N-Doping of Graphene Through Electrothermal Reactio

Science 324, 768-771

DOI: 10.1126/science.1170335

Citation Report

#	Article	IF	CITATIONS
3	Carbon nitride: <i>Ab initio</i> investigation of carbon-rich phases. Physical Review B, 2009, 80, .	1.1	48
4	p-type doping of graphene with F4-TCNQ. Journal of Physics Condensed Matter, 2009, 21, 402001.	0.7	83
5	Fabrication of graphene nanoribbons via nanowire lithography. Physica Status Solidi (B): Basic Research, 2009, 246, 2514-2517.	0.7	29
7	Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Physical Review B, 2009, 80, .	1.1	393
8	Porous Graphene as the Ultimate Membrane for Gas Separation. Nano Letters, 2009, 9, 4019-4024.	4.5	850
9	A Method for Fabrication of Graphene Oxide Nanoribbons from Graphene Oxide Wrinkles. Journal of Physical Chemistry C, 2009, 113, 19119-19122.	1.5	52
10	Dynamic Characterization of Graphene Growth and Etching by Oxygen on Ru(0001) by Photoemission Electron Microscopy. Journal of Physical Chemistry C, 2009, 113, 20365-20370.	1.5	47
11	Chemically Induced Mobility Gaps in Graphene Nanoribbons: A Route for Upscaling Device Performances. Nano Letters, 2009, 9, 2725-2729.	4.5	120
12	Solvothermal Reduction of Chemically Exfoliated Graphene Sheets. Journal of the American Chemical Society, 2009, 131, 9910-9911.	6.6	823
13	Electrocatalytic Activity of Nitrogen-Doped Carbon Nanotube Cups. Journal of the American Chemical Society, 2009, 131, 13200-13201.	6.6	507
14	"Narrow―Graphene Nanoribbons Made Easier by Partial Hydrogenation. Nano Letters, 2009, 9, 4025-4030.	4.5	120
15	Charge Transfer Chemical Doping of Few Layer Graphenes: Charge Distribution and Band Gap Formation. Nano Letters, 2009, 9, 4133-4137.	4.5	263
16	Spin Gapless Semiconductorâ^'Metalâ^'Half-Metal Properties in Nitrogen-Doped Zigzag Graphene Nanoribbons. ACS Nano, 2009, 3, 1952-1958.	7.3	499
17	Structural and Electronic Properties of PTCDA Thin Films on Epitaxial Graphene. ACS Nano, 2009, 3, 3431-3436.	7.3	167
18	Simultaneous Nitrogen Doping and Reduction of Graphene Oxide. Journal of the American Chemical Society, 2009, 131, 15939-15944.	6.6	1,673
19	Properties of graphene: a theoretical perspective. Advances in Physics, 2010, 59, 261-482.	35.9	970
20	The chemistry of graphene. Journal of Materials Chemistry, 2010, 20, 2277.	6.7	1,350
21	Novel properties of graphene nanoribbons: a review. Journal of Materials Chemistry, 2010, 20, 8207.	6.7	369

#	ARTICLE	IF	CITATIONS
22	Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design. Journal of Physical Chemistry C, 2010, 114, 832-842.	1.5	1,002
23	Nitrogen-doped graphene and its electrochemical applications. Journal of Materials Chemistry, 2010, 20, 7491.	6.7	1,040
24	Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano, 2010, 4, 1790-1798.	7.3	1,977
25	Configuration-sensitive molecular sensing on doped graphene sheets. Nano Research, 2010, 3, 472-480.	5.8	7
26	Crystallographically selective nanopatterning of graphene on SiO2. Nano Research, 2010, 3, 110-116.	5.8	87
27	Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Research, 2010, 3, 387-394.	5.8	167
28	Poly(ethylene glycol) conjugated nano-graphene oxide for photodynamic therapy. Science China Chemistry, 2010, 53, 2265-2271.	4.2	84
29	Device Physics and Characteristics of Graphene Nanoribbon Tunneling FETs. IEEE Transactions on Electron Devices, 2010, 57, 3144-3152.	1.6	49
30	Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis, 2010, 22, 1027-1036.	1.5	2,779
31	Ambipolar Memory Devices Based on Reduced Graphene Oxide and Nanoparticles. Advanced Materials, 2010, 22, 2045-2049.	11.1	143
32	Controllable Synthesis of Graphene and Its Applications. Advanced Materials, 2010, 22, 3225-3241.	11,1	375
33	Specific Protein Detection Using Thermally Reduced Graphene Oxide Sheet Decorated with Gold Nanoparticleâ€Antibody Conjugates. Advanced Materials, 2010, 22, 3521-3526.	11.1	444
34	Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 2010, 22, 3906-3924.	11,1	8,959
36	A Nanoscale Jigsawâ€Puzzle Approach to Large Ï€â€Conjugated Systems. Angewandte Chemie - International Edition, 2010, 49, 6764-6767.	7.2	26
37	Graphene–dielectric integration for graphene transistors. Materials Science and Engineering Reports, 2010, 70, 354-370.	14.8	97
38	Interaction of Melamine molecule with defected and defect free graphene nanoribbons. Physica B: Condensed Matter, 2010, 405, 3895-3898.	1.3	10
39	The chemical modification of graphene antidot lattices. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 33-39.	1.3	3
40	Boron- and nitrogen-doped carbon nanotubes and graphene. Inorganica Chimica Acta, 2010, 363, 4163-4174.	1.2	171

#	Article	IF	Citations
41	Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today, 2010, 5, 351-372.	6.2	817
42	Enhanced electrochemical sensitivity of PtRh electrodes coated with nitrogen-doped graphene. Electrochemistry Communications, 2010, 12, 1423-1427.	2.3	90
43	Characteristics of field-effect transistors based on undoped and B- and N-doped few-layer graphenes. Solid State Communications, 2010, 150, 734-738.	0.9	60
44	Electrocatalytic properties of carbon nanotube carpets grown on Si-wafers. Carbon, 2010, 48, 4489-4496.	5.4	33
45	Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chemical Physics Letters, 2010, 492, 251-257.	1.2	391
46	Modification of the electronic structures of graphene by viologen. Chemical Physics Letters, 2010, 498, 168-171.	1.2	35
47	Quantum dots sensitized graphene: In situ growth and application in photoelectrochemical cells. Electrochemistry Communications, 2010, 12, 483-487.	2.3	118
48	Growth and properties of chemically modified graphene. Physica Status Solidi (B): Basic Research, 2010, 247, 2915-2919.	0.7	15
49	Porous Graphene as an Atmospheric Nanofilter. Small, 2010, 6, 2266-2271.	5.2	325
50	Growth of graphene from solid carbon sources. Nature, 2010, 468, 549-552.	13.7	1,234
51	Etching and narrowing of graphene from the edges. Nature Chemistry, 2010, 2, 661-665.	6.6	441
52	Atomic layers of hybridized boron nitride and graphene domains. Nature Materials, 2010, 9, 430-435.	13.3	2,002
53	Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5, 574-578.	15.6	7,294
54	An extended defect in graphene as a metallic wire. Nature Nanotechnology, 2010, 5, 326-329.	15.6	909
55	Facile synthesis of high-quality graphene nanoribbons. Nature Nanotechnology, 2010, 5, 321-325.	15.6	757
56	Liquid Crystal Addressing by Graphene Electrodes Made from Graphene Oxide. Japanese Journal of Applied Physics, 2010, 49, 100206.	0.8	23
57	Scanning gate microscopy of current-annealed single layer graphene. Applied Physics Letters, 2010, 96, .	1. 5	46
58	Transport properties of corrugated graphene nanoribbons. Applied Physics Letters, 2010, 96, .	1.5	33

#	ARTICLE Controlled electron dening into metallic etemic wires ampliments	IF	CITATIONS
59	Controlled electron doping into metallic atomic wires: <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>Si</mml:mtext><mml:mrow><mml:mo>(</mml:mo><mml:mrow><n .<="" 2010,="" 81,="" b,="" physical="" review="" td=""><td>nml:mn>1</td><td>36 11</td></n></mml:mrow></mml:mrow></mml:mrow></mml:math>	nml:mn>1	36 11
60	Controlling the electrical transport properties of graphene by <i>in situ</i> i> metal deposition. Applied Physics Letters, 2010, 97, .	1.5	66
61	Barrier-free tunneling in a carbon heterojunction transistor. Applied Physics Letters, 2010, 97, .	1.5	29
62	Effects of edge chemistry doping on graphene nanoribbon mobility. , 2010, , .		1
63	Edge dopant energy levels of graphene nanoribbons. Applied Physics Letters, 2010, 97, 113102.	1.5	1
64	Electronic Structure of Pentacene on Ni(110): Comparison with Graphene. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 487-492.	1.0	2
65	Adsorption and diffusion of gold adatoms on graphene nanoribbons: An <i>ab initio</i> study. Physical Review B, 2010, 82, .	1.1	28
66	Roles of radical characters of pristine and nitrogen-substituted hydrographene in dioxygen bindings. Journal of Chemical Physics, 2010, 133, 174703.	1.2	6
67	Selective functionalization of halogens on zigzag graphene nanoribbons: A route to the separation of zigzag graphene nanoribbons. Applied Physics Letters, 2010, 97, 233101.	1.5	23
68	Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations. Journal of Physics Condensed Matter, 2010, 22, 352205.	0.7	11
69	Effects of electron-transfer chemical modification on the electrical characteristics of graphene. Nanotechnology, 2010, 21, 475208.	1.3	42
70	Damaging Graphene with Ozone Treatment: A Chemically Tunable Metalâ^'Insulator Transition. ACS Nano, 2010, 4, 4033-4038.	7.3	149
71	Robust Ballistic Transport in Narrow Armchair-Edge Graphene Nanoribbons with Chemical Edge Disorder. Journal of Physical Chemistry Letters, 2010, 1, 1082-1085.	2.1	9
72	First-principles calculations of graphene nanoribbons in gaseous environments: Structural and electronic properties. Physical Review B, 2010, 82, .	1.1	33
73	Radiation Effects in Single-Walled Carbon Nanotube Thin-Film-Transistors. IEEE Transactions on Nuclear Science, 2010, , .	1.2	22
74	Electronic Structure and Chemical Modification of Graphene Antidot Lattices. Journal of Physical Chemistry C, 2010, 114, 15578-15583.	1.5	31
75	Distance-independent quenching of quantum dots by nanoscale-graphene in self-assembled sandwich immunoassay. Chemical Communications, 2010, 46, 7909.	2.2	106
76	Some Novel Attributes of Graphene. Journal of Physical Chemistry Letters, 2010, 1, 572-580.	2.1	362

#	Article	IF	Citations
77	Nitrogen/Boron Doping Position Dependence of the Electronic Properties of a Triangular Graphene. ACS Nano, 2010, 4, 7619-7629.	7.3	86
78	Chemical Functionalization of Graphene Enabled by Phage Displayed Peptides. Nano Letters, 2010, 10, 4559-4565.	4.5	190
79	Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene. Nano Reviews, 2010, 1, 5354.	3.7	33
80	Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Nanoscale, 2010, 2, 1069.	2.8	149
81	Tri-N-annulated Hexarylene: An Approach to Well-Defined Graphene Nanoribbons with Large Dipoles. Journal of the American Chemical Society, 2010, 132, 4208-4213.	6.6	84
82	Tetrachloro-tetra(perylene bisimides): an approach towards N-type graphenenanoribbons. Chemical Communications, 2010, 46, 1926-1928.	2.2	42
83	Electric Field Activated Hydrogen Dissociative Adsorption to Nitrogen-Doped Graphene. Journal of Physical Chemistry C, 2010, 114, 14503-14509.	1.5	122
84	Scanning Tunneling Microscopy Simulations of Nitrogen- and Boron-Doped Graphene and Single-Walled Carbon Nanotubes. ACS Nano, 2010, 4, 4165-4173.	7.3	123
85	Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size. Journal of the American Chemical Society, 2010, 132, 5944-5945.	6.6	720
86	High-Performance Single CdS Nanowire (Nanobelt) Schottky Junction Solar Cells with Au/Graphene Schottky Electrodes. ACS Applied Materials & Samp; Interfaces, 2010, 2, 3406-3410.	4.0	108
87	Single step, complementary doping of graphene. Applied Physics Letters, 2010, 96, .	1.5	85
88	Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics. Nano Letters, 2010, 10, 1869-1873.	4.5	837
89	Photo-Thermoelectric Effect at a Graphene Interface Junction. Nano Letters, 2010, 10, 562-566.	4.5	528
90	Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide. Langmuir, 2010, 26, 16096-16102.	1.6	665
91	Electronic and Structural Distortions in Graphene Induced by Carbon Vacancies and Boron Doping. Journal of Physical Chemistry C, 2010, 114, 18961-18971.	1.5	148
92	Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 2010, 4, 1321-1326.	7.3	3,658
93	Stability and dynamics of small molecules trapped on graphene. Physical Review B, 2010, 82, .	1.1	71
94	First-Principles Prediction of Doped Graphane as a High-Temperature Electron-Phonon Superconductor. Physical Review Letters, 2010, 105, 037002.	2.9	178

#	Article	IF	Citations
95	Controllable N-Doping of Graphene. Nano Letters, 2010, 10, 4975-4980.	4.5	793
96	Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Physical Chemistry Chemical Physics, 2010, 12, 12055.	1.3	392
97	Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application. ACS Nano, 2010, 4, 6337-6342.	7.3	1,550
98	Graphene Nanoribbon Composites. ACS Nano, 2010, 4, 7415-7420.	7. 3	264
99	Strain Effects on Electronic Properties of Boron Nitride Nanoribbons. Chinese Physics Letters, 2010, 27, 077101.	1.3	13
100	Functionalizing Single- and Multi-layer Graphene with Br and Br2. Journal of Physical Chemistry C, 2010, 114, 14939-14945.	1.5	43
101	Robust Dirac point in honeycomb-structure nanoribbons with zigzag edges. Physical Review B, 2010, 81,	1.1	12
102	Controllable growth of highly N-doped carbon nanotubes from imidazole: a structural, spectroscopic and field emission study. Journal of Materials Chemistry, 2010, 20, 4128.	6.7	54
103	Controllable graphene N-doping with ammonia plasma. Applied Physics Letters, 2010, 96, .	1.5	446
104	Photodegradation of Rhodamine B and Methyl Orange over Boron-Doped g-C ₃ N ₄ under Visible Light Irradiation. Langmuir, 2010, 26, 3894-3901.	1.6	1,529
105	Quantum transport in graphene nanoribbons patterned by metal masks. Applied Physics Letters, 2010, 96, .	1.5	45
106	The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons. Journal of Physics Condensed Matter, 2010, 22, 375303.	0.7	9
107	Synthesis of highly nitrogen-doped hollow carbon nanoparticles and their excellent electrocatalytic properties in dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20, 10829.	6.7	126
108	How the Number and Location of Lithium Atoms Affect the First Hyperpolarizability of Graphene. Journal of Physical Chemistry C, 2010, 114, 19792-19798.	1.5	67
109	Strong Charge-Transfer Excitonic Effects and the Bose-Einstein Exciton Condensate in Graphane. Physical Review Letters, 2010, 104, 226804.	2.9	180
110	Electrical transport and low-temperature scanning tunneling microscopy of microsoldered graphene. Applied Physics Letters, 2010, 96, 082114.	1.5	43
111	Molecular nanosensors based on the inter-sheet tunneling effect of a bilayer graphene. , 2010, , .		2
112	Low-temperature rapid synthesis of high-quality pristine or boron-doped graphene via Wurtz-type reductive coupling reaction. Journal of Materials Chemistry, 2011, 21, 10685.	6.7	68

#	ARTICLE	IF	CITATIONS
113	Nano-scale chemical imaging of a single sheet of reduced graphene oxide. Journal of Materials Chemistry, 2011, 21, 14622.	6.7	64
114	Physical Insight Into Substitutional N-Doped Graphene Nanoribbons With Armchair Edges. IEEE Nanotechnology Magazine, 2011, 10, 926-930.	1.1	2
115	Power Factor Enhancement for Few-Layered Graphene Films by Molecular Attachments. Journal of Physical Chemistry C, 2011, 115, 1780-1785.	1.5	38
116	Highly conductive and flexible mesoporous graphitic films prepared by graphitizing the composites of graphene oxide and nanodiamond. Journal of Materials Chemistry, 2011, 21, 7154.	6.7	85
117	Characterization and nanopatterning of organically functionalized graphene with ultrahigh vacuum scanning tunneling microscopy. MRS Bulletin, 2011, 36, 532-542.	1.7	12
118	Synthesis of Nitrogen-Doped Graphene on Pt(111) by Chemical Vapor Deposition. Journal of Physical Chemistry C, 2011, 115, 10000-10005.	1.5	105
119	Optical Properties and Charge-Transfer Excitations in Edge-Functionalized All-Graphene Nanojunctions. Journal of Physical Chemistry Letters, 2011, 2, 1315-1319.	2.1	44
120	Controlled Modulation of Electronic Properties of Graphene by Self-Assembled Monolayers on SiO ₂ Substrates. ACS Nano, 2011, 5, 1535-1540.	7.3	100
121	Large-Scale Deposition of Graphene With Dielectrophoresis. , 2011, , .		0
122	High-Mobility Graphene Nanoribbons Prepared Using Polystyrene Dip-Pen Nanolithography. Journal of the American Chemical Society, 2011, 133, 5623-5625.	6.6	64
123	Control of Carrier Type and Density in Exfoliated Graphene by Interface Engineering. ACS Nano, 2011, 5, 408-412.	7.3	124
124	Transport Properties of Zigzag Graphene Nanoribbons Decorated by Carboxyl Group Chains. Journal of Physical Chemistry C, 2011, 115, 21893-21898.	1.5	8
125	Quantitative Analysis of Graphene Doping by Organic Molecular Charge Transfer. Journal of Physical Chemistry C, 2011, 115, 7596-7602.	1.5	94
126	Extremely high response of electrostatically exfoliated few layer graphene to ammonia adsorption. Nanotechnology, 2011, 22, 285502.	1.3	21
127	Synthesis of nitrogen-doped graphene by co-segregation method., 2011,,.		0
128	Synthesis of Graphene-CdSe Composite by a Simple Hydrothermal Method and Its Photocatalytic Degradation of Organic Dyes. Chinese Journal of Catalysis, 2011, 32, 1577-1583.	6.9	55
129	Graphene on Ni(111): Coexistence of Different Surface Structures. Journal of Physical Chemistry Letters, 2011, 2, 759-764.	2.1	158
130	Graphene nanoribbons with smooth edges behave as quantum wires. Nature Nanotechnology, 2011, 6, 563-567.	15.6	197

#	Article	IF	CITATIONS
131	Atomistic simulations of the implantation of low-energy boron and nitrogen ions into graphene. Physical Review B, 2011, 83, .	1.1	127
132	Facile Preparation of Nitrogen-Doped Few-Layer Graphene via Supercritical Reaction. ACS Applied Materials & Company Interfaces, 2011, 3, 2259-2264.	4.0	75
133	Controlled Chlorine Plasma Reaction for Noninvasive Graphene Doping. Journal of the American Chemical Society, 2011, 133, 19668-19671.	6.6	211
134	Bias temperature instability (BTI) characteristics of graphene Field-Effect Transistors. , 2011, , .		7
135	Graphene Transistors and Circuits. , 2011, , 349-376.		3
136	Scaling study of graphene transistors. , 2011, , .		0
137	Controllable healing of defects and nitrogen doping of graphene by CO and NO molecules. Physical Review B, $2011, 83, .$	1.1	67
138	Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets. ACS Nano, 2011, 5, 4112-4117.	7.3	590
139	Enhanced role of Al or Ga-doped graphene on the adsorption and dissociation of N2O under electric field. Physical Chemistry Chemical Physics, 2011, 13, 12472.	1.3	87
140	Performance assessment of partially unzipped carbon nanotube field-effect transistors., 2011,,.		1
141	Experimental study of graphitic nanoribbon films for ammonia sensing. Journal of Applied Physics, 2011, 109, .	1.1	45
142	lodine doping in solid precursor-based CVD growth graphene film. Journal of Materials Chemistry, 2011, 21, 15209.	6.7	113
143	Helical Wrapping and Insertion of Graphene Nanoribbon to Single-Walled Carbon Nanotube. Journal of Physical Chemistry C, 2011, 115, 18459-18467.	1.5	30
144	Cu2O@reduced graphene oxide composite for removal of contaminants from water and supercapacitors. Journal of Materials Chemistry, 2011, 21, 10645.	6.7	200
145	Molecule–substrate interaction channels of metal-phthalocyanines on graphene on Ni(111) surface. Journal of Chemical Physics, 2011, 134, 094705.	1.2	74
146	Formation of Large-Area Nitrogen-Doped Graphene Film Prepared from Simple Solution Casting of Edge-Selectively Functionalized Graphite and Its Electrocatalytic Activity. Chemistry of Materials, 2011, 23, 3987-3992.	3.2	171
147	Electronic Structure and Optical Absorption of Fluorographene. Materials Research Society Symposia Proceedings, 2011, 1370, 37.	0.1	14
148	Accurate six-band nearest-neighbor tight-binding model for the π-bands of bulk graphene and graphene nanoribbons. Journal of Applied Physics, 2011, 109, 104304.	1.1	35

#	Article	IF	CITATIONS
149	Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for the photocatalytic reduction of $Cr(vi)$. RSC Advances, 2011, 1, 1245.	1.7	160
150	Catalyst-Free Synthesis of Nitrogen-Doped Graphene <i>via</i> Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano, 2011, 5, 4350-4358.	7.3	2,341
151	Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Letters, 2011, 11, 2472-2477.	4.5	1,547
152	Molecular absorption and photodesorption in pristine and functionalized large-area graphene layers. Nanotechnology, 2011, 22, 355701.	1.3	32
153	Carbon Nanotube Field Effect Transistors with Suspended Graphene Gates. Nano Letters, 2011, 11, 3569-3575.	4.5	21
154	Chemically Isolated Graphene Nanoribbons Reversibly Formed in Fluorographene Using Polymer Nanowire Masks. Nano Letters, 2011, 11, 5461-5464.	4.5	79
155	A facile preparation route for boron-doped graphene, and its CdTe solar cell application. Energy and Environmental Science, 2011, 4, 862-865.	15.6	208
156	Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles. Physical Review B, 2011, 83, .	1.1	124
157	Transport Properties of Hybrid Zigzag Graphene and Boron Nitride Nanoribbons. Journal of Physical Chemistry C, 2011, 115, 10836-10841.	1.5	45
158	The Role of Chemistry in Graphene Doping for Carbon-Based Electronics. ACS Nano, 2011, 5, 3096-3103.	7.3	79
159	Charge transfer interactions between conjugated block copolymers and reduced graphene oxides. Chemical Communications, 2011, 47, 10293.	2.2	19
160	Family-Dependent Rectification Characteristics in Ultra-Short Graphene Nanoribbon <i>p</i> – <i>n</i> Junctions. Journal of Physical Chemistry C, 2011, 115, 8547-8554.	1.5	28
161	Nanoelectronic Circuit Design. , 2011, , .		30
162	Designing All-Graphene Nanojunctions by Covalent Functionalization. Journal of Physical Chemistry C, 2011, 115, 2969-2973.	1.5	36
163	Field-Emission Mechanism of Island-Shaped Graphene–BN Nanocomposite. Journal of Physical Chemistry C, 2011, 115, 9471-9476.	1.5	15
164	Selective n-Type Doping of Graphene by Photo-patterned Gold Nanoparticles. ACS Nano, 2011, 5, 3639-3644.	7.3	85
165	Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties. Nano Letters, 2011, 11, 5401-5407.	4.5	685
166	Visualizing Individual Nitrogen Dopants in Monolayer Graphene. Science, 2011, 333, 999-1003.	6.0	774

#	Article	IF	Citations
167	<i>In vivo</i> pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. Nanomedicine, 2011, 6, 1327-1340.	1.7	190
168	Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Physical Chemistry Chemical Physics, 2011, 13, 15384.	1.3	488
169	Rapid preparation of noble metal nanocrystals via facile coreduction with graphene oxide and their enhanced catalytic properties. Nanoscale, 2011, 3, 3737.	2.8	48
170	Graphene Transistors Are Insensitive to pH Changes in Solution. Nano Letters, 2011, 11, 3597-3600.	4.5	157
171	Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices. Journal of Physical Chemistry Letters, 2011, 2, 1113-1118.	2.1	216
172	Epitaxial Graphene on Metals. Nanoscience and Technology, 2011, , 189-234.	1.5	4
173	Electronic Structure of Bilayer Graphene Nanoribbon and Its Device Application: A Computational Study. Nanoscience and Technology, 2011, , 509-527.	1.5	1
174	High-Performance Graphene-Based Transparent Flexible Heaters. Nano Letters, 2011, 11, 5154-5158.	4.5	457
175	Highly sensitive bilayer structured graphene sensor. , 2011, , .		3
176	Graphene: Status and prospects as a microwave material. , 2011, , .		1
177	Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. Journal of Materials Chemistry, 2011, 21, 5319.	6.7	219
178	Electronic and Magnetic Properties of the Graphene-Ferromagnet Interfaces: Theory vs. Experiment. , $2011, \ldots$		4
179	Electronic Properties of Graphene Probed at the Nanoscale. , 0, , .		6
181	Electronic Transport Properties of Few-Layer Graphene Materials. , 0, , .		2
182	Polymer-electrolyte gated graphene transistors for analog and digital phase detection. Applied Physics Letters, 2011, 99, 043307.	1.5	8
183	Hydrogenation of Graphene and Hydrogen Diffusion Behavior on Graphene/Graphane Interface., 0,,.		9
184	Magnetism in Dehydrogenated Armchair Graphene Nanoribbon. Journal of the Physical Society of Japan, 2011, 80, 044712.	0.7	6
185	Graphene Doping: A Review. Insciences Journal, 0, , 80-89.	0.7	248

#	Article	lF	Citations
186	Valley polarized electronic transport through a line defect in graphene: An analytical approach based on tight-binding model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 376, 136-141.	0.9	17
187	Synthesis and characterization of nitrogen-doped monolayer and multilayer graphene on TEM copper grids. Chemical Physics Letters, 2011, 516, 212-215.	1.2	17
188	Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochemistry Communications, 2011, 13, 822-825.	2.3	315
189	Novel phosphorus-doped multiwalled nanotubes with high electrocatalytic activity for O2 reduction in alkaline medium. Catalysis Communications, $2011, 16, 35-38$.	1.6	114
190	Graphene: learning from carbon nanotubes. Journal of Materials Chemistry, 2011, 21, 919-929.	6.7	43
191	Tailoring Electronic Properties of Graphene by π–π Stacking with Aromatic Molecules. Journal of Physical Chemistry Letters, 2011, 2, 2897-2905.	2.1	255
192	Graphene edges: a review of their fabrication and characterization. Nanoscale, 2011, 3, 86-95.	2.8	410
194	Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale, 2011, 3, 2118.	2.8	265
195	Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews, 2011, 40, 2644.	18.7	1,195
196	Nanosized N-doped graphene oxide with visible fluorescence in water for metal ion sensing. Journal of Materials Chemistry, 2011, 21, 17635.	6.7	52
197	Chemical doping of graphene. Journal of Materials Chemistry, 2011, 21, 3335-3345.	6.7	1,433
198	Easy-to-Operate and Low-Temperature Synthesis of Gram-Scale Nitrogen-Doped Graphene and Its Application as Cathode Catalyst in Microbial Fuel Cells. ACS Nano, 2011, 5, 9611-9618.	7.3	205
199	Graphene Chemistry: Synthesis and Manipulation. Journal of Physical Chemistry Letters, 2011, 2, 2425-2432.	2.1	237
200	Attractive interaction between transition-metal atom impurities and vacancies in graphene: a first-principles study. Theoretical Chemistry Accounts, 2011, 129, 625-630.	0.5	97
201	Tuning graphene nanoribbon field effect transistors via controlling doping level. Theoretical Chemistry Accounts, 2011, 130, 483-489.	0.5	5
202	When noncovalent interactions are stronger than covalent bonds: Bilayer graphene doped with second row atoms, aluminum, silicon, phosphorus and sulfur. Chemical Physics Letters, 2011, 508, 95-101.	1.2	85
203	Sodium citrate: A universal reducing agent for reduction / decoration of graphene oxide with au nanoparticles. Nano Research, 2011, 4, 599-611.	5.8	160
204	Doping graphene films via chemically mediated charge transfer. Nanoscale Research Letters, 2011, 6, 111.	3.1	37

#	Article	IF	CITATIONS
205	Roomâ€Temperature Edge Functionalization and Doping of Graphene by Mild Plasma. Small, 2011, 7, 574-577.	5.2	56
206	Irreversible and Reversible Structural Deformation and Electromechanical Behavior of Carbon Nanohorns Probed by Conductive AFM. Small, 2011, 7, 1169-1174.	5.2	13
207	Tuning of Charge Densities in Graphene by Molecule Doping. Advanced Functional Materials, 2011, 21, 2687-2692.	7.8	99
208	Graphene Versus Carbon Nanotubes in Electronic Devices. Advanced Functional Materials, 2011, 21, 3806-3826.	7.8	232
209	Synthesis of Nitrogenâ€Doped Graphene Using Embedded Carbon and Nitrogen Sources. Advanced Materials, 2011, 23, 1020-1024.	11.1	735
210	Bandgap Engineering of Graphene by Physisorbed Adsorbates. Advanced Materials, 2011, 23, 2638-2643.	11.1	80
211	Control of Graphene Fieldâ€Effect Transistors by Interfacial Hydrophobic Selfâ€Assembled Monolayers. Advanced Materials, 2011, 23, 3460-3464.	11.1	138
213	Material advancements in supercapacitors: From activated carbon to carbon nanotube and graphene. Canadian Journal of Chemical Engineering, 2011, 89, 1342-1357.	0.9	154
214	Self-assembled graphene platelet–glucose oxidase nanostructures for glucose biosensing. Biosensors and Bioelectronics, 2011, 26, 4491-4496.	5.3	176
215	Thermophysical properties of multi-wall carbon nanotube bundles at elevated temperatures up to 830K. Carbon, 2011, 49, 1680-1691.	5.4	40
216	Catalyst-free formation of vertically-aligned carbon nanorods as induced by nitrogen incorporation. Carbon, 2011, 49, 1842-1848.	5.4	16
217	Interfacial electronic structures between fullerene and multilayer graphene for n-type organic semiconducting devices. Carbon, 2011, 49, 4936-4939.	5.4	14
218	Stochastic mechanics of electron transfer in graphene. Computer Physics Communications, 2011, 182, 87-89.	3.0	0
219	Configuration and electronic properties of graphene nanoribbons on Si(211) surface. Applied Surface Science, 2011, 257, 2474-2480.	3.1	2
220	Surface modification of highly oriented pyrolytic graphite by reaction with atomic nitrogen at high temperatures. Applied Surface Science, 2011, 257, 5647-5656.	3.1	15
221	The stretching vibration of hydrogen adsorbed on epitaxial graphene studied by sum-frequency generation spectroscopy. Chemical Physics Letters, 2011, 508, 1-5.	1.2	26
222	The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition. Carbon, 2011, 49, 3789-3795.	5.4	35
223	Preparation and photoelectrochemical performance of Ag/graphene/TiO2 composite film. Applied Surface Science, 2011, 257, 6568-6572.	3.1	49

#	Article	IF	Citations
224	Nitrogen doping effects on the structure of graphene. Applied Surface Science, 2011, 257, 9193-9198.	3.1	476
225	Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium–oxygen batteries. Journal of Power Sources, 2011, 196, 3310-3316.	4.0	166
226	Tuneable electronic properties in graphene. Nano Today, 2011, 6, 42-60.	6.2	309
227	Electronic properties of boron and nitrogen doped graphene nanoribbons and its application for graphene electronics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 845-848.	0.9	48
228	On the interband pairing in doped graphane. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2246-2248.	0.9	5
229	Effects of edge chemistry doping on graphene nanoribbon mobility. Surface Science, 2011, 605, 1643-1648.	0.8	28
230	Adsorption and desorption of fullerene on graphene/SiC(0001). Surface Science, 2011, 605, 649-653.	0.8	3
231	Scanning gate microscopy on graphene: charge inhomogeneity and extrinsic doping. Nanotechnology, 2011, 22, 295705.	1.3	50
232	Electronic structures of graphane sheets with foreign atom substitutions. Applied Physics Letters, 2011, 98, .	1.5	34
233	Static charging of graphene and graphite slabs. Applied Physics Letters, 2011, 98, .	1.5	23
234	Structural and mechanical properties of partially unzipped carbon nanotubes. Physical Review B, 2011 , 83 , .	1.1	28
235	Mechanisms of Postsynthesis Doping of Boron Nitride Nanostructures with Carbon from First-Principles Simulations. Physical Review Letters, 2011, 107, 035501.	2.9	88
236	Dynamics and stability of divacancy defects in graphene. Physical Review B, 2011, 84, .	1.1	90
237	Unintentional doping induced splitting of G peak in bilayer graphene. Applied Physics Letters, 2011, 99, 233110.	1.5	16
238	Solution-chemistry approach to graphene nanostructures. Journal of Materials Chemistry, 2011, 21, 3295.	6.7	64
239	Formation of Graphene p-n Junction via Complementary Doping. IEEE Electron Device Letters, 2011, 32, 1050-1052.	2.2	9
240	The effect of doping on the energetics and quantum conductance in graphene nanoribbons with a metallocene adsorbate. Journal of Chemical Physics, 2011, 135, 124708.	1.2	13
241	Local electrical stress-induced doping and formation of monolayer graphene P-N junction. Applied Physics Letters, 2011, 98, 243105.	1.5	19

#	Article	IF	CITATIONS
242	Controlling the self-doping of epitaxial graphene on SiC via Ar ion treatment. Physical Review B, 2011, 84, .	1.1	23
243	<i>In situ</i> doping of graphene by exfoliation in a nitrogen ambient. Applied Physics Letters, 2011, 98, .	1.5	26
244	Photo-electrical Effect of Pristine and Functionalized Graphene Grown by Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 2011, 1362, 1.	0.1	0
245	Defect Engineering for Graphene Tunable Doping. Materials Research Society Symposia Proceedings, 2011, 1283, 1.	0.1	0
246	Electrooptic Switching in Graphene-Based Liquid Crystal Cells. Molecular Crystals and Liquid Crystals, 2011, 543, 187/[953]-193/[959].	0.4	12
247	COMPARATIVE STUDY OF ELECTRONIC PROPERTIES OF GRAPHITE AND HEXAGONAL BORON NITRIDE (h- BN) USING PSEUDOPOTENTIAL PLANE WAVE METHOD. Modern Physics Letters B, 2011, 25, 1855-1866.	1.0	26
248	Nature of Graphene Edges: A Review. Japanese Journal of Applied Physics, 2011, 50, 070101.	0.8	121
249	Theory of nitrogen doping of carbon nanoribbons: Edge effects. Journal of Chemical Physics, 2012, 136, 014702.	1.2	26
250	Graphene on Ag films for reflectively conductive layer ohmic contacts to p-type GaN in GaN-based light-emitting diodes. Proceedings of SPIE, 2012, , .	0.8	0
251	Graphene-based polymer waveguide polarizer. Optics Express, 2012, 20, 3556.	1.7	124
252	Valley and subband-selective electronic transport through a line defect embedded carbon nanotube. Journal of Physics Condensed Matter, 2012, 24, 475303.	0.7	4
253	Effects of plasmonic coupling and electrical current on persistent photoconductivity of single-layer graphene on pristine and silver-nanoparticle-coated SiO_2/Si. Optics Express, 2012, 20, 22943.	1.7	8
254	Indirect optical transitions in hybrid spheres with alternating layers of titania and graphene oxide nanosheets. Optics Express, 2012, 20, 28801.	1.7	11
255	The site effects of B or N doping on I-V characteristics of a single pyrene molecular device. Applied Physics Letters, 2012, 101, 073104.	1.5	33
256	Study of surface cleaning methods and pyrolysis temperatures on nanostructured carbon films using x-ray photoelectron spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 061407.	0.9	7
257	Valley polarized electronic transmission through a line defect superlattice of graphene. Physical Review B, 2012, 86, .	1.1	34
258	Local charge transfer doping in suspended graphene nanojunctions. Applied Physics Letters, 2012, 100, 023306.	1.5	3
259	Thermal stability study of nitrogen functionalities in a graphene network. Journal of Physics Condensed Matter, 2012, 24, 235503.	0.7	55

#	ARTICLE	IF	CITATIONS
261	Carbon Nanotube- and Graphene-based Sensors for Environmental Applications. , 2012, , 621-645.		1
262	Ferromagnetism in hydrogenated N-doped amorphous carbon films. Journal of Applied Physics, 2012, 111, 053922.	1.1	6
263	Carbon-based Cathode Materials Doped with a New Borazine Compound for Electrochemical Oxygen Reduction. Chemistry Letters, 2012, 41, 923-925.	0.7	10
264	Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 18932-18935.	6.6	545
265	Defects and doping and their role in functionalizing graphene. MRS Bulletin, 2012, 37, 1187-1194.	1.7	61
266	Electronic Strengthening of Graphene by Charge Doping. Physical Review Letters, 2012, 109, 226802.	2.9	104
267	Half-metallic ferromagnetism in substitutionally doped boronitrene. Physical Review B, 2012, 86, .	1.1	10
268	Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy, 2012, 1, 534-551.	8.2	628
269	Atomistic Description of Electron Beam Damage in Nitrogen-Doped Graphene and Single-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 8837-8846.	7.3	119
270	Growth and electronic structure of nitrogen-doped graphene on Ni(111). Physical Review B, 2012, 86, .	1.1	77
271	Flexible FET-Type VEGF Aptasensor Based on Nitrogen-Doped Graphene Converted from Conducting Polymer. ACS Nano, 2012, 6, 1486-1493.	7.3	232
272	Fabrication of Unipolar Graphene Field-Effect Transistors by Modifying Source and Drain Electrode Interfaces with Zinc Porphyrin. ACS Applied Materials & Samp; Interfaces, 2012, 4, 1434-1439.	4.0	13
273	Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. Journal of Materials Chemistry, 2012, 22, 7461.	6.7	667
274	Phononic band gap engineering in graphene. Journal of Applied Physics, 2012, 112, .	1.1	13
275	Modulation-doped growth of mosaic graphene with single-crystalline p–n junctions for efficient photocurrent generation. Nature Communications, 2012, 3, 1280.	5.8	97
276	Synthesis of Adenine-Modified Reduced Graphene Oxide Nanosheets. Inorganic Chemistry, 2012, 51, 2954-2960.	1.9	60
277	The electric field as a novel switch for uptake/release of hydrogen for storage in nitrogen doped graphene. Physical Chemistry Chemical Physics, 2012, 14, 1463-1467.	1.3	71
278	Preparation of phosphorus-doped carbon nanospheres and their electrocatalytic performance for O2 reduction. Journal of Natural Gas Chemistry, 2012, 21, 257-264.	1.8	51

#	Article	IF	CITATIONS
281	A Versatile, Ultralight, Nitrogenâ€Doped Graphene Framework. Angewandte Chemie - International Edition, 2012, 51, 11371-11375.	7.2	731
282	A Boronâ€Containing PAH as a Substructure of Boronâ€Doped Graphene. Angewandte Chemie - International Edition, 2012, 51, 12206-12210.	7.2	210
283	Electronic properties of boron- and nitrogen-doped graphene: a first principles study. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	95
284	Covalent functionalization of graphene oxide by 9-(4-aminophenyl)acridine and its derivatives. Chinese Chemical Letters, 2012, 23, 1411-1414.	4.8	11
285	Giant low bias negative differential resistance induced by nitrogen doping in graphene nanoribbon. Chemical Physics Letters, 2012, 554, 172-176.	1.2	33
286	Electronic structure of superlattices of graphene and hexagonal boron nitride. Journal of Materials Chemistry, 2012, 22, 919-922.	6.7	90
287	Anomalous insulator-metal transition in boron nitride-graphene hybrid atomic layers. Physical Review B, 2012, 86, .	1.1	42
288	The doping of reduced graphene oxide with nitrogen and its effect on the quenching of the material's photoluminescence. Carbon, 2012, 50, 5286-5291.	5.4	62
289	Nitrogen-doped carbon materials produced from hydrothermally treated tannin. Carbon, 2012, 50, 5411-5420.	5.4	127
290	Polybenzimidazole mediated N-doping along the inner and outer surfaces of a carbon nanofiber and its oxygen reduction properties. Journal of Materials Chemistry, 2012, 22, 23668.	6.7	16
291	Knitted graphene-nanoribbon sheet: a mechanically robust structure. Nanoscale, 2012, 4, 785-791.	2.8	22
292	Charge transfer induced chemical reaction of tetracyano-p-quinodimethane adsorbed on graphene. RSC Advances, 2012, 2, 10579.	1.7	24
293	Dual n-type doped reduced graphene oxide field effect transistors controlled by semiconductor nanocrystals. Chemical Communications, 2012, 48, 4052.	2.2	19
294	Spontaneous reduction and dispersion of graphene nano-platelets with in situ synthesized hydrazine assisted by hexamethyldisilazane. Journal of Materials Chemistry, 2012, 22, 20477.	6.7	9
295	High-Density Amine-Terminated Monolayers Formed on Fluorinated CVD-Grown Graphene. Langmuir, 2012, 28, 7957-7961.	1.6	67
296	Exploring the electronic properties of relaxed bilayer nitrogen-graphene alloy using density functional theory, , 2012 , , .		О
297	Robust Electronic Properties of Sealed Graphene for Electronic Applications. Journal of Physical Chemistry C, 2012, 116, 8027-8033.	1.5	6
298	Electronics and Optics of Graphene Nanoflakes: Edge Functionalization and Structural Distortions. Journal of Physical Chemistry C, 2012, 116, 17328-17335.	1.5	52

#	Article	IF	Citations
299	Visualizing Local Doping Effects of Individual Water Clusters on Gold(111)-Supported Graphene. Nano Letters, 2012, 12, 1459-1463.	4.5	38
300	Controllable gallium melt-assisted interfacial graphene growth on silicon carbide. Diamond and Related Materials, 2012, 24, 34-38.	1.8	7
301	Bilayer graphene anode for small molecular organic electroluminescence. Journal Physics D: Applied Physics, 2012, 45, 245103.	1.3	13
302	Tunable Band Gaps and p-Type Transport Properties of Boron-Doped Graphenes by Controllable Ion Doping Using Reactive Microwave Plasma. ACS Nano, 2012, 6, 1970-1978.	7.3	244
303	Quenching of fluorescence of reduced graphene oxide by nitrogen-doping. Applied Physics Letters, 2012, 100, 233112.	1.5	41
304	Spontaneous Grafting of Nitrophenyl Groups on Amorphous Carbon Thin Films: A Structure–Reactivity Investigation. Chemistry of Materials, 2012, 24, 1031-1040.	3.2	36
305	Electronic properties of graphene nanoribbon doped by boron/nitrogen pair: a first-principles study. Chinese Physics B, 2012, 21, 027102.	0.7	16
306	Tunable band gaps of mono-layer hexagonal BNC heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1662-1666.	1.3	67
307	Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene. Solid State Communications, 2012, 152, 1503-1507.	0.9	89
308	Large-area graphene synthesis and its application to interface-engineered field effect transistors. Solid State Communications, 2012, 152, 1350-1358.	0.9	26
309	B, C and N adatoms effects on the transport properties in zigzag graphene nanoribbons. Solid State Communications, 2012, 152, 1635-1640.	0.9	9
310	Chemical functionalization of epitaxial graphene on SiC using tetra(4-carboxyphenyl)porphine. Surface Science, 2012, 606, 481-484.	0.8	3
311	The production of nitrogen-doped graphene from mixed amine plus ethanol flames. Thin Solid Films, 2012, 520, 6850-6855.	0.8	36
312	High-Yield Fabrication of Graphene Chemiresistors With Dielectrophoresis. IEEE Nanotechnology Magazine, 2012, 11, 751-759.	1.1	20
313	Controlled doping of graphene using ultraviolet irradiation. Applied Physics Letters, 2012, 100, 253108.	1.5	94
314	Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups. Journal of the American Chemical Society, 2012, 134, 15-18.	6.6	1,832
315	The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Reports on Progress in Physics, 2012, 75, 062501.	8.1	475
316	Hydrogenation and Fluorination of Graphene Models: Analysis via the Average Local Ionization Energy. Journal of Physical Chemistry A, 2012, 116, 8644-8652.	1.1	54

#	Article	IF	CITATIONS
317	Raman Spectroscopy of Boron-Doped Single-Layer Graphene. ACS Nano, 2012, 6, 6293-6300.	7.3	245
318	Electronic properties and STM images of doped bilayer graphene. Physical Review B, 2012, 85, .	1.1	30
319	Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping. Nature Communications, 2012, 3, 638.	5.8	354
320	Prominently Improved Hydrogen Purification and Dispersive Metal Binding for Hydrogen Storage by Substitutional Doping in Porous Graphene. Journal of Physical Chemistry C, 2012, 116, 21291-21296.	1.5	76
321	Doping Monolayer Graphene with Single Atom Substitutions. Nano Letters, 2012, 12, 141-144.	4.5	533
322	Hydrothermal synthesis of highly nitrogen-doped carbon powder. Applied Surface Science, 2012, 258, 2510-2514.	3.1	31
323	Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction. Applied Surface Science, 2012, 258, 3438-3443.	3.1	163
324	C/TiO2 nanohybrids co-doped by N and their enhanced photocatalytic ability. Journal of Solid State Chemistry, 2012, 192, 305-311.	1.4	22
325	Modulation of electric behavior by position-dependent substitutional impurity in zigzag-edged graphene nanoribbon. Computational Materials Science, 2012, 60, 234-238.	1.4	11
326	Crumpled Nitrogenâ€Doped Graphene Nanosheets with Ultrahigh Pore Volume for Highâ€Performance Supercapacitor. Advanced Materials, 2012, 24, 5610-5616.	11.1	880
327	Highly Airâ€Stable Phosphorusâ€Doped nâ€Type Graphene Fieldâ€Effect Transistors. Advanced Materials, 2012, 24, 5481-5486.	11.1	195
328	New Routes to Graphene, Graphene Oxide and Their Related Applications. Advanced Materials, 2012, 24, 4924-4955.	11.1	329
330	Synthesis of Monolayerâ€Patched Graphene from Glucose. Angewandte Chemie - International Edition, 2012, 51, 9689-9692.	7.2	377
331	Synthesis of Highly nâ€Type Graphene by Using an Ionic Liquid. Chemistry - A European Journal, 2012, 18, 12207-12212.	1.7	41
332	Nanostructured Metalâ€Free Electrochemical Catalysts for Highly Efficient Oxygen Reduction. Small, 2012, 8, 3550-3566.	5.2	559
333	Graphene based catalysts. Energy and Environmental Science, 2012, 5, 8848.	15.6	726
334	Electrochemically Active Nitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized by Pyrolysis of Self-Assembled Block Copolymer. Journal of the American Chemical Society, 2012, 134, 14846-14857.	6.6	354
335	Band gap opening of graphene by doping small boron nitride domains. Nanoscale, 2012, 4, 2157.	2.8	225

#	Article	IF	CITATIONS
336	Reversibly Light-Modulated Dirac Point of Graphene Functionalized with Spiropyran. ACS Nano, 2012, 6, 9207-9213.	7.3	85
337	A molecular dynamics investigation of the mechanical properties of graphene nanochains. Journal of Materials Chemistry, 2012, 22, 9798.	6.7	23
338	Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. Journal of Materials Chemistry, 2012, 22, 390-395.	6.7	790
339	Raman Spectroscopy for Characterization of Graphene. , 2012, , 191-214.		14
340	Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 2012, 112, 6156-6214.	23.0	3,531
341	Graphene enriched with pyrrolic coordination of the doped nitrogen as an efficient metal-free electrocatalyst for oxygen reduction. Journal of Materials Chemistry, 2012, 22, 23506.	6.7	159
342	B and N doping in graphene ruled by grain boundary defects. Physical Review B, 2012, 85, .	1.1	46
343	Inter-sheet-effect-inspired graphene sensors: design, fabrication and characterization. Nanotechnology, 2012, 23, 105501.	1.3	22
344	Doped GNR p–n Junction as High Performance NDR and Rectifying Device. Journal of Physical Chemistry C, 2012, 116, 18064-18069.	1.5	78
345	First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene. Journal of Physics Condensed Matter, 2012, 24, 265002.	0.7	8
346	Graphene Transistors. , 2012, , 51-91.		5
347	Transport Characteristics of Multichannel Transistors Made from Densely Aligned Sub-10 nm Half-Pitch Graphene Nanoribbons. ACS Nano, 2012, 6, 9700-9710.	7.3	79
348	Synthesis and upconversion luminescence of N-doped graphene quantum dots. Applied Physics Letters, 2012, 101, .	1.5	173
349	Adsorption and Dissociation of Ammonia on Graphene Oxides: A First-Principles Study. Journal of Physical Chemistry C, 2012, 116, 8778-8791.	1.5	131
350	Charge Inhomogeneity Determines Oxidative Reactivity of Graphene on Substrates. ACS Nano, 2012, 6, 8335-8341.	7.3	62
351	Graphitization of boron predeposited 6H-SiC(0001) surface. Applied Surface Science, 2012, 261, 868-872.	3.1	1
352	Iron addition to Vietnam anthracite coal and its nitrogen doping as a PEFC non-platinum cathode catalyst. Fuel, 2012, 102, 359-365.	3.4	16
353	Transport properties of zigzag graphene nanoribbons with oxygen edge decoration. Organic Electronics, 2012, 13, 2494-2501.	1.4	15

#	Article	IF	CITATIONS
354	Structural, magnetic, electronic and optical properties of iron cluster (Fe6) decorated boron nitride sheet. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 46, 182-188.	1.3	26
355	Intrinsic and extrinsic strain induced structural change of zigzag graphene nanoribbon. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 377, 118-123.	0.9	1
356	Nitrogen-doped graphene as transparent counter electrode for efficient dye-sensitized solar cells. Materials Research Bulletin, 2012, 47, 4252-4256.	2.7	31
357	Graphene Electronics for RF Applications. IEEE Microwave Magazine, 2012, 13, 114-125.	0.7	39
358	The modification of central B/N atom chain on electron transport of graphene nanoribbons. Journal of Applied Physics, 2012, 112, 113713.	1.1	1
359	lonic liquid assisting synthesis of ZnO/graphene heterostructure photocatalysts with tunable photoresponse properties. Diamond and Related Materials, 2012, 26, 32-38.	1.8	29
360	Surface Reactivity for Chlorination on Chlorinated (5,5) Armchair SWCNT: A Computational Approach. Journal of Physical Chemistry C, 2012, 116, 22399-22410.	1.5	62
361	Modeling of graphene nanoribbon devices. Nanoscale, 2012, 4, 5538.	2.8	53
362	Elastic properties of hybrid graphene/boron nitride monolayer. Acta Mechanica, 2012, 223, 2591-2596.	1.1	77
363	Novel preparation of nitrogen-doped graphene in various forms with aqueous ammonia under mild conditions. RSC Advances, 2012, 2, 11249.	1.7	54
364	Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chemical Society Reviews, 2012, 41, 97-114.	18.7	487
365	Graphene folds by femtosecond laser ablation. Applied Physics Letters, 2012, 100, .	1.5	60
366	Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide. Journal of Physical Chemistry Letters, 2012, 3, 986-991.	2.1	356
367	Nitrogen-Doped Graphene/ZnSe Nanocomposites: Hydrothermal Synthesis and Their Enhanced Electrochemical and Photocatalytic Activities. ACS Nano, 2012, 6, 712-719.	7.3	260
368	Direct Growth of Doping-Density-Controlled Hexagonal Graphene on SiO ₂ Substrate by Rapid-Heating Plasma CVD. ACS Nano, 2012, 6, 8508-8515.	7.3	99
369	Transport properties of hybrid graphene/graphane nanoribbons. Applied Physics Letters, 2012, 100, 103109.	1.5	10
370	Polyaromatic Ribbons from Oligo-Alkynes via Selective Radical Cascade: Stitching Aromatic Rings with Polyacetylene Bridges. Journal of the American Chemical Society, 2012, 134, 9609-9614.	6.6	72
371	Facile Formation of Graphene P–N Junctions Using Self-Assembled Monolayers. Journal of Physical Chemistry C, 2012, 116, 19095-19103.	1.5	34

#	Article	IF	CITATIONS
372	Spectroscopic investigation of nitrogen doped graphene. Applied Physics Letters, 2012, 101, .	1.5	52
373	Persistent plasmonic photoconductivity of graphene on silver nanoparticles coated SiO <inf>2</inf> /Si., 2012, , .		1
374	Dissipative transport in rough edge graphene nanoribbon tunnel transistors. Applied Physics Letters, 2012, 101, .	1.5	24
375	Laser-induced etching of few-layer graphene synthesized by Rapid-Chemical Vapour Deposition on Cuthin films. SpringerPlus, 2012, 1, 52.	1.2	9
376	Atomic-scale characterization of nitrogen-doped graphite: Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms. Physical Review B, 2012, 86, .	1.1	247
377	Ordered Semiconducting Nitrogen-Graphene Alloys. Physical Review X, 2012, 2, .	2.8	50
378	Production of Nitrogen-Doped Graphene by Low-Energy Nitrogen Implantation. Journal of Physical Chemistry C, 2012, 116, 5062-5066.	1.5	96
379	Can Graphene Oxide Cause Damage to Eyesight?. Chemical Research in Toxicology, 2012, 25, 1265-1270.	1.7	104
380	Water-Gated Charge Doping of Graphene Induced by Mica Substrates. Nano Letters, 2012, 12, 648-654.	4.5	166
381	Molecular Dynamics Simulations of Ion-Bombarded Graphene. Journal of Physical Chemistry C, 2012, 116, 4044-4049.	1.5	47
382	Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports, 2012, 2, 586.	1.6	563
383	Towards industrial applications of graphene electrodes. Physica Scripta, 2012, T146, 014024.	1.2	131
384	A computational study of graphene silicon contact. Journal of Applied Physics, 2012, 112, 104502.	1.1	7
385	Nitrogen-doped Graphene for Oxygen Reduction Reaction in Air Electrodes. ECS Meeting Abstracts, 2012, , .	0.0	0
386	Electrochemically Generated Highly Fluorescent Graphene Quantum Dots as a Biological Label for Stem Cells. ECS Meeting Abstracts, 2012, , .	0.0	1
387	Solvothermal Synthesis of Nitrogen-Containing Graphene for Electrochemical Oxygen Reduction in Acid Media. E-Journal of Surface Science and Nanotechnology, 2012, 10, 29-32.	0.1	18
388	Controlled Ambipolarâ€toâ€Unipolar Conversion in Graphene Fieldâ€Effect Transistors Through Surface Coating with Poly(ethylene imine)/Poly(ethylene glycol) Films. Small, 2012, 8, 59-62.	5.2	33
389	Flexible Field Emission from Thermally Welded Chemically Doped Graphene Thin Films. Small, 2012, 8, 272-280.	5.2	30

#	Article	IF	CITATIONS
390	Tuning Electron Transport in Grapheneâ€Based Fieldâ€Effect Devices using Block Coâ€polymers. Small, 2012, 8, 1073-1080.	5.2	23
391	Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis, 2012, 2, 781-794.	5.5	3,171
392	Nitrogen-Doped Graphene Nanosheets as Metal-Free Catalysts for Aerobic Selective Oxidation of Benzylic Alcohols. ACS Catalysis, 2012, 2, 622-631.	5.5	384
393	Study of electromagnetic enhancement for surface enhanced Raman spectroscopy of SiC graphene. Applied Physics Letters, 2012, 100, 191601.	1.5	19
394	Low-temperature, site selective graphitization of SiC via ion implantation and pulsed laser annealing. Applied Physics Letters, 2012, 100, .	1.5	19
395	Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New Journal of Chemistry, 2012, 36, 1385.	1.4	186
396	Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2012, 14, 3381.	1.3	261
397	Graphene-Quantum-Dot Assembled Nanotubes: A New Platform for Efficient Raman Enhancement. ACS Nano, 2012, 6, 2237-2244.	7.3	166
398	Interplay between nitrogen dopants and native point defects in graphene. Physical Review B, 2012, 85, .	1.1	133
399	Facile synthesis of nitrogen-doped graphene for measuring the releasing process of hydrogen peroxide from living cells. Journal of Materials Chemistry, 2012, 22, 6402.	6.7	201
400	Reversible, opto-mechanically induced spin-switching in a nanoribbon-spiropyran hybrid material. Nanoscale, 2012, 4, 1321.	2.8	42
401	Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Advances, 2012, 2, 4498.	1.7	696
402	Molecular doping of graphene with ammonium groups. Physical Review B, 2012, 85, .	1.1	34
403	Effects of static charging and exfoliation of layered crystals. Physical Review B, 2012, 85, .	1.1	35
404	The application of graphene as electrodes in electrical and optical devices. Nanotechnology, 2012, 23, 112001.	1.3	329
405	Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene. Nano Letters, 2012, 12, 4025-4031.	4.5	471
406	Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro)chemical Performance. Macromolecular Chemistry and Physics, 2012, 213, 1078-1090.	1.1	73
407	Nitrogenâ€Doped Carbon Hollow Spheres for Immobilization, Direct Electrochemistry, and Biosensing of Protein. Electroanalysis, 2012, 24, 1424-1430.	1.5	19

#	Article	IF	CITATIONS
408	An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nature Nanotechnology, 2012, 7, 394-400.	15.6	1,533
409	Self-Encapsulated Doping of n-Type Graphene Transistors with Extended Air Stability. ACS Nano, 2012, 6, 6215-6221.	7. 3	76
410	Facile Method for rGO Field Effect Transistor: Selective Adsorption of rGO on SAMâ€Treated Gold Electrode by Electrostatic Attraction. Advanced Materials, 2012, 24, 2299-2303.	11.1	26
411	Binary and Ternary Atomic Layers Built from Carbon, Boron, and Nitrogen. Advanced Materials, 2012, 24, 4878-4895.	11.1	219
412	Boron Doping of Graphene for Graphene–Silicon p–n Junction Solar Cells. Advanced Energy Materials, 2012, 2, 425-429.	10.2	169
413	nâ€Type Reduced Graphene Oxide Fieldâ€Effect Transistors (FETs) from Photoactive Metal Oxides. Chemistry - A European Journal, 2012, 18, 4923-4929.	1.7	23
414	Synthesis of Dendritic Platinum Nanoparticles/Lucigenin/Reduced Graphene Oxide Hybrid with Chemiluminescence Activity. Chemistry - A European Journal, 2012, 18, 4823-4826.	1.7	30
415	Can Commonly Used Hydrazine Produce nâ€√ype Graphene?. Chemistry - A European Journal, 2012, 18, 7665-7670.	1.7	39
416	Helium Tunneling through Nitrogen-Functionalized Graphene Pores: Pressure- and Temperature-Driven Approaches to Isotope Separation. Journal of Physical Chemistry C, 2012, 116, 10819-10827.	1.5	110
417	Nanoporous Graphene Membranes for Efficient ³ He/ ⁴ He Separation. Journal of Physical Chemistry Letters, 2012, 3, 209-213.	2.1	154
418	Low Temperature Growth of Highly Nitrogen-Doped Single Crystal Graphene Arrays by Chemical Vapor Deposition. Journal of the American Chemical Society, 2012, 134, 11060-11063.	6.6	287
419	Enhancement of quaternary nitrogen doping of graphene oxide via chemical reduction prior to thermal annealing and an investigation of its electrochemical properties. Journal of Materials Chemistry, 2012, 22, 14756.	6.7	58
420	Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. Journal of Materials Chemistry, 2012, 22, 14076.	6.7	280
421	Tuning magnetic properties of graphene nanoribbons with topological line defects: From antiferromagnetic to ferromagnetic. Physical Review B, 2012, 85, .	1.1	67
422	Ferromagnetic hematite@graphene nanocomposites for removal of rhodamine B dye molecules from water. CrystEngComm, 2012, 14, 5140.	1.3	41
423	Performance projection of graphene nanomesh and nanoroad transistors. Nano Research, 2012, 5, 164-171.	5.8	6
424	A molecular understanding of the gas-phase reduction and doping of graphene oxide. Nano Research, 2012, 5, 361-368.	5.8	16
425	Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy. Carbon, 2012, 50, 335-338.	5.4	111

#	Article	IF	Citations
426	Edge doping of graphene sheets. Carbon, 2012, 50, 637-645.	5.4	49
427	The influence of atmosphere on electrical transport in graphene. Carbon, 2012, 50, 1727-1733.	5.4	85
428	Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature. Carbon, 2012, 50, 3333-3341.	5.4	44
429	On the interaction of polycyclic aromatic compounds with graphene. Carbon, 2012, 50, 2482-2492.	5.4	66
430	Influence of N-doping on the structural and photoluminescence properties of graphene oxide films. Carbon, 2012, 50, 3799-3806.	5.4	79
431	A nonvolatile memory device made of a graphene nanoribbon and a multiferroic BiFeO3 gate dielectric layer. Carbon, 2012, 50, 3854-3858.	5.4	41
432	A simple method to synthesize continuous large area nitrogen-doped graphene. Carbon, 2012, 50, 4476-4482.	5.4	139
433	Adsorption of epoxy and hydroxyl groups on zigzag graphene nanoribbons: Insights from density functional calculations. Chemical Physics, 2012, 392, 33-45.	0.9	23
434	Structural, electronic and magnetic properties of single transition-metal adsorbed BN sheet: A density functional study. Chemical Physics Letters, 2012, 532, 40-46.	1.2	42
435	A powerful approach to fabricate nitrogen-doped graphene sheets with high specific surface area. Electrochemistry Communications, 2012, 14, 39-42.	2.3	93
436	Enhanced electrocatalytic activity of nitrogen-doped graphene for the reduction of nitro explosives. Electrochemistry Communications, 2012, 16, 30-33.	2.3	36
437	Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts. Electrochimica Acta, 2012, 60, 354-358.	2.6	114
438	Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosensors and Bioelectronics, 2012, 34, 125-131.	5.3	686
439	Towards new graphene materials: Doped graphene sheets and nanoribbons. Materials Letters, 2012, 78, 209-218.	1.3	196
440	Determination of chlorpyriphos in broccoli using a voltammetric acetylcholinesterase sensor based on carbon nanostructure–chitosan composite material. Materials Science and Engineering C, 2012, 32, 1001-1004.	3.8	15
441	The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surface Science Reports, 2012, 67, 83-115.	3.8	746
442	Nonâ€Covalent Functionalization of Graphene Using Selfâ€Assembly of Alkaneâ€Amines. Advanced Functional Materials, 2012, 22, 717-725.	7.8	73
444	Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie - International Edition, 2012, 51, 68-89.	7.2	2,897

#	Article	lF	Citations
445	Synthesis of high carbon content microspheres using 2-step microwave carbonization, and the influence of nitrogen doping on catalytic activity. Carbon, 2013, 60, 307-316.	5.4	26
446	Quantum interference in DNA bases probed by graphene nanoribbons. Applied Physics Letters, 2013, 103,	1.5	22
447	Nitrogen-doped graphene as low-cost counter electrode for high-efficiency dye-sensitized solar cells. Electrochimica Acta, 2013, 92, 269-275.	2.6	95
448	Au-Nanoparticle-Loaded Graphitic Carbon Nitride Nanosheets: Green Photocatalytic Synthesis and Application toward the Degradation of Organic Pollutants. ACS Applied Materials & Interfaces, 2013, 5, 6815-6819.	4.0	493
449	Designed CVD Growth of Graphene via Process Engineering. Accounts of Chemical Research, 2013, 46, 2263-2274.	7.6	172
450	Low dimensional nanocarbons – chemistry and energy/electron transfer reactions. Chemical Science, 2013, 4, 4335.	3.7	102
451	Electrodeposition of graphene layers doped with Briensted acids. Journal of Materials Science, 2013, 48, 6891-6896.	1.7	6
452	Synthesis and supercapacitor performance studies of N-doped graphene materials using o-phenylenediamine as the double-N precursor. Carbon, 2013, 63, 508-516.	5 . 4	179
453	Electronic properties of BN-doped bilayer graphene and graphyne in the presence of electric field. Molecular Physics, 2013, 111, 3194-3199.	0.8	18
454	Reduction of free-standing graphene oxide papers by a hydrothermal process at the solid/gas interface. RSC Advances, 2013, 3, 2971.	1.7	29
455	Nitrogen doped graphene nanosheet supported platinum nanoparticles as high performance electrochemical homocysteine biosensors. Journal of Materials Chemistry B, 2013, 1, 4655.	2.9	58
456	Soft lithography of graphene sheets via surface energy modification. Journal of Materials Chemistry C, 2013, 1, 1076.	2.7	18
457	Simultaneous N-intercalation and N-doping of epitaxial graphene on 6H-SiC(0001) through thermal reactions with ammonia. Nano Research, 2013, 6, 399-408.	5.8	41
458	KOH-activated nitrogen-doped graphene by means of thermal annealing for supercapacitor. Journal of Solid State Electrochemistry, 2013, 17, 1809-1814.	1.2	62
459	Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics. Scientific Reports, 2013, 3, 1581.	1.6	82
460	Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn–air batteries. Journal of Power Sources, 2013, 243, 267-273.	4.0	91
461	Synthesis and photoluminescence of F and N co-doped reduced graphene oxide. Carbon, 2013, 61, 436-440.	5.4	29
462	Nitrogenâ€Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport. Advanced Functional Materials, 2013, 23, 3755-3762.	7.8	31

#	Article	IF	Citations
463	Synthesis and electronic structure of nitrogen-doped graphene. Physics of the Solid State, 2013, 55, 1325-1332.	0.2	33
465	Visible light photocatalytic degradation of dyes by bismuth oxide-reduced graphene oxide composites prepared via microwave-assisted method. Journal of Colloid and Interface Science, 2013, 408, 145-150.	5.0	92
467	New products of a new method for pyrolysis of pyridine. Russian Journal of Applied Chemistry, 2013, 86, 167-175.	0.1	18
468	Nanoscale Dynamics and Protein Adhesivity of Alkylamine Self-Assembled Monolayers on Graphene. Langmuir, 2013, 29, 7271-7282.	1.6	27
469	A single-source route to bulk samples of C3N and the co-evolution of graphitic carbon microspheres. Carbon, 2013, 64, 6-10.	5.4	20
470	Modeling electronic properties and quantum transport in doped and defective graphene. Solid State Communications, 2013, 175-176, 90-100.	0.9	34
471	Tailoring the Electrical Properties of Graphene Layers by Molecular Doping. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5276-5281.	4.0	30
472	Graphene for energy solutions and its industrialization. Nanoscale, 2013, 5, 10108.	2.8	86
473	A graphene-based large area surface-conduction electron emission display. Carbon, 2013, 56, 255-263.	5.4	43
474	Nickel Cluster Growth on Defect Sites of Graphene: A Computational Study. Angewandte Chemie - International Edition, 2013, 52, 14237-14241.	7.2	47
475	Enhanced response to molecular adsorption of structurally defective graphene. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 030602.	0.6	5
476	Facile single-step ammonia heat-treatment and quenching process for the synthesis of improved Pt/N-graphene catalysts. Applied Surface Science, 2013, 266, 433-439.	3.1	42
477	Graphene nanoribbon based negative resistance device for ultra-low voltage digital logic applications. Applied Physics Letters, 2013, 102, 043114.	1.5	30
478	Tunable band gap and hydrogen adsorption property of a two-dimensional porous polymer by nitrogen substitution. Physical Chemistry Chemical Physics, 2013, 15, 666-670.	1.3	20
479	Hierarchically Porous Nitrogen-Doped Graphene–NiCo ₂ O ₄ Hybrid Paper as an Advanced Electrocatalytic Water-Splitting Material. ACS Nano, 2013, 7, 10190-10196.	7.3	506
480	Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction. Nanoscale, 2013, 5, 12255.	2.8	73
481	Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen. Scientific Reports, 2013, 3, 2566.	1.6	97
482	Chemical Functionalization of Silicene: Spontaneous Structural Transition and Exotic Electronic Properties. Physical Review Letters, 2013, 111, 145502.	2.9	68

#	Article	IF	Citations
483	The thermal stability of graphene in air investigated by Raman spectroscopy. Journal of Raman Spectroscopy, 2013, 44, 1018-1021.	1.2	209
484	N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. Energy and Environmental Science, 2013, 6, 3693.	15.6	309
485	Hole Defects and Nitrogen Doping in Graphene: Implication for Supercapacitor Applications. ACS Applied Materials & Samp; Interfaces, 2013, 5, 11184-11193.	4.0	128
486	One-step synthesis of boron and nitrogen-dual-self-doped graphene sheets as non-metal catalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 14700.	5.2	107
487	Edge Effects on the pH Response of Graphene Nanoribbon Field Effect Transistors. Journal of Physical Chemistry C, 2013, 117, 27155-27160.	1.5	50
488	Gold intercalation of boron-doped graphene on Ni(111): XPS and DFT study. Journal of Physics Condensed Matter, 2013, 25, 445002.	0.7	12
489	<i>ln situ</i> growth of <i>p</i> and <i>n</i> -type graphene thin films and diodes by pulsed laser deposition. Applied Physics Letters, 2013, 103, .	1.5	17
490	Stone-Wales defects in silicene: Formation, stability, and reactivity of defect sites. Physical Review B, 2013, 88, .	1.1	108
491	Critical Crystal Growth of Graphene on Dielectric Substrates at Low Temperature for Electronic Devices. Angewandte Chemie - International Edition, 2013, 52, 14121-14126.	7.2	125
492	Field-effect transistors based on two-dimensional materials for logic applications. Chinese Physics B, 2013, 22, 098505.	0.7	32
493	Topological Modelling of Nanostructures and Extended Systems. Carbon Materials, 2013, , .	0.2	9
494	Iron- and Nitrogen-Functionalized Graphene Nanosheet and Nanoshell Composites as a Highly Active Electrocatalyst for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 26501-26508.	1.5	71
495	Solvent-free catalytic dehydrative etherification of benzyl alcohol over graphene oxide. Chemical Physics Letters, 2013, 583, 146-150.	1.2	11
496	Manageable N-doped Graphene for High Performance Oxygen Reduction Reaction. Scientific Reports, 2013, 3, 2771.	1.6	182
497	Threeâ€Dimensional Nâ€Doped Graphene Hydrogel/NiCo Double Hydroxide Electrocatalysts for Highly Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2013, 52, 13567-13570.	7.2	547
499	Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons. Journal of Molecular Modeling, 2013, 19, 4781-4788.	0.8	20
500	The aniline-to-azobenzene oxidation reaction on monolayer graphene or graphene oxide surfaces fabricated by benzoic acid. Nanoscale Research Letters, 2013, 8, 372.	3.1	0
501	Radical-assisted chemical doping for chemically derived graphene. Nanoscale Research Letters, 2013, 8, 534.	3.1	7

#	Article	IF	CITATIONS
502	Local Atomic and Electronic Structure of Boron Chemical Doping in Monolayer Graphene. Nano Letters, 2013, 13, 4659-4665.	4.5	192
503	Enhanced visible light photocatalytic activity of Ag2S-graphene/TiO2 nanocomposites made by sonochemical synthesis. Chinese Journal of Catalysis, 2013, 34, 1527-1533.	6.9	17
504	Insitu Raman spectroscopy and thermal analysis of the formation of nitrogen-doped graphene from urea and graphite oxide. RSC Advances, 2013, 3, 21763.	1.7	43
505	The Intrinsic Ferromagnetism in a MnO ₂ Monolayer. Journal of Physical Chemistry Letters, 2013, 4, 3382-3386.	2.1	171
506	Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy, 2013, 2, 88-97.	8.2	426
507	Theoretical model: Disorder and transport in amorphous nitrogenated carbon ribbons. Journal of Applied Physics, 2013, 113, 183712.	1.1	4
508	Microwave-assisted synthesis of nitrogen and boron co-doped graphene and its application for enhanced electrochemical detection of hydrogen peroxide. RSC Advances, 2013, 3, 22597.	1.7	47
509	Effects of N doping and NH2grafting on the mechanical and wrinkling properties of graphene sheets. RSC Advances, 2013, 3, 923-929.	1.7	13
510	Organometallic Hexahapto-Functionalized Graphene: Band Gap Engineering with Minute Distortion to the Planar Structure. Journal of Physical Chemistry C, 2013, 117, 22156-22161.	1.5	31
511	Moderating Black Powder Chemistry for the Synthesis of Doped and Highly Porous Graphene Nanoplatelets and Their Use in Electrocatalysis. Advanced Materials, 2013, 25, 6284-6290.	11.1	235
512	Role of ionic chlorine in the thermal degradation of metal chloride-doped graphene sheets. Journal of Materials Chemistry C, 2013, 1, 253-259.	2.7	27
513	Surface doping of nitrogen atoms on graphene via molecular precursor. Applied Physics Letters, 2013, 102, .	1.5	14
514	Production of nitrogen-doped graphite from carbon dioxide using polyaminoborane. RSC Advances, 2013, 3, 25752.	1.7	8
515	N-doped graphene analogue synthesized by pyrolysis of metal tetrapyridinoporphyrazine with high and stable catalytic activity for oxygen reduction. RSC Advances, 2013, 3, 9344.	1.7	9
516	Self-organizing properties of triethylsilylethynyl-anthradithiophene on monolayer graphene electrodes in solution-processed transistors. Nanoscale, 2013, 5, 11094.	2.8	24
517	Introduction of nitrogen with controllable configuration into graphene via vacancies and edges. Journal of Materials Chemistry A, 2013, 1, 14927.	5 . 2	39
518	Graphene sheets fabricated from disposable paper cups as a catalyst support material for fuel cells. Journal of Materials Chemistry A, 2013, 1, 183-187.	5.2	49
519	Tuning electrical properties of graphite oxide by plasma. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120308.	1.6	10

#	Article	IF	CITATIONS
520	Aromatic Excimers: <i>Ab Initio</i> and TD-DFT Study. Journal of Chemical Theory and Computation, 2013, 9, 847-856.	2.3	57
521	Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon, 2013, 53, 130-136.	5.4	331
522	Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale, 2013, 5, 4541.	2.8	614
523	Graphene Cathode-Based ZnO Nanowire Hybrid Solar Cells. Nano Letters, 2013, 13, 233-239.	4.5	193
524	Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. Journal of Materials Chemistry A, 2013, 1, 2248-2255.	5.2	354
525	Concentration dependence of the band gaps of phosphorus and sulfur doped graphene. Computational Materials Science, 2013, 67, 203-206.	1.4	83
526	Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale, 2013, 5, 1353.	2.8	158
527	Boron-doping controlled peculiar transport properties of graphene nanoribbon p–n junctions. Solid State Communications, 2013, 153, 46-52.	0.9	17
528	Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes. Nanoscale, 2013, 5, 1168.	2.8	334
529	Metallic and semimetallic properties of doped graphene and boron nitride planes. Solid State Communications, 2013, 153, 17-22.	0.9	4
530	Nitrogen-doped graphene by microwave plasma chemical vapor deposition. Thin Solid Films, 2013, 528, 269-273.	0.8	38
531	Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Society Reviews, 2013, 42, 2824-2860.	18.7	1,105
532	Large-Scale Production of Edge-Selectively Functionalized Graphene Nanoplatelets via Ball Milling and Their Use as Metal-Free Electrocatalysts for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 1386-1393.	6.6	578
533	Controllable Chemical Vapor Deposition Growth of Few Layer Graphene for Electronic Devices. Accounts of Chemical Research, 2013, 46, 106-115.	7.6	88
534	Nitrogen-doping improves surface reactivity of carbon nanocone. Superlattices and Microstructures, 2013, 62, 140-148.	1.4	3
535	Pyrolytic synthesis of boron-doped graphene and its application as electrode material for supercapacitors. Electrochimica Acta, 2013, 108, 666-673.	2.6	200
536	Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase-2. Carbon, 2013, 61, 357-366.	5.4	91
537	Hydrazine-based n-type doping process to modulate Dirac point of graphene and its application to complementary inverter. Organic Electronics, 2013, 14, 1586-1590.	1.4	26

#	Article	IF	CITATIONS
538	Influence of edge imperfections on the transport behavior of graphene nanomeshes. Nanoscale, 2013, 5, 2527.	2.8	10
539	Enhanced Performance and Fermi-Level Estimation of Coronene-Derived Graphene Transistors on Self-Assembled Monolayer Modified Substrates in Large Areas. Journal of Physical Chemistry C, 2013, 117, 4800-4807.	1.5	27
540	Synthesis and photoluminescence of fluorinated graphene quantum dots. Applied Physics Letters, 2013, 102, .	1.5	111
541	Molecular Doping and Band-Gap Opening of Bilayer Graphene. ACS Nano, 2013, 7, 2790-2799.	7. 3	120
542	Synthesis of MoS ₂ and MoSe ₂ Films with Vertically Aligned Layers. Nano Letters, 2013, 13, 1341-1347.	4.5	2,036
543	Synthesis and characterization of graphene-based nanocomposites with potential use for biomedical applications. Journal of Nanoparticle Research, $2013, 15, 1$.	0.8	25
544	Structural evolution of functionalized graphene sheets during solvothermal reduction. Carbon, 2013, 56, 132-138.	5.4	45
545	Polycondensation of Boron―and Nitrogenâ€Codoped Holey Graphene Monoliths from Molecules: Carbocatalysts for Selective Oxidation. Angewandte Chemie - International Edition, 2013, 52, 4572-4576.	7.2	215
546	Aligning the Band Gap of Graphene Nanoribbons by Monomer Doping. Angewandte Chemie - International Edition, 2013, 52, 4422-4425.	7.2	225
547	Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano, 2013, 7, 2898-2926.	7.3	4,062
548	3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy, 2013, 2, 241-248.	8.2	367
549	Two-dimensional semiconductors: recent progress and future perspectives. Journal of Materials Chemistry C, 2013, 1, 2952.	2.7	317
550	Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy, 2013, 2, 249-256.	8.2	530
551	Facile Synthesis of Nitrogen-Doped Grapheneâ€"Ultrathin MnO ₂ Sheet Composites and Their Electrochemical Performances. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3317-3322.	4.0	173
552	Electronic structure of N-doped graphene with native point defects. Physical Review B, 2013, 87, .	1.1	113
553	Tuning the Dirac Point in CVD-Grown Graphene through Solution Processed n-Type Doping with 2-(2-Methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1 <i>H</i> -benzoimidazole. Nano Letters, 2013, 13, 1890-1897.	4.5	129
554	Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability. Applied Catalysis B: Environmental, 2013, 132-133, 379-388.	10.8	231
555	Graphene Covalently Modified by DNA G-Base. Journal of Physical Chemistry C, 2013, 117, 3513-3519.	1.5	13

#	Article	IF	CITATIONS
556	The chemistry of pristine graphene. Chemical Communications, 2013, 49, 3721.	2.2	225
557	Manipulating the electronic and chemical properties of graphene via molecular functionalization. Progress in Surface Science, 2013, 88, 132-159.	3.8	157
558	Graphene-based electrodes for electrochemical energy storage. Energy and Environmental Science, 2013, 6, 1388.	15.6	696
559	The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon, 2013, 52, 181-192.	5.4	275
560	Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance. Journal of Materials Chemistry A, 2013, 1, 7584.	5.2	169
561	Unique Role of Selfâ€Assembled Monolayers in Carbon Nanomaterialâ€Based Fieldâ€Effect Transistors. Small, 2013, 9, 1144-1159.	5.2	40
562	Roles of graphene oxide in photocatalytic water splitting. Materials Today, 2013, 16, 78-84.	8.3	335
563	Three dimensional N-doped graphene–CNT networks for supercapacitor. Chemical Communications, 2013, 49, 5016.	2.2	349
564	Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing. Journal of Materials Chemistry A, 2013, 1, 6130.	5.2	138
565	Direct-write n- and p-type graphene channel FETs. , 2013, , .		2
566	Designing band gap of graphene by B and N dopant atoms. RSC Advances, 2013, 3, 802-812.	1.7	396
567	In situnitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition. Nanoscale, 2013, 5, 600-605.	2.8	114
568	Enhanced rate performance of cobalt oxide/nitrogen doped graphene composite for lithium ion batteries. RSC Advances, 2013, 3, 5003.	1.7	44
569	Pt–Au/nitrogen-doped graphene nanocomposites for enhanced electrochemical activities. Journal of Materials Chemistry A, 2013, 1, 1754-1762.	5.2	121
570	A Nitrogenâ€Doped Graphene/Carbon Nanotube Nanocomposite with Synergistically Enhanced Electrochemical Activity. Advanced Materials, 2013, 25, 3192-3196.	11.1	576
571	Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications. Journal of Power Sources, 2013, 243, 973-981.	4.0	157
572	Direct Synthesis of Graphene Meshes and Semipermanent Electrical Doping. Journal of Physical Chemistry Letters, 2013, 4, 2099-2104.	2.1	29
573	Controllable O2•â^' oxidization graphene in TiO2/graphene composite and its effect on photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2013, 38, 13110-13116.	3.8	22

#	Article	IF	CITATIONS
574	Janus graphene from asymmetric two-dimensional chemistry. Nature Communications, 2013, 4, 1443.	5.8	231
575	Pyrrole-Fused Azacoronene Family: The Influence of Replacement with Dialkoxybenzenes on the Optical and Electronic Properties in Neutral and Oxidized States. Journal of the American Chemical Society, 2013, 135, 8031-8040.	6.6	133
577	Novel Carbon-Based Nanomaterials. , 2013, , 61-87.		5
578	Growth and electronic structure of boron-doped graphene. Physical Review B, 2013, 87, .	1.1	113
579	Nitrogen-Doped Graphene Nanoplatelets from Simple Solution Edge-Functionalization for n-Type Field-Effect Transistors. Journal of the American Chemical Society, 2013, 135, 8981-8988.	6.6	113
580	Low-Temperature, Bottom-Up Synthesis of Graphene via a Radical-Coupling Reaction. Journal of the American Chemical Society, 2013, 135, 9050-9054.	6.6	63
581	Theoretical Characterization of X-ray Absorption, Emission, and Photoelectron Spectra of Nitrogen Doped along Graphene Edges. Journal of Physical Chemistry A, 2013, 117, 579-589.	1.1	39
582	Synthesis of Fluorinated Graphene Oxide and its Amphiphobic Properties. Particle and Particle Systems Characterization, 2013, 30, 266-272.	1.2	106
583	Edgeâ€Selectively Functionalized Graphene Nanoplatelets. Chemical Record, 2013, 13, 224-238.	2.9	31
584	Highly Stable Grapheneâ€Based Multilayer Films Immobilized via Covalent Bonds and Their Applications in Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2013, 23, 2422-2435.	7.8	56
585	Facile hydrothermal preparation of graphene oxide nanoribbons from graphene oxide. Chemical Communications, 2013, 49, 6087.	2.2	4
586	Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets. Nanoscale Research Letters, 2013, 8, 49.	3.1	109
587	Doping nitrogen anion enhanced photocatalytic activity on TiO2 hybridized with graphene composite under solar light. Separation and Purification Technology, 2013, 106, 97-104.	3.9	44
588	Changes in major charge transport by molecular spatial orientation in graphene channel field effect transistors. Chemical Communications, 2013, 49, 6289.	2.2	11
589	Charge Transfer and Current Fluctuations in Single Layer Graphene Transistors Modified by Selfâ€Assembled C ₆₀ Adlayers. Small, 2013, 9, 2420-2426.	5.2	20
590	Electronic structure and transport properties of N ₂ ^{<i>AA</i>} -doped armchair and zigzag graphene nanoribbons. Nanotechnology, 2013, 24, 235701.	1.3	9
591	Simultaneous reduction and N-doping of graphene oxides by low-energy N2+ ion sputtering. Carbon, 2013, 62, 365-373.	5.4	21
592	Evolution of Raman spectra in nitrogen doped graphene. Carbon, 2013, 61, 57-62.	5.4	228

#	Article	IF	CITATIONS
593	Investigation of photocatalytic activities over ZnO–TiO2–reduced graphene oxide composites synthesized via microwave-assisted reaction. Journal of Colloid and Interface Science, 2013, 394, 441-444.	5.0	64
594	Tunneling Transistors Based on Graphene and 2-D Crystals. Proceedings of the IEEE, 2013, 101, 1585-1602.	16.4	183
595	Tuning the Electronic Structure of Graphite Oxide through Ammonia Treatment for Photocatalytic Generation of H ₂ and O ₂ from Water Splitting. Journal of Physical Chemistry C, 2013, 117, 6516-6524.	1.5	151
596	Hydrogenation of Graphene Nanoribbon Edges: Improvement in Carrier Transport. IEEE Electron Device Letters, 2013, 34, 707-709.	2.2	9
597	Organic n-type materials for charge transport and charge storage applications. Physical Chemistry Chemical Physics, 2013, 15, 9007.	1.3	77
598	Influence of oxygen/sulfur-termination on electronic structure and surface electrostatic potential of (6,0) carbon nanotube: a DFT study. Structural Chemistry, 2013, 24, 1571-1578.	1.0	8
599	A 3Nrule for the electronic properties of doped graphene. Nanotechnology, 2013, 24, 225705.	1.3	53
600	First-Principles Study of the Electronic Properties of B/N Atom Doped Silicene Nanoribbons. Journal of Physical Chemistry C, 2013, 117, 13620-13626.	1.5	49
601	Crown Graphene Nanomeshes: Highly Stable Chelation-Doped Semiconducting Materials. Journal of Chemical Theory and Computation, 2013, 9, 2398-2403.	2.3	18
602	Synthesis, Properties and Potential Applications of Porous Graphene: A Review. Nano-Micro Letters, 2013, 5, 260-273.	14.4	87
603	Novel logic devices based on 2D crystal semiconductors: Opportunities and challenges. , 2013, , .		0
604	Graphene-based plasmonic switches at near infrared frequencies. Optics Express, 2013, 21, 15490.	1.7	291
605	Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon, 2013, 62, 296-301.	5.4	415
606	Solvothermal synthesis of graphene–CdS nanocomposites for highly efficient visible-light photocatalyst. Journal of Alloys and Compounds, 2013, 551, 327-332.	2.8	71
607	Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nature Communications, 2013, 4, 2646.	5.8	187
608	Characterization of Interfaces between Graphene Films and Support Substrates by Observation of Lipid Membrane Formation. Journal of Physical Chemistry C, 2013, 117, 18913-18918.	1.5	13
609	Ethylene glycol assisted hydrothermal synthesis of graphene sheets supporting CdS nanospheres for quenched photoluminescence. Materials Science in Semiconductor Processing, 2013, 16, 429-434.	1.9	12
610	Photochemical doping of graphene oxide with nitrogen for photoluminescence enhancement. Applied Physics Letters, 2013, 103, .	1.5	28

#	Article	IF	CITATIONS
611	Diamond as an inert substrate of graphene. Journal of Chemical Physics, 2013, 138, 054701.	1.2	46
612	The Effect of Metal Catalyst on the Electrocatalytic Activity of Nitrogen-Doped Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 25213-25221.	1.5	36
613	Synthesis and Selected Properties of Graphene and Graphene Mimics. Accounts of Chemical Research, 2013, 46, 149-159.	7.6	77
614	Fine band gap modulation effects of aGNRs by an organic functional group: a first-principles study. Journal Physics D: Applied Physics, 2013, 46, 235101.	1.3	5
615	Toluene adsorption on Na-graphene interface- a DFT study. , 2013, , .		3
616	Clean unzipping by steam etching to synthesize graphene nanoribbons. Nanotechnology, 2013, 24, 325604.	1.3	17
617	Electronic Properties of Boron and Nitrogen Doped Graphene. Nano Hybrids, 2013, 5, 65-83.	0.3	13
618	Microstructures and Electrocatalytic Properties of Nitrogen Doped Graphene Synthesized by Pyrolysis of Metal Tetrapyrazinoporphyrazine. Applied Mechanics and Materials, 2013, 275-277, 1762-1768.	0.2	1
619	A valley-filtering switch based on the Stone-Wales defect array in carbon nanotube. Europhysics Letters, 2013, 103, 47008.	0.7	1
620	Chemically Functionalized Graphene and Their Applications in Electrochemical Energy Conversion and Storage., 0,,.		9
621	Study of simultaneous reduction and nitrogen doping of graphene oxide Langmuir–Blodgett monolayer sheets by ammonia plasma treatment. Nanotechnology, 2013, 24, 355704.	1.3	51
622	Unusual dielectric response in cobalt doped reduced graphene oxide. Applied Physics Letters, 2013, 103,	1.5	21
623	SU-8 doped and encapsulated n-type graphene nanomesh with high air stability. Applied Physics Letters, 2013, 103, .	1.5	11
624	Chargeâ€Transport Tuning of Solutionâ€Processable Graphene Nanoribbons by Substitutional Nitrogen Doping. Macromolecular Chemistry and Physics, 2013, 214, 2768-2773.	1.1	40
625	Investigation of the effect of low energy ion beam irradiation on mono-layer graphene. AIP Advances, 2013, 3, .	0.6	51
626	Nitrogenâ€doped Graphitic Carbon Synthesized by Laser Annealing of Sumanenemonoone Imine as a Bowlâ€shaped Ï€â€Conjugated Molecule. Chemistry - an Asian Journal, 2013, 8, 2569-2574.	1.7	17
627	Graphene nanonet for biological sensing applications. Nanotechnology, 2013, 24, 375302.	1.3	7
628	Solvothermal synthesis of boron-doped graphene and nitrogen-doped graphene and their electrical properties. Journal of Renewable and Sustainable Energy, 2013, 5, 021408.	0.8	18

#	Article	IF	CITATIONS
630	Graphene Synthesis., 2013,, 45-72.		0
632	Nanoparticles Engineering for Lithiumâ€lon Batteries. Particle and Particle Systems Characterization, 2013, 30, 737-753.	1.2	22
635	Carbon Nanotubes and Graphene Nanoribbons: Potentials for Nanoscale Electrical Interconnects. Electronics (Switzerland), 2013, 2, 280-314.	1.8	28
636	Resonance of graphene nanoribbons doped with nitrogen and boron: a molecular dynamics study. Beilstein Journal of Nanotechnology, 2014, 5, 717-725.	1.5	6
637	Sensors Based on Carbon Nanotube Arrays and Graphene for Water Monitoring. , 2014, , 3-19.		1
638	Stability and electronic properties of isomers of B/N co-doped graphene. Applied Nanoscience (Switzerland), 2014, 4, 989-996.	1.6	47
639	Flexible electrochromic films based on CVD-graphene electrodes. Nanotechnology, 2014, 25, 395702.	1.3	28
640	Techniques for Production of Large Area Graphene for Electronic and Sensor Device Applications. Graphene and 2D Materials, 2014, 1, .	2.0	O
641	Modulating magnetism of nitrogen-doped zigzag graphene nanoribbons. Chinese Physics B, 2014, 23, 067305.	0.7	7
642	MOLECULAR DYNAMICS STUDY OF PTX ADSORPTION ONTO N-DOPED GRAPHENE IN VACUUM AND AQUEOUS ENVIRONMENTS. Nano, 2014, 09, 1450088.	0.5	4
643	High Reversible Capacity of Nitrogen-Doped Graphene as an Anode Material for Lithium-lon Batteries. Advanced Materials Research, 0, 1070-1072, 459-464.	0.3	3
644	The Electrochemistry of Graphene. , 2014, , 79-126.		3
645	Hydrogen adsorption and anomalous electronic properties of nitrogen-doped graphene. Journal of Applied Physics, 2014, 115, .	1.1	49
646	Nitrogen doping of chemical vapor deposition grown graphene on 4H-SiC (0001). Journal of Applied Physics, 2014, 115, .	1.1	27
647	Control of work function of graphene by plasma assisted nitrogen doping. Applied Physics Letters, 2014, 104, .	1.5	72
648	Direct Synthesis of Graphene with Tunable Work Function on Insulators via In Situ Boron Doping by Nickel-Assisted Growth. Journal of Physical Chemistry C, 2014, 118, 25089-25096.	1.5	19
649	Formation of Air Stable Graphene p–n–p Junctions Using an Amine ontaining Polymer Coating. Advanced Materials Interfaces, 2014, 1, 1400378.	1.9	7
650	Nâ€Doped Graphene Fieldâ€Effect Transistors with Enhanced Electron Mobility and Airâ€Stability. Small, 2014, 10, 1999-2005.	5.2	68

#	Article	IF	CITATIONS
651	Nitrogenâ€Doped Porous Graphitic Carbon as an Excellent Electrode Material for Advanced Supercapacitors. Chemistry - A European Journal, 2014, 20, 564-574.	1.7	388
652	Tape Extrusion of Heterogeneous Polymer Blends: Polymer Films with Highly Oriented Nanoribbons, Structural-Optical Property, and Anisotropic Mechanical Strength. Macromolecular Materials and Engineering, 2014, 299, 878-884.	1.7	4
653	Sumanenemonoone Imines Bridged by Redoxâ€Active Ï€â€Conjugated Unit: Synthesis, Stepwise Coordination to Palladium(II), and Laserâ€Induced Formation of Nitrogenâ€Doped Graphitic Carbon. Chemistry - an Asian Journal, 2014, 9, 2568-2575.	1.7	13
654	Role of chemical termination in edge contact to graphene. APL Materials, 2014, 2, 056105.	2.2	22
655	<i>Inâ€situ</i> Raman spectroscopy of currentâ€carrying graphene microbridge. Journal of Raman Spectroscopy, 2014, 45, 168-172.	1.2	11
656	Carbon doping induced peculiar transport properties of boron nitride nanoribbons p-n junctions. Journal of Applied Physics, 2014, 116, 023708.	1.1	10
657	Semiconductor to metal transition by tuning the location of N2AA in armchair graphene nanoribbons. Journal of Applied Physics, 2014, 115, 053707.	1.1	12
658	Enhanced Thermal Oxidation Stability of Reduced Graphene Oxide by Nitrogen Doping. Chemistry - A European Journal, 2014, 20, 11999-12003.	1.7	66
659	Co/Co3O4/C–N, a novel nanostructure and excellent catalytic system for the oxygen reduction reaction. Nano Energy, 2014, 8, 118-125.	8.2	106
660	Field effect of in-plane gates with different gap sizes on the Fermi level tuning of graphene channels. Applied Physics Letters, 2014, 104, 183503.	1.5	0
661	Functionalization of Nitrogen-Doped Carbon Nanotubes by 1-Pyrenebutyric Acid and Its Application for Biosensing. IEEE Sensors Journal, 2014, 14, 2341-2346.	2.4	4
662	First Principles Study of Morphology, Doping Level, and Water Solvation Effects on the Catalytic Mechanism of Nitrogenâ€Doped Graphene in the Oxygen Reduction Reaction. ChemCatChem, 2014, 6, 2662-2670.	1.8	40
663	Synthesis of nitrogen doped graphene from graphene oxide within an ammonia flame for high performance supercapacitors. RSC Advances, 2014, 4, 55394-55399.	1.7	77
664	Preparation of Graphene Oxide Based on Expanded Graphite. Advanced Materials Research, 0, 881-883, 1083-1088.	0.3	3
665	A DFT Study of B, N and BN Doped Graphene. Materials Research Society Symposia Proceedings, 2014, 1701, 7.	0.1	4
666	Size dependence rectification performances induced by boron and nitrogen co-doping in rhombic graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 904-908.	0.9	4
667	Effects of grafted carboxyl groups on structural stability and elastic properties of graphene. Materials Chemistry and Physics, 2014, 145, 313-319.	2.0	9
668	The mechanisms of impurity–impurity and impurity–matrix interactions in B/N-doped graphene. Chemical Physics Letters, 2014, 605-606, 56-61.	1.2	2

#	Article	IF	Citations
669	The construction of nitrogen-doped graphitized carbonâ€"TiO2 composite to improve the electrocatalyst for methanol oxidation. Carbon, 2014, 72, 114-124.	5.4	58
670	Non-noble Fe–NX electrocatalysts supported on the reduced graphene oxide for oxygen reduction reaction. Carbon, 2014, 76, 386-400.	5.4	77
671	A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 20, 33-50.	5.6	826
672	Effect of boron and nitrogen doping with native point defects on the vibrational properties of graphene. Computational Materials Science, 2014, 94, 35-43.	1.4	20
673	Molecular rectification modulated by alternating boron and nitrogen co-doping in a combined heterostructure of two zigzag-edged trigonal graphenes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 646-649.	0.9	3
674	lon beam irradiation of few-layer graphene and its application to liquid crystal cells. Carbon, 2014, 67, 352-359.	5.4	19
675	Eco-efficient preparation of a N-doped graphene equivalent and its application to metal free selective oxidation reaction. Green Chemistry, 2014, 16, 3024-3030.	4.6	34
676	Improving the efficiency of organic photovoltaics by tuning the work function of graphene oxide hole transporting layers. Nanoscale, 2014, 6, 6925-6931.	2.8	133
677	Highly-dispersed boron-doped graphene nanoribbons with enhanced conductibility and photocatalysis. Chemical Communications, 2014, 50, 6637-6640.	2.2	91
678	Electrochemical and Theoretical Study of π–π Stacking Interactions between Graphitic Surfaces and Pyrene Derivatives. Journal of Physical Chemistry C, 2014, 118, 2650-2659.	1.5	89
679	Controllable Synthesis of Doped Graphene and Its Applications. Small, 2014, 10, 2975-2991.	5.2	58
680	High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 2014, 68, 777-783.	5.4	78
681	Density functional study on noncovalent functionalization of pyrazinamide chemotherapeutic with graphene and its prototypes. New Journal of Chemistry, 2014, 38, 1116.	1.4	35
682	Doped graphene for metal-free catalysis. Chemical Society Reviews, 2014, 43, 2841-2857.	18.7	710
683	Semiconducting channel self-imposed in metallic graphene using an oxygen ion reaction. Journal of the Korean Physical Society, 2014, 64, 283-288.	0.3	0
684	Directâ€Write Complementary Graphene Field Effect Transistors and Junctions via Nearâ€Field Electrospinning. Small, 2014, 10, 1920-1925.	5.2	23
685	The characteristics of a graphene tunnel diode. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 59, 1-5.	1.3	7
686	Nitrogenâ€Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Waterâ€Splitting under Visible Light Illumination. Advanced Materials, 2014, 26, 3297-3303.	11.1	749

#	Article	IF	CITATIONS
687	Nanocarbon-based gas sensors: progress and challenges. Journal of Materials Chemistry A, 2014, 2, 5573.	5.2	202
688	25th Anniversary Article: Chemically Modified/Doped Carbon Nanotubes & Traphene for Optimized Nanostructures & Traphene for Op	11.1	479
689	Electronic properties of armchair graphene nanoribbons with BN-doping. Solid State Communications, 2014, 191, 59-65.	0.9	13
690	Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin. Materials Science and Engineering C, 2014, 39, 86-91.	3.8	23
691	N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations. Journal of Catalysis, 2014, 314, 66-72.	3.1	537
692	Conversion of pyrazoline to pyrazole in hydrazine treated N-substituted reduced graphene oxide films obtained by ion bombardment and their electrical properties. Carbon, 2014, 74, 32-43.	5.4	25
693	Transport properties of graphene/metal planar junction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1321-1325.	0.9	14
694	Distinct Mechanisms of DNA Sensing Based on Nâ€Doped Carbon Nanotubes with Enhanced Conductance and Chemical Selectivity. Small, 2014, 10, 774-781.	5.2	11
695	In situ nitrogen-doped nanoporous carbon nanocables as an efficient metal-free catalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 10154.	5.2	73
696	A Straightforward Strategy toward Large BN-Embedded π-Systems: Synthesis, Structure, and Optoelectronic Properties of Extended BN Heterosuperbenzenes. Journal of the American Chemical Society, 2014, 136, 3764-3767.	6.6	273
697	Electric field manipulated reversible hydrogen storage in graphene studied by <scp>DFT</scp> calculations. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 351-356.	0.8	8
698	Graphene-Based Nanowire Supercapacitors. Langmuir, 2014, 30, 3567-3571.	1.6	68
699	Composite graphene/semiconductor nanostructures for energy storage. , 2014, , 213-266.		2
700	Bicontinuous Nanoporous Nâ€doped Graphene for the Oxygen Reduction Reaction. Advanced Materials, 2014, 26, 4145-4150.	11.1	261
701	Direct Solvothermal Synthesis of B/Nâ€Doped Graphene. Angewandte Chemie - International Edition, 2014, 53, 2398-2401.	7.2	61
702	Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin. Analytica Chimica Acta, 2014, 833, 22-28.	2.6	91
703	Nitrogenâ€Doped Holey Graphitic Carbon from 2D Covalent Organic Polymers for Oxygen Reduction. Advanced Materials, 2014, 26, 3315-3320.	11.1	292
704	Strongly Veined Carbon Nanoleaves as a Highly Efficient Metalâ€Free Electrocatalyst. Angewandte Chemie - International Edition, 2014, 53, 6905-6909.	7.2	156

#	Article	IF	CITATIONS
705	Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 2014, 114, 6179-6212.	23.0	595
706	Graphene–Ruthenium Complex Hybrid Photodetectors with Ultrahigh Photoresponsivity. Small, 2014, 10, 3700-3706.	5.2	35
707	Synthesis of yolk/shell Fe3O4–polydopamine–graphene–Pt nanocomposite with high electrocatalytic activity for fuel cells. Journal of Power Sources, 2014, 246, 868-875.	4.0	35
708	An ultrafast water transport forward osmosis membrane: porous graphene. Journal of Materials Chemistry A, 2014, 2, 4023.	5.2	120
709	Ferromagnetism in MnX2 (X = S, Se) monolayers. Physical Chemistry Chemical Physics, 2014, 16, 4990.	1.3	199
710	A B–C–N hybrid porous sheet: an efficient metal-free visible-light absorption material. Physical Chemistry Chemical Physics, 2014, 16, 4299.	1.3	13
711	Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC - Trends in Analytical Chemistry, 2014, 54, 83-102.	5.8	296
712	Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence. RSC Advances, 2014, 4, 5465.	1.7	190
713	Hydrogen-free graphene edges. Nature Communications, 2014, 5, 3040.	5.8	74
714	Improved electrocatalytic activity of carbon materials by nitrogen doping. Applied Catalysis B: Environmental, 2014, 147, 633-641.	10.8	118
715	Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability. Physical Chemistry Chemical Physics, 2014, 16, 1060-1066.	1.3	146
716	A two-dimensional hybrid with molybdenum disulfide nanocrystals strongly coupled on nitrogen-enriched graphene via mild temperature pyrolysis for high performance lithium storage. Nanoscale, 2014, 6, 14679-14685.	2.8	61
717	Synthesis of graphene nanoribbons from amyloid templates by gallium vapor-assisted solid-phase graphitization. Applied Physics Letters, 2014, 104, 243101.	1.5	8
718	Chemical Reactivity and Bandâ€Gap Opening of Graphene Doped with Gallium, Germanium, Arsenic, and Selenium Atoms. ChemPhysChem, 2014, 15, 3994-4000.	1.0	67
719	In-situ TEM imaging of the anisotropic etching of graphene by metal nanoparticles. Nanotechnology, 2014, 25, 465709.	1.3	9
720	Largeâ€Area Siâ€Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing. Advanced Materials, 2014, 26, 7593-7599.	11.1	116
721	Stability of graphene doping with MoO3 and I2. Applied Physics Letters, 2014, 105, .	1.5	49
722	Localization of metallicity and magnetic properties of graphene and of graphene nanoribbons doped with boron clusters. Philosophical Magazine, 2014, 94, 1841-1858.	0.7	8

#	Article	IF	CITATIONS
723	Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Research, 2014, 7, 1861-1872.	5.8	97
724	Electrical properties of colloidal polyanilineâ€2â€naphthalene sulfonic acid/graphene nanoparticle composite films. Polymer Composites, 2014, 35, 60-67.	2.3	3
725	Patterned graphene functionalization via mask-free scanning of micro-plasma jet under ambient condition. Applied Physics Letters, 2014, 104, .	1.5	66
726	Stability and Spectroscopy of Single Nitrogen Dopants in Graphene at Elevated Temperatures. ACS Nano, 2014, 8, 11806-11815.	7.3	45
727	Performance and breakdown behavior of graphene field-effect transistors with thin gate oxides. Journal of Micromechanics and Microengineering, 2014, 24, 045016.	1.5	5
728	Carbonization of self-assembled nanoporous hemin with a significantly enhanced activity for the oxygen reduction reaction. Faraday Discussions, 2014, 176, 393-408.	1.6	30
729	Long-term air-stable n-type doped graphene by multiple lamination with polyethyleneimine. RSC Advances, 2014, 4, 37849.	1.7	11
730	Block copolymer-templated nitrogen-enriched nanocarbons with morphology-dependent electrocatalytic activity for oxygen reduction. Chemical Science, 2014, 5, 3315.	3.7	40
731	Effects of temperature and ammonia flow rate on the chemical vapour deposition growth of nitrogen-doped graphene. Physical Chemistry Chemical Physics, 2014, 16, 19446.	1.3	21
732	Low-temperature solution-processable Ni(OH) ₂ ultrathin nanosheet/N-graphene nanohybrids for high-performance supercapacitor electrodes. Nanoscale, 2014, 6, 5960-5966.	2.8	41
733	Phosphorus-doped macroporous carbon spheres for high efficiency selective oxidation of cyclooctene by air. RSC Advances, 2014, 4, 22419.	1.7	11
734	Enhanced adsorption of acidic gases (CO2, NO2 and SO2) on light metal decorated graphene oxide. Physical Chemistry Chemical Physics, 2014, 16, 11031.	1.3	87
735	Novel visible-light driven g-C $<$ sub $>3sub>N<sub>4sub>/Zn<sub>0.25sub>Cd<sub>0.75sub>S composite photocatalyst for efficient degradation of dyes and reduction of Cr(<scp>vi</scp>) in water. RSC Advances, 2014, 4, 19980-19986.$	1.7	21
736	High concentration of nitrogen doped into graphene using N ₂ plasma with an aluminum oxide buffer layer. Journal of Materials Chemistry C, 2014, 2, 933-939.	2.7	62
737	Microwave assisted synthesis and characterization of silicon and phosphorous co-doped carbon as an electrocatalyst for oxygen reduction reaction. RSC Advances, 2014, 4, 6306.	1.7	29
738	Stability of CH3 molecules trapped on hydrogenated sites of graphene. Physica B: Condensed Matter, 2014, 455, 60-65.	1.3	7
739	Two and three dimensional network polymers for electrocatalysis. Physical Chemistry Chemical Physics, 2014, 16, 11150-11161.	1.3	11
740	Nitrogen and sulfur co-doped graphene counter electrodes with synergistically enhanced performance for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 12232-12239.	5.2	125

#	Article	IF	CITATIONS
741	Hydrogen-Coverage-Dependent Stark Effect in Bilayer Graphene and Graphene/BN Nanofilms. Journal of Physical Chemistry C, 2014, 118, 10472-10480.	1.5	9
742	On the large capacitance of nitrogen doped graphene derived by a facile route. RSC Advances, 2014, 4, 38689-38697.	1.7	148
743	Graphene-supported iron-based nanoparticles encapsulated in nitrogen-doped carbon as a synergistic catalyst for hydrogen evolution and oxygen reduction reactions. Faraday Discussions, 2014, 176, 135-151.	1.6	57
744	Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nature Communications, 2014, 5, 5259.	5.8	448
745	A promising monolayer membrane for oxygen separation from harmful gases: nitrogen-substituted polyphenylene. Nanoscale, 2014, 6, 9960-9964.	2.8	51
746	Highly stable chemical N-doping of graphene nanomesh FET. , 2014, , .		1
747	Hydrothermal synthesis of nitrogen-doped graphene hydrogels using amino acids with different acidities as doping agents. Journal of Materials Chemistry A, 2014, 2, 8352-8361.	5.2	141
748	Spiers Memorial Lecture: Advances of carbon nanomaterials. Faraday Discussions, 2014, 173, 9-46.	1.6	24
749	Highly Efficient and Recyclable Nanocomplexed Photocatalysts of AgBr/N-Doped and Amine-Functionalized Reduced Graphene Oxide. ACS Applied Materials & Samp; Interfaces, 2014, 6, 20819-20827.	4.0	56
750	Electronic and magnetic properties of nitrogen-doped graphene nanoribbons with grain boundary. RSC Advances, 2014, 4, 1503-1511.	1.7	7
751	Geometric and electronic properties of graphene modified by "external―N-containing groups. Physical Chemistry Chemical Physics, 2014, 16, 20749-20754.	1.3	11
752	Line defects and induced doping effects in graphene, hexagonal boron nitride and hybrid BNC. Physical Chemistry Chemical Physics, 2014, 16, 21473-21485.	1.3	26
753	Defect-induced semiconductor to metal transition in graphene monoxide. Physical Chemistry Chemical Physics, 2014, 16, 13477-13482.	1.3	12
754	Direct synthesis of phosphorus and nitrogen co-doped monolayer graphene with air-stable n-type characteristics. Physical Chemistry Chemical Physics, 2014, 16, 20392-20397.	1.3	39
755	In situ simultaneous reduction–doping route to synthesize hematite/N-doped graphene nanohybrids with excellent photoactivity. RSC Advances, 2014, 4, 31754-31758.	1.7	17
756	Detection of Protein Conformational Changes with Multilayer Graphene Nanopore Sensors. ACS Applied Materials & Interfaces, 2014, 6, 16777-16781.	4.0	16
757	Graphene nanoribbon heterojunctions. Nature Nanotechnology, 2014, 9, 896-900.	15.6	528
758	Graphene Amplification by Continued Growth on Seed Edges. Chemistry of Materials, 2014, 26, 4137-4143.	3.2	21

#	Article	IF	Citations
759	In situ photo-induced chemical doping of solution-processed graphene oxide for electronic applications. Journal of Materials Chemistry C, 2014, 2, 5931-5937.	2.7	26
760	Mechanistic Studies of Electrode-Assisted Catalytic Oxidation by Flavinium and Acridinium Cations. ACS Catalysis, 2014, 4, 2635-2644.	5.5	17
761	Pyrolysis of Cellulose under Ammonia Leads to Nitrogen-Doped Nanoporous Carbon Generated through Methane Formation. Nano Letters, 2014, 14, 2225-2229.	4.5	297
762	Theoretical characterization of sulfur and nitrogen dual-doped graphene. Computational and Theoretical Chemistry, 2014, 1049, 13-19.	1.1	80
763	Monodispersed N-Doped Carbon Nanospheres for Supercapacitor Application. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13968-13976.	4.0	202
764	Nonlinear optical response and transparency of hexagonal boron nitride hybrid graphene nanoribbons. Chemical Physics Letters, 2014, 614, 57-61.	1.2	14
765	Novel nanocomposites of graphene oxide reinforced poly (3,4-ethylenedioxythiophene)-block-poly (ethylene glycol) and polyvinylidene fluoride for embedded capacitor applications. RSC Advances, 2014, 4, 37954-37963.	1.7	29
766	Tunable band gaps in graphene/GaN van der Waals heterostructures. Journal of Physics Condensed Matter, 2014, 26, 295304.	0.7	17
767	Molecular adsorption on graphene. Journal of Physics Condensed Matter, 2014, 26, 443001.	0.7	161
768	Nitrogen-doped reduced graphene oxide-Ni(OH)2-built 3D flower composite with easy hydrothermal process and excellent electrochemical performance. Electrochimica Acta, 2014, 138, 69-78.	2.6	47
769	Solid–solid grinding/templating route to magnetically separable nitrogen-doped mesoporous carbon for the removal of Cu2+ ions. Journal of Hazardous Materials, 2014, 279, 280-288.	6.5	22
770	Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction. Materials Research Bulletin, 2014, 59, 145-149.	2.7	8
772	Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 4085-4110.	5.2	683
773	Stacking of Two-Dimensional Materials in Lateral and Vertical Directions. Chemistry of Materials, 2014, 26, 4891-4903.	3.2	96
774	Catalytic Epoxidation Reaction over N-Containing sp ² Carbon Catalysts. ACS Catalysis, 2014, 4, 1261-1266.	5.5	95
775	A novel electrochemiluminescence sensor based on nitrogen-doped graphene/CdTe quantum dots composite. Applied Surface Science, 2014, 315, 22-27.	3.1	18
776	Possible Oxygen Reduction Reactions for Graphene Edges from First Principles. Journal of Physical Chemistry C, 2014, 118, 17616-17625.	1.5	56
777	Nitrogen-doped carbon-based dots prepared by dehydrating EDTA with hot sulfuric acid and their electrocatalysis for oxygen reduction reaction. RSC Advances, 2014, 4, 32791-32795.	1.7	26

#	ARTICLE	IF	CITATIONS
778	Scalable graphene synthesised by plasma-assisted selective reaction on silicon carbide for device applications. Nanoscale, 2014, 6, 13861-13869.	2.8	34
779	Continuous production of nitrogen-functionalized graphene nanosheets for catalysis applications. Nanoscale, 2014, 6, 12758-12768.	2.8	21
780	Nanoscale topographical replication of graphene architecture by artificial DNA nanostructures. Applied Physics Letters, 2014, 104, .	1.5	7
781	Palladium nanoparticles supported on nitrogen-doped carbon spheres as enhanced catalyst for ethanol electro-oxidation. Journal of Electroanalytical Chemistry, 2014, 730, 65-68.	1.9	18
782	Strongly Coupled Interfaces between a Heterogeneous Carbon Host and a Sulfurâ€Containing Guest for Highly Stable Lithiumâ€Sulfur Batteries: Mechanistic Insight into Capacity Degradation. Advanced Materials Interfaces, 2014, 1, 1400227.	1.9	351
783	Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. Journal of Materials Chemistry A, 2014, 2, 3719.	5.2	183
784	Toward 300 mm Wafer-Scalable High-Performance Polycrystalline Chemical Vapor Deposited Graphene Transistors. ACS Nano, 2014, 8, 10471-10479.	7.3	87
785	Electrochemical determination of 4-nitrophenol at polycarbazole/N-doped graphene modified glassy carbon electrode. Electrochimica Acta, 2014, 146, 568-576.	2.6	84
786	Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chemical Communications, 2014, 50, 6818.	2.2	428
787	Chemical Modification of Graphene via Hyperthermal Molecular Reaction. Journal of the American Chemical Society, 2014, 136, 13482-13485.	6.6	30
788	Ultrasensitive Chemical Sensing through Facile Tuning Defects and Functional Groups in Reduced Graphene Oxide. Analytical Chemistry, 2014, 86, 7516-7522.	3.2	80
789	The Non-Equilibrium Green's Function Method for Nanoscale Device Simulation. Computational Microelectronics, 2014, , .	1.2	59
790	Strategies on the Design of Nitrogen-Doped Graphene. Journal of Physical Chemistry Letters, 2014, 5, 119-125.	2.1	78
791	Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy and Environmental Science, 2014, 7, 1212-1249.	15.6	559
793	Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials, 2014, 35, 2915-2923.	5.7	297
794	Nitrogen-Doped Graphene Nanoribbons as Efficient Metal-Free Electrocatalysts for Oxygen Reduction. ACS Applied Materials & Diterfaces, 2014, 6, 4214-4222.	4.0	156
795	Identifying atomic sites in N-doped pristine and defective graphene from ab initio core level binding energies. Carbon, 2014, 76, 155-164.	5.4	14
796	A unique two-step Hummers method for fabricating low-defect graphene oxide nanoribbons through exfoliating multiwalled carbon nanotubes. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2762-2769.	2.7	35

#	Article	IF	CITATIONS
797	Role of Metal Cations in Alkali Metal Chloride Doped Graphene. Journal of Physical Chemistry C, 2014, 118, 8187-8193.	1.5	31
798	Laserâ€Mediated Programmable N Doping and Simultaneous Reduction of Graphene Oxides. Advanced Optical Materials, 2014, 2, 120-125.	3.6	64
799	Preparation of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for oxygen reduction and methanol oxidation. Journal of Electroanalytical Chemistry, 2014, 728, 41-50.	1.9	41
800	Electronic properties of bilayer and trilayer graphyne in the presence of electric field. Structural Chemistry, 2014, 25, 853-858.	1.0	18
801	In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High-Performance Supercapacitors. ACS Applied Materials & Supercapacitors.	4.0	306
802	Isolated Boron and Nitrogen Sites on Porous Graphitic Carbon Synthesized from Nitrogenâ€Containing Chitosan for Supercapacitors. ChemSusChem, 2014, 7, 1637-1646.	3 . 6	128
803	Thermoelectric properties of unoxidized graphene/Bi ₂ Te _{2.7} Se _{0.3} composites synthesized by exfoliation/reâ€assembly method. Physica Status Solidi - Rapid Research Letters, 2014, 8, 357-361.	1.2	9
804	Atomistic mechanisms of codoping-induced p- to n-type conversion in nitrogen-doped graphene. Nanoscale, 2014, 6, 14911-14918.	2.8	30
805	N-doped TiO ₂ nanotubes/N-doped graphene nanosheets composites as high performance anode materials in lithium-ion battery. Journal of Materials Chemistry A, 2014, 2, 15473.	5,2	113
806	Fluoropolymer-assisted graphene electrode for organic light-emitting diodes. Organic Electronics, 2014, 15, 3154-3161.	1.4	20
807	N-Doped Graphene: An Alternative Carbon-Based Matrix for Highly Efficient Detection of Small Molecules by Negative Ion MALDI-TOF MS. Analytical Chemistry, 2014, 86, 9122-9130.	3.2	104
808	Effect of Noncovalent Basal Plane Functionalization on the Quantum Capacitance in Graphene. ACS Applied Materials & Diterfaces, 2014, 6, 10296-10303.	4.0	21
809	Two-dimensional bipolar junction transistors. Materials Research Express, 2014, 1, 015604.	0.8	9
810	Selective n-type doping in graphene via the aluminium nanoparticle decoration approach. Journal of Materials Chemistry C, 2014, 2, 5417-5421.	2.7	27
811	The Preparation of BN-Doped Atomic Layer Graphene via Plasma Treatment and Thermal Annealing. Journal of Physical Chemistry C, 2014, 118, 22268-22273.	1.5	22
812	In situ formation of Ni(OH)2 nanoparticle on nitrogen-doped reduced graphene oxide nanosheet for high-performance supercapacitor electrode material. Applied Surface Science, 2014, 317, 370-377.	3.1	35
813	Thermal conductivity of graphene nanoribbons with defects and nitrogen doping. Reactive and Functional Polymers, 2014, 79, 29-35.	2.0	32
814	An electrochemical sensor based on the three-dimensional functionalized graphene for simultaneous determination of hydroquinone and catechol. Journal of Electroanalytical Chemistry, 2014, 722-723, 38-45.	1.9	42

#	ARTICLE	IF	CITATIONS
815	Plasma-assisted nitrogen doping of graphene-encapsulated Pt nanocrystals as efficient fuel cell catalysts. Journal of Materials Chemistry A, 2014, 2, 472-477.	5.2	44
816	Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications. Chemical Reviews, 2014, 114, 5117-5160.	23.0	899
817	Amphiphilic Polymer Promoted Assembly of Macroporous Graphene/SnO ₂ Frameworks with Tunable Porosity for Highâ€Performance Lithium Storage. Small, 2014, 10, 2226-2232.	5.2	69
818	Half-metallicity of C/BN hybrid nanoribbons containing a topological defective interface. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 60, 224-228.	1.3	1
819	No cytotoxic nitrogen-doped carbon nanotubes as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. Solid State Sciences, 2014, 30, 21-25.	1.5	9
820	Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability. Energy, 2014, 70, 612-617.	4.5	185
821	Fabrication of Pt nanoparticles on ethylene diamine functionalized graphene for formic acid electrooxidation. International Journal of Hydrogen Energy, 2014, 39, 15920-15927.	3.8	16
822	Open-shell characters and second hyperpolarizabilities for hexagonal graphene nanoflakes including boron nitride domains. Chemical Physics Letters, 2014, 595-596, 220-225.	1.2	9
823	Synthesis of nitrogen-doped multilayer graphene from milk powder with melamine and their application to fuel cells. Carbon, 2014, 76, 1-9.	5.4	60
824	A co-pyrolysis route to synthesize nitrogen doped multiwall carbon nanotubes for oxygen reduction reaction. Carbon, 2014, 68, 232-239.	5.4	34
825	Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples. Chemical Physics Letters, 2014, 595-596, 203-208.	1.2	188
826	Anchoring CuO nanoparticles on nitrogen-doped reduced graphene oxide nanosheets as electrode material for supercapacitors. Journal of Electroanalytical Chemistry, 2014, 727, 154-162.	1.9	80
827	Evidence of van Hove Singularities in Ordered Grain Boundaries of Graphene. Physical Review Letters, 2014, 112, 226802.	2.9	61
828	New methods of synthesis and varied properties of carbon quantum dots with high nitrogen content. Journal of Materials Research, 2014, 29, 383-391.	1.2	42
829	Graphene/clay composite electrode formed by exfoliating graphite with Laponite for simultaneous determination of ascorbic acid, dopamine, and uric acid. Monatshefte Fýr Chemie, 2014, 145, 1389-1394.	0.9	12
830	Two-dimensional carbon leading to new photoconversion processes. Chemical Society Reviews, 2014, 43, 4281-4299.	18.7	214
831	NMR Chemical Shifts of ¹⁵ N-Bearing Graphene. Journal of Physical Chemistry C, 2014, 118, 13929-13935.	1.5	11
832	Oxygen adsorption effect on nitrogen-doped graphene electrical properties. Applied Physics Express, 2014, 7, 055101.	1.1	12

#	ARTICLE	IF	CITATIONS
833	Ultrasensitive Label-Free Detection of PNA–DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor. ACS Nano, 2014, 8, 2632-2638.	7.3	383
834	Nitrogen-Doped Graphene Nanosheets from Bulk Graphite using Microwave Irradiation. ACS Applied Materials & Samp; Interfaces, 2014, 6, 6361-6368.	4.0	110
835	The Handbook of Graphene Electrochemistry. , 2014, , .		151
836	Reversible Charge-Transfer Doping in Graphene due to Reaction with Polymer Residues. Journal of Physical Chemistry C, 2014, 118, 13890-13897.	1.5	19
837	Solvent-free mechanochemical reduction of graphene oxide. Carbon, 2014, 77, 501-507.	5.4	43
838	Enhanced performance of graphene by using gold film for transfer and masking process. Current Applied Physics, 2014, 14, 1045-1050.	1.1	13
839	Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties. Physical Chemistry Chemical Physics, 2014, 16, 14231-14235.	1.3	86
841	Carbon doping induced giant low bias negative differential resistance in boron nitride nanoribbon. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2217-2221.	0.9	9
842	Facile graphene n-doping by wet chemical treatment for electronic applications. Nanoscale, 2014, 6, 8503.	2.8	35
843	Work Function Engineering of Graphene. Nanomaterials, 2014, 4, 267-300.	1.9	240
844	Applications of Graphene in Lithium Ion Batteries. , 2014, , 78-149.		0
846	An In Situ Sourceâ€Templateâ€Interface Reaction Route to 3D Nitrogenâ€Doped Hierarchical Porous Carbon as Oxygen Reduction Electrocatalyst. Advanced Materials Interfaces, 2015, 2, 1500199.	1.9	39
848	Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices. Scientific Reports, 2015, 5, 16710.	1.6	36
849	Synthesis and characterization of nitrogen-doped graphene films using C5NCl5. Applied Physics Letters, 2015, 106, .	1.5	15
850	Multifunctional grapheneâ€based nanostructures for efficient electrocatalytic reduction of oxygen. Journal of Chemical Technology and Biotechnology, 2015, 90, 2132-2151.	1.6	20
851	Carbonâ€Based Nanostructures for Advanced Catalysis. ChemCatChem, 2015, 7, 2806-2815.	1.8	88
852	Selective Nitrogen Functionalization of Graphene by Buchererâ€Type Reaction. Chemistry - A European Journal, 2015, 21, 8090-8095.	1.7	19
853	Surface topography of synthesized graphene from green carbon source using thermal chemical vapor deposition. , 2015, , .		3

#	Article	IF	CITATIONS
854	Nitrogen-Doped Carbon Electrodes: Influence of Microstructure and Nitrogen Configuration on the Electrical Conductivity of Carbonized Polyacrylonitrile and Poly(ionic liquid) Blends. Macromolecular Chemistry and Physics, 2015, 216, 1930-1944.	1.1	49
855	Crosslinking Graphene Oxide into Robust 3D Porous Nâ€Doped Graphene. Advanced Materials, 2015, 27, 5171-5175.	11.1	188
857	Graphene Nanosheets Based Cathodes for Lithium-Oxygen Batteries. Journal of Carbon Research, 2015, 1, 27-42.	1.4	2
858	Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions. Catalysts, 2015, 5, 1574-1602.	1.6	183
860	Self-consistent model of edge doping in graphene. Physical Review B, 2015, 91, .	1.1	5
861	Improved carrier mobility of chemical vapor deposition-graphene by counter-doping with hydrazine hydrate. Applied Physics Letters, 2015, 106, 091602.	1.5	5
862	A versatile strategy towards non-covalent functionalization of graphene by surface-confined supramolecular self-assembly of Janus tectons. Beilstein Journal of Nanotechnology, 2015, 6, 632-639.	1.5	9
863	Local doping of graphene devices by selective hydrogen adsorption. AIP Advances, 2015, 5, 017120.	0.6	11
864	Interaction between Nitrogen and Sulfur in Co-Doped Graphene and Synergetic Effect in Supercapacitor. Scientific Reports, 2015, 5, 9591.	1.6	232
865	Helical and Dendritic Unzipping of Carbon Nanotubes: A Route to Nitrogen-Doped Graphene Nanoribbons. ACS Nano, 2015, 9, 5833-5845.	7.3	59
866	Photochemistry of Graphene. Structure and Bonding, 2015, , 213-238.	1.0	0
867	Photofunctional Layered Materials. Structure and Bonding, 2015, , .	1.0	10
868	Electrocatalytic activity of Mn/Cu doped Fe ₂ O ₃ –PANI–rGO composites for fuel cell applications. RSC Advances, 2015, 5, 39455-39463.	1.7	7
869	Nitrogenâ€Doped Carbon Membrane Derived from Polyimide as Freeâ€Standing Electrodes for Flexible Supercapacitors. Small, 2015, 11, 3476-3484.	5.2	63
870	Electrochemical preparation of nitrogen-doped graphene quantum dots and their size-dependent electrocatalytic activity for oxygen reduction. Bulletin of Materials Science, 2015, 38, 435-442.	0.8	32
871	Bi2S3–ZnS/graphene complexes: Synthesis, characterization, and photoactivity for the decolorization of dyes under visible light. Materials Science in Semiconductor Processing, 2015, 34, 104-108.	1.9	11
872	Nitrogen and Phosphorus Dual-Doped Graphene/Carbon Nanosheets as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. ACS Catalysis, 2015, 5, 4133-4142.	5.5	620
873	Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic Field-Effect Transistors. ACS Nano, 2015, 9, 5818-5824.	7.3	93

#	Article	IF	Citations
874	Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chemical Society Reviews, 2015, 44, 5638-5679.	18.7	283
875	Enhanced Shubnikov–De Haas Oscillation in Nitrogen-Doped Graphene. ACS Nano, 2015, 9, 7207-7214.	7.3	19
876	Effect of UV light-induced nitrogen doping on the field effect transistor characteristics of graphene. RSC Advances, 2015, 5, 70522-70526.	1.7	10
877	A nitrogen-doped graphene electrocatalyst for selective oxygen reduction in presence of glucose and D-gluconic acid in pH-neutral media. Electrochimica Acta, 2015, 186, 579-590.	2.6	24
878	Stability enhancement of organic photovoltaic devices utilizing partially reduced graphene oxide as the hole transport layer: nanoscale insight into structural/interfacial properties and aging effects. RSC Advances, 2015, 5, 106930-106940.	1.7	15
879	Engineering electrical properties of graphene: chemical approaches. 2D Materials, 2015, 2, 042001.	2.0	46
880	Sulfur-doping in graphene and its high selectivity gas sensing in NO <inf>2</inf> ., 2015, , .		5
881	Effects of SI, N and B doping on the mechanical properties of graphene sheets. Acta Mechanica Solida Sinica, 2015, 28, 618-625.	1.0	17
882	Remarkable performance of heavily nitrogenated graphene in the oxygen reduction reaction of fuel cells in alkaline medium. Materials Research Express, 2015, 2, 095503.	0.8	7
883	Building graphene p–n junctions for next-generation photodetection. Nano Today, 2015, 10, 701-716.	6.2	45
884	Graphene oxide grafted polyethylenimine electron transport materials for highly efficient organic devices. Journal of Materials Chemistry A, 2015, 3, 22035-22042.	5. 2	18
885	Selective in-plane nitrogen doping of graphene by an energy-controlled neutral beam. Nanotechnology, 2015, 26, 485602.	1.3	13
886	Photo-Induced Doping in Graphene/Silicon Heterostructures. Journal of Physical Chemistry C, 2015, 119, 1061-1066.	1.5	16
887	Nanoscale imaging of freestanding nitrogen doped single layer graphene. Nanoscale, 2015, 7, 2289-2294.	2.8	18
888	Chemically doped three-dimensional porous graphene monoliths for high-performance flexible field emitters. Nanoscale, 2015, 7, 5495-5502.	2.8	11
889	Activated carbon-based gas sensors: effects of surface features on the sensing mechanism. Journal of Materials Chemistry A, 2015, 3, 3821-3831.	5.2	87
890	Synergistic effect of oxygen and nitrogen functionalities for graphene-based quantum dots used in photocatalytic H2 production from water decomposition. Nano Energy, 2015, 12, 476-485.	8.2	133
891	A nitrogen-doped graphene/gold nanoparticle/formate dehydrogenase bioanode for high power output membrane-less formic acid/O ₂ biofuel cells. Analyst, The, 2015, 140, 1822-1826.	1.7	39

#	Article	IF	CITATIONS
892	Phosphorous, nitrogen coâ€doped carbon from spent coffee grounds for fuel cell applications. Journal of Applied Polymer Science, 2015, 132, .	1.3	16
893	Microwave Enabled Oneâ€Pot, Oneâ€6tep Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applications. Small, 2015, 11, 3358-3368.	5. 2	106
894	Thermal Cyclodebromination of Polybromopyrroles to Polymer with High Performance for Supercapacitor. Journal of Physical Chemistry C, 2015, 119, 3881-3891.	1.5	22
895	Harnessing Denatured Protein for Controllable Bipolar Doping of a Monolayer Graphene. ACS Applied Materials & Doping of a Monolayer Graphene. ACS Applied Materials & Doping of a Monolayer Graphene. ACS Applied Materials & Doping of a Monolayer Graphene. ACS Applied Materials & Doping of a Monolayer Graphene. ACS Applied Materials & Doping of a Monolayer Graphene. ACS Applied Materials & Doping of a Monolayer Graphene. ACS Applied Materials & Doping of a Monolayer Graphene. ACS Applied Materials & Doping of a Monolayer Graphene. ACS Applied Materials & Doping of a Monolayer Graphene. ACS Applied Materials & Doping of a Monolayer Graphene. ACS Applied Materials & Doping of a Monolayer Graphene.	4.0	20
896	Atmospheric pressure plasma treatment on graphene grown by chemical vapor deposition. Current Applied Physics, 2015, 15, 563-568.	1,1	22
897	Structural characterization and chemical reactivity of dual doped graphene. Carbon, 2015, 87, 106-115.	5.4	83
898	Ultrahigh Performance Supercapacitor from Lacey Reduced Graphene Oxide Nanoribbons. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3110-3116.	4.0	122
899	Influence of Fermi velocity engineering on electronic and optical properties of graphene superlattices. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 974-978.	0.9	3
900	Influence of hole doping on the superconducting state in graphane. Superconductor Science and Technology, 2015, 28, 035002.	1.8	20
901	Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chemical Society Reviews, 2015, 44, 2168-2201.	18.7	1,858
902	Controllable nâ€Type Doping on CVDâ€Grown Singleâ€and Doubleâ€Layer Graphene Mixture. Advanced Materials, 2015, 27, 1619-1623.	11.1	43
903	First-Principles Study of Dislocation Slips in Impurity-Doped Graphene. Journal of Physical Chemistry C, 2015, 119, 3418-3427.	1.5	8
905	Half-filled energy bands induced negative differential resistance in nitrogen-doped graphene. Nanoscale, 2015, 7, 4156-4162.	2.8	32
906	Boron-doped graphene as high-performance electrocatalyst for the simultaneously electrochemical determination of hydroquinone and catechol. Electrochimica Acta, 2015, 156, 228-234.	2.6	96
907	Nitrogen-doped graphene films from simple photochemical doping for n-type field-effect transistors. Applied Physics Letters, 2015, 106, 013110.	1.5	20
908	Palladium nanoparticles supported on graphene as catalysts for the dehydrogenative coupling of hydrosilanes and amines. Catalysis Science and Technology, 2015, 5, 2167-2173.	2.1	27
909	Nitrogen-doped graphene supported Pt nanoparticles with enhanced performance for methanol oxidation. International Journal of Hydrogen Energy, 2015, 40, 2641-2647.	3.8	73
910	Solvothermal synthesis of oxygen/nitrogen functionalized graphene-like materials with diversified morphology from different carbon sources and their fluorescence properties. Journal of Materials Science, 2015, 50, 1300-1308.	1.7	6

#	ARTICLE	IF	Citations
911	Low Temperature Critical Growth of High Quality Nitrogen Doped Graphene on Dielectrics by Plasma-Enhanced Chemical Vapor Deposition. ACS Nano, 2015, 9, 164-171.	7.3	125
912	A Fe/Fe ₃ O ₄ /N-carbon composite with hierarchical porous structure and in situ formed N-doped graphene-like layers for high-performance lithium ion batteries. Dalton Transactions, 2015, 44, 4594-4600.	1.6	28
913	Graphene nanoribbons as prospective field emitter. Applied Physics Letters, 2015, 106, 023111.	1.5	39
914	Tunable doping of graphene nanoribbon arrays by chemical functionalization. Nanoscale, 2015, 7, 3572-3580.	2.8	19
915	White-light photoconductivity of N-doped graphene oxide thin films. Journal of Materials Science: Materials in Electronics, 2015, 26, 1853-1857.	1.1	1
916	Application and Uses of Graphene. , 2015, , 1-38.		27
917	Preparation of graphene/carbon hybrid nanofibers and their performance for NO oxidation. Carbon, 2015, 87, 282-291.	5.4	27
918	Synthesis of Nitrogen Doped Multilayered Graphene Flakes: Selective Nonâ€enzymatic Electrochemical Determination of Dopamine and Uric Acid in presence of Ascorbic Acid Electroanalysis, 2015, 27, 1253-1261.	1.5	12
919	Synthesis of graphene with both high nitrogen content and high surface area by annealing composite of graphene oxide and g-C3N4. Journal of the Iranian Chemical Society, 2015, 12, 807-814.	1.2	12
920	Graphene in neurosurgery: the beginning of a new era. Nanomedicine, 2015, 10, 615-625.	1.7	25
921	Improving Capacitance by Introducing Nitrogen Species and Defects into Graphene. ChemElectroChem, 2015, 2, 859-866.	1.7	12
922	Nitrogenated holey two-dimensional structures. Nature Communications, 2015, 6, 6486.	5. 8	923
923	Doped Nanostructured Carbon Materials as Catalysts. RSC Catalysis Series, 2015, , 268-311.	0.1	3
924	Doped graphenes in catalysis. Journal of Molecular Catalysis A, 2015, 408, 296-309.	4.8	70
925	Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene. ACS Applied Materials & Eamp; Interfaces, 2015, 7, 16953-16959.	4.0	128
926	Predicted two-dimensional electrides: Lithium–carbon monolayer sheet. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2511-2514.	0.9	11
927	A ternary hybrid of carbon nanotubes/graphitic carbon nitride nanosheets/gold nanoparticles used as robust substrate electrodes in enzyme biofuel cells. Chemical Communications, 2015, 51, 14735-14738.	2,2	34
929	A highly N-doped carbon phase "dressing―of macroscopic supports for catalytic applications. Chemical Communications, 2015, 51, 14393-14396.	2.2	43

#	Article	IF	CITATIONS
930	Controlled oxygen-doped diamond-like carbon film synthesized by photoemission-assisted plasma. Diamond and Related Materials, 2015, 53, 11-17.	1.8	10
931	Hydrothermal synthesis of Fe 2 O 3 /polypyrrole/graphene oxide composites as highly efficient electrocatalysts for oxygen reduction reaction in alkaline electrolyte. Electrochimica Acta, 2015, 178, 179-189.	2.6	54
932	Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catalysis, 2015, 5, 5207-5234.	5.5	800
933	Hybrids of Synthetic Polymers and Biopolymers. , 2015, , 953-958.		0
935	Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection. Biosensors and Bioelectronics, 2015, 74, 329-334.	5.3	158
936	On the Chemical Reduced Large Specific Surface Area Graphene Oxide and its Electrochemical Performances. Applied Mechanics and Materials, 2015, 723, 615-618.	0.2	1
937	Sandwiched graphene with nitrogen, sulphur co-doped CQDs: an efficient metal-free material for energy storage and conversion applications. Journal of Materials Chemistry A, 2015, 3, 16961-16970.	5.2	100
938	Dopant-configuration controlled carrier scattering in graphene. RSC Advances, 2015, 5, 59556-59563.	1.7	15
939	Nitrogen Doping Enables Covalent-Like π–π Bonding between Graphenes. Nano Letters, 2015, 15, 5482-5491.	4.5	31
940	Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for CO ₂ reduction under visible light irradiation. RSC Advances, 2015, 5, 54929-54935.	1.7	47
941	Adsorption of Ti atoms on zigzag silicene nanoribbons: influence on electric, magnetic, and thermoelectric properties. Journal Physics D: Applied Physics, 2015, 48, 215306.	1.3	6
942	Nitrogen-doped carbon nanorods with excellent capacitive deionization ability. Journal of Materials Chemistry A, 2015, 3, 17304-17311.	5.2	7 3
943	Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation. Scientific Reports, 2015, 5, 12014.	1.6	69
944	High-Level Doping of Nitrogen, Phosphorus, and Sulfur into Activated Carbon Monoliths and Their Electrochemical Capacitances. Chemistry of Materials, 2015, 27, 4703-4712.	3.2	237
945	Efficient exfoliation N-doped graphene from N-containing bamboo-like carbon nanotubes for anode materials of Li-ion battery and Na-ion battery. Applied Physics A: Materials Science and Processing, 2015, 120, 471-478.	1.1	8
946	Nitrogen doped epitaxial graphene on 4H-SiC(0001) – Experimental and theoretical study. Carbon, 2015, 94, 214-223.	5.4	8
947	Tuning the Magnetic Properties of Carbon by Nitrogen Doping of Its Graphene Domains. Journal of the American Chemical Society, 2015, 137, 7678-7685.	6.6	82
948	Advanced graphene nanomaterials for electrochemical energy storage. Materials Research Innovations, 2015, 19, 7-19.	1.0	18

#	Article	IF	CITATIONS
949	Hollow melamine resin-based carbon spheres/graphene composite with excellent performance for supercapacitors. Electrochimica Acta, 2015, 166, 310-319.	2.6	94
950	Bottom-gate coplanar graphene transistors with enhanced graphene adhesion on atomic layer deposition Al2O3. Applied Physics Letters, 2015, 106, .	1.5	8
951	Carbon surface functionalities and SEI formation during Li intercalation. Carbon, 2015, 92, 193-244.	5.4	97
952	High stability and superior catalytic reactivity of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for the oxygen reduction reaction: a density functional theory study. RSC Advances, 2015, 5, 34070-34077.	1.7	42
953	Certain nitrogen functionalities on carbon nanofiber support for improving platinum performance. Catalysis Today, 2015, 256, 193-202.	2.2	8
954	Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy, 2015, 15, 9-23.	8.2	531
955	Fluorescence quenching in N-doped graphene derived from graphitic nitrogen. RSC Advances, 2015, 5, 28247-28250.	1.7	3
956	Oxidative Unzipping of Stacked Nitrogen-Doped Carbon Nanotube Cups. ACS Applied Materials & Interfaces, 2015, 7, 10734-10741.	4.0	10
957	Scalable thermal synthesis of a highly crumpled, highly exfoliated and N-doped graphene/Mn-oxide nanoparticle hybrid for high-performance supercapacitors. RSC Advances, 2015, 5, 42516-42525.	1.7	3
958	N- and S-doped high surface area carbon derived from soya chunks as scalable and efficient electrocatalysts for oxygen reduction. Science and Technology of Advanced Materials, 2015, 16, 014803.	2.8	28
959	Hybrid of porous cobalt oxide nanospheres and nitrogen-doped graphene for applications in lithium-ion batteries and oxygen reduction reaction. Journal of Power Sources, 2015, 290, 25-34.	4.0	72
960	Synthesis of nitrogen-doped monolayer graphene with high transparent and n-type electrical properties. Journal of Materials Chemistry C, 2015, 3, 6172-6177.	2.7	24
961	Unexpected Magnetic Semiconductor Behavior in Zigzag Phosphorene Nanoribbons Driven by Half-Filled One Dimensional Band. Scientific Reports, 2015, 5, 8921.	1.6	88
962	Facile fabrication of sandwich-structured Co3O4/N-rGO/AB hybrid with enhanced ORR electrocatalytic performances for metal–air batteries. RSC Advances, 2015, 5, 9057-9063.	1.7	17
963	Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 2015, 115, 4823-4892.	23.0	2,083
964	Electrochemical doping of three-dimensional graphene networks used as efficient electrocatalysts for oxygen reduction reaction. Nanoscale, 2015, 7, 9394-9398.	2.8	50
965	N-doped carbon nanocages with high catalytic activity and durability for oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 12427-12435.	5.2	25
966	Prediction of quantum anomalous Hall effect on graphene nanomesh. RSC Advances, 2015, 5, 9875-9880.	1.7	26

#	Article	IF	Citations
967	A new approach towards the synthesis of nitrogen-doped graphene/MnO ₂ hybrids for ultralong cycle-life lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 6291-6296.	5.2	52
968	Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping. Small, 2015, 11, 3143-3152.	5.2	13
969	One step synthesis cadmium sulphide/reduced graphene oxide sandwiched film modified electrode for simultaneous electrochemical determination of hydroquinone, catechol and resorcinol. RSC Advances, 2015, 5, 18615-18621.	1.7	35
970	Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction. Scientific Reports, 2015, 5, 9304.	1.6	93
971	Nitrogen doped graphene via thermal treatment of composite solid precursors as a high performance supercapacitor. RSC Advances, 2015, 5, 30679-30686.	1.7	64
972	A novel electrochemical method for the synthesis of boron doped graphene in the molten salt electrolyte. Synthetic Metals, 2015, 205, 85-91.	2.1	6
973	An overview of the electrochemical performance of modified graphene used as an electrocatalyst and as a catalyst support in fuel cells. Applied Catalysis A: General, 2015, 497, 198-210.	2.2	88
974	N-Doped Zigzag Graphene Nanoribbons on Si(001): a First-Principles Calculation. Chinese Physics Letters, 2015, 32, 077102.	1.3	2
975	Heteroatom substituted and decorated graphene: preparation and applications. Physical Chemistry Chemical Physics, 2015, 17, 32077-32098.	1.3	64
976	A nitrogen and sulfur co-doped graphene-supported nickel tetrapyridyloxyphthalocyanine hybrid fabricated by a solvothermal method and its application for the detection of bisphenol A. RSC Advances, 2015, 5, 84457-84464.	1.7	14
977	Electronic structure and optical properties of boron-sulfur symmetric codoping in 4 \tilde{A} — 4 graphene systems. European Physical Journal B, 2015, 88, 1.	0.6	11
978	Ultrasensitive gas detection of large-area boron-doped graphene. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14527-14532.	3.3	177
979	Structural and Chemical Dynamics of Pyridinic-Nitrogen Defects in Graphene. Nano Letters, 2015, 15, 7408-7413.	4.5	204
980	Renewable N-Heterocycles Production by Thermocatalytic Conversion and Ammonization of Biomass over ZSM-5. ACS Sustainable Chemistry and Engineering, 2015, 3, 2890-2899.	3.2	102
981	Reversible optical switching of dirac point of graphene functionalized with azobenzene. Russian Journal of General Chemistry, 2015, 85, 2167-2173.	0.3	1
982	Easy fabrication of ultralight CNx foams with application as absorbents and continuous flow oil–water separation. Materials Today Communications, 2015, 4, 116-123.	0.9	8
983	Bipolar spin-filtering effect in B- or N-doped zigzag graphene nanoribbons with asymmetric edge hydrogenation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2860-2865.	0.9	13
984	Self-catalyzed Growth of Large-Area Nanofilms of Two-Dimensional Carbon. Scientific Reports, 2015, 5, 7756.	1.6	129

#	ARTICLE	IF	CITATIONS
985	Image potential states at chevron-shaped graphene nanoribbons $/Au(111)$ interfaces. Physical Review B, 2015, 91, .	1.1	10
986	A bi-functional metal-free catalyst composed of dual-doped graphene and mesoporous carbon for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 18456-18465.	5.2	81
987	NiRh nanoparticles supported on nitrogen-doped porous carbon as highly efficient catalysts for dehydrogenation of hydrazine in alkaline solution. Nano Research, 2015, 8, 3472-3479.	5.8	40
988	Photochemical doping of graphene oxide thin film with nitrogen for photoconductivity enhancement. Carbon, 2015, 94, 1037-1043.	5.4	10
989	Microwave-Assisted Synthesis of Boron and Nitrogen co-doped Reduced Graphene Oxide for the Protection of Electromagnetic Radiation in Ku-Band. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19831-19842.	4.0	145
990	Dynamic modulation of electronic properties of graphene by localized carbon doping using focused electron beam induced deposition. Nanoscale, 2015, 7, 14946-14952.	2.8	12
991	A first-principles study of light non-metallic atom substituted blue phosphorene. Applied Surface Science, 2015, 356, 110-114.	3.1	95
992	I-V characteristics of in-plane and out-of-plane strained edge-hydrogenated armchair graphene nanoribbons. Journal of Applied Physics, 2015, 117, .	1.1	2
993	Electron Transfer and Charge Storage in Thin Films of Nanoparticles., 2015, , 1-62.		3
994	A low-cost and one-step synthesis of N-doped monolithic quasi-graphene films with porous carbon frameworks for Li-ion batteries. Nano Energy, 2015, 17, 43-51.	8.2	73
995	Highly dispersed Pd nanoparticles supported on nitrogen-doped graphene with enhanced hydrogenation activity. RSC Advances, 2015, 5, 72785-72792.	1.7	18
997	Nitrogen-doped graphene aerogels as anode materials for lithium-ion battery: Assembly and electrochemical properties. Materials Letters, 2015, 160, 392-396.	1.3	36
998	Ternary nickel cobaltite nanostructures for energy conversion. Functional Materials Letters, 2015, 08, 1530002.	0.7	8
999	Pyridinic nitrogen doped nanoporous graphene as desalination membrane: Molecular simulation study. Journal of Membrane Science, 2015, 496, 108-117.	4.1	96
1000	Effect of nitrogen doping on the structural and the optical variations of graphene quantum dots by using hydrazine treatment. Journal of the Korean Physical Society, 2015, 67, 746-751.	0.3	9
1001	Room-Temperature, Low-Barrier Boron Doping of Graphene. Nano Letters, 2015, 15, 6464-6468.	4.5	24
1002	Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews, 2015, 115, 9869-9921.	23.0	770
1003	Thermal conductivity and heat transport properties of nitrogen-doped graphene. Journal of Molecular Graphics and Modelling, 2015, 62, 74-80.	1.3	33

#	Article	IF	CITATIONS
1004	Negative differential resistance and stable conductance switching behaviors of salicylideneaniline molecular devices sandwiched between armchair graphene nanoribbon electrodes. Organic Electronics, 2015, 27, 41-45.	1.4	31
1005	Nanosized Pt anchored onto 3D nitrogen-doped graphene nanoribbons towards efficient methanol electrooxidation. Journal of Materials Chemistry A, 2015, 3, 19696-19701.	5.2	60
1006	CVD synthesis of nitrogen-doped graphene using urea. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	2.0	19
1007	Reduction mechanism of hydroxyl group from graphene oxide with and without –NH2 agent. Physica B: Condensed Matter, 2015, 477, 70-74.	1.3	16
1008	Utilizing ionic liquids for controlled N-doping in hard-templated, mesoporous carbon electrodes for high-performance electrochemical double-layer capacitors. Journal of Power Sources, 2015, 298, 193-202.	4.0	41
1009	Europium Effect on the Electron Transport in Graphene Ribbons. Journal of Physical Chemistry C, 2015, 119, 22486-22495.	1.5	6
1010	A molecular dynamics study on thermal and mechanical properties of graphene–paraffin nanocomposites. RSC Advances, 2015, 5, 82638-82644.	1.7	48
1011	Graphene meshes decorated with palladium nanoparticles for hydrogen detection. Journal Physics D: Applied Physics, 2015, 48, 475103.	1.3	13
1012	A novel electrochemical DNA-sensing nanoplatform based on supramolecular ionic liquids grafted on nitrogen-doped graphene aerogels. Journal of Applied Electrochemistry, 2015, 45, 1289-1298.	1.5	7
1013	Novel tannin-based Si, P co-doped carbon for supercapacitor applications. Journal of Power Sources, 2015, 275, 835-844.	4.0	48
1014	How Much N-Doping Can Graphene Sustain?. Journal of Physical Chemistry Letters, 2015, 6, 106-112.	2.1	62
1015	Estimation of nitrogen-to-carbon ratios of organics and carbon materials at the submicrometer scale. Carbon, 2015, 84, 290-298.	5.4	23
1016	Graphene for Glucose, Dopamine, Ascorbic Acid, and Uric Acid Detection. Springer Briefs in Molecular Science, 2015, , 57-79.	0.1	1
1017	Effect of the Number of Benzene-Ring, the Functional Groups and the Absorbent Material on the Performance of Pt Nanoparticles Supported on Modified Graphite Nanoplatelet. Electrochimica Acta, 2015, 153, 439-447.	2.6	5
1018	Beryllium doping graphene, graphene-nanoribbons, C60-fullerene, and carbon nanotubes. Carbon, 2015, 84, 317-326.	5.4	27
1019	Graphene-based photocatalysts for oxygen evolution from water. RSC Advances, 2015, 5, 6543-6552.	1.7	23
1020	Synthesis of sulfur-doped p-type graphene by annealing with hydrogen sulfide. Carbon, 2015, 82, 506-512.	5.4	50
1021	Facile one-pot synthesis of platinum nanoparticles decorated nitrogen-graphene with high electrocatalytic performance for oxygen reduction and anodic fuels oxidation. Journal of Power Sources, 2015, 277, 268-276.	4.0	29

#	Article	IF	CITATIONS
1023	Nitrogen and sulfur dual-doped graphene for glucose biosensor application. Journal of Electroanalytical Chemistry, 2015, 738, 100-107.	1.9	28
1024	A density functional theory study of the tunable structure, magnetism and metal-insulator phase transition in VS2 monolayers induced by in-plane biaxial strain. Nano Research, 2015, 8, 1348-1356.	5. 8	116
1025	Synthesis of nitrogen-doped graphene–ZnS quantum dots composites with highly efficient visible light photodegradation. Materials Chemistry and Physics, 2015, 151, 34-42.	2.0	25
1026	One-step etching, doping, and adhesion-control process for graphene electrodes. Carbon, 2015, 82, 168-175.	5.4	19
1027	First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes. Carbon, 2015, 81, 179-192.	5 . 4	61
1028	Nafion covered core–shell structured Fe 3 O 4 @graphene nanospheres modified electrode for highly selective detection of dopamine. Analytica Chimica Acta, 2015, 853, 285-290.	2.6	94
1029	Single and Multiple Doping in Graphene Quantum Dots: Unraveling the Origin of Selectivity in the Oxygen Reduction Reaction. ACS Catalysis, 2015, 5, 129-144.	5. 5	166
1030	Conductance recovery and spin polarization in boron and nitrogen co-doped graphene nanoribbons. Carbon, 2015, 81, 339-346.	5.4	14
1031	Effect of substrates on covalent surface modification of graphene using photosensitive functional group. International Journal of Materials Research, 2021, 106, 176-183.	0.1	2
1032	The room temperature electrochemical synthesis of N-doped graphene and its electrocatalytic activity for oxygen reduction. Chemical Communications, 2015, 51, 1198-1201.	2.2	57
1033	High nitrogen-doped carbon/Mn ₃ O ₄ hybrids synthesized from nitrogen-rich coordination polymer particles as supercapacitor electrodes. Dalton Transactions, 2015, 44, 151-157.	1.6	32
1034	Fluorine adsorption on the graphene films: From metal to insulator. Computational Materials Science, 2015, 97, 14-19.	1.4	21
1035	Highly-dispersed Boron-doped Graphene Nanosheets Loaded with TiO2 Nanoparticles for Enhancing CO2 Photoreduction. Scientific Reports, 2014, 4, 6341.	1.6	156
1036	Magnetic Exchange Coupling and Anisotropy of 3d Transition Metal Nanowires on Graphyne. Scientific Reports, 2014, 4, 4014.	1.6	56
1037	Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction. Materials Research Bulletin, 2015, 61, 252-258.	2.7	15
1038	All-Graphene Planar Self-Switching MISFEDs, Metal-Insulator-Semiconductor Field-Effect Diodes. Scientific Reports, 2014, 4, 3983.	1.6	42
1039	Influences of carbon nanofillers on mechanical performance of epoxy resin polymer. Applied Nanoscience (Switzerland), 2015, 5, 305-313.	1.6	36
1040	N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins. Chemical Communications, 2015, 51, 217-220.	2.2	142

#	Article	IF	Citations
1041	Synthesis and characterization of CTABâ€intercalated graphene/polyaniline nanocomposites via <i>in situ</i> oxidative polymerization. Polymer Composites, 2015, 36, 1767-1774.	2.3	3
1042	Graphene quantum dots mediated charge transfer of CdSe nanocrystals for enhancing photoelectrochemical hydrogen production. Applied Catalysis B: Environmental, 2015, 164, 271-278.	10.8	135
1044	Graphene Quantum Dots: Syntheses, Properties, and Biological Applications., 2016, , 171-192.		17
1045	Surface and Interface Engineering of Graphene Oxide Films by Controllable Photoreduction. Chemical Record, 2016, 16, 1244-1255.	2.9	29
1046	Pure Pyridinic Nitrogenâ€Doped Singleâ€Layer Graphene Catalyzes Twoâ€Electron Transfer Process of Oxygen Reduction Reaction. ChemElectroChem, 2016, 3, 2036-2042.	1.7	26
1047	Direct CVD Graphene Growth on Semiconductors and Dielectrics for Transferâ€Free Device Fabrication. Advanced Materials, 2016, 28, 4956-4975.	11.1	113
1048	Supramolecular Approaches to Graphene: From Selfâ€Assembly to Moleculeâ€Assisted Liquidâ€Phase Exfoliation. Advanced Materials, 2016, 28, 6030-6051.	11.1	154
1049	Co@Co ₃ O ₄ @PPD Core@bishell Nanoparticleâ€Based Composite as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 2580-2587.	5.2	86
1050	Ab-initio study of the optical properties of the Li-intercalated graphene and MoS \$\$_2\$\$ 2. Optical and Quantum Electronics, 2016, 48, 1.	1.5	5
1051	Structural and Electronic Properties of Interfaces in Graphene and Hexagonal Boron Nitride Lateral Heterostructures. Chemistry of Materials, 2016, 28, 5022-5028.	3.2	63
1052	Metal–Organic Frameworkâ€Templated Porous Carbon for Highly Efficient Catalysis: The Critical Role of Pyrrolic Nitrogen Species. Chemistry - A European Journal, 2016, 22, 3470-3477.	1.7	79
1053	Synthesis and characterization of nitrogen-functionalized graphene oxide in high-temperature and high-pressure ammonia. RSC Advances, 2016, 6, 113924-113932.	1.7	21
1054	Chemical and biological sensors based on defect-engineered graphene mesh field-effect transistors. Nano Convergence, 2016, 3, 14.	6.3	14
1055	The effect of synthesis time on graphene growth from palm oil as green carbon precursor. AIP Conference Proceedings, 2016, , .	0.3	5
1056	Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure. Scientific Reports, 2016, 6, 33046.	1.6	25
1057	Effect of straining graphene on nanopore creation using Si cluster bombardment: A reactive atomistic investigation. Journal of Applied Physics, 2016, 120, .	1.1	15
1058	Plasma engineering of graphene. Applied Physics Reviews, 2016, 3, 021301.	5 . 5	123
1059	Coexistence of negative photoconductivity and hysteresis in semiconducting graphene. AIP Advances, 2016, 6, .	0.6	14

#	ARTICLE	IF	CITATIONS
1060	Restoration of thermally reduced graphene oxide by atomic-level selenium doping. NPG Asia Materials, 2016, 8, e338-e338.	3.8	45
1061	Mechanism of stabilization and magnetization of impurity-doped zigzag graphene nanoribbons. Journal of Applied Physics, 2016, 120, .	1.1	6
1062	Flexible bottom-gate graphene transistors on Parylene C substrate and the effect of current annealing. Applied Physics Letters, 2016, 109, 152105.	1.5	7
1065	Effects of domain size on x-ray absorption spectra of boron nitride doped graphenes. Applied Physics Letters, 2016, 109, .	1.5	9
1066	Structural and optical properties of graphene from green carbon source via thermal chemical vapor deposition. Journal of Materials Research, 2016, 31, 1947-1956.	1.2	32
1067	Modification of the G-phonon mode of graphene by nitrogen doping. Applied Physics Letters, 2016, 108, .	1.5	5
1068	Assessing the temporal stability of surface functional groups introduced by plasma treatments on the outer shells of carbon nanotubes. Scientific Reports, 2016, 6, 31565.	1.6	40
1069	Study of band gap reduction of TiO2 thin films with variation in GO contents and use of TiO2/Graphene composite in hybrid solar cell. Journal of Alloys and Compounds, 2016, 679, 177-183.	2.8	42
1070	Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chemical Reviews, 2016, 116, 5464-5519.	23.0	1,942
1071	Nitrogen-doped porous carbon nanosheets derived from poly(ionic liquid)s: hierarchical pore structures for efficient CO ₂ capture and dye removal. Journal of Materials Chemistry A, 2016, 4, 7313-7321.	5.2	157
1072	Mg/Ca decorated on carbon-doped boron nitride sheet: Application for gas adsorption. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 298-304.	1.0	15
1073	Silk-derived graphene-like carbon with high electrocatalytic activity for oxygen reduction reaction. RSC Advances, 2016, 6, 34219-34224.	1.7	22
1074	Doping Effect on Edge-Terminated Ferromagnetic Graphene Nanoribbons. Journal of Physical Chemistry C, 2016, 120, 11237-11244.	1.5	22
1075	Angle-selective perfect absorption with two-dimensional materials. Light: Science and Applications, 2016, 5, e16052-e16052.	7.7	94
1076	Facile preparation of nitrogen-doped porous carbon for high performance symmetric supercapacitor. Journal of Solid State Electrochemistry, 2016, 20, 1613-1623.	1.2	23
1077	Boron-doped Ketjenblack based high performances cathode for rechargeable Li–O 2 batteries. Journal of Energy Chemistry, 2016, 25, 131-135.	7.1	12
1078	A comparative DFT study on the CO oxidation reaction over Al- and Ge-embedded graphene as efficient metal-free catalysts. Applied Surface Science, 2016, 378, 418-425.	3.1	69
1079	Hierarchical Sandwich-Like Structure of Ultrafine N-Rich Porous Carbon Nanospheres Grown on Graphene Sheets as Superior Lithium-Ion Battery Anodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10324-10333.	4.0	100

#	ARTICLE	IF	CITATIONS
1080	Density-functional study on the structural and magnetic properties of N-doped graphene oxide. Carbon, 2016, 102, 39-50.	5.4	15
1081	Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance. Nanoscale, 2016, 8, 10406-10414.	2.8	82
1082	Electrochemical Exfoliation of Graphite into Nitrogen-doped Graphene in Glycine Solution and its Energy Storage Properties. Electrochimica Acta, 2016, 204, 100-107.	2.6	70
1083	Adsorption of amino acids on boron and/or nitrogen doped functionalized graphene: A Density Functional Study. Computational and Theoretical Chemistry, 2016, 1086, 45-51.	1.1	36
1084	Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy, 2016, 25, 203-210.	8.2	347
1085	Incorporation of low energy activated nitrogen onto HOPG surface: Chemical states and thermal stability studies by in-situ XPS and Raman spectroscopy. Applied Surface Science, 2016, 382, 192-201.	3.1	10
1086	Controlled rippling of graphene via irradiation and applied strain modify its mechanical properties: a nanoindentation simulation study. Physical Chemistry Chemical Physics, 2016, 18, 13897-13903.	1.3	13
1087	Laser-induced chemical transformation of free-standing graphene oxide membranes in liquid and gas ammonia environments. RSC Advances, 2016, 6, 50034-50042.	1.7	13
1088	Ultrafine Co ₃ O ₄ embedded in nitrogen-doped graphene with synergistic effect and high stability for supercapacitors. RSC Advances, 2016, 6, 48357-48364.	1.7	30
1089	Graphene oxide/mixed metal oxide hybrid materials for enhanced adsorption desulfurization of liquid hydrocarbon fuels. Fuel, 2016, 181, 531-536.	3.4	78
1090	Tuning graphene for energy and environmental applications: Oxygen reduction reaction and greenhouse gas mitigation. Journal of Power Sources, 2016, 328, 472-481.	4.0	16
1091	Band and bonding characteristics of N2+ ion-doped graphene. RSC Advances, 2016, 6, 84959-84964.	1.7	1
1092	Giant decreasing of spin current in a single molecular junction with twisted zigzag graphene nanoribbon electrodes. Carbon, 2016, 110, 200-206.	5.4	53
1093	The mechanism and process of spontaneous boron doping in graphene in the theoretical perspective. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3384-3388.	0.9	2
1094	Tunable Conductivity and Half Metallic Ferromagnetism in Monolayer Platinum Diselenide: A First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 25030-25036.	1.5	38
1095	Purely substitutional nitrogen on graphene/ $Pt(111)$ unveiled by STM and first principles calculations. Nanoscale, 2016, 8, 17686-17693.	2.8	14
1097	Modulation of N-bonding configurations and their influence on the electrical properties of nitrogen-doped graphene. RSC Advances, 2016, 6, 92682-92687.	1.7	10
1098	Influence of oxygen on nitrogen-doped carbon nanofiber growth directly on nichrome foil. Nanotechnology, 2016, 27, 365602.	1.3	9

#	Article	IF	CITATIONS
1099	3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion. Nanoscale, 2016, 8, 15414-15447.	2.8	127
1100	A Facile Route to Bimetal and Nitrogenâ€Codoped 3D Porous Graphitic Carbon Networks for Efficient Oxygen Reduction. Small, 2016, 12, 4193-4199.	5 . 2	150
1101	Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitors. Nano Research, 2016, 9, 3209-3221.	5.8	78
1102	Doped graphenes as anodes with large capacity for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 13407-13413.	5.2	57
1103	2D nanosheets-based novel architectures: Synthesis, assembly and applications. Nano Today, 2016, 11 , 483-520.	6.2	95
1104	Electronic properties and nonlinear optical responses of boron/nitrogen-doped zigzag graphene nanoribbons. Canadian Journal of Chemistry, 2016, 94, 620-625.	0.6	9
1105	The Effects of Percent and Position of Nitrogen Atoms on Electronic and Thermoelectric Properties of Graphene Nanoribbons. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1095-1100.	1.9	3
1106	Symmetry and Topology of Graphenes. , 2016, , 177-182.		0
1107	3D Macroscopic Graphene Assemblies. , 2016, , 281-294.		0
1108	Graphene Heterostructures. , 2016, , 3-20.		0
1109	Graphene-Enabled Heterostructures: Role in Future-Generation Carbon Electronics., 2016,, 441-452.		1
1110	Graphene and Its Hybrids as Electrode Materials for High-Performance Lithium-Ion Batteries. , 2016, , 133-152.		0
1111	Highly Enhanced Electromechanical Stability of Large-Area Graphene with Increased Interfacial Adhesion Energy by Electrothermal-Direct Transfer for Transparent Electrodes. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 23396-23403.	4.0	3
1112	A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion. Green Chemistry, 2016, 18, 5957-5961.	4.6	129
1113	Interaction of Rhodamine 6G molecules with graphene: a combined computational–experimental study. Physical Chemistry Chemical Physics, 2016, 18, 28418-28427.	1.3	13
1114	Structural prediction for scandium carbide monolayer sheet. Chemical Physics Letters, 2016, 660, 238-243.	1.2	5
1115	Lanthanides-based graphene catalysts for high performance hydrogen evolution and oxygen reduction. Electrochimica Acta, 2016, 214, 173-181.	2.6	19
1116	Porous nitrogen-rich carbon materials from carbon self-repairing g-C ₃ N ₄ assembled with graphene for high-performance supercapacitor. Journal of Materials Chemistry A, 2016, 4, 14307-14315.	5.2	93

#	Article	IF	CITATIONS
1117	As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance. Scientific Reports, 2016, 6, 37190.	1.6	28
1118	Impact of Contact Resistance on the fT and fmax of Graphene vs. MoS2 Transistors. IEEE Nanotechnology Magazine, 2016, , 1-1.	1.1	9
1119	Modifying the Size of Ultrasound-Induced Liquid-Phase Exfoliated Graphene: From Nanosheets to Nanodots. ACS Nano, 2016, 10, 10768-10777.	7.3	51
1120	Ferroelectric surface induced electron doping in a zigzag graphene nanoribbon. Journal of Physics Condensed Matter, 2016, 28, 435002.	0.7	7
1121	Hydrogenated Graphene: Preparation, Properties, and Applications. , 2016, , 449-468.		0
1122	Synthesis and Application of Graphene Nanoribbons. , 2016, , 47-58.		0
1123	Tunable plasmons in few-layer nitrogen-doped graphene nanostructures: A time-dependent density functional theory study. Physical Review B, 2016, 93, .	1.1	11
1124	Line defects in graphene: How doping affects the electronic and mechanical properties. Physical Review B, 2016, 93, .	1.1	25
1125	Physical properties of low-dimensional <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>></mml:mi>><td>w>16n4ml:n</td><td>nrov60x mml:r</td></mml:mrow></mml:math>	w> 16 n4ml:n	nro v6 0x mml:r
1126	Direct Heating Amino Acids with Silica: A Universal Solventâ€Free Assembly Approach to Highly Nitrogenâ€Doped Mesoporous Carbon Materials. Advanced Functional Materials, 2016, 26, 6649-6661.	7.8	67
1127	Boron and nitrogen doping in graphene antidot lattices. Physical Review B, 2016, 93, .	1.1	7
1128	Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors. Light: Science and Applications, 2016, 5, e16130-e16130.	7.7	152
1129	Honeyâ€Based P, N and Si Triâ€Doped Graphitic Carbon Electrocatalysts for Oxygen Reduction Reaction in Alkaline Conditions. ChemistrySelect, 2016, 1, 3527-3534.	0.7	3
1130	Theoretical study of stability, electronic properties and strain effects in hybrid bilayers. Superlattices and Microstructures, 2016, 100, 947-956.	1.4	2
1131	Elemental superdoping of graphene and carbon nanotubes. Nature Communications, 2016, 7, 10921.	5.8	238
1132	Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Science Advances, 2016, 2, e1501122.	4.7	1,078
1133	Morphological and crystallinity differences in nitrogen-doped carbon nanotubes grown by chemical vapour deposition decomposition of melamine over coal fly ash. RSC Advances, 2016, 6, 76773-76779.	1.7	20
1134	Preparation of preferentially exposed poison-resistant Pt(111) nanoplates with a nitrogen-doped graphene aerogel. Chemical Communications, 2016, 52, 13815-13818.	2.2	22

#	Article	IF	CITATIONS
1135	Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia. Scientific Reports, 2016, 6, 23495.	1.6	111
1136	Aziridine-Functionalized Multiwalled Carbon Nanotubes: Robust and Versatile Catalysts for the Oxygen Reduction Reaction and Knoevenagel Condensation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30099-30106.	4.0	61
1137	Large size nitrogen-doped graphene-coated graphite for high performance lithium-ion battery anode. RSC Advances, 2016, 6, 104010-104015.	1.7	14
1138	Negative differential resistance in new structures based on graphene nanoribbons. Journal of Computational Electronics, 2016, 15, 1361-1369.	1.3	12
1139	Copper vapor-assisted growth of hexagonal graphene domains on silica islands. Applied Physics Letters, $2016,109,$	1.5	5
1140	Chemistry at the Edge of Graphene. ChemPhysChem, 2016, 17, 785-801.	1.0	120
1141	Preparation of N-Doped Nanoporous Carbon from Crude Biomass and its Electrochemical Activity. Nano, 2016, 11, 1650028.	0.5	3
1142	Transformation between divacancy defects induced by an energy pulse in graphene. Nanotechnology, 2016, 27, 274004.	1.3	6
1143	The Two-Dimensional Nanocomposite of Molybdenum Disulfide and Nitrogen-Doped Graphene Oxide for Efficient Counter Electrode of Dye-Sensitized Solar Cells. Nanoscale Research Letters, 2016, 11, 117.	3.1	53
1144	Trapping oxygen in hierarchically porous carbon nano-nets: graphitic nitrogen dopants boost the electrocatalytic activity. RSC Advances, 2016, 6, 56765-56771.	1.7	8
1145	Controllable synthesis of reduced graphene oxide. Current Applied Physics, 2016, 16, 1152-1158.	1.1	36
1146	Atomistic Interrogation of B–N Co-dopant Structures and Their Electronic Effects in Graphene. ACS Nano, 2016, 10, 6574-6584.	7.3	53
1147	Heterocarbon nanosheets incorporating iron phthalocyanine for oxygen reduction reaction in both alkaline and acidic media. Physical Chemistry Chemical Physics, 2016, 18, 10856-10863.	1.3	30
1148	Nitrogen Doped Graphene as Metal Free Electrocatalyst for Efficient Oxygen Reduction Reaction in Alkaline Media and Its Application in Anion Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2016, 163, F848-F855.	1.3	76
1149	Biomedical Applications of Graphene. , 2016, , 41-56.		1
1150	A synchrotron-based spectroscopic study of the electronic structure of N-doped HOPG and PdY/N-doped HOPG. Surface Science, 2016, 646, 132-139.	0.8	16
1151	Engineering of the electronic structure of graphene monoxide by out of plane and in-plane strains investigated by DFT. Computational and Theoretical Chemistry, 2016, 1090, 34-40.	1.1	2
1152	Effect of substitutional impurities on the electronic transport properties of graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 22-26.	1.3	20

#	Article	IF	CITATIONS
1153	N-doped graphene grown on silk cocoon-derived interconnected carbon fibers for oxygen reduction reaction and photocatalytic hydrogen production. Nano Research, 2016, 9, 2498-2509.	5.8	70
1154	Porous and high electronic conductivity nitrogen-doped nano-sheet carbon derived from polypyrrole for high-power supercapacitors. Carbon, 2016, 107, 638-645.	5.4	93
1155	Controllable Fabrication of Nanostructured Graphene Towards Electronics. Advanced Electronic Materials, 2016, 2, 1500456.	2.6	22
1156	Gate-Tunable Dirac Point of Molecular Doped Graphene. ACS Nano, 2016, 10, 2930-2939.	7. 3	49
1157	Graphene homojunction: closed-edge bilayer graphene by pseudospin interaction. Nanoscale, 2016, 8, 9102-9106.	2.8	5
1158	Influence of Au doping on electrical properties of CVD graphene. Carbon, 2016, 100, 625-631.	5.4	26
1159	A study on the interactions of amino acids with nitrogen doped graphene; docking, MD simulation, and QM/MM studies. Physical Chemistry Chemical Physics, 2016, 18, 4352-4361.	1.3	17
1160	Tuneable graphene nanopores for single biomolecule detection. Nanoscale, 2016, 8, 10066-10077.	2.8	19
1161	Synthesis and functionalization of graphene and application in electrochemical biosensing. Nanotechnology Reviews, 2016, 5, .	2.6	26
1162	Functionalization of graphene by atmospheric pressure plasma jet in air or H2O2 environments. Applied Surface Science, 2016, 367, 160-166.	3.1	11
1163	N-Doped Food-Grade-Derived 3D Mesoporous Foams as Metal-Free Systems for Catalysis. ACS Catalysis, 2016, 6, 1408-1419.	5.5	73
1164	Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction. Nano Research, 2016, 9, 317-328.	5.8	70
1165	Aerobic selective oxidation of 5-hydroxymethyl-furfural over nitrogen-doped graphene materials with 2,2,6,6-tetramethylpiperidin-oxyl as co-catalyst. Catalysis Science and Technology, 2016, 6, 2377-2386.	2.1	45
1166	Simultaneous sulfur doping and exfoliation of graphene from graphite using an electrochemical method for supercapacitor electrode materials. Journal of Materials Chemistry A, 2016, 4, 233-240.	5.2	151
1167	Analytical Current Transport Modeling of Graphene Nanoribbon Tunnel Field-Effect Transistors for Digital Circuit Design. IEEE Nanotechnology Magazine, 2016, 15, 39-50.	1.1	34
1168	Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chemical Society Reviews, 2016, 45, 715-752.	18.7	249
1169	Incorporating nitrogen-doped graphene oxide dots with graphene oxide sheets for stable and effective hydrogen production through photocatalytic water decomposition. Applied Catalysis A: General, 2016, 521, 118-124.	2.2	30
1170	Graphene Functionalization forÂBiosensor Applications. , 2016, , 85-141.		43

#	Article	IF	CITATIONS
1171	Study of nitrogen doping of graphene via in-situ transport measurements. Physica B: Condensed Matter, 2016, 490, 21-24.	1.3	9
1172	The Synthesis, Properties, and Applications of Heteroatom-Doped Graphenes. Advanced Structured Materials, 2016, , 103-133.	0.3	3
1173	Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction. Journal of Power Sources, 2016, 314, 39-48.	4.0	141
1174	Ligand-Free Noble Metal Nanocluster Catalysts on Carbon Supports via "Soft―Nitriding. Journal of the American Chemical Society, 2016, 138, 4718-4721.	6.6	204
1175	Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments. Materials Research Bulletin, 2016, 82, 71-75.	2.7	18
1176	Recent progress in the development of anodes for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 4634-4658.	5.2	154
1177	Surface nitrogen functionality for the enhanced field emission of free-standing few-layer graphene nanowalls. Journal of Alloys and Compounds, 2016, 672, 433-439.	2.8	31
1178	Observation of lateral band-bending in the edge vicinity of atomically-thin Bi insulating film formed on Si(111) surface. Surface Science, 2016, 644, 41-45.	0.8	3
1179	Preparation and optical properties of sonication-assisted nitrogen doped graphene oxide sheets. Optical and Quantum Electronics, 2016, 48, 1.	1.5	1
1180	Ultrafast and Efficient Transport of Hot Plasmonic Electrons by Graphene for Pt Free, Highly Efficient Visible-Light Responsive Photocatalyst. Nano Letters, 2016, 16, 1760-1767.	4.5	117
1181	Electronic Structure Properties of Two-Dimensional π-Conjugated Polymers. Macromolecules, 2016, 49, 1305-1312.	2.2	32
1182	3D hierarchical porous N-doped carbon aerogel from renewable cellulose: an attractive carbon for high-performance supercapacitor electrodes and CO ₂ adsorption. RSC Advances, 2016, 6, 15788-15795.	1.7	127
1183	Structural evolution of graphene in air at the electrical breakdown limit. Carbon, 2016, 99, 466-471.	5.4	11
1184	One-step and controllable bipolar doping of reduced graphene oxide using TMAH as reducing agent and doping source for field effect transistors. Carbon, 2016, 100, 608-616.	5.4	25
1185	Synthesis, doping and properties of two-dimensional materials. Proceedings of SPIE, 2016, , .	0.8	0
1186	Formation Mechanisms of Graphitic-N: Oxygen Reduction and Nitrogen Doping of Graphene Oxides. Journal of Physical Chemistry C, 2016, 120, 5673-5681.	1.5	29
1187	Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. Journal of Power Sources, 2016, 312, 146-155.	4.0	146
1188	Cysteine detection using a high-fluorescence sensor based on a nitrogen-doped graphene quantum dot–mercury(II) system. Journal of Luminescence, 2016, 175, 129-134.	1.5	32

#	Article	IF	CITATIONS
1189	Synthesis of novel 2-d carbon materials: sp ² carbon nanoribbon packing to form well-defined nanosheets. Materials Horizons, 2016, 3, 214-219.	6.4	28
1190	In-situ fabrication of reduced graphene oxide (rGO)/ZnO heterostructure: surface functional groups induced electrical properties. Electrochimica Acta, 2016, 196, 558-564.	2.6	24
1191	Nitrogenated, phosphorated and arsenicated monolayer holey graphenes. Physical Chemistry Chemical Physics, 2016, 18, 3144-3150.	1.3	57
1192	Effect of Amine-Based Organic Compounds on the Work-Function Decrease of Graphene. Journal of Physical Chemistry C, 2016, 120, 1309-1316.	1.5	8
1193	Production of N-graphene by microwave N ₂ -Ar plasma. Journal Physics D: Applied Physics, 2016, 49, 055307.	1.3	31
1194	Theoretical study of triiodide reduction reaction on nitrogen-doped graphene for dye-sensitized solar cells. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	6
1195	Electron Transfer and Catalytic Mechanism of Organic Molecule-Adsorbed Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction and Evolution Reactions. Journal of Physical Chemistry C, 2016, 120, 2166-2175.	1.5	42
1196	Catalytic oxidation of nitric oxide (NO) with carbonaceous materials. RSC Advances, 2016, 6, 8469-8482.	1.7	40
1197	Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance. Materials Science and Engineering C, 2016, 61, 449-456.	3.8	27
1198	Graphene oxide-based nanomaterials for efficient photoenergy conversion. Journal of Materials Chemistry A, 2016, 4, 2014-2048.	5.2	73
1199	Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals. Applied Surface Science, 2016, 364, 181-189.	3.1	161
1200	Structural characterizations of fluoride doped CeTi nanoparticles and its differently promotional mechanisms on ozonation for low-temperature removal of NO x ($x = 1, 2$). Chemical Engineering Journal, 2016, 286, 549-559.	6.6	36
1201	Nickel nanoparticles supported on graphene as catalysts for aldehyde hydrosilylation. Journal of Molecular Catalysis A, 2016, 412, 13-19.	4.8	28
1202	Nitrogen-Doped Graphene Synthesized from a Single Liquid Precursor for a Field Effect Transistor. Journal of Electronic Materials, 2016, 45, 839-845.	1.0	12
1203	Nitrogen-doped porous carbon spheres anchored with Co3O4 nanoparticles as high-performance anode materials for lithium-ion batteries. Electrochimica Acta, 2016, 187, 234-242.	2.6	83
1204	Hierarchical Amination of Graphene for Electrochemical Energy Storage. Springer Theses, 2016, , 73-96.	0.0	0
1205	Effect of electrode twisting on electronic transport properties of atomic carbon wires. Carbon, 2016, 98, 179-186.	5.4	68
1206	Hydrothermal synthesis of N-doped TiO2 nanowires and N-doped graphene heterostructures with enhanced photocatalytic properties. Journal of Alloys and Compounds, 2016, 656, 24-32.	2.8	150

#	Article	IF	CITATIONS
1207	Electron doping and stability enhancement of doped graphene using a transparent polar dielectric film. Journal of Materials Science, 2016, 51, 748-755.	1.7	2
1208	A sensitive electrochemical sensor for lead based on gold nanoparticles/nitrogen-doped graphene composites functionalized with l-cysteine-modified electrode. Journal of Solid State Electrochemistry, 2016, 20, 327-335.	1.2	44
1209	Three dimensional nitrogen-doped graphene hydrogels with in situ deposited cobalt phosphate nanoclusters for efficient oxygen evolution in a neutral electrolyte. Nanoscale Horizons, 2016, 1, 41-44.	4.1	54
1210	Recent advances in computational studies of organometallic sheets: Magnetism, adsorption and catalysis. Computational Materials Science, 2016, 112, 492-502.	1.4	29
1211	Synthesis of graphene and related two-dimensional materials for bioelectronics devices. Biosensors and Bioelectronics, 2017, 89, 28-42.	5.3	54
1212	Two-Dimensional C ₄ N Global Minima: Unique Structural Topologies and Nanoelectronic Properties. Journal of Physical Chemistry C, 2017, 121, 2669-2674.	1.5	49
1213	Reversible Photochemical Control of Doping Levels in Supported Graphene. Journal of Physical Chemistry C, 2017, 121, 4083-4091.	1.5	28
1214	Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene. Journal of the American Chemical Society, 2017, 139, 3171-3180.	6.6	202
1215	Improvements on thermal stability of graphene and top gate graphene transistors by Ar annealing. Vacuum, 2017, 137, 8-13.	1.6	14
1216	Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging. Biomaterials, 2017, 120, 185-194.	5.7	168
1217	First-principle analysis of photoelectric properties of silicon-carbon materials with graphene-like honeycomb structure. Computational Materials Science, 2017, 126, 336-343.	1.4	12
1218	Doping of graphene using ion beam irradiation and the atomic mechanism. Computational Materials Science, 2017, 129, 184-193.	1.4	18
1219	First-principles study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices. Frontiers of Physics, 2017, 12, 1.	2.4	10
1221	Unraveling Surface Basicity and Bulk Morphology Relationship on Covalent Triazine Frameworks with Unique Catalytic and Gas Adsorption Properties. Advanced Functional Materials, 2017, 27, 1605672.	7.8	72
1222	Fabrication of free-standing N-doped carbon/TiO2 hierarchical nanofiber films and their application in lithium and sodium storages. Journal of Alloys and Compounds, 2017, 701, 372-379.	2.8	29
1223	Freestanding highly defect nitrogen-enriched carbon nanofibers for lithium ion battery thin-film anodes. Journal of Materials Chemistry A, 2017, 5, 5532-5540.	5.2	33
1224	Insight into the topological defects and dopants in metal-free holey graphene for triiodide reduction in dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 5952-5960.	5.2	49
1225	Iron-carbon nanohybrid particles as environmentally benign electrode for supercapacitor. Journal of Solid State Electrochemistry, 2017, 21, 1665-1674.	1.2	2

#	Article	IF	CITATIONS
1226	Facile synthesis of highly graphitized nitrogen-doped carbon dots and carbon sheets with solid-state white-light emission. Materials Letters, 2017, 195, 58-61.	1.3	21
1227	The necessity of structural irregularities for the chemical applications of graphene. Materials Today Chemistry, 2017, 4, 1-16.	1.7	95
1228	Efficient heat generation in large-area graphene films by electromagnetic wave absorption. 2D Materials, 2017, 4, 025037.	2.0	23
1229	Atomic Defects in Twoâ€Dimensional Materials: From Singleâ€Atom Spectroscopy to Functionalities in Optoâ€∤Electronics, Nanomagnetism, and Catalysis. Advanced Materials, 2017, 29, 1606434.	11.1	211
1230	Fe ₃ C@Fe/N Doped Graphene-Like Carbon Sheets as a Highly Efficient Catalyst in Al-Air Batteries. Journal of the Electrochemical Society, 2017, 164, F475-F483.	1.3	34
1231	Synthesis of Threeâ€Dimensional Nitrogen and Sulfur Dualâ€Doped Graphene Aerogels as an Efficient Metalâ€Free Electrocatalyst for the Oxygen Reduction Reaction. ChemElectroChem, 2017, 4, 1885-1890.	1.7	21
1232	Synthesis of honeycomb-like mesoporous nitrogen-doped carbon nanospheres as Pt catalyst supports for methanol oxidation in alkaline media. Applied Surface Science, 2017, 407, 64-71.	3.1	61
1233	Tunable Terahertz Plasmonic Sensor Based on Graphene/Insulator Stacks. IEEE Photonics Journal, 2017, 9, 1-10.	1.0	15
1234	Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9378-9387.	4.0	46
1235	Unusual Assembly and Conversion of Graphene Quantum Dots into Crystalline Graphite Nanocapsules. Chemistry - an Asian Journal, 2017, 12, 1272-1276.	1.7	4
1236	Electronic structure and quantum transport properties of boron and nitrogen substituted graphene monolayers. Current Applied Physics, 2017, 17, 957-961.	1.1	7
1237	Electronic and magnetic properties of pristine and hydrogenated borophene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 91, 106-112.	1.3	60
1238	Controllable synthesis of porous C \times N \times nanofibers with enhanced electromagnetic wave absorption property. Ceramics International, 2017, 43, 8603-8610.	2.3	10
1239	The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing. Biosensors and Bioelectronics, 2017, 95, 138-145.	5.3	81
1240	Defect-mediated leakage in lithium intercalated bilayer graphene. AIP Advances, 2017, 7, .	0.6	5
1241	Designing and engineering electronic band gap of graphene nanosheet by P dopants. Solid State Communications, 2017, 258, 11-16.	0.9	24
1242	Doping of graphene induced by boron/silicon substrate. Nanotechnology, 2017, 28, 215701.	1.3	11
1243	A Kinetic Pathway toward High-Density Ordered N Doping of Epitaxial Graphene on Cu(111) Using C ₅ NCl ₅ Precursors. Journal of the American Chemical Society, 2017, 139, 7196-7202.	6.6	16

#	Article	IF	CITATIONS
1244	Synthesis of Co-N-C grafted on well-dispersed MnOx-CeO2 hollow mesoporous sphere with efficient catalytic performance. Molecular Catalysis, 2017, 437, 18-25.	1.0	14
1245	Substrate Doping Effect and Unusually Large Angle van Hove Singularity Evolution in Twisted Bi―and Multilayer Graphene. Advanced Materials, 2017, 29, 1606741.	11.1	43
1246	Graphene: Synthesis and Functionalization. Nanostructure Science and Technology, 2017, , 101-132.	0.1	2
1247	Electron–Hole Symmetry Breaking in Charge Transport in Nitrogen-Doped Graphene. ACS Nano, 2017, 11, 4641-4650.	7. 3	46
1248	Co-SrCO ₃ /N-doped carbon: a highly efficient hybrid electrocatalyst for the oxygen reduction reaction and Zn–air batteries. Inorganic Chemistry Frontiers, 2017, 4, 1073-1086.	3.0	17
1249	Nanohole-structured, iron oxide-decorated and gelatin-functionalized graphene for high rate and high capacity Li-lon anode. Carbon, 2017, 119, 355-364.	5.4	26
1250	Reprint of: Improvements on thermal stability of graphene and top gate graphene transistors by Ar annealing. Vacuum, 2017, 140, 149-154.	1.6	2
1251	Uniform and perfectly linear current–voltage characteristics of nitrogen-doped armchair graphene nanoribbons for nanowires. Physical Chemistry Chemical Physics, 2017, 19, 44-48.	1.3	13
1252	N-Doping of graphene oxide at low temperature for the oxygen reduction reaction. Chemical Communications, 2017, 53, 873-876.	2.2	121
1253	Soluble Graphene Nanoribbons from Planarization of Oligophenylenes. Chemistry - A European Journal, 2017, 23, 1686-1693.	1.7	6
1254	Current and future directions in electron transfer chemistry of graphene. Chemical Society Reviews, 2017, 46, 4530-4571.	18.7	125
1255	Sonochemical synthesis of porous nanowall Co3O4/nitrogen-doped reduced graphene oxide as an efficient electrode material for supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 14504-14514.	1.1	13
1256	Ultrathin hollow-structured NiCo2O4 nanorod supported on improved N-doped graphene for superior supercapacitor applications. Journal of Alloys and Compounds, 2017, 722, 903-912.	2.8	24
1257	Programmable graphene doping via electron beam irradiation. Nanoscale, 2017, 9, 8657-8664.	2.8	20
1258	Large-area uniform electron doping of graphene by Ag nanofilm. AIP Advances, 2017, 7, .	0.6	11
1259	Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Applied Physics Reviews, 2017, 4, .	5.5	476
1260	Carbon encapsulated Fe ₃ O ₄ nanospheres with high electrochemical performance as anode materials for Liâ€ion battery. International Journal of Applied Ceramic Technology, 2017, 14, 938-947.	1.1	11
1261	Carbon Nanomaterials for Applications on Supercapacitors. MRS Advances, 2017, 2, 3283-3289.	0.5	2

#	Article	IF	CITATIONS
1262	Coating procedure for chemical and morphological functionalization of multilayer-graphene foams. Carbon, 2017, 121, 170-180.	5. 4	2
1263	On-surface synthesis of different boron–nitrogen–carbon heterostructures from dimethylamine borane. Carbon, 2017, 120, 185-193.	5.4	11
1264	Trapped metallic cobalt nanoparticles in doped porous graphite: An electrocatalyst that gets better over reaction time. Applied Catalysis B: Environmental, 2017, 217, 144-153.	10.8	14
1265	Tunable Type-I and Type-II Dirac Fermions in Graphene with Nitrogen Line Defects. Journal of Physical Chemistry C, 2017, 121, 12476-12482.	1.5	10
1266	First-principles study of electronic and optical properties of boron and nitrogen doped graphene. AIP Conference Proceedings, 2017, , .	0.3	3
1267	Nitrogen doping for facile and effective modification of graphene surfaces. RSC Advances, 2017, 7, 28383-28392.	1.7	45
1268	A Guide for the Design of Functional Polyaromatic Organophosphorus Materials. Chemistry - A European Journal, 2017, 23, 13919-13928.	1.7	41
1269	Controllable Nâ€Doped CuCo ₂ O ₄ @C Film as a Selfâ€Supported Anode for Ultrastable Sodiumâ€lon Batteries. Small, 2017, 13, 1700873.	5.2	65
1270	Planar Perovskite Solar Cells: Local Structure and Stability Issues. Solar Rrl, 2017, 1, 1700066.	3.1	10
1271	Synthesis, characterization and prospective applications of nitrogen-doped graphene: A short review. Journal of Science: Advanced Materials and Devices, 2017, 2, 141-149.	1.5	123
1272	The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials. Solid State Sciences, 2017, 67, A1-A14.	1.5	33
1273	Preparation of ordered N-doped mesoporous carbon materials via a polymer–ionic liquid assembly. Chemical Communications, 2017, 53, 4915-4918.	2.2	29
1274	A reliable and controllable graphene doping method compatible with current CMOS technology and the demonstration of its device applications. Nanotechnology, 2017, 28, 175710.	1.3	12
1275	Effects of nitrogen substitution in amorphous carbon films on electronic structure and surface reactivity studied with x-ray and ultra-violet photoelectron spectroscopies. Journal of Applied Physics, 2017, 121, 095302.	1.1	5
1276	Distinctive morphology effects of porous-spherical/yolk-shell/hollow Pd-nitrogen-doped-carbon spheres catalyst for catalytic reduction of 4-nitrophenol. Journal of Colloid and Interface Science, 2017, 496, 465-473.	5.0	41
1277	Graphene-like nanoribbons periodically embedded with four- and eight-membered rings. Nature Communications, 2017, 8, 14924.	5.8	139
1278	Atomic crystals resistive switching memory. Chinese Physics B, 2017, 26, 033201.	0.7	1
1279	Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. Journal of Materials Chemistry A, 2017, 5, 7257-7284.	5.2	220

#	Article	IF	CITATIONS
1280	An Efficient and Reusable Embedded Ru Catalyst for the Hydrogenolysis of Levulinic Acid to γâ€Valerolactone. ChemSusChem, 2017, 10, 1720-1732.	3.6	60
1281	Carbon Materials. , 2017, , 429-462.		2
1282	Assembling nitrogen and oxygen co-doped graphene quantum dots onto hierarchical carbon networks for all-solid-state flexible supercapacitors. Electrochimica Acta, 2017, 235, 561-569.	2.6	78
1283	Activating Cobalt Nanoparticles via the Mott–Schottky Effect in Nitrogen-Rich Carbon Shells for Base-Free Aerobic Oxidation of Alcohols to Esters. Journal of the American Chemical Society, 2017, 139, 811-818.	6.6	351
1284	Wormâ€Shape Pt Nanocrystals Grown on Nitrogenâ€Doped Lowâ€Defect Graphene Sheets: Highly Efficient Electrocatalysts for Methanol Oxidation Reaction. Small, 2017, 13, 1603013.	5.2	151
1285	Superior, rapid and reversible sensing activity of graphene-SnO hybrid film for low concentration of ammonia at room temperature. Sensors and Actuators B: Chemical, 2017, 244, 243-251.	4.0	46
1286	First-principles study on hydrogen adsorption on nitrogen doped graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 88, 115-124.	1.3	67
1287	Highly efficient visible-light-driven catalytic hydrogen evolution from ammonia borane using non-precious metal nanoparticles supported by graphitic carbon nitride. Journal of Materials Chemistry A, 2017, 5, 2288-2296.	5.2	66
1288	Nitrogen-doped hollow mesoporous carbon spheres as a highly active and stable metal-free electrocatalyst for oxygen reduction. Carbon, 2017, 114, 177-186.	5.4	122
1289	Fabrication of N-doped Reduced Graphene Oxide/Ag ₃ PO ₄ Nanocomposite with Excellent Photocatalytic Activity for the Degradation of Organic Pollutants. Nano, 2017, 12, 1750013.	0.5	7
1290	New catalyst supports prepared by surface modification of graphene- and carbon nanotube structures with nitrogen containing carbon coatings. Journal of Power Sources, 2017, 341, 240-249.	4.0	28
1291	Aerospace Application of Polymer Nanocomposite with Carbon Nanotube, Graphite, Graphene Oxide, and Nanoclay. Polymer-Plastics Technology and Engineering, 2017, 56, 1438-1456.	1.9	96
1292	Efficient small molecular organic light emitting diode with graphene cathode covered by a Sm layer with nano-hollows and n-doped by Bphen:Cs ₂ CO ₃ in the hollows. Nanotechnology, 2017, 28, 105201.	1.3	11
1293	An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate. Environmental Science: Nano, 2017, 4, 315-324.	2.2	372
1294	Carbon Nanotube/Graphene Nanoribbon/Polyvinylidene Fluoride Hybrid Nanocomposites: Rheological and Dielectric Properties. Journal of Physical Chemistry C, 2017, 121, 169-181.	1.5	65
1296	Polyaniline derived N- and O-enriched high surface area hierarchical porous carbons as an efficient metal-free electrocatalyst for oxygen reduction. Electrochimica Acta, 2017, 257, 73-81.	2.6	22
1297	Cocoon derived nitrogen enriched activated carbon fiber networks for capacitive deionization. Journal of Electroanalytical Chemistry, 2017, 804, 179-184.	1.9	47
1298	Highly N-doped microporous carbon nanospheres with high energy storage and conversion efficiency. Scientific Reports, 2017, 7, 14400.	1.6	23

#	Article	IF	CITATIONS
1299	Smart Combination of Cyclodextrin Polymer Host–Guest Recognition and Mg ²⁺ -Assistant Cyclic Cleavage Reaction for Sensitive Electrochemical Assay of Nucleic Acids. ACS Applied Materials & Literfaces, 2017, 9, 36688-36694.	4.0	50
1300	Controlling Defect and Dopant Concentrations in Graphene by Remote Plasma Treatments. Physica Status Solidi (B): Basic Research, 2017, 254, 1700214.	0.7	11
1301	Nitrogenâ€Doped Graphene Nanosheets/S Composites as Cathode in Roomâ€Temperature Sodiumâ€Sulfur Batteries. ChemistrySelect, 2017, 2, 9425-9432.	0.7	30
1303	Electronic structure tuning and band gap opening of nitrogen and boron doped holey graphene flake: The role of single/dual doping. Materials Chemistry and Physics, 2017, 202, 258-265.	2.0	43
1304	Non-Noble Metal Nanoparticles Supported by Postmodified Porous Organic Semiconductors: Highly Efficient Catalysts for Visible-Light-Driven On-Demand H ₂ Evolution from Ammonia Borane. ACS Applied Materials & Diterfaces, 2017, 9, 32767-32774.	4.0	30
1305	High-Performance Charge Transport in Semiconducting Armchair Graphene Nanoribbons Grown Directly on Germanium. ACS Nano, 2017, 11, 8924-8929.	7.3	38
1306	Nitrogenâ€Doped Carbon Activated in Situ by Embedded Nickel through the Mott–Schottky Effect for the Oxygen Reduction Reaction. ChemPhysChem, 2017, 18, 3454-3461.	1.0	56
1307	Electronic structure, carrier mobility and device properties for mixed-edge phagraphene nanoribbon by hetero-atom doping. Organic Electronics, 2017, 51, 277-286.	1.4	30
1309	Theoretical studies on the structure and thermochemistry of cyclicparaphenylenediazenes. RSC Advances, 2017, 7, 40189-40199.	1.7	5
1310	Raman and X-Ray photoelectron spectroscopic studies of graphene devices for identification of doping. Applied Surface Science, 2017, 425, 1130-1137.	3.1	9
1311	Simple synthesis of ZnO nanoparticles on N-doped reduced graphene oxide for the electrocatalytic sensing of <scp>l</scp> -cysteine. RSC Advances, 2017, 7, 35004-35011.	1.7	33
1312	Revealing impact of plasma condition on graphite nanostructures and effective charge doping of graphene. Carbon, 2017, 123, 174-185.	5.4	7
1313	SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy and Environmental Science, 2017, 10, 1757-1763.	15.6	431
1314	Assembly of highly stable aqueous dispersions and flexible films of nitrogen-doped graphene for high-performance stretchable supercapacitors. Journal of Materials Science, 2017, 52, 12751-12760.	1.7	4
1315	Facile preparation of nitrogen-doped graphene as an efficient oxygen reduction electrocatalyst. Inorganic Chemistry Frontiers, 2017, 4, 1582-1590.	3.0	23
1316	Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons. Journal of Molecular Modeling, 2017, 23, 247.	0.8	10
1317	Investigation into the effect of doping of boron and nitrogen atoms in the mechanical properties of single-layer polycrystalline graphene. Computational Materials Science, 2017, 138, 435-447.	1.4	29
1318	Xantphos doped Rh/POPs-PPh3 catalyst for highly selective long-chain olefins hydroformylation: Chemical and DFT insights into Rh location and the roles of Xantphos and PPh3. Journal of Catalysis, 2017, 353, 123-132.	3.1	56

#	Article	IF	CITATIONS
1319	Ionic liquid-derived Co3O4/carbon nano-onions composite and its enhanced performance as anode for lithium-ion batteries. Journal of Materials Science, 2017, 52, 13192-13202.	1.7	28
1320	Graphene-based composite electrodes for electrochemical energy storage devices: Recent progress and challenges. FlatChem, 2017, 6, 48-76.	2.8	27
1321	MAPLE synthesis of reduced graphene oxide/silver nanocomposite electrodes: Influence of target composition and gas ambience. Journal of Alloys and Compounds, 2017, 726, 1003-1013.	2.8	14
1322	Electric field modulations of band alignments in arsenene/Ca(OH) ₂ heterobilayers for multi-functional device applications. Journal Physics D: Applied Physics, 2017, 50, 415304.	1.3	12
1323	Controlled electrochemical doping of graphene-based 3D nanoarchitecture electrodes for supercapacitors and capacitive deionisation. Nanoscale, 2017, 9, 14548-14557.	2.8	52
1324	Ternary PtRuFe nanoparticles supported N-doped graphene as an efficient bifunctional catalyst for methanol oxidation and oxygen reduction reactions. International Journal of Hydrogen Energy, 2017, 42, 30738-30749.	3.8	40
1325	Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes. Journal of Molecular Modeling, 2017, 23, 355.	0.8	8
1326	Modulating the electronic and magnetic properties of graphene. RSC Advances, 2017, 7, 51546-51580.	1.7	53
1327	Preparation and enhanced photocatalytic hydrogen-evolution activity of ZnGa ₂ O ₄ /N-rGO heterostructures. RSC Advances, 2017, 7, 53145-53156.	1.7	26
1328	Low resistivity of graphene nanoribbons with zigzag-dominated edge fabricated by hydrogen plasma etching combined with Zn/HCl pretreatment. Applied Physics Letters, 2017, 111, 203102.	1.5	3
1329	Ultra-low charge transfer resistance carbons by one-pot hydrothermal method for glucose sensing. Science China Materials, 2017, 60, 1234-1244.	3.5	10
1330	Computational study of precision nitrogen doping on graphene nanoribbon edges. Nanotechnology, 2017, 28, 505602.	1.3	13
1331	Graphene: Fundamental research and potential applications. FlatChem, 2017, 4, 20-32.	2.8	120
1332	Carrier injection in nonbonding π states of N-doped graphene by an external electric field. Japanese Journal of Applied Physics, 2017, 56, 075101.	0.8	3
1333	Growth and properties of large-area sulfur-doped graphene films. Journal of Materials Chemistry C, 2017, 5, 7944-7949.	2.7	21
1334	Nitrogen plasma-treated multilayer graphene-based field effect transistor fabrication and electronic characteristics. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 92, 41-46.	1.3	2
1335	Preparation of nitrogen-doped graphene by high-gravity technology and its application in oxygen reduction. Particuology, 2017, 34, 110-117.	2.0	13
1336	Achieving efficient room-temperature catalytic H2 evolution from formic acid through atomically controlling the chemical environment of bimetallic nanoparticles immobilized by isoreticular amine-functionalized metal-organic frameworks. Applied Catalysis B: Environmental, 2017, 218, 460-469.	10.8	62

#	Article	IF	CITATIONS
1337	Graphene-based materials for capacitive deionization. Journal of Materials Chemistry A, 2017, 5, 13907-13943.	5.2	242
1338	Self-assembly of defect-rich graphene oxide nanosheets with Na ₂ Ti ₃ O ₇ nanowires and their superior absorptive capacity to toxic dyes. Nanotechnology, 2017, 28, 245601.	1.3	2
1339	Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Applied Surface Science, 2017, 423, 1025-1034.	3.1	180
1340	Mechanical properties of graphene grain boundary and hexagonal boron nitride lateral heterostructure with controlled domain size. Computational Materials Science, 2017, 126, 474-478.	1.4	20
1341	Tuning the band gap and optical spectra of silicon-doped graphene: Many-body effects and excitonic states. Journal of Alloys and Compounds, 2017, 693, 1185-1196.	2.8	119
1342	Active sites for oxygen reduction reaction on nitrogen-doped carbon nanotubes derived from polyaniline. Carbon, 2017, 112, 219-229.	5.4	195
1343	Uniaxial fracture test of freestanding pristine graphene using in situ tensile tester under scanning electron microscope. Extreme Mechanics Letters, 2017, 14, 10-15.	2.0	44
1344	High performance aqueous supercapacitor based on highly nitrogen-doped carbon nanospheres with unimodal mesoporosity. Journal of Power Sources, 2017, 337, 189-196.	4.0	99
1345	High-performance reduced graphene oxide-based room-temperature NO2 sensors: A combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sensors and Actuators B: Chemical, 2017, 242, 269-279.	4.0	99
1346	Refractive index mapping of single cells with a graphene-based optical sensor. Sensors and Actuators B: Chemical, 2017, 242, 41-46.	4.0	29
1347	Direct mapping of chemical oxidation of individual graphene sheets through dynamic force measurements at the nanoscale. Nanoscale, 2017, 9, 119-127.	2.8	21
1348	Urchinlike ZnS Microspheres Decorated with Nitrogenâ€Doped Carbon: A Superior Anode Material for Lithium and Sodium Storage. Chemistry - A European Journal, 2017, 23, 157-166.	1.7	95
1349	N-doped reduced graphene oxide/waterborne polyurethane composites prepared by in situ chemical reduction of graphene oxide. Composites Part A: Applied Science and Manufacturing, 2017, 94, 41-49.	3.8	48
1350	Preparation of conductive film via a low temperature synthesis that enables simultaneous nitrogen doping and reduction of graphene oxide. Materials Research Express, 2017, 4, 085607.	0.8	4
1351	Photo-oxidative doping in π-conjugated zig-zag chain of carbon atoms with sulfur-functional group. Applied Physics Letters, 2017, 111, 231605.	1.5	0
1352	Temperature dependence of graphene and N-doped graphene for gas sensor applications. Journal of Physics: Conference Series, 2017, 901, 012076.	0.3	6
1353	In situ fabrication of nickel based oxide on nitrogen-doped graphene for high electrochemical performance supercapacitors. Chemical Physics Letters, 2017, 685, 457-464.	1.2	15
1354	DFT Study of Cyanide Oxidation on Ge-Doped Carbon Nanotubes. Russian Journal of Applied Chemistry, 2017, 90, 1620-1626.	0.1	2

#	ARTICLE	IF	Citations
1356	The New Graphene Family Materials: Synthesis and Applications in Oxygen Reduction Reaction. Catalysts, 2017, 7, 1.	1.6	201
1357	Biopolymer Composites in Light Emitting Diodes. , 2017, , 277-310.		5
1358	Synthesis of N-doped Graphene for Simultaneous Electrochemical Detection of Lead and Copper in Water. International Journal of Electrochemical Science, 2017, , 4856-4866.	0.5	12
1359	Interfacial engineering in graphene bandgap. Chemical Society Reviews, 2018, 47, 3059-3099.	18.7	153
1360	Tunable electronic properties of partially edge-hydrogenated armchair boron–nitrogen–carbon nanoribbons. Physical Chemistry Chemical Physics, 2018, 20, 10345-10358.	1.3	5
1361	MOF derived nitrogen-doped carbon polyhedrons decorated on graphitic carbon nitride sheets with enhanced electrochemical capacitive energy storage performance. Electrochimica Acta, 2018, 265, 651-661.	2.6	63
1362	Crown oxygen-doping graphene with embedded main-group metal atoms. European Physical Journal B, 2018, 91, 1.	0.6	3
1363	Nitrogen doping effect on flow-induced voltage generation from graphene-water interface. Applied Physics Letters, 2018, 112, .	1.5	16
1364	Strong Depletion in Hybrid Perovskite p–n Junctions Induced by Local Electronic Doping. Advanced Materials, 2018, 30, e1705792.	11.1	141
1365	Ordering effects in 2D hexagonal systems of binary and ternary C-B-N alloys. Computational Materials Science, 2018, 147, 115-123.	1.4	4
1366	Manipulation of inherent characteristics of graphene through N and Mg atom co-doping; a DFT study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 1108-1119.	0.9	26
1367	Facile enhancement of the active catalytic sites of N-doped graphene as a high performance metal-free electrocatalyst for oxygen reduction reaction. Applied Surface Science, 2018, 447, 182-190.	3.1	27
1368	A review on the mechanical, electrical and EMI shielding properties of carbon nanotubes and graphene reinforced polycarbonate nanocomposites. Polymers for Advanced Technologies, 2018, 29, 1547-1567.	1.6	94
1369	Antimicrobial Amino-Functionalized Nitrogen-Doped Graphene Quantum Dots for Eliminating Multidrug-Resistant Species in Dual-Modality Photodynamic Therapy and Bioimaging under Two-Photon Excitation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 14438-14446.	4.0	123
1370	Doping and band gap control at poly(vinylidene fluoride)/graphene interface. Journal Physics D: Applied Physics, 2018, 51, 195303.	1.3	4
1371	Multiple Metal (Cu, Mn, Fe) Centered Species Simultaneously Combined Nitrogenâ€doped Graphene as an Electrocatalyst for Oxygen Reduction in Alkaline and Neutral Solutions. ChemCatChem, 2018, 10, 2471-2480.	1.8	11
1372	Nitrogenâ€Doped Porous Carbon Structure from Melamineâ€Assisted Polyimide Sheets for Supercapacitor Electrodes. Advanced Sustainable Systems, 2018, 2, 1800007.	2.7	16
1373	Modulation of electronic and magnetic properties of edge hydrogenated armchair phosphorene nanoribbons by transition metal adsorption. Physical Chemistry Chemical Physics, 2018, 20, 12916-12922.	1.3	10

#	Article	IF	CITATIONS
1374	Multiple heteroatom substitution to graphene nanoribbon. Science Advances, 2018, 4, eaar7181.	4.7	151
1375	Nitrogen-doped carbon materials. Carbon, 2018, 132, 104-140.	5.4	566
1376	Potassium-doped n-type bilayer graphene. Applied Physics Letters, 2018, 112, .	1.5	19
1377	2D Doping Layer for Flexible Transparent Conducting Graphene Electrodes with Low Sheet Resistance and High Stability. Advanced Electronic Materials, 2018, 4, 1700622.	2.6	17
1378	Reversible and Precisely Controllable p/nâ€Type Doping of MoTe ₂ Transistors through Electrothermal Doping. Advanced Materials, 2018, 30, e1706995.	11.1	68
1379	Influence of defect locations and nitrogen doping configurations on the mechanical properties of armchair graphene nanoribbons. Journal of Molecular Modeling, 2018, 24, 43.	0.8	13
1380	Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 2018, 47, 1822-1873.	18.7	1,274
1381	Engineering an N-doped TiO ₂ @N-doped C butterfly-like nanostructure with long-lived photo-generated carriers for efficient photocatalytic selective amine oxidation. Journal of Materials Chemistry A, 2018, 6, 2091-2099.	5.2	67
1382	Island shape, size and interface dependency on electronic and magnetic properties of graphene hexagonal-boron nitride (h-BN) in-plane hybrids. Journal of Physics and Chemistry of Solids, 2018, 115, 187-198.	1.9	10
1383	Tuning the band gap and the nitrogen content in carbon nitride materials by high temperature treatment at high pressure. Carbon, 2018, 130, 170-177.	5.4	29
1384	Innovations upon antioxidant capacity evaluation for cosmetics: A photoelectrochemical sensor exploitation based on N-doped graphene/TiO2 nanocomposite. Sensors and Actuators B: Chemical, 2018, 259, 963-971.	4.0	37
1385	Graphene Platforms for Smart Energy Generation and Storage. Joule, 2018, 2, 245-268.	11.7	168
1386	High Performance of Nâ€Doped Graphene with Bubbleâ€like Textures for Supercapacitors. Small, 2018, 14, 1702570.	5.2	56
1387	Facile synthesis of three-dimensional lightweight nitrogen-doped graphene aerogel with excellent electromagnetic wave absorption properties. Journal of Materials Science, 2018, 53, 4067-4077.	1.7	62
1388	FEM Study of Graphene Based Tunable Terahertz Plasmonics Gaseous Sensor., 2018, , 159-167.		0
1389	Tuning the Doping Types in Graphene Sheets by N Monoelement. Nano Letters, 2018, 18, 386-394.	4.5	44
1390	Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes. ACS Applied Materials & Diodes, 10, 4874-4881.	4.0	24
1391	Carbon nitride template-directed fabrication of nitrogen-rich porous graphene-like carbon for high performance supercapacitors. Carbon, 2018, 130, 325-332.	5.4	124

#	Article	IF	CITATIONS
1392	Electronic transport calculations for CO2 adsorption on calcium-decorated graphene nanoribbons. Computational Materials Science, 2018, 145, 134-139.	1.4	6
1393	Structural and electronic properties of nitrogenated holey nanotubes: A density functional theory study. Diamond and Related Materials, 2018, 82, 96-101.	1.8	12
1394	Combining nitrogen substitutional defects and oxygen intercalation to control the graphene corrugation and doping level. Carbon, 2018, 130, 362-368.	5.4	8
1395	Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chemical Society Reviews, 2018, 47, 1351-1390.	18.7	440
1396	Synthesis of graphene-based photocatalysts for water splitting by laser-induced doping with ionic liquids. Carbon, 2018, 130, 48-58.	5. 4	26
1397	"Cooking carbon in a solid salt― Synthesis of porous heteroatom-doped carbon foams for enhanced organic pollutant degradation under visible light. Applied Materials Today, 2018, 12, 168-176.	2.3	19
1398	Bioconcentration of organic dyes <i>via</i> fungal hyphae and their derived carbon fibers for supercapacitors. Journal of Materials Chemistry A, 2018, 6, 10710-10717.	5.2	54
1399	Three-dimensional N- and S-codoped graphene hydrogel with in-plane pores for high performance supercapacitor. Microporous and Mesoporous Materials, 2018, 268, 260-267.	2.2	39
1400	Melamine as a single source for fabrication of mesoscopic 3D composites of N-doped carbon nanotubes on graphene. RSC Advances, 2018, 8, 12157-12164.	1.7	23
1401	Effect of annealing on doping of graphene with molybdenum oxide. Applied Physics Express, 2018, 11, 045101.	1.1	2
1402	The self-aligning behaviour of graphene nanosheets in the styrene butadiene rubber by controlling curing temperature. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 61-68.	1.0	13
1403	Nitrogen-doped graphene prepared by a millisecond photo-thermal process and its applications. Organic Electronics, 2018, 56, 221-231.	1.4	13
1404	Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications. Chemical Society Reviews, 2018, 47, 3899-3990.	18.7	161
1405	Adsorption of $3 < i > d < i>, 4 < i> d < i>, and 5 < i> d < i> transition-metal atoms on single-layer boron nitride. Journal of Applied Physics, 2018, 123, .$	1.1	15
1406	Plasmons in N-doped graphene nanostructures tuned by Au/Ag films: a time-dependent density functional theory study. Physical Chemistry Chemical Physics, 2018, 20, 10439-10444.	1.3	4
1407	Hydrothermal Synthesis of a New Kind of N-Doped Graphene Gel-like Hybrid As an Enhanced ORR Electrocatalyst. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10842-10850.	4.0	87
1408	Tuning thermal conductivity of porous graphene by pore topology engineering: Comparison of non-equilibrium molecular dynamics and finite element study. International Journal of Heat and Mass Transfer, 2018, 123, 261-271.	2.5	33
1409	Facile hydrothermal method for synthesizing nitrogen-doped graphene nanoplatelets using aqueous ammonia: dispersion, stability in solvents and thermophysical performances. Materials Research Express, 2018, 5, 035042.	0.8	4

#	Article	IF	CITATIONS
1410	Preparation and properties of polyamide 6 nanocomposites covalently linked with amide functional graphene oxide. Journal of Thermoplastic Composite Materials, 2018, 31, 162-180.	2.6	14
1411	Graphene for Thermoelectric Applications: Prospects and Challenges. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 133-157.	6.8	94
1412	Modulating the CO methanation activity of Ni catalyst by nitrogen doped carbon. Journal of Energy Chemistry, 2018, 27, 898-902.	7.1	16
1413	H2S adsorption and dissociation on NH-decorated graphene: A first principles study. Surface Science, 2018, 668, 100-106.	0.8	40
1414	Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron. Journal of Magnetism and Magnetic Materials, 2018, 449, 522-529.	1.0	11
1415	First-principles study on silicon atom doped monolayer graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 95, 94-101.	1.3	33
1416	Ultrafast molecular transport on carbon surfaces: The diffusion of ammonia on graphite. Carbon, 2018, 126, 23-30.	5.4	9
1417	Two-dimensional polymer-based nanosheets for electrochemical energy storage and conversion. Journal of Energy Chemistry, 2018, 27, 99-116.	7.1	35
1418	Covalent Organic Framework Electrocatalysts for Clean Energy Conversion. Advanced Materials, 2018, 30, 1703646.	11.1	309
1419	Ordered Iron―and Nitrogenâ€Doped Carbon Framework as a Carbon Monoxideâ€Tolerant Alkaline Anionâ€Exchange Membrane Fuel Cell Catalyst. Energy Technology, 2018, 6, 1003-1010.	1.8	5
1420	Two- and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices. Journal of Materials Chemistry A, 2018, 6, 702-734.	5. 2	126
1421	NiCoFeâ€Layered Double Hydroxides/Nâ€Doped Graphene Oxide Array Colloid Composite as an Efficient Bifunctional Catalyst for Oxygen Electrocatalytic Reactions. Advanced Energy Materials, 2018, 8, 1701905.	10.2	276
1422	Efficient two-photon luminescence for cellular imaging using biocompatible nitrogen-doped graphene quantum dots conjugated with polymers. Nanoscale, 2018, 10, 109-117.	2.8	31
1423	Triazacoronene Derivatives with Three <i>peri</i> å€Benzopyrano Extensions: Synthesis, Structure, and Properties. European Journal of Organic Chemistry, 2018, 2018, 869-873.	1.2	18
1424	Bottom-Up Synthesis and Electronic Structure of Graphene Nanoribbons on Surfaces., 2018,, 210-225.		2
1425	High photoresponsivity and light-induced carrier conversion in RGO/TSCuPc hybrid phototransistors. Journal of Materials Research, 2018, 33, 3999-4006.	1.2	1
1426	Selective nitrogen doping of graphene oxide by laser irradiation for enhanced hydrogen evolution activity. Chemical Communications, 2018, 54, 13726-13729.	2.2	28
1427	Immobilization Impact of Photocatalysts onto Graphene Oxide. , 0, , .		3

#	Article	IF	Citations
1428	Treatment of graphene films in the early and late afterglows of N ₂ plasmas: comparison of the defect generation and N-incorporation dynamics. Plasma Sources Science and Technology, 2018, 27, 124004.	1.3	11
1429	Sn-adopted fullerene $\$$ (hbox {C}_{60}) $\$$ (C 60) nanocage as acceptable catalyst for silicon monoxide oxidation. Bulletin of Materials Science, 2018, 41, 1.	0.8	1
1430	N/P Codoped Porous Carbon-Coated Graphene Nanohybrid as a High-Performance Electrode for Supercapacitors. ACS Applied Nano Materials, 2018, 1, 6742-6751.	2.4	33
1431	Nitrogen-Doped Carbon Materials for the Metal-Free Reduction of Nitro Compounds. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44421-44429.	4.0	74
1432	Cross-plane conductance through a graphene/molecular monolayer/Au sandwich. Nanoscale, 2018, 10, 19791-19798.	2.8	12
1433	One-pot hydrothermal synthesis of TiO2/graphene nanocomposite with simultaneous nitrogen-doping for energy storage application. Journal of Electroanalytical Chemistry, 2018, 829, 208-216.	1.9	34
1434	Functionalizing Two-Dimensional Materials for Energy Applications. , 2018, , 1-37.		0
1435	In-situ reduction derived nitrogen doped carbon anchored cobalt nanoparticles as highly capacity and long life lithium ion battery anodes. Journal of Materials Science: Materials in Electronics, 2018, 29, 19932-19941.	1.1	1
1436	CoSe ₂ Nanoparticles Encapsulated by Nâ€Doped Carbon Framework Intertwined with Carbon Nanotubes: Highâ€Performance Dualâ€Role Anode Materials for Both Liâ€and Naâ€lon Batteries. Advanced Science, 2018, 5, 1800763.	5.6	215
1437	N-doped graphene and TiO2 supported manganese and cerium oxides on low-temperature selective catalytic reduction of NOx with NH3. Journal of Advanced Ceramics, 2018, 7, 197-206.	8.9	25
1438	Insights on porphyrin-functionalized graphene: Theoretical study of substituent and metal-center effects on adsorption. Chemical Physics Letters, 2018, 713, 172-179.	1.2	14
1439	Tunnable rectifying performance of in-plane metal–semiconductor junctions based on passivated zigzag phosphorene nanoribbons. RSC Advances, 2018, 8, 31255-31260.	1.7	3
1441	Core Level Spectra of Organic Molecules Adsorbed on Graphene. Materials, 2018, 11, 518.	1.3	2
1442	Ultrasmall Ru Nanoclusters on Nitrogenâ€Enriched Hierarchically Porous Carbon Support as Remarkably Active Catalysts for Hydrolysis of Ammonia Borane. ChemCatChem, 2018, 10, 4910-4916.	1.8	30
1443	Oxidation of toxic gases via Ge B36N36 and Ge C72 nanocages as potential catalysts. Inorganic Chemistry Communication, 2018, 96, 206-210.	1.8	4
1444	Tuning the Electrochemical Properties of Nitrogen-Doped Carbon Aerogels in a Blend of Ammonia and Nitrogen Gases. ACS Applied Energy Materials, 2018, 1, 5043-5053.	2.5	21
1445	Graphene-wrapped nitrogen-doped hollow carbon spheres for high-activity oxygen electroreduction. Materials Chemistry Frontiers, 2018, 2, 1489-1497.	3.2	19
1446	Optical Gating of Graphene on Photoconductive Fe:LiNbO ₃ . ACS Nano, 2018, 12, 5940-5945.	7.3	36

#	Article	IF	CITATIONS
1447	The synthesis of graphene at different deposition time from palm oil via thermal chemical vapor deposition. AIP Conference Proceedings, 2018 , , .	0.3	6
1448	Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Materials Today Energy, 2018, 9, 154-186.	2.5	167
1449	Synthesis of a nitrogen-doped titanium dioxide–reduced graphene oxide nanocomposite for photocatalysis under visible light irradiation. Particuology, 2018, 41, 48-57.	2.0	16
1450	CO2-activated porous self-templated N-doped carbon aerogel derived from banana for high-performance supercapacitors. Applied Surface Science, 2018, 457, 477-486.	3.1	118
1451	Recent advancements in the development of bifunctional electrocatalysts for oxygen electrodes in unitized regenerative fuel cells (URFCs). Progress in Materials Science, 2018, 98, 108-167.	16.0	37
1452	First-principles study of the stability and edge stress of nitrogen-decorated graphene nanoribbons. Physical Review B, 2018, 97, .	1.1	4
1453	Complementary metal‧U8â€graphene method for making integrated graphene nanocircuits. Micro and Nano Letters, 2018, 13, 465-468.	0.6	4
1454	Pseudocapacitive Niâ€Coâ€Fe Hydroxides/Nâ€Doped Carbon Nanoplatesâ€Based Electrocatalyst for Efficient Oxygen Evolution. Small, 2018, 14, e1801878.	5. 2	55
1455	Reduced graphene oxide/iron oxide nanohybrid flexible electrodes grown by laser-based technique for energy storage applications. Ceramics International, 2018, 44, 20409-20416.	2.3	19
1456	Graphene photocatalysts., 2018,, 79-101.		7
1457	Optimized poly(methyl methacrylate)-mediated graphene-transfer process for fabrication of high-quality graphene layer. Nanotechnology, 2018, 29, 415303.	1.3	41
1458	On the Fabrication of Graphene p–n Junctions and Their Application for Detecting Terahertz Radiation. Semiconductors, 2018, 52, 1077-1081.	0.2	2
1459	Reactive laser synthesis of nitrogen-doped hybrid graphene-based electrodes for energy storage. Journal of Materials Chemistry A, 2018, 6, 16074-16086.	5.2	26
1460	Role of Doped Nitrogen in Graphene for Flowâ€Induced Power Generation. Advanced Engineering Materials, 2018, 20, 1800387.	1.6	16
1461	First-principle investigations for electronic transport in nitrogen-doped disconnected zigzag graphene nanoribbons. Microelectronic Engineering, 2018, 199, 96-100.	1.1	6
1462	Toxicology of Heterocarbon and Application of Nanoheterocarbon Materials for CBRN Defense. NATO Science for Peace and Security Series A: Chemistry and Biology, 2018, , 245-277.	0.5	2
1463	A Library of Doped-Graphene Images via Transmission Electron Microscopy. Journal of Carbon Research, 2018, 4, 34.	1.4	21
1464	The synthesis of graphene from palm oil at different annealing time of nickel substrate via thermal chemical vapor deposition. AIP Conference Proceedings, 2018, , .	0.3	4

#	ARTICLE	IF	CITATIONS
1465	A review of doping modulation in graphene. Synthetic Metals, 2018, 244, 36-47.	2.1	164
1466	A novel route to prepare N-graphene/SnO ₂ composite as a high-performance anode for lithium batteries. Dalton Transactions, 2018, 47, 10206-10212.	1.6	12
1467	Zener diode behavior of nitrogen-doped graphene quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 36-41.	1.3	4
1468	Comparing Selectivity of Functionalized Graphenes Used for Chemiresistive Hydrocarbon Vapor Detection. ACS Applied Nano Materials, 2018, 1, 4092-4100.	2.4	8
1469	Surface functionalization of coal and quartz with aniline: A study on work function and frictional charge. Powder Technology, 2018, 338, 233-242.	2.1	11
1470	Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. Journal of Industrial and Engineering Chemistry, 2018, 67, 28-51.	2.9	302
1471	Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nature Communications, 2018, 9, 2831.	5.8	68
1472	Nanostructured Materials for the Detection of CBRN. NATO Science for Peace and Security Series A: Chemistry and Biology, 2018, , .	0.5	2
1473	Boron-Doped Graphene/ZnO Nanoflower Heterojunction Composite with Superior Photocatalytic Activity. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1520-1527.	1.9	5
1474	Potential application of a porous graphitic carbon nitride as an organic metal-free photocatalyst for water splitting. Diamond and Related Materials, 2018, 87, 50-55.	1.8	27
1475	A nitrogen-doped graphene cathode for high-capacitance aluminum-ion hybrid supercapacitors. New Journal of Chemistry, 2018, 42, 15684-15691.	1.4	24
1476	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie, 2018, 130, 13486-13491.	1.6	10
1477	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2018, 57, 13302-13307.	7.2	64
1478	Variation in characteristics of graphene nanoribbon field-effect transistors caused by edge disorder: Computational simulation of atomistic device. Applied Physics Express, 2018, 11, 095102.	1.1	2
1479	Electrochemical perspective on the size-dependent density of states at single graphene flake. Electrochemistry Communications, 2018, 95, 14-17.	2.3	1
1480	N-doping of graphene: toward long-term corrosion protection of Cu. Journal of Materials Chemistry A, 2018, 6, 24136-24148.	5.2	68
1481	Electronic and Optical Properties of 2D Materials Constructed from Light Atoms. Advanced Materials, 2018, 30, e1801600.	11.1	36
1482	Distorted niobium-self-doped graphene in-situ grown from 2D niobium carbide for catalyzing oxygen reduction. Carbon, 2018, 139, 1144-1151.	5.4	19

#	Article	IF	CITATIONS
1483	Composite Graphene/Semiconductor Nano-Structures for Energy Storage., 2018,, 295-352.		1
1484	Significance of N-moieties in regulating the electrochemical properties of nano-porous graphene: Toward highly capacitive energy storage devices. Journal of Industrial and Engineering Chemistry, 2018, 68, 129-139.	2.9	6
1485	Urea treatment of nitrogen-doped carbon leads to enhanced performance for the oxygen reduction reaction. Journal of Materials Research, 2018, 33, 1612-1624.	1.2	24
1486	Size and Electronic Modulation of Iridium Nanoparticles on Nitrogen-Functionalized Carbon toward Advanced Electrocatalysts for Alkaline Water Splitting. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22340-22347.	4.0	43
1487	Synthesis of N-Doped Graphene Oxide Quantum Dots with the Internal P-N Heterojunction and Its Photocatalytic Performance under Visible Light Illumination. Journal of Advanced Oxidation Technologies, 2018, 21, 44-53.	0.5	0
1488	Oxidation of Methylene via Sn-adsorbed Boron Nitride Nanocage (B30N30): DFT Investigation. Silicon, 2019, 11, 995-1000.	1.8	0
1489	Fabrication of porous carbon nitride foams/acrylic resin composites for efficient oil and organic solvents capture. Chemical Engineering Journal, 2019, 355, 299-308.	6.6	36
1490	Nanocarbons and Their Composite Materials as Electrocatalyst for Metal–Air Battery and Water Splitting. Nanostructure Science and Technology, 2019, , 455-496.	0.1	0
1491	A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 19939-19949.	5.2	71
1492	Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains. Science Advances, 2019, 5, eaaw8337.	4.7	77
1493	Potential of Ge-adopted Boron Nitride Nanotube as Catalyst for Sulfur Dioxide Oxidation. Protection of Metals and Physical Chemistry of Surfaces, 2019, 55, 671-676.	0.3	24
1494	Bandgap-tunable phosphorus-doped monolayer graphene with enhanced visible-light photocatalytic H ₂ -production activity. Journal of Materials Chemistry C, 2019, 7, 10613-10622.	2.7	37
1495	Stability of pyridine-like and pyridinium-like nitrogen in graphene. Journal of Physics Condensed Matter, 2019, 31, 265403.	0.7	0
1496	Effect of H and F termination on the electronic and transport properties of the BN doped armchair graphene nanoribbons: From first principles calculations. Solid State Communications, 2019, 301, 113697.	0.9	3
1497	Oxygen reduction reaction mechanism of N-doped graphene nanoribbons. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	4
1498	A nanocomposite consisting of ZnO decorated graphene oxide nanoribbons for resistive sensing of NO2 gas at room temperature. Mikrochimica Acta, 2019, 186, 554.	2.5	15
1499	Electronic Structure of a Semiconducting Imineâ€Covalent Organic Framework. Chemistry - an Asian Journal, 2019, 14, 4645-4650.	1.7	8
1500	Design and AC Modeling of a Bipolar GNR-h-BN RTD With Enhanced Tunneling Properties and High Robustness to Edge Defects. IEEE Transactions on Electron Devices, 2019, 66, 3675-3682.	1.6	1

#	Article	IF	CITATIONS
1501	Nitrogen-doped graphene as metal free basic catalyst for coupling reactions. Journal of Catalysis, 2019, 376, 238-247.	3.1	18
1502	Structural and electronic properties of BN co-doped and BN analogue of twin graphene sheets: A density functional theory study. Journal of Physics and Chemistry of Solids, 2019, 135, 109115.	1.9	28
1503	Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts. Journal of CO2 Utilization, 2019, 33, 452-460.	3.3	66
1504	Reversed even-odd oscillation of spin-polarized equilibrium conductance in an all-carbon junction. Journal of Applied Physics, 2019, 125, .	1.1	3
1505	Efficient green emission from edge states in graphene perforated by nitrogen plasma treatment. 2D Materials, 2019, 6, 045021.	2.0	6
1506	Ab initio study of the adsorption of Potassium on B, N, and BN-doped graphene heterostructure. Materials Today Communications, 2019, 21, 100676.	0.9	6
1507	Versatile and Tunable Electrical Properties of Doped Nonoxidized Graphene Using Alkali Metal Chlorides. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42520-42527.	4.0	6
1508	Preparation of N-Doped Graphene and Its Performance in Degradation of Methyl Orange. Russian Journal of Physical Chemistry A, 2019, 93, 2263-2268.	0.1	5
1509	Tunable plasmon induced transparency in patterned graphene metamaterial with different carrier mobility. Superlattices and Microstructures, 2019, 136, 106295.	1.4	18
1511	High-Performance Schottky-Barrier Field-Effect Transistors Based on Monolayer SiC Contacting Different Metals. IEEE Transactions on Electron Devices, 2019, 66, 5111-5116.	1.6	12
1512	Room-Temperature Graphene-Nanoribbon Tunneling Field-Effect Transistors. Npj 2D Materials and Applications, $2019, 3, \ldots$	3.9	26
1513	Dependence of channel thickness on MoTe ₂ transistor performance with Pt contact on a HfO ₂ dielectric. Applied Physics Express, 2019, 12, 124001.	1.1	1
1514	Carbon-Related Bilayers: Nanoscale Building Blocks for Self-Assembly Nanomanufacturing. Journal of Physical Chemistry C, 2019, 123, 23195-23204.	1.5	5
1515	Ultrahigh conductivity of graphene nanoribbons doped with ordered nitrogen. Nanoscale Advances, 2019, 1, 4359-4364.	2.2	4
1516	Combustion synthesis of N-doped three-dimensional graphene networks using graphene oxide–nitrocellulose composites. Advanced Composites and Hybrid Materials, 2019, 2, 492-500.	9.9	29
1517	P-Superdoped Graphene: Synthesis and Magnetic Properties. ACS Applied Materials & Distribution (2019, 11, 39062-39067.	4.0	25
1518	Graphite-N Doped Graphene Quantum Dots as Semiconductor Additive in Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 37796-37803.	4.0	61
1519	Characterization of nitrogen doped graphene bilayers synthesized by fast, low temperature microwave plasma-enhanced chemical vapour deposition. Scientific Reports, 2019, 9, 13715.	1.6	33

#	Article	IF	CITATIONS
1520	Effect of TiO2 nanoparticles on electrical properties of chemical vapor deposition grown single layer graphene. Synthetic Metals, 2019, 256, 116155.	2.1	17
1521	Intact Crystalline Semiconducting Graphene Nanoribbons from Unzipping Nitrogen-Doped Carbon Nanotubes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38006-38015.	4.0	13
1522	Graphene: Properties, Synthesis, and Applications. , 2019, , 219-332.		1
1523	Electron Beamâ€Induced Microstructural Evolution of SnS ₂ Quantum Dots Assembled on Nâ€Doped Graphene Nanosheets with Enhanced Photocatalytic Activity. Advanced Materials Interfaces, 2019, 6, 1801759.	1.9	9
1524	A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy and Environmental Science, 2019, 12, 952-957.	15.6	397
1525	New 2D Structural Materials: Carbon–Gallium Nitride (CC–GaN) and Boron–Gallium Nitride (BN–GaN) Heterostructures—Materials Design Through Density Functional Theory. ACS Omega, 2019, 4, 1722-1728.	1.6	11
1526	An effective performance of F-Doped hexagonal boron nitride nanosheets as cathode material in magnesium battery. Materials Chemistry and Physics, 2019, 226, 356-361.	2.0	18
1527	Graphene oxide (GO) doped CeO ₂ as potential enhancer of methyl orange degradation. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 344-350.	1.0	4
1528	Fabrication of N-doped multidimensional carbon nanofibers for high-performance cortisol biosensors. Biosensors and Bioelectronics, 2019, 131, 30-36.	5.3	35
1529	Boron/nitrogen co-doped carbon synthesized from waterborne polyurethane and graphene oxide composite for supercapacitors. RSC Advances, 2019, 9, 1679-1689.	1.7	33
1530	Density functional theory study of fullerenes adsorption on nitrogenated holey graphene sheet. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 601-606.	1.0	5
1531	Photocatalytic H2 generation from aqueous ammonia solution using TiO2 nanowires-intercalated reduced graphene oxide composite membrane under low power UV light. Emergent Materials, 2019, 2, 303-311.	3.2	30
1532	Graphene layer of hybrid graphene/hexagonal boron nitride model upon heating. Carbon Letters, 2019, 29, 521-528.	3.3	13
1533	Electronic and optical properties of vacancy and B, N, O and F doped graphene: DFT study. Opto-electronics Review, 2019, 27, 130-136.	2.4	35
1534	The electronic and transport properties of Li-doped graphene nanoribbons: An ab-initio approach. Pramana - Journal of Physics, 2019, 93, 1.	0.9	3
1535	Optical and Electrical Properties of Ferric Chloride Doped Graphene. NATO Science for Peace and Security Series B: Physics and Biophysics, 2019, , 59-74.	0.2	1
1536	Hydrothermal synthesis of nitrogen, sulfur co-doped graphene and its high performance in supercapacitor and oxygen reduction reaction. Microporous and Mesoporous Materials, 2019, 290, 109556.	2.2	44
1537	Applications of carbon nanotubes and graphene for third-generation solar cells and fuel cells. Nano Materials Science, 2019, 1, 77-90.	3.9	38

#	Article	IF	CITATIONS
1538	Thermodynamic stability of nitrogen functionalities and defects in graphene and graphene nanoribbons from first principles. Carbon, 2019, 152, 715-726.	5.4	22
1539	First-principles study of nanotubes of carbon, boron and nitrogen. Applied Surface Science, 2019, 490, 242-250.	3.1	14
1540	Diethylenetriamine-Doped Graphene Oxide Quantum Dots with Tunable Photoluminescence for Optoelectronic Applications. ACS Applied Nano Materials, 2019, 2, 3925-3933.	2.4	19
1541	Large-Scale and Low-Cost Motivation of Nitrogen-Doped Commercial Activated Carbon for High-Energy-Density Supercapacitor. ACS Applied Energy Materials, 2019, 2, 4234-4243.	2.5	41
1542	Electrochemically Exfoliating Graphite Cathode to N-Doped Graphene Analogue and Its Excellent Al Storage Performance. Journal of the Electrochemical Society, 2019, 166, A1738-A1744.	1.3	5
1543	Boron―and nitrogenâ€doped pentaâ€graphene as a promising material for hydrogen storage: A computational study. International Journal of Energy Research, 2019, 43, 4867-4878.	2.2	44
1544	Recent Advances in 2D Lateral Heterostructures. Nano-Micro Letters, 2019, 11, 48.	14.4	109
1545	Impact of phosphorous and sulphur substitution on Dirac cone modification and optical behaviors of monolayer graphene for nano-electronic devices. Applied Surface Science, 2019, 489, 358-371.	3.1	5
1546	Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene. Nano Energy, 2019, 61, 428-434.	8.2	106
1547	Quantum transport in zigzag graphene nanoribbons in the presence of vacancies. Journal of Applied Physics, 2019, 125, .	1.1	9
1548	N-Doped Carbon Aerogels Obtained from APMP Fiber Aerogels Saturated with Rhodamine Dye and Their Application as Supercapacitor Electrodes. Applied Sciences (Switzerland), 2019, 9, 618.	1.3	12
1549	Electrocatalytic Activity of Functionalized Carbon Paper Electrodes and Their Correlation to the Fermi Level Derived from Raman Spectra. ACS Applied Energy Materials, 2019, 2, 2324-2336.	2.5	47
1550	Synthesis of fluorescent tungsten disulfide by nitrogen atom doping and its application for mercury(<scp>ii</scp>) detection. Journal of Materials Chemistry C, 2019, 7, 4096-4101.	2.7	11
1552	Controllable Sulfur, Nitrogen Coâ€doped Porous Carbon for Ethylbenzene Oxidation: The Role of Nanoâ€CaCO ₃ . Chemistry - an Asian Journal, 2019, 14, 1535-1540.	1.7	9
1553	Molecular-Reductant-Induced Control of a Graphene–Organic Interface for Electron Injection. Chemistry of Materials, 2019, 31, 6624-6632.	3.2	15
1554	Redistribution of $i \in A$ and $i \in A$ electrons in boron-doped graphene from DFT investigation. Applied Surface Science, 2019, 481, 344-352.	3.1	32
1555	Mechanical responses of boron-doped monolayer graphene. Carbon, 2019, 147, 594-601.	5.4	28
1556	Recent Advances in Graphene Homogeneous p–n Junction for Optoelectronics. Advanced Materials Technologies, 2019, 4, 1900007.	3.0	20

#	Article	IF	CITATIONS
1557	Phosphorus-doped hierarchical porous carbon as efficient metal-free electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 12941-12951.	3.8	26
1558	Localized modification of graphene oxide properties by laser irradiation in vacuum. Vacuum, 2019, 165, 134-138.	1.6	25
1559	Two-dimensional graphyne-like carbon nitrides: Moderate band gaps, high carrier mobility, high flexibility and type-II band alignment. Carbon, 2019, 149, 234-241.	5.4	38
1560	Correcting Flaws in the Assignment of Nitrogen Chemical Environments in N-Doped Graphene. Journal of Physical Chemistry C, 2019, 123, 11319-11327.	1.5	33
1561	Three-dimensional N-doped graphene aerogel-supported Pd nanoparticles as efficient catalysts for solvent-free oxidation of benzyl alcohol. RSC Advances, 2019, 9, 9620-9628.	1.7	18
1562	Laser transmission welding and surface modification of graphene film for flexible supercapacitor applications. Applied Surface Science, 2019, 483, 481-488.	3.1	44
1563	Spectroscopic Fingerprints of Graphitic, Pyrrolic, Pyridinic, and Chemisorbed Nitrogen in N-Doped Graphene. Journal of Physical Chemistry C, 2019, 123, 10695-10702.	1.5	181
1565	Electronic Structure Engineering of 2D Carbon Nanosheets by Evolutionary Nitrogen Modulation for Synergizing CO ₂ Electroreduction. ACS Applied Energy Materials, 2019, 2, 3151-3159.	2.5	7
1566	<i>In situ</i> construction of hollow carbon spheres with N, Co, and Fe co-doping as electrochemical sensors for simultaneous determination of dihydroxybenzene isomers. Nanoscale, 2019, 11, 8950-8958.	2.8	37
1567	Effect of Water on the Manifestation of the Reaction Selectivity of Nitrogen-Doped Graphene Nanoclusters toward Oxygen Reduction Reaction. ACS Omega, 2019, 4, 3832-3838.	1.6	12
1568	Salting-out and salting-in of protein: A novel approach toward fabrication of hierarchical porous carbon for energy storage application. Journal of Alloys and Compounds, 2019, 788, 397-406.	2.8	17
1569	Edge-Functionalized g-C3N4 Nanosheets as a Highly Efficient Metal-free Photocatalyst for Safe Drinking Water. CheM, 2019, 5, 664-680.	5.8	219
1570	Synergistic effect of Fe3O4 anchored N-doped rGO hybrid on mechanical, thermal and electromagnetic shielding properties of epoxy composites. Composites Part B: Engineering, 2019, 166, 371-381.	5.9	58
1571	Barrier mechanism of nitrogen-doped graphene against atomic oxygen irradiation. Applied Surface Science, 2019, 479, 669-678.	3.1	17
1572	Green, single-pot synthesis of functionalized Na/N/P co-doped graphene nanosheets for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2019, 837, 30-38.	1.9	26
1573	Alignment of semiconducting graphene nanoribbons on vicinal Ge(001). Nanoscale, 2019, 11, 4864-4875.	2.8	26
1574	Sodium metal hybrid capacitors based on nanostructured carbon materials. Journal of Power Sources, 2019, 418, 218-224.	4.0	5
1575	Two-Dimensional Materials on the Rocks: Positive and Negative Role of Dopants and Impurities in Electrochemistry. ACS Nano, 2019, 13, 2681-2728.	7.3	62

#	Article	IF	CITATIONS
1576	lonic liquid derived Co3O4/Nitrogen doped carbon composite as anode of lithium ion batteries with enhanced rate performance and cycle stability. Journal of Materials Science: Materials in Electronics, 2019, 30, 6148-6156.	1.1	11
1577	Novel photoresponsive cyclicparaphenylenediazenes: structure, strain energy, cis–trans isomerization, and electronic properties. Photochemical and Photobiological Sciences, 2019, 18, 1185-1196.	1.6	3
1578	Thermal Conductivity of Silicene nanoribbon due to Ge and Sn doping. , 2019, , .		0
1579	Enriched Pyridinic Nitrogen Atoms at Nanoholes of Carbon Nanohorns for Efficient Oxygen Reduction. Scientific Reports, 2019, 9, 20170.	1.6	26
1580	Spectroscopic and Electrical Characterizations of Low-Damage Phosphorous-Doped Graphene via Ion Implantation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47289-47298.	4.0	20
1581	Research advancements in sulfide scavengers for oil and gas sectors. Reviews in Chemical Engineering, 2021, 37, 663-686.	2.3	22
1582	Improvement of Graphene FET Characteristics by Eliminating Aromatic Rings in Fabrication Resist. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 685-691.	0.1	0
1583	Strained effects on the thermal conductance of flexural and in-plane modes in graphene nanoribbons. Modern Physics Letters B, 2019, 33, 1950383.	1.0	0
1584	Xantphos Doped POPsâ€PPh ₃ as Heterogeneous Ligand for Cobaltâ€Catalyzed Highly Regio―and Stereoselective Hydrosilylation of Alkynes. Chemistry - an Asian Journal, 2019, 14, 149-154.	1.7	17
1585	Dechlorination of triclosan by enhanced atomic hydrogen-mediated electrochemical reduction: Kinetics, mechanism, and toxicity assessment. Applied Catalysis B: Environmental, 2019, 241, 120-129.	10.8	109
1586	The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Advanced Materials, 2019, 31, e1802722.	11.1	268
1587	Improving the electrical conductivity of Siligraphene SiC7 by strain. Optik, 2019, 177, 118-122.	1.4	13
1588	Heteroatom-doped graphene and its application as a counter electrode in dye-sensitized solar cells. International Journal of Energy Research, 2019, 43, 1702-1734.	2.2	22
1589	Low-damage nitrogen incorporation in graphene films by nitrogen plasma treatment: Effect of airborne contaminants. Carbon, 2019, 144, 532-539.	5.4	18
1590	Edge modification induced giant rectification effect in armchair C2N-h2D nanoribbons. Solid State Communications, 2019, 289, 61-66.	0.9	2
1591	Direct patterned growth of intrinsic/doped vertical graphene nanosheets on stainless steel via heating solid precursor films for field emission application. Materials and Design, 2019, 162, 293-299.	3.3	18
1592	Functionalized Single-Atom-Embedded Bilayer Graphene and Hexagonal Boron Nitride. ACS Applied Electronic Materials, 2019, 1, 2-6.	2.0	1
1593	Transparent Conductive Electrodes Based on Graphene-Related Materials. Micromachines, 2019, 10, 13.	1.4	49

#	ARTICLE	IF	CITATIONS
1594	Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chemical Reviews, 2019, 119, 1806-1854.	23.0	745
1595	Engineering of carbon-based superlight spin filter with negative differential resistance. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 640-645.	0.9	5
1596	Ion sensitive field effect transistor based on graphene and ionophore hybrid membrane for phosphate detection. Microsystem Technologies, 2019, 25, 3357-3364.	1.2	8
1597	Graphene–Clay-Based Hybrid Nanostructures for Electrochemical Sensors and Biosensors. , 2019, , 235-274.		31
1598	Carbon-Based Materials in Microbial Fuel Cells. , 2019, , 49-74.		8
1599	Grapheneâ€Based Transparent Conductive Films: Material Systems, Preparation and Applications. Small Methods, 2019, 3, 1800199.	4.6	135
1600	Boron and Nitrogen Co-Doping of Graphynes without Inducing Empty or Doubly Filled States in π-Conjugated Systems. Journal of Physical Chemistry C, 2019, 123, 625-630.	1.5	2
1601	Oxygen Reduction Reaction. Interface Science and Technology, 2019, 27, 203-252.	1.6	15
1602	Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: Latest developments and future directions. Desalination, 2019, 451, 18-34.	4.0	87
1603	Graphdiyne Containing Atomically Precise N Atoms for Efficient Anchoring of Lithium Ion. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2608-2617.	4.0	100
1604	Cobalt porphyrin supported on graphene/Ni (111) surface: Enhanced oxygen evolution/reduction reaction and the role of electron coupling. Catalysis Today, 2020, 351, 113-118.	2.2	28
1605	Reversible chemical switches of functionalized nitrogen-doped graphene field-effect transistors. Chinese Chemical Letters, 2020, 31, 565-569.	4.8	7
1606	Composition, structure and potential energy application of nitrogen doped carbon cryogels. Materials Chemistry and Physics, 2020, 239, 122120.	2.0	8
1607	A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chemical Reviews, 2020, 120, 1250-1349.	23.0	436
1608	Reactivation of Fenton catalytic performance for Fe3O4 catalyst: Optimizing the cyclic performance by low voltage electric field. Applied Surface Science, 2020, 500, 144045.	3.1	14
1609	Increasing S dopant and specific surface area of N/S-codoped porous carbon by in-situ polymerization of PEDOT into biomass precursor for high performance supercapacitor. Applied Surface Science, 2020, 502, 144191.	3.1	38
1610	Nitrogen-doped reduced graphene oxide as a sensing platform for detection of guanine and application in cell necrosis. Chemical Papers, 2020, 74, 89-98.	1.0	7
1611	Nitrogenâ€Doped Carbon Nanomaterials: Synthesis, Characteristics and Applications. Chemistry - an Asian Journal, 2020, 15, 2282-2293.	1.7	100

#	Article	IF	CITATIONS
1612	CVD grown nitrogen doped graphene is an exceptional visible-light driven photocatalyst for surface catalytic reactions. 2D Materials, 2020, 7, 015002.	2.0	12
1613	Nanocarbon Catalysts: Recent Understanding Regarding the Active Sites. Advanced Science, 2020, 7, 1902126.	5.6	94
1614	Tuning the Electronic Properties of Atomically Precise Graphene Nanoribbons by Bottomâ€Up Fabrication. ChemNanoMat, 2020, 6, 493-515.	1.5	10
1615	Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon, 2020, 161, 62-70.	5.4	282
1616	Asymptotic behavior of the energetics and electronic structures of graphene with pyridinic defects. Chemical Physics Letters, 2020, 739, 136966.	1.2	1
1617	Tailoring the electrochemical properties of 2D-hBN <i>via</i> physical linear defects: physicochemical, computational and electrochemical characterisation. Nanoscale Advances, 2020, 2, 264-273.	2.2	11
1618	Boron-doped few-layer graphene nanosheet gas sensor for enhanced ammonia sensing at room temperature. RSC Advances, 2020, 10, 1007-1014.	1.7	46
1619	Electrocatalytic reduction of N ₂ and nitrogen-incorporation process on dopant-free defect graphene. Journal of Materials Chemistry A, 2020, 8, 55-61.	5.2	27
1620	Heterogeneous Cubic Multidimensional Integrated Circuit for Water and Food Security in Fish Farming Ponds. Small, 2020, 16, e1905399.	5.2	11
1621	In situ Electron paramagnetic resonance spectroelectrochemical study of graphene-based supercapacitors: Comparison between chemically reduced graphene oxide and nitrogen-doped reduced graphene oxide. Carbon, 2020, 160, 236-246.	5.4	49
1622	Electronic and optical properties of doped graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113894.	1.3	20
1623	Mini-Review on Char Catalysts for Tar Reforming during Biomass Gasification: The Importance of Char Structure. Energy & Structure. Energy & Structure. Energy & Energ	2.5	98
1624	Graphene Quantum Dots Promoted the Synthesis of Heavily n-Type Graphene for Near-Infrared Photodetectors. Journal of Physical Chemistry C, 2020, 124, 1674-1680.	1.5	7
1625	Doping free transfer of graphene using aqueous ammonia flow. RSC Advances, 2020, 10, 1127-1131.	1.7	7
1626	Urea-assisted one-step fabrication of a novel nitrogen-doped carbon fiber aerogel from cotton as metal-free catalyst in peroxymonosulfate activation for efficient degradation of carbamazepine. Chemical Engineering Journal, 2020, 386, 124015.	6.6	67
1627	Controlled Fragmentation of Single-Atom-Thick Polycrystalline Graphene. Matter, 2020, 2, 666-679.	5.0	45
1628	Graphene materials in green energy applications: Recent development and future perspective. Renewable and Sustainable Energy Reviews, 2020, 120, 109656.	8.2	100
1629	Tailoring electronic and transport properties of edge-terminated armchair graphene by defect formation and N/B doping. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126194.	0.9	3

#	Article	IF	CITATIONS
1630	Nitriding Nickel-Based Cocatalyst: A Strategy To Maneuver Hydrogen Evolution Capacity for Enhanced Photocatalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 884-892.	3.2	30
1631	Semiconductor nanoheterostructures for photoconversion applications. Journal Physics D: Applied Physics, 2020, 53, 143001.	1.3	130
1632	Charge-modulated/electric-field controlled reversible CO2/H2 capture and storage on metal-free N-doped penta-graphene. Chemical Engineering Journal, 2020, 391, 123577.	6.6	35
1633	A novel strategy for synthesizing Fe, N, and S tridoped graphene-supported Pt nanodendrites toward highly efficient methanol oxidation. Journal of Catalysis, 2020, 381, 275-284.	3.1	92
1634	Rapid Construction of Fold-Line-Shaped BN-Embedded Polycyclic Aromatic Compounds through Diels–Alder Reaction. Journal of Organic Chemistry, 2020, 85, 241-247.	1.7	8
1635	A latest overview on photocatalytic application of g-C3N4 based nanostructured materials for hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 337-379.	3.8	175
1636	Simultaneous Synthesis and Nitrogen Doping of Free-Standing Graphene Applying Microwave Plasma. Materials, 2020, 13, 4213.	1.3	10
1637	Engineering 2D Materials: A Viable Pathway for Improved Electrochemical Energy Storage. Advanced Energy Materials, 2020, 10, 2002621.	10.2	45
1638	A facile synthesis of zeolitic analcime/spongy graphene nanocomposites as novel hybrid electrodes for symmetric supercapacitors. Journal of Energy Storage, 2020, 32, 101953.	3.9	3
1639	Investigation of the mono vacancy effects on the structural, electronic and magnetic properties of graphene hexagonal-boron nitride in-plane hybrid embracing diamond shaped graphene island. Solid State Sciences, 2020, 108, 106395.	1.5	2
1640	Metal-free carbon materials for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Progress in Materials Science, 2020, 111, 100654.	16.0	250
1641	Spin-polarized electron transmission through B-doped graphene nanoribbons with Fe functionalization: a first-principles study. New Journal of Physics, 2020, 22, 063022.	1.2	2
1642	Enhancing and Tuning the Nonlinear Optical Response and Wavelength-Agile Strong Optical Limiting Action of N-octylamine Modified Fluorographenes. Nanomaterials, 2020, 10, 2319.	1.9	7
1643	Nitrogen-Doped Carbon Aerogels Prepared by Direct Pyrolysis of Cellulose Aerogels Derived from Coir Fibers Using an Ammonia–Urea System and Their Electrocatalytic Performance toward the Oxygen Reduction Reaction. Industrial & Engineering Chemistry Research, 2020, 59, 21371-21382.	1.8	26
1644	Enhanced Oxygen Reduction Catalysis of Carbon Nanohybrids from Nitrogen-Rich Edges. Langmuir, 2020, 36, 13752-13758.	1.6	5
1645	MoS2/graphene composites: Fabrication and electrochemical energy storage. Energy Storage Materials, 2020, 33, 470-502.	9.5	85
1646	Graphene-based field-effect transistors integrated with microfluidic chip for real-time pH monitoring of seawater. Journal of Materials Science: Materials in Electronics, 2020, 31, 15372-15380.	1.1	12
1647	Multiplexed Graphene Quantum Dots with Excitation-Wavelength-Independent Photoluminescence, as Two-Photon Probes, and in Ultraviolet–Near Infrared Bioimaging. ACS Nano, 2020, 14, 11502-11509.	7.3	42

#	Article	IF	Citations
1648	Triboelectric effect of surface morphology controlled laser induced graphene. Journal of Materials Chemistry A, 2020, 8, 19822-19832.	5.2	34
1649	Human virus detection with graphene-based materials. Biosensors and Bioelectronics, 2020, 166, 112436.	5.3	140
1650	Effect of BN dimers on the stability, electronic, and thermal properties of monolayer graphene. Results in Physics, 2020, 18, 103282.	2.0	15
1651	Heteroatom-doped graphene as sensing materials: a mini review. RSC Advances, 2020, 10, 28608-28629.	1.7	85
1652	Hydrogen Sensing at Room Temperature Using Flame-Synthesized Palladium-Decorated Crumpled Reduced Graphene Oxide Nanocomposites. ACS Sensors, 2020, 5, 2344-2350.	4.0	38
1653	Two-dimensional polar metal of a PbTe monolayer by electrostatic doping. Nanoscale Horizons, 2020, 5, 1400-1406.	4.1	16
1654	Methylamine terminated molecules on Ni(1 1 1): A path to low temperature synthesis of nitrogen-doped graphene. FlatChem, 2020, 24, 100205.	2.8	4
1655	N-Doped Graphene Oxide Nanoparticles Studied by EPR. Applied Magnetic Resonance, 2020, 51, 1481-1495.	0.6	6
1656	A simple molecular design for tunable two-dimensional imine covalent organic frameworks for optoelectronic applications. Physical Chemistry Chemical Physics, 2020, 22, 21360-21368.	1.3	11
1657	Tensile properties of hydrogenated hybrid graphene–hexagonal boron nitride nanosheets: a reactive force field study. Molecular Simulation, 2020, 46, 1220-1229.	0.9	6
1658	<p>Amino-Functionalized Nitrogen-Doped Graphene Quantum Dots for Efficient Enhancement of Two-Photon-Excitation Photodynamic Therapy: Functionalized Nitrogen as a Bactericidal and Contrast Agent</p> . International Journal of Nanomedicine, 2020, Volume 15, 6961-6973.	3.3	23
1659	Design of two-dimensional carbon-nitride structures by tuning the nitrogen concentration. Npj Computational Materials, 2020, 6, .	3.5	31
1660	Laserâ€Assisted Multilevel Nonâ€Volatile Memory Device Based on 2D vanâ€derâ€Waals Fewâ€Layerâ€ReS ₂ /hâ€BN/Graphene Heterostructures. Advanced Functional Materials, 2020, 30, 2001688.	7.8	52
1661	Computational screening of efficient graphene-supported transition metal single atom catalysts toward the oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 19319-19327.	5. 2	49
1662	Highly durable Li-ion battery anode from Fe3O4 nanoparticles embedded in nitrogen-doped porous carbon with improved rate capabilities. Journal of Materials Science, 2020, 55, 15667-15680.	1.7	9
1663	On-Surface Synthesis of Nitrogen-Substituted Gold-Phosphorus Porous Network. Chemistry of Materials, 2020, 32, 8561-8566.	3.2	3
1664	Stacking and curvature-dependent behaviors of electronic transport and molecular adsorptions of graphene: A comparative study of bilayer graphene and carbon nanotube. Applied Surface Science Advances, 2020, 1, 100028.	2.9	5
1665	Selective nitrogen doping of graphene due to preferential healing of plasma-generated defects near grain boundaries. Npj 2D Materials and Applications, 2020, 4, .	3.9	8

#	Article	IF	CITATIONS
1666	Band-gap control of graphenelike borocarbonitride <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>g</mml:mi><mml:mtext>â^'N</mml:mtext></mml:mrow></mml:math> bilayers by electrical gating. Physical Review B, 2020, 102, .	nl:mtext><	:mml:msub> <
1667	2D Materials and Heterostructures at Extreme Pressure. Advanced Science, 2020, 7, 2002697.	5.6	68
1668	Heteroatom doped graphene engineering for energy storage and conversion. Materials Today, 2020, 39, 47-65.	8.3	400
1669	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Energy	2.5	100
1670	Zero-dimensional heterostructures: N-doped graphene dots/SnO ₂ for ultrasensitive and selective NO ₂ gas sensing at low temperatures. Journal of Materials Chemistry A, 2020, 8, 11734-11742.	5.2	39
1671	Tailoring the band gap of $\hat{l}\pm 2$ -graphyne through functionalization with carbene groups: a density functional theory study. Chemical Papers, 2020, 74, 3581-3587.	1.0	2
1672	Recent advancements of metal oxides/Nitrogen-doped graphene nanocomposites for supercapacitor electrode materials. Journal of Energy Storage, 2020, 30, 101486.	3.9	76
1673	Hollow "graphene―microtubes using polyacrylonitrile nanofiber template and potential applications of field emission. Carbon, 2020, 167, 439-445.	5.4	3
1674	UV-assisted nitrogen-doped reduced graphene oxide/Fe ₃ O ₄ composite activated peroxodisulfate degradation of norfloxacin. Environmental Technology (United Kingdom), 2022, 43, 95-106.	1.2	6
1675	Electrochemical sensors based on nitrogen-doped reduced graphene oxide for the simultaneous detection of ascorbic acid, dopamine and uric acid. Journal of Alloys and Compounds, 2020, 842, 155873.	2.8	111
1676	Functionalized Graphene Derivatives and TiO2 for High Visible Light Photodegradation of Azo Dyes. Nanomaterials, 2020, 10, 1106.	1.9	12
1677	Uncertainty in the separation properties of functionalized porous graphenes. Applied Surface Science, 2020, 525, 146524.	3.1	6
1678	Contactless probing of graphene charge density variation in a controlled humidity environment. Carbon, 2020, 163, 408-416.	5.4	1
1679	Preparation of graphene., 2020,, 39-171.		1
1680	Summary and prospects., 2020,, 561-591.		0
1681	3D hierarchical porous nitrogen-doped carbon/Ni@NiO nanocomposites self-templated by cross-linked polyacrylamide gel for high performance supercapacitor electrode. Journal of Colloid and Interface Science, 2020, 570, 286-299.	5.0	36
1682	Graphene-based hybrid photocatalysts: a promising route toward high-efficiency photocatalytic water remediation., 2020,, 325-359.		0
1683	Recent developments in reduced graphene oxide nanocomposites for photoelectrochemical water-splitting applications. International Journal of Hydrogen Energy, 2020, 45, 11976-11994.	3.8	50

#	Article	IF	CITATIONS
1684	Controlled doping of graphene by impurity charge compensation via a polarized ferroelectric polymer. Journal of Applied Physics, 2020, 127, .	1.1	6
1685	Tailoring Hierarchically Porous Nitrogenâ€, Sulfurâ€Codoped Carbon for Highâ€Performance Supercapacitors and Oxygen Reduction. Small, 2020, 16, e1906584.	5.2	43
1686	Low-Cost Preparation of High-Surface-Area Nitrogen-Containing Activated Carbons from Biomass-Based Chars by Ammonia Activation. Industrial & Engineering Chemistry Research, 2020, 59, 7527-7537.	1.8	31
1687	Complementary doping of van der Waals materials through controlled intercalation for monolithically integrated electronics. Nano Research, 2020, 13, 1369-1375.	5.8	10
1688	Laser-induced and KOH-activated 3D graphene: A flexible activated electrode fabricated via direct laser writing for in-plane micro-supercapacitors. Chemical Engineering Journal, 2020, 393, 124672.	6.6	93
1689	The influences of boron doping in various defect sites on the thermo-mechanical properties of armchair graphene nanoribbons. European Physical Journal B, 2020, 93, 1.	0.6	3
1690	Polymerâ€Assisted Electrophoretic Synthesis of Nâ€Doped Grapheneâ€Polypyrrole Demonstrating Oxygen Reduction with Excellent Methanol Crossover Impact and Durability. Chemistry - A European Journal, 2020, 26, 12664-12673.	1.7	14
1691	Graphene doping for electrode application. , 2020, , 59-72.		0
1692	Gasâ€Phase Transformation of Fluorinated Benzoporphyrins to Porphyrinâ€Embedded Conical Nanocarbons. Chemistry - A European Journal, 2020, 26, 12180-12187.	1.7	5
1693	Formation of Highly Ordered Self-Assembled Monolayers on Two-Dimensional Materials via Noncovalent Functionalization. ACS Applied Materials & Samp; Interfaces, 2020, 12, 33941-33949.	4.0	13
1694	Catalyst-free solvothermal synthesis of ultrapure elemental N- and B-doped graphene for energy storage application. Solid State Ionics, 2020, 353, 115371.	1.3	16
1695	Separation of the coal-quartz mixture using tribo-electrostatic separator: Effect of surface pretreatment. Advanced Powder Technology, 2020, 31, 3361-3371.	2.0	5
1696	NanoSIMS Imaging and Analysis in Materials Science. Annual Review of Analytical Chemistry, 2020, 13, 273-292.	2.8	29
1697	Effect of graphene on thermal stability and mechanical properties of ethylene-vinyl acetate: a molecular dynamics simulation. Materials Research Express, 2020, 7, 035304.	0.8	15
1698	N-Doping Holey Graphene TiO ₂ –Pt Composite as Efficient Electrocatalyst for Methanol Oxidation. ACS Applied Energy Materials, 2020, 3, 2665-2673.	2.5	21
1699	Enhancing Na-ion storage in Na ₃ V ₂ (PO ₄) ₃ /C cathodes for sodium ion batteries through Br and N co-doping. Inorganic Chemistry Frontiers, 2020, 7, 1289-1297.	3.0	32
1700	High yield growth and doping of black phosphorus with tunable electronic properties. Materials Today, 2020, 36, 91-101.	8.3	69
1701	Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles. Carbon, 2020, 162, 528-544.	5.4	323

#	Article	IF	Citations
1702	Phosphorous-doped carbon coordinated iridium diphosphide bifunctional catalyst with ultralow iridium amount for efficient all-pH-value hydrogen evolution and oxygen reduction reactions. Journal of Catalysis, 2020, 383, 244-253.	3.1	30
1703	Versatile Route To Fabricate Precious-Metal Phosphide Electrocatalyst for Acid-Stable Hydrogen Oxidation and Evolution Reactions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 11737-11744.	4.0	37
1704	Two-dimensional materials for energy conversion and storage. Progress in Materials Science, 2020, 111, 100637.	16.0	134
1705	Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy, 2020, 70, 104525.	8.2	143
1706	Theoretical Investigation of Piezoelectric Properties of Graphene/Hexagonal Boron Nitride Hybrid Structures. Physica Status Solidi (B): Basic Research, 2020, 257, 1900733.	0.7	4
1707	Ultrasensitive Label-free MiRNA Sensing Based on a Flexible Graphene Field-Effect Transistor without Functionalization. ACS Applied Electronic Materials, 2020, 2, 1090-1098.	2.0	59
1708	Amino-Functionalized Nitrogen-Doped Graphene-Quantum-Dot-Based Nanomaterials with Nitrogen and Amino-Functionalized Group Content Dependence for Highly Efficient Two-Photon Bioimaging. International Journal of Molecular Sciences, 2020, 21, 2939.	1.8	16
1709	3D spongy nanofiber structure Fe–NC catalysts built by a graphene regulated electrospinning method. Chemical Communications, 2020, 56, 6277-6280.	2.2	10
1710	<scp>I</scp> -Lysine-Functionalized Reduced Graphene Oxide as a Highly Efficient Electrocatalyst for Enhanced Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 5524-5533.	3.2	39
1711	Glowing photoluminescene in carbon-based nanodots: current state and future perspectives. Journal of Materials Science, 2020, 55, 8769-8792.	1.7	22
1712	Visible light-assisted NGO-Fe3O4 composite activated peroxydisulfate for degradation of oxytetracycline. Water Science and Technology, 2020, 81, 813-823.	1.2	11
1713	The Effect of Carbon Support Surface Functionalization on PEM Fuel Cell Performance, Durability, and Ionomer Coverage in the Catalyst Layer. Journal of the Electrochemical Society, 2020, 167, 064506.	1.3	26
1714	Structure and properties of graphene. , 2020, , 5-26.		0
1715	Nitrogen self-doped carbon aerogels from chitin for supercapacitors. Journal of Power Sources, 2021, 481, 228976.	4.0	39
1716	Study on the synergism of thermal transport and electrochemical of PEMFC based on N, P co-doped graphene substrate electrode. Energy, 2021, 214, 118808.	4.5	9
1717	Carbon nitride based photocatalysts for solar photocatalytic disinfection, can we go further?. Chemical Engineering Journal, 2021, 404, 126540.	6.6	105
1718	Cu/graphene hybrid transparent conducting electrodes for organic photovoltaic devices. Carbon, 2021, 171, 341-349.	5.4	33
1719	Boron and nitrogen edges modify the thermal conductivity of phagraphene nanoribbons: Molecular dynamics simulations. Computational Materials Science, 2021, 187, 110084.	1.4	5

#	Article	IF	CITATIONS
1720	Novel hybrid of amorphous Sb/N-doped layered carbon for high-performance sodium-ion batteries. Chemical Engineering Journal, 2021, 407, 127169.	6.6	48
1721	Si-doped graphene nanosheets for NOx gas sensing. Sensors and Actuators B: Chemical, 2021, 328, 129005.	4.0	42
1722	A Câ€Sâ€C Linkageâ€Triggered Ultrahigh Nitrogenâ€Doped Carbon and the Identification of Active Site in Triiodide Reduction. Angewandte Chemie - International Edition, 2021, 60, 3587-3595.	7.2	41
1723	Recent advances in 2D hexagonal boron nitride (2D-hBN) applied as the basis of electrochemical sensing platforms. Analytical and Bioanalytical Chemistry, 2021, 413, 663-672.	1.9	41
1724	Sequential doping of nitrogen and oxygen in single-walled carbon nanohorns for use as supercapacitor electrodes. Microporous and Mesoporous Materials, 2021, 310, 110595.	2.2	8
1725	Highly sensitive electrochemical determination of methotrexate based on a N-doped hollow nanocarbon sphere modified electrode. Analytical Methods, 2021, 13, 117-123.	1.3	14
1726	Recyclable catalysts for the synthesis of heterocyclic compounds using carbon materials. Journal of Heterocyclic Chemistry, 2021, 58, 1039-1057.	1.4	11
1727	A Câ€Sâ€C Linkageâ€Triggered Ultrahigh Nitrogenâ€Doped Carbon and the Identification of Active Site in Triiodide Reduction. Angewandte Chemie, 2021, 133, 3631-3639.	1.6	7
1728	Biosensors based on two-dimensional materials. , 2021, , 245-312.		1
1729	Controlled Nanoscale Cracking of Graphene Ribbons by Polymer Shrinkage. ACS Applied Nano Materials, 2021, 4, 1529-1539.	2.4	0
1730	Electronic properties of two-dimensional Janus atomic crystal. Wuli Xuebao/Acta Physica Sinica, 2021,	0.2	6
1731	Graphene modification based on plasma technologies. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 095208.	0.2	3
1732	Room Temperature Gas Sensor Based on Reduced Graphene Oxide for Environmental Monitoring. , 2021, , 3243-3261.		0
1733	Recent advances in metal-free heteroatom-doped carbon heterogonous catalysts. RSC Advances, 2021, 11, 23725-23778.	1.7	28
1734	Design, Fabrication, and Mechanism of Nitrogenâ€Doped Grapheneâ€Based Photocatalyst. Advanced Materials, 2021, 33, e2003521.	11.1	324
1735	Detection of DNA Bases via Field Effect Transistor of Graphene Nanoribbon With a Nanopore: Semi-Empirical Modeling. IEEE Transactions on Nanobioscience, 2022, 21, 347-357.	2.2	5
1736	Oxidative esterification of renewable furfural on cobalt dispersed on ordered porous nitrogen-doped carbon. RSC Advances, 2021, 11, 3280-3287.	1.7	6
1737	Enhanced electrostatic potential with high energy and power density of a symmetric and asymmetric solid-state supercapacitor of boron and nitrogen co-doped reduced graphene nanosheets for energy storage devices. New Journal of Chemistry, 2021, 45, 12408-12425.	1.4	11

#	Article	IF	CITATIONS
1738	Molecular functionalization of 2D materials: from atomically planar 2D architectures to off-plane 3D functional materials. Journal of Materials Chemistry C, 2021, 9, 11569-11587.	2.7	22
1739	Enhancing Structural Properties and Performance of Graphene-Based Devices Using Self-Assembled HMDS Monolayers. ACS Omega, 2021, 6, 4767-4775.	1.6	6
1740	Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage. Cell Reports Physical Science, 2021, 2, 100328.	2.8	55
1741	Lithiated Graphene Quantum Dot and its Nonlinear Optical Properties Modulated by a Single Alkali Atom: A Theoretical Perspective. Inorganic Chemistry, 2021, 60, 3131-3138.	1.9	13
1742	Exploring the Silent Aspect of Carbon Nanopores. Nanomaterials, 2021, 11, 407.	1.9	13
1743	Outstanding Performance of Transition-Metal-Decorated Single-Layer Graphene-like BC ₆ N Nanosheets for Disease Biomarker Detection in Human Breath. ACS Omega, 2021, 6, 4696-4707.	1.6	56
1744	Introducing ferromagnetism and anisotropic magnetoresistance in monolayer CVD graphene by nitrogen doping. Nanotechnology, 2021, 32, 205704.	1.3	4
1745	Inkjet-Printed Graphene Sensors for the Bedside Detection of Tear Film pH. Translational Vision Science and Technology, 2021, 10, 10.	1.1	O
1746	Structure and Catalytic Activity of Gold Clusters Supported on Nitrogen-Doped Graphene. Journal of Physical Chemistry C, 2021, 125, 5006-5019.	1.5	13
1747	Progress of graphene devices for electrochemical biosensing in electrically excitable cells. Progress in Biomedical Engineering, 2021, 3, 022003.	2.8	1
1748	Materials Science Challenges to Graphene Nanoribbon Electronics. ACS Nano, 2021, 15, 3674-3708.	7.3	108
1749	Doping of graphene with polyethylenimine and its effects on graphene-based supercapacitors. Journal of Applied Physics, 2021, 129, 094904.	1.1	1
1750	Carbon corrosion mechanism on nitrogen-doped carbon support â€" A density functional theory study. International Journal of Hydrogen Energy, 2021, 46, 13273-13282.	3.8	11
1751	Effects of Surface Engineering of Copper Catalyst on the CVD Growth of Boron-Doped Graphene with a Solid Carbon and Boron Source. Coatings, 2021, 11, 523.	1.2	1
1752	Enlarging ion-transfer micropore channels of hierarchical carbon nanocages for ultrahigh energy and power densities. Science China Materials, 2021, 64, 2173-2181.	3 . 5	10
1753	Graphene-like porous carbon nanostructure from corn husk: Synthesis and characterization. Materials Today: Proceedings, 2021, 47, 3525-3528.	0.9	7
1754	Substitutional boron doping of graphene using diborane in CVD. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114629.	1.3	7
1755	Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today, 2021, 37, 101059.	6.2	82

#	Article	IF	CITATIONS
1756	Configuration of transition-metal atoms on iridium-doped graphene. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 085101.	0.6	1
1757	Nitrogen-doped porous graphitized carbon from antibiotic bacteria residues induced by sodium carbonate and application in Li-ion battery. Journal of Electroanalytical Chemistry, 2021, 889, 115179.	1.9	7
1758	Graphene family for hydrogen peroxide production in electrochemical system. Science of the Total Environment, 2021, 769, 144491.	3.9	14
1759	Characterizing Nitrogen Sites in Nitrogen-Doped Reduced Graphene Oxide: A Combined Solid-State ¹⁵ N NMR, XPS, and DFT Approach. Journal of Physical Chemistry C, 2021, 125, 10558-10564.	1.5	10
1760	Functionalization of electronic, spin and optical properties of GeSe monolayer by substitutional doping: a first-principles study. Nanotechnology, 2021, 32, 305701.	1.3	6
1761	Confined growth of Fe2O3 nanoparticles by holey graphene for enhanced sodium-ion storage. Carbon, 2021, 176, 31-38.	5.4	16
1762	Bandgap engineering of two-dimensional C3N bilayers. Nature Electronics, 2021, 4, 486-494.	13.1	36
1763	N-doped cellulose-based carbon aerogels with a honeycomb-like structure for high-performance supercapacitors. Journal of Energy Storage, 2021, 38, 102414.	3.9	17
1764	An investigation of Li-decorated N-doped penta-graphene for hydrogen storage. International Journal of Hydrogen Energy, 2021, 46, 25533-25542.	3.8	42
1765	Modulation of interfacial charge dynamics of semiconductor heterostructures for advanced photocatalytic applications. Coordination Chemistry Reviews, 2021, 438, 213876.	9.5	93
1766	Recent advances in functionalization of carbon nanosurface structures for electrochemical sensing applications: tuning and turning. Journal of Nanostructure in Chemistry, 2022, 12, 441-466.	5. 3	8
1767	Recent Advances on Heteroatomâ€Doped Porous Carbon/Metal Materials: Fascinating Heterogeneous Catalysts for Organic Transformations. Chemical Record, 2021, 21, 1985-2073.	2.9	31
1768	Are Carbon-Based Materials Good Supports for the Catalytic Reforming of Ammonia?. Journal of Physical Chemistry C, 2021, 125, 15950-15958.	1.5	10
1769	Electronic and optical properties of PTCDI adsorbed graphene heterostructure: A first principles study. Journal of Physics and Chemistry of Solids, 2021, 155, 110109.	1.9	3
1770	Linear and nonlinear thermal spin transport properties of zigzag α-graphyne nanoribbons with sp–sp edges. Chemical Physics Letters, 2021, 777, 138724.	1.2	7
1771	Mechanical properties of nanocracks in hybrid graphene/hexagonal boron nitride sheets. Journal of Mechanics of Materials and Structures, 2021, 16, 311-326.	0.4	0
1772	Facile regulation of porous N-doped carbon-based catalysts from covalent organic frameworks nanospheres for highly-efficient oxygen reduction reaction. Carbon, 2021, 180, 92-100.	5.4	35
1773	2D Organic Radical Conjugated Skeletons with Paramagnetic Behaviors. Advanced Materials Interfaces, 2021, 8, 2100943.	1.9	3

#	Article	IF	CITATIONS
1774	From regular arrays of liquid metal nano-islands to single crystalline biatomic-layer gallium film: Molecular dynamics and first principle study. Journal of Applied Physics, 2021, 130, 124304.	1.1	0
1775	Graphene nanoribbons for quantum electronics. Nature Reviews Physics, 2021, 3, 791-802.	11.9	141
1776	Nitrogen Functionalities of Amino-Functionalized Nitrogen-Doped Graphene Quantum Dots for Highly Efficient Enhancement of Antimicrobial Therapy to Eliminate Methicillin-Resistant Staphylococcus aureus and Utilization as a Contrast Agent. International Journal of Molecular Sciences, 2021, 22, 9695.	1.8	2
1777	Research progress of carbon nanofiber-based precious-metal-free oxygen reaction catalysts synthesized by electrospinning for Zn-Air batteries. Journal of Power Sources, 2021, 507, 230280.	4.0	24
1778	Growth of Graphene Nanoflakes/ <i>h</i> à€BN Heterostructures. Advanced Materials Interfaces, 2021, 8, 2100766.	1.9	5
1779	Well-dispersive Pt nanoparticles grown on 3D nitrogen- and sulfur-codoped graphene nanoribbon architectures: highly active electrocatalysts for methanol oxidation. Materials Today Energy, 2021, 21, 100814.	2.5	13
1780	Electronic properties of transition metal embedded twin T-graphene: A density functional theory study. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 133, 114806.	1.3	14
1781	Temperature-dependent site selection of boron doping in chemically derived graphene. Carbon, 2021, 184, 253-265.	5.4	5
1782	Catalytic CO oxidation reaction over N-substituted graphene nanoribbon with edge defects. Journal of Molecular Graphics and Modelling, 2021, 108, 108006.	1.3	3
1783	Achieving ion accessibility within graphene films by carbon nanofiber intercalation for high mass loading electrodes in supercapacitors. Journal of Power Sources, 2021, 513, 230559.	4.0	13
1784	Enhancing the reactivity of carbon-nanotube for carbon monoxide detection by mono- and co-doping of boron and nitrogen heteroatoms: A DFT and TD-DFT study. Journal of Physics and Chemistry of Solids, 2021, 158, 110230.	1.9	5
1785	Mechanochemistry-driven prelinking enables ultrahigh nitrogen-doping in carbon materials for triiodide reduction. Nano Energy, 2021, 89, 106332.	8.2	10
1786	Laser conversion of biomass into porous carbon composite under ambient condition for pH-Universal electrochemical hydrogen evolution reaction. Journal of Colloid and Interface Science, 2021, 604, 885-893.	5.0	12
1787	Structural stability and electronic characteristics of cellulose nanowires on graphene-like systems. Applied Surface Science, 2021, 569, 150998.	3.1	2
1788	Polymer-graphene composite in aerospace engineering., 2022,, 683-711.		3
1789	Nitrogen-doped graphene as an efficient metal-free catalyst for ammonia and non-enzymatic glucose sensing. Journal of Physics and Chemistry of Solids, 2022, 160, 110359.	1.9	12
1790	Insights into co-removal of trichloroacetic acid and bromate by an electroreduction process: Competitive reaction mechanism and enhanced atomic H* stabilization. Chemical Engineering Journal, 2022, 429, 132139.	6.6	14
1791	Edge State Induced Spintronic Properties of Graphene Nanoribbons: A Theoretical Perspective. Advances in Sustainability Science and Technology, 2021, , 165-198.	0.4	0

#	Article	IF	CITATIONS
1792	Fused Aromatic Network with Exceptionally High Carrier Mobility. Advanced Materials, 2021, 33, e2004707.	11.1	16
1793	Graphene transparent electrodes. , 2021, , 487-516.		1
1794	Synergic effects between boron and nitrogen atoms in BN-codoped C _{59â^'n} BN _n fullerenes (⟨i⟩n⟨/i⟩= 1â€"3) for metal-free reduction of greenhouse N ₂ O gas. RSC Advances, 2021, 11, 22598-22610.	1.7	9
1795	Room Temperature Gas Sensor Based on Reduce Graphene Oxide for Environmental Monitoring. , 2020, , 1-19.		1
1796	Graphene and Its Modifications for Supercapacitor Applications. Carbon Nanostructures, 2019, , 113-138.	0.1	6
1797	Characteristics of Graphene/Reduced Graphene Oxide. Springer Series in Materials Science, 2020, , 155-177.	0.4	28
1798	Organic Ambipolar Transistors and Circuits. , 2016, , 971-995.		4
1799	Functionalizing Two-Dimensional Materials for Energy Applications. , 2020, , 567-603.		2
1800	Organic Ambipolar Transistors and Circuits. , 2014, , 1-21.		3
1802	High-quality graphene films and nitrogen-doped organogels prepared from the organic dispersions of graphene oxide. Carbon, 2018, 129, 15-20.	5.4	18
1803	Microstructural analysis of nitrogen-doped char by Raman spectroscopy: Raman shift analysis from first principles. Carbon, 2020, 167, 559-574.	5.4	52
1804	Engineering high-defect densities across vertically-aligned graphene nanosheets to induce photocatalytic reactivity. Carbon, 2020, 168, 32-41.	5.4	22
1805	Unraveling the effect of nitrogen doping on graphene nanoflakes and the adsorption properties of ionic liquids: A DFT study. Journal of Molecular Liquids, 2020, 312, 113400.	2.3	16
1806	An extended defect in graphene as a metallic wire. , 0, .		1
1807	Tunable half-metallicity and edge magnetism of H-saturated InSe nanoribbons. Physical Review Materials, 2018, 2, .	0.9	11
1808	Nitrogen Coordinated Copper Co-Doped Multi-Walled Carbon Nanotubes for High-Efficiency Electrochemical Sensing of Bisphenol A. Journal of the Electrochemical Society, 2020, 167, 146515.	1.3	1
1810	Electrochemical evaluation of the antioxidant capacity of natural compounds on glassy carbon electrode modified with guanine-, polythionine-, and nitrogen-doped graphene. Open Chemistry, 2020, 18, 1054-1063.	1.0	4
1812	Enhanced Capacitive Properties of All-solid-state Symmetric Graphene Supercapacitors by Incorporating Nitrogen-doping and SnO\$lt;inf\$gt;2\$lt;/inf\$gt; Nanoparticles. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2015, 30, 662.	0.6	1

#	Article	IF	Citations
1813	Stone-Wales kusuru içerisindeki farklı bölgelere azot atomu katkılandırmanın grafenin mekanik özellikleri üzerine etkisi. Journal of the Faculty of Engineering and Architecture of Gazi University, 2018, 2018, .	0.3	1
1814	An Electrochemical Hydroquinone Sensor with Nitrogen-Doped Graphene Modified Electrode. International Journal of Electrochemical Science, 0, , 7139-7149.	0.5	12
1815	Highly Enhanced Electrochemical Performance of Novel based Electrode Materials for Supercapacitor Applications – An Overview. International Journal of Electrochemical Science, 2019, 14, 1634-1648.	0.5	5
1816	Reinforcement of Epoxy Resin by Additives of Amine-Functionalized Graphene Nanosheets. Coatings, 2021, 11, 35.	1.2	10
1817	Highly Aligned Polymeric Nanowire Etch-Mask Lithography Enabling the Integration of Graphene Nanoribbon Transistors. Nanomaterials, 2021, 11, 33.	1.9	5
1818	Epitaxial Growth of Graphene and Their Applications in Devices. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 1009-1019.	0.6	16
1819	Synthesis of Nitrogen Doped Graphene through Microwave Irradiation. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2012, 27, 146-150.	0.6	8
1820	Band Gap Opening of Graphene by Noncovalent π-π Interaction with Porphyrins. Graphene, 2013, 02, 102-108.	0.3	18
1821	Nitrogen Doped Graphene as Potential Material for Hydrogen Storage. Graphene, 2017, 06, 41-60.	0.3	81
1822	Doping Graphene by Chemical Treatments Using Acid and Basic Substances. Journal of Materials Science and Chemical Engineering, 2015, 03, 17-21.	0.2	7
1823	Development of Gold Phosphorus Supported Carbon Nanocomposites. Bulletin of the Korean Chemical Society, 2014, 35, 401-406.	1.0	2
1824	Facile and Ecofriendly Fluorination of Graphene Oxide. Bulletin of the Korean Chemical Society, 2014, 35, 2139-2142.	1.0	8
1825	Synthesis, Properties and Potential Applications of Porous Graphene: A Review. Nano-Micro Letters, 2013, 5, 260.	14.4	3
1826	Redox Reaction Investigation of Graphene Nanoribbon. Applied Science and Convergence Technology, 2018, 27, 35-37.	0.3	3
1827	The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 076501.	0.2	15
1828	Optical and electronic properties of N/B doped graphene. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 248103.	0.2	12
1829	Nature of Graphene Edges: A Review. Japanese Journal of Applied Physics, 2011, 50, 070101.	0.8	113
1830	Graphene Transfer: A Physical Perspective. Nanomaterials, 2021, 11, 2837.	1.9	7

#	Article	IF	CITATIONS
1831	Morphology Controlled Synthesis of Heteroatom-Doped Spherical Porous Carbon Particles Retaining High Specific Capacitance at High Current Density. ACS Applied Energy Materials, 2021, 4, 10810-10825.	2.5	13
1832	Synergistic combination of N/P dual-doped activated carbon with redox-active electrolyte for high performance supercapacitors. Journal of Physics and Chemistry of Solids, 2022, 161, 110449.	1.9	17
1834	Modification of zigzag graphene nanoribbons by patterning vacancies. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 137101.	0.2	1
1835	Density Functional Theory Study of IB Metals Binding to Perfect and N-Doped Graphene. Chinese Journal of Catalysis, 2013, 33, 1578-1585.	6.9	1
1836	Structural Defects on the Electronic Transport Properties of Carbon-Based Nanostructures. Carbon Materials, 2013, , 77-103.	0.2	0
1837	Surface Characterization of Graphene. , 2013, , 73-90.		0
1838	Heterographenes., 2014,, 1-15.		0
1839	Magnetic and electronic properties of fluorographene sheet with foreign atom substitutions. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 046102.	0.2	5
1840	Electronic and magnetic properties of fluorinated graphene sheets with divacancy substitutional doping. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 186101.	0.2	4
1841	Large-Scale Assembly of Aligned Graphene Nanoribbons with Sub 30-nm Width. Journal of the Korean Chemical Society, 2014, 58, 524-527.	0.2	0
1842	Multimillion Atom Simulation of Electronic and Optical Properties of Nanoscale Devices Using NEMO 3-D., 2015, , 1-69.		0
1843	Fuel cells and carbonâ€"The roles of carbon materials in achieving a hydrogen energy societyâ€". Tanso, 2015, 2015, 257-263.	0.1	1
1845	Electron Transfer and Charge Storage in Thin Films of Nanoparticles. , 2016, , 869-939.		0
1846	Preparation and Optical Properties of Graphene Quantum Dots Containing Nitrogen. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2016, 31, 1123.	0.6	0
1847	Raman Spectroscopy Analysis of Graphene Films Grown on Ni (111) and (100) Surface. Composites Research, 2016, 29, 194-202.	0.1	0
1849	Graphene Growth and Characterization: Advances, Present Challenges and Prospects. Journal of Materials Science Research, 2020, 8, 37.	0.1	4
1850	Computational methods towards increased efficiency design of graphene membranes for gas separation and water desalination. Reviews in Chemical Engineering, 2022, 38, 77-94.	2.3	1
1851	Near-Field Electroluminescent Refrigeration System Consisting of Two Graphene Schottky Diodes. Journal of Heat Transfer, 2020, 142, .	1,2	3

#	Article	IF	Citations
1852	Size and Layer Dependence of Hybrid Graphene/h-BN Models Upon Heating. Communications in Physics, 2020, 30, 111.	0.0	0
1853	MOF-Directed Construction of Cu–Carbon and Cu@N-Doped Carbon as Superior Supports of Metal Nanoparticles toward Efficient Hydrogen Generation. ACS Applied Materials & amp; Interfaces, 2021, 13, 52921-52930.	4.0	8
1854	Conical coiled carbon nanotubes with highly controllable mechanical properties. Materials Today Communications, 2021, 29, 102927.	0.9	3
1855	Tuning metal catalysts via nitrogen-doped nanocarbons for energy chemistry: From metal nanoparticles to single metal sites. EnergyChem, 2021, 3, 100066.	10.1	31
1856	Temperature Effect of Low-Damage Plasma for Nitrogen-Modification of Graphene. ECS Journal of Solid State Science and Technology, 2020, 9, 121007.	0.9	2
1857	Facile preparation of Co@Co ₃ O ₄ @Nitrogen doped carbon composite from ionic liquid as anode material for high performance lithium-ion batteries. Materials Science-Poland, 2020, 38, 601-612.	0.4	0
1858	A DNA-functionalized graphene field-effect transistor for quantitation of vascular endothelial growth factor. Sensors and Actuators B: Chemical, 2022, 351, 130964.	4.0	19
1859	Facile synthesis of crumpled-paper like CoWO4-CoMn2O4/N-doped Graphene hybrid nanocomposites for high performance all-solid-state asymmetric supercapacitors. Journal of Energy Storage, 2022, 45, 103513.	3.9	48
1860	Effects of doping graphene on the performance of graphene–silicon hybrid photoconductive detectors. Nanotechnology, 2020, 31, 485201.	1.3	4
1861	Electrochemical cardiac troponin I immunosensor based on nitrogen and boron-doped graphene quantum dots electrode platform and Ce-doped SnO2/SnS2 signal amplification. Materials Today Chemistry, 2022, 23, 100666.	1.7	39
1862	Manipulating cobalt oxide on N-doped aligned electrospun carbon nanofibers towards instant electrochemical detection of dopamine secreted by living cells. Applied Surface Science, 2022, 577, 151912.	3.1	12
1863	Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waals Heterojunctions. Chemistry of Materials, 2021, 33, 9012-9092.	3.2	88
1864	Preparation of N-doped graphite oxide for supercapacitors by NH ₃ cold plasma. Plasma Science and Technology, 2022, 24, 044008.	0.7	1
1865	Radio-frequency plasma assisted reduction and nitrogen doping of graphene oxide. Carbon, 2022, 189, 571-578.	5.4	13
1866	Simultaneous increase of conductivity, active sites and structural strain by nitrogen injection for high-yield CO2 electro-hydrogenation to liquid fuel. Applied Catalysis B: Environmental, 2022, 305, 121080.	10.8	20
1867	Nitrogen Implantation to Graphene Oxides. A Radio Frequency Plasma Treatment and Computational Approach – Implications for Electrocatalytic Application. SSRN Electronic Journal, 0, , .	0.4	0
1868	A short review of titania-graphene oxide based composites as a photocatalysts. Advanced Technologies, 2021, 10, 51-60.	0.2	4
1869	Investigation of Ammonia/Steam Activation for the Scalable Production of High-Surface Area Nitrogen-Containing Activated Carbons. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1870	Highly Effective Removal of Volatile Organic Pollutants with P-N Heterojunction Photoreduced Graphene Oxide-TiO ₂ Photocatalyst Under UV and Visible Light. SSRN Electronic Journal, 0, , .	0.4	0
1872	Electronic, Structural, and Magnetic Upgrading of Coal-Based Products through Laser Annealing. ACS Nano, 2022, 16, 2101-2109.	7.3	9
1873	Size Optimization of a N-Doped Graphene Nanocluster for the Oxygen Reduction Reaction. ACS Omega, 2022, 7, 3093-3098.	1.6	3
1874	Effect of Grain Boundaries' Doping on the Mechanical Properties of Nitrogen-Doped Bicrystalline Graphene. Diamond and Related Materials, 2022, 121, 108771.	1.8	4
1875	Design and synthesis of ultrathin graphene: Fundamental applications in transparent electrodes and supercapacitors., 2022,, 115-140.		0
1876	Non-covalent interactions of graphene surface: Mechanisms and applications. CheM, 2022, 8, 947-979.	5.8	29
1877	Highly effective removal of volatile organic pollutants with p-n heterojunction photoreduced graphene oxide-TiO2 photocatalyst. Journal of Environmental Chemical Engineering, 2022, 10, 107304.	3.3	16
1878	One-step fabrication of nitrogen-doped laser-induced graphene derived from melamine/polyimide for enhanced flexible supercapacitors. CrystEngComm, 2022, 24, 1866-1876.	1.3	14
1879	Ï€â€Extended <i>peri</i> à€Acenes: Recent Progress in Synthesis and Characterization. European Journal of Organic Chemistry, 2022, 2022, .	1.2	7
1880	Recent Advances in Boron―and Nitrogenâ€Doped Carbonâ€Based Materials and Their Various Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	48
1881	Enhanced interactions of gas molecule with defective graphene induced by strong coupling effect between carbon-Co in Co3O4: A theoretical study. Applied Surface Science, 2022, 587, 152755.	3.1	3
1882	Investigation of ammonia/steam activation for the scalable production of high-surface area nitrogen-containing activated carbons. Carbon, 2022, 191, 581-592.	5.4	32
1883	Microwave-assisted synthesis of well-defined nitrogen doping configuration with high centrality in carbon to identify the active sites for electrochemical hydrogen peroxide production. Carbon, 2022, 191, 340-349.	5.4	20
1884	Structural defects in graphene quantum dots: A review. International Journal of Quantum Chemistry, 2022, 122, .	1.0	17
1885	Two-Photon–Near Infrared-II Antimicrobial Graphene-Nanoagent for Ultraviolet–Near Infrared Imaging and Photoinactivation. International Journal of Molecular Sciences, 2022, 23, 3230.	1.8	4
1886	Active site construction to boost electrochemical property for Li–S batteries: a review. Journal of Materials Science, 2022, 57, 7131-7154.	1.7	2
1887	Ordered Mesoporous Boron Carbon Nitrides with Tunable Mesopore Nanoarchitectonics for Energy Storage and CO ₂ Adsorption Properties. Advanced Science, 2022, 9, e2105603.	5.6	22
1888	Finite element modelling of micromachining process for epoxy/graphene nanoplatelet nanocomposites. Journal of Manufacturing Processes, 2022, 77, 770-782.	2.8	1

#	Article	IF	CITATIONS
1889	In-situ fabrication of multifunctional N-doped hybrid carbon nanotube@carbon fiber by recycling gaseous effluents of carbon fiber production. Carbon, 2022, 193, 368-380.	5.4	5
1890	N-doped graphene quantum dots as charge-transfer-bridge at LaSrCoO/MoSe2 heterointerfaces for enhanced water splitting. Nano Energy, 2022, 96, 107117.	8.2	16
1891	Nitrogen-Doped Carbon Nanotube Cups for Cancer Therapy. ACS Applied Nano Materials, 2022, 5, 13685-13696.	2.4	4
1892	Review on Lowâ€Cost Counter Electrode Materials for Dyeâ€Sensitized Solar Cells: Effective Strategy to Improve Photovoltaic Performance. Advanced Materials Interfaces, 2022, 9, .	1.9	35
1893	Electronic structures and properties of small $\$(hbox \{BCN\})_{x}$ (x =1â \in "5) clusters and $\$(hbox)$ Tj ETQq0 (O o.gBT /C	Overlock 10
1894	Grafting Ink for Direct Writing: Solvation Activated Covalent Functionalization of Graphene. Advanced Science, 2022, 9, e2105017.	5.6	8
1896	Structures, properties, and applications of nitrogen-doped graphene. Theoretical and Computational Chemistry, 2022, , 211-248.	0.2	3
1897	Direct Plasmaâ€Enhancedâ€Chemicalâ€Vaporâ€Deposition Syntheses of Vertically Oriented Graphene Films on Functional Insulating Substrates for Wideâ€Range Applications. Advanced Functional Materials, 2022, 32, .	7.8	8
1898	Novel Amorphous Carbons for the Adsorption of Phosphate: Part I. Elucidation of Chemical Structure of N-Metal-Doped Chars. ACS Omega, 2022, 7, 14490-14504.	1.6	1
1899	Carbon-based metal-free oxygen reduction reaction electrocatalysts: past, present and future. New Carbon Materials, 2022, 37, 338-354.	2.9	14
1900	Designed p-type graphene quantum dots to heal interface charge transfer in Sn-Pb perovskite solar cells. Nano Energy, 2022, 98, 107298.	8.2	25
1901	Modulation of the electronic state of carbon thin films by inorganic substrates. Carbon, 2022, 196, 313-319.	5.4	1
1902	Simultaneous interfacial interaction and built-in electric field regulation of GaZnON@NG for high-performance lithium-ion storage. Nano Energy, 2022, 99, 107369.	8.2	20
1903	Tetrabenzo [$\langle i \rangle b \langle i \rangle, \langle i \rangle de \langle i \rangle, \langle i \rangle gh \langle i \rangle, \langle i \rangle][1,10]$ phenanthroline: a nitrogen-doped nanographene as a selective metal cation and proton fluorophore. New Journal of Chemistry, 2022, 46, 11835-11839.	1.4	3
1905	Nitrogen Implantation into Graphene Oxide and Reduced Graphene Oxides Using Radio Frequency Plasma Treatment in Microscale. SSRN Electronic Journal, 0, , .	0.4	0
1906	T-Phase and H-Phase Coupled TMD van der Waals Heterostructure ZrS ₂ /MoTe ₂ with Both Rashba Spin Splitting and Type-III Band Alignment. Journal of Physical Chemistry C, 2022, 126, 10601-10609.	1.5	5
1907	Highâ€Quality Nâ€Doped Graphene with Controllable Nitrogen Bonding Configurations Derived from Ionic Liquids. Chemistry - an Asian Journal, 0, , .	1.7	0
1908	Band gap formation of 2D materialin graphene: Future prospect and challenges. Results in Engineering, 2022, 15, 100474.	2.2	20

#	Article	IF	CITATIONS
1909	Spotlighting graphene-based catalysts for the mitigation of environmentally hazardous pollutants to cleaner production: A review. Journal of Cleaner Production, 2022, 365, 132702.	4.6	48
1910	Ultra- ordered array of CuCo2S4 microspheres on co-doped nitrogen, sulfur-porous graphene sheets with superior electrochemical performance for supercapacitor application. Energy Reports, 2022, 8, 7712-7723.	2.5	6
1911	Ultra-Thin Graphene Foam Based Flexible Piezoresistive Pressure Sensors for Robotics. Key Engineering Materials, 0, 922, 79-86.	0.4	0
1912	Doping of Graphene Films: Open the way to Applications in Electronics and Optoelectronics. Advanced Functional Materials, 2022, 32, .	7.8	21
1913	Laser Processing of Flexible In-Plane Micro-supercapacitors: Progresses in Advanced Manufacturing of Nanostructured Electrodes. ACS Nano, 2022, 16, 10088-10129.	7.3	31
1914	Universal Principle for Large-Scale Production of a High-Quality Two-Dimensional Monolayer via Positive Charge-Driven Exfoliation. Journal of Physical Chemistry Letters, 2022, 13, 6597-6603.	2.1	6
1915	A triatomic carbon and derived pentacarbides with superstrong mechanical properties. IScience, 2022, 25, 104712.	1.9	6
1916	In situ oxygen doped Ti3C2T MXene flexible film as supercapacitor electrode. Chemical Engineering Journal, 2022, 446, 137451.	6.6	22
1917	N-doped rutile TiO2/C hybrids with enhanced charge transfer capability derived from NH2-MIL-125(Ti) for the photocatalytic degradation of tetracycline. Materials Research Bulletin, 2022, 155, 111968.	2.7	22
1918	Highly Durable Fuel Cell Electrocatalyst with Low-Loading Pt-Co Nanoparticles Dispersed Over Single-Atom Pt-Co-N-Graphene Nanofiber. SSRN Electronic Journal, 0, , .	0.4	0
1919	Potential hydrogen storage materials from Li decorated Nâ€doped Meâ€graphene. International Journal of Energy Research, 2022, 46, 24554-24564.	2.2	3
1920	Electrochemical Performance of Fe ₂ O ₃ @PPy Nanocomposite as an Effective Electrode Material for Supercapacitor. ECS Journal of Solid State Science and Technology, 2022, 11, 091001.	0.9	5
1921	Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective. Composites Part B: Engineering, 2022, 246, 110232.	5.9	35
1922	Influence of growth parameters on the dopant configuration of nitrogen-doped graphene synthesized from phthalocyanine molecules. Journal of Materials Science: Materials in Electronics, 2022, 33, 19361-19375.	1.1	0
1923	Nitrogen implantation into graphene oxide and reduced graphene oxides using radio frequency plasma treatment in microscale. Carbon, 2022, 199, 415-423.	5.4	9
1924	Boron-doped CN supported metallic Co catalysts with interfacial electron transfer for enhanced photothermal CO hydrogenation. Nano Energy, 2022, 102, 107723.	8.2	18
1925	Tuning electrical coupling in bilayer graphene. Carbon, 2023, 201, 529-534.	5.4	1
1926	Various defects in graphene: a review. RSC Advances, 2022, 12, 21520-21547.	1.7	65

#	Article	IF	CITATIONS
1927	Rational design of 2D ferroelectric heterogeneous catalysts for controllable hydrogen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 22228-22235.	5.2	7
1928	Diverse Electronic Structures Governed by N-Substitution in Stable Two-Dimensional Dumbbell Carbonitrides. SSRN Electronic Journal, 0, , .	0.4	0
1929	A Wide Range and High Repeatability MEMS Pressure Sensor Based on Graphene. IEEE Sensors Journal, 2022, 22, 17737-17745.	2.4	4
1930	Graphene-based terahertz optoelectronics. Optics and Laser Technology, 2023, 157, 108558.	2.2	11
1931	Functional carbon materials addressing dendrite problems in metal batteries: surface chemistry, multi-dimensional structure engineering, and defects. Science China Chemistry, 2022, 65, 2351-2368.	4.2	11
1932	Tailoring interfacial interaction in GaN@NG heterojunction via electron/ion bridges for enhanced lithium-ion storage performance. Chemical Engineering Journal, 2023, 453, 139603.	6.6	8
1933	Novel nanostructures suspended in graphene vacancies, edges and holes. Science China Materials, 0, , .	3.5	3
1934	Coexistence of Urbachâ€Tailâ€Like Localized States and Metallic Conduction Channels in Nitrogenâ€Doped 3D Curved Graphene. Advanced Materials, 2022, 34, .	11.1	8
1935	Lattice Strain and Schottky Junction Dual Regulation Boosts Ultrafine Ruthenium Nanoparticles Anchored on a N-Modified Carbon Catalyst for H ₂ Production. Journal of the American Chemical Society, 2022, 144, 19619-19626.	6.6	99
1936	Diverse electronic structures governed by N-substitution in stable two-dimensional dumbbell carbonitrides. Applied Surface Science, 2023, 609, 155463.	3.1	0
1937	Progress of synthetic strategies and properties of heteroatoms-doped (N, P, S, O) carbon materials for supercapacitors. Journal of Energy Storage, 2022, 56, 105995.	3.9	47
1938	Flexible Devices Based on Soybean-Derived High-Quality N-Doped Graphene. Science of Advanced Materials, 2022, 14, 1050-1055.	0.1	0
1939	Advances in platinum-based and platinum-free oxygen reduction reaction catalysts for cathodes in direct methanol fuel cells. Frontiers in Chemistry, 0, 10, .	1.8	8
1940	Nitrogenous MOFs and their composites as high-performance electrode material for supercapacitors: Recent advances and perspectives. Coordination Chemistry Reviews, 2023, 478, 214967.	9.5	17
1941	Optoelectronic properties and applications of two-dimensional layered semiconductor van der Waals heterostructures: perspective from theory. Journal of Physics Condensed Matter, 2023, 35, 043001.	0.7	2
1942	The New Materials for Battery Electrode Prototypes. Materials, 2023, 16, 555.	1.3	3
1943	How Does Molecular Diameter Correlate with the Penetration Barrier of Small Gas Molecules on Porous Carbon-Based Monolayer Membranes?. Journal of Physical Chemistry A, 2023, 127, 517-526.	1.1	1
1944	A Chemiresistor Sensor Array Based on Graphene Nanostructures: From the Detection of Ammonia and Possible Interfering VOCs to Chemometric Analysis. Sensors, 2023, 23, 882.	2.1	7

#	Article	IF	CITATIONS
1945	Size effect of CoS2 cocatalyst on photocatalytic hydrogen evolution performance of g-C3N4. Journal of Colloid and Interface Science, 2023, 635, 305-315.	5.0	16
1946	Recent advances on nitrogen doped porous carbon micro-supercapacitors: New directions for wearable electronics. Journal of Energy Storage, 2023, 60, 106581.	3.9	23
1947	Comprehensive Review on Nitrogen-Doped Graphene: Structure Characterization, Growth Strategy, and Capacitive Energy Storage. Energy & Energy & Storage. 2023, 37, 902-918.	2.5	8
1948	Flexible doctor blade-coated abiotic cathodes for implantable glucose/oxygen biofuel cells. RSC Advances, 2023, 13, 3877-3889.	1.7	2
1949	Al/Si dopants effect on the electronic and optical behaviors of graphene mono-layers useful for infrared detector devices. Journal of Electron Spectroscopy and Related Phenomena, 2023, 264, 147296.	0.8	0
1950	Boron-rich triphenylene COF based electrides having excellent nonlinear optical activity. Materials Science in Semiconductor Processing, 2023, 160, 107468.	1.9	4
1951	Study of drop mobility over a surface having electric charge gradient. Chemical Engineering Science, 2023, 275, 118717.	1.9	0
1952	Bottom-up synthesis of pyridinic nitrogen-containing carbon materials with C–H groups next to pyridinic nitrogen from two-ring aromatics. Carbon, 2023, 207, 270-291.	5.4	11
1953	Highly durable fuel cell electrocatalyst with low-loading Pt-Co nanoparticles dispersed over single-atom Pt-Co-N-graphene nanofiber. Chem Catalysis, 2023, 3, 100541.	2.9	3
1954	Unlocking the full energy densities of carbon-based supercapacitors. Materials Research Letters, 2023, 11, 517-546.	4.1	9
1956	Study Of Electronic And Optical Properties Of Bulk And Monolayer Vanadium Di-Sulfide For Energy Storage Devices. , 2023, . "http://www.w3.org/1998/Math/MathML" altimg="si34.svg" display="inline"		0
1957	id="d1e1137"> <mml:msub><mml:mrow ><mml:mrow><mml:mn>4< mml:mn></mml:mn></mml:mrow></mml:mrow </mml:msub> N <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si34.svg" display="inline" id="d1e1145"><mml:msub><mml:mrow< td=""><td>1.4</td><td>1</td></mml:mrow<></mml:msub></mml:math 	1.4	1
1958	Synthesis of carbon materials with extremely high pyridinic-nitrogen content and controlled edges from aromatic compounds with highly symmetric skeletons. Carbon Letters, 2023, 33, 1279-1301.	3.3	4
1959	Intrinsic carbon structural imperfections for enhancing energy conversion electrocatalysts. Chemical Engineering Journal, 2023, 466, 143060.	6.6	7
1960	Highly sensitive biosensor for neuron-specific enolase detection with Bovine-serum-albumin doped graphene field-effect transistor. IEEE Sensors Journal, 2023, , 1-1.	2.4	0
1961	Selected Applications of Nanomaterials. , 2014, , 369-419.		О
1963	Electrical Properties of Degenerate Boron Doped Graphene., 2023,,.		1
1964	Polarity-Tunable Field Effect Phototransistors. Nano Letters, 2023, 23, 4923-4930.	4.5	5

#	Article	IF	CITATIONS
1966	Modified Graphene-Based Compound: Hydrogen Production through Water Splitting., 2023,, 81-135.		0
2002	Graphene Nanoplatelet Surface Modification for Rheological Properties Enhancement in Drilling Fluid Operations: A Review. Arabian Journal for Science and Engineering, 0, , .	1.7	O
2014	MOF-derived carbonaceous materials. , 2024, , 63-84.		0