Brassicaceae Tissues as Inhibitors of Nitrification in Soi

Journal of Agricultural and Food Chemistry 57, 7706-7711 DOI: 10.1021/jf901516h

Citation Report

#	Article	IF	CITATIONS
1	Odor Detection Thresholds and Enantiomeric Distributions of Several 4-Alkyl Substituted γ-Lactones in Australian Red Wine. Journal of Agricultural and Food Chemistry, 2009, 57, 2462-2467.	5.2	42
2	The Impact of Biofumigation and Chemical Fumigation Methods on the Structure and Function of the Soil Microbial Community. Microbial Ecology, 2011, 61, 201-213.	2.8	88
3	Climate change and multitrophic interactions in soil: the primacy of plants and functional domains. Global Change Biology, 2012, 18, 2111-2125.	9.5	51
4	Estimating belowground nitrogen inputs of pea and canola and their contribution to soil inorganic N pools using 15N labeling. Plant and Soil, 2013, 371, 67-80.	3.7	32
5	Impact of biochar field aging on laboratory greenhouse gas production potentials. GCB Bioenergy, 2013, 5, 165-176.	5.6	198
6	Quantification of the effects of various soil fumigation treatments on nitrogen mineralization and nitrification in laboratory incubation and field studies. Chemosphere, 2013, 90, 1210-1215.	8.2	38
7	Changes in available nitrogen and nematode abundance in response to Brassica seed meal amendment of orchard soil. Soil Biology and Biochemistry, 2013, 57, 22-29.	8.8	48
8	Nitrification dynamics in a soil after addition of different fumigants. Soil Science and Plant Nutrition, 2013, 59, 142-148.	1.9	17
9	Biofumigation using a wild Brassica oleracea accession with high glucosinolate content affects beneficial soil invertebrates. Plant and Soil, 2015, 394, 155-163.	3.7	10
10	Evaluation of the biocidal effects ofBrassicaseed meal onArmillaria mellea. Annals of Applied Biology, 2015, 167, 364-372.	2.5	4
11	Break crops and rotations for wheat. Crop and Pasture Science, 2015, 66, 523.	1.5	277
12	Suppression of soil nitrification by plants. Plant Science, 2015, 233, 155-164.	3.6	182
13	Effect of defatted oilseed meals applied as organic fertilizers on vegetable crop production and environmental impact. Industrial Crops and Products, 2015, 75, 54-64.	5.2	14
14	Brassicaceae cover crops reduce Aphanomyces pea root rot without suppressing genetic potential of microbial nitrogen cycling. Plant and Soil, 2015, 392, 227-238.	3.7	15
15	Nitrogen and carbon mineralization in soils amended with biofumigant or non-biofumigant plant materials. Industrial Crops and Products, 2015, 75, 65-72.	5.2	5
16	Production of Biomass Crops Using Biowastes on Lowâ€Fertility Soil: 2. Effect of Biowastes on Nitrogen Transformation Processes. Journal of Environmental Quality, 2016, 45, 1970-1978.	2.0	12
17	Nitrous oxide emission factors for urine from sheep and cattle fed forage rape (Brassica napus L.) or perennial ryegrass/white clover pasture (Lolium perenne L./ Trifolium repens). Agriculture, Ecosystems and Environment, 2016, 227, 11-23.	5.3	21
18	Development of Dryland Oilseed Production Systems in Northwestern Region of the USA. Bioenergy Research, 2016, 9, 412-429.	3.9	16

CITATION REPORT

#	Article	IF	CITATIONS
19	Improving Soil Fertility and Soil Functioning in Cover Cropped Agroecosystems with Symbiotic Microbes. , 2017, , 149-171.		5
20	Greenhouse gas emissions from excreta patches of grazing animals and their mitigation strategies. Earth-Science Reviews, 2017, 171, 44-57.	9.1	58
21	Do glucosinolate hydrolysis products reduce nitrous oxide emissions from urine affected soil?. Science of the Total Environment, 2017, 603-604, 370-380.	8.0	16
22	Enhanced Plant Rooting and Crop System Management for Improved N Use Efficiency. Advances in Agronomy, 2017, , 205-239.	5.2	56
23	Biological nitrification inhibition by weeds: wild radish, brome grass, wild oats and annual ryegrass decrease nitrification rates in their rhizospheres. Crop and Pasture Science, 2017, 68, 798.	1.5	18
24	Crop and microbial responses to the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in Mediterranean wheat-cropping systems. Soil Research, 2017, 55, 553.	1.1	10
25	Oilseed Rape Crop Residues: Decomposition, Properties and Allelopathic Effects. Sustainable Agriculture Reviews, 2018, , 169-205.	1.1	3
26	Sustainable Agriculture Reviews 32. Sustainable Agriculture Reviews, 2018, , .	1.1	0
27	Nitrogen Fertilization Reduces the Capacity of Soils to Take up Atmospheric Carbonyl Sulphide. Soil Systems, 2018, 2, 62.	2.6	6
28	Can Incorporating Brassica Tissues into Soil Reduce Nitrification Rates and Nitrous Oxide Emissions?. Journal of Environmental Quality, 2018, 47, 1436-1444.	2.0	2
29	Effect of crop and residue type on nitrous oxide emissions from rotations in the semi-arid Canadian prairies. Canadian Journal of Soil Science, 2018, 98, 508-518.	1.2	10
30	Crucifer-legume cover crop mixtures for biocontrol: Toward a new multi-service paradigm. Advances in Agronomy, 2019, , 55-139.	5.2	33
31	Anise, parsley and rocket as nematicidal soil amendments and their impact on non-target soil organisms. Applied Soil Ecology, 2019, 143, 17-25.	4.3	19
32	Beneficial Use of White and Indian Mustard Seed Meals to Enhance Plant Growth and Nutrient Uptake. , 2019, 2, 1-10.		5
33	Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiology Reviews, 2020, 44, 874-908.	8.6	73
34	Soil nitrification inhibition by urine of sheep consuming plantain (Plantago lanceolata). Biology and Fertility of Soils, 2022, 58, 265-276.	4.3	2
35	Modelled Quantification of Different Sources of Nitrogen Inefficiency in Semi-Arid Cropping Systems. Agronomy, 2021, 11, 1222.	3.0	2
36	Interactions between <i>Brassica</i> Biofumigants and Soil Microbiota: Causes and Impacts. Journal of Agricultural and Food Chemistry, 2021, 69, 11538-11553.	5.2	13

ARTICLE IF CITATIONS # Influence of chemical fumigation and biofumigation on soil nitrogen cycling processes and nitrifier and denitrifier abundance. Soil Biology and Biochemistry, 2021, 162, 108421. 37 8.8 9 <u>CHARAKTERYSTYKA WÅAÅšCIWOÅšCI PROZDRO</u>WOTNYCH GLUKOZYNOLANÓW. Zeszyty Problemowe PostÄ™pów Nauk Rolniczych, 2017, , 3-14. Efficacy of Different Forms of Green Manure Crops to Reduce Verticillium dahliae in Different Soils. 39 0.2 0 Global Journal of Agricultural Innovation Research & Development, 0, 8, 191-205. Chemical fumigation and biofumigation alter soil bacterial community diversity and composition. FEMS Microbiology Ecology, 2022, 98, . Potential of Nitrification Inhibition and Change of Soil Bacterial Community Structure by Biofumigation of <i>Brassica juncea</i> Green Manure in Succeeding Sweet Corn 41 0.4 0 Cultivation under Gray Lowland Soil Conditions. Japan Agricultural Research Quarterly, 2022, 56, 137-146. The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A review. Agronomy for Sustainable Development, 2022, 42, . 5.3 Could natural phytochemicals be used to reduce nitrogen excretion and excreta-derived N2O 43 5.3 0 emissions from ruminants?. Journal of Animal Science and Biotechnology, 2023, 14, .

CITATION REPORT