Reduction Kinetics of Graphene Oxide Determined by H and Temperature Programmed Desorption

Journal of Physical Chemistry C 113, 18480-18486 DOI: 10.1021/jp904396j

Citation Report

#	Article	IF	CITATIONS
1	From Plants to Birds: Higher Avian Predation Rates in Trees Responding to Insect Herbivory. PLoS ONE, 2008, 3, e2832.	1.1	128
2	Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010, 2, 1015-1024.	6.6	2,966
3	The functionalization of graphene using electron-beam generated plasmas. Applied Physics Letters, 2010, 96, .	1.5	106
4	Preparation and Evaluation of Graphite Oxide Reduced at 220 ŰC. Chemistry of Materials, 2010, 22, 5625-5629.	3.2	198
5	Solvent-Assisted Thermal Reduction of Graphite Oxide. Journal of Physical Chemistry C, 2010, 114, 14819-14825.	1.5	264
6	Formation of Graphene Features from Direct Laser-Induced Reduction of Graphite Oxide. Journal of Physical Chemistry Letters, 2010, 1, 2633-2636.	2.1	211
7	Kinetic Study of the Graphite Oxide Reduction: Combined Structural and Gravimetric Experiments under Isothermal and Nonisothermal Conditions. Journal of Physical Chemistry C, 2010, 114, 21645-21651.	1.5	52
8	First-Principle Study of Hydroxyl Functional Groups on Pristine, Defected Graphene, and Graphene Epoxide. Journal of Physical Chemistry C, 2010, 114, 21625-21630.	1.5	218
9	The Role of Intercalated Water in Multilayered Graphene Oxide. ACS Nano, 2010, 4, 5861-5868.	7.3	359
10	Thermodynamic and Kinetic Analysis of Lowtemperature Thermal Reduction of Graphene Oxide. Nano-Micro Letters, 2011, 3, 51-55.	14.4	86
11	<i>In Situ</i> Reduction of Graphene Oxide in Polymers. Macromolecules, 2011, 44, 9821-9829.	2.2	97
12	The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 19761-19781.	1.5	776
13	Electrical Conductivity, Chemistry, and Bonding Alternations under Graphene Oxide to Graphene Transition As Revealed by <i>In Situ</i> TEM. ACS Nano, 2011, 5, 4401-4406.	7.3	98
14	Photoreaction of Graphene Oxide Nanosheets in Water. Journal of Physical Chemistry C, 2011, 115, 19280-19286.	1.5	239
15	Compression and Aggregation-Resistant Particles of Crumpled Soft Sheets. ACS Nano, 2011, 5, 8943-8949.	7.3	482
16	Structural Breathing of Graphite Oxide Pressurized in Basic and Acidic Solutions Journal of Physical Chemistry Letters, 2011, 2, 309-313.	2.1	27
17	Synthesis and characterization of graphene paper with controllable properties via chemical reduction. Journal of Materials Chemistry, 2011, 21, 14631.	6.7	85
18	Partially oxidized graphene as a precursor to graphene. Journal of Materials Chemistry, 2011, 21, 11217.	6.7	76

#	Article	IF	CITATIONS
19	Revisiting the effects of organic solvents on the thermal reduction of graphite oxide. Thermochimica Acta, 2011, 526, 65-71.	1.2	10
20	Single Layer vs Bilayer Graphene: A Comparative Study of the Effects of Oxygen Plasma Treatment on Their Electronic and Optical Properties. Journal of Physical Chemistry C, 2011, 115, 16619-16624.	1.5	60
21	Hydration of Graphite Oxide in Electrolyte and Non-Electrolyte Solutions. Journal of Physical Chemistry C, 2011, 115, 24611-24614.	1.5	22
22	Dual Path Mechanism in the Thermal Reduction of Graphene Oxide. Journal of the American Chemical Society, 2011, 133, 17315-17321.	6.6	426
23	Graphite Oxide as a Dehydrative Polymerization Catalyst: A One-Step Synthesis of Carbon-Reinforced Poly(phenylene methylene) Composites. Macromolecules, 2011, 44, 7659-7667.	2.2	124
24	Highly Conductive One-Dimensional Manganese Oxide Wires by Coating with Graphene Oxides. Applied Physics Express, 2012, 5, 105001.	1.1	1
25	Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chemical Reviews, 2012, 112, 6027-6053.	23.0	3,024
26	A water-dielectric capacitor using hydrated graphene oxide film. Journal of Materials Chemistry, 2012, 22, 21085.	6.7	68
27	Chemical and microscopic analysis of graphene prepared by different reduction degrees of graphene oxide. Journal of Alloys and Compounds, 2012, 536, S532-S537.	2.8	74
28	Facile Method for the Preparation of Water Dispersible Graphene using Sulfonated Poly(ether–ether–ketone) and Its Application as Energy Storage Materials. Langmuir, 2012, 28, 9825-9833.	1.6	85
29	Temperature-dependent electrical property transition of graphene oxide paper. Nanotechnology, 2012, 23, 455705.	1.3	96
30	Surface Reactions and Defect Formation in Irradiated Graphene Devices. IEEE Transactions on Nuclear Science, 2012, 59, 3039-3044.	1.2	12
31	Microwave- and Nitronium Ion-Enabled Rapid and Direct Production of Highly Conductive Low-Oxygen Graphene. Journal of the American Chemical Society, 2012, 134, 5850-5856.	6.6	115
32	Grafting P3HT brushes on GO sheets: distinctive properties of the GO/P3HT composites due to different grafting approaches. Journal of Materials Chemistry, 2012, 22, 21583.	6.7	51
33	The effect of reduced graphene oxide addition on the superconductivity of MgB2. Journal of Materials Chemistry, 2012, 22, 13941.	6.7	43
34	Preparation of graphene supported nickel nanoparticles and their application to methanol electrooxidation in alkaline medium. New Journal of Chemistry, 2012, 36, 1108.	1.4	54
35	Room-temperature metastability of multilayer graphene oxide films. Nature Materials, 2012, 11, 544-549.	13.3	512
36	Graphene oxide and its reduction: modeling and experimental progress. RSC Advances, 2012, 2, 2643.	1.7	463

#	Article	IF	CITATIONS
37	Atomic Oxygen on Graphite: Chemical Characterization and Thermal Reduction. Journal of Physical Chemistry C, 2012, 116, 9900-9908.	1.5	145
38	Highly Conductive Few‣ayer Graphene/Al ₂ O ₃ Nanocomposites with Tunable Charge Carrier Type. Advanced Functional Materials, 2012, 22, 3882-3889.	7.8	145
39	Partially Reduced Graphite Oxide as an Electrode Material for Electrochemical Double‣ayer Capacitors. Chemistry - A European Journal, 2012, 18, 9125-9136.	1.7	52
40	Contrast in Electronâ€Transfer Mediation between Graphene Oxide and Reduced Graphene Oxide. ChemPhysChem, 2012, 13, 2956-2963.	1.0	3
41	In situ reduction of graphene oxide dispersed in a polymer matrix. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	29
42	A molecular understanding of the gas-phase reduction and doping of graphene oxide. Nano Research, 2012, 5, 361-368.	5.8	16
43	Solution-based production of graphene nano-platelets containing extremely low amounts of heteroatoms. Solid State Sciences, 2013, 25, 1-5.	1.5	9
44	Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals. Carbon, 2013, 52, 122-127.	5.4	30
45	Highly Hydrogenated Graphene through Microwave Exfoliation of Graphite Oxide in Hydrogen Plasma: Towards Electrochemical Applications. Chemistry - A European Journal, 2013, 19, 15583-15592.	1.7	48
46	Origin of the Chemical and Kinetic Stability of Graphene Oxide. Scientific Reports, 2013, 3, 2484.	1.6	163
47	The effect of heating rate on porosity production during the low temperature reduction of graphite oxide. Carbon, 2013, 53, 73-80.	5.4	59
48	Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale, 2013, 5, 5426.	2.8	270
49	Reduction of Suspended Graphene Oxide Single Sheet Nanopaper: The Effect of Crumpling. Journal of Physical Chemistry C, 2013, 117, 3185-3191.	1.5	28
50	Complex organic molecules are released during thermal reduction of graphite oxides. Physical Chemistry Chemical Physics, 2013, 15, 9257.	1.3	32
51	Capsule-embedded reduced graphene oxide: synthesis, mechanism and electrical properties. Journal of Materials Chemistry C, 2013, 1, 958-966.	2.7	20
52	Fabrication of Graphite/PTFE Based Electrodes for Proton Exchange Membrane Fuel Cell. SAE International Journal of Materials and Manufacturing, 2014, 8, 91-97.	0.3	1
53	Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	140
54	Chemical bonding and stability of multilayer graphene oxide layers. , 2014, , .		0

#	Article	IF	CITATIONS
55	Enhancement of the mechanical properties of graphene–copper composites with graphene–nickel hybrids. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 599, 247-254.	2.6	241
56	Graphene Materials and Their Use in Dye-Sensitized Solar Cells. Chemical Reviews, 2014, 114, 6323-6348.	23.0	378
57	TiO2/graphene nanocomposites from the direct reduction of graphene oxide by metal evaporation. Carbon, 2014, 68, 319-329.	5.4	30
58	Graphitic Petal Microâ€Supercapacitor Electrodes for Ultraâ€High Power Density. Energy Technology, 2014, 2, 897-905.	1.8	45
59	Reduced graphene oxide and graphene composite materials for improved gas sensing at low temperature. Faraday Discussions, 2014, 173, 403-414.	1.6	33
60	Fluorescence from graphene oxide and the influence of ionic, ï€â€"ï€ interactions and heterointerfaces: electron or energy transfer dynamics. Physical Chemistry Chemical Physics, 2014, 16, 21183-21203.	1.3	38
61	Microwave-assisted silylation of graphite oxide and iron(III) porphyrin intercalation. Polyhedron, 2014, 81, 475-484.	1.0	15
62	Characterization of a graphene oxide membrane fuel cell. Journal of Power Sources, 2014, 272, 239-247.	4.0	93
63	Facile Synthesis of Graphite-Reduced Graphite Oxide Core–Sheath Fiber via Direct Exfoliation of Carbon Fiber for Supercapacitor Application. ACS Applied Materials & Interfaces, 2014, 6, 9496-9502.	4.0	30
64	Ultrasensitive Chemical Sensing through Facile Tuning Defects and Functional Groups in Reduced Graphene Oxide. Analytical Chemistry, 2014, 86, 7516-7522.	3.2	80
65	A Review of Grapheneâ€Based Electrochemical Microsupercapacitors. Electroanalysis, 2014, 26, 30-51.	1.5	317
66	<i>In situ</i> thermal reduction of graphene oxide in a styrene-ethylene/butylene-styrene triblock copolymer via melt blending. Polymer International, 2014, 63, 93-99.	1.6	41
67	Laser assisted reduction of printed GO films and traces. , 2014, , .		1
68	Flash Converted Graphene for Ultraâ€High Power Supercapacitors. Advanced Energy Materials, 2015, 5, 1500786.	10.2	80
69	Inâ€Situ Carbon Doping of TiO ₂ Nanotubes Via Anodization in Graphene Oxide Quantum Dot Containing Electrolyte and Carburization to TiO <i>_x</i> C <i>_y</i> Nanotubes. Advanced Materials Interfaces, 2015, 2, 1400462.	1.9	22
70	Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets. Chemical Science, 2015, 6, 3952-3964.	3.7	116
71	Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene. Materials Research Bulletin, 2015, 70, 651-657.	2.7	72
72	Electron-stimulated reduction of graphite oxide. JETP Letters, 2015, 102, 443-447.	0.4	2

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
73	Preparation of Graphene Nano-Layer by Chemical Graphitization of Graphite Oxide from Exfoliation and Preliminary Reduction. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 742-749.	1.0	22
74	Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chemical Communications, 2015, 51, 2544-2546.	2.2	297
75	The influence of dehydration on the interfacial bonding, microstructure and mechanical properties of poly(vinyl alcohol)/graphene oxide nanocomposites. Carbon, 2015, 94, 845-855.	5.4	22
76	Combined Effects of Functional Groups, Lattice Defects, and Edges in the Infrared Spectra of Graphene Oxide. Journal of Physical Chemistry C, 2015, 119, 18167-18176.	1.5	134
77	Non-Contact Local Conductance Mapping of Individual Graphene Oxide Sheets during the Reduction Process. Journal of Physical Chemistry Letters, 2015, 6, 2629-2635.	2.1	7
78	Reduced graphene oxide synthesis by high energy ball milling. Materials Chemistry and Physics, 2015, 161, 123-129.	2.0	34
79	Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities. Nano Energy, 2015, 16, 470-478.	8.2	151
80	Reducing and multiple-element doping of graphene oxide using active screen plasma treatments. Carbon, 2015, 95, 338-346.	5.4	24
81	Graphite mediated reduction of graphene oxide monolayer sheets. Carbon, 2015, 95, 843-851.	5.4	16
82	Temperature influence on the synthesis of pristine graphene oxide and graphite oxide. Materials Chemistry and Physics, 2015, 164, 71-77.	2.0	32
83	Polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 3757-3767.	5.2	72
84	Formation energy of graphene oxide structures: A molecular dynamics study on distortion and thermal effects. Carbon, 2015, 84, 365-374.	5.4	24
85	From graphene oxide to pristine graphene: revealing the inner workings of the full structural restoration. Nanoscale, 2015, 7, 2374-2390.	2.8	95
86	Light and Atmosphere Affect the Quasiâ€equilibrium States of Graphite Oxide and Graphene Oxide Powders. Small, 2015, 11, 1266-1272.	5.2	34
87	Accelerated Thermal Decomposition of Graphene Oxide Films in Air via <i>in Situ</i> X-ray Diffraction Analysis. Journal of Physical Chemistry C, 2016, 120, 14984-14990.	1.5	48
88	Enhancing Toughness in Boron Carbide with Reduced Graphene Oxide. Journal of the American Ceramic Society, 2016, 99, 257-264.	1.9	41
89	Time-of-flight secondary ion mass spectrometry as a tool for evaluating the plasma-induced hydrogenation of graphene. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	4
90	Recent Advances in Laser Utilization in the Chemical Modification of Graphene Oxide and Its Applications. Advanced Optical Materials, 2016, 4, 37-65.	3.6	140

#	Article	IF	CITATIONS
91	Transformation of Cellulose into Nonionic Surfactants Using a Oneâ€Pot Catalytic Process. ChemSusChem, 2016, 9, 3492-3502.	3.6	18
92	Continuous and ultrathin platinum films on graphene using atomic layer deposition: a combined computational and experimental study. Nanoscale, 2016, 8, 19829-19845.	2.8	39
93	Analysis of Electrochemical Reduction Process of Graphene Oxide and its Electrochemical Behavior. Electroanalysis, 2016, 28, 1377-1382.	1.5	41
94	Mechanisms of graphene fabrication through plasma-induced layer-by-layer thinning. Carbon, 2016, 105, 496-509.	5.4	27
95	Thermochemistry and kinetics of graphite oxide exothermic decomposition for safety in large-scale storage and processing. Carbon, 2016, 96, 20-28.	5.4	84
96	Electrical and electrochemical properties of graphene modulated through surface functionalization. RSC Advances, 2016, 6, 27404-27415.	1.7	22
97	Intrinsic Catalytic Activity of Graphene Defects for the Co ^{II/III} (bpy) ₃ Dye-Sensitized Solar Cell Redox Mediator. ACS Applied Materials & Interfaces, 2016, 8, 9134-9141.	4.0	12
98	Understanding Hydrothermally Reduced Graphene Oxide Hydrogels: From Reaction Products to Hydrogel Properties. Chemistry of Materials, 2016, 28, 1756-1768.	3.2	129
99	Driving Surface Chemistry at the Nanometer Scale Using Localized Heat and Stress. Nano Letters, 2017, 17, 2111-2117.	4.5	35
100	Tuning the electrical conductivity of exfoliated graphite nanosheets nanofluids by surface functionalization. Soft Matter, 2017, 13, 3395-3403.	1.2	5
101	Formation of homogeneous nanocomposite films at ambient temperature via miniemulsion polymerization using graphene oxide as surfactant. Journal of Polymer Science Part A, 2017, 55, 2289-2297.	2.5	18
102	Healing of reduced graphene oxide with methaneÂ+ hydrogen plasma. Carbon, 2017, 120, 274-280.	5.4	43
103	Controllable SERS performance for the flexible paper-like films of reduced graphene oxide. Applied Surface Science, 2017, 419, 373-381.	3.1	40
104	The synthesis of highly corrugated graphene and its polyaniline composite for supercapacitors. New Journal of Chemistry, 2017, 41, 4629-4636.	1.4	8
105	Higher oxidation level in graphene oxide. Optik, 2017, 143, 115-124.	1.4	114
106	A robust design of Ru quantum dot/N-doped holey graphene for efficient Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 619-631.	5.2	55
107	Reduced Graphene Oxide Supported Nickel–Manganese–Cobalt Spinel Ternary Oxide Nanocomposites and Their Chemically Converted Sulfide Nanocomposites as Efficient Electrocatalysts for Alkaline Water Splitting. ACS Catalysis, 2017, 7, 819-832.	5.5	101
108	Fluorescent Graphene Quantum Dots for Bioimaging. Frontiers in Nanobiomedical Research, 2017, , 97-113.	0.1	0

ARTICLE IF CITATIONS # Physical properties of nanometer graphene oxide films partially and fully reduced by annealing in 109 1.1 15 ultra-high vacuum. Journal of Applied Physics, 2017, 122, . Reduced graphene oxide preparation and its applications in solution-processed 5.4 write-once-read-many-times graphene-based memory device. Carbon, 2017, 124, 547-554. Chemically Tunable Properties of Graphene Covered Simultaneously with Hydroxyl and Epoxy Groups. 111 1.5 6 Journal of Physical Chemistry C, 2017, 121, 27603-27611. A super flexible and custom-shaped graphene heater. Nanoscale, 2017, 9, 14357-14363. Low-temperature thermal reduction of graphene oxide: <i>In situ</i> correlative structural, thermal 113 1.5 42 desorption, and electrical transport measurements. Applied Physics Letters, 2018, 112, . Graphene oxide nanosheets synthesized by ultrasound: Experiment versus MD simulation. Applied 3.1 Surface Science, 2018, 451, 112-120. Enhanced electrochemical response of carbon quantum dot modified electrodes. Talanta, 2018, 178, 115 2.9 55 679-685. The role of RGO in TiO2–RGO composites for the transesterification of dimethyl carbonate with 1.3 10 phenol to diphenyl carbonate. Research on Chemical Intermediates, 2018, 44, 799-812. Physicochemical characterisation of reduced graphene oxide for conductive thin films. RSC Advances, 117 1.7 14 2018, 8, 37540-37549. 118 Explosive Reduction of Graphite Oxide. Russian Journal of Physical Chemistry B, 2018, 12, 860-868. 0.2 Kinetics of the defunctionalization of oxidized few-layer graphene nanoflakes. Physical Chemistry 119 1.3 23 Chemical Physics, 2018, 20, 24117-24122. Printed Graphene Derivative Circuits as Passive Electrical Filters. Nanomaterials, 2018, 8, 123. Low-Temperature Reduction of Graphene Oxide: Electrical Conductance and Scanning Kelvin Probe 121 3.1 63 Force Microscopy. Nanoscale Research Letters, 2018, 13, 139. Localized electronic structures of graphene oxide studied using scanning tunneling microscopy and spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 17977-17982. 1.3 Creation of individual few-layer graphene incorporated in an aluminum matrix. Composites Part A: 123 3.8 76 Applied Science and Manufacturing, 2018, 112, 168-177. Graphene-Based Nanomaterials: From Production to Integration With Modern Tools in Neuroscience. 124 1.2 Frontiers in Systems Neuroscience, 2019, 13, 26. Electrical Measurements of Thermally Reduced Graphene Oxide Powders under Pressure. 125 1.9 38 Nanomaterials, 2019, 9, 1387. Designing an All-Carbon Membrane for Water Desalination. Physical Review Applied, 2019, 12, . 1.5

#	Article	IF	CITATIONS
127	New approach for biological synthesis of reduced graphene oxide. Biochemical Engineering Journal, 2019, 151, 107331.	1.8	19
128	Synergetic Effects of Silver Nanowires and Graphene Oxide on Thermal Conductivity of Epoxy Composites. Nanomaterials, 2019, 9, 1264.	1.9	35
129	Room-temperature-operated fast and reversible vertical-heterostructure-diode gas sensor composed of reduced graphene oxide and AlGaN/GaN. Sensors and Actuators B: Chemical, 2019, 296, 126684.	4.0	38
130	Insights Into Graphene-Based Materials as Counter Electrodes for Dye-Sensitized Solar Cells. , 2019, , 341-396.		2
131	Thermal Reduction of Graphene Oxide Mitigates Its In Vivo Genotoxicity Toward Xenopus laevis Tadpoles. Nanomaterials, 2019, 9, 584.	1.9	28
132	The Role of the GO Synthesis Process in Regulation of Non-linear Optic Properties. Jom, 2019, 71, 1634-1642.	0.9	3
133	Electron reduction for the preparation of rGO with high electrochemical activity. Catalysis Today, 2019, 337, 63-68.	2.2	22
134	Graphene nanosheetsâ€Inconel 718Ânanocomposites fabricated by spark plasma sintering of inâ€situ grown vertically standing graphene nanosheetsâ€Inconel 718 powders. Micro and Nano Letters, 2019, 14, 613-617.	0.6	3
135	Surface roughness regulation of reduced-graphene oxide/iodine – Based electrodes and their application in polymer solar cells. Journal of Colloid and Interface Science, 2019, 540, 272-284.	5.0	16
136	Surface chemistry of nanocarbon: Characterization strategies from the viewpoint of catalysis and energy conversion. Carbon, 2019, 143, 915-936.	5.4	61
137	Efficient oxidation and rational reduction of long carbon nanotubes for multifunctional superhydrophobic surfaces. Carbon, 2020, 157, 649-655.	5.4	12
138	Water-processable, sprayable LiFePO4/graphene hybrid cathodes for high-power lithium ion batteries. Journal of Industrial and Engineering Chemistry, 2020, 84, 72-81.	2.9	22
139	Design of high-performance Al4C3/Al matrix composites for electric conductor. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 798, 140331.	2.6	15
140	Liquid Flow through Defective Layered Membranes: A Phenomenological Description. Physical Review Applied, 2020, 14, .	1.5	3
141	3D Graphene Materials: From Understanding to Design and Synthesis Control. Chemical Reviews, 2020, 120, 10336-10453.	23.0	319
142	Graphene Oxide-Based Nanohybrids as Pesticide Biosensors: Latest Developments. , 0, , .		1
143	MTT assay dataset of polyethylenimine coated graphenoxide nanosheets on breast cancer cell lines (MCF7, MDA-MB-231, MDA-MB-468). Human Antibodies, 2020, 28, 197-202.	0.6	3
144	Interfacial microenvironment for lipase immobilization: Regulating the heterogeneity of graphene oxide. Chemical Engineering Journal, 2020, 394, 125038.	6.6	28

#	ARTICLE	IF	CITATIONS
145	Structure and Property Evolution of Graphene Oxide Sheets during Low-Temperature Reduction on a Solid Substrate. Journal of Physical Chemistry C, 2020, 124, 14371-14379.	1.5	5
146	Investigation of biphasic calcium phosphate (BCp)/polyvinylpyrrolidone (PVp) /graphene oxide (GO) composite for biomedical implants. Ceramics International, 2020, 46, 24413-24423.	2.3	13
147	Controlled oxygen functional groups on reduced graphene using rate of temperature for advanced sorption process. Journal of Environmental Chemical Engineering, 2020, 8, 103749.	3.3	21
148	Microwave exfoliation of organic-intercalated fluorographites. Chemical Communications, 2020, 56, 1895-1898.	2.2	4
149	Thermal analysis of carbon nanomaterials: advantages and problems of interpretation. Journal of Thermal Analysis and Calorimetry, 2020, 142, 349-370.	2.0	64
150	Tuning the Physicochemical Structure of Graphene Oxide by Thermal Reduction Temperature for Improved Stabilization Ability toward Polymer Degradation. Journal of Physical Chemistry C, 2020, 124, 8999-9008.	1.5	9
151	Controlled graphite surface functionalization using contact and remote photocatalytic oxidation. Carbon, 2021, 172, 637-646.	5.4	9
152	Strategies for reduction of graphene oxide – A comprehensive review. Chemical Engineering Journal, 2021, 405, 127018.	6.6	252
153	Complex electrochemical study of reduced graphene oxide/Pt produced by Nd:YAG pulsed laser reduction as photo-anode in polymer solar cells. Journal of Electroanalytical Chemistry, 2021, 880, 114927.	1.9	8
154	Mild temperature-gas separation performance of graphene oxide membranes for extended period: micropore to meso- and macropore readjustments and the fate of membranes under the influence of dynamic graphene oxide changes. Chemical Engineering Journal Advances, 2021, 5, 100066.	2.4	3
155	Kinetics of the thermal reduction process in graphene oxide thin films from in-situ transport measurements. Materials Research Express, 2021, 8, 015601.	0.8	2
156	Thermal reduction of graphite oxide in the presence of nitrogen-containing dyes. Carbon Letters, 2021, 31, 1097-1110.	3.3	5
157	Effect of potassium permanganate on morphological, structural and electro-optical properties of graphene oxide thin films. Arabian Journal of Chemistry, 2021, 14, 102953.	2.3	36
158	The Structure–Properties–Cytotoxicity Interplay: A Crucial Pathway to Determining Graphene Oxide Biocompatibility. International Journal of Molecular Sciences, 2021, 22, 5401.	1.8	11
159	Thermal and electrical properties enhancement of a nanocomposite of industrial silicone rubber filled with reduced graphene oxide. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 221-231.	1.0	5
160	Modeling of Laser Assisted Thermal Reduction of Graphene Oxide. , 2021, , .		Ο
161	Effect of graphene oxide flakes size and number of layers on photocatalytic hydrogen production. Scientific Reports, 2021, 11, 15969.	1.6	9
162	Thermal reduction of graphene oxide in the presence of carbon suboxide. Journal of Solid State Chemistry, 2021, 301, 122365.	1.4	5

#	Article	IF	CITATIONS
163	Investigation of the in-situ solvothermal reduction of multi-layered Graphene oxide in epoxy coating by acetonitrile on improving the hydrophobicity and corrosion resistance. Progress in Organic Coatings, 2021, 159, 106432.	1.9	13
164	The impact of graphene oxide sheet lateral dimensions on their pharmacokinetic and tissue distribution profiles in mice. Journal of Controlled Release, 2021, 338, 330-340.	4.8	19
165	Synthesis, Characterization and Models of Graphene Oxide. SpringerBriefs in Applied Sciences and Technology, 2017, , 5-21.	0.2	26
166	Fabrication of poly(vinyl alcohol)–graphene oxide–polypyrrole composite hydrogel for elastic supercapacitors. Journal of Materials Science, 2020, 55, 11779-11791.	1.7	36
167	Thermodynamic and Kinetic Analysis of Lowtemperature Thermal Reduction of Graphene Oxide. , 2011, 3, 51.		1
168	Phenomenological description of the thermal reduction kinetics in graphene oxide films. Materials Chemistry and Physics, 2022, 277, 125477.	2.0	7
169	Electrical conductivity studies and correlated barrier hopping transport in Europium-doped graphene oxide nanocomposites. New Journal of Chemistry, 2021, 46, 352-358.	1.4	1
170	Assessing the functional groups in activated carbons through a multi-technique approach. Catalysis Science and Technology, 2022, 12, 1271-1288.	2.1	7
171	Electrochemical reduction of thin graphene-oxide films in aqueous solutions – Restoration of conductivity. Electrochimica Acta, 2022, 410, 140046.	2.6	10
172	Effect of processing on the stability and electrical properties of pressureless sintered graphene oxide–alumina composites. Ceramics International, 2022, 48, 15839-15847.	2.3	2
173	An electrochemical route to holey graphene nanosheets for charge storage applications. Carbon, 2022, 195, 57-68.	5.4	6
174	Effect of long-term ageing on graphene oxide: structure and thermal decomposition. Royal Society Open Science, 2021, 8, 202309.	1.1	15
175	Controllable <scp>selfâ€propagating</scp> reduction of graphene oxide films for <scp>energyâ€efficient</scp> fabrication. International Journal of Energy Research, 2022, 46, 6876-6888.	2.2	5
176	Reactive Spray Drying as a One-Step Synthesis Approach towards Si/rGO Anode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 120545.	1.3	5
177	Current progression in graphene-based membranes for low temperature fuel cells. International Journal of Hydrogen Energy, 2024, 52, 800-842.	3.8	13
178	Unveiling deoxygenation thermokinetics for controlling electrical transport and water removal from freestanding graphene oxide paper: Differential scanning calorimetry and thermomechanical analyzer study. Diamond and Related Materials, 2022, 126, 109081.	1.8	1
179	Graphene-Based Nanomaterial for Supercapacitor Application. Advances in Material Research and Technology, 2022, , 221-244.	0.3	8
181	Laser Photoreduction of Graphene Aerogel Microfibers: Dynamic Electrical and Thermal Behaviors. ChemPhysChem, 2022, 23, .	1.0	9

#	ARTICLE	IF	CITATIONS
182	First-principles investigation of interaction between the atomic oxygen species and carbon nanostructures. Carbon Trends, 2022, 9, 100201.	1.4	4
183	Alcohol addition improves the liquid-phase plasma process for "Green―reduction of graphene oxide. Vacuum, 2022, 205, 111373.	1.6	3
184	Synthesis and application of new core-shell structure via Pickering emulsion polymerization stabilized by graphene oxide. Composites Part B: Engineering, 2022, 247, 110285.	5.9	12
185	Rapid preparation of CuO composite graphene for portable electrochemical sensing of sulfites based on laser etching technique. Microchemical Journal, 2022, 183, 108096.	2.3	2
186	Superporous nanocarbon materials upcycled from polyethylene terephthalate waste for scalable energy storage. Journal of Energy Storage, 2023, 58, 106329.	3.9	1
187	Synthesis techniques and advances in sensing applications of reduced graphene oxide (rGO) Composites: A review. Composites Part A: Applied Science and Manufacturing, 2023, 165, 107373.	3.8	32
188	Molecular-level uniform graphene/polyaniline composite film for flexible supercapacitors with high-areal capacitance. Nanotechnology, 2023, 34, 175401.	1.3	2
189	Graphene Utilization for Efficient Energy Storage and Potential Applications: Challenges and Future Implementations. Energies, 2023, 16, 2927.	1.6	5
190	Shedding light on the mechanism of graphene oxide thermal decomposition: A kinetic study using isoconversional method and artificial neural network. Thermochimica Acta, 2023, 721, 179454.	1.2	1
191	State-of-the-Art Graphene Synthesis Methods and Environmental Concerns. Applied and Environmental Soil Science, 2023, 2023, 1-23.	0.8	3
192	Subnanometric Stacking of Two-Dimensional Nanomaterials: Insights from the Nanotexture Evolution of Dense Reduced Graphene Oxide Membranes. ACS Nano, 2023, 17, 5072-5082.	7.3	7
193	Recent Progress of Graphene Fiber/Fabric Supercapacitors: From Building Block Architecture, Fiber Assembly, and Fabric Construction to Wearable Applications. Advanced Fiber Materials, 2023, 5, 896-927.	7.9	22
194	Chemical gradients on graphene <i>via</i> direct mechanochemical cleavage of atoms from chemically functionalized graphene surfaces. Nanoscale Advances, 2023, 5, 2271-2279.	2.2	0
195	Desorption of chemical species during thermal reduction of graphene oxide films. Surface and Coatings Technology, 2023, 463, 129524.	2.2	1
196	Modified Graphene-Based Compound: Hydrogen Production through Water Splitting. , 2023, , 81-135.		0
197	Progress of research on the sustainable preparation of graphene and its derivatives. , 2023, , 239-304.		0