CO₂and compressive immobilization of C.

Lab on A Chip 9, 151-157 DOI: 10.1039/b807345g

Citation Report

#	Article	IF	CITATIONS
1	The future of quark matter at RHIC. Journal of Physics G: Nuclear and Particle Physics, 2007, 34, S543-S550.	1.4	4
2	A programmable microvalve-based microfluidic array for characterization of neurotoxin-induced responses of individual <i>C. elegans</i> . Biomicrofluidics, 2009, 3, 44114.	1.2	48
3	Effects of Thickness Deviation of Elastic Plates in Multi-Layered Resonance Systems on Frequency Spectra. Chinese Physics Letters, 2009, 26, 084301.	1.3	2
4	Microfluidics for the analysis of behavior, nerve regeneration, and neural cell biology in C. elegans. Current Opinion in Neurobiology, 2009, 19, 561-567.	2.0	114
5	Automated high-throughput cell microsurgery on-chip. Lab on A Chip, 2009, 9, 2764.	3.1	69
6	An automated microfluidic platform for calcium imaging of chemosensory neurons in Caenorhabditis elegans. Lab on A Chip, 2010, 10, 2758.	3.1	90
7	Microfluidic immobilization of physiologically active Caenorhabditis elegans. Nature Protocols, 2010, 5, 1888-1902.	5.5	63
8	Effective dynamics using conditional expectations. Nonlinearity, 2010, 23, 2131-2163.	0.6	74
9	THE ARCHITECTURE OF THE CASSINI DIVISION. Astronomical Journal, 2010, 139, 228-251.	1.9	52
10	Behavior of Caenorhabditis elegans in alternating electric field and its application to their localization and control. Applied Physics Letters, 2010, 96, 153702.	1.5	34
11	Latest Developments in Microfluidic Cell Biology and Analysis Systems. Analytical Chemistry, 2010, 82, 4848-4864.	3.2	194
12	Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans. Lab on A Chip, 2010, 10, 589-597.	3.1	219
13	Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms. Lab on A Chip, 2010, 10, 1509.	3.1	104
14	Droplet microfluidics for characterizing the neurotoxin-induced responses in individual Caenorhabditis elegans. Lab on A Chip, 2010, 10, 2855.	3.1	89
15	Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies. Lab on A Chip, 2010, 10, 1862.	3.1	138
16	Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18342-18347.	3.3	109
17	Worm chips: Microtools for C. elegans biology. Lab on A Chip, 2010, 10, 432-437.	3.1	94
18	Microfluidic Platform for the Study of Caenorhabditis elegans. Topics in Current Chemistry, 2011, 304, 323-338.	4.0	23

#	Article	IF	CITATIONS
19	Subcellular in vivo time-lapse imaging and optical manipulation of Caenorhabditis elegans in standard multiwell plates. Nature Communications, 2011, 2, 271.	5.8	28
20	Technologies for Micromanipulating, Imaging, and Phenotyping Small Invertebrates and Vertebrates. Annual Review of Biomedical Engineering, 2011, 13, 185-217.	5.7	64
21	lmaging <i>in vivo</i> Neuronal Transport in Genetic Model Organisms Using Microfluidic Devices. Traffic, 2011, 12, 372-385.	1.3	70
22	Agarose hydrogel microcompartments for imaging sleep- and wake-like behavior and nervous system development in Caenorhabditis elegans larvae. Journal of Neuroscience Methods, 2011, 201, 78-88.	1.3	59
23	Trapping and imaging of micronâ€sized embryos using dielectrophoresis. Electrophoresis, 2011, 32, 3129-3132.	1.3	22
25	Chemistry and the Worm: <i>Caenorhabditis elegans</i> as a Platform for Integrating Chemical and Biological Research. Angewandte Chemie - International Edition, 2011, 50, 4774-4807.	7.2	115
26	Microfluidic worm-chip for in vivo analysis of neuronal activity upon dynamic chemical stimulations. Analytica Chimica Acta, 2011, 701, 23-28.	2.6	34
27	Amplitude-modulated sinusoidal microchannels for observing adaptability in <i>C. elegans</i> locomotion. Biomicrofluidics, 2011, 5, 24112.	1.2	19
28	Unidirectional, electrotactic-response valve for <i>Caenorhabditis elegans</i> in microfluidic devices. Applied Physics Letters, 2011, 98, .	1.5	13
29	Final report of the key comparison APMP.QM-K9: APMP comparison on pH measurement of phosphate buffer. Metrologia, 2011, 48, 08012-08012.	0.6	1
30	Oscillatory and anti-oscillatory motifs in genetic regulatory networks. Chinese Physics B, 2012, 21, 060203.	0.7	4
31	Isotope effect on the stereodynamics for the collision reaction H+LiF(ν = 0, <i>j</i> = 0) → HF+Li. Chinese Physics B, 2012, 21, 073401.	0.7	10
32	Hybrid MEMS: Integrating inorganic structures into live organisms. , 2012, , 449-474.		0
33	Simple Microfluidic Devices for in vivo Imaging of C. elegans , Drosophila and Zebrafish. Journal of Visualized Experiments, 2012, , .	0.2	23
34	Liposomes. , 2012, , 1218-1223.		0
35	Electrical sorting of Caenorhabditis elegans. Lab on A Chip, 2012, 12, 1831.	3.1	72
36	Laser Scanning Confocal Microscopy. , 2012, , 1192-1192.		0
37	Low-Pressure Chemical Vapor Deposition (LPCVD). , 2012, , 1233-1233.		0

#	Article	IF	CITATIONS
38	Microfluidic Chips for In Vivo Imaging of Cellular Responses to Neural Injury in Drosophila Larvae. PLoS ONE, 2012, 7, e29869.	1.1	90
39	Analysis of Caenorhabditis elegans in microfluidic devices. Science China Chemistry, 2012, 55, 484-493.	4.2	8
40	Immobilization of the nematode caenorhabditis elegans with addressable light-induced heat knockdown (ALINK). Lab on A Chip, 2013, 13, 2980.	3.1	15
41	Microfluidic chip-based C. elegans microinjection system for investigating cell–cell communication in vivo. Biosensors and Bioelectronics, 2013, 50, 28-34.	5.3	44
42	Live imaging reveals active infiltration of mitotic zone by its stem cell niche. Integrative Biology (United Kingdom), 2013, 5, 976.	0.6	14
43	Development of an integrated microfluidic device for evaluating of in vivo chemo-sensing of intact Caenorhabditis elegans. Sensors and Actuators B: Chemical, 2013, 178, 343-349.	4.0	14
44	Exploring Living Multicellular Organisms, Organs, and Tissues Using Microfluidic Systems. Chemical Reviews, 2013, 113, 3214-3247.	23.0	65
45	Stress response of <i>Caenorhabditis elegans</i> induced by space crowding in a micro-column array chip. Integrative Biology (United Kingdom), 2013, 5, 728-737.	0.6	16
46	Automated Imaging and other developments in wholeâ€organism anthelmintic screening. Parasite Immunology, 2013, 35, 302-313.	0.7	34
47	Microfluidic tools for developmental studies of small model organisms –nematodes, fruit flies, and zebrafish. Biotechnology Journal, 2013, 8, 192-205.	1.8	55
48	Micro-electro-fluidic grids for nematodes: a lens-less, image-sensor-less approach for on-chip tracking of nematode locomotion. Lab on A Chip, 2013, 13, 650-661.	3.1	24
50	A microfluidic device for rapid screening of chemotaxis-defective Caenorhabditis elegans mutants. Biomedical Microdevices, 2013, 15, 211-220.	1.4	18
51	A microfluidic device for the continuous culture and analysis of Caenorhabditis elegans in a toxic aqueous environment. Journal of Micromechanics and Microengineering, 2013, 23, 085008.	1.5	10
52	Long-Term Imaging of Caenorhabditis elegans Using Nanoparticle-Mediated Immobilization. PLoS ONE, 2013, 8, e53419.	1.1	200
53	A continuous-flow C. elegans sorting system with integrated optical fiber detection and laminar flow switching. Lab on A Chip, 2014, 14, 4000-4006.	3.1	20
54	A perspective on optical developments in microfluidic platforms for <i>Caenorhabditis elegans</i> research. Biomicrofluidics, 2014, 8, 011301.	1.2	17
55	Microfluidic platform integrated with worm-counting setup for assessing manganese toxicity. Biomicrofluidics, 2014, 8, 054110.	1.2	22
56	StyletChip: a microfluidic device for recording host invasion behaviour and feeding of plant parasitic nematodes. Lab on A Chip, 2014, 14, 2447-2455.	3.1	13

#	Article	IF	CITATIONS
57	Neural Computation, Neural Devices, and Neural Prosthesis. , 2014, , .		7
58	Microfluidic laboratories for C. elegans enhance fundamental studies in biology. RSC Advances, 2014, 4, 4691-4709.	1.7	62
60	On-demand optical immobilization of Caenorhabditis elegans for high-resolution imaging and microinjection. Lab on A Chip, 2014, 14, 3498.	3.1	34
61	Investigation of nerve injury through microfluidic devices. Journal of the Royal Society Interface, 2014, 11, 20130676.	1.5	44
62	Animal microsurgery using microfluidics. Current Opinion in Biotechnology, 2014, 25, 24-29.	3.3	8
64	Local guiding of C. elegans inside micro-channel for injection operation. , 2015, , .		1
65	High-throughput, motility-based sorter for microswimmers such as C. elegans. Lab on A Chip, 2015, 15, 2790-2798.	3.1	25
66	Hydrogel-droplet microfluidic platform for high-resolution imaging and sorting of early larval Caenorhabditis elegans. Lab on A Chip, 2015, 15, 1424-1431.	3.1	61
67	A microfluidic device for automated, high-speed microinjection of Caenorhabditis elegans. , 2015, , .		1
68	A size threshold governs Caenorhabditis elegans developmental progression. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151283.	1.2	47
69	Microfluidic devices for imaging neurological response of Drosophila melanogaster larva to auditory stimulus. Lab on A Chip, 2015, 15, 1116-1122.	3.1	23
70	Microfluidic device for analysis of gas-evoked neuronal sensing in C. elegans. Sensors and Actuators B: Chemical, 2015, 209, 109-115.	4.0	18
71	On-chip immobilization of planarians for in vivo imaging. Scientific Reports, 2014, 4, 6388.	1.6	17
72	Advanced Microfluidic Assays for Caenorhabditis elegans. , 0, , .		5
74	Microfluidic Approaches for Manipulating, Imaging, and Screening C. elegans. Micromachines, 2016, 7, 123.	1.4	58
75	Microfluidic Devices in Advanced Caenorhabditis elegans Research. Molecules, 2016, 21, 1006.	1.7	25
76	Lattice Boltzmann Methods for Nanofluidics. , 2016, , 1771-1777.		0
77	Laser Tweezers Using Nanoapertures in Metal Films. , 2016, , 1753-1764.		0

#	Article	IF	CITATIONS
78	Ligand-Directed Gold-Phage Nanosystems. , 2016, , 1778-1782.		0
79	Laser-Reduced Graphene Oxide. , 2016, , 1764-1764.		0
80	Microfluidic Platforms for Quantitative Biology Studies in Model Organisms. , 2016, , 1-18.		3
81	Optics-Integrated Microfluidic Platforms for Biomolecular Analyses. Biophysical Journal, 2016, 110, 1684-1697.	0.2	30
82	Micro- and nano-technologies to probe the mechano-biology of the brain. Lab on A Chip, 2016, 16, 1962-1977.	3.1	20
84	Long-term time-lapse microscopy of C. elegans post-embryonic development. Nature Communications, 2016, 7, 12500.	5.8	69
85	Lab-on-chips for manipulation of small-scale organisms to facilitate imaging of neurons and organs. , 2016, 2016, 5749-5752.		1
86	Versatile size-dependent sorting of C. elegans nematodes and embryos using a tunable microfluidic filter structure. Lab on A Chip, 2016, 16, 574-585.	3.1	33
87	Single Differentiated Neurons from Pluripotent Embryonic Stem Cells: Motor Protein Modeling and Neurodegenerative Disease. Series in Bioengineering, 2016, , 383-414.	0.3	1
88	Air microjet system for non-contact force application and the actuation of micro-structures. Journal of Micromechanics and Microengineering, 2016, 26, 017001.	1.5	0
89	Continuous-flow C. elegans fluorescence expression analysis with real-time image processing through microfluidics. Biosensors and Bioelectronics, 2016, 77, 428-434.	5.3	18
90	High-throughput screening in the C. elegans nervous system. Molecular and Cellular Neurosciences, 2017, 80, 192-197.	1.0	20
91	C. elegans-on-a-chip for in situ and in vivo Ag nanoparticles' uptake and toxicity assay. Scientific Reports, 2017, 7, 40225.	1.6	38
92	Pneumatic stimulation of C. elegans mechanoreceptor neurons in a microfluidic trap. Lab on A Chip, 2017, 17, 1116-1127.	3.1	55
93	C. Elegans immobilization using deformable microfluidics for in vivo studies of early embryogenesis and intestinal microbiota. , 2017, , .		1
94	A microfluidic diode for sorting and immobilization of Caenorhabditis elegans. Biomedical Microdevices, 2017, 19, 38.	1.4	8
95	Long-Term High-Resolution Imaging of Developing C.Âelegans Larvae with Microfluidics. Developmental Cell, 2017, 40, 202-214.	3.1	75
96	Microfluidic immobilization and subcellular imaging of developing Caenorhabditis elegans. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	6

		CITATION REPORT		
#	Article		IF	CITATIONS
97	Microvalve-based microfluidic device for C. elegans manipulation. AIP Conference Proce	edings, 2017, , .	0.3	0
98	Rapid, reversible and addressable immobilization of Caenorhabditis elegans in Pluronic optoelectric device. Sensors and Actuators B: Chemical, 2017, 253, 376-383.	F-127 using an	4.0	5
99	Long-term <i>C. elegans</i> immobilization enables high resolution developmental studivivo. Lab on A Chip, 2018, 18, 1359-1368.	es <i>in</i>	3.1	30
100	Miniaturized Sensors and Actuators for Biological Studies on Small Model Organisms o Energy, Environment, and Sustainability, 2018, , 199-225.	^F Disease.	0.6	5
101	On-demand dielectrophoretic immobilization and high-resolution imaging of C. elegans microfluids. Sensors and Actuators B: Chemical, 2018, 259, 703-708.	in	4.0	14
102	Using a Microfluidics Device for Mechanical Stimulation and High Resolution Imaging o elegans. Journal of Visualized Experiments, 2018, , .	f C.	0.2	12
103	A microfluidic platform for lifelong high-resolution and high throughput imaging of subt phenotypes in <i>C. elegans</i> . Lab on A Chip, 2018, 18, 3090-3100.	:le aging	3.1	24
104	Rapid and gentle hydrogel encapsulation of living organisms enables long-term microsc multiple hours. Communications Biology, 2018, 1, 73.	opy over	2.0	46
105	Microfluidics for mechanobiology of model organisms. Methods in Cell Biology, 2018, 1	.46, 217-259.	0.5	13
106	Studying Parkinson's disease using Caenorhabditis elegans models in microfluidic d Biology (United Kingdom), 2019, 11, 186-207.	evices. Integrative	0.6	31
107	Applications of Microfluidic Systems in Biology and Medicine. Bioanalysis, 2019, , .		0.1	7
108	Worms on a Chip. Bioanalysis, 2019, , 151-196.		0.1	0
109	Microfluidics as an Emerging Precision Tool in Developmental Biology. Developmental C 293-311.	Cell, 2019, 48,	3.1	51
110	Microfluidic Technologies for High Throughput Screening Through Sorting and On-Chip C. elegans. Molecules, 2019, 24, 4292.	Culture of	1.7	26
111	Caenorhabditis elegans-on-a-chip: microfluidic platforms for high-resolution imaging an phenotyping. , 2020, , 363-390.	d		4
112	Microfluidic approaches for <i>Caenorhabditis elegans</i> research. Animal Cells and S 24, 311-320.	ystems, 2020,	0.8	10
113	Quantitative fluorescence imaging of mitochondria in body wall muscles of Caenorhabo under hyperglycemic conditions using a microfluidic chip. Integrative Biology (United K 12, 150-160.	litis elegans Ingdom), 2020,	0.6	6
114	Automated phenotyping and lifespan assessment of a C.Âelegans model of Parkinsonât Translational Medicine of Aging, 2020, 4, 38-44.	E™s disease.	0.6	7

#	Article	IF	CITATIONS
115	Rotatable microfluidic device for simultaneous study of bilateral chemosensory neurons in Caenorhabditis elegans. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	4
116	Neuroscience Research using Small Animals on a Chip: From Nematodes to Zebrafish Larvae. Biochip Journal, 2021, 15, 42-51.	2.5	5
117	Microswimmer Combing: Controlling Interfacial Dynamics for Openâ€Surface Multifunctional Screening of Small Animals. Advanced Healthcare Materials, 2021, 10, e2001887.	3.9	4
118	A polymer index-matched to water enables diverse applications in fluorescence microscopy. Lab on A Chip, 2021, 21, 1549-1562.	3.1	18
119	Microfluidics for Neuronal Imaging. , 2014, , 243-259.		1
120	Microfluidic Devices for Imaging Trafficking Events In Vivo Using Genetic Model Organisms. Methods in Molecular Biology, 2014, 1174, 375-396.	0.4	8
121	A novel on-chip immobilization strategy for imaging analysis of neuronal response to gas cues in C. elegans. Sensors and Actuators B: Chemical, 2017, 244, 1152-1159.	4.0	3
122	Characterization of microfluidic clamps for immobilizing and imaging of Drosophila melanogaster larva's central nervous system. Biomicrofluidics, 2017, 11, 034113.	1.2	13
123	NeuroChip: A Microfluidic Electrophysiological Device for Genetic and Chemical Biology Screening of Caenorhabditis elegans Adult and Larvae. PLoS ONE, 2013, 8, e64297.	1.1	36
124	ChIP and Chips: Introducing the WormPharm for correlative studies employing pharmacology and genome-wide analyses in C. elegans. Journal of Biological Methods, 2016, 3, e44.	1.0	8
125	Lab-on-a-Chip for Studies in C. elegans. , 2012, , 1181-1192.		0
126	Lab-on-a-Chip for Studies in C. elegans. , 2016, , 1719-1731.		0
128	Micro- and Nanotechnologies to Probe Brain Mechanobiology. Springer Theses, 2018, , 1-29.	0.0	0
130	Microfluidic Surgery in Single Cells and Multicellular Systems. Chemical Reviews, 2022, 122, 7097-7141.	23.0	11
131	Microfluidic acoustic valve for capturing locomotive microorganism without anesthesia. Sensors and Actuators A: Physical, 2022, 341, 113568.	2.0	6
133	Surface acoustic wave microfluidics for repetitive and reversible temporary immobilization of <i>C. elegans</i> . Lab on A Chip, 2022, 22, 4882-4893.	3.1	1
134	Microfluidic-Assisted <i>Caenorhabditis elegans</i> Sorting: Current Status and Future Prospects. Cyborg and Bionic Systems, 2023, 4, .	3.7	4
135	Acoustic streaming enabled moderate swimming exercise reduces neurodegeneration in <i>C. elegans</i> . Science Advances, 2023, 9, .	4.7	0

#	Article	IF	CITATIONS
136	Daphnia as a model organism to probe biological responses to nanomaterials—from individual to population effects via adverse outcome pathways. Frontiers in Toxicology, 0, 5, .	1.6	11
137	Single-Molecule Fluorescence Microscopy in Sensory Cilia of Living Caenorhabditis elegans. Methods in Molecular Biology, 2024, , 133-150.	0.4	Ο