Micropumps operated by swelling and shrinking of tem

Lab on A Chip 9, 613-618 DOI: 10.1039/b810256b

Citation Report

#	Article	IF	CITATIONS
1	Responsive hydrogel layers—from synthesis to applications. Colloid and Polymer Science, 2009, 287, 881-891.	2.1	123
2	Hydrogels for Actuators. Springer Series on Chemical Sensors and Biosensors, 2009, , 221-248.	0.5	27
3	Piezoresistive pH Microsensors Based on Stimuli-Sensitive Polyelectrolyte HydrogelsPiezoresistive pH-Mikrosensoren auf der Basis stimuli-sensitiver polyelektrolytischer Hydrogele. TM Technisches Messen, 2010, 77, .	0.7	17
4	Latest Developments in Micro Total Analysis Systems. Analytical Chemistry, 2010, 82, 4830-4847.	6.5	411
5	Actively-moving materials based on stimuli-responsive polymers. Journal of Materials Chemistry, 2010, 20, 3382.	6.7	83
6	Polymer dewetting via stimuli responsive structural relaxation—contact angle analysis. Chemical Communications, 2011, 47, 10356.	4.1	17
7	Triggering the volume phase transition of core–shell Au nanorod–microgel nanocomposites with light. Nanotechnology, 2011, 22, 245708.	2.6	44
8	Dynamic Hydrogels. , 2011, , 577-594.		1
9	Thermoresponsiveness of Integrated Ultraâ€Thin Silicon with Poly(<i>N</i> â€isopropylacrylamide) Hydrogels. Macromolecular Rapid Communications, 2011, 32, 820-824.	3.9	12
10	Magnetic active-valve micropump actuated by a rotating magnetic assembly. Sensors and Actuators B: Chemical, 2011, 154, 52-58.	7.8	48
11	Fabrication and testing of a MEMS platform for characterization of stimuli-sensitive hydrogels. Journal of Micromechanics and Microengineering, 2012, 22, 087001.	2.6	4
12	Excimer laser micropatterning of freestanding thermo-responsive hydrogel layers for cells-on-chip applications. Journal of Micromechanics and Microengineering, 2012, 22, 105033.	2.6	4
13	Hydrogel-Based Microfluidic Systems. Advances in Science and Technology, 0, , .	0.2	9
14	Photoâ€Responsive Polymeric Structures Based on Spiropyran. Macromolecular Materials and Engineering, 2012, 297, 1148-1159.	3.6	102
15	Stimuli-Responsive Polymer Systems. , 2012, , 377-413.		24
16	Development and fabrication of a novel photopatternable electric responsive Pluronic hydrogel for MEMS applications. Sensors and Actuators A: Physical, 2012, 186, 184-190.	4.1	19
17	Smart Microfluidics: The Role of Stimuli- Responsive Polymers in Microfluidic Devices. , 0, , .		4
18	Microfluidic chip with integrated microvalves based on temperature―and pHâ€responsive hydrogel thin films. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 839-845.	1.8	23

ARTICLE IF CITATIONS # Stimuli-responsive hydrogel patterns for smart microfluidics and microarrays. Analyst, The, 2013, 138, 3.5 65 19 6230. Diffusion and interaction in PEG-DA hydrogels. Biointerphases, 2013, 8, 36. 1.6 21 Chemical microsensors based on hydrogels with adjustable measurement range., 2013,,. 0 Linear electrochemical actuators with very large strains using carbon nanotube-redox gel 24 composites. Journal of Materials Chemistry A, 2013, 1, 3415. Mechanical Properties and UV Curing Behavior of $Poly(\langle i \rangle N \langle i \rangle \hat{a} \in Isopropylacrylamide)$ in 23 2.2 17 Phosphoniumâ€Based Ionic Liquids. Macromolecular Chemistry and Physics, 2013, 214, 787-796. Biomimetic Hydrogelâ€Based Actuating Systems. Advanced Functional Materials, 2013, 23, 4555-4570. Responsive hydrogels – structurally and dimensionally optimized smart frameworks for applications 25 38.1 351 in catalysis, micro-system technology and material science. Chemical Society Reviews, 2013, 42, 7391. Surface-Attached Polymeric Hydrogel Films., 2013, , 277-359. 26 Cyclical Electrical Stimulation of Hydrogel Microactuators Employing Parylene-N Coated Electrodes. 27 2.5 1 Journal of Microelectromechanical Systems, 2014, 23, 230-242. Fabrications and Applications of Stimulus-Responsive Polymer Films and Patterns on Surfaces: A 158 Review. Materials, 2014, 7, 805-875. Caterpillar locomotion-inspired valveless pneumatic micropump using a single teardrop-shaped 29 6.0 9 elastomeric membrane. Lab on A Chip, 2014, 14, 2240-2248. Stimulus-responsive polymers and other functional polymer surfaces as components in glass 6.0 microfluidic channels. Láb on A Chip, 2014, 14, 4159-4170. Lightâ€controllable polymeric material based on temperatureâ€sensitive hydrogels with incorporated $\mathbf{31}$ 1.8 15 graphene oxide. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1368-1374. Thermal Microactuator Based on Temperature-sensitive Hydrogel. Procedia Engineering, 2015, 120, 1.2 57-62. Inhomogeneous swelling behavior of temperature sensitive PNIPAM hydrogels in micro-valves: 33 3.5 36 analytical and numerical study. Smart Materials and Structures, 2015, 24, 045004. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels. Macromolecular Rapid Communications, 2015, 36, 1211-1217. 3.9 Highly Magneto-Responsive Elastomeric Films Created by a Two-Step Fabrication Process. ACS Applied 35 8.0 39 Materials & amp; Interfaces, 2015, 7, 19112-19118. Improved PNIPAAm-Hydrogel Photopatterning by Process Optimisation with Respect to UV Light 4.5 Sources and Oxygen Content. Gels, 2016, 2, 10.

# 37	ARTICLE Hydrogels as Actuators for Biological Applications. , 2016, , 149-187.	IF	CITATIONS
38	Polymer Gels as EAPs: How to Start Experimenting with Them. , 2016, , 1-27.		0
39	Harnessing Buckling to Design Architected Materials that Exhibit Effective Negative Swelling. Advanced Materials, 2016, 28, 6619-6624.	21.0	112
40	Smart material platforms for miniaturized devices: implications in disease models and diagnostics. Lab on A Chip, 2016, 16, 1978-1992.	6.0	26
41	Role of mechanical factors in applications of stimuli-responsive polymer gels – Status and prospects. Polymer, 2016, 101, 415-449.	3.8	33
42	Analytical and numerical analysis of swelling-induced large bending of thermally-activated hydrogel bilayers. International Journal of Solids and Structures, 2016, 99, 1-11.	2.7	41
43	Polymer Gels as EAPs: Applications. , 2016, , 83-99.		0
44	Polymer Gels as EAPs: How to Start Experimenting with Them. , 2016, , 101-127.		0
45	Smart hydrogels as storage elements with dispensing functionality in discontinuous microfluidic systems. Lab on A Chip, 2016, 16, 3977-3989.	6.0	19
46	Stimulus-active polymer actuators for next-generation microfluidic devices. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	71
47	Coupling behavior of the pH/temperature sensitive hydrogels for the inhomogeneous and homogeneous swelling. Smart Materials and Structures, 2016, 25, 085034.	3.5	32
48	Polymer Gels as EAPs: Applications. , 2016, , 1-17.		0
49	Electrochemical Pump Driven by Redox Reaction of Cu ²⁺ -Poly(acrylic acid) Gel. Journal of the Electrochemical Society, 2016, 163, E185-E190.	2.9	0
50	Inhomogeneous and homogeneous swelling behavior of temperature-sensitive poly-(N-isopropylacrylamide) hydrogels. Journal of Intelligent Material Systems and Structures, 2016, 27, 324-336.	2.5	47
51	Design, simulation and characterization of hydrogel-based thermal actuators. Sensors and Actuators B: Chemical, 2016, 236, 900-908.	7.8	21
52	Fast-responsive hydrogel as an injectable pump for rapid on-demand fluidic flow control. Biomicrofluidics, 2017, 11, 034107.	2.4	5
53	Coupling of Biomolecular Logic Gates with Electronic Transducers: From Single Enzyme Logic Gates to Sense/Act/Treat Chips. Electroanalysis, 2017, 29, 1840-1849.	2.9	21
54	Performance of Fast-Responsive, Porous Crosslinked Poly(N-Isopropylacrylamide) in a Piezoresistive Microsensor. , 2017, 1, 1-4.		13

"		IC.	Cizizione
Ŧ	ARTICLE	IF	CITATIONS
55	Active pore for sensor protection: A PNIPAM based micro valve in LTCC. , 2017, , .		0
56	Stimuli-Controlled Fluid Control and Microvehicle Movement in Microfluidic Channels. , 2017, , .		1
57	1.31 Dynamic Hydrogels. , 2017, , 705-724.		1
58	Micro 3D Printing of a Temperature-Responsive Hydrogel Using Projection Micro-Stereolithography. Scientific Reports, 2018, 8, 1963.	3.3	178
59	Microfluidic actuators based on temperature-responsive hydrogels. Microsystems and Nanoengineering, 2018, 4, .	7.0	65
60	Behavior of a smart one-way micro-valve considering fluid–structure interaction. Journal of Intelligent Material Systems and Structures, 2018, 29, 3960-3971.	2.5	16
61	Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves. Science Advances, 2018, 4, eaar8535.	10.3	159
62	Dual Droplet Functionality: Phototaxis and Photopolymerization. ACS Applied Materials & Interfaces, 2019, 11, 31484-31489.	8.0	6
63	Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Materials, 2019, 11, .	7.9	202
64	Indentation adhesion of hydrogels over a wide range of length and time scales. Extreme Mechanics Letters, 2019, 31, 100540.	4.1	20
66	Antifreezing Heat-Resistant Hollow Hydrogel Tubes. ACS Applied Materials & Interfaces, 2019, 11, 18746-18754.	8.0	32
67	A hydrogel-driven microfluidic suction pump with a high flow rate. Lab on A Chip, 2019, 19, 1790-1796.	6.0	15
68	Microfluidic device with a push–pull sequential solution-exchange function for affinity sensing. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	2
69	Smart reactors $\hat{a} \in$ Combining stimuli-responsive hydrogels and 3D printing. Chemical Engineering Journal, 2020, 387, 123413.	12.7	15
70	Smart Structures—Additive Manufacturing of Stimuli-Responsive Hydrogels for Adaptive Packings. Industrial & Engineering Chemistry Research, 2020, 59, 19458-19464.	3.7	5
71	Thermally Tunable Dynamic and Static Elastic Properties of Hydrogel Due to Volumetric Phase Transition. Polymers, 2020, 12, 1462.	4.5	25
72	A Stimuli-Responsive Hydrogel Array Fabrication Scheme for Large-Scale and Wearable Microfluidic Valving. Journal of Microelectromechanical Systems, 2020, 29, 1115-1117.	2.5	0
73	Solvent-induced deflection of polydimethylsiloxane plates: Effects of dimensions and solvent volume. European Physical Journal E, 2020, 43, 49.	1.6	3

#	Article	IF	CITATIONS
74	Responsive polymers for medical diagnostics. Journal of Materials Chemistry B, 2020, 8, 6217-6232.	5.8	10
75	4. Aufbau intelligenter und vernetzter Implantate. , 2020, , 197-294.		Ο
76	Thermo/photo dual-crosslinking chitosan-gelatin methacrylate hydrogel with controlled shrinking property for contraction fabrication. Carbohydrate Polymers, 2020, 236, 116067.	10.2	31
77	A self-powered insulin patch pump with a superabsorbent polymer as a biodegradable battery substitute. Journal of Materials Chemistry B, 2020, 8, 4210-4220.	5.8	4
78	Swelling Studies of Porous and Nonporous Semi-IPN Hydrogels for Sensor and Actuator Applications. Micromachines, 2020, 11, 425.	2.9	10
79	Stimuli-Controlled Fluid Control and Microvehicle Movement in Microfluidic Channels. , 2022, , 128-157.		0
80	Microfluidics and materials for smart water monitoring: A review. Analytica Chimica Acta, 2021, 1186, 338392.	5.4	30
81	Studies on porosity in poly(<i>N</i> -isopropylacrylamide) hydrogels for fast-responsive piezoresistive microsensors. Journal of Sensors and Sensor Systems, 2021, 10, 93-100.	0.9	5
82	A chemical micropump actuated by self-oscillating polymer gel. Sensors and Actuators B: Chemical, 2021, 337, 129769.	7.8	15
83	A review of peristaltic micropumps. Sensors and Actuators A: Physical, 2021, 326, 112602.	4.1	44
84	Thermally Tunable Acoustic Beam Splitter Based on Poly(vinyl alcohol) Poly(N-isopropylacrylamide) Hydrogel. Gels, 2021, 7, 140.	4.5	1
85	Artificial Muscles for Underwater Soft Robotic System. , 2021, , 71-97.		3
86	Study of swelling behavior of temperature sensitive hydrogels considering inextensibility of network. Scientia Iranica, 2018, .	0.4	2
87	Opto-Smart Systems in Microfluidics. Advances in Chemical and Materials Engineering Book Series, 2016, , 265-288.	0.3	2
88	Hydrogel Patterns in Microfluidic Devices by Do-It-Yourself UV-Photolithography Suitable for Very Large-Scale Integration. Micromachines, 2020, 11, 479.	2.9	16
89	Recent advances in the 3D printing of ionic electroactive polymers and core ionomeric materials. Polymer Chemistry, 2022, 13, 456-473.	3.9	14
90	Reversible Protein Capture and Release by Redox-Responsive Hydrogel in Microfluidics. Polymers, 2022, 14, 267.	4.5	5
91	Microfluidic Evaporation, Pervaporation, and Osmosis: From Passive Pumping to Solute Concentration. Chemical Reviews, 2022, 122, 6938-6985.	47.7	23

#	Article	IF	CITATIONS
92	Localized actuation of temperature responsive hydrogel-layers with a PCB-based micro-heater array. , 2022, , .		1
93	Transient swelling of cylindrical hydrogels under coupled extension-torsion: Analytical and 3D FEM solutions. Journal of Intelligent Material Systems and Structures, 2023, 34, 415-424.	2.5	2
94	Logic Circuits Based on Chemical Volume Phase Transition Transistors for Planar Microfluidics and Labâ€onâ€aâ€Chip Automation. Advanced Materials Technologies, 2022, 7, .	5.8	6
95	Fundamentals of Hydrogelâ€Based Valves and Chemofluidic Transistors for Labâ€onâ€aâ€Chip Technology: A Tutorial Review. Advanced Materials Technologies, 2023, 8, .	5.8	10
96	In situ integrated microrobots driven by artificial muscles built from biomolecular motors. Science Robotics, 2022, 7, .	17.6	17
97	Separation Methods in Analytical Chemistry. , 2019, , 223-300.		0
98	Fabrication of Chemofluidic Integrated Circuits by Multi-Material Printing. Micromachines, 2023, 14, 699.	2.9	0
99	Engineering an extremely high flow rate micropump and integrating with an inertial microfluidics for rapid and efficient blood plasma extraction from fingertip blood with lancets. Sensors and Actuators A: Physical, 2023, 358, 114430.	4.1	2
100	Droplet absorption and spreading into thin layers of polymer hydrogels. Journal of Fluid Mechanics, 2023, 974, .	3.4	0
101	Design, Simulation and Multi-Objective Optimization of a Micro-Scale Gearbox for a Novel Rotary Peristaltic Pump. Micromachines, 2023, 14, 2099.	2.9	0