A Tutorial on Modern Anti-windup Design

European Journal of Control 15, 418-440 DOI: 10.3166/ejc.15.418-440

Citation Report

#	Article	IF	Citations
1	Extended Model Recovery Anti-windup for Satellite Control1. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 205-210.	0.4	2
2	Switching adaptive robustified anti-windup *. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 1169-1174.	0.4	3
4	Multi-saturation anti-windup structure for satellite control. , 2010, , .		6
5	An almost Anti-Windup scheme for plants with magnitude, rate and curvature saturation. , 2010, , .		5
6	Incorporation of robustness properties into the observer based anti-windup scheme in the case of actuator uncertainties. , 2010, , .		1
7	Anti-windup schemes comparison for digital repetitive control. , 2010, , .		0
8	Switching adaptive realization of a weakened anti-windup compensator. , 2010, , .		1
9	An anti-windup-based solution for the low current nonlinearity compensation on the FTU horizontal position controller. , 2010, , .		2
10	Anti-windup compensator design considering behavior of controller state. , 2010, , .		7
11	Anti-windup design via nonsmooth multi-objective H <inf>∞</inf> optimization. , 2011, , .		2
12	A robust anti-windup design procedure for SISO systems. International Journal of Control, 2011, 84, 351-369.	1.9	13
13	A performance-oriented, non-iterative, local design method for mismatch-based anti-windup compensators. , 2011, , .		2
14	Anti-windup design for a class of multivariable nonlinear control systems: An LMI-based approach. , 2011, , .		7
15	Stability and Stabilization of Linear Systems with Saturating Actuators. , 2011, , .		464
16	An optimal anti-windup strategy for repetitive control systems. , 2011, , .		2
17	An anti-windup framework for systems with non-standard actuator characteristics. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 13444-13449.	0.4	0
18	An alternative solution to the weakened anti-windup problem for LFT perturbed plants. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 13420-13425.	0.4	2
19	Fixed-Order Output Feedback Control and Anti-Windup Compensation for Active Suspension Systems. Journal of System Design and Dynamics, 2011, 5, 264-278.	0.3	4

TION REI

#	Article	IF	CITATIONS
20	Antiâ€windup strategy for reset control systems. International Journal of Robust and Nonlinear Control, 2011, 21, 1159-1177.	3.7	26
21	Nonlinear dynamic allocator for optimal input/output performance trade-off: Application to the JET tokamak shape controller. Automatica, 2011, 47, 981-987.	5.0	32
22	Anti-windup adaptive PID control for a magnetic levitation system with a PFC based on time-varying ASPR model. , 2011, , .		3
23	Linear Systems Subject to Control Saturationâ \in "Problems and Modeling. , 2011, , 3-48.		0
24	Dynamic anti-windup design in anticipation of actuator saturation. , 2011, , .		5
25	Anti-windup scheme for current control of Shunt Active Filters. , 2012, , .		4
26	Model recovery anti-windup control for linear discrete time systems with magnitude and rate saturation. , 2012, , .		2
27	Static anti-windup for systems with sector-bounded nonlinearities. , 2012, , .		2
28	Ein einfaches weich strukturvariables Anti-Windup. Automatisierungstechnik, 2012, 60, 123-133.	0.8	1
29	Power factor correction and harmonic compensation using second-order odd-harmonic repetitive control. IET Control Theory and Applications, 2012, 6, 1633.	2.1	48
31	Pilot-Involved-Oscillation Suppression Using Low-Order Antiwindup: Flight-Test Evaluation. Journal of Guidance, Control, and Dynamics, 2012, 35, 471-483.	2.8	12
32	Model recovery anti-windup for continuous-time rate and magnitude saturated linear plants. Automatica, 2012, 48, 1502-1513.	5.0	23
33	Formation Flying Control for Satellites: Anti-windup Based Approach. Springer Optimization and Its Applications, 2012, , 61-83.	0.9	3
34	Design of multiple anti-windup loops for multiple activations. Science China Information Sciences, 2012, 55, 1925-1934.	4.3	19
35	gain bounds for systems with sector bounded and slopeâ€restricted nonlinearities. International Journal of Robust and Nonlinear Control, 2012, 22, 1505-1521.	3.7	30
36	Nonlinear dynamic compensation for large-feedback control of a servomechanism with multiple nonlinearities. Control Engineering Practice, 2013, 21, 1531-1541.	5.5	4
37	Model recovery anti-windup compensator design for magnitude and rate saturated LPV systems. , 2013, , .		1
38	A hybrid anti-windup scheme for output saturated SISO linear closed loops. , 2013, , .		4

#	Article	IF	CITATIONS
39	Experimental Implementation of a Nonlinear Dynamic Inversion Controller with Antiwindup. Journal of Guidance, Control, and Dynamics, 2013, 36, 1035-1046.	2.8	10
40	Improved torque tracking on internal combustion engine test benches equipped with EURO 6-engines. , 2013, , .		0
41	Nonlinear regulation for linear fat plants: The constant reference/disturbance case. , 2013, , .		10
42	Optimal anti-windup synthesis for repetitive controllers. Journal of Process Control, 2013, 23, 1149-1158.	3.3	11
43	Anti-windup design for saturating quadratic systems. Systems and Control Letters, 2013, 62, 367-376.	2.3	15
44	Robustified Anti-Windup via Switching Adaptation. IEEE Transactions on Automatic Control, 2013, 58, 731-737.	5.7	10
45	Shunt Active Power Filter. Lecture Notes in Control and Information Sciences, 2013, , 101-137.	1.0	0
46	Full and reduced order IMC anti-windup compensators for a class of nonlinear systems with application to wave energy converter control. , 2013, , .		1
47	Nonlinear output regulation for over-actuated linear systems. , 2013, , .		8
48	Randomized analysis and synthesis of robust linear static anti-windup. , 2013, , .		2
49	Anti-windup design with guaranteed stability regions for resonant and repetitive controllers. * *The authors are supported in part by CNPq, Brazil IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 935-940.	0.4	0
50	Static anti-windup scheme for a class of homogeneous dwell-time hybrid controllers. , 2013, , .		0
51	An Improved Antiwindup Design Using an Anticipatory Loop and an Immediate Loop. Mathematical Problems in Engineering, 2014, 2014, 1-9.	1.1	0
52	Two-stage multivariable IMC Antiwindup (TMIA) control of a Quadruple Tank process using a PLC. , 2014, , .		2
53	Anticipatory anti-windup: An alternative construction. , 2014, , .		2
54	Entwurf von modellbasierten Anti-Windup-Methoden für Systeme mit Stellbegrenzungen. Automatisierungstechnik, 2014, 62, 237-238.	0.8	4
55	Static antiâ€windup design for a class of nonlinear systems. International Journal of Robust and Nonlinear Control, 2014, 24, 793-810.	3.7	44
56	Deadzone compensation and anti-windup design for brake-by-wire systems. , 2014, , .		2

#	Article	IF	CITATIONS
57	Dynamic antiâ€windup design in anticipation of actuator saturation. International Journal of Robust and Nonlinear Control, 2014, 24, 295-312.	3.7	48
58	A non-square sector condition and its application in deferred-action anti-windup compensator design. Automatica, 2014, 50, 268-276.	5.0	14
59	A simple scheduled anti-windup technique. , 2014, , .		2
60	Approach to New Model Recovery Anti-windup Scheme with PID Controller. , 2015, , .		4
61	Simultaneous Linear and Antiâ€Windup Controller Synthesis: Delayed Activation Case. Asian Journal of Control, 2015, 17, 1027-1038.	3.0	4
62	Fault Diagnosis and Fault-Tolerant Control of Wind Turbines via a Discrete Time Controller with a Disturbance Compensator. Energies, 2015, 8, 4300-4316.	3.1	42
63	Attitude tracking control of a 3-DOF helicopter with actuator saturation and model uncertainties. , 2015, , .		3
64	A two-layer LPV based control strategy for input and state constrained problem: Application to energy management. , 2015, , .		2
65	Active fault tolerant control for pitch actuators failures tested in a hardware-in-the-loop simulation for wind turbine controllers. , 2015, , .		2
66	Convergence-based Analysis of Robustness to Delay in Anti-windup Loop of Aircraft Autopilotâ^—â^—This work was supported by Russian Scientific Foundation (project 14-21-00041) and Saint-Petersburg State University IFAC-PapersOnLine, 2015, 48, 144-149.	0.9	4
67	Linearization approach for anti-windup synthesis and implementation for DC motor speed control. , 2015, , .		0
68	Simultaneous multi-stage anti-windup synthesis for open-loop stable plants. Transactions of the Institute of Measurement and Control, 2015, 37, 560-568.	1.7	0
69	Sliding Mode Control of Class of Linear Uncertain Saturated Systems. Studies in Computational Intelligence, 2015, , 137-165.	0.9	3
70	Multistage anti-windup design for linear systems with saturation nonlinearity: enlargement of the domain of attraction. Nonlinear Dynamics, 2015, 80, 1543-1555.	5.2	11
71	Disturbance Rejection Based Path Following Control for A Stratospheric Airship with Actuator Saturation. , 2015, , .		2
72	Model recovery anti-windup for output saturated SISO linear closed loops. Systems and Control Letters, 2015, 85, 109-117.	2.3	6
73	Increasing the operating area of shunt active filters by advanced nonlinear control. Control Theory and Technology, 2015, 13, 115-140.	1.6	2
74	An anti-windup rate-varying integral control applied to electromechanical actuator. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229, 692-702.	2.1	2

#	Article	IF	CITATIONS
75	An anti-windup control strategy to actuator saturating input voltage for active magnetic bearing system. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2016, 35, .	0.9	2
76	Implementation of an internal model controller with anti-reset windup compensation for output voltage tracking of a non-minimum phase dc-dc boost converter using FPGA. , 2016, , .		10
77	Space Engineering. Springer Optimization and Its Applications, 2016, , .	0.9	6
78	Anti-windup synthesis of heading and speed regulators for ship control with actuator saturation. , 2016, , .		6
79	A family of nonlinear PID-like regulators for a class of torque-driven robot manipulators equipped with torque-constrained actuators. Advances in Mechanical Engineering, 2016, 8, 168781401662849.	1.6	27
80	Attitude tracking control of a 3-DOF helicopter with input and output constraints. , 2016, , .		1
81	4-Degree-of-freedom anti-windup scheme for plants with actuator saturation. Journal of Process Control, 2016, 47, 111-120.	3.3	6
82	Antiâ€windup for a class of partially linearisable nonâ€linear systems with application to wave energy converter control. IET Control Theory and Applications, 2016, 10, 2403-2414.	2.1	8
83	Improved performance for adaptive control of systems with input saturation. , 2016, , .		10
84	Indirect adaptive pole placement control with performance orientated anti-windup for electronic throttle plates. , 2016, , .		1
85	UAV obstacle avoidance scheme using an output to input saturation transformation technique. , 2016, , .		3
86	Adaptive integral feedback controller for pitch and yaw channels of an AUV with actuator saturations. ISA Transactions, 2016, 65, 284-295.	5.7	42
87	Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities. Ocean Engineering, 2016, 123, 45-54.	4.3	270
88	Alternative approach to anti-windup synthesis for double integrator systems. , 2016, , .		4
89	Model reference adaptive PID control with anti-windup compensator for an autonomous underwater vehicle. Robotics and Autonomous Systems, 2016, 83, 87-93.	5.1	97
90	Dynamic anti-windup design for a class of nonlinear systems. International Journal of Control, 2016, 89, 2406-2419.	1.9	11
91	Nonlinear Pressure Control for BBW Systems via Dead-Zone and Antiwindup Compensation. IEEE Transactions on Control Systems Technology, 2016, 24, 1419-1431.	5.2	45
92	Decentralized Approaches to Antiwindup Design With Application to Quadrotor Unmanned Aerial Vehicles, IEEE Transactions on Control Systems Technology, 2016, 24, 1980-1992.	5.2	26

#	Article	IF	CITATIONS
93	Anti-windup strategies for discrete-time switched systems subject to input saturation. International Journal of Control, 2016, 89, 919-937.	1.9	19
94	Path following control for a stratospheric airship with actuator saturation. Transactions of the Institute of Measurement and Control, 2017, 39, 987-999.	1.7	18
95	Robust Linear Static Anti-Windup With Probabilistic Certificates. IEEE Transactions on Automatic Control, 2017, 62, 1575-1589.	5.7	8
96	Positive <mml:math <br="" altimg="si1.gif" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="mml1" overflow="scroll"><mml:mi>l¼</mml:mi></mml:math> modification as an anti-windup mechanism. Systems and Control Letters, 2017, 102, 15-21.	2.3	11
97	Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP. Nuclear Fusion, 2017, 57, 066017.	3.5	9
98	Low-Gain Integral Control for Multi-Input Multioutput Linear Systems With Input Nonlinearities. IEEE Transactions on Automatic Control, 2017, 62, 4776-4783.	5.7	12
99	Backlash compensation for plants with saturating actuators. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2017, 231, 471-480.	1.0	5
100	Model reference adaptive autopilot with anti-windup compensator for an autonomous underwater vehicle: Design and hardware in the loop implementation results. Applied Ocean Research, 2017, 62, 27-36.	4.1	22
101	Anti-windup design for input-coupled double integrator systems with application to quadrotor UAV's. European Journal of Control, 2017, 38, 22-31.	2.6	17
102	Toward vision based landing of a fixed-wing UAV on an unknown runway under some fov constraints. , 2017, , .		9
103	Distributed LPV State-Feedback Control Under Control Input Saturation. IEEE Transactions on Automatic Control, 2017, 62, 2450-2456.	5.7	18
104	An alternative approach to anti-windup in anticipation of actuator saturation. International Journal of Robust and Nonlinear Control, 2017, 27, 963-980.	3.7	7
105	Adaptive \$\$mu \$\$ μ -modification control for a nonlinear autonomous underwater vehicle in the presence of actuator saturation. International Journal of Dynamics and Control, 2017, 5, 596-603.	2.5	7
106	Sliding Mode Control of Constrained Nonlinear Systems. IEEE Transactions on Automatic Control, 2017, 62, 2965-2972.	5.7	164
107	Robust anti-windup design for PI control system. , 2017, , .		2
108	Adaptive Model Recovery Anti-Windup for Output-Feedback Plants. IFAC-PapersOnLine, 2017, 50, 11523-11528.	0.9	6
109	Vision based anti-windup design with application to the landing of an Airliner. IFAC-PapersOnLine, 2017, 50, 10482-10487.	0.9	6
110	Robust & anti-windup disturbance feedback control for water chiller systems. , 2017, , .		1

	Сітатіо	n Report	
#	Article	IF	CITATIONS
111	Robust anti-windup control design for PID controllers. , 2017, , .		5
112	Observer-based repetitive model predictive control in active vibration suppression. Structural Control and Health Monitoring, 2018, 25, e2149.	4.0	13
113	A nonlinear modification for improving dynamic anti-windup compensation. European Journal of Control, 2018, 41, 44-52.	2.6	17
114	Antiwindup Control of an Electrohydraulic System With Load Disturbance and Modeling Uncertainty. IEEE Transactions on Industrial Informatics, 2018, 14, 3097-3108.	11.3	24
115	Static Antiwindup Design for Nonlinear Parameter Varying Systems With Application to DC Motor Speed Control Under Nonlinearities and Load Variations. IEEE Transactions on Control Systems Technology, 2018, 26, 1091-1098.	5.2	23
116	Time-response shaping using output to input saturation transformation. International Journal of Control, 2018, 91, 534-553.	1.9	7
117	Simple Globally Stabilising Anti-Windup Designs for Systems with Rate-Limits. , 2018, , .		3
118	Adaptive Neural-network Output Feedback Control Design for Uncertain CSTR system With Input saturation. , 2018, , .		3
119	Anti-windup compensator design using Riccati inequality based approach ⎠âŽThe first and third authors gratefully acknowledge the financial support of the Science and Engineering Research Board (SERB), Department of Science and Technology, India, under the research grant SB/FTP/ETA-263/2012 IFAC-PapersOnLine, 2018, 51, 615-620.	0.9	0
120	Large Stroke Tracking of a Nanomanipulator with Anticipatory Anti-windup Compensation of Time-varying Internal Principle-based Control. , 2018, , .		0
121	Model Reference Adaptive Control for a Class of Aircraft with Actuator saturation. , 2018, , .		5
122	Augmented Anti-Windup Control for PI Control System via ASPR based Adaptive Output Feedback with a PFC. , 2018, , .		1
123	A Fuzzy Adaptive PID Controller Design for Fuel Cell Power Plant. Sustainability, 2018, 10, 2438.	3.2	29
124	Heading tracking control with an adaptive hybrid control for under actuated underwater glider. ISA Transactions, 2018, 80, 554-563.	5.7	41
125	Anti-windup disturbance feedback control: Practical design with robustness. Journal of Process Control, 2018, 69, 30-43.	3.3	9
126	Advanced Motion Control for Precision Mechatronics: Control, Identification, and Learning of Complex Systems. IEEJ Journal of Industry Applications, 2018, 7, 127-140.	1.1	82
127	Improvement of wideâ€area damping controller subject to actuator saturation: a dynamic antiâ€windup approach. IET Generation, Transmission and Distribution, 2018, 12, 2115-2123.	2.5	8
128	Spatial Path-Following Control of Underactuated AUV With Multiple Uncertainties and Input Saturation. IEEE Access, 2019, 7, 98014-98022.	4.2	13

#	Article	IF	CITATIONS
129	Adaptive Trajectory Tracking Control of a Cable-Driven Underwater Vehicle on a Tension Leg Platform. IEEE Access, 2019, 7, 35512-35531.	4.2	7
130	Design of a 4D Trajectory Tracking Controller with Anti-Windup Protection for Fixed-Wing Aircraft. , 2019, , .		ο
131	A novel adaptive second-order sliding mode controller for autonomous underwater vehicles. Adaptive Behavior, 2021, 29, 39-54.	1.9	7
132	Improved line-of-sight trajectory tracking control of under-actuated AUV subjects to ocean currents and input saturation. Ocean Engineering, 2019, 174, 14-30.	4.3	84
133	Nussbaum gain adaptive control scheme for moving mass reentry hypersonic vehicle with actuator saturation. Aerospace Science and Technology, 2019, 91, 357-371.	4.8	18
134	Tracking control of a large range 3D printed compliant nano-manipulator with enhanced anti-windup compensation. Mechanical Systems and Signal Processing, 2019, 131, 33-48.	8.0	11
135	Anti-windup scheme of the electronic load sensing pump via switched flow/power control. Mechatronics, 2019, 61, 1-11.	3.3	4
136	Modeling and Simulation of PI-Controllers Limiters for the Dynamic Analysis of VSC-Based Devices. IEEE Transactions on Power Systems, 2019, 34, 3921-3930.	6.5	25
137	Design an anti-windup controller for a PWR power-level control in the presence of control rod speed saturation. Annals of Nuclear Energy, 2019, 132, 415-426.	1.8	0
138	Discontinuous model recovery anti-windup for image based visual servoing. Automatica, 2019, 104, 41-47.	5.0	3
139	Robust Output Regulation of Disturbed Systems with Uncertainties and Input Constraints. IFAC-PapersOnLine, 2019, 52, 79-84.	0.9	2
140	Adaptive Anti-Windup Control System Design for ASPR-based Adaptive Output Feedback Control. IFAC-PapersOnLine, 2019, 52, 37-42.	0.9	3
141	Static Anti-windup Control for Unstable Linear Systems with the Actuator Saturation. , 2019, , .		2
142	Combined Static and Dynamic Antiwindup Architecture with Application to Quadcopters Experiencing Large Disturbances. , 2019, , .		Ο
143	Experimental validation of LMI-based anti-windup compensators for attitude control in multirotor UAVs. IFAC-PapersOnLine, 2019, 52, 164-169.	0.9	2
144	The PID Integrated Anti-Windup Scheme by Ziegler-Nichols Tuning for Small-Scale Steam Distillation Process. , 2019, , .		4
145	Vibration control subjected to windup problem: An applied view on analysis and synthesis with convex formulation. Control Engineering Practice, 2019, 82, 50-71.	5.5	4
146	Attitude tracking control of a flexible spacecraft under angular velocity constraints. International Journal of Control, 2019, 92, 1524-1540.	1.9	6

#	Article	IF	CITATIONS
147	A switched and scheduled design for model recovery anti-windup of linear plants. European Journal of Control, 2019, 46, 23-35.	2.6	14
148	Novel anti-saturation robust controller for flexible air-breathing hypersonic vehicle with actuator constraints. ISA Transactions, 2020, 99, 95-109.	5.7	26
149	A Controller Architecture With Anti-Windup. , 2020, 4, 139-144.		6
150	Voltage control of solid oxide fuel cell power plant based on intelligent proportional integral-adaptive sliding mode control with anti-windup compensator. Transactions of the Institute of Measurement and Control, 2020, 42, 116-130.	1.7	20
151	Adaptive robust sliding mode control of autonomous underwater glider with input constraints for persistent virtual mooring. Applied Ocean Research, 2020, 95, 102027.	4.1	45
152	Robust adaptive neural network prescribed performance control for uncertain CSTR system with input nonlinearities and external disturbance. Neural Computing and Applications, 2020, 32, 10541-10554.	5.6	18
153	Consistent Total Traction Torque-Oriented Coordinated Control of Multimotors with Input Saturation for Heavy-Haul Locomotives. Journal of Advanced Transportation, 2020, 2020, 1-11.	1.7	3
154	Anti-windup design for directionality compensation with application to quadrotor UAVs. , 2020, , 1-1.		4
155	Gain-Scheduled Autopilot Design with Anti-Windup Compensator for a Dual-Spin Canard-Guided Projectile. , 2020, , .		4
156	Robust disturbance rejection for discrete-time systems having Magnitude and rate bounded inputs. Journal of the Franklin Institute, 2020, 357, 8252-8276.	3.4	5
157	SAUV—A Bio-Inspired Soft-Robotic Autonomous Underwater Vehicle. Frontiers in Neurorobotics, 2020, 14, 8.	2.8	9
158	Anti-windup for model-reference adaptive control schemes with rate-limits. Systems and Control Letters, 2020, 137, 104630.	2.3	24
159	Combined Static and Dynamic Anti-Windup Compensation for Quadcopters Experiencing Large Disturbances. Journal of Guidance, Control, and Dynamics, 2020, 43, 673-684.	2.8	5
160	Pitch autopilot design for an autonomous aerial vehicle in the presence of amplitude and rate saturation. Aerospace Science and Technology, 2021, 108, 106371.	4.8	3
161	Event-triggered dynamic anti-windup augmentation for saturated systems. International Journal of Systems Science, 2021, 52, 196-216.	5.5	1
162	Teaching MPC: Which Way to the Promised Land?. IFAC-PapersOnLine, 2021, 54, 238-243.	0.9	1
163	Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control and Related Fields, 2021, .	1,1	3
164	Anti-windup strategy for processes with multiple delays: A predictor-based approach. Journal of the Franklin Institute, 2021, 358, 1812-1838.	3.4	5

#	Article	IF	CITATIONS
165	DiffLoop: Tuning PID Controllers by Differentiating Through the Feedback Loop. , 2021, , .		1
166	Quantization by ΔΣ Modulators for Anti-Windup Control. IEEJ Transactions on Electronics, Information and Systems, 2021, 141, 408-416.	0.2	0
167	A Review of the Path Planning and Formation Control for Multiple Autonomous Underwater Vehicles. Journal of Intelligent and Robotic Systems: Theory and Applications, 2021, 101, 1.	3.4	43
168	Finite-time controller design with adaptive fixed-time anti-saturation compensator for hypersonic vehicle. ISA Transactions, 2022, 122, 96-113.	5.7	21
169	Optimal control allocation for the parallel interconnection of buck converters. Control Engineering Practice, 2021, 109, 104727.	5.5	9
170	Constrained rigid body attitude stabilization: an anti-windup approach. , 2021, , .		1
171	An alternative method for windup prevention. Automatisierungstechnik, 2021, 69, 750-758.	0.8	1
172	Robust gain-scheduling <mml:math <br="" xmins:mml="http://www.w3.org/1998/Math/MathML">altimg="si2.svg"><mml:msub><mml:mi mathvariant="script">H<mml:mi>â^ž</mml:mi></mml:mi </mml:msub></mml:math> control of uncertain continuous-time systems having magnitude- and rate-bounded actuators: An application of full block	3.4	5
173	Constrained Rigid Body Attitude Stabilization: An Anti-Windup Approach. , 2021, 5, 1663-1668.		5
175	Robust command filtered control for course tracking of ships under actuator dynamics with input magnitude and rate saturation. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 0, , 147509022110522.	0.5	0
176	Fixed-Dynamics Antiwindup Design: Application to Pitch-Limited Position Control of Multirotor Unmanned Aerial Vehicles. IEEE Transactions on Control Systems Technology, 2021, 29, 2654-2661.	5.2	4
177	Anti-windup Compensator Synthesis. , 2011, , 283-309.		0
178	An Overview of Anti-windup Techniques. , 2011, , 267-281.		1
179	Pilot-Induced-Oscillations Alleviation Through Anti-windup Based Approach. Springer Optimization and Its Applications, 2016, , 401-423.	0.9	4
180	RISE-based Anti-Windup Control of Human Lower Limb Using Electrical Stimulation. International Journal of Electronics and Electrical Engineering, 2019, 7, 38-42.	0.2	0
181	Design of Output Feedback Adaptive Control System with Anti-Windup Compensator for Input Saturated Systems. IEEJ Transactions on Electronics, Information and Systems, 2019, 139, 293-299.	0.2	0
182	Improvement on robust anti-windup design based on QFT. , 2020, , .		1
183	A High Dynamic Range ΔΣ Modulator using Anti-Windup Compensated Integrators. IFAC-PapersOnLine, 2020, 53, 5550-5555.	0.9	0

#	Article	IF	CITATIONS
184	Control Allocation for Wheeled Mobile Robots Subject to Input Saturation. IFAC-PapersOnLine, 2020, 53, 3904-3909.	0.9	1
185	Review of control and guidance technology on hypersonic vehicle. Chinese Journal of Aeronautics, 2022, 35, 1-18.	5.3	66
186	Study of Discrete PID Controller for DC Motor Speed Control Using MATLAB. , 2020, , .		6
187	Model Recovery Anti-windup Control for Marginally Stable Plants Based on Characteristic Modeling. , 2021, , .		0
188	An Interpolated Model Recovery Anti-Windup for a Canard-Guided Projectile Subject to Uncertainties. , 2021, , .		2
189	On compliance and safety with torque-control for robots with high reduction gears and no ioint-torque feedbach. 2021 "Robust induced < mml:math xmlhs:mml="http://www.w3.org/1998/Math/MathML" display="inline"		3
190	altimg="si4.svg"> <mml:mrow><mml:msub><mml:mrow><mml:mi>â,,"</mml:mi></mml:mrow><ml:mrow><m linebreak="goodbreak" linebreakstyle="after">â^'<mml:msub><mml:mrow><mml:mi>â,,"</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td>ml:mn>2< 5.7 w><mml:n< td=""><td>/mml:mn>2 ni>â^ž</td></mml:n<></td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></m </ml:mrow></mml:msub></mml:mrow>	ml:mn>2< 5.7 w> <mml:n< td=""><td>/mml:mn>2 ni>â^ž</td></mml:n<>	/mml:mn>2 ni>â^ž
191	control of discrete-time systems having magnitude and rate-bounded actuators. ISA Transactions, 202 a_{s} < sub>2-Stabilization of anti-windup compensators subject to actuator saturation and disturbances., 2021,,.		0
195	A Pole Placement-Based Output Tracking Control Scheme by Finite-and-Quantized Output Feedback. , 2022, 6, 3200-3205.		2
197	Robust invariance-based explicit reference control for constrained linear systems. Automatica, 2022, 143, 110433.	5.0	6
198	A Model-Based Framework for Dynamic Antiwindup Strategy for Gas Turbine Engine Fuel Control System. Journal of Aerospace Engineering, 2022, 35, .	1.4	0
199	Disturbance observer-based saturated fixed-time pose tracking for feature points of two rigid bodies. Automatica, 2022, 144, 110475.	5.0	6
200	An anti-windup design with local sector and H2/Hâ^ž optimization for flight environment simulation system. Aerospace Science and Technology, 2022, 128, 107787.	4.8	5
201	Trajectory tracking control for autonomous underwater vehicle with disturbances and input saturation based on contraction theory. Ocean Engineering, 2022, 266, 112731.	4.3	4
202	A Robust Anti-windup Scheme Based on Optimization. , 2022, , .		0
203	Robust design for 3-DoF anti-windup framework based on QFT. Journal of Process Control, 2022, 120, 1-13.	3.3	1
205	Robust Regulation of a Power Flow Controller via Nonlinear Integral Action. IEEE Transactions on Control Systems Technology, 2023, , 1-13.	5.2	2
206	Simplified MIMO design of observer-based PI control in view of input saturation. Automatisierungstechnik, 2023, 71, 179-186.	0.8	0

#	Article	IF	CITATIONS
207	Adaptive Anti-Saturation Prescribed-Time Control for Payload Retrieval of Tethered Space System. IEEE Transactions on Aerospace and Electronic Systems, 2023, , 1-11.	4.7	1
208	Limited Integrator Antiwindup-Based Control of Input-Constrained Manipulators. IEEE Transactions on Industrial Electronics, 2024, 71, 1738-1748.	7.9	3
209	Horizontal Trajectory Tracking Control for Underactuated Autonomous Underwater Vehicles Based on Contraction Theory. Journal of Marine Science and Engineering, 2023, 11, 805.	2.6	2
210	Stabilization of a chaotic oscillator via a class of integral controllers under input saturation. Scientific Reports, 2023, 13, .	3.3	Ο
211	Experimental validation of an anti-windup design trading off position and heading direction control performance for quadrotor UAVs. IFAC-PapersOnLine, 2022, 55, 117-122.	0.9	0
212	Output-Constrained Attitude Tracking Control for Spacecraft with Adaptive Inertia and Disturbance Identifications. Journal of Aerospace Engineering, 2023, 36, .	1.4	0
213	Anti-Windup Coordination Strategy Around a Fair Equilibrium in Resource Sharing Networks. , 2023, 7, 2521-2526.		0
214	Local Static Anti-Windup Design With Sign-Indefinite Quadratic Forms. , 2023, 7, 3090-3095.		Ο
215	Anti-windup compensation for a class of iterative learning control systems subject to actuator saturation. , 2023, , .		0
216	Robust gain-scheduled autopilot design with anti-windup compensation for a guided projectile. CEAS Aeronautical Journal, 2023, 14, 765-786.	1.7	1
217	Dynamic Control and Simulation of Leader-follower Vehicle Formation Considering Vehicle Stability. International Journal of Control, Automation and Systems, 2023, 21, 2995-3005.	2.7	3
218	Tracking control of nonlinear systems actuated by saturated oscillatory force generator. European Journal of Control, 2023, , 100891.	2.6	0
219	Robust highâ€gain observerâ€based sliding mode controller for pitch and yaw position control of an AUV. Advanced Control for Applications, 0, , .	1.7	0
220	Asymptotic Output Tracking Control of a Class of Linear Systems by Finite-and-Quantized Output Feedback. Unmanned Systems, 2024, 12, 249-260.	3.6	0
221	Machine learningâ€enabled optimization of melt electroâ€writing threeâ€dimensional printing. Aggregate, 0, , .	9.9	0
222	An antiâ€windup and backlash compensationâ€based finiteâ€time control method for performance enhancement of a class of nonlinear systems. Asian Journal of Control, 0, , .	3.0	Ο
223	Adaptive antiâ€windup output feedback control for nonlinear systems and its stability analysis. Asian Journal of Control, 0, , .	3.0	0
224	Machine learning controller for data rate management in science DMZ networks. Computer Networks, 2024, 242, 110237.	5.1	0

#	Article	IF	CITATIONS
225	A practical solution for multivariable control of temperature and humidity in greenhouses. European Journal of Control, 2024, 77, 100967.	2.6	0