoropyrimidine as the main ligands. Inorganic Chemistry Frontiers, 2018, 5, 1545-1552.	3.0	7
271	Tunable Multicolor Phosphorescence of Crystalline Polymeric Complex Salts with Metallophilic Backbones. Angewandte Chemie - International Edition, 2018, 57, 6279-6283.	7.2	57
272	Blue Thermally Activated Delayed Fluorescenceâ€Emitting Phosphine Oxide Hosts for Ultrasimple and Highly Efficient White Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800020.	3.6	67
273	Using Ring-Opening Metathesis Polymerization of Norbornene To Construct Thermally Activated Delayed Fluorescence Polymers: High-Efficiency Blue Polymer Light-Emitting Diodes. Macromolecules, 2018, 51, 1598-1604.	2.2	76
274	Functionalization of Metal–Organic Frameworks for Photoactive Materials. Advanced Materials, 2018, 30, e1705634.	11.1	133
275	White-Light-Emitting Carbon Nano-Onions: A Tunable Multichannel Fluorescent Nanoprobe for Glutathione-Responsive Bioimaging. ACS Applied Nano Materials, 2018, 1, 662-674.	2.4	28
276	Stretchable Polymer Semiconductors for Plastic Electronics. Advanced Electronic Materials, 2018, 4, 1700429.	2.6	168
277	Orange-Red Phosphorescent Iridium(III) Complexes Bearing Bisphosphine Ligands: Synthesis, Photophysical and Electrochemical Properties, and DFT Calculations. Organometallics, 2018, 37, 78-86.	1.1	16
278	Improved Transistor Performance of Isoindigo-Based Conjugated Polymers by Chemically Blending Strongly Electron-Deficient Units with Low Content To Optimize Crystal Structure. Macromolecules, 2018, 51, 370-378.	2.2	36

#	Article	IF	CITATIONS
279	Fluorescent Supracolloidal Chains of Patchy Micelles of Diblock Copolymers Functionalized with Fluorophores. Langmuir, 2018, 34, 4634-4639.	1.6	8
280	Tuning the solid-state emission of small push-pull dipolar dyes to the far-red through variation of the electron-acceptor group. Dyes and Pigments, 2018, 156, 116-132.	2.0	57
281	Highly efficient and spectrally stable white organic light-emitting diodes using new red heteroleptic lridium(III) complexes. Dyes and Pigments, 2018, 149, 363-372.	2.0	9
282	Polyazomethines based on oxadiazolyl or 1,2,4-triazolyl groups: synthesis and hole-buffering application in polymer light-emitting diodes. Polymer Chemistry, 2018, 9, 5442-5451.	1.9	5
283	Synthesis of fluorescent conjugated polymer nanoparticles and their immobilization on a substrate for white light emission. Polymer Chemistry, 2018, 9, 5671-5679.	1.9	13
284	Porous Organic Polymer from Aggregation-Induced Emission Macrocycle for White-Light Emission. Macromolecules, 2018, 51, 7863-7871.	2.2	24
285	Synthesis of polymers and modification of polymeric materials in electromagnetic fields. Russian Chemical Reviews, 2018, 87, 923-949.	2.5	12
286	Small push-pull diacetylenes as emergent fluorophores. AIP Conference Proceedings, 2018, , .	0.3	1
287	Full-Color Tunable Fluorescent and Chemiluminescent Supramolecular Nanoparticles for Anti-counterfeiting Inks. ACS Applied Materials & Interfaces, 2018, 10, 39214-39221.	4.0	137
288	Tunable Emission Color of Iridium(III) Complexes with Phenylpyrazole Derivatives as the Main Ligands for Organic Light-Emitting Diodes. Organometallics, 2018, 37, 3154-3164.	1.1	23
289	Polyfluorene (PF) Single-Chain Conformation, \hat{l}^2 Conformation, and Its Stability and Chain Aggregation by Side-Chain Length Change in the Solution Dynamic Process. Journal of Physical Chemistry C, 2018, 122, 14814-14826.	1.5	20
290	White-light emission from a single organic compound with unique self-folded conformation and multistimuli responsiveness. Chemical Science, 2018, 9, 5709-5715.	3.7	146
291	Dual fluorescence of tetraphenylethylene-substituted pyrenes with aggregation-induced emission characteristics for white-light emission. Chemical Science, 2018, 9, 5679-5687.	3.7	119
292	Cd(<scp>ii</scp>)–nucleobase supramolecular metallo-hydrogels for <i>in situ</i> growth of color tunable CdS quantum dots. Soft Matter, 2018, 14, 5715-5720.	1.2	14
293	Highâ€Efficiency Blue Dualâ€Emissive Exciplex Boosts Fullâ€Radiative White Electroluminescence. Advanced Optical Materials, 2018, 6, 1800437.	3.6	53
294	Highly efficient deep-red emitting methyl substituted thiophenylquinoline based Ir(III) complexes for solution-processed organic light-emitting diodes. Molecular Crystals and Liquid Crystals, 2018, 660, 1-9.	0.4	4
295	Low-Bandgap Conjugated Polymer Dots for Near-Infrared Fluorescence Imaging. ACS Applied Nano Materials, 2018, 1, 4801-4808.	2.4	19
296	Tunable Multicolor Phosphorescence of Crystalline Polymeric Complex Salts with Metallophilic Backbones. Angewandte Chemie, 2018, 130, 6387-6391.	1.6	19

#	Article	IF	CITATIONS
297	Single-Phase White-Light-Emitting and Photoluminescent Color-Tuning Coordination Assemblies. Chemical Reviews, 2018, 118, 8889-8935.	23.0	444
298	Efficient White Polymer Lightâ€Emitting Diode (WPLED) Based on Singleâ€Component Eu 3+ –Tb 3+ â€Containing Metallopolymer. Advanced Optical Materials, 2019, 7, 1900776.	3.6	21
299	The Effects of Side Chains on the Charge Mobilities and Functionalities of Semiconducting Conjugated Polymers beyond Solubilities. Advanced Materials, 2019, 31, e1903104.	11.1	153
300	Robust luminescent small molecules with aggregation-induced delayed fluorescence for efficient solution-processed OLEDs. Journal of Materials Chemistry C, 2019, 7, 330-339.	2.7	42
301	Benzothiadiazole-based bolaamphiphiles: synthesis, self-assembly and white-light emissive properties. Journal of Materials Chemistry C, 2019, 7, 1237-1245.	2.7	24
302	Bis(N,N′-substituted oxamate) Zincate(II) complexes: Synthesis, spectroscopy, solid state structure and DFT calculations. Inorganica Chimica Acta, 2019, 487, 409-418.	1.2	6
303	A general concept for white light emission formation from two complementary colored luminescent dyes. Materials Chemistry Frontiers, 2019, 3, 505-512.	3.2	25
304	A novel approach to white-light emission using a single fluorescent urea derivative and fluoride. New Journal of Chemistry, 2019, 43, 3265-3268.	1.4	7
305	Full-color emission of a Eu ³⁺ -based mesoporous hybrid material modulated by Zn ²⁺ ions: emission color changes for Zn ²⁺ sensing <i>via</i> an ion exchange approach. Dalton Transactions, 2019, 48, 10547-10556.	1.6	19
306	Efficient tandem polymer light-emitting diodes with PTPA-P/ZnO as the charge generation layer. Journal of Materials Chemistry C, 2019, 7, 8003-8010.	2.7	5
307	White light emission from a mixture of silicon quantum dots and gold nanoclusters and its utilities in sensing of mercury(<scp>ii</scp>) ions and thiol containing amino acid. RSC Advances, 2019, 9, 15997-16006.	1.7	17
308	Cu(0)-RDRP as an efficient and low-cost synthetic route to blue-emissive polymers for OLEDs. Polymer Chemistry, 2019, 10, 3288-3297.	1.9	18
309	Synergistic Tricolor Emission-Based White Light from Supramolecular Organic–Inorganic Hybrid Gel. Langmuir, 2019, 35, 6453-6459.	1.6	11
310	Fine-Tuned Visible and Near-Infrared Luminescence on Self-Assembled Lanthanide-Organic Tetrahedral Cages with Triazole-Based Chelates. Inorganic Chemistry, 2019, 58, 7091-7098.	1.9	33
311	Influence of partially-oxidized silver back electrodes on the electrical properties and stability of organic semiconductor diodes. Organic Electronics, 2019, 70, 179-185.	1.4	7
312	Deep-Blue Thermally Activated Delayed Fluorescence Polymers for Nondoped Solution-Processed Organic Light-Emitting Diodes. Macromolecules, 2019, 52, 2296-2303.	2.2	77
313	Novel Emission Colorâ€Tuning Strategies in Heteroleptic Phosphorescent Ir(III) and Pt(II) Complexes. Chemical Record, 2019, 19, 1710-1728.	2.9	29
314	Color-Tunable White-Light-Emitting Materials Based on Liquid-Filled Capsules and Thermally Responsive Dyes. ACS Applied Materials & Interfaces, 2019, 11, 17751-17758.	4.0	28

#	Article	IF	Citations
315	First-principles calculations, structure research and luminescence properties for a novel apatite blue/green phosphor Ca6Y4(SiO4)2(PO4)4O2:Eu2+/Tb3+. Journal of Luminescence, 2019, 211, 276-283.	1.5	5
316	Multitasking behaviour of a small organic compound: solid state bright white-light emission, mechanochromism and ratiometric sensing of Al(<scp>iii</scp>) and pyrophosphate. Chemical Communications, 2019, 55, 5127-5130.	2.2	27
317	Rh-Catalyzed C–H Amidation of 2-Arylbenzo[<i>d</i>) thiazoles: An Approach to Single Organic Molecule White Light Emitters in the Solid State. Organic Letters, 2019, 21, 2523-2527.	2.4	27
318	Effect of Branching on the Optical Properties of Poly(p-phenylene ethynylene) Conjugated Polymer Nanoparticles for Bioimaging. ACS Biomaterials Science and Engineering, 2019, 5, 1967-1977.	2.6	17
319	Improvement of the Electroluminescence Performance of Exciplexâ€Based OLEDs by Effective Utilization of Longâ€Range Coupled Electron–Hole Pairs. Advanced Optical Materials, 2019, 7, 1801648.	3.6	37
320	Single-component solid state white-light emission and photoluminescence color tuning of a Cd(<scp>ii</scp>) complex and its application as a luminescence thermometer. Journal of Materials Chemistry C, 2019, 7, 13454-13460.	2.7	11
321	Photoâ€Modulating Multicolor Photoluminescence Including Whiteâ€Light Emission from a Photochromic Copolymer. Macromolecular Rapid Communications, 2019, 40, 1800751.	2.0	36
322	Iridium(III) complexes adopting thienylpyridine derivatives for yellow-to-deep red OLEDs with low efficiency roll-off. Dyes and Pigments, 2019, 162, 863-871.	2.0	12
323	Reduced Efficiency Roll-Off in White Phosphorescent Organic Light-Emitting Diodes Based on Double Emission Layers. Molecules, 2019, 24, 211.	1.7	0
324	Recent Progress in Sublimable Cationic Iridium(III) Complexes for Organic Lightâ€Emitting Diodes. Chemical Record, 2019, 19, 1483-1498.	2.9	14
325	Lanthanide-doped lanthanum hafnate nanoparticles as multicolor phosphors for warm white lighting and scintillators. Chemical Engineering Journal, 2020, 379, 122314.	6.6	99
326	Enhancement in the mobility of solution processable polymer based FET by incorporating graphene interlayer. Superlattices and Microstructures, 2020, 137, 106331.	1.4	8
327	Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Progress in Polymer Science, 2020, 100, 101181.	11.8	146
328	Molecular Engineering Approaches Towards Allâ€Organic White Light Emitting Materials. Chemistry - A European Journal, 2020, 26, 5557-5582.	1.7	89
329	Mechanistic Study on High Efficiency Deep Blue AlEâ€Based Organic Lightâ€Emitting Diodes by Magnetoâ€Electroluminescence. Advanced Functional Materials, 2020, 30, 1908704.	7.8	51
330	Tuning the Mechanical Properties of a Polymer Semiconductor by Modulating Hydrogen Bonding Interactions. Chemistry of Materials, 2020, 32, 5700-5714.	3.2	87
331	Solvatochromic and solid-state emissive azlactone-based AIEE-active organic dye: Synthesis, photophysical properties and color-conversion LED application. Journal of Molecular Liquids, 2020, 313, 113482.	2.3	6
332	White-Light Emission and Tunable Luminescence Colors of Polyimide Copolymers Based on FRET and Room-Temperature Phosphorescence. ACS Omega, 2020, 5, 14831-14841.	1.6	31

#	Article	IF	CITATIONS
333	Iridium-Catalyzed Direct C–H Amidation Producing Multicolor Fluorescent Molecules Emitting Blue-to-Red Light and White Light. Organic Letters, 2020, 22, 2935-2940.	2.4	12
334	Stimuli-Responsive Thermally Activated Delayed Fluorescence in Polymer Nanoparticles and Thin Films: Applications in Chemical Sensing and Imaging. Frontiers in Chemistry, 2020, 8, 229.	1.8	41
335	Solution-Processable, Crystalline π-Conjugated Two-Dimensional Polymers with High Charge Carrier Mobility. CheM, 2020, 6, 2035-2045.	5.8	44
336	Efficient white polymer light-emitting diodes (WPLEDs) based on covalent-grafting of [Zn2(MP)3(OAc)] into PVK. Chemical Science, 2020, 11, 2640-2646.	3.7	5
337	Aggregation-induced emission polymers for high performance PLEDs with low efficiency roll-off. Materials Chemistry Frontiers, 2020, 4, 1206-1211.	3.2	21
338	Dualâ€Guest Functionalized Zeolitic Imidazolate Frameworkâ€8 for 3D Printing White Lightâ€Emitting Composites. Advanced Optical Materials, 2020, 8, 1901912.	3.6	30
339	Diversified AIE and mechanochromic luminescence based on carbazole derivative decorated dicyanovinyl groups: effects of substitution sites and molecular packing. CrystEngComm, 2020, 22, 2166-2172.	1.3	15
340	Supramolecular Organic Frameworks with Controllable Shape and Aggregationâ€Induced Emission for Tunable Luminescent Materials through Aqueous Host–Guest Complexation. Advanced Optical Materials, 2020, 8, 1902154.	3.6	35
341	Synthesis and multicolor emission properties of polystyrene with difluoroboron avobenzone complexes at side chains. Dyes and Pigments, 2020, 177, 108283.	2.0	8
342	Highly Efficient and Colorâ€Stable Thermally Activated Delayed Fluorescence White Lightâ€Emitting Diodes Featured with Singleâ€Doped Single Emissive Layers. Advanced Materials, 2020, 32, e1906950.	11.1	104
343	Color-Tunable Thermally Activated Delayed Fluorescence in Oxadiazole-Based Acrylic Copolymers: Photophysical Properties and Applications in Ratiometric Oxygen Sensing. ACS Applied Materials & Interfaces, 2020, 12, 6525-6535.	4.0	52
344	Efficient Aggregation-Induced Delayed Fluorescence Luminogens for Solution-Processed OLEDs With Small Efficiency Roll-Off. Frontiers in Chemistry, 2020, 8, 193.	1.8	16
345	Engineering luminescent pectin-based hydrogel for highly efficient multiple sensing. International Journal of Biological Macromolecules, 2021, 166, 869-875.	3.6	12
346	Thermoresponsive multicolor-emissive materials based on solid lipid nanoparticles. Materials Horizons, 2021, 8, 3043-3054.	6.4	14
347	Solution-processed light-emitting devices. , 2021, , 623-647.		0
348	White-Light Emissive Materials Based on Supramolecular Approach. , 2021, , 409-443.		0
349	All-Solution-Processed Multilayered White Polymer Light-Emitting Diodes (WPLEDs) Based on Cross-Linked [Ir(4-vb-PBI) ₂ (acac)]. ACS Applied Materials & Interfaces, 2021, 13, 11096-11107.	4.0	4
350	Efficient Photoinduced Energy and Electron Transfers in a Tetraphenylethene-Based Octacationic Cage Through Host–Guest Complexation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16837-16845.	4.0	21

#	Article	IF	CITATIONS
351	Recent advances on π-conjugated polymers as active elements in high performance organic field-effect transistors. Frontiers of Physics, 2021, 16, 1.	2.4	41
352	Synthesis of Conjugated Copolymer Containing Spirobifluorene Skeleton by Acyclic Diene Metathesis Polymerization for Polymer Lightâ€Emitting Diode Applications. Bulletin of the Korean Chemical Society, 2021, 42, 929-933.	1.0	8
353	Chromaticity tunable realizable solution process single layer white organic lightâ€emitting diode. Color Research and Application, 2021, 46, 1245.	0.8	1
354	Simple one step synthesis of dual-emissive heteroatom doped carbon dots for acetone sensing in commercial products and Cr (VI) reduction. Chemical Engineering Journal, 2021, 414, 128830.	6.6	34
355	Investigation of the imidazole-derived moiety/spiro[fluorene-9,9′-xanthene] hybrid compounds for blue luminescent materials. Synthetic Metals, 2021, 277, 116771.	2.1	6
356	Organic composite materials: Understanding and manipulating excited states toward higher lightâ€emitting performance. Aggregate, 2021, 2, e103.	5.2	7
357	Organic conjugated polymers and polymer dots as photocatalysts for hydrogen production. Frontiers in Energy, 2021, 15, 667-677.	1.2	3
358	Schiff Base Zinc(II) Complexes as Promising Emitters for Blue Organic Light-Emitting Diodes. ACS Applied Electronic Materials, 2021, 3, 3436-3444.	2.0	34
359	Coreâ€Shell Fluorescent Polymeric Particles with Tunable White Light Emission Based on Aggregation Microenvironment Manipulation. Angewandte Chemie, 0, , .	1.6	1
360	Natural DNA assisted white light generation and stimuli responsive colour tuning. International Journal of Biological Macromolecules, 2021, 186, 695-701.	3.6	1
361	Unipolar electron transport polymer semiconductor based on fluorine- and nitrogen-substituted units for field-effect transistors. Functional Materials Letters, 2022, 15, .	0.7	0
362	Core–Shell Fluorescent Polymeric Particles with Tunable White Light Emission Based on Aggregation Microenvironment Manipulation. Angewandte Chemie - International Edition, 2021, 60, 25246-25251.	7.2	15
363	Metal grid technologies for flexible transparent conductors in large-area optoelectronics. Current Applied Physics, 2021, 31, 105-121.	1.1	15
364	White-light emission from the quadruple-stranded dinuclear Eu(<scp>iii</scp>) helicate decorated with pendent tetraphenylethylene (TPE). New Journal of Chemistry, 2021, 45, 7196-7203.	1.4	12
365	Singleâ€Molecular Whiteâ€Light Emitters and Their Potential WOLED Applications. Advanced Materials, 2020, 32, e1903269.	11.1	185
366	Single-component panchromatic white light generation, and tuneable excimer-like visible orange and NIR emission in a Dy quinolinolate complex. Journal of Materials Chemistry C, 2021, 9, 15641-15648.	2.7	7
367	All-Phosphorescent Single-Component White Polymers. Springer Theses, 2014, , 65-77.	0.0	0
368	Confinement effect of carbon nanotubes on the chain mobility of conjugated polymer poly(9,9-dioctylfluorenyl-2,7-diyl). Wuli Xuebao/Acta Physica Sinica, 2019, 68, 026402.	0.2	1

#	Article	IF	Citations
369	Engineering of interface exciplex system for highly efficient white organic light-emitting diodes based on single-emission-layer architecture. Organic Electronics, 2022, 100, 106382.	1.4	3
370	Electropolymerization of D-A-D type monomers consisting of thiophene and quionaxline moieties for electrochromic devices and supercapacitors. Journal of Solid State Chemistry, 2022, 307, 122739.	1.4	22
371	3D printing of metal–organic framework composite materials for clean energy and environmental applications. Journal of Materials Chemistry A, 2021, 9, 27252-27270.	5.2	29
373	High-efficiency hyperfluorescent white light-emitting diodes based on high-concentration-doped TADF sensitizer matrices <i>via</i> spatial and energy gap effects. Chemical Science, 2021, 13, 159-169.	3.7	16
374	Thermally activated delayed fluorescence in an optically accessed soft matter environment. Journal of Materials Chemistry C, 2022, 10, 4533-4545.	2.7	3
375	New white light-emitting halochromic stilbenes with remarkable quantum yields and aggregation-induced emission. Scientific Reports, 2022, 12, 2385.	1.6	4
376	Single organic molecular systems for white light emission and their classification with associated emission mechanism. Applied Materials Today, 2022, 27, 101407.	2.3	9
377	Nanotechnology-Assisted, Single-Chromophore-Based White-Light-Emitting Organic Materials with Bioimaging Properties. Langmuir, 2022, 38, 430-438.	1.6	10
378	Powerful Direct C–H Amidation Polymerization Affords Single-Fluorophore-Based White-Light-Emitting Polysulfonamides by Fine-Tuning Hydrogen Bonds. Journal of the American Chemical Society, 2022, 144, 1778-1785.	6.6	22
381	De novo design of single white-emitting polymers based on one chromophore with multi-excited states. Chemical Engineering Journal, 2022, 446, 137004.	6.6	10
382	Achieving Solutionâ€Processed Nonâ€Doped Singleâ€Emittingâ€Layer White Organic Lightâ€Emitting Diodes through Adjusting Pyreneâ€Based Polyaromatic Hydrocarbon. Chemistry - A European Journal, 0, , .	1.7	6
384	Dynamic Selfâ€Assembly of Photoâ€Reduced Perylene Diimide: Singleâ€Component White Light Emission from Organic Radicals. Advanced Optical Materials, 2022, 10, .	3.6	10
385	White Light-Emitting Polymers and Devices. , 2012, , 424-444.		0
386	Synthesis and Application of Fluorescent Polymer Micro―and Nanoparticles. Small, 2023, 19, .	5.2	9
387	Multicolor Fluorescent Leadâ€MOFs for White‣ightâ€Emitting and Anticounterfeiting Applications. Advanced Optical Materials, 2023, 11, .	3.6	6
388	Probing single-chain conformation and its impact on the optoelectronic properties of donor–accepter conjugated polymers. Journal of Materials Chemistry A, 2023, 11, 12928-12940.	5.2	4
389	Novel Pyrimidineâ€Based Iridium Complexes with Bulky Chargeâ€Carrier Groups as Dopants for Highly Efficient Green Polymer Lightâ€Emitting Diodes. Chemistry - A European Journal, 2023, 29, .	1.7	1
390	Intramolecularâ€Catalyzed Vitrimers with Whiteâ€Light Emission for Lightâ€Emitting Diode Encapsulation. Advanced Materials, 2023, 35, .	11.1	3

#	Article	IF	CITATIONS
395	Light-Emitting Diodes Based on Upconversion Nanoparticles. Progress in Optical Science and Photonics, 2023, , 275-303.	0.3	O
396	Polymer dots for photoelectrochemical bioanalysis. , 2023, , 43-69.		0
400	Carbon Nanoonion as an Emerging Material; Synthesis, Characterization, and Chemical Sensing Applications., 2024, , 1-31.		0