Shaping nano-/micro-particles for enhanced vascular in

Nanotechnology 20, 495101 DOI: 10.1088/0957-4484/20/49/495101

Citation Report

#	Article	IF	CITATIONS
1	In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice. International Journal of Pharmaceutics, 2010, 402, 190-197.	2.6	89
2	Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 2010, 9, 615-627.	21.5	3,124
3	Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opinion on Drug Delivery, 2010, 7, 479-495.	2.4	263
4	Dynamic and cellular interactions of nanoparticles in vascular-targeted drug delivery (review). Molecular Membrane Biology, 2010, 27, 190-205.	2.0	51
5	Dynamic and cellular interactions of nanoparticles in vascular-targeted drug delivery (review). Molecular Membrane Biology, 2010, 27, 312-327.	2.0	46
6	Aspect Ratio Determines the Quantity of Mesoporous Silica Nanoparticle Uptake by a Small GTPase-Dependent Macropinocytosis Mechanism. ACS Nano, 2011, 5, 4434-4447.	7.3	330
7	The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology, 2011, 22, 115101.	1.3	204
8	Multi-stage delivery nano-particle systems for therapeutic applications. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 317-329.	1.1	127
9	Nanoinformatics: an emerging area of information technology at the intersection of bioinformatics, computational chemistry and nanobiotechnology. Biological Research, 2011, 44, 43-51.	1.5	27
10	Size of the nanovectors determines the transplacental passage in pregnancy: study in rats. American Journal of Obstetrics and Gynecology, 2011, 204, 546.e5-546.e9.	0.7	41
11	Dissipative particle dynamics simulation of circular and elliptical particles motion in 2D laminar shear flow. Microfluidics and Nanofluidics, 2011, 10, 1127-1134.	1.0	11
12	More Effective Nanomedicines through Particle Design. Small, 2011, 7, 1919-1931.	5.2	403
13	Novel platforms for vascular carriers with controlled geometry. IUBMB Life, 2011, 63, 596-606.	1.5	16
15	A microfluidics approach towards high-throughput pathogen removal from blood using margination. Biomicrofluidics, 2012, 6, 24115-2411513.	1.2	79
16	Dynamic Factors Controlling Targeting Nanocarriers to Vascular Endothelium. Current Drug Metabolism, 2012, 13, 70-81.	0.7	27
17	Imaging Metastasis Using an Integrin-Targeting Chain-Shaped Nanoparticle. ACS Nano, 2012, 6, 8783-8795.	7.3	128
18	Nanovector delivery of siRNA for cancer therapy. Cancer Gene Therapy, 2012, 19, 367-373.	2.2	156
19	Multifunctional to multistage delivery systems: The evolution of nanoparticles for biomedical applications. Science Bulletin, 2012, 57, 3961-3971.	1.7	45

	CITATION R	Citation Report		
#	Article	IF	Citations	
21	Cardiovascular Nanomedicine: Challenges and Opportunities. , 2012, , 249-281.		3	
22	The preferential targeting of the diseased microvasculature by disk-like particles. Biomaterials, 2012, 33, 5504-5513.	5.7	140	
23	Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. Journal of Controlled Release, 2012, 158, 148-155.	4.8	177	
24	Increased Tumor Homing and Tissue Penetration of the Filamentous Plant Viral Nanoparticle <i>Potato virus X</i> . Molecular Pharmaceutics, 2013, 10, 33-42.	2.3	139	
25	Design rules for nanomedical engineering: from physical virology to the applications of virus-based materials in medicine. Journal of Biological Physics, 2013, 39, 301-325.	0.7	53	
26	Biocompatible Shaped Particles from Dried Multilayer Polymer Capsules. Biomacromolecules, 2013, 14, 3830-3841.	2.6	88	
27	Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10753-10758.	3.3	554	
28	Microfluidic System for Facilitated Quantification of Nanoparticle Accumulation to Cells Under Laminar Flow. Annals of Biomedical Engineering, 2013, 41, 89-99.	1.3	42	
29	Molecular weight controls the elongation of oblate-shaped degradable poly(Î ³ -benzyl-l-glutamate)nanoparticles. International Journal of Pharmaceutics, 2013, 452, 292-299.	2.6	19	
30	Multistage delivery of chemotherapeutic nanoparticles for breast cancer treatment. Cancer Letters, 2013, 334, 245-252.	3.2	65	
31	Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents. Journal of Materials Chemistry B, 2013, 1, 1482.	2.9	95	
32	Shape matters: the diffusion rates of TMV rods and CPMV icosahedrons in a spheroid model of extracellular matrix are distinct. Biomaterials Science, 2013, 1, 581.	2.6	64	
33	The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow. Biomaterials, 2013, 34, 5863-5871.	5.7	104	
34	Engineering discoidal polymeric nanoconstructs with enhanced magneto-optical properties for tumor imaging. Biomaterials, 2013, 34, 5402-5410.	5.7	41	
35	Patient-Specific Computational Modeling and Magnetic Nanoconstructs: Tools for Maximizing the Efficacy of Stem Cell-Based Therapies. Methodist DeBakey Cardiovascular Journal, 2013, 9, 223-228.	0.5	1	
36	A Computational Model for Predicting Nanoparticle Accumulation in Tumor Vasculature. PLoS ONE, 2013, 8, e56876.	1.1	88	
37	Shape-Mediated Biological Effects of Mesoporous Silica Nanoparticles. Journal of Biomedical Nanotechnology, 2014, 10, 2508-2538.	0.5	45	
38	A Bayesian hierarchical model for maximizing the vascular adhesion of nanoparticles. Computational Mechanics, 2014, 53, 539-547.	2.2	1	

#	Article	IF	CITATIONS
39	Guidelines for the Design of Magnetic Nanorobots to Cross the Blood–Brain Barrier. IEEE Transactions on Robotics, 2014, 30, 81-92.	7.3	23
40	Shaping cancer nanomedicine: the effect of particle shape on the <i>in vivo</i> journey of nanoparticles. Nanomedicine, 2014, 9, 121-134.	1.7	493
41	Multiscale modeling and uncertainty quantification in nanoparticle-mediated drug/gene delivery. Computational Mechanics, 2014, 53, 511-537.	2.2	52
42	pH-responsive hydrogel cubes for release of doxorubicin in cancer cells. Journal of Materials Chemistry B, 2014, 2, 2494-2507.	2.9	61
43	InÂvivo evaluation of vascular-targeted spheroidal microparticles for imaging and drug delivery application in atherosclerosis. Atherosclerosis, 2014, 237, 279-286.	0.4	37
44	Internalization of Red Blood Cell-Mimicking Hydrogel Capsules with pH-Triggered Shape Responses. ACS Nano, 2014, 8, 5725-5737.	7.3	90
45	Molecular farming of fluorescent virus-based nanoparticles for optical imaging in plants, human cells and mouse models. Biomaterials Science, 2014, 2, 784.	2.6	47
46	The effect of multistage nanovector targeting of VEGFR2 positive tumor endothelia on cell adhesion and local payload accumulation. Biomaterials, 2014, 35, 9824-9832.	5.7	29
47	Dual-Modal Magnetic Resonance and Fluorescence Imaging of Atherosclerotic Plaques in Vivo Using VCAM-1 Targeted Tobacco Mosaic Virus. Nano Letters, 2014, 14, 1551-1558.	4.5	145
48	Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer. Cancer Letters, 2014, 352, 97-101.	3.2	31
49	pH-Sensitive Tubular Polymersomes: Formation and Applications in Cellular Delivery. ACS Nano, 2014, 8, 4650-4661.	7.3	91
50	Targeted nanotechnology for cancer imaging. Advanced Drug Delivery Reviews, 2014, 76, 79-97.	6.6	160
51	Particle Margination and Its Implications on Intravenous Anticancer Drug Delivery. AAPS PharmSciTech, 2014, 15, 762-771.	1.5	64
52	USNCTAM perspectives on mechanics in medicine. Journal of the Royal Society Interface, 2014, 11, 20140301.	1.5	35
53	Treatment of cancer micrometastasis using a multicomponent chain-like nanoparticle. Journal of Controlled Release, 2014, 173, 51-58.	4.8	46
54	Size-Dependent Nanoparticle Uptake by Endothelial Cells in a Capillary Flow System. Journal of Nanotechnology in Engineering and Medicine, 2015, 6, .	0.8	2
56	Analysis of force acting on the non-spherical particle near a wall. Biomedical Engineering Letters, 2015, 5, 289-295.	2.1	5
57	Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications. Expert Opinion on Drug Delivery, 2015, 12, 481-492.	2.4	58

#	Article	IF	CITATIONS
58	Emergence and Utility of Nonspherical Particles in Biomedicine. Industrial & Engineering Chemistry Research, 2015, 54, 4043-4059.	1.8	52
59	Detection and Imaging of Aggressive Cancer Cells Using an Epidermal Growth Factor Receptor (EGFR)-Targeted Filamentous Plant Virus-Based Nanoparticle. Bioconjugate Chemistry, 2015, 26, 262-269.	1.8	50
60	Treatment of Invasive Brain Tumors Using a Chain-like Nanoparticle. Cancer Research, 2015, 75, 1356-1365.	0.4	63
61	The Impact of Aspect Ratio on the Biodistribution and Tumor Homing of Rigid Softâ€Matter Nanorods. Advanced Healthcare Materials, 2015, 4, 874-882.	3.9	148
62	Shape control in engineering of polymeric nanoparticles for therapeutic delivery. Biomaterials Science, 2015, 3, 894-907.	2.6	93
63	Multistage vector (MSV) therapeutics. Journal of Controlled Release, 2015, 219, 406-415.	4.8	52
64	Shaping bio-inspired nanotechnologies to target thrombosis for dual optical-magnetic resonance imaging. Journal of Materials Chemistry B, 2015, 3, 6037-6045.	2.9	68
65	Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood. Cellular and Molecular Bioengineering, 2015, 8, 137-150.	1.0	29
66	To Target or Not to Target: Active vs. Passive Tumor Homing of Filamentous Nanoparticles Based on Potato virus X. Cellular and Molecular Bioengineering, 2015, 8, 433-444.	1.0	34
67	Stealth filaments: Polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X. Acta Biomaterialia, 2015, 19, 166-179.	4.1	79
68	Dense nanoparticles exhibit enhanced vascular wall targeting over neutrally buoyant nanoparticles in human blood flow. Acta Biomaterialia, 2015, 21, 99-108.	4.1	27
69	Virusâ€based nanomaterials as positron emission tomography and magnetic resonance contrast agents: from technology development to translational medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 708-721.	3.3	41
70	Red blood cells affect the margination of microparticles in synthetic microcapillaries and intravital microcirculation as a function of their size and shape. Journal of Controlled Release, 2015, 217, 263-272.	4.8	82
71	Characteristics of drag and lift forces on a hemisphere under linear shear. Journal of Mechanical Science and Technology, 2015, 29, 4223-4230.	0.7	8
72	Interaction between drug delivery vehicles and cells under the effect of shear stress. Biomicrofluidics, 2015, 9, 052605.	1.2	25
73	Drug carrier interaction with blood: a critical aspect for high-efficient vascular-targeted drug delivery systems. Therapeutic Delivery, 2015, 6, 915-934.	1.2	13
74	The importance of nanoparticle shape in cancer drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 129-142.	2.4	455
75	Size Dependent Kinetics of Gold Nanorods in EPR Mediated Tumor Delivery. Theranostics, 2016, 6, 2039-2051.	4.6	81

		CITATION REPORT		
#	Article		IF	CITATIONS
76	Inorganic nanoflotillas as engineered particles for drug and gene delivery. , 2016, , 429	-483.		5
77	Role of particle size, shape, and stiffness in design of intravascular drug delivery syster from computations, experiments, and nature. Wiley Interdisciplinary Reviews: Nanome Nanobiotechnology, 2016, 8, 255-270.		3.3	88
78	Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. Journal of Controlled Release, 2016, 235, 34-47.		4.8	1,018
79	Serum albumin â€~camouflage' of plant virus based nanoparticles prevents their an and enhances pharmacokinetics. Biomaterials, 2016, 89, 89-97.	ntibody recognition	5.7	78
80	Multi-ligand functionalized particle design for cell targeting and drug delivery. Biophys Chemistry, 2016, 213, 25-31.	ical	1.5	10
81	Inertial effects on cylindrical particle migration in linear shear flow near a wall. Microflu Nanofluidics, 2016, 20, 1.	idics and	1.0	10
82	Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer. Jour Nanobiotechnology, 2016, 14, 33.	nal of	4.2	56
83	Adhesion characteristics of nano/micro-sized particles with dual ligands with different distances. RSC Advances, 2016, 6, 89785-89793.	interaction	1.7	1
84	Direct Tracking of Particles and Quantification of Margination in Blood Flow. Biophysic 2016, 111, 1487-1495.	al Journal,	0.2	32
85	Rescue of mitochondrial function in -mutant fibroblasts using drug loaded PMPC-PDPA and tubular polymersomes. Neuroscience Letters, 2016, 630, 23-29.	o polymersomes	1.0	7
86	Nanocarrier-Based Anticancer Therapies with the Focus on Strategies for Targeting the Microenvironment. Fundamental Biomedical Technologies, 2016, , 67-122.	Tumor	0.2	0
87	Shape-Adaptable Polymeric Particles for Controlled Delivery. Macromolecules, 2016, 4	9, 8373-8386.	2.2	48
88	The Importance of Particle Geometry in Design of Therapeutic and Imaging Nanovecto Delivery Science and Technology, 2016, , 157-200.	rs. Advances in	0.4	1
89	A combined Lattice Boltzmann and Immersed boundary approach for predicting the va of differently shaped particles. Computers and Fluids, 2016, 136, 260-271.	scular transport	1.3	23
90	Shape matters when engineering mesoporous silica-based nanomedicines. Biomaterial 575-591.	s Science, 2016, 4,	2.6	75
91	Cell and nanoparticle transport in tumour microvasculature: the role of size, shape and functionality of nanoparticles. Interface Focus, 2016, 6, 20150086.	surface	1.5	79
92	Vascular bursts enhance permeability of tumour blood vessels and improve nanopartic Nature Nanotechnology, 2016, 11, 533-538.	le delivery.	15.6	338
93	Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine: Nar Biology, and Medicine, 2016, 12, 317-332.	notechnology,	1.7	145

#	Article	IF	CITATIONS
94	Recent advances in polymeric micelles for anti-cancer drug delivery. European Journal of Pharmaceutical Sciences, 2016, 83, 184-202.	1.9	392
95	Roadmap to Clinical Use of Gold Nanoparticles for Radiation Sensitization. International Journal of Radiation Oncology Biology Physics, 2016, 94, 189-205.	0.4	182
96	Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale, 2017, 9, 2348-2357.	2.8	108
97	Improved Targeting of Cancers with Nanotherapeutics. Methods in Molecular Biology, 2017, 1530, 13-37.	0.4	11
98	An Approach to Identifying Phenomena Accompanying Micro and Nanoparticles in Contact With Irregular Vessel Walls. IEEE Transactions on Nanobioscience, 2017, 16, 463-475.	2.2	4
99	Silica-based multifunctional nanodelivery systems toward regenerative medicine. Materials Horizons, 2017, 4, 772-799.	6.4	66
100	Unique size and shape-dependent uptake behaviors of non-spherical nanoparticles by endothelial cells due to a shearing flow. Journal of Controlled Release, 2017, 245, 170-176.	4.8	57
101	Drug governs the morphology of polyalkylated block copolymer aggregates. Nanoscale, 2017, 9, 2417-2423.	2.8	10
102	Post-nano strategies for drug delivery: multistage porous silicon microvectors. Journal of Materials Chemistry B, 2017, 5, 207-219.	2.9	47
103	Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Advanced Healthcare Materials, 2017, 6, 1700306.	3.9	176
104	Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chemical Reviews, 2017, 117, 11476-11521.	23.0	464
105	Elongated Plant Virus-Based Nanoparticles for Enhanced Delivery of Thrombolytic Therapies. Molecular Pharmaceutics, 2017, 14, 3815-3823.	2.3	41
106	Single particle extinction and scattering optical method unveils in real time the influence of the blood components on polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2597-2603.	1.7	7
107	Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Delivery, 2017, 24, 1898-1908.	2.5	48
108	Nano-Particles for Biomedical Applications. Springer Handbooks, 2017, , 643-691.	0.3	6
109	Neurovascular Unit Protection From Cerebral Ischemia–Reperfusion Injury by Radical-Containing Nanoparticles in Mice. Stroke, 2017, 48, 2238-2247.	1.0	61
110	Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. International Materials Reviews, 2017, 62, 57-77.	9.4	73
111	Red-blood-cell-shaped chitosan microparticles prepared by electrospraying. Particuology, 2017, 30, 151-157.	2.0	32

#	Article	IF	CITATIONS
112	Strategies for improving drug delivery: nanocarriers and microenvironmental priming. Expert Opinion on Drug Delivery, 2017, 14, 865-877.	2.4	39
113	Vascular targeting of nanoparticles for molecular imaging of diseased endothelium. Advanced Drug Delivery Reviews, 2017, 113, 141-156.	6.6	64
114	Pinhole X-ray fluorescence imaging of gadolinium and gold nanoparticles using polychromatic X-rays: a Monte Carlo study. International Journal of Nanomedicine, 2017, Volume 12, 5805-5817.	3.3	15
115	Quantifying Vascular Distribution and Adhesion of Nanoparticles with Protein Corona in Microflow. Langmuir, 2018, 34, 3731-3741.	1.6	7
116	Modified two-step emulsion solvent evaporation technique for fabricating biodegradable rod-shaped particles in the submicron size range. Journal of Colloid and Interface Science, 2018, 518, 174-183.	5.0	14
117	Surface Engineering of Nanoparticles for Targeted Delivery to Hepatocellular Carcinoma. Small, 2018, 14, 1702037.	5.2	67
118	Spatiotemporal Image Correlation Analysis for 3D Flow Field Mapping in Microfluidic Devices. Analytical Chemistry, 2018, 90, 2277-2284.	3.2	6
119	Particle morphology: an important factor affecting drug delivery by nanocarriers into solid tumors. Expert Opinion on Drug Delivery, 2018, 15, 379-395.	2.4	27
120	Manipulating nanoparticle transport within blood flow through external forces: an exemplar of mechanics in nanomedicine. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170845.	1.0	79
121	The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases. Expert Opinion on Drug Delivery, 2018, 15, 33-45.	2.4	77
122	Nanoparticle Optimization for Enhanced Targeted Anticancer Drug Delivery. Journal of Biomechanical Engineering, 2018, 140, .	0.6	11
123	Computational modeling of magnetic particle margination within blood flow through LAMMPS. Computational Mechanics, 2018, 62, 457-476.	2.2	36
124	Particle Targeting in Complex Biological Media. Advanced Healthcare Materials, 2018, 7, 1700575.	3.9	94
125	Inflammation and Cancer: In Medio Stat Nano. Current Medicinal Chemistry, 2018, 25, 4208-4223.	1.2	22
126	Nanomedicines guided nanoimaging probes and nanotherapeutics for early detection of lung cancer and abolishing pulmonary metastasis: Critical appraisal of newer developments and challenges to clinical transition. Journal of Controlled Release, 2018, 292, 29-57.	4.8	41
127	Imaging breast cancer using a dual-ligand nanochain particle. PLoS ONE, 2018, 13, e0204296.	1.1	16
128	Quantifying Platelet Margination in Diabetic BloodÂFlow. Biophysical Journal, 2018, 115, 1371-1382.	0.2	51
130	Targeting of Lipid/Polymeric (Hybrid) Nanoparticles to the Brain for the Treatment of Degenerative Diseases. , 2018, , 147-168.		Ο

ARTICLE IF CITATIONS # Influence of particle size and shape on their margination and wall-adhesion: implications in drug 131 2.8 162 delivery vehicle design across nano-to-micro scale. Nanoscale, 2018, 10, 15350-15364. PEGylated "stealth―nanoparticles and liposomes. , 2018, , 1-26. Numerical Study of Lateral Migration of Elliptical Magnetic Microparticles in Microchannels in 133 1.0 16 Uniform Magnetic Fields. Magnetochemistry, 2018, 4, 16. Vascular-targeted particle binding efficacy in the presence of rigid red blood cells: Implications for 134 1.2 performance in diseased blood. Biomicrofluidics, 2018, 12, 042217. Delivery of thrombolytic therapy using rod-shaped plant viral nanoparticles decreases the risk of hemorrhage. Nanoscale, 2018, 10, 16547-16555. 135 2.8 30 Shear rate dependent margination of sphere-like, oblate-like and prolate-like micro-particles within blood flow. Soft Matter, 2018, 14, 7401-7419. 1.2 Probing the biological obstacles of nanomedicine with gold nanoparticles. Wiley Interdisciplinary 137 3.3 51 Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1542. Magnetic Accumulation of SPIONs under Arterial Flow Conditions: Effect of Serum and Red Blood 138 1.7 Cells. Molecules, 2019, 24, 2588. Rapid Electrostatic Capture of Rod-Shaped Particles on Planar Surfaces: Standing up to Shear. 139 9 1.6 Langmuir, 2019, 35, 13070-13077. Rodlike MSN@Au Nanohybrid-Modified Supermolecular Photosensitizer for NIRF/MSOT/CT/MR 140 Quadmodal Imaging-Guided Photothermal/Photodynamic Cancer Therapy. ACS Applied Materials & amp; Interfaces, 2019, 11, 6777-6788. Mathematical and computational modeling of nano-engineered drug delivery systems. Journal of 141 4.8 56 Controlled Release, 2019, 307, 150-165. Preparation and characterization of hydroxyapatite macrobeads based on pneumatic extrusion dripping. Ceramics International, 2019, 45, 16399-16404. 2.3 143 Clinical cancer nanomedicine. Nano Today, 2019, 25, 85-98. 6.2 324 Rotation and Retention Dynamics of Rod-Shaped Colloids with Surface Charge Heterogeneity in 144 1.6 16 Sphere-in-Cell Porous Media Model. Langmuir, 2019, 35, 5471-5483. 145 Mathematical modeling in cancer nanomedicine: a review. Biomedical Microdevices, 2019, 21, 40. 122 1.4 Small, Smaller, Nano: New Applications for Potato Virus X in Nanotechnology. Frontiers in Plant 146 39 Science, 2019, 10, 158. Shape-Dependent Transport of Microparticles in Blood Flow: From Margination to Adhesion. Journal 147 1.6 4 of Engineering Mechanics - ASCE, 2019, 145, . 148 Non-spherical micro- and nanoparticles in nanomedicine. Materials Horizons, 2019, 6, 1094-1121. 6.4

ARTICLE IF CITATIONS # Toward the Development of a Novel Diagnostic Nano-Imaging Platform for Lung Cancer., 2019, 149 0 269-292. Deformation of a biconcave-discoid capsule in extensional flow and electric field. Journal of Fluid 1.4 Mechanics, 2019, 860, 115-144. Biomimetic nanoparticle technology for cardiovascular disease detection and treatment. Nanoscale 151 4.1 80 Horizons, 2020, 5, 25-42. Shape mediated splenotropic delivery of buparvaquone loaded solid lipid nanoparticles. Drug Delivery and Translational Research, 2020, 10, 159-167. Role of particle shape on efficient and organ-based drug delivery. European Polymer Journal, 2020, 122, 153 2.6 36 109353. Designer nanocarriers for navigating the systemic delivery of oncolytic viruses. Nanomedicine, 2020, 15, 93-110. 1.7 24 Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug 155 1.6 54 Delivery. Frontiers in Molecular Biosciences, 2020, 7, 604770. Physical Properties of Nanoparticles That Result in Improved Cancer Targeting, Journal of Oncology, 0.6 1352020, 2020, 1-16. Understanding fundamentals of hepatocellular carcinoma to design next-generation chitosan 157 nano-formulations: Beyond chemotherapy stride. Journal of Drug Delivery Science and Technology, 1.4 0 2020, 58, 101723. Recent Advancements of Nanomedicine in Neurodegenerative Disorders Theranostics. Advanced Functional Materials, 2020, 30, 2003054. Novel neuroprotection using antioxidant nanoparticles in a mouse model of head trauma. Journal of 159 1.1 12 Trauma and Acute Care Surgery, 2020, 88, 677-685. Emerging and Innovative Theranostic Approaches for Mesoporous Silica Nanoparticles in Hepatocellular Carcinoma: Current Status and Advances. Frontiers in Bioengineering and Biotechnology, 2020, 8, 184. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. 161 8.3 196 Materials Today, 2020, 37, 112-125. An insight into obtaining of non-spherical particles by mechanical stretching of micro- and 1.4 nanospheres. Journal of Drug Delivery Science and Technology, 2020, 59, 101860. 163 Disk-shaped magnetic particles for cancer therapy. Applied Physics Reviews, 2020, 7, . 32 5.5Gradient stretching to produce variable aspect ratio colloidal ellipsoids. Journal of Colloid and Interface Science, 2021, 583, 385-393. 164 5.0 Drug delivery systems for cardiovascular ailments., 2021, , 567-599. 165 3 Surface loading of nanoparticles on engineered or natural erythrocytes for prolonged circulation 2.8 time: strategies and applications. Acta Pharmacologica Sinica, 2021, 42, 1040-1054.

#	Article	IF	CITATIONS
167	A permeable on-chip microvasculature for assessing the transport of macromolecules and polymeric nanoconstructs. Journal of Colloid and Interface Science, 2021, 594, 409-423.	5.0	6
168	Synthesis of NaYF4:20% Yb3+,2% Er3+,2% Ce3+@NaYF4 nanorods and their size dependent uptake efficiency under flow condition. Journal of Rare Earths, 2022, 40, 1519-1526.	2.5	1
169	Non-spherical micro- and nanoparticles for drug delivery: Progress over 15Âyears. Advanced Drug Delivery Reviews, 2021, 177, 113807.	6.6	58
170	Magnetism in microfluidics: computational fluid dynamics simulations, mixing, transport, and control of fluids and particles at micro scale. , 2022, , 59-98.		0
171	Oncolytic viral particle delivery. , 2022, , 211-230.		2
172	Paramagnetic Nanoparticles. Methods in Pharmacology and Toxicology, 2016, , 113-136.	0.1	7
173	Early-Stage Diagnosis of Endogenous Diseases by Swarms of Nanobots: An Applicative Scenario. Lecture Notes in Computer Science, 2010, , 408-415.	1.0	6
174	Plasma Protein Corona Modulates the Vascular Wall Interaction of Drug Carriers in a Material and Donor Specific Manner. PLoS ONE, 2014, 9, e107408.	1.1	31
175	Computational Modeling of Tumor Response to Drug Release from Vasculature-Bound Nanoparticles. PLoS ONE, 2015, 10, e0144888.	1.1	43
176	In-vitro prostate cancer biomarker detection by directed conjugation of anti-PSCA antibody to super paramagnetic iron oxide nanoparticless. Medical Journal of the Islamic Republic of Iran, 2019, 33, 16.	0.9	2
177	A method of drug delivery to tumors based on rapidly biodegradable drug-loaded containers. Applied Materials Today, 2021, 25, 101199.	2.3	17
178	Multistage Vectors. , 2015, , 1-8.		0
179	Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood. Cellular and Molecular Bioengineering, 0, , .	1.0	0
180	Integrated Approach for the Rational Design of Nanoparticles. , 2016, , 1653-1665.		0
181	Multistage Vectors. , 2016, , 2286-2292.		0
184	Use of Nanoparticulate Systems for Tackling Neurological Aging. Healthy Ageing and Longevity, 2020, , 187-218.	0.2	0
188	Effect of micro- and nanoparticle shape on biological processes. Journal of Controlled Release, 2022, 342, 93-110.	4.8	37
189	SHMT1 siRNA-Loaded hyperosmotic nanochains for blood-brain/tumor barrier post-transmigration therapy. Biomaterials, 2022, 281, 121359.	5.7	6

#	Article	IF	CITATIONS
190	Towards principled design of cancer nanomedicine to accelerate clinical translation. Materials Today Bio, 2022, 13, 100208.	2.6	47
191	Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chemical Society Reviews, 2022, 51, 1702-1728.	18.7	53
192	Shape-specific microfabricated particles for biomedical applications: a review. Drug Delivery and Translational Research, 2022, 12, 2019-2037.	3.0	8
193	Particle shape engineering for improving safety and efficacy of doxorubicin — A case study of rod-shaped carriers in resistant small cell lung cancer. , 2022, 137, 212850.		6
194	Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. Journal of Nanobiotechnology, 2022, 20, 236.	4.2	9
195	The Therapeutic Benefits of Intravenously Administrated Nanoparticles in Stroke and Age-related Neurodegenerative Diseases. Current Pharmaceutical Design, 2022, 28, 1985-2000.	0.9	5
196	Nanotechnology for Enhancing Medical Imaging. Micro/Nano Technologies, 2022, , 1-60.	0.1	0
197	Modified Aerotaxy for the Plug-in Manufacture of Cell-Penetrating Fenton Nanoagents for Reinforcing Chemodynamic Cancer Therapy. ACS Nano, 2022, 16, 19423-19438.	7.3	5
198	Targeted thrombolysis by magnetoacoustic particles in photothrombotic stroke model. Biomaterials Research, 2022, 26, .	3.2	2
199	Pancreatic tumor microenvironmental acidosis and hypoxia transform gold nanorods into cell-penetrant particles for potent radiosensitization. Science Advances, 2022, 8, .	4.7	6
200	Disturbed Flowâ€Facilitated Margination and Targeting of Nanodisks Protect against Atherosclerosis. Small, 0, , 2204694.	5.2	1
201	Multifunctional ROS-Responsive and TME-Modulated Lipid-Polymer Hybrid Nanoparticles for Enhanced Tumor Penetration. International Journal of Nanomedicine, 0, Volume 17, 5883-5897.	3.3	3
202	A Review of Particle Shape Effects on Material Properties for Various Engineering Applications: From Macro to Nanoscale. Minerals (Basel, Switzerland), 2023, 13, 91.	0.8	29
203	Albumin-based nanoparticles: small, uniform and reproducible. Nanoscale Advances, 2023, 5, 503-512.	2.2	1
204	Role of particle size, stiffness, and blood flow velocity on margination of nano drug carriers. Journal of Mechanics in Medicine and Biology, 0, , .	0.3	0
205	Nanotechnology for Enhancing Medical Imaging. Micro/Nano Technologies, 2023, , 99-156.	0.1	0
206	Interplay between Size and Softness in the Vascular Dynamics of Microcarriers. Physics of Fluids, 0, , .	1.6	2
207	Current understanding of passive and active targeting nanomedicines to enhance tumor accumulation Coordination Chemistry Reviews 2023 481 215051	9.5	12

#	Article	IF	CITATIONS
208	PLGA-Based Micro/Nanoparticles: An Overview of Their Applications in Respiratory Diseases. International Journal of Molecular Sciences, 2023, 24, 4333.	1.8	10
209	Natural and synthetic nanovectors for cancer therapy. Nanotheranostics, 2023, 7, 236-257.	2.7	71
210	Nonspherical ultrasound microbubbles. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	10
214	Cancer nanomedicine: emergence, expansion, and expectations. SN Applied Sciences, 2023, 5, .	1.5	0