Epithelialâ
 ${\ensuremath{\mathfrak{e}}}$ "mesenchymal transition in hepatocellular

Future Oncology 5, 1169-1179 DOI: 10.2217/fon.09.91

Citation Report

#	Article	IF	CITATIONS
1	Epithelial–mesenchymal transition in tumor metastasis: a method to the madness. Future Oncology, 2009, 5, 1109-1111.	1.1	26
3	Evaluation of glioma-associated oncogene 1 expression and its correlation with the expression of sonic hedgehog, E-cadherin and S100a4 in human hepatocellular carcinoma. Molecular Medicine Reports, 2010, 3, 965-70.	1.1	27
4	Viral factors induce Hedgehog pathway activation in humans with viral hepatitis, cirrhosis, and hepatocellular carcinoma. Laboratory Investigation, 2010, 90, 1690-1703.	1.7	104
5	Tumor initiation and progression in hepatocellular carcinoma: risk factors, classification, and therapeutic targets. Acta Pharmacologica Sinica, 2010, 31, 1409-1420.	2.8	150
6	Nanotopography follows force in TGF-β1 stimulated epithelium. Nanotechnology, 2010, 21, 265102.	1.3	38
7	CD151 Amplifies Signaling by Integrin α6β1 to PI3K and Induces the Epithelial–Mesenchymal Transition in HCC Cells. Gastroenterology, 2011, 140, 1629-1641.e15.	0.6	159
8	Alcohol, Cancer Genes, and Signaling Pathways. , 2011, , 93-126.		1
9	The role of Twist1 in hepatocellular carcinoma angiogenesis: a clinical study. Human Pathology, 2011, 42, 840-847.	1.1	27
10	Family reunion – The ZIP/prion gene family. Progress in Neurobiology, 2011, 93, 405-420.	2.8	33
11	Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells. International Journal of Biological Sciences, 2011, 7, 517-535.	2.6	124
12	Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutation Research - Reviews in Mutation Research, 2011, 728, 23-34.	2.4	642
13	Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways. Clinical and Experimental Metastasis, 2011, 28, 721-731.	1.7	125
14	The Role of Polymeric Immunoglobulin Receptor in Inflammation-Induced Tumor Metastasis of Human Hepatocellular Carcinoma. Journal of the National Cancer Institute, 2011, 103, 1696-1712.	3.0	67
15	A Human Model of Epithelial to Mesenchymal Transition to Monitor Drug Efficacy in Hepatocellular Carcinoma Progression. Molecular Cancer Therapeutics, 2011, 10, 850-860.	1.9	63
16	plgR: Frenemy of Inflammation, EMT, and HCC Progression. Journal of the National Cancer Institute, 2011, 103, 1644-1645.	3.0	13
17	Natural killer cells in non-hematopoietic malignancies. Frontiers in Immunology, 2012, 3, 395.	2.2	27
18	PDGF enhances IRES-mediated translation of Laminin B1 by cytoplasmic accumulation of La during epithelial to mesenchymal transition. Nucleic Acids Research, 2012, 40, 9738-9749.	6.5	49
19	Hepatitis C Virus Induces Epithelial-Mesenchymal Transition in Primary Human Hepatocytes. Journal of Virology, 2012, 86, 13621-13628.	1.5	64

#	Article	IF	CITATIONS
20	miR-200b restoration and DNA methyltransferase inhibitor block lung metastasis of mesenchymal-phenotype hepatocellular carcinoma. Oncogenesis, 2012, 1, e15-e15.	2.1	29
21	TGF-β in Epithelial to Mesenchymal Transition and Metastasis of Liver Carcinoma. Current Pharmaceutical Design, 2012, 18, 4135-4147.	0.9	95
22	Osteopontin Regulates Epithelial Mesenchymal Transition-Associated Growth of Hepatocellular Cancer in a Mouse Xenograft Model. Annals of Surgery, 2012, 255, 319-325.	2.1	41
23	MicroRNAs involved in regulating epithelial–mesenchymal transition and cancer stem cells as molecular targets for cancer therapeutics. Cancer Gene Therapy, 2012, 19, 723-730.	2.2	77
24	A dual role for hypoxia inducible factor-1α in the hepatitis C virus lifecycle and hepatoma migration. Journal of Hepatology, 2012, 56, 803-809.	1.8	74
25	Hepatitis C viral protein NS5A induces EMT and participates in oncogenic transformation of primary hepatocyte precursors. Journal of Hepatology, 2012, 57, 1021-1028.	1.8	67
26	Toll-like receptor 4 signaling promotes epithelial-mesenchymal transition in human hepatocellular carcinoma induced by lipopolysaccharide. BMC Medicine, 2012, 10, 98.	2.3	114
27	Hepatitis <scp>B</scp> virus <scp>X</scp> protein promotes hepatoma cell invasion and metastasis by stabilizing <scp>S</scp> nail protein. Cancer Science, 2012, 103, 2072-2081.	1.7	52
28	Consumption of high-fat diet induces tumor progression and epithelial–mesenchymal transition of colorectal cancer in a mouse xenograft model. Journal of Nutritional Biochemistry, 2012, 23, 1302-1313.	1.9	67
29	Functional consequences of WNT3/Frizzled7-mediated signaling in non-transformed hepatic cells. Oncogenesis, 2012, 1, e31-e31.	2.1	25
30	Notch1‣nail1â€Eâ€cadherin pathway in metastatic hepatocellular carcinoma. International Journal of Cancer, 2012, 131, E163-72.	2.3	78
31	Runtâ€related transcription factor 3 reverses epithelial–mesenchymal transition in hepatocellular carcinoma. International Journal of Cancer, 2012, 131, 2537-2546.	2.3	46
32	Deregulation of signalling pathways in prognostic subtypes of hepatocellular carcinoma: Novel insights from interspecies comparison. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1826, 215-237.	3.3	27
33	Cucurbitacin B inhibits 12â€Oâ€ŧetradecanoylphorbol 13â€acetateâ€induced invasion and migration of human hepatoma cells through inactivating mitogenâ€activated protein kinase and PI3K/Akt signal transduction pathways. Hepatology Research, 2012, 42, 401-411.	1.8	22
34	Effects of endosulfan on hepatoma cell adhesion: Epithelial–mesenchymal transition and anoikis resistance. Toxicology, 2012, 300, 19-30.	2.0	30
35	Notch1 promotes glioma cell migration and invasion by stimulating βâ€catenin and NFâ€₽̂B signaling via AKT activation. Cancer Science, 2012, 103, 181-190.	1.7	129
36	Epithelial–mesenchymal transition and the liver: Role in hepatocellular carcinoma and liver fibrosis. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 418-420.	1.4	16
37	Expression of T ell lymphoma invasion and metastasis 2 (TIAM2) promotes proliferation and invasion of liver cancer. International Journal of Cancer, 2012, 130, 1302-1313.	2.3	43

#	Article	IF	CITATIONS
38	Hepatitis C virus/human interactome identifies SMURF2 and the viral protease as critical elements for the control of TGFâ€Î² signaling. FASEB Journal, 2013, 27, 4027-4040.	0.2	16
39	TGFβ overrides HNF4α tumor suppressing activity through GSK3β inactivation: implication for hepatocellular carcinoma gene therapy. Journal of Hepatology, 2013, 58, 65-72.	1.8	38
40	Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells. Toxicology and Applied Pharmacology, 2013, 273, 281-288.	1.3	86
41	PROX1 promotes hepatocellular carcinoma metastasis by way of up-regulating hypoxia-inducible factor 11± expression and protein stability. Hepatology, 2013, 58, 692-705.	3.6	86
42	Myofibroblasts are important contributors to human hepatocellular carcinoma: Evidence for tumor promotion by proteome profiling. Electrophoresis, 2013, 34, 3315-3325.	1.3	19
43	Cellular and molecular mechanisms of hepatocellular carcinoma: an update. Archives of Toxicology, 2013, 87, 227-247.	1.9	195
44	Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nature Reviews Cancer, 2013, 13, 123-135.	12.8	688
45	JMJD2B Promotes Epithelial–Mesenchymal Transition by Cooperating with β-Catenin and Enhances Gastric Cancer Metastasis. Clinical Cancer Research, 2013, 19, 6419-6429.	3.2	96
46	Evidence for and against epithelial-to-mesenchymal transition in the liver. American Journal of Physiology - Renal Physiology, 2013, 305, G881-G890.	1.6	86
47	Telomerase reverse transcriptase promotes epithelial–mesenchymal transition and stem cell-like traits in cancer cells. Oncogene, 2013, 32, 4203-4213.	2.6	227
48	Crosstalk between Beta-Catenin and Snail in the Induction of Epithelial to Mesenchymal Transition in Hepatocarcinoma: Role of the ERK1/2 Pathway. International Journal of Molecular Sciences, 2013, 14, 20768-20792.	1.8	48
49	The effect of hepatic progenitor cells on experimental hepatocellular carcinoma in the regenerating liver. Scandinavian Journal of Gastroenterology, 2013, 49, 99-108.	0.6	12
50	Roles of transcriptional factor Snail and adhesion factor E-cadherin in clear cell renal cell call call carcinoma. Experimental and Therapeutic Medicine, 2013, 6, 1489-1493.	0.8	23
51	Molecular Mechanisms of HBV-Associated Hepatocarcinogenesis. Seminars in Liver Disease, 2013, 33, 147-156.	1.8	96
52	Bone morphogenetic proteinâ€9 induces epithelial to mesenchymal transition in hepatocellular carcinoma cells. Cancer Science, 2013, 104, 398-408.	1.7	67
53	Epigenetic control of epithelial-mesenchymal-transition in human cancer. Molecular and Clinical Oncology, 2013, 1, 3-11.	0.4	100
54	Krüppel-like factor expression and correlation with FAK, MMP-9 and E-cadherin expression in hepatocellular carcinoma. Molecular Medicine Reports, 2013, 8, 81-88.	1.1	11
55	Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World Journal of Hepatology, 2013, 5, 345.	0.8	159

#	Article	IF	CITATIONS
56	Increased expression of EphA2 and E-N cadherin switch in primary hepatocellular carcinoma. Tumori, 2013, 99, 689-696.	0.6	12
57	Dysfunctional Activation of Neurotensin/IL-8 Pathway in Hepatocellular Carcinoma Is Associated with Increased Inflammatory Response in Microenvironment, More Epithelial Mesenchymal Transition in Cancer and Worse Prognosis in Patients. PLoS ONE, 2013, 8, e56069.	1.1	46
58	Identification of the Genes Chemosensitizing Hepatocellular Carcinoma Cells to Interferon-α/5-Fluorouracil and Their Clinical Significance. PLoS ONE, 2013, 8, e56197.	1.1	13
59	MiR200-upregulated Vasohibin 2 promotes the malignant transformation of tumors by inducing epithelial-mesenchymal transition in hepatocellular carcinoma. Cell Communication and Signaling, 2014, 12, 62.	2.7	50
60	The aPKCÎ ¹ blocking agent ATM negatively regulates EMT and invasion of hepatocellular carcinoma. Cell Death and Disease, 2014, 5, e1129-e1129.	2.7	23
61	Reexpression of Let-7g MicroRNA Inhibits the Proliferation and Migration via K-Ras/HMGA2/Snail Axis in Hepatocellular Carcinoma. BioMed Research International, 2014, 2014, 1-12.	0.9	46
62	<scp>RUNX</scp> 3 regulates vimentin expression <i>via</i> miRâ€30a during epithelial–mesenchymal transition in gastric cancer cells. Journal of Cellular and Molecular Medicine, 2014, 18, 610-623.	1.6	75
64	CEACAM1 Long Cytoplasmic Domain Isoform is Associated with Invasion and Recurrence of Hepatocellular Carcinoma. Annals of Surgical Oncology, 2014, 21, 505-514.	0.7	28
65	Bone metastases in hepatocellular carcinoma: an emerging issue. Cancer and Metastasis Reviews, 2014, 33, 333-342.	2.7	38
66	Alternol inhibits migration and invasion of human hepatocellular carcinoma cells by targeting epithelial-to-mesenchymal transition. Tumor Biology, 2014, 35, 1627-1635.	0.8	15
67	Side population cell fractions from hepatocellular carcinoma cell lines increased with tumor dedifferentiation, but lack characteristic features of cancer stem cells. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 1092-1101.	1.4	8
68	Glutamine depletion by crisantaspase hinders the growth of human hepatocellular carcinoma xenografts. British Journal of Cancer, 2014, 111, 1159-1167.	2.9	55
69	MEF2 transcription factors promotes EMT and invasiveness of hepatocellular carcinoma through TGF-β1 autoregulation circuitry. Tumor Biology, 2014, 35, 10943-10951.	0.8	43
70	Down-regulation of Gli-1 inhibits hepatocellular carcinoma cell migration and invasion. Molecular and Cellular Biochemistry, 2014, 393, 283-291.	1.4	43
71	Astrocyte elevated gene-1 is a novel biomarker of epithelial–mesenchymal transition and progression of hepatocellular carcinoma in two China regions. Tumor Biology, 2014, 35, 2265-2269.	0.8	22
72	HIFs enhance the migratory and neoplastic capacities of hepatocellular carcinoma cells by promoting EMT. Tumor Biology, 2014, 35, 8103-8114.	0.8	36
73	Epithelial-mesenchymal transition: molecular pathways of hepatitis viruses-induced hepatocellular carcinoma progression. Tumor Biology, 2014, 35, 7307-7315.	0.8	13
74	High load hepatitis B virus replication inhibits hepatocellular carcinoma cell metastasis through regulation of epithelial–mesenchymal transition. International Journal of Infectious Diseases, 2014, 20, 37-41	1.5	10

#	Article	IF	CITATIONS
75	Silencing of the glypican-3 gene affects the biological behavior of human hepatocellular carcinoma cells. Molecular Medicine Reports, 2014, 10, 3177-3184.	1.1	33
76	Increased metastatic potential of residual carcinoma after transarterial embolization in rat with McA-RH7777 hepatoma. Oncology Reports, 2014, 31, 95-102.	1.2	10
77	TIMP-1 mediates TGF-β-dependent crosstalk between hepatic stellate and cancer cells via FAK signaling. Scientific Reports, 2015, 5, 16492.	1.6	50
78	CUL4A facilitates hepatocarcinogenesis by promoting cell cycle progression and epithelial-mesenchymal transition. Scientific Reports, 2015, 5, 17006.	1.6	30
79	DDR2 facilitates hepatocellular carcinoma invasion and metastasis via activating ERK signaling and stabilizing SNAIL1. Journal of Experimental and Clinical Cancer Research, 2015, 34, 101.	3.5	64
80	MRC-5 fibroblast-conditioned medium influences multiple pathways regulating invasion, migration, proliferation, and apoptosis in hepatocellular carcinoma. Journal of Translational Medicine, 2015, 13, 237.	1.8	30
81	PDGFRα in Liver Pathophysiology: Emerging Roles in Development, Regeneration, Fibrosis, and Cancer. Gene Expression, 2015, 16, 109-127.	0.5	28
82	MicroRNAâ€125b attenuates epithelialâ€mesenchymal transitions and targets stemâ€like liver cancer cells through small mothers against decapentaplegic 2 and 4. Hepatology, 2015, 62, 801-815.	3.6	141
83	New Tools for Molecular Therapy of Hepatocellular Carcinoma. Diseases (Basel, Switzerland), 2015, 3, 325-340.	1.0	9
84	Novel Investigations of Flavonoids as Chemopreventive Agents for Hepatocellular Carcinoma. BioMed Research International, 2015, 2015, 1-26.	0.9	65
85	Neuropilin-2 induced by transforming growth factor-Î ² augments migration of hepatocellular carcinoma cells. BMC Cancer, 2015, 15, 909.	1.1	30
86	Mitochondrial dysfunction induces EMT through the TGF-β/Smad/Snail signaling pathway in Hep3B hepatocellular carcinoma cells. International Journal of Oncology, 2015, 47, 1845-1853.	1.4	45
87	miR-153 inhibits epithelial-to-mesenchymal transition in hepatocellular carcinoma by targeting Snail. Oncology Reports, 2015, 34, 655-662.	1.2	44
88	Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. Journal of Hepatology, 2015, 62, 607-616.	1.8	312
89	Galectinâ€l Triggers Epithelialâ€Mesenchymal Transition in Human Hepatocellular Carcinoma Cells. Journal of Cellular Physiology, 2015, 230, 1298-1309.	2.0	64
90	Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Letters, 2015, 367, 1-11.	3.2	197
91	Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations. World Journal of Gastroenterology, 2015, 21, 311.	1.4	53
92	Peritumoral ductular reaction is related to nuclear translocation of β-catenin in hepatocellular carcinoma. Biomedicine and Pharmacotherapy, 2015, 76, 11-16.	2.5	6

#	Article	IF	CITATIONS
93	Hepatocellular carcinoma and microRNA: New perspectives on therapeutics and diagnostics. Advanced Drug Delivery Reviews, 2015, 81, 62-74.	6.6	188
94	MicroRNAâ€191, by promoting the EMT and increasing CSCâ€like properties, is involved in neoplastic and metastatic properties of transformed human bronchial epithelial cells. Molecular Carcinogenesis, 2015, 54, E148-61.	1.3	69
95	Role of FLT3 in the proliferation and aggressiveness of hepatocellular carcinoma. Turkish Journal of Medical Sciences, 2016, 46, 572-581.	0.4	5
96	MicroRNA-107: a novel promoter of tumor progression that targets the CPEB3/EGFR axis in human hepatocellular carcinoma. Oncotarget, 2016, 7, 266-278.	0.8	62
97	Expression of OVOL2 is related to epithelial characteristics and shows a favorable clinical outcome in hepatocellular carcinoma. OncoTargets and Therapy, 2016, Volume 9, 5963-5973.	1.0	15
98	Roles of FGFs As Paracrine or Endocrine Signals in Liver Development, Health, and Disease. Frontiers in Cell and Developmental Biology, 2016, 4, 30.	1.8	61
99	Preventive and Therapeutic Effects of Chinese Herbal Compounds against Hepatocellular Carcinoma. Molecules, 2016, 21, 142.	1.7	50
100	lincRNAâ€p21 inhibits invasion and metastasis of hepatocellular carcinoma through Notch signalingâ€induced epithelial–mesenchymal transition. Hepatology Research, 2016, 46, 1137-1144.	1.8	63
101	Overexpression of SASH1 Inhibits the Proliferation, Invasion, and EMT in Hepatocarcinoma Cells. Oncology Research, 2016, 24, 25-32.	0.6	26
102	Alcoholic hepatitis accelerates early hepatobiliary cancer by increasing stemness and miR-122-mediated HIF-11 [±] activation. Scientific Reports, 2016, 6, 21340.	1.6	69
103	Hepatitis C Virus Infection of Cultured Human Hepatoma Cells Causes Apoptosis and Pyroptosis in Both Infected and Bystander Cells. Scientific Reports, 2016, 6, 37433.	1.6	79
104	ECM1 promotes migration and invasion of hepatocellular carcinoma by inducing epithelial-mesenchymal transition. World Journal of Surgical Oncology, 2016, 14, 195.	0.8	24
105	The role of microRNA-26a in human cancer progression and clinical application. Tumor Biology, 2016, 37, 7095-7108.	0.8	45
106	Somatic environment and germinal differentiation in antral follicle: The effect of FSH withdrawal and basal LH on oocyte competence acquisition in cattle. Theriogenology, 2016, 86, 54-61.	0.9	27
107	Vitamin C enhances epigenetic modifications induced by 5-azacytidine and cell cycle arrest in the hepatocellular carcinoma cell lines HLE and Huh7. Clinical Epigenetics, 2016, 8, 46.	1.8	43
108	Global profiling of alternative RNA splicing events provides insights into molecular differences between various types of hepatocellular carcinoma. BMC Genomics, 2016, 17, 683.	1.2	47
109	Modeling Dengue Virus-Hepatic Cell Interactions Using Human Pluripotent Stem Cell-Derived Hepatocyte-like Cells. Stem Cell Reports, 2016, 7, 341-354.	2.3	27
110	Ascochlorin Enhances the Sensitivity of Doxorubicin Leading to the Reversal of Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma. Molecular Cancer Therapeutics, 2016, 15, 2966-2976.	1.9	86

#	Article	IF	CITATIONS
111	Regulation of Multi-drug Resistance in hepatocellular carcinoma cells is TRPC6/Calcium Dependent. Scientific Reports, 2016, 6, 23269.	1.6	90
112	Synergistic effects of CD44 and TGF-β1 through AKT/GSK-3β/β-catenin signaling during epithelial-mesenchymal transition in liver cancer cells. Biochemical and Biophysical Research Communications, 2016, 477, 568-574.	1.0	65
113	TALENs-directed knockout of the full-length transcription factor Nrf1α that represses malignant behaviour of human hepatocellular carcinoma (HepG2) cells. Scientific Reports, 2016, 6, 23775.	1.6	44
114	Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3384-93.	3.3	56
115	MicroRNA-26a suppresses epithelial-mesenchymal transition in human hepatocellular carcinoma by repressing enhancer of zeste homolog 2. Journal of Hematology and Oncology, 2016, 9, 1.	6.9	126
116	Extracellular signal-regulated kinase 1 and 2 in cancer therapy: a focus on hepatocellular carcinoma. Molecular Biology Reports, 2016, 43, 107-116.	1.0	18
117	Pathobiology of Hepatitis B Virus-Induced Carcinogenesis. Molecular and Translational Medicine, 2016, , 95-121.	0.4	2
118	Diet-Induced Obesity Enhances Progression of Hepatocellular Carcinoma through Tenascin-C/Toll-Like Receptor 4 Signaling. American Journal of Pathology, 2016, 186, 145-158.	1.9	29
119	The rationale for targeting <scp>TGF</scp> â€Ĵ² in chronic liver diseases. European Journal of Clinical Investigation, 2016, 46, 349-361.	1.7	60
120	Tripartite motif 16 inhibits hepatocellular carcinoma cell migration and invasion. International Journal of Oncology, 2016, 48, 1639-1649.	1.4	36
121	MicroRNA-379-5p inhibits tumor invasion and metastasis by targeting FAK/AKT signaling in hepatocellular carcinoma. Cancer Letters, 2016, 375, 73-83.	3.2	95
122	CD24 promotes HCC progression via triggering Notch-related EMT and modulation of tumor microenvironment. Tumor Biology, 2016, 37, 6073-6084.	0.8	27
123	C5a receptor enhances hepatocellular carcinoma cell invasiveness via activating ERK1/2-mediated epithelial–mesenchymal transition. Experimental and Molecular Pathology, 2016, 100, 101-108.	0.9	45
124	Yes-associated protein (YAP) expression is involved in epithelial–mesenchymal transition in hepatocellular carcinoma. Clinical and Translational Oncology, 2016, 18, 172-177.	1.2	25
125	Plasma micoRNAâ€122 as a predictive marker for treatment response following transarterial chemoembolization in patients with hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 199-207.	1.4	23
126	Polycyclic aromatic hydrocarbon (PAH)-containing soils from coal gangue stacking areas contribute to epithelial to mesenchymal transition (EMT) modulation on cancer cell metastasis. Science of the Total Environment, 2017, 580, 632-640.	3.9	32
127	Hypoxia Causes Downregulation of Dicer in Hepatocellular Carcinoma, Which Is Required for Upregulation of Hypoxia-Inducible Factor 1α and Epithelial–Mesenchymal Transition. Clinical Cancer Research, 2017, 23, 3896-3905.	3.2	33
128	microRNA-23b suppresses epithelial-mesenchymal transition (EMT) and metastasis in hepatocellular carcinoma via targeting Pyk2. Biomedicine and Pharmacotherapy, 2017, 89, 642-650.	2.5	36

#	Article	IF	Citations
129	HCRP1 inhibits TGF-Î ² induced epithelial-mesenchymal transition in hepatocellular carcinoma. International Journal of Oncology, 2017, 50, 1233-1240.	1.4	9
130	Treatment with the herbal formula Songyou Yin inhibits epithelial-mesenchymal transition in hepatocellular carcinoma through downregulation of TGF-β1 expression and inhibition of the SMAD2/3 signaling pathway. Oncology Letters, 2017, 13, 2309-2315.	0.8	9
131	The regulation of proteins associated with the cytoskeleton by hepatitis B virus X protein during hepatocarcinogenesis. Oncology Letters, 2017, 13, 2514-2520.	0.8	7
132	Long noncoding RNA linc00462 promotes hepatocellular carcinoma progression. Biomedicine and Pharmacotherapy, 2017, 93, 40-47.	2.5	41
133	BORIS up-regulates OCT4 via histone methylation to promote cancer stem cell-like properties in human liver cancer cells. Cancer Letters, 2017, 403, 165-174.	3.2	36
134	Microenvironment of liver regeneration in liver cancer. Chinese Journal of Integrative Medicine, 2017, 23, 555-560.	0.7	21
135	MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Scientific Reports, 2017, 7, 45915.	1.6	43
136	Quantification of substrate and cellular strains in stretchable 3D cell cultures: an experimental and computational framework. Journal of Microscopy, 2017, 266, 115-125.	0.8	2
137	Design, synthesis and biological evaluation of new pyrrolidine carboxamide analogues as potential chemotherapeutic agents for hepatocellular carcinoma. European Journal of Medicinal Chemistry, 2017, 139, 804-814.	2.6	18
138	Role of the long non-coding RNA HOTAIR in hepatocellular carcinoma. Oncology Letters, 2017, 14, 1233-1239.	0.8	43
139	Hypoxia Accelerates Aggressiveness of Hepatocellular Carcinoma Cells Involving Oxidative Stress, Epithelial-Mesenchymal Transition and Non-Canonical Hedgehog Signaling. Cellular Physiology and Biochemistry, 2017, 44, 1856-1868.	1.1	74
140	Influence of the Twist gene on the invasion and metastasis of colon cancer. Oncology Reports, 2017, 39, 31-44.	1.2	15
141	Fisetin inhibits liver cancer growth in a mouse model: Relation to dopamine receptor. Oncology Reports, 2017, 38, 53-62.	1.2	39
142	CHSY1 promotes aggressive phenotypes of hepatocellular carcinoma cells via activation of the hedgehog signaling pathway. Cancer Letters, 2017, 403, 280-288.	3.2	36
143	PKMYT1 promoted the growth and motility of hepatocellular carcinoma cells by activating beta-catenin/TCF signaling. Experimental Cell Research, 2017, 358, 209-216.	1.2	34
144	Long non-coding RNA XIST regulates PTEN expression by sponging miR-181a and promotes hepatocellular carcinoma progression. BMC Cancer, 2017, 17, 248.	1.1	115
145	The role of microRNAs in liver injury at the crossroad between hepatic cell death and regeneration. Biochemical and Biophysical Research Communications, 2017, 482, 399-407.	1.0	25
146	Molecular regulation of epithelial-to-mesenchymal transition in tumorigenesis (Review). International Journal of Molecular Medicine, 2018, 41, 1187-1200.	1.8	68

#	Article	IF	CITATIONS
147	Xanthine dehydrogenase downregulation promotes TGFβ signaling and cancer stem cell-related gene expression in hepatocellular carcinoma. Oncogenesis, 2017, 6, e382-e382.	2.1	24
148	Overexpression of RAS-Association Domain Family 6 (RASSF6) Inhibits Proliferation and Tumorigenesis in Hepatocellular Carcinoma Cells. Oncology Research, 2017, 25, 1001-1008.	0.6	7
149	Targeted therapy and personalized medicine in hepatocellular carcinoma: drug resistance, mechanisms, and treatment strategies. Journal of Hepatocellular Carcinoma, 2017, Volume 4, 93-103.	1.8	58
150	Analysis of differentially co-expressed genes based on microarray data of hepatocellular carcinoma. Neoplasma, 2017, 64, 216-221.	0.7	11
151	Nemopilema nomurai jellyfish venom exerts an anti-metastatic effect by inhibiting Smad- and NF-κB-mediated epithelial–mesenchymal transition in HepG2 cells. Scientific Reports, 2018, 8, 2808.	1.6	17
152	Clinical significance of CD13 and epithelial mesenchymal transition (EMT) markers in hepatocellular carcinoma. Japanese Journal of Clinical Oncology, 2018, 48, 52-60.	0.6	32
153	MicroRNA-191, regulated by HIF-2α, is involved in EMT and acquisition of a stem cell-like phenotype in arsenite-transformed human liver epithelial cells. Toxicology in Vitro, 2018, 48, 128-136.	1.1	37
154	MiR-199-3p replacement affects E-cadherin expression through Notch1 targeting in hepatocellular carcinoma. Acta Histochemica, 2018, 120, 95-102.	0.9	22
155	Diversity and functional evolution of the plasminogen activator system. Biomedicine and Pharmacotherapy, 2018, 98, 886-898.	2.5	43
157	Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma. Molecular Pathology Library, 2018, , 131-152.	0.1	2
158	S100A11 promotes <i>TGF-β1</i> -induced epithelial–mesenchymal transition through <i>SMAD2/3</i> signaling pathway in intrahepatic cholangiocarcinoma. Future Oncology, 2018, 14, 837-847.	1.1	20
159	Hepatocellular carcinoma cells surviving doxorubicin treatment exhibit increased migratory potential and resistance to doxorubicin re-treatment inÃ ⁻ ¿½vitro. Oncology Letters, 2018, 15, 4635-4640.	0.8	23
160	Interdependent and independent multidimensional role of tumor microenvironment on hepatocellular carcinoma. Cytokine, 2018, 103, 150-159.	1.4	25
161	Disulfiram combined with copper inhibits metastasis and epithelial–mesenchymal transition in hepatocellular carcinoma through the <scp>NF</scp> â€₽B and <scp>TGF</scp> â€₽² pathways. Journal of Cellular and Molecular Medicine, 2018, 22, 439-451.	1.6	67
162	Insulin-like growth factor-1 induces epithelial-mesenchymal transition in hepatocellular carcinoma by activating survivin. Oncology Reports, 2018, 40, 952-958.	1.2	24
163	Epigenetic suppression of E-cadherin expression by Snail2 during the metastasis of colorectal cancer. Clinical Epigenetics, 2018, 10, 154.	1.8	41
164	Trends in hepatocellular carcinoma research from 2008 to 2017: a bibliometric analysis. PeerJ, 2018, 6, e5477.	0.9	48
165	miR-296-5p suppresses EMT of hepatocellular carcinoma via attenuating NRG1/ERBB2/ERBB3 signaling. Journal of Experimental and Clinical Cancer Research, 2018, 37, 294.	3.5	68

#	Article	IF	CITATIONS
166	C‑C chemokine receptor type�2 promotes epithelial‑to‑mesenchymal transition by upregulating matrix metalloproteinase‑2 in human liver cancer. Oncology Reports, 2018, 40, 2734-2741.	1.2	9
167	High expression of S100A12 on intratumoral stroma cells indicates poor prognosis following surgical resection of hepatocellular carcinoma. Oncology Letters, 2018, 16, 5398-5404.	0.8	9
168	Dietary exacerbation of metabolic stress leads to accelerated hepatic carcinogenesis in glycogen storage disease type Ia. Journal of Hepatology, 2018, 69, 1074-1087.	1.8	31
169	Bioinformatics functional analysis of let-7a, miR-34a, and miR-199a/b reveals novel insights into immune system pathways and cancer hallmarks for hepatocellular carcinoma. Tumor Biology, 2018, 40, 101042831877367.	0.8	12
170	Inhibition of CXCR4 regulates epithelial mesenchymal transition of NSCLC via the Hippo‥AP signaling pathway. Cell Biology International, 2018, 42, 1386-1394.	1.4	21
171	ARP3 promotes tumor metastasis and predicts a poor prognosis in hepatocellular carcinoma. Pathology Research and Practice, 2018, 214, 1356-1361.	1.0	4
172	The endoplasmic reticulum co-chaperone ERdj3/DNAJB11 promotes hepatocellular carcinoma progression through suppressing AATZ degradation. Future Oncology, 2018, 14, 3001-3013.	1.1	7
173	DDX5 promotes hepatocellular carcinoma tumorigenesis via Akt signaling pathway. Biochemical and Biophysical Research Communications, 2018, 503, 2885-2891.	1.0	26
174	MLLT10 promotes tumor migration, invasion, and metastasis in human colorectal cancer. Scandinavian Journal of Gastroenterology, 2018, 53, 964-971.	0.6	3
175	Protective Effects of Nintedanib against Polyhexamethylene Guanidine Phosphate-Induced Lung Fibrosis in Mice. Molecules, 2018, 23, 1974.	1.7	19
176	The Stem Cells in Liver Cancers and the Controversies. , 2018, , 273-287.		0
178	TGFâ€Î²â€mediated regulation of plasminogen activators is human telomerase reverse transcriptase dependent in cancer cells. BioFactors, 2019, 45, 803-817.	2.6	6
179	MiR-HCC2 Up-regulates BAMBI and ELMO1 Expression to Facilitate the Proliferation and EMT of Hepatocellular Carcinoma Cells. Journal of Cancer, 2019, 10, 3407-3419.	1.2	9
180	Thioredoxin Downregulation Enhances Sorafenib Effects in Hepatocarcinoma Cells. Antioxidants, 2019, 8, 501.	2.2	11
181	PDCD2 sensitizes HepG2 cells to sorafenib by suppressing epithelial‑mesenchymal transition. Molecular Medicine Reports, 2019, 19, 2173-2179.	1.1	8
182	Role of the receptor tyrosine kinase Axl in hepatocellular carcinoma and its clinical relevance. Future Oncology, 2019, 15, 653-662.	1.1	13
183	Histone deacetylases inhibitor MSâ€275 suppresses human esophageal squamous cell carcinoma cell growth and progression via the PI3K/Akt/mTOR pathway. Journal of Cellular Physiology, 2019, 234, 22400-22410.	2.0	20
184	Homeobox Genes and Hepatocellular Carcinoma. Cancers, 2019, 11, 621.	1.7	14

#	Article	IF	CITATIONS
185	Radiomics and radiogenomics of primary liver cancers. Clinical and Molecular Hepatology, 2019, 25, 21-29.	4.5	52
186	Nanotechnology in metastatic cancer treatment: Current Achievements and Future Research Trends. Journal of Cancer, 2019, 10, 1358-1369.	1.2	23
187	Yangyin Yiqi Mixture Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Rats through Inhibiting TGF-I²1/Smad Pathway and Epithelial to Mesenchymal Transition. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-13.	0.5	13
188	Sanguinarine inhibits epithelial–mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma. Cell Death and Disease, 2019, 10, 939.	2.7	57
189	Nanoparticle mediated silencing of tenascin C in hepatic stellate cells: effect on inflammatory gene expression and cell migration. Journal of Materials Chemistry B, 2019, 7, 7396-7405.	2.9	14
190	Transgenic expression of tgfb1a induces hepatic inflammation, fibrosis and metastasis in zebrafish. Biochemical and Biophysical Research Communications, 2019, 509, 175-181.	1.0	15
191	SNPâ€SNP and SNPâ€environment interactions of potentially functional <i>HOTAIR</i> SNPs modify the risk of hepatocellular carcinoma. Molecular Carcinogenesis, 2019, 58, 633-642.	1.3	16
192	Tankyrases/β-catenin Signaling Pathway as an Anti-proliferation and Anti-metastatic Target in Hepatocarcinoma Cell Lines. Journal of Cancer, 2020, 11, 432-440.	1.2	26
193	Systematic expression analysis of WEE family kinases reveals the importance of PKMYT1 in breast carcinogenesis. Cell Proliferation, 2020, 53, e12741.	2.4	27
194	circRNA hsa_circ_104566 Sponged miR-338-3p to Promote Hepatocellular Carcinoma Progression. Cell Transplantation, 2020, 29, 096368972096394.	1.2	11
195	Cetyltrimethylammonium Bromide Suppresses the Migration and Invasion of Hepatic Mahlavu Cells by Modulating Fibroblast Growth Factor Signaling. Anticancer Research, 2020, 40, 5059-5069.	0.5	2
196	Histone Deacetylases Inhibit the Snail2-Mediated EMT During Metastasis of Hepatocellular Carcinoma Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 752.	1.8	18
197	hsa_circ_102559 Acts as the Sponge of miR-130a-5p to Promote Hepatocellular Carcinoma Progression Through Regulation of ANXA2. Cell Transplantation, 2020, 29, 096368972096874.	1.2	8
198	Platelet-Membrane-Camouflaged Zirconia Nanoparticles Inhibit the Invasion and Metastasis of Hela Cells. Frontiers in Chemistry, 2020, 8, 377.	1.8	12
199	Transcription co-activator P300 activates Elk1-aPKC- $\hat{1}^1$ signaling mediated epithelial-to-mesenchymal transition and malignancy in hepatocellular carcinoma. Oncogenesis, 2020, 9, 32.	2.1	16
200	Molecular Bases of Drug Resistance in Hepatocellular Carcinoma. Cancers, 2020, 12, 1663.	1.7	112
201	Integrating the Tumor Microenvironment into Cancer Therapy. Cancers, 2020, 12, 1677.	1.7	24
202	Low-dose naltrexone inhibits the epithelial-mesenchymal transition of cervical cancer cells in vitro and effects indirectly on tumor-associated macrophages in vivo. International Immunopharmacology, 2020, 86, 106718	1.7	18

#	Article	IF	CITATIONS
203	Dysregulated FAM215A Stimulates LAMP2 Expression to Confer Drug-Resistant and Malignant in Human Liver Cancer. Cells, 2020, 9, 961.	1.8	15
204	Role of tight junction-associated MARVEL protein marvelD3 in migration and epithelial–mesenchymal transition of hepatocellular carcinoma. Cell Adhesion and Migration, 2021, 15, 249-260.	1.1	7
205	Immune checkpoint molecules are regulated by transforming growth factor (TGF)- <i>β</i> 1-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma. International Journal of Medical Sciences, 2021, 18, 2466-2479.	1.1	17
206	MST4 negatively regulates the EMT, invasion and metastasis of HCC cells by inactivating PI3K/AKT/Snail1 axis. Journal of Cancer, 2021, 12, 4463-4477.	1.2	19
207	MicroRNA‑129‑5p promotes proliferation and metastasis of hepatocellular carcinoma by regulating the BMP2 gene. Experimental and Therapeutic Medicine, 2021, 21, 257.	0.8	11
208	The influence of the long-term chemical activation of the nuclear receptor pregnane X receptor (PXR) on liver carcinogenesis in mice. Archives of Toxicology, 2021, 95, 1089-1102.	1.9	7
209	MicroRNA signatures as predictive biomarkers in transarterial chemoembolizationâ€ŧreated hepatocellular carcinoma. Precision Medical Sciences, 2021, 10, 4-14.	0.1	1
210	Interplay of autophagy and cancer stem cells in hepatocellular carcinoma. Molecular Biology Reports, 2021, 48, 3695-3717.	1.0	12
211	LncRNA SUMO1P3 acts as a prognostic biomarker and promotes hepatocellular carcinoma growth and metastasis. Aging, 2021, 13, 12479-12492.	1.4	7
212	3,3′-Diindolylmethane Suppresses the Growth of Hepatocellular Carcinoma by Regulating Its Invasion, Migration, and ER Stress-Mediated Mitochondrial Apoptosis. Cells, 2021, 10, 1178.	1.8	19
213	Efficacy analysis of combined detection of 5 SerologicalÂTumor markers including MIF and PIVKA-II forÂearly diagnosis of Primary Hepatic Cancer. Pakistan Journal of Medical Sciences, 2021, 37, 1456-1460.	0.3	3
214	Silencing SIX1 inhibits epithelial mesenchymal transition through regulating TGF-β/Smad2/3 signaling pathway in papillary thyroid carcinoma. Auris Nasus Larynx, 2021, 48, 487-495.	0.5	10
215	Combined effect of fulvestrant and low dose BPA: comparative implications on EMT, apoptosis, and TGF-β1 signaling in HepG2 cells. Drug and Chemical Toxicology, 2021, , 1-7.	1.2	0
216	Emerging Regulatory Mechanisms Involved in Liver Cancer Stem Cell Properties in Hepatocellular Carcinoma. Frontiers in Cell and Developmental Biology, 2021, 9, 691410.	1.8	13
217	Risk characteristics with seven epithelial-mesenchymal transition-related genes are used to predict the prognosis of patients with hepatocellular carcinoma. Journal of Gastrointestinal Oncology, 2021, 12, 1884-1894.	0.6	0
218	Antitumor effects of the multi-target tyrosine kinase inhibitor cabozantinib: a comprehensive review of the preclinical evidence. Expert Review of Anticancer Therapy, 2021, 21, 1029-1054.	1.1	11
219	Development and validation of a robust epithelial-mesenchymal transition (EMT)-related prognostic signature for hepatocellular carcinoma. Clinics and Research in Hepatology and Gastroenterology, 2021, 45, 101587.	0.7	6
220	Finding the seed of recurrence: Hepatocellular carcinoma circulating tumor cells and their potential to drive the surgical treatment. World Journal of Gastrointestinal Surgery, 2021, 13, 967-978.	0.8	6

#	Article	IF	CITATIONS
221	Analysis of Prognostic Associated Alternative Splicing Signatures in Breast Cancer. Statistics and Applications, 2021, 10, 355-364.	0.0	0
222	RNA binding protein serine/arginine splicing factor 1 promotes the proliferation, migration and invasion of hepatocellular carcinoma by interacting with RecQ protein-like 4 mRNA. Bioengineered, 2021, 12, 6144-6154.	1.4	11
223	Stromal and Immune Drivers of Hepatocarcinogenesis. Molecular and Translational Medicine, 2019, , 317-331.	0.4	5
224	Identification and analysis of circRNA–miRNA–mRNA regulatory network in hepatocellular carcinoma. IET Systems Biology, 2020, 14, 391-398.	0.8	14
225	The Transcription Factor GLI1 Mediates TGFβ1 Driven EMT in Hepatocellular Carcinoma via a SNAI1-Dependent Mechanism. PLoS ONE, 2012, 7, e49581.	1.1	68
226	Critical Roles of p53 in Epithelial-Mesenchymal Transition and Metastasis of Hepatocellular Carcinoma Cells. PLoS ONE, 2013, 8, e72846.	1.1	43
227	Incomplete Radiofrequency Ablation Enhances Invasiveness and Metastasis of Residual Cancer of Hepatocellular Carcinoma Cell HCCLM3 via Activating β-Catenin Signaling. PLoS ONE, 2014, 9, e115949.	1.1	58
228	Plasma glutamate carboxypeptidase is a negative regulator in liver cancer metastasis. Oncotarget, 2016, 7, 79774-79786.	0.8	14
229	Elevated UHRF1 expression contributes to poor prognosis by promoting cell proliferation and metastasis in hepatocellular carcinoma. Oncotarget, 2017, 8, 10510-10522.	0.8	27
230	MiR-425-5p promotes invasion and metastasis of hepatocellular carcinoma cells through SCAI-mediated dysregulation of multiple signaling pathways. Oncotarget, 2017, 8, 31745-31757.	0.8	41
231	Human steroid sulfatase induces Wnt/β-catenin signaling and epithelial-mesenchymal transition by upregulating Twist1 and HIF-1α in human prostate and cervical cancer cells. Oncotarget, 2017, 8, 61604-61617.	0.8	32
232	Increased expression of stemness markers and altered tumor stroma in hepatocellular carcinoma under TACE-induced hypoxia: A biopsy and resection matched study. Oncotarget, 2017, 8, 99359-99371.	0.8	20
233	CTHRC1 activates pro-tumorigenic signaling pathways in hepatocellular carcinoma. Oncotarget, 2017, 8, 105238-105250.	0.8	13
234	RYBP expression is associated with better survival of patients with hepatocellular carcinoma (HCC) and responsiveness to chemotherapy of HCC cells <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2014, 5, 11604-11619.	0.8	46
235	MicroRNA-451: epithelial-mesenchymal transition inhibitor and prognostic biomarker of hepatocelluar carcinoma. Oncotarget, 2015, 6, 18613-18630.	0.8	69
236	FGF19 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells by modulating the GSK3β/β- catenin signaling cascade via FGFR4 activation. Oncotarget, 2016, 7, 13575-13586.	0.8	83
237	Prp19 facilitates invasion of hepatocellular carcinoma via p38 mitogen-activated protein kinase/Twist1 pathway. Oncotarget, 2016, 7, 21939-21951.	0.8	29
238	Murine double minute 2, a potential p53-independent regulator of liver cancer metastasis. Hepatoma Research, 2016, 2, 114.	0.6	7

#	Article	IF	CITATIONS
239	Huh-7 Human Liver Cancer Cells: A Model System to Understand Hepatocellular Carcinoma and Therapy. Journal of Cancer Therapy, 2013, 04, 606-631.	0.1	18
240	Signaling Networks Controlling HCC Onset and Progression: Influence of Microenvironment and Implications for Cancer Gene Therapy. Journal of Cancer Therapy, 2013, 04, 353-358.	0.1	3
241	Gene expression and pathway analysis of <i>CTNNB1</i> in cancer and stem cells. World Journal of Stem Cells, 2016, 8, 384.	1.3	24
242	Role of anti-angiogenesis therapy in the management of hepatocellular carcinoma: The jury is still out. World Journal of Hepatology, 2014, 6, 830.	0.8	20
243	Intersecting pathways in inflammation and cancer: Hepatocellular carcinoma as a paradigm. World Journal of Clinical Oncology, 2012, 3, 15.	0.9	11
244	ACTR3 promotes cell migration and invasion by inducing epithelial mesenchymal transition in pancreatic ductal adenocarcinoma. Journal of Gastrointestinal Oncology, 2021, 12, 2325-2333.	0.6	5
245	Chronic Hypoxia Emerging as One of the Driving Forces behind Gene Expression and Prognosis of Hepatocellular Carcinoma. ISRN Pathology, 2011, 2011, 1-10.	0.4	0
246	Pathophysiology of HCC. , 2014, , 15-32.		0
247	Mechanisms of Invasion and Metastasis: Role of the Liver Cancer Microenvironment. , 2016, , 1-24.		0
248	Tumor Stroma, Desmoplasia, and Stromagenesis. , 2016, , 1-32.		0
249	Mechanisms of Invasion and Metastasis: Role of the Stromal Liver Cancer Microenvironment, Epithelial-Mesenchymal Transition, and the Tumor Vascular Bed. , 2017, , 3375-3398.		0
250	Tumor Stroma, Desmoplasia, and Stromagenesis. , 2017, , 3409-3440.		0
251	Role of Hypoxia-Inducible Factor (HIF) in Liver Cancer. , 2017, , 465-478.		0
252	Silymarin Attenuates Invasion and Migration through the Regulation of Epithelial-mesenchymal Transition in Huh7 Cells. Korean Journal of Clinical Laboratory Science, 2018, 50, 337-344.	0.1	2
253	Blood perfusion changes after transcatheter arterial chemoembolization combined with sorafenib for hepatocellular carcinoma. World Chinese Journal of Digestology, 2019, 27, 656-660.	0.0	0
254	Correlation between perfusion parameters of contrast-enhanced ultrasound and ANGPTL4 expression in hepatocellular carcinoma. World Chinese Journal of Digestology, 2020, 28, 378-383.	0.0	0
255	Therapeutic effect of entecavir combined with compound Biejia Ruangan tablets on liver fibrosis. World Chinese Journal of Digestology, 2020, 28, 558-562.	0.0	0
256	Deoxycytidine kinase promotes the migration and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. International Journal of Clinical and Experimental Pathology, 2013, 6, 2733-44.	0.5	9

#	Article	IF	CITATIONS
257	Up regulation of NAT10 promotes metastasis of hepatocellular carcinoma cells through epithelial-to-mesenchymal transition. American Journal of Translational Research (discontinued), 2016, 8, 4215-4223.	0.0	19
258	YKL-40 promotes the migration and invasion of prostate cancer cells by regulating epithelial mesenchymal transition. American Journal of Translational Research (discontinued), 2017, 9, 3749-3757.	0.0	11
259	SATB2 induces stem-like properties and promotes epithelial-mesenchymal transition in hepatocellular carcinoma. International Journal of Clinical and Experimental Pathology, 2017, 10, 11932-11940.	0.5	4
260	Effect and Mechanism of LncRNA HOTAIR on Migration, Apoptosis and Proliferation of Hepatocellular Carcinoma Cells. Journal of Biomaterials and Tissue Engineering, 2022, 12, 461-470.	0.0	0
261	EMT and Inflammation: Crossroads in HCC. Journal of Gastrointestinal Cancer, 2023, 54, 204-212.	0.6	6
262	CHRNA5 Contributes to Hepatocellular Carcinoma Progression by Regulating YAP Activity. Pharmaceutics, 2022, 14, 275.	2.0	7
263	AXL and MET in Hepatocellular Carcinoma: A Systematic Literature Review. Liver Cancer, 2022, 11, 94-112.	4.2	10
264	Hepatitis B Viral Protein HBx and the Molecular Mechanisms Modulating the Hallmarks of Hepatocellular Carcinoma: A Comprehensive Review. Cells, 2022, 11, 741.	1.8	24
265	Distinct Roles of the Sister Nuclear Receptors PXR and CAR in Liver Cancer Development. Drug Metabolism and Disposition, 2022, 50, 1019-1026.	1.7	7
266	Impact of Histotripsy on Development of Intrahepatic Metastases in a Rodent Liver Tumor Model. Cancers, 2022, 14, 1612.	1.7	19
270	Increased expression of EphA2 and E-N cadherin switch in primary hepatocellular carcinoma. Tumori, 2013, 99, 689-96.	0.6	13
271	The Synergistic Cooperation between TGF-Î ² and Hypoxia in Cancer and Fibrosis. Biomolecules, 2022, 12, 635.	1.8	17
273	The Role of Chronic Liver Diseases in the Emergence and Recurrence of Hepatocellular Carcinoma: An Omics Perspective. Frontiers in Medicine, 0, 9, .	1.2	2
274	Hepatic circadian and differentiation factors control liver susceptibility for fatty liver disease and tumorigenesis. FASEB Journal, 2022, 36, .	0.2	2
275	Effects of Ion-Transporting Proteins on the Digestive System Under Hypoxia. Frontiers in Physiology, 0, 13, .	1.3	2
276	Conjugated Linoleic Acid Treatment Attenuates Cancerous features in Hepatocellular Carcinoma Cells. Stem Cells International, 2022, 2022, 1-14.	1.2	4
277	MicroRNAs: Small molecules with big impacts in liver injury. Journal of Cellular Physiology, 2023, 238, 32-69.	2.0	8
278	High SNAIL Expression Reflects Of Recurrence After Resection Colorectal Cancer Liver Metastasis. Sakarya Medical Journal, 0, , .	0.1	0

#	Article	IF	CITATIONS
279	Quantitative Analysis of Signal Heterogeneity in the Hepatobiliary Phase of Pretreatment Gadoxetic Acid-Enhanced MRI as a Prognostic Imaging Biomarker in Transarterial Chemoembolization for Intermediate-Stage Hepatocellular Carcinoma. Cancers, 2023, 15, 1238.	1.7	1
280	MicroRNA-483-5p Inhibits Hepatocellular Carcinoma Cell Proliferation, Cell Steatosis, and Fibrosis by Targeting PPARα and TIMP2. Cancers, 2023, 15, 1715.	1.7	8
284	Regulation of Hepatocellular Carcinoma Epithelial-Mesenchymal Transition Mechanism and Targeted Therapeutic Approaches. Advances in Experimental Medicine and Biology, 2023, , .	0.8	0
286	Adhesion, metastasis, and inhibition of cancer cells: a comprehensive review. Molecular Biology Reports, 2024, 51, .	1.0	0