Workhorse Semilocal Density Functional for Condensed Chemistry

Physical Review Letters 103, 026403 DOI: 10.1103/physrevlett.103.026403

Citation Report

#	Article	IF	CITATIONS
1	Exchange-correlation energy functional based on the Airy-gas reference system. Physical Review B, 2009, 80, .	1.1	17
2	Insight into the performance of GGA functionals for solid-state calculations. Physical Review B, 2009, 80, .	1.1	72
3	Toward improved density functionals for the correlation energy. Journal of Chemical Physics, 2009, 131, 134109.	1.2	46
4	Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles. Physical Review B, 2009, 80, .	1.1	407
5	A simple nonlocal model for exchange. Journal of Chemical Physics, 2009, 131, 234111.	1.2	20
6	Communication: Ionization potentials in the limit of large atomic number. Journal of Chemical Physics, 2010, 133, 241103.	1.2	40
7	When does static correlation scale to the high-density limit as exchange does?. Computational and Theoretical Chemistry, 2010, 943, 19-22.	1.5	8
8	Electronic structure packages: Two implementations of the projector augmented wave (PAW) formalism. Computer Physics Communications, 2010, 181, 1862-1867.	3.0	45
9	The subsystem functional scheme: The Armientoâ€Mattsson 2005 (AM05) functional and beyond. International Journal of Quantum Chemistry, 2010, 110, 2274-2282.	1.0	10
10	Fourteen easy lessons in density functional theory. International Journal of Quantum Chemistry, 2010, 110, 2801-2807.	1.0	41
11	Long-range van der Waals attraction and alkali-metal lattice constants. Physical Review B, 2010, 81, .	1.1	65
12	Global Hybrid Functionals: A Look at the Engine under the Hood. Journal of Chemical Theory and Computation, 2010, 6, 3688-3703.	2.3	87
13	A General Database for Main Group Thermochemistry, Kinetics, and Noncovalent Interactions â^' Assessment of Common and Reparameterized (<i>meta</i> -)GGA Density Functionals. Journal of Chemical Theory and Computation, 2010, 6, 107-126.	2.3	389
14	Correlation energy of the uniform electron gas from an interpolation between high- and low-density limits. Physical Review B, 2010, 81, .	1.1	51
15	Iron Porphyrins with Different Imidazole Ligands. A Theoretical Comparative Study. Journal of Physical Chemistry A, 2010, 114, 9554-9569.	1.1	47
16	Density Functional Theory of Electronic Structure: A Short Course for Mineralogists and Geophysicists. Reviews in Mineralogy and Geochemistry, 2010, 71, 1-18.	2.2	16
17	Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. Journal of Physics Condensed Matter, 2010, 22, 253202.	0.7	1,451
18	The RPA Atomization Energy Puzzle. Journal of Chemical Theory and Computation, 2010, 6, 127-134.	2.3	76

#	Article	IF	CITATIONS
19	Transition-metal 13-atom clusters assessed with solid and surface-biased functionals. Journal of Chemical Physics, 2011, 134, 134105.	1.2	27
20	Self-consistent meta-generalized gradient approximation within the projector-augmented-wave method. Physical Review B, 2011, 84, .	1.1	180
21	Modeling of the cubic and antiferrodistortive phases of SrTiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>with screened hybrid density functional theory. Physical Review B, 2011, 84, .</mml:math 	1.1	36
22	Accurate Conformational Energy Differences of Carbohydrates: A Complete Basis Set Extrapolation. Journal of Chemical Theory and Computation, 2011, 7, 988-997.	2.3	26
23	Construction of an optimal GGA functional for molecules and solids. Physical Review B, 2011, 83, .	1.1	84
24	Two-Dimensional Scan of the Performance of Generalized Gradient Approximations with Perdew–Burke–Ernzerhof-Like Enhancement Factor. Journal of Chemical Theory and Computation, 2011, 7, 3548-3559.	2.3	49
25	Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals—Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation, 2011, 7, 291-309.	2.3	1,035
26	Van der Waals density functionals applied to solids. Physical Review B, 2011, 83, .	1.1	3,608
27	Accurate treatment of solids with the HSE screened hybrid. Physica Status Solidi (B): Basic Research, 2011, 248, 767-774.	0.7	258
28	Twelve outstanding problems in ground-state density functional theory: A bouquet of puzzles. Computational and Theoretical Chemistry, 2011, 963, 2-6.	1.1	43
29	Improved lattice constants, surface energies, and CO desorption energies from a semilocal density functional. Physical Review B, 2011, 83, .	1.1	67
30	Semiclassical Neutral Atom as a Reference System in Density Functional Theory. Physical Review Letters, 2011, 106, 186406.	2.9	117
31	Improving atomization energies of molecules and solids with a spin-dependent gradient correction from one-electron density analysis. Physical Review B, 2011, 84, .	1.1	26
32	Correlation energy functional from jellium surface analysis. Physical Review B, 2011, 84, .	1.1	39
33	Exchange-correlation generalized gradient approximation for gold nanostructures. Journal of Chemical Physics, 2011, 134, 194112.	1.2	34
34	FeP(Im)â^'AB bonding energies evaluated with a large number of density functionals (P = porphine,) Tj E	.TQq1 1 0	.784314 rg <mark></mark> 81 13
35	Quantitative Advances in the Zintl–Klemm Formalism. Structure and Bonding, 2011, , 1-55.	1.0	54
37	Density functional study of vacancies and surfaces in metals. Journal of Physics Condensed Matter, 2011, 23, 045006.	0.7	5

#	Article	IF	CITATIONS
38	A simple but fully nonlocal correction to the random phase approximation. Journal of Chemical Physics, 2011, 134, 114110.	1.2	33
39	Improved hybrid functional for solids: The HSEsol functional. Journal of Chemical Physics, 2011, 134, 024116.	1.2	292
40	Non-empirical improvement of PBE and its hybrid PBEO for general description of molecular properties. Journal of Chemical Physics, 2012, 136, 104108.	1.2	78
41	Spin-dependent gradient correction for more accurate atomization energies of molecules. Journal of Chemical Physics, 2012, 137, 194105.	1.2	23
42	Nonspherical model density matrices for Rung 3.5 density functionals. Journal of Chemical Physics, 2012, 136, 024111.	1.2	20
43	Improved constraint satisfaction in a simple generalized gradient approximation exchange functional. Journal of Chemical Physics, 2012, 136, 144115.	1.2	31
44	Communication: Effect of the orbital-overlap dependence in the meta generalized gradient approximation. Journal of Chemical Physics, 2012, 137, 051101.	1.2	122
45	Harnessing the meta-generalized gradient approximation for time-dependent density functional theory. Journal of Chemical Physics, 2012, 137, 164105.	1.2	101
46	Nonempirical Rung 3.5 density functionals from the Lieb-Oxford bound. Journal of Chemical Physics, 2012, 137, 224110.	1.2	17
47	Insensitivity of the error of the minimally empirical hybrid functional revTPSSh to its parameters. Journal of Chemical Physics, 2012, 137, 224104.	1.2	1
48	Functional relations for the density-functional exchange and correlation functionals connecting functionals at three densities. Physical Review A, 2012, 85, .	1.0	1
49	Nonuniform Scaling Applied to Surface Energies of Transition Metals. Physical Review Letters, 2012, 108, 126402.	2.9	57
50	Semilocal dynamical correlation with increased localization. Physical Review B, 2012, 86, .	1.1	45
51	Constraint on the second functional derivative of the exchange-correlation energy. Molecular Physics, 2012, 110, 2275-2279.	0.8	0
52	M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics. Journal of Physical Chemistry Letters, 2012, 3, 117-124.	2.1	531
53	Performance of the M11-L density functional for bandgaps and lattice constants of unary and binary semiconductors. Journal of Chemical Physics, 2012, 136, 134704.	1.2	64
54	Application of Screened Hybrid Density Functional Theory to Ammonia Decomposition on Silicon. Journal of Physical Chemistry C, 2012, 116, 26396-26404.	1.5	17
55	Improved CO Adsorption Energies, Site Preferences, and Surface Formation Energies from a Meta-Generalized Gradient Approximation Exchange–Correlation Functional, M06-L. Journal of Physical Chemistry Letters, 2012, 3, 2975-2979.	2.1	63

#	Article	IF	CITATIONS
56	A meta-GGA Made Free of the Order of Limits Anomaly. Journal of Chemical Theory and Computation, 2012, 8, 2078-2087.	2.3	49
57	Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation. Physical Review B, 2012, 85, .	1.1	1,087
58	Benchmark Database for Ylidic Bond Dissociation Energies and Its Use for Assessments of Electronic Structure Methods. Journal of Chemical Theory and Computation, 2012, 8, 2824-2834.	2.3	62
59	A chemical approach to understanding oxide surfaces. Surface Science, 2012, 606, 344-355.	0.8	39
60	Water adsorption on SrTiO3(001): II. Water, water, everywhere. Surface Science, 2012, 606, 791-802.	0.8	38
61	How Evenly Can Approximate Density Functionals Treat the Different Multiplicities and Ionization States of 4d Transition Metal Atoms?. Journal of Chemical Theory and Computation, 2012, 8, 4112-4126.	2.3	37
62	Structural phase transitions in Si and SiO2crystals via the random phase approximation. Physical Review B, 2012, 86, .	1.1	25
63	A new meta-GGA exchange functional based on an improved constraint-based GGA. Chemical Physics Letters, 2012, 543, 179-183.	1.2	44
64	Accurate van der Waals coefficients from density functional theory. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18-21.	3.3	77
65	Density functional theory study of CO2 capture with transition metal oxides and hydroxides. Journal of Chemical Physics, 2012, 136, 064516.	1.2	26
66	An improved and broadly accurate local approximation to the exchange–correlation density functional: The MN12-L functional for electronic structure calculations in chemistry and physics. Physical Chemistry Chemical Physics, 2012, 14, 13171.	1.3	346
67	Lattice constants from semilocal density functionals with zero-point phonon correction. Physical Review B, 2012, 85, .	1.1	63
68	Exchange–Correlation Functional with Good Accuracy for Both Structural and Energetic Properties while Depending Only on the Density and Its Gradient. Journal of Chemical Theory and Computation, 2012, 8, 2310-2319.	2.3	276
69	Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and <i>GW</i> with numeric atom-centered orbital basis functions. New Journal of Physics, 2012, 14, 053020.	1.2	549
70	DFT and QTAIM Study of Intramolecular and Intermolecular Fe–Hδâ~`··ĤÎ′+–O Dihydrogen Bonds. Journal of Cluster Science, 2012, 23, 703-711.	1.7	2
71	Scaling properties of exchange and correlation holes of the valence shell of second-row atoms. Physical Review A, 2012, 85, .	1.0	4
72	Exact expressions for ensemble functionals from particle number dependence. Journal of Chemical Physics, 2012, 136, 174113.	1.2	1
73	Challenges for Density Functional Theory. Chemical Reviews, 2012, 112, 289-320.	23.0	1,869

		REPORT	
#	Article	IF	CITATIONS
74	Hyper-generalized-gradient functionals constructed from the Lieb-Oxford bound: Implementation via local hybrids and thermochemical assessment. Journal of Chemical Physics, 2012, 136, 184102.	1.2	33
75	Benchmarking the performance of time-dependent density functional methods. Journal of Chemical Physics, 2012, 136, 104101.	1.2	295
76	Testing the broad applicability of the PBEint GGA functional and its oneâ€parameter hybrid form. International Journal of Quantum Chemistry, 2013, 113, 673-682.	1.0	33
77	Some formal properties of ensemble density functionals. International Journal of Quantum Chemistry, 2013, 113, 1076-1085.	1.0	2
78	Rung 3.5 density functionals: Another step on Jacob's ladder. International Journal of Quantum Chemistry, 2013, 113, 83-88.	1.0	29
79	DFT in a nutshell. International Journal of Quantum Chemistry, 2013, 113, 96-101.	1.0	143
80	Selenium adsorption on Mo(110): A first-principles investigation. Physical Review B, 2013, 87, .	1.1	6
81	LONG-RANGE VAN DER WAALS INTERACTION. International Journal of Modern Physics B, 2013, 27, 1330011.	1.0	14
82	Tests of Exchange-Correlation Functional Approximations Against Reliable Experimental Data for Average Bond Energies of 3d Transition Metal Compounds. Journal of Chemical Theory and Computation, 2013, 9, 3965-3977.	2.3	95
83	Density Functionals that Recognize Covalent, Metallic, and Weak Bonds. Physical Review Letters, 2013, 111, 106401.	2.9	168
84	Assessing modern GGA functionals for solids. Journal of Molecular Modeling, 2013, 19, 2791-2796.	0.8	14
85	Accurate Surface Chemistry beyond the Generalized Gradient Approximation: Illustrations for Graphene Adatoms. Journal of Chemical Theory and Computation, 2013, 9, 4853-4859.	2.3	20
86	Performance of meta-GGA Functionals on General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation, 2013, 9, 355-363.	2.3	68
87	Testing density functionals for structural phase transitions of solids under pressure: Si, SiO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> , and Zr. Physical Review B, 2013, 88	1.1	87
88	Lattice constants and cohesive energies of alkali, alkaline-earth, and transition metals: Random phase approximation and density functional theory results. Physical Review B, 2013, 87, .	1.1	100
89	Ab Initio, Density Functional Theory, and Semi-Empirical Calculations. Methods in Molecular Biology, 2013, 924, 3-27.	0.4	6
90	Electric field gradients of transition metal complexes: Basis set uncontraction and scalar relativistic effects. Chemical Physics Letters, 2013, 559, 112-116.	1.2	2
91	Assessing the Accuracy of Density Functional and Semiempirical Wave Function Methods for Water Nanoparticles: Comparing Binding and Relative Energies of (H ₂ O) ₁₆ and (H ₂ O) ₁₇ to CCSD(T) Results. Journal of Chemical Theory and Computation, 2013. 9. 995-1006.	2.3	51

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
92	Intramolecular halogen–halogen bonds?. Physical Chemistry Chemical Physics, 2013	, 15, 11543.	1.3	61
93	Assessment of density functional methods with correct asymptotic behavior. Physical C Chemical Physics, 2013, 15, 8352.	Chemistry	1.3	49
94	Exploring the Structure of Nitrogen-Rich Ionic Liquids and Their Binding to the Surface Boron Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 5693-5707.	of Oxide-Free	1.5	45
95	Surface Temperature Effects on Dissociative Chemisorption of H ₂ on Cu(Physical Chemistry C, 2013, 117, 8851-8863.	100). Journal of	1.5	33
96	Meta-GGA Exchange-Correlation Functional with a Balanced Treatment of Nonlocality. Chemical Theory and Computation, 2013, 9, 2256-2263.	Journal of	2.3	60
97	The importance of nonlinear fluid response in joint density-functional theory studies of systems. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 07-	battery 4005.	0.8	177
98	Establishing the Accuracy of Broadly Used Density Functionals in Describing Bulk Prope Transition Metals. Journal of Chemical Theory and Computation, 2013, 9, 1631-1640.	erties of	2.3	184
99	Thermal Lattice Expansion Effect on Reactive Scattering of H ₂ from Cu(1: <i>T</i> _s = 925 K. Journal of Physical Chemistry A, 2013, 117, 8770-8781	l1) at	1.1	50
100	Semilocal and hybrid meta-generalized gradient approximations based on the understa kinetic-energy-density dependence. Journal of Chemical Physics, 2013, 138, 044113.	nding of the	1.2	164
101	Climbing the ladder of density functional approximations. MRS Bulletin, 2013, 38, 743	-750.	1.7	66
102	Relevance of coordinate and particle-number scaling in density-functional theory. Physi 2013, 87, .	cal Review A,	1.0	42
103	Ice phases under ambient and high pressure: Insights from density functional theory. P B, 2013, 87, .	hysical Review	1.1	28
104	Asymptotic correction schemes for semilocal exchange-correlation functionals. Physica 2013, 87, .	l Review A,	1.0	10
105	Construction of a general semilocal exchange-correlation hole model: Application to no meta-GGA functionals. Physical Review B, 2013, 88, .	onempirical	1.1	40
106	Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time density functional theory: Linear response of the ground state compared to collinear an noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation. Journal of Chemica 138, 134111.	-dependent 1d al Physics, 2013,	1.2	62
107	Functional derivatives of meta-generalized gradient approximation (meta-GGA) type exchange-correlation density functionals. Journal of Chemical Physics, 2013, 138, 2441	.08.	1.2	31
109	Interplay between non-covalent interactions in complexes and crystals with halogen be Chemical Reviews, 2014, 83, 1181-1203.	onds. Russian	2.5	168
110	A comparative DFT study of the structural and electronic properties of nonpolar GaN su Applied Surface Science, 2014, 314, 794-799.	urfaces.	3.1	12

#	Article	IF	CITATIONS
111	Derivative discontinuity and exchange-correlation potential of meta-GGAs in density-functional theory. Journal of Chemical Physics, 2014, 141, 224107.	1.2	23
112	Gedanken densities and exact constraints in density functional theory. Journal of Chemical Physics, 2014, 140, 18A533.	1.2	82
113	On the separability of the extended molecule: Constructing the best localized molecular orbitals for an organic molecule bridging two model electrodes. Journal of Chemical Physics, 2014, 141, 124712.	1.2	1
114	mBEEF: An accurate semi-local Bayesian error estimation density functional. Journal of Chemical Physics, 2014, 140, 144107.	1.2	117
115	Bonding at Oxide Surfaces. Structure and Bonding, 2014, , 205-232.	1.0	2
116	Density Functional Theory Beyond the Generalized Gradient Approximation for Surface Chemistry. Topics in Current Chemistry, 2014, , 25-51.	4.0	9
117	Progress on New Approaches to Old Ideas: Orbital-Free Density Functionals. Letters in Mathematical Physics, 2014, , 113-134.	0.4	30
118	Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20120476.	1.6	599
119	Assessment of various density functionals for intermolecular N→Sn interactions: The test case of trimethyltin cyanide dimer. Computational and Theoretical Chemistry, 2014, 1036, 31-43.	1.1	7
120	Si(111)2×1 surface isomers: DFT investigations on stability and doping effects. Surface Science, 2014, 621, 123-127.	0.8	6
121	Perspective: Fifty years of density-functional theory in chemical physics. Journal of Chemical Physics, 2014, 140, 18A301.	1.2	1,083
122	Generalized Gradient Approximation Correlation Energy Functionals Based on the Uniform Electron Gas with Gap Model. Journal of Chemical Theory and Computation, 2014, 10, 2016-2026.	2.3	23
123	Density Functional Theory of Open-Shell Systems. The 3d-Series Transition-Metal Atoms and Their Cations. Journal of Chemical Theory and Computation, 2014, 10, 102-121.	2.3	65
124	At What Size Do Neutral Gold Clusters Turn Three-Dimensional?. Journal of Physical Chemistry C, 2014, 118, 29370-29377.	1.5	70
125	What Dominates the Error in the CaO Diatomic Bond Energy Predicted by Various Approximate Exchange–Correlation Functionals?. Journal of Chemical Theory and Computation, 2014, 10, 2291-2305.	2.3	17
126	Explanation of the Source of Very Large Errors in Many Exchange–Correlation Functionals for Vanadium Dimer. Journal of Chemical Theory and Computation, 2014, 10, 2399-2409.	2.3	25
127	Testing the Jacob's ladder of density functionals for electronic structure and magnetism of rutile <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">VO<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:math> . Physical Review B. 2014. 90	1.1	20
128	Benchmarking of Density Functionals for the Accurate Description of Thiol–Disulfide Exchange. Journal of Chemical Theory and Computation, 2014, 10, 4842-4856.	2.3	33

#	Article	IF	CITATIONS
129	Bulk Properties of Transition Metals: A Challenge for the Design of Universal Density Functionals. Journal of Chemical Theory and Computation, 2014, 10, 3832-3839.	2.3	245
130	Effect of Magnetic States on the Reactivity of an FCC(111) Iron Surface. Journal of Physical Chemistry C, 2014, 118, 15863-15873.	1.5	14
131	Overcoming the polarization catastrophe in the rocksalt oxides MgO and CaO. Physical Review B, 2014, 90, .	1.1	13
132	Wave Function and Density Functional Theory Studies of Dihydrogen Complexes. Journal of Chemical Theory and Computation, 2014, 10, 3151-3162.	2.3	23
133	Modeling Spin-Forbidden Monomer Self-Initiation Reactions in Spontaneous Free-Radical Polymerization of Acrylates and Methacrylates. Journal of Physical Chemistry A, 2014, 118, 9310-9318.	1.1	34
134	Generalized local-density approximation and one-dimensional finite uniform electron gases. Physical Review A, 2014, 89, .	1.0	16
135	The effect of the exchange-correlation functional on H2 dissociation on Ru(0001). Journal of Chemical Physics, 2014, 140, 084702.	1.2	57
136	Pressure-induced spin state transition in BiFeO3: an ab initio electronic structure calculation. EPJ Applied Physics, 2014, 67, 20602.	0.3	1
138	Testing predictions from density functional theory at finite temperatures: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>î²</mml:mi><mml:mn>2ground states in Co-Pt. Physical Review B, 2015, 92, .</mml:mn></mml:msub></mml:math 	n> ₄/ք nml:n	nsudb>
139	Electrochemical phase diagrams for Ti oxides from density functional calculations. Physical Review B, 2015, 92, .	1.1	35
140	Strongly Constrained and Appropriately Normed Semilocal Density Functional. Physical Review Letters, 2015, 115, 036402.	2.9	2,273
141	Crystal structure optimisation using an auxiliary equation of state. Journal of Chemical Physics, 2015, 143, 184101.	1.2	21
142	Influence of the exchange-correlation functional on the quasi-harmonic lattice dynamics of II-VI semiconductors. Journal of Chemical Physics, 2015, 143, 064710.	1.2	80
143	Density functional theory and chromium: Insights from the dimers. Journal of Chemical Physics, 2015, 142, 124316.	1.2	18
144	Assessment and acceleration of binding energy calculations for protein–ligand complexes by the fragment molecular orbital method. Journal of Computational Chemistry, 2015, 36, 2209-2218.	1.5	27
145	Global Hybrids from the Semiclassical Atom Theory Satisfying the Local Density Linear Response. Journal of Chemical Theory and Computation, 2015, 11, 122-131.	2.3	22
146	Components of the Bond Energy in Polar Diatomic Molecules, Radicals, and Ions Formed by Group-1 and Group-2 Metal Atoms. Journal of Chemical Theory and Computation, 2015, 11, 2968-2983.	2.3	30
147	Density Functional Theory of the Water Splitting Reaction on Fe(0): Comparison of Local and Nonlocal Correlation Functionals. ACS Catalysis, 2015, 5, 2070-2080.	5.5	28

#	Article	IF	CITATIONS
148	Carotenoids and Light-Harvesting: From DFT/MRCI to the Tamm–Dancoff Approximation. Journal of Chemical Theory and Computation, 2015, 11, 655-666.	2.3	44
149	Vacancy formation energies in metals: A comparison of MetaGGA with LDA and GGA exchange–correlation functionals. Computational Materials Science, 2015, 101, 96-107.	1.4	69
150	Channeling Vibrational Energy To Probe the Electronic Density of States in Metal Clusters. Journal of Physical Chemistry Letters, 2015, 6, 750-754.	2.1	11
151	Dissecting graphene capacitance in electrochemical cell. Electrochimica Acta, 2015, 163, 296-302.	2.6	18
152	Gradient-dependent upper bound for the exchange-correlation energy and application to density functional theory. Physical Review B, 2015, 91, .	1.1	31
153	The role of density functional theory methods in the prediction of nanostructured gas-adsorbent materials. Coordination Chemistry Reviews, 2015, 300, 142-163.	9.5	36
154	Choosing a density functional for static molecular polarizabilities. Chemical Physics Letters, 2015, 635, 257-261.	1.2	39
155	Accurate Diels–Alder Reaction Energies from Efficient Density Functional Calculations. Journal of Chemical Theory and Computation, 2015, 11, 2879-2888.	2.3	19
156	Structure and Properties of Polyfluoride Fn– Clusters (n = 3–29). Journal of Physical Chemistry A, 2015, 119, 6483-6492.	1.1	13
157	Spin Crossover in Ferropericlase from First-Principles Molecular Dynamics. Physical Review Letters, 2015, 114, 117202.	2.9	56
158	Validation of Methods for Computational Catalyst Design: Geometries, Structures, and Energies of Neutral and Charged Silver Clusters. Journal of Physical Chemistry C, 2015, 119, 9617-9626.	1.5	31
159	Theoretical analysis of the S–P bond in a family of compounds that involve a P2S2 ring: role of the PBEO-1/5 exchange–correlation functional. Computational and Theoretical Chemistry, 2015, 1062, 36-43.	1.1	5
160	Mapping the genome of meta-generalized gradient approximation density functionals: The search for B97M-V. Journal of Chemical Physics, 2015, 142, 074111.	1.2	305
161	Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn–Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3 <i>d</i> Transition Metals?. Journal of Chemical Theory and Computation. 2015. 11, 2036-2052.	2.3	109
162	Kohn-Sham kinetic energy density in the nuclear and asymptotic regions: Deviations from the von WeizsĀ ¤ ker behavior and applications to density functionals. Physical Review B, 2015, 91, .	1.1	49
163	Nonseparable exchange–correlation functional for molecules, including homogeneous catalysis involving transition metals. Physical Chemistry Chemical Physics, 2015, 17, 12146-12160.	1.3	111
164	Short-Range Cut-Off of the Summed-Up van der Waals Series: Rare-Gas Dimers. Topics in Current Chemistry, 2015, , 53-80.	4.0	1
165	Communication: A new class of non-empirical explicit density functionals on the third rung of Jacob's ladder. Journal of Chemical Physics, 2015, 143, 111105.	1.2	13

#	Article	IF	CITATIONS
166	Toward a Database of Chemically Accurate Barrier Heights for Reactions of Molecules with Metal Surfaces. Journal of Physical Chemistry Letters, 2015, 6, 4106-4114.	2.1	67
167	Assessment of the TCA functional in computational chemistry and solid-state physics. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	10
168	The coupling constant averaged exchange–correlation energy density. Molecular Physics, 0, , 1-14.	0.8	9
169	Spicing up continuum solvation models with SaLSA: The spherically averaged liquid susceptibility <i>ansatz</i> . Journal of Chemical Physics, 2015, 142, 054102.	1.2	48
170	Subsystem density functional theory with meta-generalized gradient approximation exchange-correlation functionals. Journal of Chemical Physics, 2015, 142, 154121.	1.2	23
171	Understanding the Boron–Nitrogen Interaction and Its Possible Implications in Drug Design. Journal of Physical Chemistry B, 2015, 119, 14393-14401.	1.2	5
172	Performance of a Non-Local van der Waals Density Functional on the Dissociation of H ₂ on Metal Surfaces. Journal of Physical Chemistry A, 2015, 119, 12146-12158.	1.1	44
173	Theoretical Study of the Spin Competition in Small-Sized Al Clusters. Journal of Physical Chemistry A, 2015, 119, 11941-11948.	1.1	13
174	Lanthanum aluminate (110) 3 $ ilde{A}$ — 1 surface reconstruction. Surface Science, 2015, 633, 60-67.	0.8	13
175	Segmented Contracted Basis Sets Optimized for Nuclear Magnetic Shielding. Journal of Chemical Theory and Computation, 2015, 11, 132-138.	2.3	235
176	Assessment of various density functionals for intermolecular N→Sn interactions: The test case of poly(trimethyltin cyanide). Computational and Theoretical Chemistry, 2015, 1051, 110-122.	1.1	12
177	Complex formation of Sn(II) with glycine: An IR, DTA/TGA and DFT investigation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 491-497.	2.0	7
178	DFT and TD-DFT Assessment of the Structural and Optoelectronic Properties of an Organic–Ag ₁₄ Nanocluster. Journal of Physical Chemistry A, 2015, 119, 5088-5098.	1.1	31
179	Kinetic and Exchange Energy Densities near the Nucleus. Computation, 2016, 4, 19.	1.0	20
181	Hartree potential dependent exchange functional. Journal of Chemical Physics, 2016, 145, 084110.	1.2	15
182	Rungs 1 to 4 of DFT Jacob's ladder: Extensive test on the lattice constant, bulk modulus, and cohesive energy of solids. Journal of Chemical Physics, 2016, 144, 204120.	1.2	191
183	Visualization and analysis of the Kohn-Sham kinetic energy density and its orbital-free description in molecules. Journal of Chemical Physics, 2016, 144, 084107.	1.2	28
184	Perspective: Kohn-Sham density functional theory descending a staircase. Journal of Chemical Physics, 2016, 145, 130901.	1.2	243

#	Article	IF	CITATIONS
185	Performance of a nonempirical density functional on molecules and hydrogen-bonded complexes. Journal of Chemical Physics, 2016, 145, 234306.	1.2	25
186	Electronic and Optical Properties of the Narrowest Armchair Graphene Nanoribbons Studied by Density Functional Methods. Australian Journal of Chemistry, 2016, 69, 960.	0.5	10
187	Benchmark Calculations for Bond Dissociation Enthalpies of Unsaturated Methyl Esters and the Bond Dissociation Enthalpies of Methyl Linolenate. Journal of Physical Chemistry A, 2016, 120, 4025-4036.	1.1	49
188	MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chemical Science, 2016, 7, 5032-5051.	3.7	858
189	On the crystalline structure of orthorhombic SrRuO3: A benchmark study of DFT functionals. Computational Materials Science, 2016, 124, 78-86.	1.4	4
190	Thermodynamics of Metal Nanoparticles: Energies and Enthalpies of Formation of Magnesium Clusters and Nanoparticles as Large as 1.3 nm. Journal of Physical Chemistry C, 2016, 120, 26110-26118.	1.5	18
191	B88 exchange functional recovering the local spin density linear response. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	2
192	Stability constants of Cu(II)-piroxicam complexes in solution: a DFT study. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	4
193	Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry. Physical Review Letters, 2016, 117, 073001.	2.9	124
194	The electron–ion dynamics in ionization of lithium carbide molecule under femtosecond laser pulses. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 2750-2756.	0.9	2
195	Kineticâ€energyâ€density dependent semilocal exchangeâ€correlation functionals. International Journal of Quantum Chemistry, 2016, 116, 1641-1694.	1.0	78
196	Mechanism of Molybdenum-Mediated Carbon Monoxide Deoxygenation and Coupling: Mono- and Dicarbyne Complexes Precede C–O Bond Cleavage and C–C Bond Formation. Journal of the American Chemical Society, 2016, 138, 16466-16477.	6.6	53
197	Nonlocal energy-optimized kernel: Recovering second-order exchange in the homogeneous electron gas. Physical Review B, 2016, 93, .	1.1	32
198	Semiclassical atom theory applied to solid-state physics. Physical Review B, 2016, 93, .	1.1	51
199	mBEEF-vdW: Robust fitting of error estimation density functionals. Physical Review B, 2016, 93, .	1.1	35
200	Assessing exchange-correlation functional performance for structure and property predictions of oxyfluoride compounds from first principles. Physical Review B, 2016, 94, .	1.1	27
201	The Correlation Effects in Density Functional Theory Along the Dissociation Path. Advances in Quantum Chemistry, 2016, 73, 263-283.	0.4	7
202	Kernel-corrected random-phase approximation for the uniform electron gas and jellium surface energy. Physical Review B, 2016, 94, .	1.1	16

#	Article	IF	CITATIONS
203	Geometries, Binding Energies, Ionization Potentials, and Electron Affinities of Metal Clusters: Mg _{<i>n</i>} ^{0,±Â1} , <i>n</i> = 1–7. Journal of Physical Chemistry C, 2016, 120, 13275-13286.	1.5	32
204	Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nature Chemistry, 2016, 8, 831-836.	6.6	698
205	Nanoparticle shape, thermodynamics and kinetics. Journal of Physics Condensed Matter, 2016, 28, 053001.	0.7	186
206	Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature. Physical Chemistry Chemical Physics, 2016, 18, 10005-10017.	1.3	26
207	The van der Waals interactions in rare-gas dimers: the role of interparticle interactions. Physical Chemistry Chemical Physics, 2016, 18, 3011-3022.	1.3	7
208	Quantum and classical dynamics of reactive scattering of H ₂ from metal surfaces. Chemical Society Reviews, 2016, 45, 3658-3700.	18.7	137
209	Density functional theory is straying from the path toward the exact functional. Science, 2017, 355, 49-52.	6.0	711
210	Development of New Density Functional Approximations. Annual Review of Physical Chemistry, 2017, 68, 155-182.	4.8	51
211	Harmonic Vibrational Frequencies: Approximate Global Scaling Factors for TPSS, M06, and M11 Functional Families Using Several Common Basis Sets. Journal of Physical Chemistry A, 2017, 121, 2265-2273.	1.1	141
212	Assessment of the Tao-Mo nonempirical semilocal density functional in applications to solids and surfaces. Physical Review B, 2017, 95, .	1.1	37
213	[Cu(H2O) n]2+ (nÂ=Â1–6) complexes in solution phase: a DFT hierarchical study. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	18
214	Stabilization of X–Au–X Complexes on the Au(111) Surface: A Theoretical Investigation and Comparison of X = S, Cl, CH ₃ S, and SiH ₃ S. Journal of Physical Chemistry C, 2017, 121, 3870-3879.	1.5	10
215	3D lattice distortions and defect structures in ion-implanted nano-crystals. Scientific Reports, 2017, 7, 45993.	1.6	96
216	Diffusion coefficients of transition metals in fcc cobalt. Acta Materialia, 2017, 132, 467-478.	3.8	65
217	Exchange functionals based on finite uniform electron gases. Journal of Chemical Physics, 2017, 146, 114108.	1.2	18
218	Towards a generalized iso-density continuum model for molecular solvents in plane-wave DFT. Modelling and Simulation in Materials Science and Engineering, 2017, 25, 015004.	0.8	4
219	Excited state characterization of carbonyl containing carotenoids: a comparison between single and multireference descriptions. Physical Chemistry Chemical Physics, 2017, 19, 17156-17166.	1.3	15
220	Semilocal Exchange Energy Functional for Two-Dimensional Quantum Systems: A Step Beyond Generalized Gradient Approximations. Journal of Physical Chemistry A, 2017, 121, 4804-4811.	1.1	11

#	Article	IF	CITATIONS
221	Quantum Monte Carlo Calculations on a Benchmark Molecule–Metal Surface Reaction: H ₂ + Cu(111). Journal of Chemical Theory and Computation, 2017, 13, 3208-3219.	2.3	35
222	Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Molecular Physics, 2017, 115, 2315-2372.	0.8	1,401
223	Comparative study of semilocal density functionals on solids and surfaces. Chemical Physics Letters, 2017, 682, 38-42.	1.2	12
224	Geometrical and magnetic structure of iron oxide clusters (FeO) for n> 10. Computational Materials Science, 2017, 137, 134-143.	1.4	16
225	Jellium-with-gap model applied to semilocal kinetic functionals. Physical Review B, 2017, 95, .	1.1	26
226	Laplacian-dependent models of the kinetic energy density: Applications in subsystem density functional theory with meta-generalized gradient approximation functionals. Journal of Chemical Physics, 2017, 146, 064105.	1.2	44
227	New carbon allotropes with metallic conducting properties: a first-principles prediction. RSC Advances, 2017, 7, 17417-17426.	1.7	45
228	Semilocal exchange hole with an application to range-separated density functionals. Physical Review B, 2017, 95, .	1.1	19
229	Random-Phase Approximation Methods. Annual Review of Physical Chemistry, 2017, 68, 421-445.	4.8	127
230	Benchmark Study of Density Functional Theory for Neutral Gold Clusters, Au _{<i>n</i>} (<i>n</i> = 2–8). Journal of Physical Chemistry A, 2017, 121, 2410-2419.	1.1	34
231	Computational study on C–B homolytic bond dissociation enthalpies of organoboron compounds. New Journal of Chemistry, 2017, 41, 1346-1362.	1.4	12
232	HLE16: A Local Kohn–Sham Gradient Approximation with Good Performance for Semiconductor Band Gaps and Molecular Excitation Energies. Journal of Physical Chemistry Letters, 2017, 8, 380-387.	2.1	78
233	A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Physical Chemistry Chemical Physics, 2017, 19, 32184-32215.	1.3	1,230
235	Evaluation of the Factors Impacting the Accuracy of ¹³ C NMR Chemical Shift Predictions using Density Functional Theory—The Advantage of Long-Range Corrected Functionals. Journal of Chemical Theory and Computation, 2017, 13, 5798-5819.	2.3	77
236	Electrochemical phase diagrams of Ni from <i>ab initio</i> simulations: role of exchange interactions on accuracy. Journal of Physics Condensed Matter, 2017, 29, 475501.	0.7	16
237	Properties of real metallic surfaces: Effects of density functional semilocality and van der Waals nonlocality. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9188-E9196.	3.3	152
238	Comparative Study of Nonhybrid Density Functional Approximations for the Prediction of 3d Transition Metal Thermochemistry. Journal of Chemical Theory and Computation, 2017, 13, 4907-4913.	2.3	30
239	Assessing the ability of DFT methods to describe static electron correlation effects: CO core level binding energies as a representative case. Journal of Chemical Physics, 2017, 147, 024106.	1.2	9

#	Article	IF	CITATIONS
240	Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8487-8492.	3.3	167
241	Performance of a nonempirical exchange functional from density matrix expansion: comparative study with different correlations. Physical Chemistry Chemical Physics, 2017, 19, 21707-21713.	1.3	20
242	Wannier Koopman method calculations of the band gaps of alkali halides. Applied Physics Letters, 2017, 111, .	1.5	10
243	JDFTx: Software for joint density-functional theory. SoftwareX, 2017, 6, 278-284.	1.2	238
244	Manipulation of the dielectric properties of diamond by an ultrashort laser pulse. Physical Review B, 2017, 95, .	1.1	23
245	Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional. Scientific Reports, 2017, 7, 44766.	1.6	54
246	Deorbitalization strategies for meta-generalized-gradient-approximation exchange-correlation functionals. Physical Review A, 2017, 96, .	1.0	54
247	First-Principles View on Photoelectrochemistry: Water-Splitting as Case Study. Inorganics, 2017, 5, 37.	1.2	22
248	Toward Accurate Conformational Energies of Smaller Peptides and Medium-Sized Macrocycles: MPCONF196 Benchmark Energy Data Set. Journal of Chemical Theory and Computation, 2018, 14, 1254-1266.	2.3	69
249	A meta-GGA level screened range-separated hybrid functional by employing short range Hartree–Fock with a long range semilocal functional. Physical Chemistry Chemical Physics, 2018, 20, 8999-9005.	1.3	21
250	Prediction of Novel <i>p</i> â€Type Transparent Conductors in Layered Double Perovskites: A Firstâ€Principles Study. Advanced Functional Materials, 2018, 28, 1800332.	7.8	49
251	Impact of long-range electrostatic and dispersive interactions on theoretical predictions of adsorption and catalysis in zeolites. Catalysis Today, 2018, 312, 51-65.	2.2	35
252	Exploration of near the origin and the asymptotic behaviors of the Kohn-Sham kinetic energy density for two-dimensional quantum dot systems with parabolic confinement. Journal of Chemical Physics, 2018, 148, 024111.	1.2	0
253	Assessment of interaction-strength interpolation formulas for gold and silver clusters. Journal of Chemical Physics, 2018, 148, 134106.	1.2	28
254	Predicting Optical Properties from Ab Initio Calculations. Springer Series in Surface Sciences, 2018, , 83-104.	0.3	0
255	How Accurate Is Density Functional Theory at Predicting Dipole Moments? An Assessment Using a New Database of 200 Benchmark Values. Journal of Chemical Theory and Computation, 2018, 14, 1969-1981.	2.3	180
256	Long-range corrected density functional through the density matrix expansion based semilocal exchange hole. Physical Chemistry Chemical Physics, 2018, 20, 8991-8998.	1.3	21
257	On the Performance of Hybrid Functionals for Nonâ€linear Optical Properties and Electronic Excitations in Chiral Molecular Crystals: The Case of Butterflyâ€5haped Dicinnamalacetone. ChemPhysChem, 2018, 19, 82-92.	1.0	9

#	Article	IF	CITATIONS
258	A comparative study of the structure, stability and energetic performance of 5,5′-bitetrazole-1,1′-diolate based energetic ionic salts: future high energy density materials. Physical Chemistry Chemical Physics, 2018, 20, 29693-29707.	1.3	34
259	Assessing the performance of the recent meta-GGA density functionals for describing the lattice constants, bulk moduli, and cohesive energies of alkali, alkaline-earth, and transition metals. Journal of Chemical Physics, 2018, 149, 164703.	1.2	35
260	Efficient lattice constants and energy bandgaps for condensed systems from a meta-GGA level screened range-separated hybrid functional. Journal of Chemical Physics, 2018, 149, 094105.	1.2	14
261	Ab Initio Predictions of Double-Layer TiO ₂ -Terminated SrTiO ₃ (001) Surface Reconstructions. Journal of Physical Chemistry C, 2018, 122, 21991-21997.	1.5	11
262	Antiferromagnetic ground state of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>La</mml:mi> <mml:m : A parameter-free <i>ab initio</i> description. Physical Review B, 2018, 98, .</mml:m </mml:msub></mml:mrow></mml:math 	n x121к/mm	l:n&o>
263	Performance of density functional theory for describing heteroâ€metallic activeâ€site motifs for methaneâ€toâ€methanol conversion in metalâ€exchanged zeolites. Journal of Computational Chemistry, 2018, 39, 2667-2678.	1.5	8
264	Structural determination of neutral Co <i> _n </i> clusters (<i>n</i> =  4–10,13) IR–UV two-color vibrational spectroscopy and DFT calculations. Journal of Physics Condensed Matter, 2018, 30, 494003.	through 0.7	4
265	On-top density in the nonlinear metallic screening and its implication on the exchange-correlation energy functional. European Physical Journal B, 2018, 91, 1.	0.6	3
266	Fitting a round peg into a round hole: Asymptotically correcting the generalized gradient approximation for correlation. Journal of Chemical Physics, 2018, 149, 084116.	1.2	33
267	Performance of various density-functional approximations for cohesive properties of 64 bulk solids. New Journal of Physics, 2018, 20, 063020.	1.2	185
268	Comparative study of the properties of ionic solids from density functionals. Materials Research Express, 2018, 5, 076302.	0.8	8
269	Semi-empirical or non-empirical double-hybrid density functionals: which are more robust?. Physical Chemistry Chemical Physics, 2018, 20, 23175-23194.	1.3	102
270	Assessing the performance of the Tao-Mo semilocal density functional in the projector-augmented-wave method. Journal of Chemical Physics, 2018, 149, 044120.	1.2	50
271	Accuracy of Density Functional Theory for Predicting Kinetics of Methanol Synthesis from CO and CO ₂ Hydrogenation on Copper. Journal of Physical Chemistry C, 2018, 122, 17942-17953.	1.5	31
272	Nonempirical Meta-Generalized Gradient Approximations for Modeling Chemisorption at Metal Surfaces. Journal of Chemical Theory and Computation, 2018, 14, 3083-3090.	2.3	20
273	Density functional embedding for periodic and nonperiodic diffusion Monte Carlo calculations. Physical Review B, 2018, 98, .	1.1	9
274	Six-dimensional potential energy surfaces of the dissociative chemisorption of HCl on Ag(111) with three density functionals. Journal of Chemical Physics, 2018, 149, 054702.	1.2	15
275	Theoretical Aspects of Hydrogen Dynamics at Metal Surfaces. , 2018, , 281-291.		0

#	Article	IF	CITATIONS
276	Tautomerization of Phenol at the External Lewis Acid Sites of Scandium-, Iron- and Gallium-Substituted Zeolite MFI. Journal of Physical Chemistry C, 2019, 123, 7604-7614.	1.5	7
277	Approaching multiplet splitting in X-ray photoelectron spectra by density functional theory methods: NO and O2 molecules as examples. Chemical Physics Letters, 2019, 731, 136617.	1.2	3
278	What Is the Accuracy Limit of Adiabatic Linear-Response TDDFT Using Exact Exchange–Correlation Potentials and Approximate Kernels?. Journal of Chemical Theory and Computation, 2019, 15, 4956-4964.	2.3	7
279	Statistically representative databases for density functional theory <i>via</i> data science. Physical Chemistry Chemical Physics, 2019, 21, 19092-19103.	1.3	20
280	Laplacian free and asymptotic corrected semilocal exchange potential applied to the band gap of solids. Physical Chemistry Chemical Physics, 2019, 21, 19639-19650.	1.3	21
281	Efficient band gap prediction of semiconductors and insulators from a semilocal exchange-correlation functional. Physical Review B, 2019, 100, .	1.1	35
282	Rethinking CO adsorption on transition-metal surfaces: Effect of density-driven self-interaction errors. Physical Review B, 2019, 100, .	1.1	44
283	Toward a Quantum-Chemical Benchmark Set for Enzymatically Catalyzed Reactions: Important Steps and Insights. Journal of Physical Chemistry A, 2019, 123, 7057-7074.	1.1	19
284	Cost-effective density functional theory (DFT) calculations of equilibrium isotopic fractionation in large organic molecules. Physical Chemistry Chemical Physics, 2019, 21, 17555-17570.	1.3	11
285	Density functional methods for the magnetism of transition metals: SCAN in relation to other functionals. Physical Review B, 2019, 100, .	1.1	42
286	Nonlocal effects on the structural transition of gold clusters from planar to three-dimensional geometries. RSC Advances, 2019, 9, 20989-20999.	1.7	6
287	On the calculation of the bandgap of periodic solids with MGGA functionals using the total energy. Journal of Chemical Physics, 2019, 151, 161102.	1.2	10
288	Relevance of the Pauli kinetic energy density for semilocal functionals. Physical Review B, 2019, 100, .	1.1	38
289	Performance of Tao–Mo Semilocal Functional with rW10 Dispersion-Correction: Influence of Different Correlation. Journal of Physical Chemistry A, 2019, 123, 10582-10593.	1.1	14
290	Stability of "No-Pair Ferromagnetic―Lithium Clusters. Journal of Physical Chemistry A, 2019, 123, 9721-9728.	1.1	3
291	Long-range dispersion-corrected density functional for noncovalent interactions. International Journal of Modern Physics B, 2019, 33, 1950300.	1.0	5
292	Assessment of the exact-exchange-only Kohn-Sham method for the calculation of band structures for transition metal oxide and metal halide perovskites. Physical Review B, 2019, 100, .	1.1	5
293	Density functional theory meta GGA study of water adsorption in MIL-53(Cr). Powder Diffraction, 2019, 34, 227-232.	0.4	6

#	Article	IF	CITATIONS
294	Semilocal exchange-correlation potentials for solid-state calculations: Current status and future directions. Journal of Applied Physics, 2019, 126, .	1.1	41
295	Excitation to defect-bound band edge states in two-dimensional semiconductors and its effect on carrier transport. Npj Computational Materials, 2019, 5, .	3.5	20
296	Screened hybrid meta-GGA exchange–correlation functionals for extended systems. Physical Chemistry Chemical Physics, 2019, 21, 3002-3015.	1.3	16
297	Enhancing the efficiency of density functionals with an improved iso-orbital indicator. Physical Review B, 2019, 99, .	1.1	37
298	Reliable electrochemical phase diagrams of magnetic transition metals and related compounds from high-throughput ab initio calculations. Npj Materials Degradation, 2019, 3, .	2.6	30
299	Improving the Performance of Tao–Mo Non-empirical Density Functional with Broader Applicability in Quantum Chemistry and Materials Science. Journal of Physical Chemistry A, 2019, 123, 6356-6369.	1.1	29
300	Specific Reaction Parameter Density Functional Based on the Meta-Generalized Gradient Approximation: Application to H ₂ + Cu(111) and H ₂ + Ag(111). Journal of Physical Chemistry A, 2019, 123, 5395-5406.	1.1	28
301	Effect of Charge and Phosphine Ligands on the Electronic Structure of the Au ₈ Cluster. ACS Omega, 2019, 4, 9169-9180.	1.6	16
302	Minimally Empirical Double-Hybrid Functionals Trained against the GMTKN55 Database: revDSD-PBEP86-D4, revDOD-PBE-D4, and DOD-SCAN-D4. Journal of Physical Chemistry A, 2019, 123, 5129-5143.	1.1	262
303	Modeling Corrosion with First-Principles Electrochemical Phase Diagrams. Annual Review of Materials Research, 2019, 49, 53-77.	4.3	40
304	Polarizable QM/MM Approach with Fluctuating Charges and Fluctuating Dipoles: The QM/FQFμ Model. Journal of Chemical Theory and Computation, 2019, 15, 2233-2245.	2.3	55
305	Electron Transport in Carbon Nanotubes with Adsorbed Chromium Impurities. Materials, 2019, 12, 524.	1.3	22
306	van der Waals exchange-correlation functionals over bulk and surface properties of transition metals. Journal of Physics Condensed Matter, 2019, 31, 315501.	0.7	10
307	Effect of electron correlation in the decomposition of core level binding energy shifts into initial and final state contributions. Physical Chemistry Chemical Physics, 2019, 21, 9399-9406.	1.3	4
308	Fully numerical Hartreeâ€Fock and density functional calculations. II. Diatomic molecules. International Journal of Quantum Chemistry, 2019, 119, e25944.	1.0	22
309	Evaluating Transition Metal Barrier Heights with the Latest Density Functional Theory Exchange–Correlation Functionals: The MOBH35 Benchmark Database. Journal of Physical Chemistry A, 2019, 123, 3761-3781.	1.1	104
310	Iron doped gold cluster nanomagnets: <i>ab initio</i> determination of barriers for demagnetization. Nanoscale Advances, 2019, 1, 1553-1559.	2.2	5
311	Finite-temperature-based linear-scaling divide-and-conquer self-consistent field method for static electron correlation systems. Chemical Physics Letters, 2019, 725, 18-23.	1.2	13

#	Article	IF	CITATIONS
312	A spectrophotometric and DFT study of the behavior of 6-bromoquercetin in aqueous solution. Chemical Papers, 2019, 73, 1731-1741.	1.0	1
313	Effect of the exchange–correlation functional on the synchronicity/nonsynchronicity in bond formation in Diels–Alder reactions: a reaction force constant analysis. Physical Chemistry Chemical Physics, 2019, 21, 7412-7428.	1.3	31
314	Some observations on the performance of the most recent exchange-correlation functionals for the large and chemically diverse GMTKN55 benchmark. AIP Conference Proceedings, 2019, , .	0.3	15
315	Treating different bonding situations: Revisiting Au-Cu alloys using the random phase approximation. Physical Review B, 2019, 100, .	1.1	10
316	The DFT study on Rh–C bond dissociation enthalpies of (iminoacyl)rhodium(III)hydride and (iminoacyl)rhodium(III)alkyl. Tetrahedron Letters, 2019, 60, 310-321.	0.7	4
317	Assessment of Newest Meta-GGA Hybrids for Late Transition Metal Reactivity: Fractional Charge and Fractional Spin Perspective. Journal of Physical Chemistry C, 2019, 123, 8047-8056.	1.5	17
318	Assessment of Initial Guesses for Self-Consistent Field Calculations. Superposition of Atomic Potentials: Simple yet Efficient. Journal of Chemical Theory and Computation, 2019, 15, 1593-1604.	2.3	37
319	A DFT study of CO adsorption on pt (111) using van der Waals functionals. Surface Science, 2019, 681, 143-148.	0.8	15
320	Hydrogen Activation by Silica-Supported Metal Ion Catalysts: Catalytic Properties of Metals and Performance of DFT Functionals. Journal of Physical Chemistry A, 2019, 123, 171-186.	1.1	3
321	Density functional theory. , 2019, , 119-159.		7
322	DFT prediction of band gap in organic-inorganic metal halide perovskites: An exchange-correlation functional benchmark study. Chemical Physics, 2019, 516, 225-231.	0.9	62
323	A coverage dependent study of the adsorption of pyridine on the (111) coinage metal surfaces. Surface Science, 2020, 693, 121525.	0.8	12
324	Accurate Water Properties from an Efficient ab Initio Method. Journal of Chemical Theory and Computation, 2020, 16, 974-987.	2.3	15
325	CALANIE: Anisotropic elastic correction to the total energy, to mitigate the effect of periodic boundary conditions. Computer Physics Communications, 2020, 252, 107130.	3.0	13
007			
326	How Chemical Environment Activates Anthralin and Molecular Oxygen for Direct Reaction. Journal of Organic Chemistry, 2020, 85, 1315-1321.	1.7	2
326	How Chemical Environment Activates Anthralin and Molecular Oxygen for Direct Reaction. Journal of Organic Chemistry, 2020, 85, 1315-1321. Empirical Doubleâ€Hybrid Density Functional Theory: A †Third Way' in Between WFT and DFT. Israel Journal of Chemistry, 2020, 60, 787-804.	1.7	2
326 327 328	How Chemical Environment Activates Anthralin and Molecular Oxygen for Direct Reaction. Journal of Organic Chemistry, 2020, 85, 1315-1321.Empirical Doubleâ€Hybrid Density Functional Theory: A †Third Way' in Between WFT and DFT. Israel Journal of Chemistry, 2020, 60, 787-804.Electronic and optical properties of the VO2 monoclinic phase using SCAN meta-GGA and TB-mBJ methods. Physica B: Condensed Matter, 2020, 582, 411887.	1.7 1.0 1.3	2 129 8

#	Article	IF	CITATIONS
330	lsing ferromagnetism and robust half-metallicity in two-dimensional honeycomb-kagome Cr2O3 layer. Npj 2D Materials and Applications, 2020, 4, .	3.9	26
331	Assessing the effect of regularization on the molecular properties predicted by SCAN and self-interaction corrected SCAN meta-GGA. Physical Chemistry Chemical Physics, 2020, 22, 18060-18070.	1.3	6
332	Shortcomings of meta-GGA functionals when describing magnetism. Physical Review B, 2020, 102, .	1.1	27
333	Generalized gradient approximations with local parameters. Physical Review B, 2020, 102, .	1.1	9
334	Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning. Npj Computational Materials, 2020, 6, .	3.5	156
335	Novel Mechanistic Insights into Methane Activation over Fe and Cu Active Sites in Zeolites: A Comparative DFT Study Using Meta-GGA Functionals. Journal of Physical Chemistry C, 2020, 124, 18112-18125.	1.5	24
336	Localization in the SCAN meta-generalized gradient approximation functional leading to broken symmetry ground states for graphene and benzene. Physical Chemistry Chemical Physics, 2020, 22, 19585-19591.	1.3	8
337	Large Impact of Approximate Exchange-Correlation Functionals on Modeling the Water Gas Shift Reaction on Copper. Journal of Physical Chemistry C, 2020, 124, 22506-22520.	1.5	5
338	Efficient yet accurate dispersion-corrected semilocal exchange–correlation functionals for non-covalent interactions. Journal of Chemical Physics, 2020, 153, 084117.	1.2	10
339	The one-electron self-interaction error in 74 density functional approximations: a case study on hydrogenic mono- and dinuclear systems. Physical Chemistry Chemical Physics, 2020, 22, 15805-15830.	1.3	27
340	Accuracy of Hybrid Functionals with Non-Self-Consistent Kohn–Sham Orbitals for Predicting the Properties of Semiconductors. Journal of Chemical Theory and Computation, 2020, 16, 3543-3557.	2.3	17
341	Hydrogen trapping at surface and subsurface vacancies of low-index surfaces of Pd. Surface Science, 2020, 698, 121610.	0.8	3
342	Embedded, graphâ \in theoretically defined manyâ \in body approximations for <scp>wavefunctionâ\ininâ\inDFT</scp> and <scp>DFTâ\ininâ\inDFT</scp> : Applications to gasâ \in and condensedâ \in phase ab initio molecular dynamics, and potential surfaces for quantum nuclear effects. International Journal of Quantum Chemistry, 2020, 120 e26244	1.0	12
343	Relationships between Orbital Energies, Optical and Fundamental Gaps, and Exciton Shifts in Approximate Density Functional Theory and Quasiparticle Theory. Journal of Chemical Theory and Computation, 2020, 16, 4337-4350.	2.3	21
344	A Semiempirical Method to Detect and Correct DFT-Based Gas-Phase Errors and Its Application in Electrocatalysis. ACS Catalysis, 2020, 10, 6900-6907.	5.5	71
345	Spin Splitting Energy of Transition Metals: A New, More Affordable Wave Function Benchmark Method and Its Use to Test Density Functional Theory. Journal of Chemical Theory and Computation, 2020, 16, 4416-4428.	2.3	38
346	Solution enthalpy calculation for impurity in liquid metal by first-principles calculations: A benchmark test for oxygen impurity in liquid sodium. Journal of Chemical Physics, 2020, 152, 154503.	1.2	4
347	Comparing the performance of density functionals in describing the adsorption of atoms and small molecules on Ni(111). Surface Science, 2020, 700, 121675.	0.8	8

#	Article	IF	CITATIONS
348	Capturing multireference excited states by constrained-density-functional theory. Physical Review A, 2020, 101, .	1.0	4
349	Structure Evolution of Transition Metal-doped Gold Clusters M@Au ₁₂ (M = 3d–5d): Across the Periodic Table. Journal of Physical Chemistry C, 2020, 124, 7449-7457.	1.5	18
350	Closing the Gap Between Experiment and Theory: Reactive Scattering of HCl from Au(111). Journal of Physical Chemistry C, 2020, 124, 15944-15960.	1.5	18
351	Density Functionals for Hydrogen Storage: Defining the H2Bind275 Test Set with Ab Initio Benchmarks and Assessment of 55 Functionals. Journal of Chemical Theory and Computation, 2020, 16, 4963-4982.	2.3	14
352	Assessment of SAPT(DFT) with meta-GGA functionals. Journal of Molecular Modeling, 2020, 26, 102.	0.8	7
353	Efficient and Accurate Approach To Estimate Hybrid Functional and Large Basis-Set Contributions to Condensed-Phase Systems and Molecule–Surface Interactions. Journal of Chemical Theory and Computation, 2020, 16, 4790-4812.	2.3	12
354	Using electronegativity and hardness to test density functionals. Journal of Chemical Physics, 2020, 152, 244113.	1.2	5
355	Calculating and Characterizing the Charge Distributions in Solids. Journal of Chemical Theory and Computation, 2020, 16, 5884-5892.	2.3	29
356	Au 21 cage structures and their magic number triâ€cations. International Journal of Quantum Chemistry, 2020, 120, e26191.	1.0	1
357	Benchmarking PBE+D3 and SCAN+rW10 methods using potential energy surfaces generated with MP2+ΔCCSD(T) calculation. Chinese Physics B, 2020, 29, 013102.	0.7	2
358	Improved Predictive Tools for Structural Properties of Metal–Organic Frameworks. Molecules, 2020, 25, 1552.	1.7	7
359	Double hybrid <scp>DFT</scp> calculations with Slater type orbitals. Journal of Computational Chemistry, 2020, 41, 1660-1684.	1.5	16
360	Fitting elephants in the density functionals zoo: Statistical criteria for the evaluation of density functional theory methods as a suitable replacement for counting parameters. International Journal of Quantum Chemistry, 2021, 121, e26379.	1.0	7
361	Exotic Structural and Optoelectronic Properties of Layered Halide Double Perovskite Polymorphs. Advanced Functional Materials, 2021, 31, 2008620.	7.8	5
362	Designing new SRP density functionals including non-local vdW-DF2 correlation for H2 + Cu(111) and their transferability to H2 + Ag(111), Au(111) and Pt(111). Physical Chemistry Chemical Physics, 2021, 23, 7875-7901.	1.3	9
363	Comprehensive Benchmark Study on the Calculation of ²⁹ Si NMR Chemical Shifts. Inorganic Chemistry, 2021, 60, 272-285.	1.9	14
364	The 1H and 13C chemical shifts of 5–5 lignin model dimers: An evaluation of DFT functionals. Journal of Molecular Structure, 2021, 1226, 129300.	1.8	5
365	Review: Simulation Models for Materials and Biomolecules. Engineering Materials, 2021, , 27-82.	0.3	3

#	Article	IF	CITATIONS
366	Conformational energies and equilibria of cyclic dinucleotides <i>in vacuo</i> and in solution: computational chemistry <i>vs.</i> NMR experiments. Physical Chemistry Chemical Physics, 2021, 23, 7280-7294.	1.3	5
367	Dissociation of dinitrogen on iron clusters: a detailed study of the Fe ₁₆ + N ₂ case. Physical Chemistry Chemical Physics, 2021, 23, 2166-2178.	1.3	6
368	Hydride- and halide-substituted Au ₉ (PH ₃) ₈ ³⁺ nanoclusters: similar absorption spectra disguise distinct geometries and electronic structures. Physical Chemistry Chemical Physics, 2021, 23, 17287-17299.	1.3	4
369	Climbing to the Top of Mount Fuji: Uniting Theory and Observations of Oxygen Triple Isotope Systematics. Reviews in Mineralogy and Geochemistry, 2021, 86, 97-135.	2.2	8
370	Challenges for density functional theory: calculation of CO adsorption on electrocatalytically relevant metals. Physical Chemistry Chemical Physics, 2021, 23, 9394-9406.	1.3	15
371	Computational approaches to dissociative chemisorption on metals: towards chemical accuracy. Physical Chemistry Chemical Physics, 2021, 23, 8962-9048.	1.3	47
372	First-principles calculations of hybrid inorganic–organic interfaces: from state-of-the-art to best practice. Physical Chemistry Chemical Physics, 2021, 23, 8132-8180.	1.3	36
373	Nonadiabatic couplings from a variational excited state method based on constrained DFT. Journal of Chemical Physics, 2021, 154, 014110.	1.2	6
374	Quantitative characterisation of the ring normal modes. Pyridine as a study case. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 119026.	2.0	11
375	Comparison study of exchange-correlation functionals on prediction of ground states and structural properties. Current Applied Physics, 2021, 22, 61-64.	1.1	7
376	Do Secondary Electrostatic Interactions Influence Multiple Dihydrogen Bonds? AAâ ''DD Array on an Amineâ€Borane Aza oronand: Theoretical Studies and Synthesis. ChemPhysChem, 2021, 22, 593-605.	1.0	9
377	Benchmarking Magnetizabilities with Recent Density Functionals. Journal of Chemical Theory and Computation, 2021, 17, 1457-1468.	2.3	43
378	Spin–Orbit Coupling Changes the Identity of the Hyper-Open-Shell Ground State of Ce+, and the Bond Dissociation Energy of CeH+ Proves to Be Challenging for Theory. Journal of Chemical Theory and Computation, 2021, 17, 1421-1434.	2.3	5
379	Performance of Made Simple Meta-GGA Functionals with rVV10 Nonlocal Correlation for H ₂ + Cu(111), D ₂ + Ag(111), H ₂ + Au(111), and D ₂ + Pt(111 Journal of Physical Chemistry C, 2021, 125, 8993-9010.)1.5	11
380	Assessment of Performance of Density Functionals for Predicting Potential Energy Curves in Hydrogen Storage Applications. Journal of Physical Chemistry A, 2021, 125, 4245-4257.	1.1	2
381	Nucleophilic Reactions of Osmanaphthalynes with PMe ₃ and H ₂ O. Chemistry - A European Journal, 2021, 27, 9328-9335.	1.7	7
382	Improving the applicability of the Pauli kinetic energy density based semilocal functional for solids. New Journal of Physics, 2021, 23, 063007.	1.2	13
383	Spin-Opposite-Scaled Range-Separated Exchange Double-Hybrid Models (SOS-RSX-DHs): Marriage Between DH and RSX/SOS-RSX Is Not Always a Happy Match. Journal of Chemical Theory and Computation, 2021, 17, 4077-4091.	2.3	7

	CITATION RI	CITATION REPORT	
#	Article	IF	CITATIONS
384	Accurate density functional made more versatile. Journal of Chemical Physics, 2021, 155, 024103.	1.2	15
385	Potential energy surface and band gap landscape of molybdenum and titanium disulfides. International Journal of Quantum Chemistry, 2021, 121, e26803.	1.0	1
386	Density Functional Theory for Electrocatalysis. Energy and Environmental Materials, 2022, 5, 157-185.	7.3	95
387	Density functional theory calculation of the Renner–Teller effect in NCO : Preliminary assessment of exact exchange energy on the accuracy of the Renner coefficient. International Journal of Quantum Chemistry, 2021, 121, e26804.	1.0	1
388	Evolution of Ferromagnetic and Antiferromagnetic States in Iron Nitride Clusters Fe _{<i>n</i>} N and Fe _{<i>n</i>} N ₂ (<i>n</i> = 1–10). Journal of Physical Chemistry A, 2021, 125, 7891-7899.	1.1	4
389	Tin-pest problem as a test of density functionals using high-throughput calculations. Physical Review Materials, 2021, 5, .	0.9	7
390	<scp>MCML</scp> : Combining physical constraints with experimental data for a multiâ€purpose metaâ€generalized gradient approximation. Journal of Computational Chemistry, 2021, 42, 2004-2013.	1.5	10
391	<i>Ab initio</i> study of lattice dynamics of group IV semiconductors using pseudohybrid functionals for extended Hubbard interactions. Physical Review B, 2021, 104, .	1.1	9
392	Assessing Density Functional Theory for Chemically Relevant Open-Shell Transition Metal Reactions. Journal of Chemical Theory and Computation, 2021, 17, 6134-6151.	2.3	75
393	Benchmark test of a dispersion corrected revised Tao–Mo semilocal functional for thermochemistry, kinetics, and noncovalent interactions of molecules and solids. Journal of Chemical Physics, 2021, 155, 114102.	1.2	4
394	vdW-DF-ahcx: a range-separated van der Waals density functional hybrid. Journal of Physics Condensed Matter, 2021, 34, .	0.7	7
395	First principle study of optoelectronic and thermoelectric properties of magnesium based MgX2O4 (X) Tj ETQq1	1 0.7843 1.4	14_rgBT /Ov∈
396	Adsorption of Transition Metal Catalysts on Carbon Supports: A Theoretical Perspective. Johnson Matthey Technology Review, 2022, 66, 4-20.	0.5	1
397	Impact of fluorination and chlorination on the electronic structure, topology and in-plane ring normal modes of pyridines. Physical Chemistry Chemical Physics, 2021, 23, 18958-18974.	1.3	5
398	Nonuniversal structure of point defects in face-centered cubic metals. Physical Review Materials, 2021, 5, .	0.9	14
399	Mathematical Formulation of the Fragment Molecular Orbital Method. Challenges and Advances in Computational Chemistry and Physics, 2011, , 17-64.	0.6	23
400	Spin-Dependent Transport of Carbon Nanotubes with Chromium Atoms. NATO Science for Peace and Security Series A: Chemistry and Biology, 2016, , 67-95.	0.5	3
402	Quantum Monte Carlo calculations on dissociative chemisorption of H2 + Al(110): Minimum barrier heights and their comparison to DFT values. Journal of Chemical Physics, 2020, 153, 224701.	1.2	16

#	Article	IF	Citations
403	Nonlocal rung-3.5 correlation from the density matrix expansion: Flat-plane condition, thermochemistry, and kinetics. Journal of Chemical Physics, 2020, 153, 164116.	1.2	3
404	A way of resolving the order-of-limit problem of Tao–Mo semilocal functional. Journal of Chemical Physics, 2020, 153, 184112.	1.2	15
405	Pulay forces in density-functional theory with extended Hubbard functionals: From nonorthogonalized to orthogonalized manifolds. Physical Review B, 2020, 102, .	1.1	22
406	Assessment of the GLLB-SC potential for solid-state properties and attempts for improvement. Physical Review Materials, 2018, 2, .	0.9	44
407	Nonlocal van der Waals functionals for solids: Choosing an appropriate one. Physical Review Materials, 2019, 3, .	0.9	65
408	Ultranonlocality and accurate band gaps from a meta-generalized gradient approximation. Physical Review Research, 2019, 1, .	1.3	73
409	Self-Consistent Model of Strong Coupling Theory of Electron Correlations in Disordered Crystals. Progress in Physics of Metals, 2012, 13, 189-223.	0.5	1
410	Spin-Dependent Transport in Carbon Nanotubes with Chromium Atoms. Journal of Modern Physics, 2014, 05, 1896-1891.	0.3	3
411	Nonlocal exchange and correlation energy functionals using the Yukawa potential as ingredient: Application to the linear response of the uniform electron gas. Physical Review B, 2021, 104, .	1.1	0
412	Do Double-Hybrid Exchange–Correlation Functionals Provide Accurate Chemical Shifts? A Benchmark Assessment for Proton NMR. Journal of Chemical Theory and Computation, 2021, 17, 6876-6885.	2.3	34
413	Highly accurate and constrained density functional obtained with differentiable programming. Physical Review B, 2021, 104, .	1.1	21
414	Quantum Chemical Studies of the Ground States of the Metal Centres in Haem-Copper Oxidases. Current Inorganic Chemistry, 2012, 2, 316-324.	0.2	0
415	An Overview of Modern Density Functional Theory. Springer Briefs in Molecular Science, 2014, , 1-24.	0.1	0
416	Efectos de intercambio y correlación en las propiedades estructurales y electrónicas del TiO2 en la fase rutilo. Ciencia En Desarrollo, 2017, 8, .	0.1	2
417	An inexpensive density functional theory â€based protocol to predict accurate 19 Fâ€NMR chemical shifts. Journal of Computational Chemistry, 2022, 43, 170-183.	1.5	5
418	O2 on Ag(110): A puzzle for exchange-correlation functionals. Chemical Physics, 2021, 554, 111424.	0.9	0
419	Polyhalogenated aminobenzonitriles vs. their co-crystals with 18-crown-6: amino group position as a tool to control crystal packing and solid-state fluorescence. CrystEngComm, 0, , .	1.3	1
420	Engineering of the Topological Surface States and Topological Dangling Bond States in the (0001) Surface of Bi2Se3 via Structural Distortion. Physica Status Solidi (B): Basic Research, 2022, 259, . 	0.7	1

#	Article	IF	CITATIONS
421	Theory of Electron Correlation in Disordered Crystals. Materials, 2022, 15, 739.	1.3	2
422	Ab initio and DFT benchmark study for the calculations of isotopic shifts of fundamental frequencies for 2,3-dihydropyran. Structural Chemistry, 0, , 1.	1.0	1
423	Benchmarking of density functionals for the description of optical properties of newly synthesized l€â€€onjugated TADF blue emitters. Chemistry - A European Journal, 2022, , .	1.7	3
424	Sensitivity of the electronic and magnetic structures of cuprate superconductors to density functional approximations. Npj Computational Materials, 2022, 8, .	3.5	12
425	New Cd(II) complex derived from (1-methylimidazol-2-yl) methanol: Synthesis, crystal structure, spectroscopic study, DFT and TD-DFT calculations, antimicrobial activity and free-radical scavenging capacity. Journal of Molecular Structure, 2022, 1257, 132583.	1.8	3
426	Effects of Electron Correlation inside Disordered Crystals. Crystals, 2022, 12, 237.	1.0	3
427	Hyperfine Coupling Constants in Local Exact Two-Component Theory. Journal of Chemical Theory and Computation, 2022, 18, 323-343.	2.3	15
428	Unexpected structures of the Au ₁₇ gold cluster: the stars are shining. Chemical Communications, 2022, 58, 5785-5788.	2.2	7
429	Zooming in on the initial steps of catalytic NO reduction using metal clusters. Physical Chemistry Chemical Physics, 2022, 24, 7595-7610.	1.3	18
430	Low-lying isomers of (TiO2) <i>n</i> (<i>n</i> =2â^'8) clusters. Chinese Journal of Chemical Physics, 2022, 35, 311-321.	0.6	1
431	High Level Electronic Structure Calculation of Molecular Solid-State NMR Shielding Constants. Journal of Chemical Theory and Computation, 2022, 18, 2408-2417.	2.3	4
432	Quasi-Relativistic Calculation of EPR <i>g</i> Tensors with Derivatives of the Decoupling Transformation, Gauge-Including Atomic Orbitals, and Magnetic Balance. Journal of Chemical Theory and Computation, 2022, 18, 2246-2266.	2.3	16
433	Theoretical investigation of physical properties of <scp> Sr ₂ XNbO ₆ </scp> (XÂ=ÂLa, Lu) double perovskite oxides for optoelectronic and thermoelectric applications. International Journal of Energy Research, 2022, 46, 10633-10643.	2.2	24
434	Bonding character of intermediates in onâ€surface Ullmann reactions revealed with energy decomposition analysis. Journal of Computational Chemistry, 2023, 44, 179-189.	1.5	2
435	An account of chronological computational investigations to ascertain the role of pï€-pï€ bonding in influencing the Lewis acidity of BX3 (XÂ=ÂF, Cl, Br and I): Evolution of novel parameters and relegation of ï€-type back bonding concept. Coordination Chemistry Reviews, 2022, 463, 214519.	9.5	3
436	A theoretical study on structures of neutral (CuS)n (nÂ=Â1–10) clusters and their interaction with Hg0. Fuel, 2022, 321, 123972.	3.4	4
437	Corrosion Resistance of Ultrathin Two-Dimensional Coatings: First-Principles Calculations towards In-Depth Mechanism Understanding and Precise Material Design. Metals, 2021, 11, 2011.	1.0	4
438	BH9, a New Comprehensive Benchmark Data Set for Barrier Heights and Reaction Energies: Assessment of Density Functional Approximations and Basis Set Incompleteness Potentials. Journal of Chemical Theory and Computation, 2022, 18, 151-166.	2.3	27

#	Article	IF	CITATIONS
439	Dataâ€driven and constrained optimization of semiâ€local exchange and nonlocal correlation functionals for materials and surface chemistry. Journal of Computational Chemistry, 2022, 43, 1104-1112.	1.5	3
440	Revisiting the Performance of Time-Dependent Density Functional Theory for Electronic Excitations: Assessment of 43 Popular and Recently Developed Functionals from Rungs One to Four. Journal of Chemical Theory and Computation, 2022, 18, 3460-3473.	2.3	61
441	Recommendation of Orbitals for <i>G</i> ₀ <i>W</i> ₀ Calculations on Molecules and Crystals. Journal of Chemical Theory and Computation, 2022, 18, 3523-3537.	2.3	3
442	Implementation of self-consistent MGGA functionals in augmented plane wave based methods. Physical Review B, 2022, 105, .	1.1	4
443	Solid-state performance of a meta-GGA screened hybrid density functional constructed from Pauli kinetic enhancement factor dependent semilocal exchange hole. Journal of Chemical Physics, 0, , .	1.2	4
444	Comparative density functional studies of BiMO ₃ polymorphs (M = Al, Ga, In) based on LDA, GGA, and meta-GGA functionals. New Journal of Chemistry, 0, , .	1.4	1
445	A local hybrid exchange functional approximation from first principles. Journal of Chemical Physics, 2022, 157, .	1.2	18
446	Infrared absorption cross section and radiative forcing efficiency features of four hydrofluoropolyethers: Performance of some DFT functionals. Computational and Theoretical Chemistry, 2022, 1214, 113798.	1.1	1
447	C _{sp2} –H Amination Reactions Mediated by Metastable Pseudo- <i>O</i> _{<i>h</i>} Masked Aryl-Co ^{III} -nitrene Species. Inorganic Chemistry, 0, , .	1.9	1
448	The Au12 Gold Cluster: Preference for a Non-Planar Structure. Symmetry, 2022, 14, 1665.	1.1	4
449	Pericyclic reaction benchmarks: hierarchical computations targeting CCSDT(Q)/CBS and analysis of DFT performance. Physical Chemistry Chemical Physics, 2022, 24, 18028-18042.	1.3	14
450	Efficient and improved prediction of the band offsets at semiconductor heterojunctions from meta-GGA density functionals: A benchmark study. Journal of Chemical Physics, 2022, 157, .	1.2	5
451	How good are recent density functionals for ground and excited states of one-electron systems?. Journal of Chemical Physics, 2022, 157, .	1.2	6
452	Many recent density functionals are numerically ill-behaved. Journal of Chemical Physics, 2022, 157, .	1.2	14
453	PtO _x Cl _y (OH) _z (H ₂ O) _n Complexes under Oxidative and Reductive Conditions: Impact of the Level of Theory on Thermodynamic Stabilities. ChemPhysChem, 2023, 24, .	1.0	3
454	Homogeneous Electrocatalytic Reduction of CO ₂ by a CrN ₃ O Complex: Electronic Coupling with a Redox-Active Terpyridine Fragment Favors Selectivity for CO. Inorganic Chemistry, 2022, 61, 16963-16970.	1.9	5
455	A comprehensive benchmark investigation of quantum chemical methods for carbocations. Physical Chemistry Chemical Physics, 2023, 25, 1903-1922.	1.3	3
456	Performance of Screened-Exchange Functionals for Band Gaps and Lattice Constants of Crystals. Journal of Chemical Theory and Computation, 2023, 19, 311-323.	2.3	1

#	Article	IF	CITATIONS
457	SBH17: Benchmark Database of Barrier Heights for Dissociative Chemisorption on Transition Metal Surfaces. Journal of Chemical Theory and Computation, 2023, 19, 245-270.	2.3	8
458	How acidic amino acid residues facilitate DNA target site selection. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	1
459	The Predictive Power of Exact Constraints and Appropriate Norms in Density Functional Theory. Annual Review of Physical Chemistry, 2023, 74, 193-218.	4.8	22
461	Monovacancy-hydrogen interaction in pure aluminum: Experimental and ab-initio theoretical positron annihilation study. Acta Materialia, 2023, 248, 118770.	3.8	6
462	Praziquanamine enantiomers: Crystal structure, Hirshfeld surface analysis, and quantum chemical studies. Journal of Molecular Structure, 2023, 1283, 135343.	1.8	2
463	Effects of dispersion corrections on the theoretical description of bulk metals. Physical Review B, 2023, 107, .	1.1	5
464	Electron heat transport in low-rank lignite: combining experimental and computational methods. Journal of Thermal Analysis and Calorimetry, 2023, 148, 4759-4768.	2.0	3
465	DELTA50: A Highly Accurate Database of Experimental 1H and 13C NMR Chemical Shifts Applied to DFT Benchmarking. Molecules, 2023, 28, 2449.	1.7	6
466	Towards high-performance polyurethanes: a mechanism of amine catalyzed aromatic imide formation from the reaction of isocyanates with anhydrides. Polymer Chemistry, 2023, 14, 1773-1780.	1.9	2
467	Comparison of the Performance of Density Functional Methods for the Description of Spin States and Binding Energies of Porphyrins. Molecules, 2023, 28, 3487.	1.7	3
468	Meta-GGA Density Functional Calculations on Atoms with Spherically Symmetric Densities in the Finite Element Formalism. Journal of Chemical Theory and Computation, 2023, 19, 2502-2517.	2.3	10
480	Review of Approximations for the Exchange-Correlation Energy in Density-Functional Theory. , 2023, , 1-90.		3
486	Small Gold Clusters: Structure, Energetics and Biomedical Applications. , 2024, , 523-567.		0
491	Development of Exchange-Correlation Functionals Assisted by Machine Learning. Challenges and Advances in Computational Chemistry and Physics, 2023, 91-112.	0.6	1