Influence of Nucleation Seeding on the Hydration Mech Cement

Journal of Physical Chemistry C 113, 4327-4334 DOI: 10.1021/jp809811w

Citation Report

#	Article	IF	CITATIONS
1	Hydration Kinetics and Microstructure Development of Normal and CaCl ₂ -Accelerated Tricalcium Silicate Pastes. Journal of Physical Chemistry C, 2009, 113, 19836-19844.	1.5	111
2	Hydration of tricalcium silicate in the presence of synthetic calcium–silicate–hydrate. Journal of Materials Chemistry, 2009, 19, 7937.	6.7	154
3	Small Changes Can Make a Great Difference. Transportation Research Record, 2010, 2141, 1-5.	1.0	55
4	Nanotechnology and Concrete. Transportation Research Record, 2010, 2142, 127-129.	1.0	8
5	Spontaneous precipitation of calcium silicate hydrate in aqueous solutions. Crystal Research and Technology, 2010, 45, 39-47.	0.6	17
6	Dissolution theory applied to the induction period in alite hydration. Cement and Concrete Research, 2010, 40, 831-844.	4.6	368
7	New Insights Into the Effect of Calcium Hydroxide Precipitation on the Kinetics of Tricalcium Silicate Hydration. Journal of the American Ceramic Society, 2010, 93, 1894-1903.	1.9	85
8	Influence of TiO ₂ Nanoparticles on Early C ₃ S Hydration. Journal of the American Ceramic Society, 2010, 93, 3399-3405.	1.9	154
9	The Mechanism of Compressive Strength Development for Cement Pastes Cured at High Temperature and the Possibility of Additives as to Improve Long-Term Strength. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 743-750.	0.1	1
10	New Calcium Silicate Hydrate Network. Transportation Research Record, 2010, 2142, 42-51.	1.0	39
11	Concrete and Cement Paste Studied by Quasi-Elastic Neutron Scattering. Zeitschrift Fur Physikalische Chemie, 2010, 224, 183-200.	1.4	5
12	Relationships between Composition and Density of Tobermorite, Jennite, and Nanoscale CaOâ^'SiO ₂ â^'H ₂ 0. Journal of Physical Chemistry C, 2010, 114, 7594-7601.	1.5	101
13	Influence of Additions of Anatase TiO ₂ Nanoparticles on Early-Age Properties of Cement-Based Materials. Transportation Research Record, 2010, 2141, 41-46.	1.0	77
14	Improved evidence for the existence of an intermediate phase during hydration of tricalcium silicate. Cement and Concrete Research, 2010, 40, 875-884.	4.6	100
15	Physicochemical Characteristics of Styrene-Butadiene Latex- modified Mortar Composite vis-Ã-vis Preferential Interactions. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 757-765.	1.2	5
16	Nanotechnology in Civil Infrastructure. , 2011, , .		51
17	Synergy of T1-C3S and β-C2S Hydration Reactions. Journal of the American Ceramic Society, 2011, 94, 1265-1271.	1.9	5
18	Mechanisms of cement hydration. Cement and Concrete Research, 2011, 41, 1208-1223.	4.6	1,446

#	Article	IF	CITATIONS
19	Modeling and simulation of cement hydration kinetics and microstructure development. Cement and Concrete Research, 2011, 41, 1257-1278.	4.6	328
20	Impact of admixtures on the hydration kinetics of Portland cement. Cement and Concrete Research, 2011, 41, 1289-1309.	4.6	486
21	Accelerated growth of calcium silicate hydrates: Experiments and simulations. Cement and Concrete Research, 2011, 41, 1339-1348.	4.6	111
22	A new approach in quantitative in-situ XRD of cement pastes: Correlation of heat flow curves with early hydration reactions. Cement and Concrete Research, 2011, 41, 123-128.	4.6	256
23	A remastered external standard method applied to the quantification of early OPC hydration. Cement and Concrete Research, 2011, 41, 602-608.	4.6	291
24	Hydration of cementitious materials, present and future. Cement and Concrete Research, 2011, 41, 651-665.	4.6	561
25	Recent advances in the field of cement hydration and microstructure analysis. Cement and Concrete Research, 2011, 41, 666-678.	4.6	147
26	Influence of nucleation seeding on the hydration kinetics and compressive strength of alkali activated slag paste. Cement and Concrete Research, 2011, 41, 842-846.	4.6	139
27	From electrons to infrastructure: Engineering concrete from the bottom up. Cement and Concrete Research, 2011, 41, 727-735.	4.6	44
28	Cement: A two thousand year old nano-colloid. Journal of Colloid and Interface Science, 2011, 357, 255-264.	5.0	82
29	Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. Journal of Colloid and Interface Science, 2011, 357, 384-392.	5.0	98
30	Effects of Temperature on the Performance of Sucrose in Cement Hydration. Journal of Materials in Civil Engineering, 2011, 23, 1124-1127.	1.3	5
31	Nano-optimized Construction Materials by Nano-seeding and Crystallization Control. , 2011, , 175-205.		4
32	Influence of Nanomaterials in Oilwell Cement Hydration and Mechanical Properties. , 2012, , .		53
33	Tricalcium Silicate Hydration Reaction in the Presence of Comb-Shaped Superplasticizers: Boundary Nucleation and Growth Model Applied to Polymer-Modified Pastes. Journal of Physical Chemistry C, 2012, 116, 10887-10895.	1.5	43
34	Effect of mixing on the early hydration of alite and OPC systems. Cement and Concrete Research, 2012, 42, 1175-1188.	4.6	98
35	Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Construction and Building Materials, 2012, 37, 707-715.	3.2	310
36	The effect of gyrolite additive on the hydration properties of Portland cement. Cement and Concrete Research, 2012, 42, 27-38.	4.6	23

#	Article	IF	CITATIONS
37	Density and water content of nanoscale solid C–S–H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage. Cement and Concrete Research, 2012, 42, 377-383.	4.6	122
38	The effect of pressure on tricalcium silicate hydration at different temperatures and in the presence of retarding additives. Cement and Concrete Research, 2012, 42, 1083-1087.	4.6	20
39	Multifractal Analysis of Calcium Silicate Hydrate (<scp><scp>C</scp>–<scp><scp>S</scp>倓<scp><scp>H</scp>, <scp>X</scp>â€ray Diffraction Microtomography. Journal of the American Ceramic Society, 2012, 95, 2647-2652.</scp></scp></scp>	1.9	23
40	The influence of nano-silica on the hydration of ordinary Portland cement. Journal of Materials Science, 2012, 47, 1011-1017.	1.7	269
41	A novel evidence for the formation of semi-permeable membrane surrounding the Portland cement particles during the induction period. Journal of Thermal Analysis and Calorimetry, 2013, 113, 881-884.	2.0	1
42	A rheological phase diagram of additives for cement formulations. Rheologica Acta, 2013, 52, 395-401.	1.1	5
43	Use of bacterial cell walls to improve the mechanical performance of concrete. Cement and Concrete Composites, 2013, 39, 122-130.	4.6	158
44	The influence of multi-walled carbon nanotubes additive on properties of non-autoclaved and autoclaved aerated concretes. Construction and Building Materials, 2013, 49, 527-535.	3.2	53
45	Modification of cement-based materials with nanoparticles. Cement and Concrete Composites, 2013, 36, 8-15.	4.6	425
46	Novel light-curable materials containing experimental bioactive micro-fillers remineralise mineral-depleted bonded-dentine interfaces. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 940-956.	1.9	48
47	Physical and chemical characteristics of unground palm oil fuel ash cement mortars with nanosilica. Construction and Building Materials, 2013, 48, 1104-1113.	3.2	61
48	Influence of acrylic superplasticizer and cellulose-ether on the kinetics of tricalcium silicate hydration reaction. Journal of Colloid and Interface Science, 2013, 395, 68-74.	5.0	13
49	Quantitative analysis of C–S–H in hydrating alite pastes by in-situ XRD. Cement and Concrete Research, 2013, 53, 119-126.	4.6	180
50	Can nanotechnology be â€~green'? Comparing efficacy of nano and microparticles in cementitious materials. Cement and Concrete Composites, 2013, 36, 16-24.	4.6	86
51	Force Field for Tricalcium Silicate and Insight into Nanoscale Properties: Cleavage, Initial Hydration, and Adsorption of Organic Molecules. Journal of Physical Chemistry C, 2013, 117, 10417-10432.	1.5	141
52	Influence of nano-silica agglomeration on fresh properties of cement pastes. Construction and Building Materials, 2013, 43, 557-562.	3.2	159
53	Impact of hydrated magnesium carbonate additives on the carbonation of reactive MgO cements. Cement and Concrete Research, 2013, 54, 87-97.	4.6	211
54	Influence of agglomeration of a recycled cement additive on the hydration and microstructure development of cement based materials. Construction and Building Materials, 2013, 49, 841-851.	3.2	43

#	Article	IF	CITATIONS
55	Oriented aggregation of calcium silicate hydrate platelets by the use of comb-like copolymers. Soft Matter, 2013, 9, 4864.	1.2	78
56	Hydration mechanism of tricalcium silicate (alite). Advances in Cement Research, 2013, 25, 60-68.	0.7	3
57	The Filler Effect: The Influence of Filler Content and Surface Area on Cementitious Reaction Rates. Journal of the American Ceramic Society, 2013, 96, 1978-1990.	1.9	303
58	Imaging of nano-seeded nucleation in cement pastes by X-ray diffraction tomography. International Journal of Materials Research, 2014, 105, 628-631.	0.1	20
59	Effect of 1-hydroxyethane-1, 1-diphosphonic acid on the hydration of ordinary Portland cement. Journal of Sustainable Cement-Based Materials, 2014, 3, 47-60.	1.7	0
60	Nanoparticles and Apparent Activation Energy of Portland Cement. Journal of the American Ceramic Society, 2014, 97, 1534-1542.	1.9	20
61	Formation of Nanoparticles and Nanostructures—An Industrial Perspective on CaCO ₃ , Cement, and Polymers. Angewandte Chemie - International Edition, 2014, 53, 12380-12396.	7.2	78
62	Understanding the Filler Effect on the Nucleation and Growth of Câ€Sâ€H. Journal of the American Ceramic Society, 2014, 97, 3764-3773.	1.9	493
63	Multi-scale analysis of cement pastes with nanosilica addition. Advances in Cement Research, 2014, 26, 271-280.	0.7	16
64	Effect of blast furnace slag on self-healing of microcracks in cementitious materials. Cement and Concrete Research, 2014, 60, 68-82.	4.6	148
65	Impact of water-soluble cellulose ethers on polymer-modified mortars. Journal of Materials Science, 2014, 49, 923-951.	1.7	24
66	Influence of amorphous silica on the hydration in ultra-high performance concrete. Cement and Concrete Research, 2014, 58, 121-130.	4.6	52
67	Amorphous silica in ultra-high performance concrete: First hour of hydration. Cement and Concrete Research, 2014, 58, 131-142.	4.6	62
68	A study of multiple effects of nano-silica and hybrid fibres on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA). Construction and Building Materials, 2014, 60, 98-110.	3.2	124
69	Feasibility of self-healing in cementitious materials – By using capsules or a vascular system?. Construction and Building Materials, 2014, 63, 108-118.	3.2	71
71	Effect of colloidal silica on the mechanical properties of fiber–cement reinforced with cellulosic fibers. Journal of Materials Science, 2014, 49, 7497-7506.	1.7	26
72	Use of nanocrystal seeding chemical admixture in improving Portland cement strength development: application for precast concrete industry. Advances in Applied Ceramics, 2014, 113, 478-484.	0.6	31
73	A Reaction Zone Hypothesis for the Effects of Particle Size and Waterâ€toâ€Cement Ratio on the Early Hydration Kinetics of C ₃ S. Journal of the American Ceramic Society, 2014, 97, 967-975.	1.9	49

#	Article	IF	CITATIONS
74	Stability of Negatively Charged Platelets in Calcium-Rich Anionic Copolymer Solutions. Langmuir, 2014, 30, 6713-6720.	1.6	22
75	Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount. Construction and Building Materials, 2014, 65, 140-150.	3.2	433
76	Effect of the addition of nanosilica on white cement hydration at 25°C. MATEC Web of Conferences, 2014, 11, 01006.	0.1	1
77	Nanosilicas as Accelerators in Oilwell Cementing at Low Temperatures. SPE Drilling and Completion, 2014, 29, 98-105.	0.9	54
78	Nanosilicas as Accelerators in Oilwell Cementing at Low Temperatures. , 2014, , .		39
79	Unintended consequences: Why carbonation can dominate in microscale hydration of calcium silicates. Journal of Materials Research, 2015, 30, 2425-2433.	1.2	1
80	Soft Xâ€ray Spectromicroscopic Investigation of Synthetic Câ€Sâ€H and C 3 S Hydration Products. Journal of the American Ceramic Society, 2015, 98, 2914-2920.	1.9	19
81	Hydration Studies of Cementitious Material using Silica Nanoparticles. Journal of Advanced Concrete Technology, 2015, 13, 345-354.	0.8	41
82	CaCl ₂ -Accelerated Hydration of Tricalcium Silicate: A STXM Study Combined with ²⁹ Si MAS NMR. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	13
83	Preparation and Application of Nanoscaled C-S-H as an Accelerator for Cement Hydration. , 2015, , 117-122.		5
84	Physico-mechanical, microstructure characteristics and fire resistance of cement pastes containing Al 2 O 3 nano-particles. Construction and Building Materials, 2015, 91, 232-242.	3.2	98
85	Microstructure of composite cements containing blast-furnace slag and silica nano-particles subjected to elevated thermally treatment temperature. Construction and Building Materials, 2015, 93, 1067-1077.	3.2	51
86	Effect of Nano Seeds in C-S-H Gel Formation: Simulation Study from the Colloidal Point of View. , 2015, , .		4
87	Composition, silicate anion structure and morphology of calcium silicate hydrates (C-S-H) synthesised by silica-lime reaction and by controlled hydration of tricalcium silicate (C ₃ S). Advances in Applied Ceramics, 2015, 114, 362-371.	0.6	99
88	Controlling cement hydration with nanoparticles. Cement and Concrete Composites, 2015, 57, 64-67.	4.6	211
89	New insights into the prehydration of cement and its mitigation. Cement and Concrete Research, 2015, 70, 94-103.	4.6	34
90	Hydrated Portland cement as an admixture to alkali-activated slag cement. Advances in Cement Research, 2015, 27, 107-117.	0.7	8
91	The role of brucite, ground granulated blastfurnace slag, and magnesium silicates in the carbonation and performance of MgO cements. Construction and Building Materials, 2015, 94, 629-643.	3.2	101

#	Article	IF	CITATIONS
92	Influence of different artificial additives on Portland cement hydration and hardening. Construction and Building Materials, 2015, 95, 537-544.	3.2	38
93	Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application. International Journal of Molecular Sciences, 2015, 16, 8027-8039.	1.8	57
94	Porous structure and mechanical strength of cement-lime pastes during setting. Cement and Concrete Research, 2015, 77, 1-8.	4.6	28
95	The application of thermal analysis, XRD and SEM to study the hydration behavior of tricalcium silicate in the presence of a polycarboxylate superplasticizer. Thermochimica Acta, 2015, 613, 54-60.	1.2	50
96	Translational and rotational dynamics of water contained in aged Portland cement pastes studied by quasi-elastic neutron scattering. Journal of Colloid and Interface Science, 2015, 452, 2-7.	5.0	15
97	Nanotechnology and Nanoengineering of Construction Materials. , 2015, , 3-13.		16
98	Nanotechnology in Construction. , 2015, , .		27
99	The influence of filler type and surface area on the hydration rates of calcium aluminate cement. Construction and Building Materials, 2015, 96, 657-665.	3.2	44
100	Microâ€reactors to Study Alite Hydration. Journal of the American Ceramic Society, 2015, 98, 1634-1641.	1.9	18
101	Experimental study of the mechanical properties and durability of self-compacting mortars with nano materials (SiO2 and TiO2). Construction and Building Materials, 2015, 96, 508-517.	3.2	80
102	Influence of colloidal silica sol on fresh properties of cement paste as compared to nano-silica powder with agglomerates in micron-scale. Cement and Concrete Composites, 2015, 63, 30-41.	4.6	126
103	Direct Imaging of Nucleation Mechanisms by Synchrotron Diffraction Micro-Tomography: Superplasticizer-Induced Change of C–S–H Nucleation in Cement. Crystal Growth and Design, 2015, 15, 20-23.	1.4	27
104	Reaction and microstructure of cement–fly-ash system. Materials and Structures/Materiaux Et Constructions, 2015, 48, 1703-1716.	1.3	25
105	Mechanisms of cement hydration. , 2016, , 129-145.		54
106	In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration. Materials, 2016, 9, 976.	1.3	17
107	Impact of chemical admixtures onÂcement hydration. , 2016, , 279-304.		39
108	Experimental investigation into the compressive strength development of cemented paste backfill containing Nano-silica. Cement and Concrete Composites, 2016, 72, 180-189.	4.6	79
109	Effect of Carbonâ€Based Materials on the Early Hydration of Tricalcium Silicate. Journal of the American Ceramic Society, 2016, 99, 2181-2196.	1.9	26

#	Article	IF	CITATIONS
110	Calcium Silicate Phases Explained by High-Temperature-Resistant Phosphate Probe Molecules. Langmuir, 2016, 32, 13577-13584.	1.6	13
111	Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates. Nature Communications, 2016, 7, 10952.	5.8	155
112	A new view on the kinetics of tricalcium silicate hydration. Cement and Concrete Research, 2016, 86, 1-11.	4.6	133
113	Investigation of early hydration dynamics and microstructural development in ordinary Portland cement using 1H NMR relaxometry and isothermal calorimetry. Cement and Concrete Research, 2016, 83, 131-139.	4.6	67
114	Synthesis of nanoSiO2@PCE core-shell nanoparticles and its effect on cement hydration at early age. Construction and Building Materials, 2016, 114, 673-680.	3.2	65
115	Hydration Mechanism of the Hydrogen-Rich Water Based Cement Paste. Journal of Physical Chemistry C, 2016, 120, 8198-8209.	1.5	19
116	A new dispersing method on silica fume and its influence on the performance of cement-based materials. Construction and Building Materials, 2016, 115, 716-726.	3.2	49
117	Modern developments related to nanotechnology and nanoengineering of concrete. Frontiers of Structural and Civil Engineering, 2016, 10, 131-141.	1.2	60
118	The effects of seeding C3S pastes with afwillite. Cement and Concrete Research, 2016, 89, 145-157.	4.6	20
119	Reactive powder concrete reinforced by nanoparticles. Advances in Cement Research, 2016, 28, 99-109.	0.7	23
120	A methodology to extract the component size distributions in interground composite (limestone) cements. Construction and Building Materials, 2016, 121, 328-337.	3.2	8
121	Effects of nanomaterials on hardening of cement–silica fume–fly ash-based ultra-high-strength concrete. Advances in Cement Research, 2016, 28, 555-566.	0.7	31
122	Corrosion of Concrete by Water-Induced Metal–Proton Exchange. Journal of Physical Chemistry C, 2016, 120, 22455-22459.	1.5	18
123	Encapsulation of expansive powder minerals within a concentric glass capsule system for self-healing concrete. Construction and Building Materials, 2016, 121, 629-643.	3.2	126
123 124		3.2 4.6	126 103
	concrete. Construction and Building Materials, 2016, 121, 629-643. Properties and durability of concrete produced using CO2 as an accelerating admixture. Cement and		
124	concrete. Construction and Building Materials, 2016, 121, 629-643. Properties and durability of concrete produced using CO2 as an accelerating admixture. Cement and Concrete Composites, 2016, 74, 218-224. Influence of Silica Fume and Polycarboxylate Ether Dispersant on Hydration Mechanisms of Cement.	4.6	103

#	Article	IF	CITATIONS
128	Nanoâ€Engineered Cements with Enhanced Mechanical Performance. Journal of the American Ceramic Society, 2016, 99, 564-572.	1.9	20
129	Studies on early stage hydration of tricalcium silicate incorporating silica nanoparticles: Part II. Construction and Building Materials, 2016, 102, 943-949.	3.2	69
130	Waste-glass fume synthesized using plasma spheroidization technology: Reactivity in cement pastes and mortars. Construction and Building Materials, 2016, 107, 272-286.	3.2	17
131	Quantification of hydration products in cementitious materials incorporating silica nanoparticles. Frontiers of Structural and Civil Engineering, 2016, 10, 162-167.	1.2	11
132	Comparison of the accelerating effect of various additions on the early hydration of Portland cement. Construction and Building Materials, 2016, 113, 290-296.	3.2	54
133	In situ synchrotron powder diffraction study of the setting reaction kinetics of magnesium-potassium phosphate cements. Cement and Concrete Research, 2016, 79, 344-352.	4.6	46
134	Sodium effect on static mechanical behavior of MD-modeled sodium silicate glasses. Journal of Non-Crystalline Solids, 2016, 440, 12-25.	1.5	20
135	β-Belite cements (β-dicalcium silicate) obtained from calcined lime sludge and silica fume. Cement and Concrete Composites, 2016, 66, 57-65.	4.6	79
136	Milling as a pretreatment method for increasing the reactivity of natural zeolites for use as supplementary cementitious materials. Cement and Concrete Composites, 2016, 65, 163-170.	4.6	47
137	Influence of wood treatments on mechanical properties of wood–cement composites and of Populus Euroamericana wood fibers. Composites Part B: Engineering, 2016, 84, 25-32.	5.9	68
138	The effect of acid treatment on the reactivity of natural zeolites used as supplementary cementitious materials. Cement and Concrete Research, 2016, 79, 185-193.	4.6	34
139	Modeling cement hydration by connecting a nucleation and growth mechanism with a diffusion mechanism. Part I: C ₃ S hydration in dilute suspensions. Science and Engineering of Composite Materials, 2016, 23, 345-356.	0.6	4
140	Early hydration of SCM-blended Portland cements: A pore solution and isothermal calorimetry study. Cement and Concrete Research, 2017, 93, 71-82.	4.6	145
141	Interaction of silicate and aluminate reaction in a synthetic cement system: Implications for the process of alite hydration. Cement and Concrete Research, 2017, 93, 32-44.	4.6	84
142	Ultraâ€Fast Supercritical Hydrothermal Synthesis of Tobermorite under Thermodynamically Metastable Conditions. Angewandte Chemie - International Edition, 2017, 56, 3162-3167.	7.2	13
143	Nano-core effect in nano-engineered cementitious composites. Composites Part A: Applied Science and Manufacturing, 2017, 95, 100-109.	3.8	256
144	Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis. Faraday Discussions, 2017, 199, 423-463.	1.6	88
145	Study on the hydration products of C3S prepared by sol–gel method. Journal of Thermal Analysis and Calorimetry, 2017, 128, 79-87.	2.0	1

#	Article	IF	CITATIONS
146	Ultraâ€Fast Supercritical Hydrothermal Synthesis of Tobermorite under Thermodynamically Metastable Conditions. Angewandte Chemie, 2017, 129, 3210-3215.	1.6	13
147	Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap. Construction and Building Materials, 2017, 139, 374-383.	3.2	167
148	Performance of Portland cement pastes containing nano-silica and different types of silica. Construction and Building Materials, 2017, 146, 524-530.	3.2	81
149	Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste. Construction and Building Materials, 2017, 145, 402-410.	3.2	248
150	Application of Powers' model to modern portland and portland limestone cement pastes. Journal of the American Ceramic Society, 2017, 100, 4219-4231.	1.9	20
151	Cementitious materials modified with hematite nanoparticles for enhanced cement hydration and uranium immobilization. Environmental Science: Nano, 2017, 4, 1670-1681.	2.2	18
152	An investigation into the colloidal stability of graphene oxide nano-layers in alite paste. Cement and Concrete Research, 2017, 99, 116-128.	4.6	80
153	The effects of nanoSiO 2 on the properties of fresh and hardened cement-based materials through its dispersion with silica fume. Construction and Building Materials, 2017, 148, 770-780.	3.2	57
154	Surface dissimilarity affects critical distance of influence for confined water. RSC Advances, 2017, 7, 3573-3584.	1.7	7
155	Effect of saccharides on the hydration of ordinary Portland cement. Construction and Building Materials, 2017, 150, 268-275.	3.2	84
156	Effects of synthetic C-S-H/PCE nanocomposites on early cement hydration. Construction and Building Materials, 2017, 140, 282-292.	3.2	109
157	A new model for the C-S-H phase formed during the hydration of Portland cements. Cement and Concrete Research, 2017, 97, 95-106.	4.6	136
158	Numerical simulations of permeability of plain and blended cement pastes. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2017, 9, 67-86.	0.7	11
159	Mechanical and durability properties of high performance glass fume concrete and mortars. Construction and Building Materials, 2017, 134, 142-156.	3.2	32
160	Effects of hexitols on the hydration of tricalcium silicate. Cement and Concrete Research, 2017, 91, 87-96.	4.6	11
161	Role of pH on the structure, composition and morphology of C-S-H–PCE nanocomposites and their effect on early strength development of Portland cement. Cement and Concrete Research, 2017, 102, 90-98.	4.6	128
162	Effect of carboxylic and hydroxycarboxylic acids on cement hydration: experimental and molecular modeling study. Journal of Materials Science, 2017, 52, 13719-13735.	1.7	30
163	A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective. Construction and Building Materials, 2017, 153, 346-357.	3.2	133

#	Article	IF	CITATIONS
164	Influence of aluminates on the hydration kinetics of tricalcium silicate. Cement and Concrete Research, 2017, 100, 245-262.	4.6	146
165	Kinetic mechanisms and activation energies for hydration of standard and highly reactive forms of β-dicalcium silicate (C2S). Cement and Concrete Research, 2017, 100, 322-328.	4.6	56
166	Influence of mud cake solidification agents on thickening time of oil well cement and its solution. Construction and Building Materials, 2017, 153, 327-336.	3.2	14
167	Incorporating Nanoscale Effects into a Continuum-Scale Reactive Transport Model for CO ₂ -Deteriorated Cement. Environmental Science & Technology, 2017, 51, 10861-10871.	4.6	25
168	Influence of nucleation seeding on the performance of carbonated MgO formulations. Cement and Concrete Composites, 2017, 83, 1-9.	4.6	47
169	Effects of the hydration reactivity of ultrafine magnesium oxide on cement-based materials. Magazine of Concrete Research, 2017, 69, 1135-1145.	0.9	20
170	Characterizing cement paste containing SRA modified nanoSiO2 and evaluating its strength development and shrinkage behavior. Cement and Concrete Composites, 2017, 75, 30-37.	4.6	28
171	Effects of Incorporating High-Volume Fly Ash into Tricalcium Silicate on the Degree of Silicate Polymerization and Aluminum Substitution for Silicon in Calcium Silicate Hydrate. Materials, 2017, 10, 131.	1.3	18
172	Modifying Cement Hydration with NS@PCE Core-Shell Nanoparticles. Advances in Materials Science and Engineering, 2017, 2017, 1-13.	1.0	19
173	STUDY ON GENERATING OF C-S-H WITH HIGH C/S RATIO BY DOUBLE-DECOMPOSITION METHOD AND HYDRATION REACTION OF Î2-C ₂ S GENERATED BY LOW TEMPERATURE HEATING. Cement Science and Concrete Technology, 2017, 71, 48-55.	0.1	0
174	The Influence of Swine-Waste Biochar on the Early-Age Characteristics of Cement Paste. International Journal of Engineering Research and Applications, 2017, 07, 01-07.	0.1	5
175	Influence of pozzolanic additives on hydration mechanisms of tricalcium silicate. Journal of the American Ceramic Society, 2018, 101, 3557-3574.	1.9	56
176	Nanoscale Chemical Degradation Mechanisms of Sulfate Attack in Alkali-activated Slag. Journal of Physical Chemistry C, 2018, 122, 5992-6004.	1.5	37
177	Effectiveness of a calcium silicate hydrate – Polycarboxylate ether (C-S-H–PCE) nanocomposite on early strength development of fly ash cement. Construction and Building Materials, 2018, 169, 20-27.	3.2	82
178	Energy saving benefit, mechanical performance, volume stabilities, hydration properties and products of low heat cement-based materials. Energy and Buildings, 2018, 170, 157-169.	3.1	55
179	Implications for C ₃ S kinetics from combined C ₃ S/ <scp>CA</scp> hydration. Journal of the American Ceramic Society, 2018, 101, 4137-4145.	1.9	8
180	Calcium chloride acceleration in ordinary Portland cement. Magazine of Concrete Research, 2018, 70, 856-863.	0.9	24
181	Whether do nano-particles act as nucleation sites for C-S-H gel growth during cement hydration?. Cement and Concrete Composites, 2018, 87, 98-109.	4.6	110

#	Article	IF	CITATIONS
182	Upgrading and Evaluation of Waste Paper Sludge Ash in Eco-Lightweight Cement Composites. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	18
183	Nanoparticles as concrete additives: Review and perspectives. Construction and Building Materials, 2018, 175, 483-495.	3.2	153
184	Use of nanocomposites as permeability reducing admixtures. Journal of the American Ceramic Society, 2018, 101, 4275-4284.	1.9	15
185	Effect of synthetic CaO-Al2O3-SiO2-H2O on the early-stage performance of alkali-activated slag. Construction and Building Materials, 2018, 167, 65-72.	3.2	29
186	Development of MgO concrete with enhanced hydration and carbonation mechanisms. Cement and Concrete Research, 2018, 103, 160-169.	4.6	104
187	Discussion of the paper "A new view on the kinetics of tricalcium silicate hydration,―by L. Nicoleau and A. Nonat, Cem. Concr. Res. 86 (2016) 1–11. Cement and Concrete Research, 2018, 104, 114-117.	4.6	10
188	The effect of synthesis conditions on the efficiency of C-S-H seeds to accelerate cement hydration. Cement and Concrete Composites, 2018, 87, 73-78.	4.6	102
189	Uncovering the role of micro silica in hydration of ultra-high performance concrete (UHPC). Cement and Concrete Research, 2018, 104, 68-79.	4.6	94
190	A multi-scale approach for percolation transition and its application to cement setting. Scientific Reports, 2018, 8, 15830.	1.6	13
191	Application of power ultrasound to cementitious materials: Advances, issues and perspectives. Materials and Design, 2018, 160, 503-513.	3.3	15
192	The apparent activation energy and pre-exponential kinetic factor for heterogeneous calcium carbonate nucleation on quartz. Communications Chemistry, 2018, 1, .	2.0	36
193	Hydration kinetics, pore structure, 3D network calcium silicate hydrate, and mechanical behavior of graphene oxide reinforced cement composites. Construction and Building Materials, 2018, 190, 150-163.	3.2	90
194	Understanding the role of silicate concentration on the early-age reaction kinetics of a calcium containing geopolymeric binder. Construction and Building Materials, 2018, 191, 206-215.	3.2	24
195	Effect of highly carboxylated colloidal polymers on cement hydration and interactions with calcium ions. Cement and Concrete Research, 2018, 113, 140-153.	4.6	50
196	Properties of cement-based composites using nanoparticles: A comprehensive review. Construction and Building Materials, 2018, 189, 1019-1034.	3.2	133
197	Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry. Cement and Concrete Research, 2018, 112, 96-110.	4.6	332
198	Effect of the SI to AL Ratio of Amorphous Nanoaluminosilicates on the Hydration Reaction of Portland Cement. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	5
199	Concrete material science: Past, present, and future innovations. Cement and Concrete Research, 2018, 112, 5-24.	4.6	201

#	Article	IF	CITATIONS
200	Evaluation and optimization of Ultra-High Performance Concrete (UHPC) subjected to harsh ocean environment: Towards an application of Layered Double Hydroxides (LDHs). Construction and Building Materials, 2018, 177, 51-62.	3.2	65
201	Understanding the behaviour of graphene oxide in Portland cement paste. Cement and Concrete Research, 2018, 111, 169-182.	4.6	112
202	Nano-silica and silica fume modified cement mortar used as Surface Protection Material to enhance the impermeability. Cement and Concrete Composites, 2018, 92, 7-17.	4.6	197
203	Viability Study of a Safe Method for Health to Prepare Cement Pastes with Simultaneous Nanometric Functional Additions. Advances in Materials Science and Engineering, 2018, 2018, 1-13.	1.0	2
204	Preparation, characterization and investigation of low hydration heat cement slurry system used in natural gas hydrate formation. Journal of Petroleum Science and Engineering, 2018, 170, 81-88.	2.1	25
205	Effects of carbonated hardened cement paste powder on hydration and microstructure of Portland cement. Construction and Building Materials, 2018, 186, 699-708.	3.2	175
206	Nucleation seeding with calcium silicate hydrate – A review. Cement and Concrete Research, 2018, 113, 74-85.	4.6	193
207	Effect of a Synthetic Nano-CaO-Al2O3-SiO2-H2O Gel on the Early-Stage Shrinkage Performance of Alkali-Activated Slag Mortars. Materials, 2018, 11, 1128.	1.3	17
208	The coupling effect of calcium concentration and pH on early hydration of cement. Construction and Building Materials, 2018, 185, 391-401.	3.2	38
209	Effect of Pyrogenic Silica and Nanosilica on Portland Cement Matrices. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	10
210	A reaction model for cement solidification: Evolving the C–S–H packing density at the micrometer-scale. Journal of the Mechanics and Physics of Solids, 2018, 118, 58-73.	2.3	27
212	Elucidating the Effect of Water-To-Cement Ratio on the Hydration Mechanisms of Cement. ACS Omega, 2018, 3, 5092-5105.	1.6	49
213	Performance of passive methods in plastic shrinkage cracking mitigation. Cement and Concrete Composites, 2018, 91, 148-155.	4.6	24
214	Degradation of Natural Fiber in Cement Composites Containing Diatomaceous Earth. Journal of Materials in Civil Engineering, 2018, 30, 04018282.	1.3	12
215	The role of seawater in interaction of slag and silica fume with cement in low water-to-binder ratio pastes at the early age of hydration. Construction and Building Materials, 2018, 185, 508-518.	3.2	89
216	Acceleration effect of synthesised calcium silicate hydrate with different morphologies and Ca/Si on cement hydration. Advances in Cement Research, 2019, 31, 423-434.	0.7	4
217	Advances in characterizing and understanding the microstructure of cementitious materials. Cement and Concrete Research, 2019, 124, 105806.	4.6	104
218	Recent advance of chemical admixtures in concrete. Cement and Concrete Research, 2019, 124, 105834.	4.6	76

#	Article	IF	CITATIONS
219	Kinetics of mixing-water repartition in UHPFRC paste and its effect on hydration and microstructural development. Cement and Concrete Research, 2019, 124, 105784.	4.6	11
220	Influence of Cementitious System Composition on the Retarding Effects of Borax and Zinc Oxide. Materials, 2019, 12, 2340.	1.3	9
221	Property Comparison of Alkali-Activated Carbon Steel Slag (CSS) and Stainless Steel Slag (SSS) and Role of Blast Furnace Slag (BFS) Chemical Composition. Materials, 2019, 12, 3307.	1.3	12
222	Green Concrete: By-Products Utilization and Advanced Approaches. Sustainability, 2019, 11, 5145.	1.6	75
223	Research on the influence of sodium fatty alcohol polyoxyethylene ether sulfate on the microstructure and properties of Portland cement. Construction and Building Materials, 2019, 224, 214-225.	3.2	3
224	Utilization of bio-chars from sugarcane bagasse pyrolysis in cement-based composites. Industrial Crops and Products, 2019, 141, 111731.	2.5	42
225	Hydration kinetics of tricalcium silicate with the presence of portlandite and calcium silicate hydrate. Thermochimica Acta, 2019, 681, 178398.	1.2	13
226	Individualized Prediction of Early Post-Treatment Mortality Risk in Stage I Non-Small Cell Lung Cancer: A Machine Learning-Based Approach. International Journal of Radiation Oncology Biology Physics, 2019, 105, E135-E136.	0.4	0
227	Influence of temperature rising inhibitor on nucleation and growth process during cement hydration. Thermochimica Acta, 2019, 681, 178403.	1.2	9
228	Does synthesized C-S-H seed promote nucleation in alkali activated fly ash-slag geopolymer binder?. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	1.3	20
229	Effects of starch-type polysaccharide on cement hydration and its mechanism. Thermochimica Acta, 2019, 678, 178307.	1.2	12
230	Digital Concrete: A Review. Cement and Concrete Research, 2019, 123, 105780.	4.6	310
231	Characterization of Titanium Nanotube Reinforced Cementitious Composites: Mechanical Properties, Microstructure, and Hydration. Materials, 2019, 12, 1617.	1.3	16
232	Preparation of calcium silicate hydrate seeds by means of mechanochemical method and its effect on the early hydration of cement. Advances in Mechanical Engineering, 2019, 11, 168781401984058.	0.8	16
233	C-S-H-PCE Nanofoils: A New Generation of Accelerators for Oil Well Cement. , 2019, , .		3
234	Microgravity Effect on Microstructural Development of Tri-calcium Silicate (C3S) Paste. Frontiers in Materials, 2019, 6, .	1.2	18
235	Resistance of an eco-friendly nano-polymer fireproof cementitious composite to physical and chemical environments. Composite Structures, 2019, 222, 110901.	3.1	2
236	Utilization of waste marble powder in cement-based materials by incorporating nano silica. Construction and Building Materials, 2019, 211, 139-149.	3.2	43

#	Article	IF	CITATIONS
237	Effect of nano-SiO2 with different particle size on the hydration kinetics of cement. Thermochimica Acta, 2019, 675, 127-133.	1.2	59
238	More eco-efficient concrete: An approach on optimization in the production and use of waste-based supplementary cementing materials. Construction and Building Materials, 2019, 206, 397-409.	3.2	60
239	Effects of particle size of colloidal nanosilica on hydration of Portland cement at early age. Advances in Mechanical Engineering, 2019, 11, 168781401982894.	0.8	21
240	The influence of calcium-rich environments in siliceous industrial residues on the hydration reaction of cementitious mixtures. Journal of Cleaner Production, 2019, 225, 152-162.	4.6	3
241	The effects of nanoâ€Câ€Sâ€H with different polymer stabilizers on early cement hydration. Journal of the American Ceramic Society, 2019, 102, 5103-5116.	1.9	50
242	Hydration, Setting and Hardening of Portland Cement. , 2019, , 157-250.		38
243	Current Progress of Nano-Engineered Cementitious Composites. , 2019, , 97-398.		1
244	Material properties of cement paste and mortar, modified with N-doped mesoporous carbon spheres (NMCSs). Cement and Concrete Research, 2019, 120, 92-101.	4.6	5
245	Effect of sodium silicate on Portland cement/calcium aluminate cement/gypsum rich-water system: strength and microstructure. RSC Advances, 2019, 9, 9993-10003.	1.7	11
246	Effect and mechanism of colloidal silica sol on properties and microstructure of the hardened cement-based materials as compared to nano-silica powder with agglomerates in micron-scale. Cement and Concrete Composites, 2019, 98, 137-149.	4.6	50
247	Mechanism of tricalcium silicate hydration in the presence of polycarboxylate polymers. SN Applied Sciences, 2019, 1, 1.	1.5	18
248	Effect of Soluble Components from Plant Aggregates on the Setting of the Lime-Based Binder. Journal of Renewable Materials, 2019, 7, 903-913.	1.1	6
249	Relating early hydration, specific surface and flow loss of cement pastes. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	1.3	42
250	Effect of mixing sequence of calcium ion and polycarboxylate superplasticizer on dispersion of a low grade silica fume in cement-based materials. Construction and Building Materials, 2019, 195, 537-546.	3.2	18
251	Chemical effect of nano-alumina on early-age hydration of Portland cement. Cement and Concrete Research, 2019, 116, 159-167.	4.6	89
252	Performance of Nano-SiO2 and Nano-ZnO2 on Compressive Strength and Microstructure Characteristics of Cement Mortar. Lecture Notes in Civil Engineering, 2019, , 13-22.	0.3	1
253	Effect of multi-walled carbon nanotubes (MWCNTs) on the strength development of cementitious materials. Journal of Materials Research and Technology, 2019, 8, 1203-1211.	2.6	92
254	Ancient and Modern Binders. , 2019, , 205-237.		2

#	Article	IF	CITATIONS
255	Hydration of C 3 S in presence of CA : Mineralâ€pore solution interaction. Journal of the American Ceramic Society, 2019, 102, 3152-3162.	1.9	10
256	Influence of cement replacement by limestone calcined clay pozzolan on the engineering properties of mortar and concrete. Advances in Cement Research, 2020, 32, 101-111.	0.7	48
257	Brucite fibers on performance improvement and mechanism of high-temperature slag cementing slurries. Journal of Adhesion Science and Technology, 2020, 34, 1-12.	1.4	23
258	Early strength development in concrete using preformed CSH nano crystals. Construction and Building Materials, 2020, 233, 117214.	3.2	50
259	Enhancement of early-age strength of the high content fly ash blended cement paste by sodium sulfate and C–S–H seeds towards a greener binder. Journal of Cleaner Production, 2020, 244, 118566.	4.6	90
260	Alkali-activated mortars blended with glass bottle waste nano powder: Environmental benefit and sustainability. Journal of Cleaner Production, 2020, 243, 118636.	4.6	100
262	Influence of sizeâ€classified and slightly soluble mineral additives on hydration of tricalcium silicate. Journal of the American Ceramic Society, 2020, 103, 2764-2779.	1.9	11
263	Effect of a novel starch-based temperature rise inhibitor on cement hydration and microstructure development. Cement and Concrete Research, 2020, 129, 105961.	4.6	51
264	Effects of nanosilica on the hydration and hardening properties of blended cement-based materials under heat curing. Journal of Thermal Analysis and Calorimetry, 2020, 141, 1317-1330.	2.0	7
265	Effect of graphene oxide (GO) on the hydration and dissolution of alite in a synthetic cement system. Journal of Materials Science, 2020, 55, 3419-3433.	1.7	19
266	The significance of dispersion of nano-SiO2 on early age hydration of cement pastes. Materials and Design, 2020, 186, 108320.	3.3	127
267	Investigation of silica fume as foam cell stabilizer for foamed concrete. Construction and Building Materials, 2020, 237, 117514.	3.2	58
268	Effects of highly dispersed nano-SiO2 on the microstructure development of cement pastes. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	1.3	21
269	Integrated biorefinery approach to utilization of pulp and paper mill sludge for value-added products. Journal of Cleaner Production, 2020, 274, 122791.	4.6	28
270	Effect of Triethanolamine on Hydration Kinetics of Cement–Fly Ash System at Elevated Curing Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 10053-10064.	3.2	17
271	Cellulose Nanocomposites for Performance Enhancement of Ordinary Portland Cement-Based Materials. Transportation Research Record, 2021, 2675, 11-20.	1.0	9
272	Corrosion inhibitors for increasing the service life of structures. , 2020, , 657-676.		1
273	Fibrillar calcium silicate hydrate seeds from hydrated tricalcium silicate lower cement demand. Cement and Concrete Research, 2020, 137, 106195.	4.6	75

#	Article	IF	CITATIONS
274	β-Naphthalene sulfonate formaldehyde-based nanocomposites as new seeding materials for Portland cement. Construction and Building Materials, 2020, 264, 120240.	3.2	11
275	Improvements in setting behavior and strengths of cement paste/mortar with EVA redispersible powder using C-S-Hs-PCE. Construction and Building Materials, 2020, 262, 120097.	3.2	16
276	Effects of mixing sequences of nanosilica on the hydration and hardening properties of cement-based materials. Construction and Building Materials, 2020, 263, 120226.	3.2	25
277	Pressed recycled fly ash and carbide slag: Hydration of entirely waste-stream building components. Construction and Building Materials, 2020, 265, 120282.	3.2	8
278	Effects of Highly Crystalized Nano C-S-H Particles on Performances of Portland Cement Paste and Its Mechanism. Crystals, 2020, 10, 816.	1.0	20
279	Improvement of Strength Parameters of Cement Matrix with the Addition of Siliceous Fly Ash by Using Nanometric C-S-H Seeds. Energies, 2020, 13, 6734.	1.6	56
280	Understanding the early reaction and structural evolution of alkali activated slag optimized using K-A-S-H nanoparticles with varying K2O/SiO2 ratios. Composites Part B: Engineering, 2020, 200, 108311.	5.9	23
281	Setting on demand for digital concrete – Principles, measurements, chemistry, validation. Cement and Concrete Research, 2020, 132, 106047.	4.6	124
282	Influence of nano-blast furnace slag on microstructure, mechanical and corrosion characteristics of concrete. Materials Chemistry and Physics, 2020, 251, 123092.	2.0	22
283	Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars. Construction and Building Materials, 2020, 258, 119627.	3.2	77
284	Carbonation reactivity enhancement of \hat{I}^3 -C2S through biomineralization. Journal of CO2 Utilization, 2020, 39, 101183.	3.3	27
285	Effect of calcium sulfoaluminate cement prehydration on hydration and strength gain of calcium sulfoaluminate cement-ordinary portland cement mixtures. Cement and Concrete Composites, 2020, 112, 103694.	4.6	24
286	Heterogeneous Surface Growth and Gelation of Cement Hydrates. Journal of Physical Chemistry C, 2020, 124, 15500-15510.	1.5	15
287	The effect of basalt fiber on mechanical properties of slag cementing slurries. Journal of Adhesion Science and Technology, 2020, 34, 1442-1453.	1.4	6
288	Utilization of Coal Fly ash and ultra fine additives in producing HPC: Influence on early strength, flexural parameters and microstructure. Materials Today: Proceedings, 2020, 32, 677-685.	0.9	5
289	Investigating Transport Properties of Low-Binder Ultrahigh-Performance Concretes: Binary and Ternary Blends of Nanosilica, Microsilica and Cement. Arabian Journal for Science and Engineering, 2020, 45, 8369-8378.	1.7	3
290	Self-healing efficiency and crack closure of smart cementitious composite with crystalline admixture and structural polyurethane. Construction and Building Materials, 2020, 260, 119955.	3.2	36
291	Improvement of the performance and microstructural development of alkali-activated slag blends. Construction and Building Materials, 2020, 261, 120017.	3.2	10

#	Article	IF	CITATIONS
293	Acceleration of cement blended with calcined clays. Construction and Building Materials, 2020, 245, 118439.	3.2	36
294	Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing. Composites Part B: Engineering, 2020, 186, 107826.	5.9	117
295	A comparative study on the mechanical, physical and morphological properties of cement-micro/nanoFe3O4 composite. Scientific Reports, 2020, 10, 2859.	1.6	27
296	Effect of calcium chloride on hydration kinetics and pore structure of hydrated tricalcium silicate. IOP Conference Series: Materials Science and Engineering, 2020, 711, 012055.	0.3	1
297	Enhanced performances of cement and powder silane based waterproof mortar modified by nucleation C-S-H seed. Construction and Building Materials, 2020, 246, 118511.	3.2	26
298	Performance of MgO and MgO–SiO2 systems containing seeds under different curing conditions. Cement and Concrete Composites, 2020, 108, 103543.	4.6	27
299	Microstructure development and autogenous shrinkage of mortars with C-S-H seeding and internal curing. Cement and Concrete Research, 2020, 129, 105967.	4.6	53
300	Effect of nano-SiO2 on the efflorescence of an alkali-activated metakaolin mortar. Construction and Building Materials, 2020, 253, 118952.	3.2	68
301	The effects of silica fume on C3A hydration. Construction and Building Materials, 2020, 250, 118766.	3.2	22
302	Phase evolutions of cementitious materials with very low water/binder ratios. Magazine of Concrete Research, 2021, 73, 919-928.	0.9	0
303	Formation of C–S–H nuclei using silica nanoparticles during early age hydration of cementitious system. European Journal of Environmental and Civil Engineering, 2021, 25, 1491-1502.	1.0	16
304	Rheological Properties of Nanosilica-Modified Cement Paste at Different Temperatures and Hydration Times. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	6
305	Effect of nano C–A–S–H seeds on the early-stage hydration and pore structure of Portland cement pastes. Advances in Cement Research, 2021, 33, 295-303.	0.7	1
306	Premixed tricalcium silicate/sodium phosphate dibasic cements for root canal filling. Materials Chemistry and Physics, 2021, 257, 123682.	2.0	9
307	Inhibition mechanisms of steel slag on the early-age hydration of cement. Cement and Concrete Research, 2021, 140, 106283.	4.6	210
308	Interfacial design of nano-TiO2 modified fly ash-cement based low carbon composites. Construction and Building Materials, 2021, 270, 121470.	3.2	24
309	The improvement of the self-setting property of the tricalcium silicate bone cement with acid and its mechanism. Journal of Physics and Chemistry of Solids, 2021, 150, 109825.	1.9	5
310	Modeling of aqueous species interaction energies prior to nucleation in cement-based gel systems. Cement and Concrete Research, 2021, 139, 106266.	4.6	20

#	Article	IF	CITATIONS
311	Nano-CSH modified high volume fly ash concrete: Early-age properties and environmental impact analysis. Journal of Cleaner Production, 2021, 286, 124924.	4.6	44
312	Influence of nano silica on compressive strength, durability, and microstructure of highâ€volume slag and highâ€volume slag–fly ash blended concretes. Structural Concrete, 2021, 22, E474.	1.5	13
313	Characterization of the influence of Nanoparticles on Early Hydration of Oil Cement by Using Low Field NMR. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 1202-1214.	1.2	3
314	Predictive Hydration Model of Portland Cement and Its Main Minerals Based on Dissolution Theory and Water Diffusion Theory. Materials, 2021, 14, 595.	1.3	7
315	Effect of calcination temperature on the light burned MgO matrix and its physical properties. Journal of Asian Architecture and Building Engineering, 2022, 21, 500-510.	1.2	5
316	Nanoscale Construction Biotechnology for Cementitious Materials: A Prospectus. Frontiers in Materials, 2021, 7, .	1.2	8
317	Overview of Magnesium Metallurgy. SpringerBriefs in Materials, 2021, , 1-44.	0.1	1
318	Introduction to concrete and nanomaterials in concrete applications. , 2021, , 1-58.		1
319	Comparative Assessment of Effectiveness of Calcium Silicate Dispersions Produced Using Sucrose and Lactose as Components of Composite Cement Binder. Materials Science Forum, 0, 1017, 11-20.	0.3	0
320	Carbonation Resistance of Surface Protective Materials Modified with Hybrid NanoSiO2. Coatings, 2021, 11, 269.	1.2	5
321	Improvement of the Hydration of a Fly Ash–Cement System by the Synergic Action of Triethanolamine and C–S–H Seeding. ACS Sustainable Chemistry and Engineering, 2021, 9, 2804-2815.	3.2	14
322	Axial Compressive Behavior of Reinforced Concrete (RC) Columns Incorporating Multi-Walled Carbon Nanotubes and Marble Powder. Crystals, 2021, 11, 247.	1.0	5
323	Effect of High-Dispersible Graphene on the Strength and Durability of Cement Mortars. Materials, 2021, 14, 915.	1.3	32
324	Performance Evaluation of Eco-Friendly Ultra-High-Performance Concrete Incorporated with Waste Glass-A Review. IOP Conference Series: Materials Science and Engineering, 2021, 1094, 012030.	0.3	5
325	Machine learning enables prompt prediction of hydration kinetics of multicomponent cementitious systems. Scientific Reports, 2021, 11, 3922.	1.6	23
326	Sucrose retards the reaction of nonâ€calcium geopolymers: An implication for developing kineticsâ€controlling admixtures. Journal of the American Ceramic Society, 2021, 104, 2894-2907.	1.9	3
327	The influence of ingredients on the properties of reactive powder concrete: A review. Ain Shams Engineering Journal, 2021, 12, 145-158.	3.5	45
328	Improving the properties of concrete using in situ-grown C-S-H. Construction and Building Materials, 2021, 276, 122214.	3.2	15

#	Article	IF	CITATIONS
329	Analyzing the early structural build-up of accelerated cement pastes. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	11
330	Nanomaterials in Cementitious Composites: An Update. Molecules, 2021, 26, 1430.	1.7	38
331	Preparation and Properties of Low-Temperature Early Strength Material for Nano-C-S-H Gel Seed. Arabian Journal for Science and Engineering, 0, , 1.	1.7	3
332	Preparation and characterization of ultra-lightweight fly ash-based cement foams incorporating ethylene-vinyl acetate emulsion and waste-derived C-S-H seeds. Construction and Building Materials, 2021, 274, 122027.	3.2	11
333	Effects of K-struvite on hydration behavior of magnesium potassium phosphate cement. Construction and Building Materials, 2021, 275, 121741.	3.2	13
334	Evaluation of the Hydration Characteristics and Anti-Washout Resistance of Non-Dispersible Underwater Concrete with Nano-SiO2 and MgO. Materials, 2021, 14, 1328.	1.3	6
335	Microstructure evolution of cement mortar containing MgO-CaO blended expansive agent and temperature rising inhibitor under multiple curing temperatures. Construction and Building Materials, 2021, 278, 122376.	3.2	23
336	Hydration of flax fibre-reinforced cementitious composites: influence of fibre surface treatments. European Journal of Environmental and Civil Engineering, 2022, 26, 5798-5820.	1.0	2
337	Influence of dispersants and dispersion on properties of nanosilica modified cement-based materials. Cement and Concrete Composites, 2021, 118, 103969.	4.6	32
338	Investigation on effect of nanosilica dispersion on the properties and microstructures of fly ash-based geopolymer composite. Construction and Building Materials, 2021, 282, 122690.	3.2	25
339	Effect of nanoporous thin silica films on interface microstructure and bond strength of cementitious grouts. Construction and Building Materials, 2021, 285, 122908.	3.2	6
340	Novel C-A-S-H/PCE nanocomposites: Design, characterization and the effect on cement hydration. Chemical Engineering Journal, 2021, 412, 128569.	6.6	37
341	Rheology control of alkali-activated fly ash with nano clay for cellular geopolymer application. Construction and Building Materials, 2021, 283, 122687.	3.2	12
342	Stiffening control of cement-based materials using accelerators in inline mixing processes: Possibilities and challenges. Cement and Concrete Composites, 2021, 119, 103972.	4.6	74
343	Rheology of Cement Pastes with Siliceous Fly Ash and the CSH Nano-Admixture. Materials, 2021, 14, 3640.	1.3	58
344	Preparation and Performance Evaluation of Butylated Graphene Oxide (C4H9-GO) Incorporated Modified Cement. Arabian Journal for Science and Engineering, 2022, 47, 3991-4002.	1.7	3
345	Effect of starch-based admixtures on the exothermic process of cement hydration. Construction and Building Materials, 2021, 289, 122903.	3.2	15
346	Effect of New Hardening Accelerator on the Strength of Segment Concrete. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 387-391.	0.4	3

#	Article	IF	CITATIONS
347	Study on the Influence of Nanosilica Sol on the Hydration Process of Different Kinds of Cement and Mortar Properties. Materials, 2021, 14, 3653.	1.3	8
348	Usage of recycled fine aggregates obtained from concretes with low w/c ratio in the production of masonry plaster and mortar. Environment, Development and Sustainability, 2022, 24, 2685-2714.	2.7	2
349	Activation energy of calcium sulfoaluminate cement-based materials. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	3
350	Influence of fly ash or slag on nucleation and growth of early hydration of cement. Thermochimica Acta, 2021, 701, 178964.	1.2	18
351	Hydration kinetics and activation energy of cement pastes containing various nanoparticles. Composites Part B: Engineering, 2021, 216, 108836.	5.9	30
352	Mechanical properties and microstructure of multilayer graphene oxide cement mortar. Frontiers of Structural and Civil Engineering, 2021, 15, 1058-1070.	1.2	11
353	Eco-Friendly, Set-on-Demand Digital Concrete. 3D Printing and Additive Manufacturing, 2022, 9, 3-11.	1.4	12
354	Optimisation of GBFS, Fly Ash, and Nano-Silica Contents in Alkali-Activated Mortars. Polymers, 2021, 13, 2750.	2.0	20
355	The Hydration and Volume Expansion Mechanisms of Modified Expansive Cements for Sustainable In-Situ Rock Fragmentation: A Review. Energies, 2021, 14, 5965.	1.6	7
356	Investigating the compatibility of nickel coated carbon nanotubes and cementitious composites through experimental evidence and theoretical calculations. Construction and Building Materials, 2021, 300, 124340.	3.2	3
357	Hydration and microstructural development of calcined clay cement paste in the presence of calcium-silicate-hydrate (C–S–H) seed. Cement and Concrete Composites, 2021, 122, 104162.	4.6	47
358	Identification of Chemical Bonds and Microstructure of Hydrated Tricalcium Silicate (C3S) by a Coupled Micro-Raman/BSE-EDS Evaluation. Materials, 2021, 14, 5144.	1.3	7
359	Enhancing the mechanical and durability properties of subzero-cured one-part alkali-activated blast furnace slag mortar by using submicron metallurgical residue as an additive. Cement and Concrete Composites, 2021, 122, 104128.	4.6	20
360	Embedded Resistivity Sensor for Compressive Strength Prediction of Cement Paste by Electrochemical Impedance Spectroscopy. , 2021, 5, 1-4.		1
361	Correlation Analysis of Heat Curing and Compressive Strength of Carbon Nanotube–Cement Mortar Composites at Sub-Zero Temperatures. Crystals, 2021, 11, 1182.	1.0	4
362	Machine learning for high-fidelity prediction of cement hydration kinetics in blended systems. Materials and Design, 2021, 208, 109920.	3.3	26
363	Understanding the compressive strength degradation mechanism of cement-paste incorporating phase change material. Cement and Concrete Composites, 2021, 124, 104249.	4.6	20
364	Mechanochemical syngenite as hydration accelerator for anhydrite-based self-levelling floor screeds. Construction and Building Materials, 2021, 308, 124982.	3.2	5

#	Article	IF	CITATIONS
365	Effect of variability of hemp shiv on the setting of lime hemp concrete. Industrial Crops and Products, 2021, 171, 113915.	2.5	9
366	The personalized design and customization of bone cement can be realized by adjusting the carbonization process of modified tricalcium silicate. Ceramics International, 2021, 47, 32332-32341.	2.3	0
367	Production of antibacterial cement composites containing ZnO/lignin and ZnO–SiO2/lignin hybrid admixtures. Cement and Concrete Composites, 2021, 124, 104250.	4.6	38
368	The effect and mechanism of C–S–H-PCE nanocomposites on the early strength of mortar under different water-to-cement ratio. Journal of Building Engineering, 2021, 44, 103360.	1.6	8
369	The kinetic of calcium silicate hydrate formation from silica and calcium hydroxide nanoparticles. Journal of Colloid and Interface Science, 2022, 605, 33-43.	5.0	11
370	Effects of carbon nanotubes and carbon nanofibers on concrete properties. , 2021, , 171-245.		0
371	Physical compatibility between wax esters and triglycerides in hybrid shortenings and margarines prepared in rice bran oil. Journal of the Science of Food and Agriculture, 2018, 98, 1042-1051.	1.7	21
372	Material Challenges in the Manufacturing of Tailored Structures with Direct Write Technologies. , 2014, , 57-66.		1
373	Optimization of Clay Addition for the Enhancement of Pozzolanic Reaction in Nano-modified Cement Paste. , 2011, , 225-236.		4
374	The acceleration mechanism of nano-C-S-H particles on OPC hydration. Construction and Building Materials, 2020, 249, 118734.	3.2	85
375	Calcium-silicate-hydrate seeds as an accelerator for saving energy in cold weather concreting. Construction and Building Materials, 2020, 264, 120191.	3.2	30
376	Utilization of recycled concrete fines and powders to produce alkali-activated slag concrete blocks. Journal of Cleaner Production, 2020, 267, 122115.	4.6	67
377	THE EFFECT OF SILICA FUME ON THE DURABILITY OF MAGNESIUM OXYCHLORIDE CEMENT. Ceramics - Silikaty, 2019, , 338-346.	0.2	7
378	Phase Evolution of Oil Well Cements with Nano-additive at Elevated Temperature/Pressure. ACI Materials Journal, 2016, 113, .	0.3	2
379	Role of Nano-Silica on the Early-Age Performance of Natural Pozzolan-Based Blended Cement. ACI Materials Journal, 2018, 115, .	0.3	9
380	A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials. Nanotechnology Reviews, 2020, 9, 303-322.	2.6	74
381	Effects of nanoparticles on engineering performance of cementitious composites reinforced with PVA fibers. Nanotechnology Reviews, 2020, 9, 504-514.	2.6	23
382	Effects of Nanomaterials on the Hydration Kinetics and Rheology of Portland Cement Pastes. Advances in Civil Engineering Materials, 2015, 3, 20140021.	0.2	5

#	Article	IF	CITATIONS
383	Research of nanomodified portland cement compositions with high early age strength. Eastern-European Journal of Enterprise Technologies, 2016, 6, 50-57.	0.3	27
384	Influence of Additions of Anatase TiO2 Nanoparticles on Early-Age Properties of Cement-Based Materials. , 0, .		1
385	Influences and Mechanisms of Nano-C-S-H Gel Addition on Fresh Properties of the Cement-Based Materials with Sucrose as Retarder. Materials, 2020, 13, 2345.	1.3	12
386	Influence of Glass Silica Waste Nano Powder on the Mechanical and Microstructure Properties of Alkali-Activated Mortars. Nanomaterials, 2020, 10, 324.	1.9	47
387	Ultrafine portland cement performance. Materiales De Construccion, 2018, 68, 157.	0.2	4
388	Combined effect of nano-SiO ₂ and nano-Fe ₂ O ₃ on compressive strength, flexural strength, porosity and electrical resistivity in cement mortars. Materiales De Construccion, 2018, 68, 150.	0.2	8
389	Low-temperature (â^'10°C) curing of Portland cement paste – Synergetic effects of chloride-free antifreeze admixture, C–S–H seeds, and room-temperature pre-curing. Cement and Concrete Composites, 2022, 125, 104319.	4.6	29
390	Microstructure of CEM II/B-S Pastes Modified with Set Accelerating Admixtures. Materials, 2021, 14, 6300.	1.3	4
391	Physico-chemical characterization, bioactivity evaluation and cytotoxicity of PDA nanoparticles doped tricalcium silicate cements. Ceramics International, 2021, , .	2.3	1
392	Effects of Nano-CSH on the hydration process and mechanical property of cementitious materials. Journal of Sustainable Cement-Based Materials, 2022, 11, 378-388.	1.7	6
393	EARTH MASONRY UNIT: SUSTAINABLE CMU ALTERNATIVE. International Journal of GEOMATE, 2014, , .	0.1	3
394	Effects of Sugar and Hydrated Cement Powder on the Reduction in Heat of Hydration. Journal of the Korea Institute of Building Construction, 2014, 14, 135-142.	0.1	2
395	QUANTITATIVE HYDRATED SILICATE MONOMER IN HYDRATION OF ALITE AND CONSIDERATION OF CEMENT HYDRATION MECHANISM. Cement Science and Concrete Technology, 2015, 69, 2-9.	0.1	0
396	The Reduction of Maximum Hydration Temperature in Cement Paste Using Calcium Silicate Hydrates and Glucose. Journal of the Korea Concrete Institute, 2015, 27, 265-272.	0.1	0
397	Effect of Additional Surfaces on Ordinary Portland Cement Early-Age Hydration. Materials Sciences and Applications, 2017, 08, 859-872.	0.3	0
398	THE EFFECT OF SEEDING OF SYNTHETIC C-S-H WITH DIFFERENT C/S ON EARLY HYDRATION REACTION OF ALITE. Cement Science and Concrete Technology, 2019, 72, 10-17.	0.1	0
399	ANALYSIS ABOUT HYDRATION REACTIONS OF C ₂ S DERIVED FROM AMORPHOUS C-S-H WITH A HIGH C/S RATIO. Cement Science and Concrete Technology, 2019, 72, 18-24.	0.1	0
400	Glass Wool Residue: A Potential Supplementary Cementitious Material. ACI Materials Journal, 2019, 116,	0.3	1

	C	CITATION REPORT		
#	Article		IF	CITATIONS
401	Compressive Strength, Hydration and Pore Structure of Alkali-Activated Slag Mortars Integrating with Recycled Concrete Powder as Binders. KSCE Journal of Civil Engineering, 2022, 26, 795-805.		0.9	19
402	Application of the C-S-H Phase Nucleating Agents to Improve the Performance of Sustainable Concre Composites Containing Fly Ash for Use in the Precast Concrete Industry. Materials, 2021, 14, 6514.		1.3	62
403	Strengthening the very early-age structure of cementitious composites with coal fly ash via incorporating a novel nanoadmixture based on C-S-H phase activators. Construction and Building Materials, 2021, 312, 125426.		3.2	70
404	Cementing additives. , 2022, , 187-254.			6
405	C–S–H–Polycondensate nanocomposites as effective seeding materials for Portland composi cements. Cement and Concrete Composites, 2022, 125, 104278.	te	4.6	16
406	The counterbalance of the adverse side effects of releasing agent on the properties of cementitious materials with nano-particles. Cement and Concrete Composites, 2022, 125, 104300.		4.6	5
407	The chemical and physical origin of incineration ash reactivity in cementitious systems. Resources, Conservation and Recycling, 2022, 177, 106009.		5.3	12
408	Peculiarities of Nanomodified Portland Systems Structure Formation. Chemistry and Chemical Technology, 2019, 13, 510-517.		0.2	19
409	Acoustic Emission Characteristics of Cementitious Materials During Early Age Hydration. Lecture Notes in Civil Engineering, 2021, , 103-127.		0.3	1
410	Effect of nano-silica dispersed at different temperatures on the properties of cement-based material Journal of Building Engineering, 2022, 46, 103750.	5.	1.6	8
411	Mechanical and radiation shielding properties of concrete containing commercial boron carbide powder. Construction and Building Materials, 2021, 313, 125466.		3.2	23
412	Portland Cement: An Overview as a Root Repair Material. BioMed Research International, 2022, 202 1-13.	2,	0.9	11
413	New insights into the reaction of tricalcium silicate (C3S) with solutions to the end of the induction period. Cement and Concrete Research, 2022, 152, 106688.		4.6	19
414	Rheology and microstructure development of hydrating tricalcium silicate - implications for additive manufacturing in construction. Cement and Concrete Research, 2022, 152, 106651.		4.6	7
415	Comparing the effects of in-situ nano-calcite development and ex-situ nano-calcite addition on ceme hydration. Construction and Building Materials, 2022, 321, 126369.	ent	3.2	12
416	Early-Age Hydration Heat Evolution and Kinetics of Portland Cement Containing Nano-Silica at Different Temperatures. SSRN Electronic Journal, 0, , .		0.4	0
417	Promoting utilization rate of ground granulated blast furnace slag (GGBS): Incorporation of nanosilica to improve the properties of blended cement containing high volume GGBS. Journal of Cleaner Production, 2022, 332, 130096.		4.6	24
418	Printable Cement-Based Materials: Fresh Properties Measurements and Control. RILEM State-of-the-, Reports, 2022, , 99-136.	Art	0.3	3

#	Article	IF	CITATIONS
419	The Effect of Bacteria on Early Age Strength of CEM I and CEM II Cementitious Composites. Sustainability, 2022, 14, 773.	1.6	2
420	Calciumâ€silicateâ€hydrates/polycarboxylate ether nanocomposites doped by magnesium: Enhanced stability and accelerating effect on cement hydration. Journal of the American Ceramic Society, 2022, 105, 4930-4941.	1.9	9
421	Activation kinetic model and mechanisms for alkali-activated slag cements. Construction and Building Materials, 2022, 323, 126577.	3.2	12
422	Acceleration of cement hydration – A review of the working mechanisms, effects on setting time, and compressive strength development of accelerating admixtures. Construction and Building Materials, 2022, 323, 126554.	3.2	75
423	The role of nanomaterials in geopolymer concrete composites: A state-of-the-art review. Journal of Building Engineering, 2022, 49, 104062.	1.6	51
424	Enhanced early hydration and mechanical properties of cement-based materials with recycled concrete powder modified by nano-silica. Journal of Building Engineering, 2022, 50, 104175.	1.6	25
425	Effect of waste glass bottles-derived nanopowder as slag replacement on mortars with alkali activation: Durability characteristics. Case Studies in Construction Materials, 2021, 15, e00775.	0.8	12
426	The research on mechanism of C-S-H nanocrystal improving early properties of shotcrete at low temperature by thermodynamic modelling. Construction and Building Materials, 2022, 325, 126738.	3.2	13
427	Effect of n-C-S-H-PCE and slag powder on the autogenous shrinkage of high-strength steam-free pipe pile concrete. Construction and Building Materials, 2022, 325, 126815.	3.2	11
428	BASIC STUDY ON NUCLEATION SEEDING OF HIGH C/S RATIO C-S-H HYDRATED WITH HIGHLY REACTIVE <i>β</i> -C ₂ S SYNTHESIZED BY COMPLEX POLYMERIZATION METHOD. Cement Science and Concrete Technology, 2022, 75, 419-425.	0.1	0
429	Performance and microstructure of ultra-high-performance concrete (UHPC) with silica fume replaced by inert mineral powders. Construction and Building Materials, 2022, 327, 126996.	3.2	18
430	Highly dispersed and thermally stable PCE-LDH and its application as hardening accelerator for mortar. Construction and Building Materials, 2022, 328, 127072.	3.2	5
431	Effects of synthetic CSH-tartaric acid nanocomposites on the properties of ordinary Portland cement. Cement and Concrete Composites, 2022, 129, 104466.	4.6	25
432	Sub- and supercritical hydrothermal route for the synthesis of xonotlite nanofibers for application to green concrete materials. Journal of Supercritical Fluids, 2022, 184, 105583.	1.6	4
433	Artificial neural network for the prediction of the fresh properties of cementitious materials. Cement and Concrete Research, 2022, 156, 106761.	4.6	16
434	Reaction kinetics of supplementary cementitious materials in reactivity tests. Cement, 2022, 8, 100022.	0.9	8
435	Molecular modeling of chemical admixtures; opportunities and challenges. Cement and Concrete Research, 2022, 156, 106783.	4.6	16
436	Investigation on Variables Contributing to the Synthesis of C-S-H/PCE Nanocomposites by Co-Precipitation Method. Materials, 2021, 14, 7673.	1.3	4

# 437	ARTICLE Early-age hydration heat evolution and kinetics of Portland cement containing nano-silica at different temperatures. Construction and Building Materials, 2022, 334, 127363.	IF 3.2	CITATIONS
438	Additive Digital Casting: From Lab to Industry. Materials, 2022, 15, 3468.	1.3	6
439	Effect of Alkali Salts on the Hydration Process of Belite Clinker. Materials, 2022, 15, 3424.	1.3	2
440	Role of silica fume on hydration and strength development of ultra-high performance concrete. Construction and Building Materials, 2022, 338, 127600.	3.2	27
441	Suitability of Clinker Replacement by a Calcined Common Clay in Self-Consolidating Mortar—Impact on Rheology and Early Age Properties. Minerals (Basel, Switzerland), 2022, 12, 625.	0.8	2
442	Portland and Belite Cement Hydration Acceleration by C-S-H Seeds with Variable w/c Ratios. Materials, 2022, 15, 3553.	1.3	12
443	Geoinspired syntheses of materials and nanomaterials. Chemical Society Reviews, 2022, 51, 4828-4866.	18.7	4
444	Effect of Seawater on Hydration and Sulfate Resistance of Noncement Mortars. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	0
445	Improved strength performance of rubberized Concrete: Role of ground blast furnace slag and waste glass bottle nanoparticles amalgamation. Construction and Building Materials, 2022, 342, 128073.	3.2	10
446	Structure, morphology and compressive strength of Alkali-activated mortars containing waste bottle glass nanoparticles. Construction and Building Materials, 2022, 342, 128005.	3.2	6
447	Belite Limestone Calcined Clay Cements. SSRN Electronic Journal, 0, , .	0.4	0
448	Linking the elastic, electromagnetic and thermal properties of fresh cement. NDT and E International, 2022, 131, 102704.	1.7	1
449	Modification of the MCM-41 mesoporous silica and its influence on the hydration and properties of a cement matrix. Construction and Building Materials, 2022, 344, 128253.	3.2	5
450	Study on preparation and strengthening mechanism of new surface treatment agent of concrete at multi-scale. Construction and Building Materials, 2022, 346, 128404.	3.2	3
451	Curing Time Impacts on the Mechanical and Petrophysical Properties of a Laponite-Based Oil Well Cement. ACS Omega, 2022, 7, 31246-31259.	1.6	2
452	Carbon nanotubes do not provide strong seeding effect for the nucleation of C3S hydration. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	1.3	7
453	Development of Early Oil Well Cement Properties Using Laponite Particles. , 2022, , .		0
454	Recycling of plastic waste concrete to prepare an effective additive for early strength and late permeability improvement of cement paste. Construction and Building Materials, 2022, 347, 128581.	3.2	13

#	Article	IF	CITATIONS
455	Multi-scale structure of in-situ polymerized cementitious composites with improved flowability, strength, deformability and anti-permeability. Composites Part B: Engineering, 2022, 245, 110222.	5.9	12
456	C-S-H seeding activation of Portland and Belite cements: An enlightening in situ synchrotron powder diffraction study. Cement and Concrete Research, 2022, 161, 106946.	4.6	23
457	Impact of C-S-H seeding on hydration and strength of slag blended cement. Cement and Concrete Research, 2022, 161, 106935.	4.6	33
458	A new multifunctional additive for blended cements. Construction and Building Materials, 2022, 354, 129086.	3.2	3
459	Synthesis and Addition of Al-Substituted Tobermorite Particles to Cement Pastes. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	1
460	Layered double hydroxides (LDHs) modified cement-based materials: A systematic review. Nanotechnology Reviews, 2022, 11, 2857-2874.	2.6	3
461	Interfacial interactions and reinforcing mechanisms of cellulose and chitin nanomaterials and starch derivatives for cement and concrete strength and durability enhancement: A review. Nanotechnology Reviews, 2022, 11, 2673-2713.	2.6	3
462	Carbonation Resistance of Hybrid NanoSiO2 Modified Cementitious Surface Protection Materials. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 855-862.	0.4	2
463	Effects of sugarcane bagasse ash and nano eggshell powder on high-strength concrete properties. Case Studies in Construction Materials, 2022, 17, e01528.	0.8	11
464	Effects of the chemical treatment on coal-fired bottom ash for the utilization in fiber-reinforced cement composites. , 2019, 29, .		4
465	The Stabilization Mechanism of Nano-SiO2 Precursor Solution. Materials, 2022, 15, 7207.	1.3	1
466	Microstructure and Properties of C–S–H Synthesized in the Presence of Polycarboxylate Superplasticizer. Arabian Journal for Science and Engineering, 0, , .	1.7	3
467	Mechanical and microstructural performances of fly ash blended cement pastes with mixing CO2 during fresh stage. Construction and Building Materials, 2022, 358, 129444.	3.2	10
468	Carbonation, CO2 sequestration, and physical properties based on the mineral size of light burned MgO using carbonation accelerator. Journal of Cleaner Production, 2022, 379, 134648.	4.6	6
469	Limestone calcined clay binders based on a Belite-rich cement. Cement and Concrete Research, 2023, 163, 107018.	4.6	10
470	Nanotechnologies in the Field of Concrete Production. Lecture Notes in Networks and Systems, 2023, , 1573-1582.	0.5	1
471	Investigation on the Unusual Hydration and Hardening Process of a Portland Cement with Low Alkali Sulfate Content. Journal of Advanced Concrete Technology, 2022, 20, 653-662.	0.8	0
472	Strength performance and life cycle assessment of high-volume low-grade kaolin clay pozzolan concrete: A Ghanaian scenario. Case Studies in Construction Materials, 2022, 17, e01679.	0.8	1

		CITATION REPORT		
#	Article		IF	Citations
473	Enhanced alite dissolution by CAH10 addition. Cement and Concrete Research, 2023,	164, 107051.	4.6	0
474	Effect of Solvent Composition on Calcium–Silicon Ratio, Particle Size, and Morpholc Nanomaterials and Cement Properties. Journal of Materials in Civil Engineering, 2023,		1.3	2
475	Effect of elevated Al concentration on early-age hydration of Portland cement. Cemen Composites, 2023, 136, 104866.	t and Concrete	4.6	13
476	Study on the suitability of rice straw and silicate cement. Case Studies in Constructior 2023, 18, e01739.	n Materials,	0.8	1
477	Advances and current trends on the use of nanosilica in Portland cement-based compo overview. , 2022, , .	osites: An		0
478	Experimental Study on Early Strength and Hydration Heat of Spodumene Tailings Cem Materials. Materials, 2022, 15, 8846.	ented Backfill	1.3	2
479	The effect of polypropylene fiber on the curing time of class G oil well cement and its r petrophysical, and elastic properties. Journal of Petroleum Exploration and Production, 1181-1196.		1.2	2
480	Effect of various bio-deposition treatment techniques on recycled aggregate and recyc concrete. Journal of Building Engineering, 2023, 66, 105868.	cled aggregate	1.6	10
481	Nanomechanical characterization of 3D printed cement pastes. Journal of Building Eng 66, 105874.	gineering, 2023,	1.6	0
482	Effect of nano-reinforcing phase on the early hydration of cement paste: A review. Cor Building Materials, 2023, 367, 130147.	istruction and	3.2	10
483	Egyptian corals-based calcium silicate (CaS) nanopowders doped with zinc/copper for chemical stability and treatment of calvarial defects. Colloids and Surfaces A: Physicoc Engineering Aspects, 2023, 660, 130875.		2.3	2
484	Direct observation of C3S particle dissolution using fast nano X-ray computed tomogr and Concrete Research, 2023, 166, 107097.	raphy. Cement	4.6	6
485	Cement-based nano-engineered materials for eco-efficiency. , 2023, , 39-68.			0
486	Mechanism of regulating the mechanical properties and paste structure of supersulfat through ultrafine iron tailings powder. Cement and Concrete Composites, 2023, 140,	ed cement 105061.	4.6	5
487	State-of-art review of bacteria-based self-healing concrete: Biomineralization process, and mechanical properties. Construction and Building Materials, 2023, 378, 131198.	crack healing,	3.2	19
488	Novel in-situ controllably grown CSH: Synthesis, characterization and the effect on cer hydration. Cement and Concrete Composites, 2023, 139, 105044.	ment	4.6	6
489	Utilization of rock dust as cement replacement in cement composites: An alternative a sustainable mortar and concrete productions. Journal of Building Engineering, 2023, 6		1.6	17
490	Effect of seed emulsion on the early hydration behavior of basic magnesium sulfate ce Construction and Building Materials, 2023, 383, 131316.	ment.	3.2	1

#	Article	IF	CITATIONS
491	How nano-bubble water and nano-silica affect the air-voids characteristics and freeze-thaw resistance of air-entrained cementitious materials at low atmospheric pressure?. Journal of Building Engineering, 2023, 69, 106179.	1.6	2
492	Impurity-Free Synthesis of Calcium Silicate Hydrate Seed-Based Concrete Hardening Accelerator from Agricultural Waste. Journal of Materials in Civil Engineering, 2023, 35, .	1.3	0
493	Effects of using aqueous graphene on behavior and mechanical performance of cement-based composites. Construction and Building Materials, 2023, 368, 130466.	3.2	3
494	Direct observation of C3S particles greater than 10Âμ m during early hydration. Construction and Building Materials, 2023, 369, 130548.	3.2	1
495	Recent Advances in C-S-H Nucleation Seeding for Improving Cement Performances. Materials, 2023, 16, 1462.	1.3	21
496	Experimental study on the potential use of CO2 as an admixture in concrete. Innovative Infrastructure Solutions, 2023, 8, .	1.1	0
497	Effects of Using Aluminum Sulfate as an Accelerator and Acrylic Acid, Aluminum Fluoride, or Alkanolamine as a Regulator in Early Cement Setting. Materials, 2023, 16, 1620.	1.3	0
498	Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2023, 78, 215-221.	0.3	0
499	Catalysis and Regulation of Graphene Oxide on Hydration Properties and Microstructure of Cement-Based Materials. ACS Sustainable Chemistry and Engineering, 2023, 11, 5626-5643.	3.2	4
500	THE EFFECT OF VARYING ADDITION RATES AND CARBONATION OF HIGH Ca/Si RATIO C-S-H SYNTHESIZED BY COMPLEX POLYMERIZATION METHOD ON THE NUCLEATION SEEDING. Cement Science and Concrete Technology, 2023, 76, 537-544.	0.1	0
501	Physicochemical Impacts of In-Situ Mineralized CaCO ₃ on Very Early Hydration of Cement at Two Temperatures. ACS Sustainable Chemistry and Engineering, 2023, 11, 6261-6271.	3.2	2
502	Novel agricultural waste based hardening accelerator for early strength development of fly ash-based concrete. Materials Today: Proceedings, 2023, , .	0.9	0
503	Early hydration characteristics and kinetics model of cement pastes containing internal curing materials with different absorption behaviors. Construction and Building Materials, 2023, 383, 131412.	3.2	4
524	The influence of the addition of concrete slurry waste on the hydration process of Portland cement. AIP Conference Proceedings, 2023, , .	0.3	0
557	Utilization of Synthetic Gyrolite in Ordinary Portland Cement. , 2024, , 211-261.		0
566	Geochemical applications of mineral-water interactions. , 2024, , .		0