Electrostatic Confinement of Electrons in an Integrable

Physical Review Letters 102, 226803 DOI: 10.1103/physrevlett.102.226803

Citation Report

#	Article	IF	CITATIONS
1	Narrow depression in the density of states at the Dirac point in disordered graphene. Physical Review B, 2009, 80, .	1.1	10
2	Spectral Properties of Rotationally Symmetric Massless Dirac Operators. Letters in Mathematical Physics, 2010, 92, 231-241.	0.5	4
3	Diffusion and Criticality in Undoped Graphene with Resonant Scatterers. Physical Review Letters, 2010, 105, 266803.	2.9	96
4	Signatures of Klein tunneling in disordered graphene <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>p</mml:mi><mml:mtext>â^`</mml:mtext><mml:mi>n</mml:mi><mml:m Physical Review B. 2010. 81, .</mml:m </mml:mrow></mml:math 	11 text>â^' <td>nmi:mtext></td>	nmi:mtext>
5	Charge Transport in Graphene with Resonant Scatterers. Physical Review Letters, 2010, 104, 076802.	2.9	89
6	Rotation-dependent epitaxial relations between graphene and the Si-terminated SiC substrate. Physical Review B, 2010, 82, .	1.1	8
7	Metallic proximity effect in ballistic graphene with resonant scatterers. Semiconductor Science and Technology, 2010, 25, 034007.	1.0	3
8	Fabry-Pérot resonances in graphene microstructures: Influence of a magnetic field. Physical Review B, 2010, 82, .	1.1	79
9	Quantum dots and spin qubits in graphene. Nanotechnology, 2010, 21, 302001.	1.3	145
10	Magnetic Manipulation of Massless Dirac Fermions in Graphene Quantum Dot. Communications in Theoretical Physics, 2010, 54, 1134-1138.	1.1	2
11	Wave packet revivals in a graphene quantum dot in a perpendicular magnetic field. Physical Review B, 2010, 82, .	1.1	12
12	Resonant scattering in graphene with a gate-defined chaotic quantum dot. Physical Review B, 2011, 84, .	1.1	17
13	Electric transport through circular graphene quantum dots: Presence of disorder. Physical Review B, 2011, 84, .	1.1	24
14	Zero-energy states in graphene quantum dots and rings. Physical Review B, 2011, 84, .	1.1	80
15	Quantum chaotic scattering in graphene systems. Europhysics Letters, 2011, 94, 40004.	0.7	38
16	Spin-polarized tunneling in a ferromagnetic graphene junction: Interplay between the exchange interaction and the orbital effect of the magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 327-332.	1.3	3
17	Edge effects in graphene nanostructures: From multiple reflection expansion to density of states. Physical Review B, 2011, 84, .	1.1	47
18	Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport. Physics Reports, 2011, 503, 77-114.	10.3	338

#	Article	IF	CITATIONS
19	Edge effects in graphene nanostructures: Semiclassical theory of spectral fluctuations and quantum transport. Physical Review B, 2011, 84, .	1.1	21
20	Electrostatic quantum dots in a suspended graphene monolayer. Physical Review B, 2011, 84, .	1.1	8
21	Minigap isotropy and broken chirality in graphene with periodic corrugation enhanced by cluster superlattices. Physical Review B, 2012, 85, .	1.1	29
22	Resonant finite-size impurities in graphene, unitary limit, and Friedel oscillations. Physical Review B, 2012, 86, .	1.1	11
23	Transconductance Fluctuations as a Probe for Interaction-Induced Quantum Hall States in Graphene. Physical Review Letters, 2012, 109, 056602.	2.9	32
24	Multipole-based modal analysis of gate-defined quantum dots in graphene. European Physical Journal B, 2013, 86, 1.	0.6	3
25	Variational calculations on the energy levels of graphene quantum antidots. European Physical Journal B, 2013, 86, 1.	0.6	6
26	Trapping Massless Dirac Particles in a Rotating Saddle. Physical Review Letters, 2013, 111, 100403.	2.9	5
27	Confined states in quantum dots defined within finite flakes of bilayer graphene: Coupling to the edge, ionization threshold, and valley degeneracy. Physical Review B, 2013, 88, .	1.1	22
28	Interplay of Aharonov-Bohm and Berry phases in gate-defined graphene quantum dots. Physical Review B, 2013, 87, .	1.1	19
29	Spatial fluctuations in barrier height at the graphene–silicon carbide Schottky junction. Nature Communications, 2013, 4, 2752.	5.8	53
30	COULOMB BLOCKADE IN GRAPHENE QUANTUM DOTS. Modern Physics Letters B, 2013, 27, 1350008.	1.0	6
31	Pseudo-Spin–Orbit Coupling in Graphene within Hydrogenic Impurity Context. Journal of the Physical Society of Japan, 2013, 82, 094706.	0.7	3
32	Mie scattering analog in graphene: Lensing, particle confinement, and depletion of Klein tunneling. Physical Review B, 2013, 87, .	1.1	68
33	Enlarged band gap and electron switch in graphene-based step-barrier structure. Applied Physics Letters, 2013, 103, 192102.	1.5	1
34	Electron dynamics in graphene with gate-defined quantum dots. Europhysics Letters, 2013, 104, 47010.	0.7	20
35	Bound States and Supercriticality in Graphene-Based Topological Insulators. Crystals, 2013, 3, 14-27.	1.0	6
36	Dot-bound and dispersive states in graphene quantum dot superlattices. Physical Review B, 2014, 89, .	1.1	16

#	Article	IF	CITATIONS
37	Scattering of two-dimensional massless Dirac electrons by a circular potential barrier. Physical Review B, 2014, 90, .	1.1	50
38	Emergence of Photoswitchable States in a Graphene–Azobenzene–Au Platform. Nano Letters, 2014, 14, 6823-6827.	4.5	40
39	Imaging localization of quasibound states in graphene antidots. Physical Review B, 2014, 90, .	1.1	1
40	Eigenvalues of a One-Dimensional Dirac Operator Pencil. Annales Henri Poincare, 2014, 15, 2321-2377.	0.8	6
41	Quasi-exact solution to the Dirac equation for the hyperbolic-secant potential. Physical Review A, 2014, 89, .	1.0	72
42	On zero energy states in graphene. Europhysics Letters, 2014, 108, 20004.	0.7	24
43	Single-charge transport in graphene. , 2014, , 292-323.		0
44	Density of states as a probe of electrostatic confinement in graphene. Physical Review B, 2014, 89, .	1.1	18
45	Electrical and Photo-Induced Effects in Graphene Channels When Interfaced with Quantum Dots. Materials Research Society Symposia Proceedings, 2015, 1727, 62.	0.1	1
46	Symmetry-breaking effects on spin and electronic transport in graphene. Physical Review B, 2015, 91, .	1.1	27
47	Optimal traps in graphene. Physical Review B, 2015, 92, .	1.1	31
48	Electron confinement in graphene with gate-defined quantum dots. Physica Status Solidi (B): Basic Research, 2015, 252, 1868-1871.	0.7	18
49	Schnol's Theorem and Spectral Properties of Massless Dirac Operators with Scalar Potentials. Letters in Mathematical Physics, 2015, 105, 1479-1497.	0.5	3
50	Modified Kortweg-de Vries equation approach to zero-energy states of graphene. Europhysics Letters, 2015, 112, 47004.	0.7	9
51	Scattering of two-dimensional Dirac fermions on gate-defined oscillating quantum dots. Physical Review B, 2015, 91, .	1.1	26
52	Creating and probing electron whispering-gallery modes in graphene. Science, 2015, 348, 672-675.	6.0	170
53	Graphene quantum dot with a hydrogenic impurity. Journal of Physics: Conference Series, 2016, 707, 012008.	0.3	0
54	Berry phase jumps and giant nonreciprocity in Dirac quantum dots. Physical Review B, 2016, 94, .	1.1	24

ARTICLE IF CITATIONS # The transfer matrix approach to circular graphene quantum dots. Journal of Physics Condensed 55 0.7 3 Matter, 2016, 28, 275301. Magnetic field dependence of energy levels in biased bilayer graphene quantum dots. Physical Review B, 1.1 2016,93,. Fluctuation phenomena in chaotic Dirac quantum dots: Artificial atoms on graphene flakes. Physical 57 1.1 16 Review B, 2016, 93, . Energy levels of hybrid monolayer-bilayer graphene quantum dots. Physical Review B, 2016, 93, . Graphene quantum dot with a hydrogenic impurity. Journal of Physics: Conference Series, 2016, 707, 59 0.3 0 012014. Chiral interface states in graphene <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mtext>â^²</mml:mtext><mmbmi>n< junctions. Physical Review B, 2016, 94, . Imaging electrostatically confined Dirac fermions in graphene quantum dots. Nature Physics, 2016, 12, 61 6.5 176 1032-1036. Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots. Nature Physics, 2016, 12, 1069-1075. 6.5 150 General Green's function formalism for layered systems: Wave function approach. Physical Review B, 63 1.1 15 2017, 95, . Bielectron vortices in two-dimensional Dirac semimetals. Nature Communications, 2017, 8, 897. 5.8 48 Massless Dirac fermions trapping in a quasi-one-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi><mml:mi>p</mml:mi><mml:mi>n/@mml:mi>< 65 junction of a continuous graphene monolayer. Physical Review B, 2017, 95, . On the density of states of circular graphene quantum dots. Journal of Physics Condensed Matter, 2017, 29, 405301. Helical level structure of Dirac potential wells. Physical Review B, 2017, 96, . 67 1.1 2 Excitonic physics in a Dirac quantum dot. Physical Review B, 2017, 96, . 1.1 Zero-bias conductance anomaly in graphene dots. Japanese Journal of Applied Physics, 2017, 56, 06GE07. 69 0.8 1 Localization of massless Dirac particles via spatial modulations of the Fermi velocity. Journal of 29 Physics Condensed Matter, 2017, 29, 315301. Unusual quantum confined Stark effect and Aharonov-Bohm oscillations in semiconductor quantum 71 1.1 24 rings with anisotropic effective masses. Physical Review B, 2017, 95, . Determining the strength of magnetic and potential scattering of magnetic impurities on the surface 1.1 of a topological insulator via quantum corrals. Physical Review B, 2017, 96, .

#	Article	IF	CITATIONS
73	Electronic scattering, focusing, and resonance by a spherical barrier in Weyl semimetals. Journal of Physics Condensed Matter, 2018, 30, 215303.	0.7	3
74	Generating atomically sharp <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mo>â^`junctions in graphene and testing quantum electron optics on the nanoscale. Physical Review B, 2018, 97</mml:mo></mml:mrow></mml:math 	10> <mml:r 1.1</mml:r 	ni չŋ
75	Relativistic quantum chaos—An emergent interdisciplinary field. Chaos, 2018, 28, 052101.	1.0	25
76	Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera. Physical Review Letters, 2018, 120, 124101.	2.9	27
77	Generalized Dirac oscillators with position-dependent mass. Europhysics Letters, 2018, 124, 60003.	0.7	14
78	Confining massless Dirac particles in two-dimensional curved space. Physical Review B, 2018, 98, .	1.1	18
79	Zero energy states for a class of two-dimensional potentials in graphene. Modern Physics Letters B, 2018, 32, 1850329.	1.0	7
80	Decay of semiclassical massless Dirac fermions from integrable and chaotic cavities. Physical Review B, 2018, 98, .	1.1	5
81	Relativistic quantum chaos. Physics Reports, 2018, 753, 1-128.	10.3	38
82	Electrostatic quantum dots in silicene. Scientific Reports, 2018, 8, 7166.	1.6	15
83	2D materials for quantum information science. Nature Reviews Materials, 2019, 4, 669-684.	23.3	305
84	Enhanced indirect exchange interactions in the presence of circular potentials in graphene. Physical Review B, 2019, 100, .	1.1	3
85	Scattering in graphene quantum dots under generalized uncertainty principle. International Journal of Modern Physics A, 2019, 34, 1950212.	0.5	5
86	Splitting of conductance resonance through a magnetic quantum dot in graphene. Physical Review B, 2019, 100, .	1.1	13
87	New solutions for graphene with scalar potentials by means of generalized intertwining. European Physical Journal Plus, 2019, 134, 1.	1.2	7
88	Numerical study of Klein quantum dots in graphene systems. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	9
89	Darboux transformations for the massless Dirac equation with matrix potential: Radially symmetric zero-energy states. European Physical Journal Plus, 2019, 134, 1.	1.2	3
90	Pseudospin-1 wave scattering that defies chaos <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi> -spoiling and Klein tunneling. Physical Review B, 2019, 99, .</mml:math 	1.1	13

#	Article	IF	CITATIONS
91	Nanoscale detection of valley-dependent spin splitting around atomic defects of graphene. 2D Materials, 2019, 6, 031005.	2.0	14
92	Dirac electron scattering from a cluster of electrostatically defined quantum dots in graphene. Physical Review B, 2019, 99, .	1.1	7
93	An ultrafast quantum thermometer from graphene quantum dots. Nanoscale Advances, 2019, 1, 1772-1783.	2.2	15
94	Zeroâ€Energy Vortices in Dirac Materials. Physica Status Solidi (B): Basic Research, 2019, 256, 1800584.	0.7	12
95	Trapping Charge Carriers in Low-Dimensional Dirac Materials. International Journal of Nanoscience, 2019, 18, 1940001.	0.4	7
96	Wronskian representation of second-order Darboux transformations for SchrĶdinger equations with quadratically energy-dependent potentials. Physica Scripta, 2020, 95, 015001.	1.2	2
97	Quasi-bound states in an NPN-type nanometer-scale graphene quantum dot under a magnetic field. Scientific Reports, 2020, 10, 20426.	1.6	7
98	Evolution of quasi-bound states in the circular n–p junction of bilayer graphene under magnetic field. Scientific Reports, 2020, 10, 16256.	1.6	3
99	Electronic properties of Î \pm â 2 ?3 quantum dots in magnetic fields. European Physical Journal B, 2020, 93, 1.	0.6	3
100	Guided modes and terahertz transitions for two-dimensional Dirac fermions in a smooth double-well potential. Physical Review A, 2020, 102, .	1.0	8
101	Perspectives on relativistic quantum chaos. Communications in Theoretical Physics, 2020, 72, 047601.	1.1	6
102	Comprehensive Electrostatic Modeling of Exposed Quantum Dots in Graphene/Hexagonal Boron Nitride Heterostructures. Nanomaterials, 2020, 10, 1154.	1.9	5
103	Quantitative study of electronic whispering gallery modes in electrostatic-potential induced circular graphene junctions. Journal of Physics Condensed Matter, 2020, 32, 255502.	0.7	3
104	Influence of Coupling Strength Between a Magnetic Quantum Dot and Quantum Hall Edge Channels on Valley-isospin-dependent Dirac Fermion Transport. Journal of the Korean Physical Society, 2020, 76, 318-322.	0.3	0
105	Circular quantum dots in twisted bilayer graphene. Physical Review B, 2020, 101, .	1.1	19
106	Quantum dynamics for Al-doped graphene composite sheet under hydrogen atom impact. Applied Mathematical Modelling, 2021, 90, 1120-1129.	2.2	14
107	Single charge transport in graphene. , 2021, , 85-115.		0
108	Dirac fermion metagratings in graphene. Npj 2D Materials and Applications, 2021, 5, .	3.9	7

#	ARTICLE	IF	CITATIONS
109	Super skew scattering in two-dimensional Dirac material systems with a flat band. Physical Review B, 2021, 103, .	1.1	7
110	Valley current generation using biased bilayer graphene dots. Physical Review B, 2021, 103, .	1.1	9
111	Density of states analysis of electrostatic confinement in gapped graphene. Solid State Communications, 2021, 333, 114335.	0.9	4
112	Super-Klein tunneling of Dirac fermions through electrostatic gratings in graphene. Physical Review B, 2020, 102, .	1.1	17
113	Electrical confinement in a spectrum of two-dimensional Dirac materials with classically integrable, mixed, and chaotic dynamics. Physical Review Research, 2020, 2, .	1.3	6
114	Pseudospin modulation in coupled graphene systems. Physical Review Research, 2020, 2, .	1.3	4
115	Resonant scattering of Dice quasiparticles on oscillating quantum dots. European Physical Journal B, 2020, 93, 1.	0.6	2
116	Electronic Transport in Graphene. , 2012, , 59-94.		0
117	Off-plane Impurity Effects in Graphene Quantum Dots. Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi, 2015, 1, .	0.1	0
118	Summary, Conclusions, and Perspectives. Lecture Notes in Physics, 2017, , 219-224.	0.3	0
119	Dirac fermion optics and directed emission from single- and bilayer graphene cavities. Physical Review B, 2021, 104, .	1.1	9
120	Scattering in gapped graphene quantum dot with magnetic flux. Physica Scripta, 2020, 95, 105805.	1.2	1
121	Recent progresses of quantum confinement in graphene quantum dots. Frontiers of Physics, 2022, 17, 1.	2.4	31
122	Isolated and hybrid bilayer graphene quantum rings. Physical Review B, 2022, 105, .	1.1	5
123	Dirac fermions in armchair graphene nanoribbons trapped by electric quantum dots. Physical Review B, 2022, 105, .	1.1	4
124	Manipulating electron waves in graphene using carbon nanotube gating. Physical Review B, 2022, 105, .	1.1	4
125	Massive and massless two-dimensional Dirac particles in electric quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2022, , 115312.	1.3	1
126	Electron Metasurfaces in Graphene. SSRN Electronic Journal, 0, , .	0.4	0

		CITATION REPORT		
#	Article		IF	Citations
127	Zero-Energy States in Graphene Quantum Dot with Wedge Disclination. SSRN Electror	nic Journal, 0, , .	0.4	0
128	A new class of solvable two-dimensional scalar potentials for graphene. European Phys Plus, 2022, 137, .	sical Journal	1.2	2
129	Graphene Dirac fermions in symmetric electric and magnetic fields: the case of an elec well. Physica Scripta, 2023, 98, 015816.	tric square:	1.2	3
130	Zero energy states of Dirac equation in (2 + 1)-dimensional curved spacetime. Modern 2022, 37, .	Physics Letters A,	0.5	0
131	Electron Propagation in Molybdenum Disulfide Quantum Dot in the Presence of Magne Journal of Low Temperature Physics, 2023, 211, 29-44.	etic Flux.	0.6	1
132	Quantum confinement in Dirac-like nanostructures. , 2024, , 344-349.			0
133	Electron metasurfaces in graphene. Physical Review B, 2023, 107, .		1.1	0