Fire in the Earth System

Science 324, 481-484 DOI: 10.1126/science.1163886

Citation Report

#	Article	IF	CITATIONS
1	Risk assessment and management of wildfires. , 0, , 398-444.		5
3	Multi-Millennial Fire History of the Giant Forest, Sequoia National Park, California, USA. Fire Ecology, 2009, 5, 120-150.	1.1	77
4	Climate Change, the Resource Crunch, and The Global Growth Imperative. Current Perspectives in Social Theory, 2009, , 3-73.	0.1	14
5	Broadâ€Scale Monitoring of Live Fuel Moisture. Geography Compass, 2009, 3, 1703-1716.	1.5	1
6	Complex effects of climate change: population fluctuations in a tropical rodent are associated with the southern oscillation index and regional fire extent, but not directly with local rainfall. Global Change Biology, 2010, 16, 2401-2406.	4.2	12
8	Evolution of stomatal function in â€~lower' land plants. New Phytologist, 2009, 183, 921-925.	3.5	30
9	Lowâ€decibel ultrasonic acoustic emissions are temperatureâ€induced and probably have no biotic origin. New Phytologist, 2009, 183, 928-931.	3.5	6
10	Adaptive nature of crop cytoplasm. New Phytologist, 2009, 183, 925-928.	3.5	2
11	A plant science network. New Phytologist, 2009, 183, 919-921.	3.5	1
12	â€~Tipping points' for the Amazon forest. Current Opinion in Environmental Sustainability, 2009, 1, 28-36.	3.1	208
13	Biodiversity in forest carbon sequestration initiatives: not just a side benefit. Current Opinion in Environmental Sustainability, 2009, 1, 55-60.	3.1	155
14	Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 2009, 18, 483.	1.0	1,061
15	Cloud condensation nucleation activity of biomass burning aerosol. Journal of Geophysical Research, 2009, 114, .	3.3	213
16	Aerosol particles in Amazonia: Their composition, role in the radiation balance, cloud formation, and nutrient cycles. Geophysical Monograph Series, 2009, , 233-250.	0.1	18
17	Does pyrogenicity protect burning plants?. Ecology, 2010, 91, 3481-3486.	1.5	82
18	Air pollution and hospital admissions for respiratory diseases in the subequatorial Amazon: a time series approach. Cadernos De Saude Publica, 2010, 26, 747-761.	0.4	62
19	EVIDENCE OF PALEOWILDFIRE IN THE EARLY MIDDLE TRIASSIC (EARLY ANISIAN) VOLTZIA SANDSTONE: THE OLDEST POST-PERMIAN MACROSCOPIC EVIDENCE OF WILDFIRE DISCOVERED SO FAR. Palaios, 2010, 25, 837-842.	0.6	23
20	A comparison of dry and wet season aerosol number fluxes over the Amazon rain forest. Atmospheric Chemistry and Physics, 2010, 10, 3063-3079.	1.9	24

TATION REDO

# 21	ARTICLE Water uptake and chemical composition of fresh aerosols generated in open burning of biomass. Atmospheric Chemistry and Physics, 2010, 10, 5165-5178.	IF 1.9	CITATIONS
22	Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?. Atmospheric Chemistry and Physics, 2010, 10, 3515-3528.	1.9	87
23	Fire in the Earth System. , 2010, , 21-48.		59
24	'SINAMI': a tool for the economic evaluation of forest fire management programs in Mediterranean ecosystems. International Journal of Wildland Fire, 2010, 19, 927.	1.0	48
25	A Carbon Cycle Science Update Since IPCC AR-4. Ambio, 2010, 39, 402-412.	2.8	29
26	Biomass burning, humans and climate change in Southeast Asia. Biodiversity and Conservation, 2010, 19, 1025-1042.	1.2	74
27	Planned fires and invertebrate conservation in south east Australia. Journal of Insect Conservation, 2010, 14, 567-574.	0.8	41
28	Bushfire and everyday life: Examining the awareness-action â€~gap' in changing rural landscapes. Geoforum, 2010, 41, 814-825.	1.4	123
29	New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America. Remote Sensing of Environment, 2010, 114, 1876-1895.	4.6	117
30	Livistona palms in Australia: Ancient relics or opportunistic immigrants?. Molecular Phylogenetics and Evolution, 2010, 54, 512-523.	1.2	61
31	Fire and the spread of flowering plants in the Cretaceous. New Phytologist, 2010, 188, 1137-1150.	3.5	171
32	Net biome production of the Amazon Basin in the 21st century. Global Change Biology, 2010, 16, 2062-2075.	4.2	61
33	Experimental investigation of fire ecology in the C ₃ and C ₄ subspecies of <i>Alloteropsis semialata</i> . Journal of Ecology, 2010, 98, 1196-1203.	1.9	34
34	The origin and temporal development of an ancient cultural landscape. Journal of Biogeography, 2010, 37, 2183-2196.	1.4	67
35	Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience, 2010, 3, 525-532.	5.4	486
36	Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience, 2010, 3, 627-630.	5.4	271
37	A biogeographic model of fire regimes in Australia: current and future implications. Global Ecology and Biogeography, 2010, 19, 145-158.	2.7	539
38	Climate and the interâ€annual variability of fire in southern Africa: a metaâ€analysis using longâ€term field data and satelliteâ€derived burnt area data. Global Ecology and Biogeography, 2010, 19, 794-809.	2.7	116

#	Article	IF	CITATIONS
39	Historic Fire Regime of an Upland Oak Forest in South-Central North America. Fire Ecology, 2010, 6, 45-61.	1.1	40
40	Introduction: Strengthening the Foundation of Wildland Fire Effects Prediction for Research and Management. Fire Ecology, 2010, 6, 1-12.	1.1	55
41	Carbon in Trees in Tasmanian State Forest. International Journal of Forestry Research, 2010, 2010, 1-13.	0.2	17
42	Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences, 2010, 7, 1877-1902.	1.3	194
43	Dealing with Uncertainty. Advances in the Study of Behavior, 2010, 42, 123-153.	1.0	22
44	Driving forces of global wildfires over the past millennium and the forthcoming century. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19167-19170.	3.3	579
45	Paradise burnt: How colonizing humans transform landscapes with fire. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21234-21235.	3.3	17
46	Southern African fire regimes as revealed by remote sensing. International Journal of Wildland Fire, 2010, 19, 861.	1.0	188
47	Changing Climates, Earth Systems and Society. , 2010, , .		9
48	Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 2010, 10, 11707-11735.	1.9	2,326
49	The Burning Issue. Science, 2010, 330, 1636-1637.	6.0	23
50	Disturbance and landscape dynamics in a changing world. Ecology, 2010, 91, 2833-2849.	1.5	1,060
51	Optimal estimation of the presentâ€day global methane budget. Global Biogeochemical Cycles, 2010, 24, .	1.9	49
52	Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems. Geophysical Research Letters, 2010, 37, .	1.5	120
53	Tundra burning in Alaska: Linkages to climatic change and sea ice retreat. Journal of Geophysical Research, 2010, 115, .	3.3	125
54	Fungus, not comet or catastrophe, accounts for carbonaceous spherules in the Younger Dryas "impact layer― Geophysical Research Letters, 2010, 37, .	1.5	51
55	The short-term responses of small mammals to wildfire in semiarid mallee shrubland, Australia. Wildlife Research, 2010, 37, 293.	0.7	35
56	Prescribed Fire As a Means of Reducing Forest Carbon Emissions in the Western United States. Environmental Science & Technology, 2010, 44, 1926-1932.	4.6	130

#	Article	IF	CITATIONS
57	The gendered dimensions of bushfire in changing rural landscapes in Australia. Journal of Rural Studies, 2010, 26, 332-342.	2.1	77
58	Increased mortality can promote evolutionary adaptation of forest trees to climate change. Forest Ecology and Management, 2010, 259, 1003-1008.	1.4	129
59	Age and growth of a fire prone Tasmanian temperate old-growth forest stand dominated by Eucalyptus regnans, the world's tallest angiosperm. Forest Ecology and Management, 2010, 260, 438-447.	1.4	67
60	Fire history and the Global Charcoal Database: A new tool for hypothesis testing and data exploration. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291, 52-59.	1.0	144
61	Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291, 11-39.	1.0	362
62	Charcoal: Taphonomy and significance in geology, botany and archaeology. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291, 1-10.	1.0	107
63	Induced BVOCs: how to bug our models?. Trends in Plant Science, 2010, 15, 118-125.	4.3	81
64	Induced plant volatiles: from genes to climate change. Trends in Plant Science, 2010, 15, 115-117.	4.3	69
65	Fire regimes during the Last Glacial. Quaternary Science Reviews, 2010, 29, 2918-2930.	1.4	132
66	A multi-region assessment of tropical forest biodiversity in a human-modified world. Biological Conservation, 2010, 143, 2293-2300.	1.9	100
67	Contribution of Semi-Arid Forests to the Climate System. Science, 2010, 327, 451-454.	6.0	491
68	Climatic Controls on Historical Wildfires in West Virginia, 1939-2008. Physical Geography, 2010, 31, 254-269.	0.6	14
70	The Landscape Ecology of Fire. Ecological Studies, 2011, , .	0.4	84
71	Short- and Long-term Effects of Fire on Carbon in US Dry Temperate Forest Systems. BioScience, 2011, 61, 139-146.	2.2	125
72	Modeling fire and the terrestrial carbon balance. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	152
73	Woody plant proliferation in North American drylands: A synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research, 2011, 116, .	3.3	218
74	Variability in the Southern Annular Mode determines wildfire activity in Patagonia. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	54
75	Constraints on global fire activity vary across a resource gradient. Ecology, 2011, 92, 121-132.	1.5	348

CITATION REPORT ARTICLE IF CITATIONS Silviculture in the Tropics. Tropical Forestry, 2011, , . 1.0 21 Erosion-driven drawdown of atmospheric carbon dioxide: The organic pathway. Applied Geochemistry, 1.4 2011, 26, S285-S287. Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural 1.9 59 and Forest Meteorology, 2011, 151, 279-289. Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland. Forest Ecology and Management, 2011, 261, 2188-2199. Potential CO2 emissions mitigation through forest prescribed burning: A case study in Patagonia, 1.4 23 Argentina. Forest Ecology and Management, 2011, 261, 2243-2254. The FIRE PARADOX project: Towards science-based fire management in Europe. Forest Ecology and Management, 2011, 261, 2177-2178. 1.4 High-severity wildfire effects on carbon stocks and emissions in fuels treated and untreated forest. 1.4 96 Forest Ecology and Management, 2011, 261, 1115-1120. Comparing the role of fuel breaks across southern California national forests. Forest Ecology and 1.4 Management, 2011, 261, 2038-2048. Evidence for wildfire in the Meishan section and implications for Permian–Triassic events. Geochimica 90 1.6 Et Cosmochimica Acta, 2011, 75, 1992-2006. Fire and soils: Methodological issues and implications to management. Environmental Research, 2011, 111, 191-192. Short- and medium-term response of Atriplex halimus L. to repeated seasonal grazing in south-eastern 1.2 6 Spain. Journal of Arid Environments, 2011, 75, 586-595. First multi-proxy record of Jurassic wildfires from Gondwana: Evidence from the Middle Jurassic of 1.0 49 the Neuquén Basin, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299, 129-136. Upper Paleozoic charcoal remains from South America: Multiple evidences of fire events in the coal bearing strata of the ParanÃ; Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 1.0 35 306, 205-218. Late Quaternary fire regimes of Australasia. Quaternary Science Reviews, 2011, 30, 28-46. 1.4 249 Quaternary palaeoecology and nature conservation: a general review with examples from the 1.4 84 neotropics. Quaternary Science Reviews, 2011, 30, 2361-2388. Gran Sabana fires (SE Venezuela): a paleoecological perspective. Quaternary Science Reviews, 2011, 30, 1.4 33 3430-3444.

92	Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends in Ecology and Evolution, 2011, 26, 96-104.	4.2	171
93	Understanding Human-Fire Interactions in Tropical Forest Regions: a Case for Interdisciplinary	1.0	57

Research across the Natural and Social Sciences.. Ecology and Society, 2011, 16, .

6

#

76

78

80

82

84

86

87

88

89

	CITATION	REPORT	
#	Article	IF	Citations
94	Australiaâ€"A Model System for the Development of Pyrogeography. Fire Ecology, 2011, 7, 5-12.	1.1	12
95	Linking dynamics and locally important ecosystem services of South Indian dry forests: an approach. Journal of Resources Energy and Development, 2011, 8, 149-172.	0.2	4
96	Fields and Forests in Flames: Vegetation Smoke and Human Health. Environmental Health Perspectives, 2011, 119, a386-93.	2.8	23
97	Defining â€ [~] dangerous climate change'. , 2011, , 99-100.		1
98	The impact of climate change on human societies. , 2011, , 101-133.		0
100	Modeling Effects of Climate Change and Fire Management on Western White Pine (Pinus monticola) in the Northern Rocky Mountains, USA. Forests, 2011, 2, 832-860.	0.9	40
101	Mega fire emissions in Siberia: potential supply of bioavailable iron from forests to the ocean. Biogeosciences, 2011, 8, 1679-1697.	1.3	53
102	Spatial and temporal variability in the ratio of trace gases emitted from biomass burning. Atmospheric Chemistry and Physics, 2011, 11, 3611-3629.	1.9	97
103	Organic functional groups in aerosol particles from burning and non-burning forest emissions at a high-elevation mountain site. Atmospheric Chemistry and Physics, 2011, 11, 6367-6386.	1.9	84
104	Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs. Atmospheric Chemistry and Physics, 2011, 11, 11591-11615.	1.9	64
105	Multiâ€scale controls of historical forestâ€fire regimes: new insights from fireâ€scar networks. Frontiers in Ecology and the Environment, 2011, 9, 446-454.	1.9	197
107	Environmental modelling for blue collars. International Journal of Environment and Pollution, 2011, 46, 246.	0.2	0
108	Rail survey plans to remote sensing: vegetation change in the Mulga Lands of eastern Australia and its implications for land use. Rangeland Journal, 2011, 33, 229.	0.4	14
109	Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	200
110	When is a â€~forest' a savanna, and why does it matter?. Global Ecology and Biogeography, 2011, 20, 653-660.	2.7	348
111	Device for the standard measurement of shoot flammability in the field. Austral Ecology, 2011, 36, 821-829.	0.7	59
112	Adapting to global environmental change in Patagonia: What role for disturbance ecology?. Austral Ecology, 2011, 36, 891-903.	0.7	88
113	Habitat or fuel? Implications of longâ€ŧerm, postâ€fire dynamics for the development of key resources for fauna and fire. Journal of Applied Ecology, 2011, 48, 247-256.	1.9	163

#	Article	IF	CITATIONS
114	Firescape ecology: how topography determines the contrasting distribution of fire and rain forest in the south-west of the Tasmanian Wilderness World Heritage Area. Journal of Biogeography, 2011, 38, 1807-1820.	1.4	114
115	The human dimension of fire regimes on Earth. Journal of Biogeography, 2011, 38, 2223-2236.	1.4	845
116	Invasion of Norway spruce diversifies the fire regime in boreal European forests. Journal of Ecology, 2011, 99, 395-403.	1.9	30
117	Influence of fire history on small mammal distributions: insights from a 100â€year postâ€fire chronosequence. Diversity and Distributions, 2011, 17, 462-473.	1.9	74
118	Banksia born to burn. New Phytologist, 2011, 191, 184-196.	3.5	158
120	Vulnerability to Bushfire Risk at Melbourne's Urban Fringe: The Failure of Regulatory Land Use Planning. Geographical Research, 2011, 49, 1-12.	0.9	77
121	Synergistic influences of introduced herbivores and fire on vegetation change in northern Patagonia, Argentina. Journal of Vegetation Science, 2011, 22, 59-71.	1.1	64
122	Human Pyrogeography: A New Synergy of Fire, Climate and People is Reshaping Ecosystems across the Globe. Geography Compass, 2011, 5, 329-350.	1.5	28
123	Global and regional analysis of climate and human drivers of wildfire. Science of the Total Environment, 2011, 409, 3472-3481.	3.9	211
124	The Younger Dryas impact hypothesis: A requiem. Earth-Science Reviews, 2011, 106, 247-264.	4.0	110
125	Grass feedbacks on fire stabilize savannas. Ecological Modelling, 2011, 222, 2227-2233.	1.2	62
126	Emission estimates of particulate matter (PM) and trace gases (SO2, NO and NO2) from biomass fuels used in rural sector of Indo-Gangetic Plain, India. Atmospheric Environment, 2011, 45, 5913-5923.	1.9	56
127	Ungulate preference for burned patches reveals strength of fire–grazing interaction. Ecology and Evolution, 2011, 1, 132-144.	0.8	211
128	Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1010-1035.	1.6	610
129	Greenhouse gas induced changes in the fire risk in Brazil in ECHAM5/MPI-OM coupled climate model. Climatic Change, 2011, 106, 285-302.	1.7	15
130	Landscape age and soil fertility, climatic stability, and fire regime predictability: beyond the OCBIL framework. Plant and Soil, 2011, 341, 1-23.	1.8	92
131	Modeling black carbon degradation and movement in soil. Plant and Soil, 2011, 345, 223-236.	1.8	80
132	Fire tolerance of a resprouting Artemisia (Asteraceae) shrub. Plant Ecology, 2011, 212, 2085-2094.	0.7	9

#	Article	IF	CITATIONS
133	Ecology of plant resprouting: populations to community responses in fire-prone ecosystems. Plant Ecology, 2011, 212, 1937-1943.	0.7	61
134	Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia, 2011, 167, 219-228.	0.9	58
135	Equilibrium of vegetation and climate at the European rear edge. A reference for climate change planning in mountainous Mediterranean regions. International Journal of Biometeorology, 2011, 55, 285-301.	1.3	14
136	Landscape-Scale Simulation of Heterogeneous Fire Effects on Pyrogenic Carbon Emissions, Tree Mortality, and Net Ecosystem Production. Ecosystems, 2011, 14, 758-775.	1.6	30
137	High Abundance and Role of Antifungal Bacteria in Compost-Treated Soils in a Wildfire Area. Microbial Ecology, 2011, 62, 725-737.	1.4	4
138	When Ecosystem Services Crash: Preparing for Big, Fast, Patchy Climate Change. Ambio, 2011, 40, 256-263.	2.8	70
139	Recent advances and future directions in soils and sediments research. Journal of Soils and Sediments, 2011, 11, 875-888.	1.5	28
140	Predicting climate change effects on wildfires requires linking processes across scales. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2, 99-112.	3.6	57
141	Charcoal as evidence of palaeoâ€wildfires in the Late Triassic of SW Germany. Geological Journal, 2011, 46, 34-41.	0.6	30
142	An integrative model of human-influenced fire regimes and landscape dynamics. Environmental Modelling and Software, 2011, 26, 1028-1040.	1.9	29
143	Multi-resolution spectral analysis of wildfire potassium emission signatures using laboratory, airborne and spaceborne remote sensing. Remote Sensing of Environment, 2011, 115, 1811-1823.	4.6	26
144	Responses of Small Mammals and Vegetation to a Prescribed Burn in a Tallgrass Blackland Prairie. American Midland Naturalist, 2011, 166, 112-125.	0.2	13
145	Anthropogenic fire drives the evolution of seed traits. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18743-18747.	3.3	68
146	Re-Invention of Applicable Innovations: The Case of Virtual Worlds. , 2011, , .		2
147	Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 188-195.	1.2	85
148	Evolution of nutrient acquisition: when adaptation fills the gap between contrasting ecological theories. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 449-457.	1.2	17
149	Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13165-13170.	3.3	536
150	Investigating the possible causes of climate change in India with satellite measurements. International Journal of Remote Sensing, 2011, 32, 687-700.	1.3	8

#	Article	IF	CITATIONS
151	How does fire intensity and frequency affect miombo woodland tree populations and biomass?. , 2011, 21, 48-60.		133
152	Trial by Fire: natural hazards, mixed-methods and cultural research. Australian Geographer, 2011, 42, 19-40.	1.0	10
153	Reconstruction of the fire history in the Siedlungskammer Burgweinting (Bavaria, Germany) in relation to settlement and environmental history. Geological Society Special Publication, 2011, 352, 137-161.	0.8	0
154	Creating an Integrated Historical Record of Extreme Particulate Air Pollution Events in Australian Cities from 1994 to 2007. Journal of the Air and Waste Management Association, 2011, 61, 390-398.	0.9	44
155	Satellite-Observed Surface Temperature Changes after the 2004 Taylor Complex Fire in Alaska. Earth Interactions, 2011, 15, 1-14.	0.7	54
156	Levoglucosan as a specific marker of fire events in Greenland snow. Tellus, Series B: Chemical and Physical Meteorology, 2022, 64, 18196.	0.8	75
157	From Recreational Applications to Workplace Technologies: An Empirical Study of Cross-Context IS Continuance in the Case of Virtual Worlds. Journal of Information Technology, 2012, 27, 74-86.	2.5	16
158	Estimated Global Mortality Attributable to Smoke from Landscape Fires. Environmental Health Perspectives, 2012, 120, 695-701.	2.8	576
159	Relationship between leaf traits and fire-response strategies in shrub species of a mountainous region of south-eastern Australia. Annals of Botany, 2012, 109, 197-208.	1.4	13
160	Wildfire activity in rainforests in western Patagonia linked to the Southern Annular Mode. International Journal of Wildland Fire, 2012, 21, 114.	1.0	44
161	Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 601-612.	1.8	349
162	Remote sensing of fuel moisture content from canopy water indices and normalized dry matter index. Journal of Applied Remote Sensing, 2012, 6, 061705.	0.6	9
163	Aboriginal hunting buffers climate-driven fire-size variability in Australia's spinifex grasslands. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10287-10292.	3.3	118
164	Enhancement of a fire detection algorithm by eliminating solar reflection in the mid-IR band: application to AVHRR data. International Journal of Remote Sensing, 2012, 33, 7047-7059.	1.3	19
165	Burnings in the Brazilian savanna: A preliminary analysis on key biophysical drivers using MODIS and TRMM data. , 2012, , .		1
166	Simulation and visualization of forest fire growth in an integrated 3D virtual geographical environment - a preliminary study. , 2012, , .		7
167	The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environmental Research Letters, 2012, 7, 044039.	2.2	98
168	Evolution of human-driven fire regimes in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 847-852.	3.3	293

		CITATION REPORT		
#	Article		lF	CITATIONS
169	Corridors promote fire via connectivity and edge effects. Ecological Applications, 2012,	22, 937-946.	1.8	17
170	The Mallee fire and biodiversity project. Proceedings of the Royal Society of Victoria, 20)12, 124, 38.	0.3	7
171	Trends and causes of severity, size, and number of fires in northwestern California, USA Applications, 2012, 22, 184-203.	Ecological	1.8	183
172	Carbon dynamics of forests in Washington, USA: 21st century projections based on cli changes in fire regimes. Ecological Applications, 2012, 22, 1589-1611.	mateâ€ d riven	1.8	25
173	The changing radiative forcing of fires: global model estimates for past, present and fut Atmospheric Chemistry and Physics, 2012, 12, 10857-10886.	ure.	1.9	212
174	Determinants and predictability of global wildfire emissions. Atmospheric Chemistry an 12, 6845-6861.	d Physics, 2012,	1.9	42
175	Variability of black carbon deposition to the East Antarctic Plateau, 1800–2000 AD. A Chemistry and Physics, 2012, 12, 3799-3808.	Atmospheric	1.9	37
176	Fuel treatment impacts on estimated wildfire carbon loss from forests in Montana, Ore California, and Arizona. Ecosphere, 2012, 3, 1-17.	gon,	1.0	31
177	Potential impacts of climate change on biogeochemical functioning of Cerrado ecosyst Journal of Biology, 2012, 72, 655-671.	ems. Brazilian	0.4	96
178	Climate Change and Conservation. Acta Silvatica Et Lignaria Hungarica, 2012, 8, 57-74.		0.2	10
179	Fire and soils: Key concepts and recent advances. Geoderma, 2012, 191, 3-13.		2.3	171
180	Global Biodiversity Change: The Bad, the Good, and the Unknown. Annual Review of En Resources, 2012, 37, 25-50.	vironment and	5.6	505
182	Charcoal in the Late Jurassic (Kimmeridgian) of Western and Central Europe—palaeoc palaeoenvironmental significance. Palaeobiodiversity and Palaeoenvironments, 2012, 9	limatic and 2, 329-341.	0.6	21
184	Effects of fire on above-ground forest biomass in the northern Brazilian Amazon. Journa Ecology, 2012, 28, 591-601.	l of Tropical	0.5	24
185	Human impacts on fire occurrence: a case study of hundred years of forest fires in a dry in Switzerland. Regional Environmental Change, 2012, 12, 935-949.	[,] alpine valley	1.4	60
186	Customary Fire Regimes and Vegetation Structure in Gabon's Bateke Plateaux. Hur 943-955.	nan Ecology, 2012, 40,	0.7	21
187	Post-fire salvage logging increases restoration costs in a Mediterranean mountain ecos Forests, 2012, 43, 601-613.	ystem. New	0.7	37
188	The record of Triassic charcoal and other evidence for palaeo-wildfires: Signal for atmos oxygen levels, taphonomic biases or lack of fuel?. International Journal of Coal Geology, 60-71.	pheric 2012, 96-97,	1.9	48

#	Article	IF	CITATIONS
189	Mapped versus actual burned area within wildfire perimeters: Characterizing the unburned. Forest Ecology and Management, 2012, 286, 38-47.	1.4	155
190	Field evidence for differences in post-fire aeolian transport related to vegetation type in semi-arid grasslands. Aeolian Research, 2012, 7, 3-10.	1.1	29
191	The efficacy of fuel treatment in mitigating property loss during wildfires: Insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. Journal of Environmental Management, 2012, 113, 146-157.	3.8	122
192	Power law correlations in time series of wild-land and forest fires in Brazil. International Journal of Remote Sensing, 2012, 33, 2059-2067.	1.3	4
193	Fire and human impact on the vegetation of the western Tamba Highlands, Kyoto, Japan during the late Holocene. Quaternary International, 2012, 254, 3-11.	0.7	5
194	Trends in biomass burning in the Carpathian region over the last 15,000 years. Quaternary Science Reviews, 2012, 45, 111-125.	1.4	69
195	Global night-time fire season timing and fire count trends using the ATSR instrument series. Remote Sensing of Environment, 2012, 116, 226-238.	4.6	51
196	Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets. Remote Sensing of Environment, 2012, 120, 236-254.	4.6	111
197	Elucidating the chemical structure of pyrogenic organic matter by combining magnetic resonance, mid-infrared spectroscopy and mass spectrometry. Organic Geochemistry, 2012, 51, 35-44.	0.9	40
198	Paleoecoinformatics: applying geohistorical data to ecological questions. Trends in Ecology and Evolution, 2012, 27, 104-112.	4.2	96
199	Fireâ€adapted traits of <i>Pinus</i> arose in the fiery Cretaceous. New Phytologist, 2012, 194, 751-759.	3.5	225
200	Landscapeâ€scale effects of fire on bird assemblages: does pyrodiversity beget biodiversity?. Diversity and Distributions, 2012, 18, 519-529.	1.9	110
201	Fire and the Angiosperm Revolutions. International Journal of Plant Sciences, 2012, 173, 569-583.	0.6	59
202	Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmospheric Research, 2012, 111, 1-28.	1.8	89
203	Challenges and a checklist for biodiversity conservation in fire-prone forests: Perspectives from the Pacific Northwest of USA and Southeastern Australia. Biological Conservation, 2012, 145, 5-14.	1.9	35
204	A wildfire origin for terrestrial organic debris in the Cretaceous Santana Formation Fossil Lagerstäte (Araripe Basin) of north-east Brazil. Cretaceous Research, 2012, 34, 135-141.	0.6	27
205	Cretaceous wildfires and their impact on the Earth system. Cretaceous Research, 2012, 36, 162-190.	0.6	116
206	Charcoal and stable soil organic matter as indicators of fire frequency, climate and past vegetation in volcanic soils of Mt. Etna, Sicily. Catena, 2012, 88, 14-26.	2.2	30

#	Article	IF	CITATIONS
207	Fire in a sub-humid woodland: The balance of carbon sequestration and habitat conservation. Forest Ecology and Management, 2012, 280, 40-51.	1.4	8
208	Burning through organizational boundaries? Examining inter-organizational communication networks in policy-mandated collaborative bushfire planning groups. Global Environmental Change, 2012, 22, 516-528.	3.6	54
209	Effects of time since fire on birds: How informative are generalized fire response curves for conservation management?. Ecological Applications, 2012, 22, 685-696.	1.8	98
210	Fire-adapted Gondwanan Angiosperm floras evolved in the Cretaceous. BMC Evolutionary Biology, 2012, 12, 223.	3.2	59
211	Linking humans and fire: a proposal for a transdisciplinary fire ecology. International Journal of Wildland Fire, 2012, 21, 477.	1.0	54
212	Comparison of burnt area estimates derived from satellite products and national statistics in Europe. International Journal of Remote Sensing, 2012, 33, 3653-3671.	1.3	20
214	Predictability of biomass burning in response to climate changes. Global Biogeochemical Cycles, 2012, 26, .	1.9	201
215	A solar escalator: Observational evidence of the selfâ€lifting of smoke and aerosols by absorption of solar radiation in the February 2009 Australian Black Saturday plume. Journal of Geophysical Research, 2012, 117, .	3.3	65
216	Isocyanic acid in a global chemistry transport model: Tropospheric distribution, budget, and identification of regions with potential health impacts. Journal of Geophysical Research, 2012, 117, .	3.3	24
217	The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests. Journal of Geophysical Research, 2012, 117, .	3.3	111
218	National database for calculating fuel available to wildfires. Eos, 2012, 93, 57-58.	0.1	13
219	Quantifying soil surface change in degraded drylands: Shrub encroachment and effects of fire and vegetation removal in a desert grassland. Journal of Geophysical Research, 2012, 117, .	3.3	39
220	Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model. Journal of Geophysical Research, 2012, 117, .	3.3	19
222	Plant Preference for Ammonium versus Nitrate: A Neglected Determinant of Ecosystem Functioning?. American Naturalist, 2012, 180, 60-69.	1.0	155
223	Climate change and disruptions to global fire activity. Ecosphere, 2012, 3, 1-22.	1.0	650
224	Dynamics, Patterns and Causes of Fires in Northwestern Amazonia. PLoS ONE, 2012, 7, e35288.	1.1	24
225	Fundamentals of climate change science. , 2012, , 39-71.		7
226	Distribution Patterns of Burned Areas in the Brazilian Biomes: An Analysis Based on Satellite Data for the 2002–2010 Period. Remote Sensing, 2012, 4, 1929-1946.	1.8	59

ARTICLE IF CITATIONS # Ecological and climatic controls of modern wildfire activity patterns across southwestern South 227 1.0 47 America. Ecosphere, 2012, 3, 1-25. The impacts of climate, land use, and demography on fires during the 21st century simulated by 228 1.3 CLM-CN. Biogeosciences, 2012, 9, 509-525. 229 The Earth system feedbacks that matter for contemporary climate., 0, , 102-128. 3 Impacts of Wildfire and Slope Aspect on Soil Temperature in a Mountainous Environment. Vadose Zone Journal, 2012, 11, vzj2012.0017. Enrichment in & amp; lt; sup& amp; gt; 13& amp; lt; / sup& amp; gt; C of atmospheric CH<sub&gt;4&lt;/sub&gt; during the Younger Dryas termination. Climate of the 231 1.3 15 Past, 2012, 8, 1177-1197. A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation 1.3 Model. Biogeosciences, 2012, 9, 2761-2780. Tending for Cattle: Traditional Fire Management in Ethiopian Montane Heathlands. Ecology and 233 1.0 27 Society, 2012, 17, . Biomass burning emissions estimated with a global fire assimilation system based on observed fire 234 1.3 876 radiative power. Biogeosciences, 2012, 9, 527-554. 235 Plant physiological ecology and the global changes. Ciencia E Agrotecnologia, 2012, 36, 253-269. 1.5 8 Changes in climate and weather extremes in the 21st century. Wiley Interdisciplinary Reviews: Climate 3.6 Change, 2012, 3, 115-129. Differences in time and space in vegetation patterning: analysis of pollen data from Dartmoor, UK. 237 1.9 28 Landscape Ecology, 2012, 27, 745-760. Carbon loads, forms and sequestration potential within ash deposits produced by wildfire: new insights from the 2009 †Black Saturday' fires, Australia. European Journal of Forest Research, 2012, 131, 1.1 1245-1253. Fires enhance flammability in<i>Ulex parviflorus</i>. New Phytologist, 2012, 193, 18-23. 239 3.5 107 Fire weather risk differs across rain forestâ
 ${\rm e}$ 'savanna boundaries in the humid tropics of northâ
 ${\rm e}$ astern Australia. Austral Ecology, 2012, 37, 915-925. 240 46 Evaluating the extent to which wildfire history can be interpreted from inertinite distribution in coal 241 pillars: An example from the Late Permian, Kuznetsk Basin, Russia. International Journal of Coal 1.9 57 Geology, 2012, 89, 13-25. Longâ€term variability and rainfall control of savanna fire regimes in equatorial East Africa. Global 242 Change Biology, 2012, 18, 3160-3170. Managing fire mosaics for small mammal conservation: a landscape perspective. Journal of Applied 243 1.9 80 Ecology, 2012, 49, 412-421. Wildfires, fuel treatment and risk mitigation in Australian eucalypt forests: Insights from 244 3.8 landscape-scale simulation. Journal of Environmental Management, 2012, 105, 66-75.

		CITATION REPORT		
#	Article		IF	Citations
245	What controls the distribution of tropical forest and savanna?. Ecology Letters, 2012, 15	, 748-758.	3.0	333
246	Refugia: identifying and understanding safe havens for biodiversity under climate change Ecology and Biogeography, 2012, 21, 393-404.	. Global	2.7	786
247	Terrestrial ecosystems from space: a review of earth observation products for macroecol applications. Global Ecology and Biogeography, 2012, 21, 603-624.	ogy	2.7	91
248	Predicting the centuryâ€long postâ€fire responses of reptiles. Global Ecology and Biogeo 1062-1073.	ography, 2012, 21,	2.7	79
249	Fuel shapes the fire–climate relationship: evidence from Mediterranean ecosystems. G and Biogeography, 2012, 21, 1074-1082.	obal Ecology	2.7	261
250	Regionalizing global climate models. International Journal of Climatology, 2012, 32, 321-	337.	1.5	60
252	Environmental drivers and spatial dependency in wildfire ignition patterns of northweste Patagonia. Journal of Environmental Management, 2013, 123, 77-87.	'n	3.8	36
253	Is the number of species on earth increasing or decreasing? Time, chaos and the origin of Palaeontology, 2013, 56, 1305-1325.	species.	1.0	8
254	Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, 2013, ,		0.7	85
255	Climatic stress increases forest fire severity across the western <scp>U</scp> nited <scp>S</scp> tates. Ecology Letters, 2013, 16, 1151-1156.		3.0	201
256	Shifting Cultivation and Fire Policy: Insights from the Brazilian Amazon. Human Ecology, 603-614.	2013, 41,	0.7	63
257	Increased probability of fire during late Holocene droughts in northern New England. Clir Change, 2013, 119, 693-704.	natic	1.7	24
258	Vulnerability of Agroecosystems to Environmental Factors. , 2013, , 109-116.			1
259	Exploring the role of fire, succession, climate, and weather on landscape dynamics using modeling. Ecological Modelling, 2013, 266, 172-186.	comparative	1.2	28
260	Assessing possible shifts in wildfire regimes under a changing climate in mountainous lar Forest Ecology and Management, 2013, 310, 875-886.	idscapes.	1.4	18
261	Nanoparticle emissions from 11 non-vehicle exhaust sources $\hat{a} \in A$ review. Atmospheric I 2013, 67, 252-277.	invironment,	1.9	279
262	Characteristics and composition of atmospheric aerosols in Phimai, central Thailand duri BASE-ASIA. Atmospheric Environment, 2013, 78, 60-71.	ıg	1.9	33
263	Carbon emissions in Mediterranean shrubland wildfires: An experimental approach. Atmc Environment, 2013, 69, 86-93.	spheric	1.9	24

#	Article	IF	CITATIONS
264	How Was the Australian Flora Assembled Over the Last 65 Million Years? A Molecular Phylogenetic Perspective. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 303-324.	3.8	134
265	Post-fire vegetation response as a proxy to quantify the magnitude of burn severity in tropical peatland. International Journal of Remote Sensing, 2013, 34, 412-433.	1.3	23
266	Pyrogeography and the Global Quest for Sustainable Fire Management. Annual Review of Environment and Resources, 2013, 38, 57-80.	5.6	95
267	Preindustrial Human Impacts on Global and Regional Environment. Annual Review of Environment and Resources, 2013, 38, 503-527.	5.6	42
268	Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars. Organic Geochemistry, 2013, 56, 111-119.	0.9	98
269	The anthropogenic influence on wildfire regimes: charcoal records from the Holocene and Last Interglacial at Ioannina, Greece. Journal of Biogeography, 2013, 40, 2324-2334.	1.4	12
270	Metabolic scaling theory in plant biology and the three oxygen paradoxa of aerobic life. Theory in Biosciences, 2013, 132, 277-288.	0.6	7
271	Fire Mosaics and Reptile Conservation in a Fireâ€Prone Region. Conservation Biology, 2013, 27, 345-353.	2.4	63
273	Fire in the Air: Biomass Burning Impacts in a Changing Climate. Critical Reviews in Environmental Science and Technology, 2013, 43, 40-83.	6.6	125
274	Fire severity and landscape context effects on arboreal marsupials. Biological Conservation, 2013, 167, 137-148.	1.9	106
275	Composition Shifts, Disturbance, and Canopy-Accession Strategy in an Oldgrowth Forest of Southwestern Ohio, USA. Natural Areas Journal, 2013, 33, 384-394.	0.2	10
276	Simulated unsaturated flow processes after wildfire and interactions with slope aspect. Water Resources Research, 2013, 49, 8090-8107.	1.7	50
277	Evaluation of the performance of meteorological forest fire indices for German federal states. Forest Ecology and Management, 2013, 287, 123-131.	1.4	52
278	Holocene changes in fire frequency in the Daihai Lake region (north-central China): indications and implications for an important role of human activity. Quaternary Science Reviews, 2013, 59, 18-29.	1.4	67
279	Multiâ€millennial fire frequency and tree abundance differ between xeric and mesic boreal forests in central <scp>C</scp> anada. Journal of Ecology, 2013, 101, 356-367.	1.9	30
280	Impact of climate variability on summer fires in a Mediterranean environment (northeastern Iberian) Tj ETQq1 1 C).784314 r 1.7	gBT/Overlo
281	Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sensing of Environment, 2013, 131, 152-159.	4.6	134
282	The Palaeoanthropocene – The beginnings of anthropogenic environmental change. Anthropocene, 2013, 3, 83-88.	1.6	178

ARTICLE IF CITATIONS # Challenges of wildland fire management in Botswana: Towards a community inclusive fire 283 34 1.6 management approach. Weather and Climate Extremes, 2013, 1, 26-41. Fire and human evolution: The deep-time blueprints of the Anthropocene. Anthropocene, 2013, 3, 89-92. 284 1.6 104 Climatic records over the past 30Åka from temperate Australia $\hat{a} \in \hat{}$ a synthesis from the Oz-INTIMATE 285 1.4 110 workgroup. Quaternary Science Reviews, 2013, 74, 58-77. Studying the effects of fuel treatment based on burn probability on a boreal forest landscape. Journal 286 of Environmental Management, 2013, 115, 42-52. Post-fire wood management alters water stress, growth, and performance of pine regeneration in a 287 1.4 43 Mediterranean ecosystem. Forest Ecology and Management, 2013, 308, 231-239. Systematic fire mapping is critical for fire ecology, planning and management: A case study in the semi-arid Murray Mallee, south-eastern Australia. Landscape and Urban Planning, 2013, 117, 81-91. 288 3.4 Multifractal behavior of wild-land and forest fire time series in Brazil. Physica A: Statistical 289 1.2 33 Mechanics and Its Applications, 2013, 392, 6367-6374. The fire Danger and Fire Regime for the Daxing'anling Region for 1987- 2010. Procedia Engineering, 2013, 1.2 290 16 62, 1023-1031. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. 291 297 1.4 Quaternary Science Reviews, 2013, 65, 5-25. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. 13.7 249 Nature, 2013, 494, 86-89. Introduced annual grass increases regional fire activity across the arid western <scp>USA</scp> 293 521 4.2 (1980–2009). Global Change Biology, 2013, 19, 173-183. The burning of Gondwana: Permian fires on the southern $continent \hat{a} \in \mathbb{R}^{3}$ A palaeobotanical approach. 294 3.0 Gondwana Research, 2013, 24, 148-160. Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. 295 3.5 630 New Phytologist, 2013, 197, 19-35. Estimating future burned areas under changing climate in the EU-Mediterranean countries. Science of the Total Environment, 2013, 450-451, 209-222 297 Hot fire, cool soil. Geophysical Research Letters, 2013, 40, 1534-1539. 1.5 47 Bryophyte persistence following major fire in eucalypt forest of southern Australia. Forest Ecology 298 1.4 and Management, 2013, 296, 24-32. Characterising fire regimes in Spain from fire statistics. International Journal of Wildland Fire, 2013, 299 1.0 37 22, 296. Rethinking infiltration in wildfireâ€affected soils. Hydrological Processes, 2013, 27, 1510-1514. 1.1

#	Article	IF	CITATIONS
301	Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landscape and Urban Planning, 2013, 110, 175-182.	3.4	187
302	Identifying the Threshold of Dominant Controls on Fire Spread in a Boreal Forest Landscape of Northeast China. PLoS ONE, 2013, 8, e55618.	1.1	26
303	The use of witness trees as pyro-indicators for mapping past fire conditions. Forest Ecology and Management, 2013, 304, 333-344.	1.4	39
304	Fire as a disturbance in mediterranean climate streams. Hydrobiologia, 2013, 719, 353-382.	1.0	103
305	An Invasive Grass Increases Live Fuel Proportion and Reduces Fire Spread in a Simulated Grassland. Ecosystems, 2013, 16, 158-169.	1.6	36
306	Thermal Remote Sensing of Active Vegetation Fires and Biomass Burning Events. Remote Sensing and Digital Image Processing, 2013, , 347-390.	0.7	25
307	Disturbance Regimes and the Historical Range of Variation in Terrestrial Ecosystems. , 2013, , 568-581.		7
308	Dynamic Global Vegetation Models. , 2013, , 670-689.		28
309	Fires, Ecological Effects of. , 2013, , 435-442.		0
310	Climate changeâ€induced shifts in fire for <scp>M</scp> editerranean ecosystems. Global Ecology and Biogeography, 2013, 22, 1118-1129.	2.7	130
311	Fire variability, as well as frequency, can explain coexistence between seeder and resprouter life histories. Journal of Applied Ecology, 2013, 50, 594-602.	1.0	13
		1.9	
312	Large-scale weather types, forest fire danger, and wildfire occurrence in the Alps. Agricultural and Forest Meteorology, 2013, 168, 15-25.	1.9	46
312 313	Large-scale weather types, forest fire danger, and wildfire occurrence in the Alps. Agricultural and		
	Large-scale weather types, forest fire danger, and wildfire occurrence in the Alps. Agricultural and Forest Meteorology, 2013, 168, 15-25. Effects of Disturbance on Fine Root Dynamics in the Boreal Forests of Northern Ontario, Canada.	1.9	46
313	 Large-scale weather types, forest fire danger, and wildfire occurrence in the Alps. Agricultural and Forest Meteorology, 2013, 168, 15-25. Effects of Disturbance on Fine Root Dynamics in the Boreal Forests of Northern Ontario, Canada. Ecosystems, 2013, 16, 467-477. Molecular Markers of Biomass Burning in Arctic Aerosols. Environmental Science & Camp; Technology, 2013, 100, 2013,	1.9 1.6	46 27
313 314	 Large-scale weather types, forest fire danger, and wildfire occurrence in the Alps. Agricultural and Forest Meteorology, 2013, 168, 15-25. Effects of Disturbance on Fine Root Dynamics in the Boreal Forests of Northern Ontario, Canada. Ecosystems, 2013, 16, 467-477. Molecular Markers of Biomass Burning in Arctic Aerosols. Environmental Science & amp; Technology, 2013, 47, 130716103911002. Mesozoic (Late Jurassic) palynomorphs and charcoal from a sandstone pebble from Quaternary glacial 	1.9 1.6 4.6	46 27 35
313 314 315	Large-scale weather types, forest fire danger, and wildfire occurrence in the Alps. Agricultural and Forest Meteorology, 2013, 168, 15-25. Effects of Disturbance on Fine Root Dynamics in the Boreal Forests of Northern Ontario, Canada. Ecosystems, 2013, 16, 467-477. Molecular Markers of Biomass Burning in Arctic Aerosols. Environmental Science & amp; Technology, 2013, 47, 130716103911002. Mesozoic (Late Jurassic) palynomorphs and charcoal from a sandstone pebble from Quaternary glacial deposits of the North Sea. Geological Journal, 2013, 48, 376-384. Habitat distribution modeling reveals vegetation flammability and land use as drivers of wildfire in	1.9 1.6 4.6 0.6	46 27 35 0

#	Article	IF	CITATIONS
319	Orbital-scale climate forcing of grassland burning in southern Africa. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5069-5073.	3.3	135
320	Long-term forest dynamics at Gribskov, eastern Denmark with early-Holocene evidence for thermophilous broadleaved tree species. Holocene, 2013, 23, 243-254.	0.9	14
321	Climate, not Aboriginal landscape burning, controlled the historical demography and distribution of fire-sensitive conifer populations across Australia. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132182.	1.2	31
322	Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6442-6447.	3.3	519
323	Long-term trends and interannual variability of forest, savanna and agricultural fires in South America. Carbon Management, 2013, 4, 617-638.	1.2	120
324	Analysis of forest fires in Northeast China from 2003 to 2011. International Journal of Remote Sensing, 2013, 34, 8235-8251.	1.3	17
326	Forgotten Grasslands of the South. , 2013, , .		80
327	Exploring potential drivers of <scp>E</scp> uropean biomass burning over the <scp>H</scp> olocene: a dataâ€model analysis. Global Ecology and Biogeography, 2013, 22, 1248-1260.	2.7	48
328	Contrasting fire responses to climate and management: insights from two Australian ecosystems. Global Change Biology, 2013, 19, 1223-1235.	4.2	45
331	Uncertainty in assessing the impacts of global change with coupled dynamic species distribution and population models. Global Change Biology, 2013, 19, 858-869.	4.2	53
332	Air pollution from bushfires and their association with hospital admissions in Sydney, Newcastle and Wollongong, Australia 1994–2007. Australian and New Zealand Journal of Public Health, 2013, 37, 238-243.	0.8	90
333	The prescribed burning debate in Australia: conflicts and compatibilities. Journal of Environmental Planning and Management, 2013, 56, 103-120.	2.4	53
334	Quantification of fuel moisture effects on biomass consumed derived from fire radiative energy retrievals. Geophysical Research Letters, 2013, 40, 6298-6302.	1.5	44
335	Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 215-225.	1.3	23
336	Fire at high latitudes: Dataâ€model comparisons and their consequences. Global Biogeochemical Cycles, 2013, 27, 677-691.	1.9	7
338	Modeling biomass burning and related carbon emissions during the 21st century in Europe. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1732-1747.	1.3	38
339	Deep cognitive imaging systems enable estimation of continental-scale fire incidence from climate data. Scientific Reports, 2013, 3, 3188.	1.6	37
340	Used planet: A global history. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7978-7985.	3.3	611

#	Article	IF	CITATIONS
341	Modern departures in fire severity and area vary by forest type, Sierra Nevada and southern Cascades, California, USA. Ecosphere, 2013, 4, 1-28.	1.0	150
343	Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia. Atmospheric Chemistry and Physics, 2013, 13, 1261-1275.	1.9	85
344	Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation. Atmospheric Chemistry and Physics, 2013, 13, 5227-5241.	1.9	137
345	Forward: A Global Perspective on Traditional Burning in California. California Archaeology, 2013, 5, 199-208.	0.1	10
346	Dynamic biomass burning emission factors and their impact on atmospheric CO mixing ratios. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6797-6815.	1.2	34
347	Natural aerosol direct and indirect radiative effects. Geophysical Research Letters, 2013, 40, 3297-3301.	1.5	150
348	Effects of bark beetleâ€caused tree mortality on biogeochemical and biogeophysical MODIS products. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 974-982.	1.3	41
349	Identification of unrecognized tundra fire events on the north slope of Alaska. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1334-1344.	1.3	58
350	Cultural legacies, fire ecology, and environmental change in the Stone Country of Arnhem Land and Kakadu National Park, Australia. Ecology and Evolution, 2013, 3, 286-297.	0.8	30
351	Key landscape ecology metrics for assessing climate change adaptation options: rate of change and patchiness of impacts. Ecosphere, 2013, 4, 1-18.	1.0	8
352	Kinematic structure of a wildland fire plume observed by Doppler lidar. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3200-3212.	1.2	28
353	Arguments and Evidence Against a Younger Dryas Impact Event. Geophysical Monograph Series, 2013, , 13-26.	0.1	15
355	Wildfire Prediction to Inform Fire Management: Statistical Science Challenges. Statistical Science, 2013, 28, .	1.6	97
356	The impacts of fire on birds in Australia's tropical savannas. Emu, 2013, 113, 319-352.	0.2	66
357	Satellite-based assessment of climate controls on US burned area. Biogeosciences, 2013, 10, 247-260.	1.3	44
358	A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geoscientific Model Development, 2013, 6, 643-685.	1.3	133
359	Quantifying the role of fire in the Earth system – Part 1: Improved global fire modeling in the Community Earth System Model (CESM1). Biogeosciences, 2013, 10, 2293-2314.	1.3	137
360	What could have caused pre-industrial biomass burning emissions to exceed current rates?. Climate of the Past, 2013, 9, 289-306.	1.3	47

#	Article	IF	CITATIONS
361	The Many Elements of Traditional Fire Knowledge: Synthesis, Classification, and Aids to Cross-cultural Problem Solving in Fire-dependent Systems Around the World. Ecology and Society, 2013, 18, .	1.0	110
362	Blackcarbon in coastal and large river systems. , 2013, , 200-234.		9
363	PALEOBOTANY Charred Particle Analyses. , 2013, , 716-729.		10
364	Brief communication Decreasing fires in a Mediterranean region (1970–2010, NE Spain). Natural Hazards and Earth System Sciences, 2013, 13, 649-652.	1.5	37
365	Social and Ecological Factors Influencing Attitudes Toward the Application of High-Intensity Prescribed Burns to Restore Fire Adapted Grassland Ecosystems. Ecology and Society, 2013, 18, .	1.0	30
366	Adding Fuel to the Fire: The Impacts of Non-Native Grass Invasion on Fire Management at a Regional Scale. PLoS ONE, 2013, 8, e59144.	1.1	55
367	Fire Promotes Pollinator Visitation: Implications for Ameliorating Declines of Pollination Services. PLoS ONE, 2013, 8, e79853.	1.1	47
368	Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences, 2013, 10, 6657-6676.	1.3	158
369	A burning issue: community stability and alternative stable states in relation to fire. , 2013, , 63-74.		6
370	Effects of Wildland Fire Management on Forest Carbon Stores. , 2013, , 359-380.		5
372	Climate versus carbon dioxide controls on biomass burning: a model analysis of the glacial–interglacial contrast. Biogeosciences, 2014, 11, 6017-6027.	1.3	9
373	Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core. Climate of the Past, 2014, 10, 1905-1924.	1.3	99
374	Short-term changes in soil Munsell colour value, organic matter content and soil water repellency after a spring grassland fire in Lithuania. Solid Earth, 2014, 5, 209-225.	1.2	45
375	Contrasting Spatial Patterns in Active-Fire and Fire-Suppressed Mediterranean Climate Old-Growth Mixed Conifer Forests. PLoS ONE, 2014, 9, e88985.	1.1	46
376	Effects of Nitrogen Addition and Fire on Plant Nitrogen Use in a Temperate Steppe. PLoS ONE, 2014, 9, e90057.	1.1	4
377	De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content. International Journal of Wildland Fire, 2014, 23, 480.	1.0	61
378	Biomass burning fuel consumption rates: a field measurement database. Biogeosciences, 2014, 11, 7305-7329.	1.3	119
379	Energia e sociedade. Estudos Avancados, 2014, 28, 25-39.	0.2	4

		CITATION I	Report	
#	Article		IF	CITATIONS
380	Interactions between Fine Wood Decomposition and Flammability. Forests, 2014, 5, 82	27-846.	0.9	18
381	Impact of human population density on fire frequency at the global scale. Biogeoscienc 1085-1102.	es, 2014, 11,	1.3	111
382	Precipitation dominates fire occurrence in Greece (1900–2010): its dual role in fuel b dryness. Natural Hazards and Earth System Sciences, 2014, 14, 21-32.	ouild-up and	1.5	26
383	Análise das mudanças dos parâmetros fÃsicos da superfÃcie derivados das queimac Rondônia. Boletim De Ciencias Geodesicas, 2014, 20, 830-854.	las no estado de	0.2	2
384	Temporal variations and change in forest fire danger in Europe for 1960–2012. Natur Earth System Sciences, 2014, 14, 1477-1490.	al Hazards and	1.5	66
385	Assessing the predictability of fire occurrence and area burned across phytoclimatic reg Natural Hazards and Earth System Sciences, 2014, 14, 53-66.	gions in Spain.	1.5	37
386	Causal relationships versus emergent patterns in the global controls of fire frequency. Biogeosciences, 2014, 11, 5087-5101.		1.3	114
387	Vegetation Fires and Global Change. 2013. By Johann G. Goldammer and 58 contributin Publishing House, Remagen-Oberwinter, Germany. 398 pages. Soft-cover. US\$48 (â,¬ 978-3-941300-78-1. Fire Ecology, 2014, 10, 84-85.	ng authors. Kessel 35). ISBN	1.1	1
388	Occurrence of pristine aerosol environments on a polluted planet. Proceedings of the N Academy of Sciences of the United States of America, 2014, 111, 18466-18471.	lational	3.3	117
390	Sources of variation in simulated ecosystem carbon storage capacity from the 5th Clim Intercomparison Project (CMIP5). Tellus, Series B: Chemical and Physical Meteorology,	ate Model 2022, 66, 22568.	0.8	17
391	Integrating geospatial information into fire risk assessment. International Journal of Wi 2014, 23, 606.	ldland Fire,	1.0	134
392	Phosphorus limits Eucalyptus grandis seedling growth in an unburnt rain forest soil. Fro Plant Science, 2014, 5, 527.	ontiers in	1.7	30
393	Have plants evolved to self-immolate?. Frontiers in Plant Science, 2014, 5, 590.		1.7	58
394	Improved simulation of fire–vegetation interactions in the Land surface Processes an dynamic global vegetation model (LPX-Mv1). Geoscientific Model Development, 2014,	d eXchanges 7, 2411-2433.	1.3	28
395	Examining fire-prone forest landscapes as coupled human and natural systems. Ecology 2014, 19, .	r and Society,	1.0	132
396	Effect of fire on small mammals: a systematic review. International Journal of Wildland 1034.	Fire, 2014, 23,	1.0	72
397	Biogenic volatile organic compound emissions from vegetation fires. Plant, Cell and Env 2014, 37, 1810-1825.	vironment,	2.8	99
398	Using satellite data to develop environmental indicators. Environmental Research Lette 084013.	rs, 2014, 9,	2.2	47

#	Article	IF	CITATIONS
399	Patch Burning Improves Forage Quality and Creates Grass-Bank in Old-Field Pasture: Results of a Demonstration Trial. Southeastern Naturalist, 2014, 13, 200-207.	0.2	22
400	CONVERGENT AND CORRELATED EVOLUTION OF MAJOR LIFE-HISTORY TRAITS IN THE ANGIOSPERM GENUS <i>LEUCADENDRON</i> (PROTEACEAE). Evolution; International Journal of Organic Evolution, 2014, 68, 2775-2792.	1.1	25
401	How to tell a shrub from a tree: A lifeâ€history perspective from a <scp>S</scp> outh <scp>A</scp> frican savanna. Austral Ecology, 2014, 39, 767-778.	0.7	36
402	Periglacial fires and trees in a continental setting of Central <scp>C</scp> anada, <scp>U</scp> pper <scp>P</scp> leistocene. Geobiology, 2014, 12, 109-118.	1.1	13
403	Adult root structure of mediterranean shrubs: relationship with postâ€fire regenerative syndrome. Plant Biology, 2014, 16, 147-154.	1.8	8
404	Bushfire Smoke: An Exemplar of Coupled Human and Natural Systems. Geographical Research, 2014, 52, 45-54.	0.9	20
405	Fire responses to postglacial climate change and human impact in northern Patagonia (41–43°S). Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5545-54.	3.3	41
406	Nonlinear Effects of Stand Age on Fire Severity. Conservation Letters, 2014, 7, 355-370.	2.8	146
407	Extent of Kentucky Bluegrass and Its Effect on Native Plant Species Diversity and Ecosystem Services in the Northern Great Plains of the United States. Invasive Plant Science and Management, 2014, 7, 543-552.	0.5	75
408	Forest Trees Under Air Pollution as a Factor of Climate Change. Plant Ecophysiology, 2014, , 117-163.	1.5	11
409	SPITFIRE within the MPI <scp>E</scp> arth system model: <scp>M</scp> odel development and evaluation. Journal of Advances in Modeling Earth Systems, 2014, 6, 740-755.	1.3	100
411	Enhanced Australian carbon sink despite increased wildfire during the 21st century. Environmental Research Letters, 2014, 9, 104015.	2.2	24
412	Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 1: simulating historical global burned area and fire regimes. Geoscientific Model Development, 2014, 7, 2747-2767.	1.3	109
413	Challenges of assessing fire and burn severity using field measures, remote sensing and modelling. International Journal of Wildland Fire, 2014, 23, 1045.	1.0	174
414	Fire severity alters plant regeneration patterns and defense against herbivores in mixed aspen forests. Oikos, 2014, 123, 1479-1488.	1.2	42
415	Fire as a Soil-Forming Factor. Ambio, 2014, 43, 191-195.	2.8	62
416	Integration of ecological and socioâ€economic factors to assess global vulnerability to wildfire. Global Ecology and Biogeography, 2014, 23, 245-258.	2.7	94
417	Does pyrodiversity beget alpha, beta or gamma diversity? A case study using reptiles from semiâ€arid Australia. Diversity and Distributions, 2014, 20, 663-673.	1.9	57

#	Article	IF	CITATIONS
418	Impact of fire on soil gross nitrogen transformations in forest ecosystems. Journal of Soils and Sediments, 2014, 14, 1030-1040.	1.5	35
419	Vegetation, terrain and fire history shape the impact of extreme weather on fire severity and ecosystem response. Journal of Vegetation Science, 2014, 25, 1033-1044.	1.1	71
420	Spatial and temporal patterns of global burned area in response to anthropogenic and environmental factors: Reconstructing global fire history for the 20th and early 21st centuries. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 249-263.	1.3	56
421	Complex responses of birds to landscapeâ€level fire extent, fire severity and environmental drivers. Diversity and Distributions, 2014, 20, 467-477.	1.9	72
422	Method for the determination of specific molecular markers of biomass burning in lake sediments. Organic Geochemistry, 2014, 71, 1-6.	0.9	40
423	Wildland fire emissions, carbon and climate: Characterizing wildland fuels. Forest Ecology and Management, 2014, 317, 26-40.	1.4	62
424	Exploring the spatial patterns of fire density in Southern Europe using Geographically Weighted Regression. Applied Geography, 2014, 51, 143-157.	1.7	113
425	Convergent phylogenetic and functional responses to altered fire regimes in mesic savanna grasslands of North America and South Africa. New Phytologist, 2014, 203, 1000-1011.	3.5	51
426	Fire type and hemisphere determine the effects of fire on the alpha and beta diversity of vertebrates: a global metaâ€analysis. Global Ecology and Biogeography, 2014, 23, 1146-1156.	2.7	55
428	Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 2014, 29, 766-779.	8.2	429
429	Burning for biodiversity: highly resilient ant communities respond only to strongly contrasting fire regimes in <scp>A</scp> ustralia's seasonal tropics. Journal of Applied Ecology, 2014, 51, 1406-1413.	1.9	65
430	Predicting above normal wildfire activity in southern Europe as a function of meteorological drought. Environmental Research Letters, 2014, 9, 084008.	2.2	100
431	Biogeography of the Anthropocene. Progress in Physical Geography, 2014, 38, 664-673.	1.4	47
432	Fire, humans and landscape in the European Alpine region during the Holocene. Anthropocene, 2014, 6, 63-74.	1.6	76
433	Governing agriculture-forest landscapes to achieve climate change mitigation. Global Environmental Change, 2014, 29, 270-280.	3.6	76
434	Plant–Environment Interactions Across Multiple Scales. , 2014, , 1-27.		2
435	Bushfires, Human Health Economics, and Pyrogeography. Geographical Research, 2014, 52, 340-343.	0.9	8
436	Recent applications of unmanned aerial imagery in natural resource management. GIScience and Remote Sensing, 2014, 51, 339-365.	2.4	141

	CITATION RE	PORT	
#	Article	IF	CITATIONS
437	Wildfire and the Future of Water Supply. Environmental Science & amp; Technology, 2014, 48, 8936-8943.	4.6	203
438	Scenarios for future wildfire risk in California: links between changing demography, land use, climate, and wildfire. Environmetrics, 2014, 25, 454-471.	0.6	34
439	The legacy of midâ€Holocene fire on a Tasmanian montane landscape. Journal of Biogeography, 2014, 41, 476-488.	1.4	61
440	Data-driven diagnostics of terrestrial carbon dynamics over North America. Agricultural and Forest Meteorology, 2014, 197, 142-157.	1.9	88
441	Development of a multi-temporal Kalman filter approach to geostationary active fire detection & fire radiative power (FRP) estimation. Remote Sensing of Environment, 2014, 152, 392-412.	4.6	43
442	The climate–wildfire–air quality system: interactions and feedbacks across spatial and temporal scales. Wiley Interdisciplinary Reviews: Climate Change, 2014, 5, 719-733.	3.6	15
443	Soil moisture variation and dynamics across a wildfire burn boundary in a loblolly pine (Pinus taeda) forest. Journal of Hydrology, 2014, 519, 490-502.	2.3	33
444	Drought: The most important physical stress of terrestrial ecosystems. Acta Ecologica Sinica, 2014, 34, 179-183.	0.9	24
445	Projected Effects of Climate and Development on California Wildfire Emissions through 2100. Environmental Science & Technology, 2014, 48, 140203132416003.	4.6	57
446	Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nature Climate Change, 2014, 4, 791-795.	8.1	204
447	Trees in a Changing Environment. Plant Ecophysiology, 2014, , .	1.5	9
448	Development of the IAP Dynamic Global Vegetation Model. Advances in Atmospheric Sciences, 2014, 31, 505-514.	1.9	29
449	Summer rainfall variability in European Mediterranean mountains from the sixteenth to the twentieth century reconstructed from tree rings. International Journal of Biometeorology, 2014, 58, 1627-1639.	1.3	14
450	Abrupt Climate-Independent Fire Regime Changes. Ecosystems, 2014, 17, 1109-1120.	1.6	139
451	Determinants of the occurrence of unburnt forest patches: Potential biotic refuges within a large, intense wildfire in south-eastern Australia. Forest Ecology and Management, 2014, 314, 85-93.	1.4	81
452	Wildfires in the late Palaeozoic and Mesozoic of the Southern Alps—the Anisian and Ladinian (Mid) Tj ETQq1 1 271-278.	0.784314 0.6	rgBT /Overio 10
453	Effectiveness of fuel reduction treatments: Assessing metrics of forest resiliency and wildfire severity after the Wallow Fire, AZ. Forest Ecology and Management, 2014, 334, 43-52.	1.4	56
454	Pyrogeography, historical ecology, and the human dimensions of fire regimes. Journal of Biogeography, 2014, 41, 833-836.	1.4	47

#	Article	IF	Citations
455	Stand density and age affect tree-level structural and functional characteristics of young, postfire lodgepole pine in Yellowstone National Park. Forest Ecology and Management, 2014, 320, 138-148.	1.4	19
456	Flame retardant properties of the bark powder of Anadenanthera peregrina var. falcata (Benth.) Altschul (angico) studied by coupled thermogravimetry–Fourier transform infrared spectroscopy. Journal of Analytical and Applied Pyrolysis, 2014, 106, 187-189.	2.6	7
457	Interfacing ecology and policy: Developing an ecological framework and evidence base to support wildfire management in South Africa. Austral Ecology, 2014, 39, 424-436.	0.7	8
458	Climatic influences on fire regimes in ponderosa pine forests of the Zuni Mountains, NM, USA. Forest Ecology and Management, 2014, 322, 69-77.	1.4	16
459	Post-fire resilience in the Alpine region estimated from MODIS satellite multispectral data. International Journal of Applied Earth Observation and Geoinformation, 2014, 32, 163-172.	1.4	31
460	Wildland fire emissions, carbon, and climate: Seeing the forest and the trees – A cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems. Forest Ecology and Management, 2014, 317, 9-19.	1.4	77
461	Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Research, 2014, 25, 1308-1337.	3.0	209
462	Wildland fire emissions, carbon, and climate: Wildfire–climate interactions. Forest Ecology and Management, 2014, 317, 80-96.	1.4	181
463	Terrestrial and Inland Water Systems. , 0, , 271-360.		25
464	The sensitivity of global wildfires to simulated past, present, and future lightning frequency. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 312-322.	1.3	82
465	Global change and Mediterranean forests: current impacts and potential responses. , 2014, , 47-76.		37
466	Aboriginal landscape burning and its impact on the summer monsoon of northern Australia. Australian Archaeology, 2014, 79, 109-115.	0.3	0
467	Daily global fire radiative power fields estimation from one or two MODIS instruments. Atmospheric Chemistry and Physics, 2014, 14, 13377-13390.	1.9	9
468	Space-based observations of fire NO _x emission coefficients: a global biome-scale comparison. Atmospheric Chemistry and Physics, 2014, 14, 2509-2524.	1.9	30
469	Prescribed burning of logging slash in the boreal forest of Finland: emissions and effects on meteorological quantities and soil properties. Atmospheric Chemistry and Physics, 2014, 14, 4473-4502.	1.9	17
470	Strong chemistryâ€climate feedbacks in the Pliocene. Geophysical Research Letters, 2014, 41, 527-533.	1.5	37
471	Interannual variation in biomass burning and fire seasonality derived from geostationary satellite data across the contiguous United States from 1995 to 2011. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1147-1162.	1.3	38
472	Evidence of Repeated Wildfires Prior to Human Occupation on San Nicolas Island, California. Monographs of the Western North American Naturalist, 2014, 7, 35-47.	0.7	7

#	Article	IF	CITATIONS
473	The role of data assimilation in predictive ecology. Ecosphere, 2014, 5, 1-16.	1.0	65
474	Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite-based active fire characterization and biomass burning estimation. Geophysical Research Letters, 2014, 41, 1988-1994.	1.5	94
475	Management and climate contributions to satelliteâ€derived active fire trends in the contiguous United States. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 645-660.	1.3	13
476	Europe on fire three thousand years ago: Arson or climate?. Geophysical Research Letters, 2015, 42, 5023-2033.	1.5	36
477	IDENTIFYING ACTIVE FIRE IN SOUTHWESTERN NIGERIA WITH MODIS DATA AND GEOGRAPHICAL INFORMATION SYSTEMS. Geodesy and Cartography, 2015, 41, 81-91.	0.2	1
478	Re-framing values for a World Heritage future: what type of icon will K'gari-Fraser Island become?. Australasian Journal of Environmental Management, 2015, 22, 124-148.	0.6	21
479	Wildfire risk for main vegetation units in a biodiversity hotspot: modeling approach in New Caledonia, South Pacific. Ecology and Evolution, 2015, 5, 377-390.	0.8	16
480	Fuel moisture content enhances nonadditive effects of plant mixtures on flammability and fire behavior. Ecology and Evolution, 2015, 5, 3830-3841.	0.8	31
481	Tropical North Atlantic oceanâ€∎tmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires. Geophysical Research Letters, 2015, 42, 6462-6470.	1.5	13
482	A growing importance of large fires in conterminous United States during 1984–2012. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2625-2640.	1.3	30
483	Effects of wildfire on stream algal abundance, community structure, and nutrient limitation. Freshwater Science, 2015, 34, 1494-1509.	0.9	25
484	Wildfire disturbance and productivity as drivers of plant species diversity across spatial scales. Ecosphere, 2015, 6, 1-14.	1.0	66
485	Consecutive wildfires affect stream biota in cold- and warmwater dryland river networks. Freshwater Science, 2015, 34, 1510-1526.	0.9	32
486	The sensitivity of global climate to the episodicity of fire aerosol emissions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,589.	1.2	18
487	Centuryâ€scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance. Global Biogeochemical Cycles, 2015, 29, 1549-1566.	1.9	21
488	Black carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soils. Global Biogeochemical Cycles, 2015, 29, 1977-2000.	1.9	23
489	The use of topographic fire refuges by the greater glider (Petauroides volans) and the mountain brushtail possum (Trichosurus cunninghami) following a landscape-scale fire. Australian Mammalogy, 2015, 37, 39.	0.7	21
490	Fostering ecological data sharing: collaborations in the International Long Term Ecological Research Network. Ecosphere, 2015, 6, 1-18.	1.0	15

#	Article	IF	CITATIONS
491	Sensitivity of burned area in Europe to climate change, atmospheric CO ₂ levels, and demography: A comparison of two fireâ€vegetation models. Journal of Geophysical Research C: Biogeosciences, 2015, 120, 2256-2272.	1.3	37
492	Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers. Scientific Reports, 2015, 5, 13356.	1.6	60
493	Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere, 2015, 6, 1-10.	1.0	54
494	Seasonal predictability of summer fires in a Mediterranean environment. International Journal of Wildland Fire, 2015, 24, 1076.	1.0	36
495	Where are the â€`bad fires' in <scp>W</scp> est <scp>A</scp> frican savannas? Rethinking burning management through a space–time analysis in <scp>B</scp> urkina <scp>F</scp> aso. Geographical Journal, 2015, 181, 375-387.	1.6	18
496	The effects of forest fuel connectivity on spatiotemporal dynamics of Holocene fire regimes in the central boreal forest of North America. Journal of Quaternary Science, 2015, 30, 365-375.	1.1	12
497	Fire emission heights in the climate system – Part 1: Global plume height patterns simulated by ECHAM6-HAM2. Atmospheric Chemistry and Physics, 2015, 15, 7155-7171.	1.9	27
498	Fire emission heights in the climate system – Part 2: Impact on transport, black carbon concentrations and radiation. Atmospheric Chemistry and Physics, 2015, 15, 7173-7193.	1.9	32
499	Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion. Atmospheric Chemistry and Physics, 2015, 15, 5259-5273.	1.9	35
500	A novel methodology for large-scale daily assessment of the direct radiative forcing of smoke aerosols. Atmospheric Chemistry and Physics, 2015, 15, 5471-5483.	1.9	13
501	Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts. Atmospheric Chemistry and Physics, 2015, 15, 12251-12266.	1.9	46
502	Signature of tropical fires in the diurnal cycle of tropospheric CO as seen from Metop-A/IASI. Atmospheric Chemistry and Physics, 2015, 15, 13041-13057.	1.9	3
503	Quantifying pyroconvective injection heights using observations of fire energy: sensitivity of spaceborne observations of carbon monoxide. Atmospheric Chemistry and Physics, 2015, 15, 4339-4355.	1.9	18
504	New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations. Atmospheric Chemistry and Physics, 2015, 15, 8831-8846.	1.9	40
505	Effects of fire and <scp>CO</scp> ₂ on biogeography and primary production in glacial and modern climates. New Phytologist, 2015, 208, 987-994.	3.5	29
506	Fire history reconstruction in grassland ecosystems: amount of charcoal reflects local area burned. Environmental Research Letters, 2015, 10, 114009.	2.2	43
507	Scaleâ€dependent responses of longleaf pine vegetation to fire frequency and environmental context across two decades. Journal of Ecology, 2015, 103, 998-1008.	1.9	19
508	Biological significance of dead biomass retention trait in Mediterranean Basin species: an analysis between different successional niches and regeneration strategies as functional groups. Plant Biology, 2015, 17, 1196-1202.	1.8	9

CITATION REPORT ARTICLE IF CITATIONS Post-fire habitat use of the golden-backed tree-rat (<i>M</i><i>esembriomys macrurus</i>) in the 0.7 18 northwest Kimberley, Western Australia. Austral Ecology, 2015, 40, 941-952. Controls on fire activity over the Holocene. Climate of the Past, 2015, 11, 781-788. 1.3 Review of methods for modelling forest fire risk and hazard. African Journal of Environmental 0.2 24 Science and Technology, 2015, 9, 155-165. Daily burned area and carbon emissions from boreal fires in Alaska. Biogeosciences, 2015, 12, 3579-3601. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers. 1.3 36 Biogeosciences, 2015, 12, 887-903. Evaluation of Forest Fire Danger Indexes for Eucalypt Plantations in Bahia, Brazil. International Journal of Forestry Research, 2015, 2015, 1-6. 0.2 On inclusion of water resource management in Earth system models – Part 1: Problem definition and 1.9 147 representation of water demand. Hydrology and Earth System Sciences, 2015, 19, 33-61. Utilizing colored dissolved organic matter to derive dissolved black carbon export by arctic rivers. 0.8 Frontiers in Earth Science, 2015, 3, . Seasonality of Fire Weather Strongly Influences Fire Regimes in South Florida Savanna-Grassland 1.1 61 Landscapes. PLoS ONE, 2015, 10, e0116952. The Changing Strength and Nature of Fire-Climate Relationships in the Northern Rocky Mountains, 1.1 U.S.A., 1902-2008. PLoS ONE, 2015, 10, e0127563. Dynamic Disturbance Processes Create Dynamic Lek Site Selection in a Prairie Grouse. PLoS ONE, 2015, 1.1 24 10, e0137882. A Landscape-Scale, Applied Fire Management Experiment Promotes Recovery of a Population of the Threatened Gouldian Finch, Erythrura gouldiae, in Australia's Tropical Savannas. PLoS ONE, 2015, 10, 1.1 e0137997. Termites Are Resistant to the Effects of Fire at Multiple Spatial Scales. PLoS ONE, 2015, 10, e0140114. 1.1 35 The impact of fire on the Late Paleozoic Earth system. Frontiers in Plant Science, 2015, 6, 756. 1.7 Carbon footprint from helitankers: sustainable decision making in aerial wildfire fighting. 1.0 4 International Journal of Wildland Fire, 2015, 24, 983. Spatio-Temporal Features of China's Urban Fires: An Investigation with Reference to Gross Domestic Product and Humidity. Sustainability, 2015, 7, 9734-9752. Global analysis of radiative forcing from fire-induced shortwave albedo change. Biogeosciences, 2015, 1.315 12, 557-565.

526Effects of climate variability on savannah fire regimes in West Africa. Earth System Dynamics, 2015, 6,
161-174.2.724

#

509

511

513

514

515

517

519

521

523

524

# 527	ARTICLE Postfire Ecosystem Restoration. , 2015, , 229-246.	IF	Citations 9
528	Representing climate, disturbance, and vegetation interactions in landscape models. Ecological Modelling, 2015, 309-310, 33-47.	1.2	83
529	Climate, dust, and fire across the Eocene-Oligocene transition, Patagonia. Geology, 2015, 43, 567-570.	2.0	22
530	Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 2: Carbon emissions and the role of fires in the global carbon balance. Geoscientific Model Development, 2015, 8, 1321-1338.	1.3	69
531	Bird population responses to wildfire and planned burns in foothill forests of Victoria, Australia. Journal of Ornithology, 2015, 156, 263-273.	0.5	13
532	Taking time to consider the causes and consequences of large wildfires. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13137-13138.	3.3	6
533	Integrating rehabilitation, restoration and conservation for a sustainable jarrah forest future during climate disruption. Pacific Conservation Biology, 2015, 21, 175.	0.5	20
534	The carbon balance of reducing wildfire risk and restoring process: an analysis of 10-year post-treatment carbon dynamics in a mixed-conifer forest. Climatic Change, 2015, 132, 709-719.	1.7	17
535	A global assessment of the carbon cycle and temperature responses to major changes in future fire regime. Climatic Change, 2015, 133, 179-192.	1.7	25
536	Fire Regimes and the Demography of the Lizard <i>Micrablepharus atticolus</i> (Squamata,) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 Tf 12
537	Desert wildfire impacts on plant community function. Plant Ecology, 2015, 216, 1623-1634.	0.7	16
538	Anthropogenic effects on global mean fire size. International Journal of Wildland Fire, 2015, 24, 589.	1.0	54
539	Flammability traits of Cape shrubland species with different post-fire recruitment strategies. South African Journal of Botany, 2015, 101, 40-48.	1.2	37
540	Weathering of stone-built heritage: A lens through which to read the Anthropocene. Anthropocene, 2015, 11, 1-13.	1.6	33
541	Burning the Land. Current Anthropology, 2015, 56, 299-326.	0.8	86
542	Fire Influences on Atmospheric Composition, Air Quality and Climate. Current Pollution Reports, 2015, 1, 70-81.	3.1	71
543	Climate and Biomass Control on Fire Activity during the Late-Glacial/Early-Holocene Transition in Temperate Ecosystems of the Upper Rhone Valley (France). Quaternary Research, 2015, 83, 94-104.	1.0	13
544	Exploring the relationships between post-fire vegetation regeneration dynamics, topography and burn severity: A case study from the Montane Cordillera Ecozones of Western Canada. Applied Geography, 2015, 56, 232-248.	1.7	83

# 545	ARTICLE Applying historical ecology to natural resource management institutions: Lessons from two case studies of landscape fire management. Global Environmental Change, 2015, 31, 1-10.	IF 3.6	Citations 36
546	Comparing historical and current wildfire regimes in the Northern Rocky Mountains using a landscape succession model. Forest Ecology and Management, 2015, 343, 9-21.	1.4	6
547	Developing spatial inequalities in carbon appropriation: A sociological analysis of changing local emissions across the United States. Social Science Research, 2015, 51, 119-131.	1,1	16
548	Climate, landowner residency, and land cover predict local scale fire activity in the Western Amazon. Global Environmental Change, 2015, 31, 144-153.	3.6	20
549	Last Glacial droughts and fire regimes in the central Mexican highlands. Journal of Quaternary Science, 2015, 30, 88-99.	1.1	33
550	Responses of Temperate Forest Productivity to Insect and Pathogen Disturbances. Annual Review of Plant Biology, 2015, 66, 547-569.	8.6	105
551	Drivers of observed biotic homogenization in pine barrens of central Wisconsin. Ecology, 2015, 96, 1030-1041.	1.5	46
552	Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation. Remote Sensing of Environment, 2015, 160, 114-121.	4.6	154
553	Vegetation, topography and daily weather influenced burn severity in central Idaho and western Montana forests. Ecosphere, 2015, 6, 1-23.	1.0	101
554	The effects of topographic variation and the fire regime on coarse woody debris: Insights from a large wildfire. Forest Ecology and Management, 2015, 340, 126-134.	1.4	40
555	A stochastic fire spread model for north Patagonia based on fire occurrence maps. Ecological Modelling, 2015, 300, 73-80.	1.2	22
556	Ammonia emissions in tropical biomass burning regions: Comparison between satellite-derived emissions and bottom-up fire inventories. Atmospheric Environment, 2015, 121, 42-54.	1.9	78
557	Decadal predictability of soil water, vegetation, and wildfire frequency over North America. Climate Dynamics, 2015, 45, 2213-2235.	1.7	26
558	Charcoalified logs as evidence of hypautochthonous/autochthonous wildfire events in a peat-forming environment from the Permian of southern ParanÃ; Basin (Brazil). International Journal of Coal Geology, 2015, 146, 55-67.	1.9	35
559	Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling. Frontiers in Plant Science, 2014, 5, 785.	1.7	38
560	Wildfire Altering Terrestrial Precursors of Disinfection Byproducts in Forest Detritus. Environmental Science & Technology, 2015, 49, 5921-5929.	4.6	90
561	Sensitivity and complacency of sedimentary biogeochemical records to climate-mediated forest disturbances. Earth-Science Reviews, 2015, 148, 121-133.	4.0	21
562	Sensitivity of global wildfire occurrences to various factors in theÂcontext of global change. Atmospheric Environment, 2015, 121, 86-92.	1.9	53

#	Article	IF	CITATIONS
563	Use of Gamma-Valerolactone as an Illuminating Liquid and Lighter Fluid. ACS Sustainable Chemistry and Engineering, 2015, 3, 1899-1904.	3.2	60
564	Social entrepreneurship through forest bioresidue briquetting: An approach to mitigate forest fires in Pine areas of Western Himalaya, India. Renewable and Sustainable Energy Reviews, 2015, 51, 1338-1344.	8.2	15
565	The role of fire in the Central Yunnan Plateau ecosystem, southwestern China. Forest Ecology and Management, 2015, 356, 22-30.	1.4	31
566	Leaf flammability and fuel load increase under elevated CO2 levels in a model grassland. International Journal of Wildland Fire, 2015, 24, 819.	1.0	8
567	Early Paleogene wildfires in peat-forming environments at Schöningen, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 437, 53-62.	1.0	29
568	Climate, vegetation, and human influences on late-Holocene fire regimes in the Sanjiang plain, northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438, 1-8.	1.0	26
569	Breakthrough in the understanding of flaming wildfires. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9795-9796.	3.3	1
570	Fire danger assessment in Iran based on geospatial information. International Journal of Applied Earth Observation and Geoinformation, 2015, 42, 57-64.	1.4	47
571	Fires in the Cenozoic: a late flowering of flammable ecosystems. Frontiers in Plant Science, 2014, 5, 749.	1.7	64
572	Linkages between climate, fire and vegetation in southwest China during the last 18.5ka based on a sedimentary record of black carbon and its isotopic composition. Palaeogeography, Palaeoecology, 2015, 435, 86-94.	1.0	61
573	Climatic controls on ecosystem resilience: Postfire regeneration in the Cape Floristic Region of South Africa. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9058-9063.	3.3	42
574	Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 2015, 6, 7537.	5.8	1,224
575	Regional Case Studies. , 2015, , 210-264.		1
577	Carbon Dynamics of Mixed- and High-Severity Wildfires. , 2015, , 290-309.		1
578	Multiple threats, or multiplying the threats? Interactions between invasive predators and other ecological disturbances. Biological Conservation, 2015, 190, 60-68.	1.9	189
579	Combining charcoal sediment and molecular markers to infer a Holocene fire history in the Maya Lowlands of Petén, Guatemala. Quaternary Science Reviews, 2015, 115, 123-131.	1.4	41
580	What is the relevance of pyrogeography to the Anthropocene?. Infrastructure Asset Management, 2015, 2, 73-76.	1.2	11
581	Effects of an extensive fire on arboreal small mammal populations in a neotropical savanna woodland. Journal of Mammalogy, 2015, 96, 368-379.	0.6	23

#	Article	IF	Citations
582	Fire frequency matters more than fire size: Testing the pyrodiversity–biodiversity paradigm for at-risk small mammals in an Australian tropical savanna. Biological Conservation, 2015, 186, 337-346.	1.9	56
583	Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region. Science of the Total Environment, 2015, 524-525, 32-39.	3.9	64
584	Prescribed fire affects female white-tailed deer habitat use during summer lactation. Forest Ecology and Management, 2015, 348, 220-225.	1.4	42
585	A synthesis of postfire recovery traits of woody plants in Australian ecosystems. Science of the Total Environment, 2015, 534, 31-42.	3.9	151
586	Assessing the impact of fire on the spatial distribution of Larrea tridentata in the Sonoran Desert, USA. Oecologia, 2015, 178, 473-484.	0.9	6
587	Disturbance and Topography Shape Nitrogen Availability and δ15N over Long-Term Forest Succession. Ecosystems, 2015, 18, 573-588.	1.6	31
588	Changes in landscape fire-hazard during the second half of the 20th century: Agriculture abandonment and the changing role of driving factors. Agriculture, Ecosystems and Environment, 2015, 207, 126-140.	2.5	81
589	Impact of smoke from prescribed burning: Is it a public health concern?. Journal of the Air and Waste Management Association, 2015, 65, 592-598.	0.9	51
590	Wildfires in the Lab: Simple Experiment and Models for the Exploration of Excitable Dynamics. Journal of Chemical Education, 2015, 92, 1330-1337.	1.1	9
591	Flammability across the gymnosperm phylogeny: the importance of litter particle size. New Phytologist, 2015, 206, 672-681.	3.5	64
592	Vegetative and climatic controls on Holocene wildfire and erosion recorded in alluvial fans of the Middle Fork Salmon River, Idaho. Holocene, 2015, 25, 857-871.	0.9	12
593	Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology, 2015, 21, 2861-2880.	4.2	683
594	Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina. Science of the Total Environment, 2015, 520, 1-12.	3.9	69
595	Sensitivity of global terrestrial carbon cycle dynamics to variability in satelliteâ€observed burned area. Global Biogeochemical Cycles, 2015, 29, 207-222.	1.9	29
596	Land Use Change Impacts on Air Quality and Climate. Chemical Reviews, 2015, 115, 4476-4496.	23.0	103
597	Burn or rot: leaf traits explain why flammability and decomposability are decoupled across species. Functional Ecology, 2015, 29, 1486-1497.	1.7	91
598	Impacts of climate change and management responses in tropical forests depend on complex frugivoreâ€mediated seed dispersal. Global Ecology and Biogeography, 2015, 24, 685-694.	2.7	12
599	Location, timing and extent of wildfire vary by cause of ignition. International Journal of Wildland Fire, 2015, 24, 37.	1.0	121

#	Article	IF	CITATIONS
600	Wildfire effects on the properties and microbial community structure of organic horizon soils in the New Jersey Pinelands. Soil Biology and Biochemistry, 2015, 86, 67-76.	4.2	54
601	Global burned area mapping from ENVISAT-MERIS and MODIS active fire data. Remote Sensing of Environment, 2015, 163, 140-152.	4.6	131
602	Impact of fuel variability on wildfire emission estimates. Atmospheric Environment, 2015, 121, 93-102.	1.9	11
603	Fire effects on aquatic ecosystems: an assessment of the current state of the science. Freshwater Science, 2015, 34, 1340-1350.	0.9	132
604	The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change. Numerische Mathematik, 2015, 315, 713-733.	0.7	34
605	Modelling static fire hazard in a semi-arid region using frequency analysis. International Journal of Wildland Fire, 2015, 24, 763.	1.0	22
606	Influence of wind speed on the global variability of burned fraction: a global fire model's perspective. International Journal of Wildland Fire, 2015, 24, 989.	1.0	19
607	Large unburnt areas, not small unburnt patches, are needed to conserve avian diversity in fireâ€prone landscapes. Journal of Applied Ecology, 2015, 52, 486-495.	1.9	44
608	Fire in Australian savannas: from leaf to landscape. Global Change Biology, 2015, 21, 62-81.	4.2	88
609	Topography, Fuels, and Fire Exclusion Drive Fire Severity of the Rim Fire in an Old-Growth Mixed-Conifer Forest, Yosemite National Park, USA. Ecosystems, 2015, 18, 1192-1208.	1.6	74
610	Fuels and fires influence vegetation via above―and belowground pathways in a highâ€diversity plant community. Journal of Ecology, 2015, 103, 1009-1019.	1.9	35
611	Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Frontiers in Ecology and the Environment, 2015, 13, 265-272.	1.9	352
612	Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agricultural and Forest Meteorology, 2015, 214-215, 369-379.	1.9	136
613	The Susceptibility of Southeastern Amazon Forests to Fire: Insights from a Large-Scale Burn Experiment. BioScience, 2015, 65, 893-905.	2.2	89
614	Can we infer vegetation change from peat carbon and nitrogen content? A palaeoecological test from Tasmania, Australia. Holocene, 2015, 25, 1802-1810.	0.9	2
615	Early post-fire regeneration of a fire-prone subtropical mixed Yunnan pine forest in Southwest China: Effects of pre-fire vegetation, fire severity and topographic factors. Forest Ecology and Management, 2015, 356, 31-40.	1.4	37
616	A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science, 2015, 350, 1056-1061.	6.0	194
617	Prioritizing fuel management in urban interfaces threatened by wildfires. Ecological Indicators, 2015, 48. 342-347.	2.6	29

#	Article	IF	CITATIONS
618	Long-Term Fire Trends in Hispaniola and Puerto Rico from Sedimentary Charcoal: A Comparison of Three Records. Professional Geographer, 2015, 67, 229-241.	1.0	16
619	Effects of fire on understorey birds in Kimboza Forest Reserve in the eastern foothills of the Uluguru Mountains, Tanzania. African Journal of Ecology, 2015, 53, 304-311.	0.4	4
620	Ecosystem services and forest fires in India — Context and policy implications from a case study in Andhra Pradesh. Forest Policy and Economics, 2015, 50, 337-346.	1.5	22
621	Predictability of the terrestrial carbon cycle. Global Change Biology, 2015, 21, 1737-1751.	4.2	190
622	Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Global Change Biology, 2015, 21, 1621-1633.	4.2	214
623	Simulated post-fire temperature affects germination of native and invasive grasses in cerrado (Brazilian savanna). Plant Ecology and Diversity, 2015, 8, 219-227.	1.0	26
624	Optimal fire histories for biodiversity conservation. Conservation Biology, 2015, 29, 473-481.	2.4	107
625	Dynamics of epiphytic macrolichen abundance, diversity and composition in boreal forest. Journal of Applied Ecology, 2015, 52, 181-189.	1.9	26
626	Spatiotemporal Variability of Wildland Fuels in US Northern Rocky Mountain Forests. Forests, 2016, 7, 129.	0.9	12
627	Plasticity and Stereotypy in Avian Foraging during Secondary Succession in Temperate Forests. Avian Biology Research, 2016, 9, 174-194.	0.4	1
628	The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP). Clima of the Past, 2016, 12, 769-786.	ate 1.3	137
629	Future Projections of Fire Occurrence in Brazil Using EC-Earth Climate Model. Revista Brasileira De Meteorologia, 2016, 31, 288-297.	0.2	20
630	Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite. Biogeosciences, 2016, 13, 3717-3734.	1.3	36
631	Anthropogenic impacts drive niche and conservation metrics of a cryptic rattlesnake on the Colorado Plateau of western North America. Royal Society Open Science, 2016, 3, 160047.	1.1	7
632	Non-deforestation fire vs. fossil fuel combustion: the source of CO ₂ emissions affects the global carbon cycle and climate responses. Biogeosciences, 2016, 13, 2137-2149.	1.3	36
633	Preface: Impacts of extreme climate events and disturbances on carbon dynamics. Biogeosciences, 2016, 13, 3665-3675.	1.3	16
634	Fire Regime Characteristics along Environmental Gradients in Spain. Forests, 2016, 7, 262.	0.9	8
635	An introduction to the Australian and New Zealand flux tower network – OzFlux. Biogeosciences, 2016, 13, 5895-5916.	1.3	159

		CITATION RE	EPORT	
#	Article		IF	Citations
636	The status and challenge of global fire modelling. Biogeosciences, 2016, 13, 3359-3375	j.	1.3	274
637	Surface moisture and temperature trends anticipate drought conditions linked to wildfi the Iberian Peninsula. European Journal of Remote Sensing, 2016, 49, 955-971.	re activity in	1.7	20
638	Thermal alteration of soil physico-chemical properties: a systematic study to infer respo Nevada climosequence soils to forest fires. Soil, 2016, 2, 351-366.	nse of Sierra	2.2	30
639	Interactions between Climate, Land Use and Vegetation Fire Occurrences in El Salvador 2016, 7, 26.	. Atmosphere,	1.0	13
640	A Global Index for Mapping the Exposure of Water Resources to Wildfire. Forests, 2016	, 7, 22.	0.9	29
641	Climate Change and Future Fire Regimes: Examples from California. Geosciences (Switz 37.	erland), 2016, 6,	1.0	107
642	Decreasing Fires in Mediterranean Europe. PLoS ONE, 2016, 11, e0150663.		1.1	153
643	Seed Pubescence and Shape Modulate Adaptive Responses to Fire Cues. PLoS ONE, 20	16, 11, e0159655.	1.1	7
644	Landscapes and Disturbances. , 0, , 400-421.			0
645	Aerosols, Chemistry, and Climate. , 0, , 606-627.			0
646	Climate, CO ₂ and human population impace emissions. Biogeosciences, 2016, 13, 267-282.	ts on global wildfire	1.3	91
647	Influence of postâ€harvest crop residue fires on surface ozone mixing ratios in the N.W using 2 years of continuous in situ trace gas measurements. Journal of Geophysica Atmospheres, 2016, 121, 3619-3633.		1.2	46
648	Biotic resistance and disturbance: rodent consumers regulate postâ€fire plant invasions plant community diversity. Ecology, 2016, 97, 1700-1711.	s and increase	1.5	60
649	Past and Present Post-Fire Environments. Science of the Total Environment, 2016, 573,	1275-1277.	3.9	25
650	A Burning Issue: Anthropogenic Vegetation Fires. , 2016, , 335-348.			5
651	Cenozoic mean greenhouse gases and temperature changes with reference to the Anth Global Change Biology, 2016, 22, 3843-3858.	ropocene.	4.2	15
652	Temporal trends in mammal responses to fire reveals the complex effects of fire regime Ecological Applications, 2016, 26, 557-573.	attributes.	1.8	36
653	Measurement of inter- and intra-annual variability of landscape fire activity at a contine Australian case. Environmental Research Letters, 2016, 11, 035003.	ntal scale: the	2.2	49

#	Article	IF	CITATIONS
654	Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150168.	1.8	78
655	Fire regime from 1973 to 2011 in north-western Patagonian grasslands. International Journal of Wildland Fire, 2016, 25, 922.	1.0	14
656	Climate and Fuel Controls on North American Paleofires: Smoldering to Flaming in the Late-glacial-Holocene Transition. Scientific Reports, 2016, 6, 20719.	1.6	21
657	Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Scientific Reports, 2016, 6, 24639.	1.6	81
658	Dispersal-limited detritivores in fire-prone environments: persistence and population structure of terrestrial amphipods (Talitridae). International Journal of Wildland Fire, 2016, 25, 753-761.	1.0	8
659	Less fuel for the fire: malleefowl (Leipoa ocellata) nesting activity affects fuel loads and fire behaviour. Wildlife Research, 2016, 43, 640.	0.7	13
660	Estimates of greenhouse gas and black carbon emissions from a major Australian wildfire with high spatiotemporal resolution. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9892-9907.	1.2	14
661	Fire history on the California Channel Islands spanning human arrival in the Americas. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150167.	1.8	19
662	Fire severity alters spatio–temporal movements and habitat utilisation by an arboreal marsupial, the mountain brushtail possum (Trichosurus cunninghami). International Journal of Wildland Fire, 2016, 25, 1291.	1.0	11
663	The impact of traditional fire management on soil carbon and nitrogen pools in a montane forest, southern Ethiopia. International Journal of Wildland Fire, 2016, 25, 1110.	1.0	8
664	A framework for testing the influence of Aboriginal burning on grassy ecosystems in lowland, mesic south–eastern Australia. Australian Journal of Botany, 2016, 64, 626.	0.3	8
665	Biomass burning drives atmospheric nutrient redistribution within forested peatlands in Borneo. Environmental Research Letters, 2016, 11, 085003.	2.2	24
666	The interaction of fire and mankind: Introduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150162.	1.8	13
667	Mapping recent burned patches in Siberian larch forest using Landsat and MODIS data. European Journal of Remote Sensing, 2016, 49, 861-887.	1.7	6
668	Wildfires and geochemical change in a subalpine forest over the past six millennia. Environmental Research Letters, 2016, 11, 125003.	2.2	25
669	Changes in carbon storage with land management promoted by payment for ecosystem services. Environmental Conservation, 2016, 43, 397-406.	0.7	41
670	A quantitative assessment of shoot flammability for 60 tree and shrub species supports rankings based on expert opinion. International Journal of Wildland Fire, 2016, 25, 466.	1.0	75
671	Laboratory experiments to estimate interception of infrared radiation by tree canopies. International Journal of Wildland Fire, 2016, 25, 1009.	1.0	18

#	Article	IF	CITATIONS
672	The impact of wildfire on stream fishes in an Atlantic-Mediterranean climate: evidence from an 18-year chronosequence. Knowledge and Management of Aquatic Ecosystems, 2016, , 28.	0.5	5
673	The Science of Firescapes: Achieving Fire-Resilient Communities. BioScience, 2016, 66, 130-146.	2.2	157
674	Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data. Remote Sensing of Environment, 2016, 185, 71-83.	4.6	50
675	Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biology, 2016, 22, 76-91.	4.2	256
676	CO2 and CO emission rates from three forest fire controlled experiments in Western Amazonia. Atmospheric Environment, 2016, 135, 73-83.	1.9	22
677	The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150163.	1.8	28
678	Managing the human component of fire regimes: lessons from Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150346.	1.8	130
679	Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150469.	1.8	39
680	Clobal combustion: the connection between fossil fuel and biomass burning emissions (1997–2010). Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150177.	1.8	12
681	Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds. Oecologia, 2016, 182, 335-346.	0.9	26
682	Tree species richness decreases while species evenness increases with disturbance frequency in a natural boreal forest landscape. Ecology and Evolution, 2016, 6, 842-850.	0.8	22
683	Dating fires and estimating the temperature attained on stone surfaces. The case of Ciudad de Vascos (Spain). Microchemical Journal, 2016, 127, 247-255.	2.3	16
684	Demographic controls of future global fire risk. Nature Climate Change, 2016, 6, 781-785.	8.1	109
685	Recent Advances and Remaining Uncertainties in Resolving Past and Future Climate Effects on Global Fire Activity. Current Climate Change Reports, 2016, 2, 1-14.	2.8	110
686	Post-fire soil functionality and microbial community structure in a Mediterranean shrubland subjected to experimental drought. Science of the Total Environment, 2016, 573, 1178-1189.	3.9	48
687	Weather, fuels, and topography impede wildland fire spread in western US landscapes. Forest Ecology and Management, 2016, 380, 59-69.	1.4	80
688	Historical trends of forest fires and carbon emissions in China from 1988 to 2012. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2506-2517.	1.3	22
689	First report of Cisuralian (early Permian) charcoal layers within a coal bed from Baode, North China with reference to global wildfire distribution. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459, 394-408.	1.0	25

#	Article	IF	Citations
690	Competing consumers: contrasting the patterns and impacts of fire and mammalian herbivory in Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150309.	1.8	116
691	ENSO controls interannual fire activity in southeast Australia. Geophysical Research Letters, 2016, 43, 10,891.	1.5	59
692	A stratified random sampling design in space and time for regional to global scale burned area product validation. Remote Sensing of Environment, 2016, 186, 465-478.	4.6	80
693	Smokey comes of age: unmanned aerial systems for fire management. Frontiers in Ecology and the Environment, 2016, 14, 333-339.	1.9	42
694	Estimating carbon emissions from forest fires over a decade in Similipal Biosphere Reserve, India. Remote Sensing Applications: Society and Environment, 2016, 4, 61-67.	0.8	12
695	Stable Carbon Isotopic Composition of Black Carbon in Surface Soil as a Proxy for Reconstructing Vegetation on the Northern Slope of the Qinling Mountains. Acta Geologica Sinica, 2016, 90, 222-229.	0.8	2
696	Signatures of Biomass Burning Aerosols in the Plume of a Saltmarsh Wildfire in South Texas. Environmental Science & Technology, 2016, 50, 9308-9314.	4.6	30
697	Fire and climatic extremes shape mammal distributions in a fireâ€prone landscape. Diversity and Distributions, 2016, 22, 1127-1138.	1.9	46
698	Impact of North American intense fires on aerosol optical properties measured over the European Arctic in July 2015. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,487.	1.2	31
700	Wildfire, water, and society: Toward integrative research in the "Anthropocene― Anthropocene, 2016, 16, 16-27.	1.6	34
701	Disentangling the impacts of climate and human colonization on the flora and fauna of the Australian arid zone over the past 100 ka using stable isotopes in avian eggshell. Quaternary Science Reviews, 2016, 151, 27-57.	1.4	34
702	Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system?. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 910-931.	3.6	76
703	Quantifying the human influence on fire ignition across the western <scp>USA</scp> . Ecological Applications, 2016, 26, 2390-2401.	1.8	60
704	A Landscape Architecture of Fire. Current Anthropology, 2016, 57, S65-S79.	0.8	80
705	The role of fire as a long-term landscape modifier: Evidence from long-term fire observations (1922–2000) in Greece. Applied Geography, 2016, 74, 47-55.	1.7	12
706	Fires in Amazonia. Ecological Studies, 2016, , 301-329.	0.4	4
707	Wildfire and floral herbivory alter reproduction and pollinator mutualisms of Yuccas and Yucca moths. Journal of Plant Ecology, 2016, , rtw077.	1.2	3
708	Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin. Ecological Studies, 2016, , .	0.4	11

#	Article	IF	CITATIONS
709	Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?. Ecological Applications, 2016, 26, 2414-2423.	1.8	37
710	A Cretaceous origin for fire adaptations in the Cape flora. Scientific Reports, 2016, 6, 34880.	1.6	29
711	Wildfire, climate, and invasive grass interactions negatively impact an indicator species by reshaping sagebrush ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12745-12750.	3.3	137
712	Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment. Atmospheric Chemistry and Physics, 2016, 16, 6961-6975.	1.9	45
713	Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5. Atmospheric Chemistry and Physics, 2016, 16, 14805-14824.	1.9	57
714	Production of peroxy nitrates in boreal biomass burning plumes over Canada during the BORTAS campaign. Atmospheric Chemistry and Physics, 2016, 16, 3485-3497.	1.9	7
715	A review of approaches to estimate wildfire plume injection height within large-scale atmospheric chemical transport models. Atmospheric Chemistry and Physics, 2016, 16, 907-925.	1.9	121
716	The Southern Annular Mode determines interannual and centennialâ€scale fire activity in temperate southwest Tasmania, Australia. Geophysical Research Letters, 2016, 43, 1702-1709.	1.5	45
717	Linking trace gas measurements and molecular tracers of organic matter in aerosols for identification of ecosystem sources and types of wildfires in Central Siberia. IOP Conference Series: Earth and Environmental Science, 2016, 48, 012017.	0.2	5
718	Future changes in climatic water balance determine potential for transformational shifts in Australian fire regimes. Environmental Research Letters, 2016, 11, 065002.	2.2	43
719	Characterization, Quantification and Compound-specific Isotopic Analysis of Pyrogenic Carbon Using Benzene Polycarboxylic Acids (BPCA). Journal of Visualized Experiments, 2016, , .	0.2	21
720	Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates. Nature Communications, 2016, 7, 11536.	5.8	26
721	Big data integration shows Australian bush-fire frequency is increasing significantly. Royal Society Open Science, 2016, 3, 150241.	1.1	87
722	Effect of summer fire on cursorial spider (Aranei) and beetle (Coleoptera) assemblages in meadow steppes of Central European Russia. Hacquetia, 2016, 15, 113-132.	0.2	10
723	Social Science/Natural Science Perspectives on Wildfire and Climate Change. Geography Compass, 2016, 10, 67-86.	1.5	11
724	Oriental bittersweet (Celastrus orbiculatus): Spreading by fire. Forest Ecology and Management, 2016, 364, 183-194.	1.4	7
725	Fire regimes in Amazonia: The relative roles of policy and precipitation. Anthropocene, 2016, 14, 46-57.	1.6	25
726	The role of fire in UK peatland and moorland management: the need for informed, unbiased debate. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150342.	1.8	78

~			~			
CF	ΓΑΤ	ION	R	FP	O	RT

#	Article	IF	CITATIONS
727	Regional aspects of modelling burned areas in Europe. International Journal of Wildland Fire, 2016, 25, 811.	1.0	13
728	Assessing the Potential for Transitions from Tallgrass Prairie to Woodlands: Are We Operating Beyond Critical Fire Thresholds?. Rangeland Ecology and Management, 2016, 69, 280-287.	1.1	54
729	Sources of anthropogenic fire ignitions on the peat-swamp landscape in Kalimantan, Indonesia. Global Environmental Change, 2016, 39, 205-219.	3.6	99
730	Impact of landscape changes on obsidian exploitation since the Palaeolithic in the central highland of Japan. Vegetation History and Archaeobotany, 2016, 25, 45-55.	1.0	9
731	Restoring forest structure and process stabilizes forest carbon in wildfireâ€prone southwestern ponderosa pine forests. Ecological Applications, 2016, 26, 382-391.	1.8	56
732	Do temporal changes in vegetation structure additional to time since fire predict changes in bird occurrence?. Ecological Applications, 2016, 26, 2267-2279.	1.8	17
733	The properties and functions of biochars in forest ecosystems. Journal of Soils and Sediments, 2016, 16, 2005-2020.	1.5	43
734	Wildfires in a warmer climate: Emission fluxes, emission heights, and black carbon concentrations in 2090–2099. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3195-3223.	1.2	37
735	A 350â€millionâ€year legacy of fire adaptation amongÂconifers. Journal of Ecology, 2016, 104, 352-363.	1.9	52
736	Forest fires and adaptation options in Europe. Regional Environmental Change, 2016, 16, 21-30.	1.4	74
737	Black carbon record of the wildfire history of western Sichuan Province in China over the last 12.8 ka. Frontiers of Earth Science, 2016, 10, 634-643.	0.9	13
738	Plant Invasions or Fire Policy: Which Has Altered Fire Behavior More in Tallgrass Prairie?. Ecosystems, 2016, 19, 356-368.	1.6	30
739	Down to Earth: Contextualizing the Anthropocene. Global Environmental Change, 2016, 39, 341-350.	3.6	239
740	Soil C:N:P dynamics during secondary succession following fire in the boreal forest of central Canada. Forest Ecology and Management, 2016, 369, 1-9.	1.4	80
741	Late Cenozoic fire enhancement response to aridification in mid-latitude Asia: Evidence from microcharcoal records. Quaternary Science Reviews, 2016, 139, 53-66.	1.4	30
742	Fitness benefits of serotiny in fire- and drought-prone environments. Plant Ecology, 2016, 217, 773-779.	0.7	52
743	Satellite and ground-based remote sensing of aerosols during intense haze event of October 2013 over lahore, Pakistan. Asia-Pacific Journal of Atmospheric Sciences, 2016, 52, 25-33.	1.3	50
744	Impact of the New South Wales fires during October 2013 on regional air quality in eastern Australia. Atmospheric Environment, 2016, 131, 150-163.	1.9	35

#	Article	IF	CITATIONS
745	Comparative carbon cycle dynamics of the present and last interglacial. Quaternary Science Reviews, 2016, 137, 15-32.	1.4	26
746	Estimation of gross primary production in China (1982–2010) with multiple ecosystem models. Ecological Modelling, 2016, 324, 33-44.	1.2	26
747	Global fire size distribution: from power law to log-normal. International Journal of Wildland Fire, 2016, 25, 403.	1.0	31
748	Too much, too soon? A review of the effects of increasing wildfire frequency on tree mortality and regeneration in temperate eucalypt forests. International Journal of Wildland Fire, 2016, 25, 831.	1.0	161
749	Modelling spatial patterns of wildfire occurrence in South-Eastern Australia. Geomatics, Natural Hazards and Risk, 2016, 7, 1800-1815.	2.0	69
750	Terrestrial Applications of Remote Sensing. , 2016, , 125-176.		0
751	Satellite versus ground-based estimates of burned area: A comparison between MODIS based burned area and fire agency reports over North America in 2007. Infrastructure Asset Management, 2016, 3, 76-92.	1.2	22
752	Direct and indirect effects of climate change on projected future fire regimes in the western United States. Science of the Total Environment, 2016, 542, 65-75.	3.9	76
753	Climate, Fire and Human Evolution. Modern Approaches in Solid Earth Sciences, 2016, , .	0.1	7
754	Active fire detection using Landsat-8/OLI data. Remote Sensing of Environment, 2016, 185, 210-220.	4.6	193
755	What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology. Science of the Total Environment, 2016, 539, 536-545.	3.9	29
756	The role of fire in the late Holocene forest decline in semi-arid North China. Holocene, 2016, 26, 93-101.	0.9	20
757	Impact of burned areas on the northern African seasonal climate from the perspective of regional modeling. Climate Dynamics, 2016, 47, 3393-3413.	1.7	19
758	Investigating dominant characteristics of fires across the Amazon during 2005–2014 through satellite data synthesis of combustion signatures. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1224-1245.	1.2	16
759	Effect of storms during drought on postâ€wildfire recovery of channel sediment dynamics and habitat in the southern California chaparral, USA. Earth Surface Processes and Landforms, 2017, 42, 1482-1492.	1.2	29
760	Soil Degradation in Peninsula Valdes: Causes, Factors, Processes, and Assessment Methods. Springer Earth System Sciences, 2017, , 191-213.	0.1	1
761	Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sensing of Environment, 2017, 191, 95-109.	4.6	92
762	Late Cenozoic of Pen $ ilde{A}$ nsula Vald $ ilde{A}$ ©s, Patagonia, Argentina. Springer Earth System Sciences, 2017, , .	0.1	0

#	Article	IF	CITATIONS
763	Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Global and Planetary Change, 2017, 150, 58-69.	1.6	49
764	Pacificâ€Atlantic Ocean influence on wildfires in northeast China (1774 to 2010). Geophysical Research Letters, 2017, 44, 1025-1033.	1.5	33
765	Wildfire occurrence patterns in ecoregions of New South Wales and Australian Capital Territory, Australia. Natural Hazards, 2017, 87, 415-435.	1.6	18
766	Integrating remotely sensed fires for predicting deforestation for REDD+. Ecological Applications, 2017, 27, 1294-1304.	1.8	13
767	Challenges and limitations to native species restoration in the Great Basin, USA. Plant Ecology, 2017, 218, 81-94.	0.7	100
768	Human-started wildfires expand the fire niche across the United States. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2946-2951.	3.3	607
769	Interactions between rainfall, fire and herbivory drive resprouter vital rates in a semiâ€arid ecosystem. Journal of Ecology, 2017, 105, 1562-1570.	1.9	24
770	Emissions of Selected Semivolatile Organic Chemicals from Forest and Savannah Fires. Environmental Science & Contended Science & Science	4.6	35
771	Vegetation effects on impulsive events in the acoustic signature of fires. Journal of the Acoustical Society of America, 2017, 141, 557-562.	0.5	5
772	Macroarthropod response to time-since-fire in the longleaf pine ecosystem. Forest Ecology and Management, 2017, 391, 390-395.	1.4	17
773	Review on fire effects on ectomycorrhizal symbiosis, an unachieved work for a scalding topic. Forest Ecology and Management, 2017, 391, 446-457.	1.4	56
775	Global relationship of fire occurrence and fire intensity: A test of intermediate fire occurrenceâ€intensity hypothesis. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1123-1136.	1.3	17
776	Inside the Inferno: Fundamental Processes of Wildland Fire Behaviour. Current Forestry Reports, 2017, 3, 132-149.	3.4	30
777	On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Scientific Reports, 2017, 7, 81.	1.6	204
778	Fire regimes and environmental gradients shape vertebrate and plant distributions in temperate eucalypt forests. Ecosphere, 2017, 8, e01781.	1.0	36
779	Intensifying postfire weather and biological invasion drive species loss in a Mediterranean-type biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4697-4702.	3.3	60
780	Bimodal fire regimes unveil a globalâ€scale anthropogenic fingerprint. Global Ecology and Biogeography, 2017, 26, 799-811.	2.7	37
781	Interacting effects of fire severity, time since fire and topography on vegetation structure after wildfire. Forest Ecology and Management, 2017, 396, 26-34.	1.4	40

#	Article	IF	CITATIONS
782	Community Vulnerability to Health Impacts of Wildland Fire Smoke Exposure. Environmental Science & Technology, 2017, 51, 6674-6682.	4.6	126
783	Grand Challenges in Understanding the Interplay of Climate and Land Changes. Earth Interactions, 2017, 21, 1-43.	0.7	24
784	Tree growth-climate relationships in a forest-plot network on Mediterranean mountains. Science of the Total Environment, 2017, 598, 393-403.	3.9	40
785	Focus on agriculture and forestry benefits of reducing climate change impacts. Environmental Research Letters, 2017, 12, 060301.	2.2	10
786	Impact of wildfires on some greenhouse gases over continental USA: A study based on satellite data. Remote Sensing of Environment, 2017, 188, 118-126.	4.6	10
787	Is there an inherent conflict in managing fire for people and conservation?. International Journal of Wildland Fire, 2017, 26, 455.	1.0	35
788	Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems. Environmental Research Letters, 2017, 12, 044014.	2.2	45
790	The environmental envelope of fires in the Colombian Caribbean. Applied Geography, 2017, 84, 42-54.	1.7	22
791	Air quality policy and fire management responses addressing smoke from wildland fires in the United States and Australia. International Journal of Wildland Fire, 2017, 26, 347.	1.0	17
792	Seasonal changes in the human alteration of fire regimes beyond the climate forcing. Environmental Research Letters, 2017, 12, 035006.	2.2	52
793	Responses of invasive predators and native prey to a prescribed forest fire. Journal of Mammalogy, 2017, 98, 835-847.	0.6	78
794	Predicting post-fire tree mortality for 14 conifers in the Pacific Northwest, USA: Model evaluation, development, and thresholds. Forest Ecology and Management, 2017, 399, 213-226.	1.4	25
795	Post-fire plant regeneration across a closed forest-savanna vegetation transition. Forest Ecology and Management, 2017, 400, 77-84.	1.4	10
796	Mapping fire regimes in China using MODIS active fire and burned area data. Applied Geography, 2017, 85, 14-26.	1.7	55
797	Aboriginal Use of Fire in a Landscape Context. Current Anthropology, 2017, 58, S230-S242.	0.8	15
798	Shifting Pacific storm tracks as stressors to ecosystems of western North America. Global Change Biology, 2017, 23, 4896-4906.	4.2	15
799	Global change induced biomass growth offsets carbon released via increased forest fire and respiration of the central Canadian boreal forest. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1275-1293.	1.3	18
800	Combustion temperatures and nutrient transfers when grasstrees burn. Forest Ecology and Management, 2017, 399, 179-187.	1.4	13

#	Article	IF	CITATIONS
801	Evaluating a Fire Management Plan for Fire Regime Goals in a Florida Landscape. Natural Areas Journal, 2017, 37, 212-227.	0.2	27
802	Modelling the spatial variability of wildfire susceptibility in Honduras using remote sensing and geographical information systems. Geomatics, Natural Hazards and Risk, 2017, 8, 876-892.	2.0	40
803	A comparative study of fire weather indices in a semiarid south-eastern Europe region. Case of study: Murcia (Spain). Science of the Total Environment, 2017, 590-591, 761-774.	3.9	15
804	Scaling up flammability from individual leaves to fuel beds. Oikos, 2017, 126, 1428-1438.	1.2	45
805	Fire is a major driver of patterns of genetic diversity in two coâ€occurring Tasmanian palaeoendemic conifers. Journal of Biogeography, 2017, 44, 1254-1267.	1.4	12
806	Does fire affect the temporal pattern of trophic resource supply to pollinators and seed-dispersing frugivores in a Brazilian savanna community?. Plant Ecology, 2017, 218, 345-357.	0.7	7
807	Maghemite soil nodules reveal the impact of fire on mineralogical and geochemical differentiation at the Earth's surface. Geochimica Et Cosmochimica Acta, 2017, 200, 25-41.	1.6	10
808	The global pyrogenic carbon cycle and its impact on the level of atmospheric <scp>CO</scp> ₂ over past and future centuries. Global Change Biology, 2017, 23, 3205-3218.	4.2	37
809	Role of Fire in the Global Land Water Budget during the Twentieth Century due to Changing Ecosystems. Journal of Climate, 2017, 30, 1893-1908.	1.2	54
810	Pyric arnivory: Raptor use of prescribed fires. Ecology and Evolution, 2017, 7, 9144-9150.	0.8	26
811	An early warning system to forecast the close of the spring burning window from satellite-observed greenness. Scientific Reports, 2017, 7, 14190.	1.6	16
812	Simulations of the effect of intensive biomass burning in July 2015 on Arctic radiative budget. Atmospheric Environment, 2017, 171, 248-260.	1.9	28
813	What on Earth Have We Been Burning? Deciphering Sedimentary Records of Pyrogenic Carbon. Environmental Science & Technology, 2017, 51, 12972-12980.	4.6	23
814	Fire history in southern Patagonia: human and climate influences on fire activity in <i>Nothofagus pumilio</i> forests. Ecosphere, 2017, 8, e01932.	1.0	28
815	Assessing the social context of wildfire-affected areas. The case of mainland Portugal. Applied Geography, 2017, 88, 104-117.	1.7	55
816	RAPT: Rare Class Prediction in Absence of True Labels. IEEE Transactions on Knowledge and Data Engineering, 2017, 29, 2484-2497.	4.0	9
817	Effects of prescribed fire on germination and plant community of Carex cinerascens and Artemisia selengensis in Poyang Lake, China. South African Journal of Botany, 2017, 113, 111-118.	1.2	6
818	Frequent wildfires erode tree persistence and alter stand structure and initial composition of a fireâ€tolerant subâ€alpine forest. Journal of Vegetation Science, 2017, 28, 1151-1165.	1.1	74

#	Article	IF	CITATIONS
819	Recovery time and state change of terrestrial carbon cycle after disturbance. Environmental Research Letters, 2017, 12, 104004.	2.2	43
820	The early/late fire dichotomy. Progress in Physical Geography, 2017, 41, 68-94.	1.4	30
821	Rodent herbivory differentially affects mortality rates of 14 native plant species with contrasting life history and growth form traits. Oecologia, 2017, 185, 465-473.	0.9	9
822	Are litter decomposition and fire linked through plant species traits?. New Phytologist, 2017, 216, 653-669.	3.5	50
823	Indicators of burn severity at extended temporal scales: a decade of ecosystem response in mixed-conifer forests of western Montana. International Journal of Wildland Fire, 2017, 26, 755.	1.0	22
824	Presentâ€day and future contribution of climate and fires to vegetation composition in the boreal forest of China. Ecosphere, 2017, 8, e01917.	1.0	26
825	Ecological legacies of anthropogenic burning in a British Columbia coastal temperate rain forest. Journal of Biogeography, 2017, 44, 2903-2915.	1.4	21
826	Bayesian networks elucidate interactions between fire and other drivers of terrestrial fauna distributions. Ecosphere, 2017, 8, e01926.	1.0	32
827	Testing the effects of a century of fires: Requirements for $post \widehat{a} \in f$ ire succession predict the distribution of threatened bird species. Diversity and Distributions, 2017, 23, 1078-1089.	1.9	25
828	Biomass burning in the Amazon region causes DNA damage and cell death in human lung cells. Scientific Reports, 2017, 7, 10937.	1.6	62
829	The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth. Modern Approaches in Solid Earth Sciences, 2017, , .	0.1	7
830	The Demise of the Holocene Biosphere. Modern Approaches in Solid Earth Sciences, 2017, , 1-37.	0.1	0
831	Effects of climate on the size of wildfires in the Eucalyptus camaldulensis forests and the dry lands of the Riverina Bioregion, Australia. Forest Ecology and Management, 2017, 401, 330-340.	1.4	6
832	Multi year aerosol characterization in the tropical Andes and in adjacent Amazonia using AERONET measurements. Atmospheric Environment, 2017, 166, 412-432.	1.9	19
833	When can refuges mediate the genetic effects of fire regimes? A simulation study of the effects of topography and weather on neutral and adaptive genetic diversity in fireâ€prone landscapes. Molecular Ecology, 2017, 26, 4935-4954.	2.0	9
834	Continental-scale quantification of post-fire vegetation greenness recovery in temperate and boreal North America. Remote Sensing of Environment, 2017, 199, 277-290.	4.6	48
835	lt's Time. , 0, , 1-45.		0
836	Does soil pyrogenic carbon determine plant functional traits in Amazon Basin forests?. Plant Ecology, 2017, 218, 1047-1062.	0.7	5

#	Article	IF	CITATIONS
837	Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event. Environmental Science & Technology, 2017, 51, 11561-11570.	4.6	215
838	Fire ecology of a tree glacial refugium on a nunatak with a view on Alpine glaciers. New Phytologist, 2017, 216, 1281-1290.	3.5	22
839	Rodent herbivory and fire differentially affect plant species recruitment based on variability in life history traits. Ecosphere, 2017, 8, e02016.	1.0	6
840	Deciphering the Complexity of Historical Fire Regimes: Diversity Among Forests of Western North America. Ecological Studies, 2017, , 185-210.	0.4	15
841	Creating 20 nm thin patternable flat fire. Nano Energy, 2017, 42, 195-204.	8.2	6
842	Synergistic vulnerabilities: climate variability and fire management policy increase farming challenges in southeastern Mexico. Regional Environmental Change, 2017, 17, 489-500.	1.4	6
843	Stratification and sample allocation for reference burned area data. Remote Sensing of Environment, 2017, 203, 240-255.	4.6	52
844	Effects of a high-severity wildfire and post-fire straw mulching on gross nitrogen dynamics in Mediterranean shrubland soil. Geoderma, 2017, 305, 328-335.	2.3	12
845	Aerosol optical properties over Svalbard: a comparison between Ny-Ã…lesund and Hornsund. Oceanologia, 2017, 59, 431-444.	1.1	15
846	A human-driven decline in global burned area. Science, 2017, 356, 1356-1362.	6.0	694
847	Spatially modeling wildland fire severity in pine forests of Galicia, Spain. European Journal of Forest Research, 2017, 136, 105-121.	1.1	15
848	Holocene fire on the northeast Tibetan Plateau in relation to climate change and human activity. Quaternary International, 2017, 443, 124-131.	0.7	31
849	Fire dynamics under monsoonal climate in Yunnan, SW China: past, present and future. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 465, 168-176.	1.0	21
850	Modeling longâ€ŧerm changes in tundra carbon balance following wildfire, climate change, and potential nutrient addition. Ecological Applications, 2017, 27, 105-117.	1.8	23
851	Modeling the marginal value of rainforest losses: A dynamic value function approach. Ecological Economics, 2017, 131, 322-329.	2.9	6
852	Spatially adaptive probabilistic computation of a sub-kilometre resolution lightning climatology for New Zealand. Computers and Geosciences, 2017, 98, 38-45.	2.0	8
853	Forest burning affects quality and quantity of soil organic matter. Science of the Total Environment, 2017, 575, 41-49.	3.9	38
854	Postâ€fire recovery of litter detritivores is limited by distance from burn edge. Austral Ecology, 2017, 42, 94-102.	0.7	13

#	Article	IF	CITATIONS
855	Longâ€Term Impacts of Postâ€Fire Mulching on Groundâ€Dwelling Arthropod Communities in a Eucalypt Plantation. Land Degradation and Development, 2017, 28, 1156-1162.	1.8	6
856	Recent changes and relations among drought, vegetation and wildfires in the Eastern Mediterranean: The case of Israel. Global and Planetary Change, 2017, 151, 28-35.	1.6	52
857	The effect of wildfire on scattered trees, â€~keystone structures', in agricultural landscapes. Austral Ecology, 2017, 42, 145-153.	0.7	6
858	Dendroecology. Ecological Studies, 2017, , .	0.4	29
859	Cambial injury in lodgepole pine (Pinus contorta): mountain pine beetle vs fire. Tree Physiology, 2017, 37, 1611-1621.	1.4	6
860	IASI-derived NH ₃ enhancement ratios relative to CO for the tropical biomass burning regions. Atmospheric Chemistry and Physics, 2017, 17, 12239-12252.	1.9	12
861	Wildfire air pollution hazard during the 21stÂcentury. Atmospheric Chemistry and Physics, 2017, 17, 9223-9236.	1.9	66
862	Returning Fire to the Land: Celebrating Traditional Knowledge and Fire. Journal of Forestry, 2017, 115, 343-353.	0.5	110
863	Distribution and frequency of wildfire in California riparian ecosystems. Environmental Research Letters, 2017, 12, 075008.	2.2	9
864	Evaluation of forest fire risk using the Apriori algorithm and fuzzy c-means clustering. Journal of Forest Science, 2017, 63, 370-380.	0.5	21
865	A Broad-Area Method for the Diurnal Characterisation of Upwelling Medium Wave Infrared Radiation. Remote Sensing, 2017, 9, 167.	1.8	12
866	Burned Area Mapping in the Brazilian Savanna Using a One-Class Support Vector Machine Trained by Active Fires. Remote Sensing, 2017, 9, 1161.	1.8	56
867	The Influence of Land Use on the Grassland Fire Occurrence in the Northeastern Inner Mongolia Autonomous Region, China. Sensors, 2017, 17, 437.	2.1	22
868	Study on Climate and Grassland Fire in HulunBuir, Inner Mongolia Autonomous Region, China. Sensors, 2017, 17, 616.	2.1	22
869	Investigating Surface and Near-Surface Bushfire Fuel Attributes: A Comparison between Visual Assessments and Image-Based Point Clouds. Sensors, 2017, 17, 910.	2.1	12
870	Spatial Pattern of the Seasonal Drought/Burned Area Relationship across Brazilian Biomes: Sensitivity to Drought Metrics and Global Remote-Sensing Fire Products. Climate, 2017, 5, 42.	1.2	32
871	Post-Fire Salvage Logging Imposes a New Disturbance that Retards Succession: The Case of Bryophyte Communities in a Macaronesian Laurel Forest. Forests, 2017, 8, 252.	0.9	17
872	Fire Effects on Historical Wildfire Refugia in Contemporary Wildfires. Forests, 2017, 8, 400.	0.9	36

#	Article	IF	Citations
873	Wildfire risk awareness and prevention by predominantly MÄori rural residents, Karikari Peninsula, Aotearoa New Zealand. International Journal of Wildland Fire, 2017, 26, 820.	1.0	17
874	Fires, Ecological Effects of â^†. , 2017, , .		27
875	Understanding and managing the health impacts of poor air quality from landscape fires. Medical Journal of Australia, 2017, 207, 229-230.	0.8	13
876	A Common Approach to Foster Prevention and Recovery of Forest Fires in Mediterranean Europe. , 2017, , .		6
877	Post-fire resprouting strategies of woody vegetation in the Brazilian savanna. Acta Botanica Brasilica, 2017, 31, 260-266.	0.8	36
878	Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires. Soil, 2017, 3, 31-44.	2.2	35
879	Performance of Three MODIS Fire Products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a Mountainous Area of Northwest Yunnan, China, Characterized by Frequent Small Fires. Remote Sensing, 2017, 9, 1131.	1.8	85
880	Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries. Biogeosciences, 2017, 14, 2755-2765.	1.3	25
881	Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA. Ecology and Society, 2017, 22, .	1.0	73
882	Global fire emissions estimates during 1997–2016. Earth System Science Data, 2017, 9, 697-720.	3.7	1,159
883	New development and application needs for Earth system modeling of fire–climate–ecosystem interactions. Environmental Research Letters, 2018, 13, 011001.	2.2	7
884	Transport and deposition of the fire biomarker levoglucosan across the tropical North Atlantic Ocean. Geochimica Et Cosmochimica Acta, 2018, 227, 171-185.	1.6	23
885	Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas. Ecology Letters, 2018, 21, 557-567.	3.0	55
886	Tree taxa and pyrolysis temperature interact to control pyrogenic organic matter induced native soil organic carbon priming. Soil Biology and Biochemistry, 2018, 119, 174-183.	4.2	7
887	Investigation of the Fire Radiative Energy Biomass Combustion Coefficient: A Comparison of Polar and Geostationary Satellite Retrievals Over the Conterminous United States. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 722-739.	1.3	28
888	Fire planning for multispecies conservation: Integrating growth stage and fire severity. Forest Ecology and Management, 2018, 415-416, 85-97.	1.4	19
889	The linkages with fires, vegetation composition and human activity in response to climate changes in the Chinese Loess Plateau during the Holocene. Quaternary International, 2018, 488, 18-29.	0.7	13
890	Testing the assumptions of the pyrodiversity begets biodiversity hypothesis for termites in semi-arid Australia. Royal Society Open Science, 2018, 5, 172055.	1.1	7

		CITATION REPORT		
#	Article		IF	CITATIONS
891	Climate variability and forest fires in central and southâ \in entral Chile. Ecosphere, 2018, 9), e02171.	1.0	80
892	Atmospheric and Surface Climate Associated With 1986–2013 Wildfires in North Amer Geophysical Research G: Biogeosciences, 2018, 123, 1588-1609.	ica. Journal of	1.3	13
893	Flammability dynamics in the Australian Alps. Austral Ecology, 2018, 43, 578-591.		0.7	79
894	Accuracy assessment of <scp>MODIS</scp> active fire products in southern African sava woodlands. African Journal of Ecology, 2018, 56, 563-571.	nnah	0.4	4
895	Reconstruction of the mid-Holocene paleoclimate of the Ecuadorian Andean páramo at T Ecuador. Holocene, 2018, 28, 1131-1140.	īres Lagunas,	0.9	5
896	Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed forest using multi-sensor remote sensing techniques. Remote Sensing of Environment, 20 282-296.		4.6	76
897	Bayesian Analysis of the Glacialâ€Interglacial Methane Increase Constrained by Stable Iso System Modeling. Geophysical Research Letters, 2018, 45, 3653-3663.	topes and Earth	1.5	9
898	Dissolved black carbon in aquatic ecosystems. Limnology and Oceanography Letters, 201	.8, 3, 168-185.	1.6	115
899	Variance and Rateâ€ofâ€Change as Early Warning Signals for a Critical Transition in an Ad State: A Test Case From Tasmania, Australia. Journal of Geophysical Research G: Biogeosc 123, 495-508.		1.3	33
900	Timeâ€sinceâ€fire and climate interact to affect the structural recovery of an Australian s community. Austral Ecology, 2018, 43, 456-469.	emiâ€arid plant	0.7	10
901	Aboriginal burning promotes fine-scale pyrodiversity and native predators in Australia's W Desert. Biological Conservation, 2018, 219, 110-118.	/estern	1.9	58
902	Human impacts on 20th century fire dynamics and implications for global carbon and wa trajectories. Global and Planetary Change, 2018, 162, 18-27.	ter	1.6	25
903	Holocene fire history in eastern monsoonal region of China and its controls. Palaeogeogra Palaeoclimatology, Palaeoecology, 2018, 496, 136-145.	aphy,	1.0	19
904	Human influences superseded climate to disrupt the 20th century fire regime in Jasper Na Canada. Dendrochronologia, 2018, 48, 10-19.	itional Park,	1.0	18
905	The Anthropoceneâ \in "A Potential Stratigraphic Definition Based on Black Carbon, Char, a Records. , 2018, , 171-178.	nd Soot		6
906	Mitigating Satelliteâ€Based Fire Sampling Limitations in Deriving Biomass Burning Emissi Application to WRFâ€Chem Model Over the Northern subâ€Saharan African Region. Journ Research D: Atmospheres, 2018, 123, 507-528.	on Rates: nal of Geophysical	1.2	29
907	Seed supply limits seedling recruitment of Eucalyptus miniata: interactions between seed ants and fire in the Australian seasonal tropics. Oecologia, 2018, 186, 965-972.	predation by	0.9	8
908	Quantifying Postfire Aeolian Sediment Transport Using Rare Earth Element Tracers. Journ Geophysical Research G: Biogeosciences, 2018, 123, 288-299.	al of	1.3	36

#	Article	IF	Citations
909	Exploring fire incidence in Portugal using generalized additive models for location, scale and shape (GAMLSS). Modeling Earth Systems and Environment, 2018, 4, 199-220.	1.9	13
910	Fire management in the Brazilian savanna: First steps and the way forward. Journal of Applied Ecology, 2018, 55, 2094-2101.	1.9	92
911	Logging and fire regimes alter plant communities. Ecological Applications, 2018, 28, 826-841.	1.8	54
912	Climate-Smart Soil Management in Semiarid Regions. , 2018, , 349-368.		25
913	Late Holocene influence of societies on the fire regime in southern Québec temperate forests. Quaternary Science Reviews, 2018, 180, 63-74.	1.4	33
914	Bromeliads provide shelter against fire to mutualistic spiders in a fireâ€prone landscape. Ecological Entomology, 2018, 43, 389-393.	1.1	5
915	The changing role of fire in conifer-dominated temperate rainforest through the last 14,000 years. Quaternary Science Reviews, 2018, 182, 37-47.	1.4	20
916	Spatio-temporal distribution of burned areas by ecoregions in Mexico and Central America. International Journal of Remote Sensing, 2018, 39, 949-970.	1.3	15
917	Wildfires in the Triassic of Gondwana ParanÃ _i Basin. Journal of South American Earth Sciences, 2018, 82, 193-206.	0.6	5
918	Fire regimes at the arid fringe: A 16-year remote sensing perspective (2000–2016) on the controls of fire activity in Namibia from spatial predictive models. Ecological Indicators, 2018, 91, 324-337.	2.6	28
919	Exploring the influence of local controls on fire activity using multiple charcoal records from northern Romanian Carpathians. Quaternary International, 2018, 488, 41-57.	0.7	21
920	An active fire detection algorithm based on multi-temporal FengYun-3C VIRR data. Remote Sensing of Environment, 2018, 211, 376-387.	4.6	39
921	Southwestern U.S. Biomass Burning Smoke Hygroscopicity: The Role of Plant Phenology, Chemical Composition, and Combustion Properties. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5416-5432.	1.2	19
922	Ecological legacies of fire detected using plot-level measurements and LiDAR in an old growth coastal temperate rainforest. Forest Ecology and Management, 2018, 424, 11-20.	1.4	14
923	The role of fire history, land-use, and vegetation structure on the response of Mediterranean lizards to fire. Forest Ecology and Management, 2018, 419-420, 139-145.	1.4	10
924	Fire danger index efficiency as a function of fuel moisture and fire behavior. Science of the Total Environment, 2018, 631-632, 1304-1310.	3.9	14
925	How can we advance the knowledge on the behavior and effects of fire in the Cerrado biome?. Forest Ecology and Management, 2018, 417, 281-290.	1.4	70
926	Positive severity feedback between consecutive fires in dry eucalypt forests of southern Australia. Ecosphere, 2018, 9, e02110.	1.0	33

#	Article	IF	CITATIONS
927	Florida wildfires during the Holocene Climatic Optimum (9000–5000ÂcalÂyr BP). Journal of Paleolimnology, 2018, 60, 51-66.	0.8	5
928	Rapid growth of the US wildland-urban interface raises wildfire risk. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3314-3319.	3.3	628
929	Global Modern Charcoal Dataset (GMCD): A tool for exploring proxy-fire linkages and spatial patterns of biomass burning. Quaternary International, 2018, 488, 3-17.	0.7	43
930	Effects of heat and smoke on the germination of six Florida scrub species. South African Journal of Botany, 2018, 115, 223-230.	1.2	8
931	Are we entering the age of involuntary degrowth? Promethean technologies and declining returns of innovation. Journal of Cleaner Production, 2018, 197, 1800-1809.	4.6	26
932	Informing sedimentary charcoal-based fire reconstructions with a kinematic transport model. Holocene, 2018, 28, 173-178.	0.9	27
933	Investigating patterns of wildfire in Ireland and their correlation with regional and global trends in fire history. Quaternary International, 2018, 488, 58-66.	0.7	6
934	Identifying industrial heat sources using time-series of the VIIRS Nightfire product with an object-oriented approach. Remote Sensing of Environment, 2018, 204, 347-365.	4.6	62
935	Global operational land imager Landsat-8 reflectance-based active fire detection algorithm. International Journal of Digital Earth, 2018, 11, 154-178.	1.6	53
936	An evaluation of contemporary savanna fire regimes in the Canastra National Park, Brazil: Outcomes of fire suppression policies. Journal of Environmental Management, 2018, 205, 40-49.	3.8	30
937	Effects of fire regime on plant species richness and composition differ among forest, woodland and heath vegetation. Applied Vegetation Science, 2018, 21, 132-143.	0.9	18
938	Assessing the geomorphic disturbance from fires on coastal dunes near Esperance, Western Australia: Implications for dune de-stabilisation. Aeolian Research, 2018, 31, 29-49.	1.1	13
939	Effects of time since fire on frog occurrence are altered by isolation, vegetation and fire frequency gradients. Diversity and Distributions, 2018, 24, 82-91.	1.9	10
940	Pyrogenic Carbon Contributes Substantially to Carbon Storage in Intact and Degraded Northern Peatlands. Land Degradation and Development, 2018, 29, 2082-2091.	1.8	35
941	Thermal Anomalies Detect Critical Global Land Surface Changes. Journal of Applied Meteorology and Climatology, 2018, 57, 391-411.	0.6	41
942	Efficient Flame Detection and Early Warning Sensors on Combustible Materials Using Hierarchical Graphene Oxide/Silicone Coatings. ACS Nano, 2018, 12, 416-424.	7.3	227
943	Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters, 2018, 13, 033003.	2.2	198
944	Reviewing our options: Managing waterâ€limited soils for conservation and restoration. Land Degradation and Development, 2018, 29, 1041-1053.	1.8	15

#	Article	lF	CITATIONS
945	Efficient Deployment of Patrols to Catch Arsonists. , 2018, , .		1
946	Aromatic acids in an Arctic ice core from Svalbard: a proxy record of biomass burning. Climate of the Past, 2018, 14, 637-651.	1.3	17
947	Influence of Fire on the Natural Regeneration of a Semideciduous Seasonal Rainforest Fragment. Floresta E Ambiente, 2018, 25, .	0.1	3
948	Changes in Lightning Fire Incidence in the Tasmanian Wilderness World Heritage Area, 1980–2016. Fire, 2018, 1, 38.	1.2	33
949	Modeling Burned Areas in Indonesia: The FLAM Approach. Forests, 2018, 9, 437.	0.9	12
950	Fire Frequency. , 2018, , 1-5.		1
951	OBSOLETE: The Anthropocene - a potential stratigraphic definition based on black carbon, char, and soot records. , 2018, , .		0
952	Climate-induced fire regimes in the Russian biodiversity hotspots. Global Ecology and Conservation, 2018, 16, e00495.	1.0	4
953	Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests. Remote Sensing, 2018, 10, 1680.	1.8	64
955	Fire Activity and Fuel Consumption Dynamics in Sub-Saharan Africa. Remote Sensing, 2018, 10, 1591.	1.8	10
956	Effect of spring grass fires on vegetation patterns and soil quality in abandoned agricultural lands at local and landscape scales in Central European Russia. Ecological Processes, 2018, 7, .	1.6	10
957	Cambial Phenology Informs Tree-Ring Analysis of Fire Seasonality in Coastal Plain Pine Savannas. Fire Ecology, 2018, 14, 164-185.	1.1	22
958	Changes of wood anatomical characters of selected species of Araucaria- during artificial charring - implications for palaeontology. Acta Botanica Brasilica, 2018, 32, 198-211.	0.8	18
959	Fire and tree death: understanding and improving modeling of fire-induced tree mortality. Environmental Research Letters, 2018, 13, 113004.	2.2	145
960	Grassland fire ecology has roots in the late Miocene. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12130-12135.	3.3	60
961	Near Real-Time Extracting Wildfire Spread Rate from Himawari-8 Satellite Data. Remote Sensing, 2018, 10, 1654.	1.8	39
962	Do relationships between leaf traits and fire behaviour of leaf litter beds persist in time?. PLoS ONE, 2018, 13, e0209780.	1.1	8
963	Fires and storms—a Triassic–Jurassic transition section in the Sichuan Basin, China. Palaeobiodiversity and Palaeoenvironments, 2018, 98, 29-47.	0.6	19

#	Article	IF	CITATIONS
964	Climate change and its impact on Forest Fire in the state of Himachal Pradesh and Uttarakhand states of India: Remote Sensing and GIS Analysis. Contemporary Trends in Geoscience, 2018, 7, 229-246.	0.5	13
965	The Year 2017: Megafires and Management in the Cerrado. Fire, 2018, 1, 49.	1.2	69
966	Intensity and Persistence of Soil Water Repellency in Pine Forest Soil in a Temperate Continental Climate under Drought Conditions. Water (Switzerland), 2018, 10, 1121.	1.2	23
967	Human Fire Legacies on Ecological Landscapes. Frontiers in Earth Science, 2018, 6, .	0.8	18
968	Fire and plant invasion, but not rodents, alter ant community abundance and diversity in a semiâ€arid desert. Ecosphere, 2018, 9, e02344.	1.0	3
969	Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nature Communications, 2018, 9, 3821.	5.8	275
970	Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170304.	1.8	63
971	Fire affects the occurrence of small mammals at distinct spatial scales in a neotropical savanna. European Journal of Wildlife Research, 2018, 64, 1.	0.7	18
972	Fire spread and the issue of community-level selection in the evolution of flammability. Journal of the Royal Society Interface, 2018, 15, 20180444.	1.5	9
973	The unequal vulnerability of communities of color to wildfire. PLoS ONE, 2018, 13, e0205825.	1.1	159
974	THEORETICAL AND SOCIOECOLOGICAL CONSEQUENCES OF FIRE FOODWAYS. American Antiquity, 2018, 83, 619-638.	0.6	11
975	Assessing fire hazard potential and its main drivers in Mazandaran province, Iran: a data-driven approach. Environmental Monitoring and Assessment, 2018, 190, 670.	1.3	18
976	Local Capacity to Engage in Federal Wildfire Suppression Efforts: An Explanation of Variability in Local Capture of Suppression Contracts. Forest Science, 2018, 64, 480-490.	0.5	4
977	Fire, vegetation, and Holocene climate in a southeastern Tibetan lake: a multi-biomarker reconstruction from Paru Co. Climate of the Past, 2018, 14, 1543-1563.	1.3	21
978	Quantifying the effect of forest age in annual net forest carbon balance. Environmental Research Letters, 2018, 13, 124018.	2.2	67
979	Midâ€Cretaceous Hothouse Climate and the Expansion of Early Angiosperms. Acta Geologica Sinica, 2018, 92, 2004-2025.	0.8	19
980	Holocene fire activity during low-natural flammability periods reveals scale-dependent cultural human-fire relationships in Europe. Quaternary Science Reviews, 2018, 201, 44-56.	1.4	67
981	Drought and Fire in the Western USA: Is Climate Attribution Enough?. Current Climate Change Reports, 2018, 4, 396-406.	2.8	18

#	Article	IF	CITATIONS
982	What is the effect of prescribed burning in temperate and boreal forest on biodiversity, beyond pyrophilous and saproxylic species? A systematic review. Environmental Evidence, 2018, 7, .	1.1	31
983	Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients. Environmental Research Letters, 2018, 13, 063004.	2.2	74
984	Management thresholds stemming from altered fire dynamics in present-day arid and semi-arid environments. Journal of Environmental Management, 2018, 227, 87-94.	3.8	6
985	Post-fire water-quality response in the western United States. International Journal of Wildland Fire, 2018, 27, 203.	1.0	75
986	Holocene-scale fire dynamics of central European temperate spruce-beech forests. Quaternary Science Reviews, 2018, 191, 15-30.	1.4	32
987	Fire in subâ€Saharan Africa: The fuel, cure and connectivity hypothesis. Global Ecology and Biogeography, 2018, 27, 946-957.	2.7	24
988	Fossil charcoal quantification using manual and image analysis approaches. Holocene, 2018, 28, 1345-1353.	0.9	17
989	Black carbon and charcoal records of fire and human land use over the past 1300†years at the Tongguan Kiln archaeological site, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504, 162-169.	1.0	7
990	Biomass Burning Emissions Variation from Satellite-Derived Land Cover, Burned Area, and Emission Factors in Vietnam. Springer Remote Sensing/photogrammetry, 2018, , 171-201.	0.4	1
991	Edge effects in fireâ€prone landscapes: Ecological importance and implications for fauna. Ecology and Evolution, 2018, 8, 5937-5948.	0.8	33
992	Dynamics of forest fires in the southwestern Amazon. Forest Ecology and Management, 2018, 424, 312-322.	1.4	83
993	Climate Change Amplifications of Climateâ€Fire Teleconnections in the Southern Hemisphere. Geophysical Research Letters, 2018, 45, 5071-5081.	1.5	53
994	Hyperspectral remote sensing of fire: State-of-the-art and future perspectives. Remote Sensing of Environment, 2018, 216, 105-121.	4.6	100
995	Emissions mitigation opportunities for savanna countries from early dry season fire management. Nature Communications, 2018, 9, 2247.	5.8	66
996	Fire intensity impacts on post-fire temperate coniferous forest net primary productivity. Biogeosciences, 2018, 15, 1173-1183.	1.3	27
997	Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas. Natural Hazards and Earth System Sciences, 2018, 18, 125-144.	1.5	21
998	The effects of fire history on hollow-bearing tree abundance in montane and subalpine eucalypt forests in southeastern Australia. Forest Ecology and Management, 2018, 428, 93-103.	1.4	19
999	Wave of fire: an anthropogenic signal in historical fire regimes across central Pennsylvania, <scp>USA</scp> . Ecosphere, 2018, 9, e02222.	1.0	53

#	Article	IF	CITATIONS
1000	Major perturbations in the Earth's forest ecosystems. Possible implications for global warming. Earth-Science Reviews, 2018, 185, 544-571.	4.0	72
1001	The biomass burning contribution to climate–carbon-cycle feedback. Earth System Dynamics, 2018, 9, 663-677.	2.7	24
1002	Indigenous impacts on North American Great Plains fire regimes of the past millennium. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8143-8148.	3.3	72
1003	Global patterns of interannual climate–fire relationships. Global Change Biology, 2018, 24, 5164-5175.	4.2	191
1004	The change in forest fire danger and burnt area related to the change in meteorological forcing variability. AIP Conference Proceedings, 2018, , .	0.3	1
1005	Vertical forest structure analysis for wildfire prevention: Comparing airborne laser scanning data and stereoscopic hemispherical images. International Journal of Applied Earth Observation and Geoinformation, 2018, 73, 438-449.	1.4	13
1006	The 15-year post-treatment response of a mixed-conifer understory plant community to thinning and burning treatments. Forest Ecology and Management, 2018, 429, 617-624.	1.4	24
1007	Production and Composition of Pyrogenic Dissolved Organic Matter From a Logical Series of Laboratory-Generated Chars. Frontiers in Earth Science, 2018, 6, .	0.8	49
1008	Fusing Landsat and MODIS data to retrieve multispectral information from fire-affected areas over tropical savannah environments in the Brazilian Amazon. International Journal of Remote Sensing, 2018, 39, 7919-7941.	1.3	10
1009	Optimizing Smoke and Plume Rise Modeling Approaches at Local Scales. Atmosphere, 2018, 9, 166.	1.0	31
1010	A Revised Historical Fire Regime Analysis in Tunisia (1985–2010) from a Critical Analysis of the National Fire Database and Remote Sensing. Forests, 2018, 9, 59.	0.9	20
1011	Introducing Fire: A Transdisciplinary Journal to Advance Understanding and Management of Landscape Fires from Local to Global Scales in the Past, Present, and Future. Fire, 2018, 1, 2.	1.2	3
1012	Preface: Special Issue on Wildland Fires. Land, 2018, 7, 46.	1.2	0
1013	Global Analysis of Burned Area Persistence Time with MODIS Data. Remote Sensing, 2018, 10, 750.	1.8	40
1014	Woody Encroachment as a Social-Ecological Regime Shift. Sustainability, 2018, 10, 2221.	1.6	30
1015	Skilful forecasting of global fire activity using seasonal climate predictions. Nature Communications, 2018, 9, 2718.	5.8	57
1016	The utility of Random Forests for wildfire severity mapping. Remote Sensing of Environment, 2018, 216, 374-384.	4.6	122
1017	Use of ordinary kriging and Gaussian conditional simulation to interpolate airborne fire radiative energy density estimates. International Journal of Wildland Fire, 2018, 27, 228.	1.0	9

#	Article	IF	CITATIONS
1018	Postfire nitrogen balance of Mediterranean shrublands: Direct combustion losses versus gaseous and leaching losses from the postfire soil mineral nitrogen flush. Global Change Biology, 2018, 24, 4505-4520.	4.2	29
1019	Recent ecological change in ancient lakes. Limnology and Oceanography, 2018, 63, 2277-2304.	1.6	68
1020	Toward a better understanding of climate and human impacts on late Holocene fire regimes in the Pacific Northwest, USA. Progress in Physical Geography, 2018, 42, 478-512.	1.4	15
1021	Estimating fire danger over Italy in the next decades. Euro-Mediterranean Journal for Environmental Integration, 2018, 3, 1.	0.6	9
1022	Queer Fire: Ecology, Combustion and Pyrosexual Desire. Feminist Review, 2018, 118, 7-24.	0.4	70
1023	An experimental test of whether pyrodiversity promotes mammal diversity in a northern Australian savanna. Journal of Applied Ecology, 2018, 55, 2124-2134.	1.9	23
1024	Identifying natural and anthropogenic drivers of prehistoric fire regimes through simulated charcoal records. Journal of Archaeological Science, 2018, 95, 1-15.	1.2	23
1025	Fire and Plant Diversification in Mediterranean-Climate Regions. Frontiers in Plant Science, 2018, 9, 851.	1.7	81
1026	Dissolved Mineral Ash Generated by Vegetation Fire Is Photoactive under the Solar Spectrum. Environmental Science & Technology, 2018, 52, 10453-10461.	4.6	29
1027	Mapping future fire probability under climate change: Does vegetation matter?. PLoS ONE, 2018, 13, e0201680.	1.1	41
1028	High-latitude Southern Hemisphere fire history during the mid- to late Holocene (6000–750 BP). Climate of the Past, 2018, 14, 871-886.	1.3	18
1029	Regional and local controls on historical fire regimes of dry forests and woodlands in the Rogue River Basin, Oregon, USA. Forest Ecology and Management, 2018, 430, 43-58.	1.4	26
1030	New Insights From Pre-Columbian Land Use and Fire Management in Amazonian Dark Earth Forests. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	41
1031	Resprouters, assisted by somatic mutations, are as genetically diverse as nonsprouters in the world's fire-prone ecosystems. Acta Oecologica, 2018, 92, 1-6.	0.5	2
1032	Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing. Nature Communications, 2018, 9, 3182.	5.8	75
1033	A case for low atmospheric oxygen levels during Earth's middle history. Emerging Topics in Life Sciences, 2018, 2, 149-159.	1.1	64
1034	Investigating the impact of overlying vegetation canopy structures on fire radiative power (FRP) retrieval through simulation and measurement. Remote Sensing of Environment, 2018, 217, 158-171.	4.6	17
1035	Recognizing Women Leaders in Fire Science. Fire, 2018, 1, 30.	1.2	4

ARTICLE IF CITATIONS Cantilever-Enhanced Photoacoustic Detection and Infrared Spectroscopy of Trace Species Produced 1036 2.5 8 by Biomass Burning. Energy & amp; Fuels, 2018, 32, 10163-10168. Near-field emission profiling of tropical forest and Cerrado fires in Brazil during SAMBBA 2012. 1.9 19 Atmospheric Chemistry and Physics, 2018, 18, 5619-5638. A geospatial analysis of climate variability and its impact on forest fire: a case study in Orissa state of 1038 15 1.3 India. Spatial Information Research, 2018, 26, 587-598. Baptism by fire: the pivotal role of ancient conflagrations in evolution of the Earth's flora. National Science Review, 2018, 5, 237-254. Increases in Land Surface Temperature in Response to Fire in Siberian Boreal Forests and Their 1040 1.5 28 Attribution to Biophysical Processes. Geophysical Research Letters, 2018, 45, 6485-6494. Modeling fire ignition patterns in Mediterranean urban interfaces. Stochastic Environmental Research and Risk Assessment, 2019, 33, 169-181. Carbon concentration and isotope composition of black carbon in the topsoil of the central and 1042 2.2 8 southeastern Qinghai-Tibetan Plateau, and their environmental significance. Catena, 2019, 172, 132-139. Geospatial Patterns and Drivers of Forest Fire Occurrence in Romania. Applied Spatial Analysis and 1043 1.0 Policy, 2019, 12, 773-795. Effects of Prescribed Fire on Plant Traits and Community Characteristics of Triarrhena Lutarioriparia 1044 0.7 3 in Poyang Lake, China. Wetlands, 2019, 39, 161-172. Soil carbon pools and fluxes vary across a burn severity gradient three years after wildfire in Sierra 1045 2.3 Nevada mixed-conifer forest. Geoderma, 2019, 333, 10-22. On the effects of wildfires on precipitation in Southern Africa. Climate Dynamics, 2019, 52, 951-967. 1046 1.7 27 Reproductive Biology., 2019, , 109-130. 1047 Loss of Fire-Adapted Traits., 2019, , 156-170. 1048 0 Resilience and fire management in the Anthropocene. Ecology and Society, 2019, 24, . 1.0 1054 Predictive analysis of fire frequency based on daily temperatures. Natural Hazards, 2019, 97, 1175-1189. 1.6 13 Global fire emissions buffered by the production of pyrogenic carbon. Nature Geoscience, 2019, 12, 140 742-747. Contrasting human influences and macro-environmental factors on fire activity inside and outside 1056 2.230 protected areas of North America. Environmental Research Letters, 2019, 14, 064007. Characteristics of Early Cretaceous wildfires in peat-forming environment, NE China. Journal of Palaeogeography, 2019, 8, .

#	Article	IF	CITATIONS
1058	Global Fire Forecasts Using Both Largeâ€Scale Climate Indices and Local Meteorological Parameters. Global Biogeochemical Cycles, 2019, 33, 1129-1145.	1.9	17
1059	Burn severity analysis in Mediterranean forests using maximum entropy model trained with EO-1 Hyperion and LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 155, 102-118.	4.9	30
1060	Fire records in glacier ice. National Science Review, 2019, 6, 384-386.	4.6	4
1061	Anthropogenic modifications to fire regimes in the wider Serengetiâ€Mara ecosystem. Global Change Biology, 2019, 25, 3406-3423.	4.2	38
1062	A patch-based algorithm for global and daily burned area mapping. Remote Sensing of Environment, 2019, 232, 111288.	4.6	19
1063	Modeling variability in the fire response of an endangered bird to improve fireâ€management. Ecological Applications, 2019, 29, e01980.	1.8	14
1064	ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics, 2019, 10, 379-452.	2.7	46
1065	Drivers of Wildfire Occurrence Patterns in the Inland Riverine Environment of New South Wales, Australia. Forests, 2019, 10, 524.	0.9	5
1066	Size Changes. , 2019, , 131-155.		0
1067	Differences in Defence. , 2019, , 43-84.		5
1068	Differences in Dispersal. , 2019, , 85-108.		0
1069	Fireâ€mediated habitat change regulates woodland bird species and functional group occurrence. Ecological Applications, 2019, 29, e01997.	1.8	14
1070	Century-Scale Fire Dynamics in a Savanna Ecosystem. Fire, 2019, 2, 51.	1.2	7
1071	Climate drivers of the 2017 devastating fires in Portugal. Scientific Reports, 2019, 9, 13886.	1.6	167
1072	Isotopic composition of oceanic dissolved black carbon reveals non-riverine source. Nature Communications, 2019, 10, 5064.	5.8	73
1073	Impacts of fire severity and cattle grazing on early plant dynamics in old-growth Araucaria-Nothofagus forests. Forest Ecosystems, 2019, 6, .	1.3	9
1074	Modeling the Influence of Eucalypt Plantation on Wildfire Occurrence in the Brazilian Savanna Biome. Forests, 2019, 10, 844.	0.9	12
1075	Burn Severity and Post-Fire Land Surface Albedo Relationship in Mediterranean Forest Ecosystems. Remote Sensing, 2019, 11, 2309.	1.8	11

#	Article	IF	Citations
1076	Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmospheric Chemistry and Physics, 2019, 19, 12545-12567.	1.9	64
1077	Invasive grasses increase fire occurrence and frequency across US ecoregions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23594-23599.	3.3	141
1078	Fossil charcoal particle identification and classification by two convolutional neural networks. Quaternary Science Reviews, 2019, 226, 106038.	1.4	12
1079	Macro-charcoal accumulation in floodplain wetlands: Problems and prospects for reconstruction of fire regimes and environmental conditions. PLoS ONE, 2019, 14, e0224011.	1.1	12
1080	The species diversityÂ×Âfire severity relationship is humpâ€shaped in semiarid yellow pine and mixed conifer forests. Ecosphere, 2019, 10, e02882.	1.0	44
1081	(Wild)fire is not an ecosystem service. Frontiers in Ecology and the Environment, 2019, 17, 429-430.	1.9	14
1082	Air-Quality Challenges of Prescribed Fire in the Complex Terrain and Wildland Urban Interface Surrounding Bend, Oregon. Atmosphere, 2019, 10, 515.	1.0	12
1083	Severe Fire Danger Index: A Forecastable Metric to Inform Firefighter and Community Wildfire Risk Management. Fire, 2019, 2, 47.	1.2	37
1084	Archaeological assessment reveals Earth's early transformation through land use. Science, 2019, 365, 897-902.	6.0	369
1085	Getting back to fire suméÅŧ exploring a multi-disciplinary approach to incorporating traditional knowledge into fuels treatments. Fire Ecology, 2019, 15, .	1.1	25
1086	Validation of GOES-16 ABI and MSG SEVIRI active fire products. International Journal of Applied Earth Observation and Geoinformation, 2019, 83, 101928.	1.4	39
1087	Marked isotopic variability within and between the Amazon River and marine dissolved black carbon pools. Nature Communications, 2019, 10, 4018.	5.8	47
1088	Holocene rapid climate changes and ice-rafting debris events reflected in high-resolution European charcoal records. Quaternary Science Reviews, 2019, 222, 105877.	1.4	22
1089	Heat map visualisation of fire incidents based on transformed sigmoid risk model. Fire Safety Journal, 2019, 109, 102863.	1.4	23
1090	Human-induced fire regime shifts during 19th century industrialization: A robust fire regime reconstruction using northern Polish lake sediments. PLoS ONE, 2019, 14, e0222011.	1.1	23
1091	Burned area detection and mapping using Sentinel-1 backscatter coefficient and thermal anomalies. Remote Sensing of Environment, 2019, 233, 111345.	4.6	87
1092	Effect of annual prescribed burning of wetlands on soil organic carbon fractions: A 5-year study in Poyang, China. Ecological Engineering, 2019, 138, 219-226.	1.6	13
1093	Long-term impacts of wildfire and logging on forest soils. Nature Geoscience, 2019, 12, 113-118.	5.4	102

#	Article	IF	CITATIONS
1094	Burning questions about ecosystems. Nature Geoscience, 2019, 12, 86-87.	5.4	6
1095	Biophysical feedback of global forest fires on surface temperature. Nature Communications, 2019, 10, 214.	5.8	94
1096	Varying relationships between fire radiative power and fire size at a global scale. Biogeosciences, 2019, 16, 275-288.	1.3	40
1097	Fire in the paradise: evidence of repeated palaeo-wildfires from the Araripe Fossil Lagerstäte (Araripe) Tj ETQq1 1	0,784314 0.6	rgBT /Over
1098	A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides. Environmental Pollution, 2019, 247, 618-625.	3.7	24
1099	Reconstructing past fire temperatures from ancient charcoal material. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 520, 128-137.	1.0	29
1100	Linking fire and the United Nations Sustainable Development Goals. Science of the Total Environment, 2019, 662, 547-558.	3.9	32
1101	Multi-year sampling provides insight into the bet-hedging capacity of the soil-stored seed reserve of a threatened Acacia species from Western Australia. Plant Ecology, 2019, 220, 241-253.	0.7	10
1102	Chromium(VI) formation via heating of Cr(III)-Fe(III)-(oxy)hydroxides: A pathway for fire-induced soil pollution. Chemosphere, 2019, 222, 440-444.	4.2	21
1103	Prototype Downscaling Algorithm for MODIS Satellite 1 km Daytime Active Fire Detections. Fire, 2019, 2, 29.	1.2	2
1104	Reversing Mesophication Effects on Understory Woody Vegetation in Mid-Southern Oak Forests. Forest Science, 2019, 65, 289-303.	0.5	16
1105	Wildfire refugia in forests: Severe fire weather and drought mute the influence of topography and fuel age. Global Change Biology, 2019, 25, 3829-3843.	4.2	68
1106	Wildfires Influence Abundance, Diversity, and Intraspecific and Interspecific Trait Variation of Native Bees and Flowering Plants Across Burned and Unburned Landscapes. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	35
1107	Recent global and regional trends in burned area and their compensating environmental controls. Environmental Research Communications, 2019, 1, 051005.	0.9	55
1108	A Holocene black carbon ice-core record of biomass burning in the Amazon Basin from Illimani, Bolivia. Climate of the Past, 2019, 15, 579-592.	1.3	29
1109	Interactive impacts of fire and vegetation dynamics on global carbon and water budget using Community Land Model version 4.5. Geoscientific Model Development, 2019, 12, 457-472.	1.3	16
1110	Postâ€burning germination responses of woody invaders in a fireâ€prone ecosystem. Austral Ecology, 2019, 44, 1163-1173.	0.7	8
1111	Long-term effects of post-fire restoration types on nitrogen mineralisation in a Dahurian larch (Larix) Tj ETQq1 1 0	.784314 r 3.9	gBT /Overlo

#	Article	IF	CITATIONS
1112	Nonparametric multivariate analysis of variance for affecting factors on the extent of forest fire damage in Jilin Province, China. Journal of Forestry Research, 2019, 30, 2185-2197.	1.7	7
1113	Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis. Annual Review of Earth and Planetary Sciences, 2019, 47, 555-581.	4.6	131
1114	Scientists' warning on wildfire — a Canadian perspective. Canadian Journal of Forest Research, 2019, 49, 1015-1023.	0.8	120
1115	Changing perspectives on terrestrial nitrogen cycling: The importance of weathering and evolved resourceâ€use traits for understanding ecosystem responses to global change. Functional Ecology, 2019, 33, 1818-1829.	1.7	14
1116	Fire regime and ecosystem responses: adaptive forest management in a changing world (Part 1). International Journal of Wildland Fire, 2019, 28, 327.	1.0	2
1117	Reduced rainfall drives biomass limitation of longâ€ŧerm fire activity in Australia's subtropical sclerophyll forests. Journal of Biogeography, 2019, 46, 1974-1987.	1.4	14
1118	Quantifying carbon and species dynamics under different fire regimes in a southeastern U.S. pineland. Ecosphere, 2019, 10, e02772.	1.0	13
1119	Environmental education program in Ecuador: theory, practice, and public policies to face global change in the Anthropocene. Ensaio, 2019, 27, 859-880.	0.2	6
1120	Impacts of the 1.5â€ [–] °C global warming target on future burned area in the Brazilian Cerrado. Forest Ecology and Management, 2019, 446, 193-203.	1.4	35
1121	Miocene fire intensification linked to continuous aridification on the Tibetan Plateau. Geology, 2019, 47, 303-307.	2.0	38
1122	Generalized analysis of regional fire risk using data visualization of incidents. Fire and Materials, 2019, 43, 413-421.	0.9	11
1123	The missing fire: quantifying human exclusion of wildfire in Pacific Northwest forests, <scp>USA</scp> . Ecosphere, 2019, 10, e02702.	1.0	60
1124	Contrasting Post-Fire Dynamics between Africa and South America based on MODIS Observations. Remote Sensing, 2019, 11, 1074.	1.8	7
1125	Estimation of biomass-burning emissions by fusing the fire radiative power retrievals from polar-orbiting and geostationary satellites across the conterminous United States. Atmospheric Environment, 2019, 211, 274-287.	1.9	64
1126	Attenuated post-fire fauna succession: the effects of surrounding landscape context on post-fire colonisation of fauna. Wildlife Research, 2019, 46, 247.	0.7	7
1127	Estimation of Metal Emissions From Tropical Peatland Burning in Indonesia by Controlled Laboratory Experiments. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6583-6599.	1.2	6
1128	Debris flows in southeast Australia linked to drought, wildfire, and the El Niño–Southern Oscillation. Geology, 2019, 47, 491-494.	2.0	15
1129	The first evidence of palaeo-wildfire from the Itararé Group, southernmost portion of the ParanÃ; Basin, Brazil. Journal of South American Earth Sciences, 2019, 93, 155-160.	0.6	7

#	Article	IF	CITATIONS
1130	Fire and life history affect the distribution of plant species in a biodiversity hotspot. Diversity and Distributions, 2019, 25, 1012-1023.	1.9	16
1131	Post-burn and long-term fire effects on plants and birds in floodplain wetlands of the Russian Far East. Biodiversity and Conservation, 2019, 28, 1611-1628.	1.2	17
1132	Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sensing of Environment, 2019, 225, 45-64.	4.6	287
1133	Cloud Cover in the Australian Region: Development and Validation of a Cloud Masking, Classification and Optical Depth Retrieval Algorithm for the Advanced Himawari Imager. Frontiers in Environmental Science, 2019, 7, .	1.5	14
1134	Wildfire activity and land use drove 20thâ€century changes in forest cover in the Colorado front range. Ecosphere, 2019, 10, e02594.	1.0	27
1135	Terrestrial plant microfossils in palaeoenvironmental studies, pollen, microcharcoal and phytolith. Towards a comprehensive understanding of vegetation, fire and climate changes over the past one million years. Revue De Micropaleontologie, 2019, 63, 1-35.	0.8	17
1136	An Assessment of Surface and Atmospheric Conditions Associated with the Extreme 2014 Wildfire Season in Canada's Northwest Territories. Atmosphere - Ocean, 2019, 57, 73-90.	0.6	16
1137	Burned area and surface albedo products: Assessment of change consistency at global scale. Remote Sensing of Environment, 2019, 225, 249-266.	4.6	10
1138	A mixture of human and climatic effects shapes the 250-year long fire history of a semi-natural pine dominated landscape of Northern Latvia. Forest Ecology and Management, 2019, 441, 192-201.	1.4	11
1139	Fire legacies in eastern ponderosa pine forests. Ecology and Evolution, 2019, 9, 1869-1879.	0.8	10
1140	Season of fire influences seed dispersal by wind in a serotinous obligate seeding tree. Plant Ecology, 2019, 220, 405-416.	0.7	5
1141	Farmland abandonment decreases the fire regulation capacity and the fire protection ecosystem service in mountain landscapes. Ecosystem Services, 2019, 36, 100908.	2.3	60
1142	Tree clusters in savannas result from islands of soil moisture. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6679-6683.	3.3	15
1143	Wildfire Probability Mapping: Bivariate vs. Multivariate Statistics. Remote Sensing, 2019, 11, 618.	1.8	52
1144	Human altered disturbance patterns and forest succession: impacts of competition and ungulate herbivory. Oecologia, 2019, 189, 1061-1070.	0.9	13
1145	Assessing relative differences in smoke exposure from prescribed, managed, and full suppression wildland fire. Air Quality, Atmosphere and Health, 2019, 12, 87-95.	1.5	19
1146	Increase of genetic diversity indicates ecological opportunities in recurrent-fire landscapes for wall lizards. Scientific Reports, 2019, 9, 5383.	1.6	13
1147	Emergent freeze and fire disturbance dynamics in temperate rainforests. Austral Ecology, 2019, 44, 812-826.	0.7	7

	CHANON	IKEPORT	
#	Article	IF	CITATIONS
1148	Influence of Fire on the Carbon Cycle and Climate. Current Climate Change Reports, 2019, 5, 112-123.	2.8	81
1149	Characterisation of aerosol constituents from wildfires using satellites and model data: a case study in Knysna, South Africa. International Journal of Remote Sensing, 2019, 40, 4743-4761.	1.3	15
1150	Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences, 2019, 16, 57-76.	1.3	85
1151	Development of a REgion‧pecific Ecosystem Feedback Fire (RESFire) Model in the Community Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 417-445.	1.3	20
1152	Climate change reduces resilience to fire in subalpine rainforests. Global Change Biology, 2019, 25, 2030-2042.	4.2	27
1153	Wild bee diversity increases with local fire severity in a fireâ€prone landscape. Ecosphere, 2019, 10, e02668.	1.0	50
1154	Temporal changes in magnetic signal of burnt soils – A compelling three years pilot study. Science of the Total Environment, 2019, 669, 729-738.	3.9	15
1155	Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests. PLoS ONE, 2019, 14, e0211510.	1.1	58
1156	Organic tracers from biomass burning in snow from the coast to the ice sheet summit of East Antarctica. Atmospheric Environment, 2019, 201, 231-241.	1.9	19
1157	Will Landscape Fire Increase in the Future? A Systems Approach to Climate, Fire, Fuel, and Human Drivers. Current Pollution Reports, 2019, 5, 9-24.	3.1	22
1158	Loss of biotic resistance and high propagule pressure promote invasive grassâ€fire cycles. Journal of Ecology, 2019, 107, 1995-2005.	1.9	19
1159	Temporal Decorrelation of C-Band Backscatter Coefficient in Mediterranean Burned Areas. Remote Sensing, 2019, 11, 2661.	1.8	8
1160	Characteristics of Korean Forest Fires and Forest Fire Policies in the Joseon Dynasty Period (1392–1910) Derived From Historical Records. Forests, 2019, 10, 29.	0.9	7
1161	Near- and Middle-Infrared Monitoring of Burned Areas from Space. , 0, , .		4
1162	Risk Assessment and Regionalization of Fire Disaster Based on Analytic Hierarchy Process and MODIS Data: A Case Study of Inner Mongolia, China. Sustainability, 2019, 11, 6263.	1.6	2
1163	Spatial-Temporal Variability of Land Surface Dry Anomalies in Climatic Aspect: Biogeophysical Insight by Meteosat Observations and SVAT Modeling. Atmosphere, 2019, 10, 636.	1.0	10
1164	Snowpack properties vary in response to burn severity gradients in montane forests. Environmental Research Letters, 2019, 14, 124094.	2.2	11
1165	Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models. Biogeosciences, 2019, 16, 3883-3910.	1.3	32

#	Article	IF	CITATIONS
1166	Nesting success of woodâ€cavityâ€nesting bees declines with increasing time since wildfire. Ecology and Evolution, 2019, 9, 12436-12445.	0.8	19
1167	Allometric relationships for Quercus gambelii and Robinia neomexicana for biomass estimation following disturbance. Ecosphere, 2019, 10, e02905.	1.0	9
1168	Self-Adjusting Thresholding for Burnt Area Detection Based on Optical Images. Remote Sensing, 2019, 11, 2669.	1.8	7
1169	<i>In situ</i> reactive self-assembly of a graphene oxide nano-coating in polymer foam materials with synergistic fire shielding properties. Journal of Materials Chemistry A, 2019, 7, 27032-27040.	5.2	78
1170	Wildfire Detection Probability of MODIS Fire Products under the Constraint of Environmental Factors: A Study Based on Confirmed Ground Wildfire Records. Remote Sensing, 2019, 11, 3031.	1.8	33
1171	Calibration and Assessment of Burned Area Simulation Capability of the LPJ-WHyMe Model in Northeast China. Forests, 2019, 10, 992.	0.9	Ο
1172	Assessing Post-Fire Tree Mortality and Biomass Change by Integrating Lidar and Hyperspectral data. , 2019, , .		0
1173	Clobal validation of the collection 6 MODIS burned area product. Remote Sensing of Environment, 2019, 235, 111490.	4.6	125
1174	Effects of wildfire on soil respiration and its heterotrophic and autotrophic components in a montane coniferous forest. Journal of Plant Ecology, 2019, 12, 336-345.	1.2	11
1175	Vegetation—Rainfall interactions reveal how climate variability and climate change alter spatial patterns of wildland fire probability on Big Island, Hawaii. Science of the Total Environment, 2019, 650, 459-469.	3.9	35
1176	Effects of fire severity on the composition and functional traits of litter-dwelling macroinvertebrates in a temperate forest. Forest Ecology and Management, 2019, 434, 279-288.	1.4	21
1177	Direct and indirect impacts of wildfire on faunal communities of Mediterranean temporary ponds. Freshwater Biology, 2019, 64, 323-334.	1.2	16
1178	Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sensing of Environment, 2019, 222, 1-17.	4.6	251
1179	Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds. Journal of Ecology, 2019, 107, 1093-1105.	1.9	41
1180	A Germaropteris-dominated flora from the upper Permian of the Dalongkou section, Xinjiang, Northwest China, and its paleoclimatic and paleoenvironmental implications. Review of Palaeobotany and Palynology, 2019, 266, 61-71.	0.8	8
1181	Analysis fire patterns and drivers with a global SEVER-FIREÂv1.0 model incorporated into dynamic global vegetation model and satellite and on-ground observations. Geoscientific Model Development, 2019, 12, 89-110.	1.3	17
1182	Late Quaternary Biomass Burning in Northwest Africa and Interactions With Climate, Vegetation, and Humans. Paleoceanography and Paleoclimatology, 2019, 34, 153-163.	1.3	11
1183	A GIS based method for indexing the broad-leaved forest surfaces by their wildfire ignition probability and wildfire spreading capacity. Modeling Earth Systems and Environment, 2019, 5, 71-84.	1.9	15

#	Article	IF	CITATIONS
1184	Determining the use of Sentinel-2A MSI for wildfire burning & severity detection. International Journal of Remote Sensing, 2019, 40, 905-930.	1.3	60
1185	Evaluation of Sentinel-2 MSI and Pleiades 1B Imagery in Forest Fire Susceptibility Assessment in Temperate Regions of Central and Eastern Europe. A Case Study of Romania. Advances in Natural and Technological Hazards Research, 2019, , 253-269.	1.1	2
1186	Fire changes the spatial distribution and sources of soil organic carbon in a grassland-shrubland transition zone. Plant and Soil, 2019, 435, 309-321.	1.8	10
1187	Holocene fire in relation to environmental change and human activity reconstructed from sedimentary charcoal of Chaohu Lake, East China. Quaternary International, 2019, 507, 62-73.	0.7	12
1188	Temperature-triggered sensitive resistance transition of graphene oxide wide-ribbons wrapped sponge for fire ultrafast detecting and early warning. Journal of Hazardous Materials, 2019, 363, 286-294.	6.5	111
1189	Fire risk assessment along the climate, vegetation type variability over the part of Asian region: a geospatial approach. Modeling Earth Systems and Environment, 2019, 5, 41-57.	1.9	5
1190	Wildfire and topography impacts on snow accumulation and retention in montane forests. Forest Ecology and Management, 2019, 432, 256-263.	1.4	23
1191	Responses of ant communities to disturbance: Five principles for understanding the disturbance dynamics of a globally dominant faunal group. Journal of Animal Ecology, 2019, 88, 350-362.	1.3	131
1192	Lipid biomarkers for the reconstruction of deep-time environmental conditions. Earth-Science Reviews, 2019, 189, 99-124.	4.0	39
1193	Fire-spotting generated fires. Part I: The role of atmospheric stability. Applied Mathematical Modelling, 2020, 84, 590-609.	2.2	4
1194	Turning Down the Heat: Vegetation Feedbacks Limit Fire Regime Responses to Global Warming. Ecosystems, 2020, 23, 204-216.	1.6	20
1195	Eucalypt forests dominated by epicormic resprouters are resilient to repeated canopy fires. Journal of Ecology, 2020, 108, 310-324.	1.9	54
1196	MODIS based forest fire hotspot analysis and its relationship with climatic variables. Spatial Information Research, 2020, 28, 87-99.	1.3	33
1197	Effect of pre- and post-wildfire management practices on plant recovery after a wildfire in Northeast Iberian Peninsula. Journal of Forestry Research, 2020, 31, 1647-1661.	1.7	6
1198	Planned and unplanned fire regimes on public land in south-east Queensland. International Journal of Wildland Fire, 2020, 29, 326.	1.0	10
1199	Exploring how fire spread mode shapes the composition of pyrogenic carbon from burning forest litter fuels in a combustion wind tunnel. Science of the Total Environment, 2020, 698, 134306.	3.9	5
1200	Contribution To Climate Change Of Forest Fires In Spain: Emissions And Loss Of Sequestration. Journal of Sustainable Forestry, 2020, 39, 417-431.	0.6	3
1201	Fire affects the taxonomic and functional composition of soil microbial communities, with cascading effects on grassland ecosystem functioning. Global Change Biology, 2020, 26, 431-442.	4.2	45

#	Article	IF	CITATIONS
1202	Drought and fires influence the respiratory diseases hospitalizations in the Amazon. Ecological Indicators, 2020, 109, 105817.	2.6	45
1203	Combining and competing effects between precipitation and temperature on Holocene fire regime evolution inferred from a sedimentary black carbon record in southwestern China. Quaternary Research, 2020, 93, 243-254.	1.0	4
1204	Watersheds dynamics following wildfires: Nonlinear feedbacks and implications on hydrologic responses. Hydrological Processes, 2020, 34, 33-50.	1.1	44
1205	Formation of Secondary Brown Carbon in Biomass Burning Aerosol Proxies through NO ₃ Radical Reactions. Environmental Science & Technology, 2020, 54, 1395-1405.	4.6	96
1206	Global fire season severity analysis and forecasting. Computers and Geosciences, 2020, 134, 104339.	2.0	23
1207	Longâ€ŧerm monitoring of a highly invaded annual grassland community through drought, before and after an unintentional fire. Journal of Vegetation Science, 2020, 31, 307-318.	1.1	4
1208	Altered ignition catchments threaten a hyperdiverse fireâ€dependent ecosystem. Global Change Biology, 2020, 26, 616-628.	4.2	17
1209	Natural hazard threats to pollinators and pollination. Global Change Biology, 2020, 26, 380-391.	4.2	38
1210	Greenhouse gas-producing soil biological activity in burned and unburned forests along a transect in European Russia. Applied Soil Ecology, 2020, 148, 103491.	2.1	5
1211	Longâ€ŧerm hydrologic recovery after wildfire and postâ€fire forest management in the interior Pacific Northwest. Hydrological Processes, 2020, 34, 1182-1197.	1.1	52
1212	Holocene fire and vegetation dynamics in the Central Pyrenees (Spain). Catena, 2020, 188, 104411.	2.2	17
1213	Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response. Chemical Engineering Journal, 2020, 386, 123894.	6.6	127
1214	Red-Edge Normalised Difference Vegetation Index (NDVI705) from Sentinel-2 imagery to assess post-fire regeneration. Remote Sensing Applications: Society and Environment, 2020, 17, 100283.	0.8	33
1215	High-severity wildfire limits available floral pollen quality and bumble bee nutrition compared to mixed-severity burns. Oecologia, 2020, 192, 489-499.	0.9	11
1216	Natural disturbances can produce misleading bioassessment results: Identifying metrics to detect anthropogenic impacts in intermittent rivers. Journal of Applied Ecology, 2020, 57, 283-295.	1.9	30
1217	Lacustrine charcoal peaks provide an accurate record of surface wildfires in a North European boreal forest. Holocene, 2020, 30, 380-388.	0.9	6
1218	Carbonaceous aerosol emission reduction over Shandong province and the impact of air pollution control as observed from synthetic satellite data. Atmospheric Environment, 2020, 222, 117150.	1.9	12
1219	A spatio-temporal active-fire clustering approach for global burned area mapping at 250†m from MODIS data. Remote Sensing of Environment, 2020, 236, 111493	4.6	183

#	Article	IF	CITATIONS
1220	Initial response of understorey vegetation and tree regeneration to a mixedâ€severity fire in oldâ€growth <i>Araucaria–Nothofagus</i> forests. Applied Vegetation Science, 2020, 23, 210-222.	0.9	12
1221	A fiery past: A comparison of glacial and contemporary fire regimes on the Palaeo-Agulhas Plain, Cape Floristic Region. Quaternary Science Reviews, 2020, 235, 106059.	1.4	14
1222	Spatioâ€ŧemporal changes in the understory heterogeneity, diversity, and composition after fires of different severities in a semiarid oak (<scp><i>Quercus brantii</i></scp> Lindl.) forest. Land Degradation and Development, 2020, 31, 1039-1049.	1.8	16
1223	Assessing the Shape Accuracy of Coarse Resolution Burned Area Identifications. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 1516-1526.	2.7	9
1224	Late Holocene vegetation responses to climate change and human impact on the central Tibetan Plateau. Science of the Total Environment, 2020, 708, 135370.	3.9	26
1225	Improving burn severity retrieval by integrating tree canopy cover into radiative transfer model simulation. Remote Sensing of Environment, 2020, 236, 111454.	4.6	25
1226	Causes of Indonesia's forest fires. World Development, 2020, 127, 104717.	2.6	45
1227	Moved by fire: Green criminology in flux. Crime, Media, Culture, 2020, , 174165902095845.	1.0	2
1228	Topographic position amplifies consequences of short-interval stand-replacing fires on postfire tree establishment in subalpine conifer forests. Forest Ecology and Management, 2020, 478, 118523.	1.4	28
1229	Long-term Post-fire Monitoring of the Breeding Bird Populations in the Kerzhensky State Nature Biosphere Reserve (Central Volga region, Russia). IOP Conference Series: Earth and Environmental Science, 2020, 543, 012018.	0.2	Ο
1230	Extracting a History of Global Fire Emissions for the Past Millennium From Ice Core Records of Acetylene, Ethane, and Methane. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032932.	1.2	5
1231	Groundâ€dwelling mammal diversity responds positively to productivity and habitat heterogeneity in a fireâ€prone region. Ecosphere, 2020, 11, e03248.	1.0	6
1232	Fire distinguishers: Refined interpretations of polycyclic aromatic hydrocarbons for paleo-applications. Geochimica Et Cosmochimica Acta, 2020, 289, 93-113.	1.6	55
1233	Fire history and human activity revealed through poly cyclic aromatic hydrocarbon (PAH) records at archaeological sites in the middle reaches of the Yellow River drainage basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560, 110015.	1.0	9
1234	Estimating wildfire fuel consumption with multitemporal airborne laser scanning data and demonstrating linkage with MODIS-derived fire radiative energy. Remote Sensing of Environment, 2020, 251, 112114.	4.6	24
1235	Impact of 2019–2020 mega-fires on Australian fauna habitat. Nature Ecology and Evolution, 2020, 4, 1321-1326.	3.4	209
1236	The ratio of microcharcoal to phytolith content in soils as a new proxy of fire activity. Holocene, 2020, 30, 1567-1578.	0.9	5
1237	Fire from policy, human interventions, or biophysical factors? Temporal–spatial patterns of forest fire in southwestern China. Forest Ecology and Management, 2020, 474, 118381.	1.4	39

#	Article	IF	CITATIONS
1238	Quantifying the impacts of fire aerosols on global terrestrial ecosystem productivity with the fully-coupled Earth system model CESM. Atmospheric and Oceanic Science Letters, 2020, 13, 330-337.	0.5	2
1239	Anthropogenic Fires in West African Landscapes: A Spatially Explicit Model Perspective of Humanized Savannas. Fire, 2020, 3, 62.	1.2	6
1240	Spatially explicit reconstruction of post-megafire forest recovery through landscape modeling. Environmental Modelling and Software, 2020, 134, 104884.	1.9	8
1241	Fire and biodiversity in the Anthropocene. Science, 2020, 370, .	6.0	240
1242	Fungal community structure and seasonal trajectories respond similarly to fire across pyrophilic ecosystems. FEMS Microbiology Ecology, 2020, 97, .	1.3	11
1243	The Carbon Cycle of Terrestrial Ecosystems. , 2020, , 141-182.		4
1244	Sustained Effects on Lung Function in Community Members Following Exposure to Hazardous PM2.5 Levels from Wildfire Smoke. Toxics, 2020, 8, 53.	1.6	25
1245	Accuracy and spatiotemporal distribution of fire in the Brazilian biomes from the MODIS burned-area products. International Journal of Wildland Fire, 2020, 29, 907.	1.0	10
1246	Frequent fire slows microbial decomposition of newly deposited fine fuels in a pyrophilic ecosystem. Oecologia, 2020, 193, 631-643.	0.9	17
1247	Understanding the effects of fire and nitrogen addition on soil respiration of a field study by combining observations with a meta-analysis. Agricultural and Forest Meteorology, 2020, 292-293, 108106.	1.9	16
1248	A Comparative Study of the Forest Fire Danger Index Calculation Methods Using Backpropagation. Journal of Physics: Conference Series, 2020, 1529, 052051.	0.3	3
1249	On the Three Major Recycling Pathways in Terrestrial Ecosystems. Trends in Ecology and Evolution, 2020, 35, 767-775.	4.2	48
1250	An Adaptive and Extensible System for Satellite-Based, Large Scale Burnt Area Monitoring in Near-Real Time. Remote Sensing, 2020, 12, 2162.	1.8	11
1251	Timber harvest and frequent prescribed burning interact to affect the demography of Eucalypt species. Forest Ecology and Management, 2020, 475, 118463.	1.4	13
1252	Interaction of Fire, Vegetation, and Climate in Tropical Ecosystems: A Multiproxy Study Over the Past 22,000ÂYears. Global Biogeochemical Cycles, 2020, 34, e2020GB006677.	1.9	11
1253	Latest Permian Peltasperm Plant From Southwest China and Its Paleoenvironmental Implications. Frontiers in Earth Science, 2020, 8, .	0.8	16
1254	Linking Vegetation-Climate-Fire Relationships in Sub-Saharan Africa to Key Ecological Processes in Two Dynamic Global Vegetation Models. Frontiers in Environmental Science, 2020, 8, .	1.5	6
1255	Wildfire Trend Analysis over the Contiguous United States Using Remote Sensing Observations. Remote Sensing, 2020, 12, 2565.	1.8	10

#	Article	IF	CITATIONS
1256	Forecasting Global Fire Emissions on Subseasonal to Seasonal (S2S) Time Scales. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001955.	1.3	13
1257	Recent (1980 to 2015) Trends and Variability in Dailyâ€toâ€Interannual Soluble Iron Deposition from Dust, Fire, and Anthropogenic Sources. Geophysical Research Letters, 2020, 47, e2020GL089688.	1.5	31
1258	Changes in Multi-Level Biodiversity and Soil Features in a Burned Beech Forest in the Southern Italian Coastal Mountain. Forests, 2020, 11, 983.	0.9	23
1259	Fire reduces dry season low flows in a subtropical highland of central Argentina. Journal of Hydrology, 2020, 590, 125538.	2.3	3
1260	Challenges and opportunities of hydrothermal carbonisation in the UK; case study in Chirnside. RSC Advances, 2020, 10, 31586-31610.	1.7	27
1261	Post-Wildfire Regeneration in a Sky-Island Mixed- Conifer Ecosystem of the North American Great Basin. Forests, 2020, 11, 900.	0.9	4
1262	Fire Danger Observed from Space. Surveys in Geophysics, 2020, 41, 1437-1459.	2.1	17
1263	A Deep Learning Approach for Burned Area Segmentation with Sentinel-2 Data. Remote Sensing, 2020, 12, 2422.	1.8	64
1264	North African forests falling to charcoal. Science, 2020, 369, 1065-1066.	6.0	1
1265	Assessing Risk and Prioritizing Safety Interventions in Human Settlements Affected by Large Wildfires. Forests, 2020, 11, 859.	0.9	23
1266	Vegetation fires in the Anthropocene. Nature Reviews Earth & Environment, 2020, 1, 500-515.	12.2	419
1267	The global challenge of clean cooking systems. Food Security, 2020, 12, 1219-1240.	2.4	11
1268	Damage-Map Estimation Using UAV Images and Deep Learning Algorithms for Disaster Management System. Remote Sensing, 2020, 12, 4169.	1.8	31
1269	The importance of compound-specific radiocarbon analysis in source identification of polycyclic aromatic hydrocarbons: A critical review. Critical Reviews in Environmental Science and Technology, 2022, 52, 937-978.	6.6	11
1270	Forest fire risk mapping using GIS and remote sensing in two major landscapes of Nepal. Geomatics, Natural Hazards and Risk, 2020, 11, 2569-2586.	2.0	38
1271	Effect of Natural Forest Fires on Regional Weather Conditions in Siberia. Atmosphere, 2020, 11, 1133.	1.0	12
1272	A 13-Year Approach to Understand the Effect of Prescribed Fires and Livestock Grazing on Soil Chemical Properties in Tivissa, NE Iberian Peninsula. Forests, 2020, 11, 1013.	0.9	22
1273	FIRED (Fire Events Delineation): An Open, Flexible Algorithm and Database of US Fire Events Derived from the MODIS Burned Area Product (2001–2019). Remote Sensing, 2020, 12, 3498.	1.8	30

#	Article	IF	CITATIONS
1274	Atmospheric Cascades Shape Wildfire Activity and Fire Management Decision Spaces Across Scales â^' A Conceptual Framework for Fire Prediction. Frontiers in Environmental Science, 2020, 8, .	1.5	5
1275	Verification of Red Flag Warnings across the Northwestern U.S. as Forecasts of Large Fire Occurrence. Fire, 2020, 3, 60.	1.2	2
1276	Wildfire reveals transient changes to individual traits and population responses of a native bumble bee <i>Bombus vosnesenskii</i> . Journal of Animal Ecology, 2020, 89, 1799-1810.	1.3	19
1277	SAR-enhanced mapping of live fuel moisture content. Remote Sensing of Environment, 2020, 245, 111797.	4.6	50
1278	Comparison of forest aboveâ€ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observationâ€based estimates. Global Change Biology, 2020, 26, 3997-4012.	4.2	25
1279	Arctic and boreal paleofire records reveal drivers of fire activity and departures from Holocene variability. Ecology, 2020, 101, e03096.	1.5	20
1280	Fire and rain are one: extreme rainfall events predict wildfire extent in an arid grassland. International Journal of Wildland Fire, 2020, 29, 702.	1.0	21
1281	ls fire always the "bad guy�. Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 268, 151611.	0.6	26
1282	Landscape–lake interactions in the Beartooth Mountains, Wyoming: a 350-year fire history reconstruction. Journal of Paleolimnology, 2020, 64, 107-119.	0.8	3
1283	Widespread biomass burning smoke throughout the remote troposphere. Nature Geoscience, 2020, 13, 422-427.	5.4	72
1284	Evidence of wildfire in the British Isles during the Last Glacial-Interglacial Transition: Revealing spatiotemporal patterns and controls. Proceedings of the Geologists Association, 2020, 131, 562-577.	0.6	4
1285	Long-Term Fire Regime Modifies Carbon and Nutrient Dynamics in Decomposing Eucalyptus pilularis Leaf Litter. Frontiers in Forests and Global Change, 2020, 3, .	1.0	8
1286	Identifying Post-Fire Recovery Trajectories and Driving Factors Using Landsat Time Series in Fire-Prone Mediterranean Pine Forests. Remote Sensing, 2020, 12, 1499.	1.8	35
1287	Climate-growth relationships of Norway Spruce and silver fir in primary forests of the Croatian Dinaric mountains. Agricultural and Forest Meteorology, 2020, 288-289, 108000.	1.9	9
1288	Different burning intensities affect cavity utilization patterns by arboreal ants in a tropical savanna canopy. Ecological Indicators, 2020, 116, 106493.	2.6	6
1289	Assessing satellite-derived fire patches with functional diversity trait methods. Remote Sensing of Environment, 2020, 247, 111897.	4.6	4
1290	Two years of post-wildfire impacts on dissolved organic matter, nitrogen, and precursors of disinfection by-products in California stream waters. Water Research, 2020, 181, 115891.	5.3	37
1291	A Synergetic Approach to Burned Area Mapping Using Maximum Entropy Modeling Trained with Hyperspectral Data and VIIRS Hotspots. Remote Sensing, 2020, 12, 858.	1.8	18

#	Article	IF	Citations
1292	Human activity, daylight saving time and wildfire occurrence. Science of the Total Environment, 2020, 727, 138044.	3.9	13
1293	What the past can say about the present and future of fire. Quaternary Research, 2020, 96, 66-87.	1.0	34
1294	Evidence of widespread wildfires in coal seams from the Middle Jurassic of Northwest China and its impact on paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 559, 109819.	1.0	27
1295	Quantifying the drivers and predictability of seasonal changes in African fire. Nature Communications, 2020, 11, 2893.	5.8	15
1296	Identifying Local-Scale Weather Forcing Conditions Favorable to Generating Iberia's Largest Fires. Forests, 2020, 11, 547.	0.9	9
1297	Are plant community responses to wildfire contingent upon historical disturbance regimes?. Global Ecology and Biogeography, 2020, 29, 1621-1633.	2.7	25
1298	A pseudo timeâ€series reveals the rapid recovery and high variability of benthic macroinvertebrate populations following catchment wildfire. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 662-674.	0.9	1
1299	Asian inland wildfires driven by glacial–interglacial climate change. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5184-5189.	3.3	36
1300	Do Fire Regime Attributes Affect Soil Biochemical Properties in the Same Way under Different Environmental Conditions?. Forests, 2020, 11, 274.	0.9	17
1301	Photolability of pyrogenic dissolved organic matter from a thermal series of laboratory-prepared chars. Science of the Total Environment, 2020, 724, 138198.	3.9	31
1302	Evaluating fire management effectiveness with a burn probability model in Daxing'anling, China. Canadian Journal of Forest Research, 2020, 50, 670-679.	0.8	9
1303	Climatic control of orbital time-scale wildfire occurrences since the late MIS 3 at Qinghai Lake, monsoon marginal zone. Quaternary International, 2020, 550, 20-26.	0.7	7
1304	Post-Fire Resprouting in New Zealand Woody Vegetation: Implications for Restoration. Forests, 2020, 11, 269.	0.9	7
1305	Nitrogen speciation and transformations in fire-derived organic matter. Geochimica Et Cosmochimica Acta, 2020, 276, 170-185.	1.6	22
1306	Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecological Monographs, 2020, 90, e01409.	2.4	47
1307	Biomass Burning in Africa: An Investigation of Fire Radiative Power Missed by MODIS Using the 375 m VIIRS Active Fire Product. Remote Sensing, 2020, 12, 1561.	1.8	19
1308	Relations of land cover, topography, and climate to fire occurrence in natural regions of Iran: Applying new data mining techniques for modeling and mapping fire danger. Forest Ecology and Management, 2020, 473, 118338.	1.4	33
1309	Criteria-Based Identification of Important Fuels for Wildland Fire Emission Research. Atmosphere, 2020, 11, 640.	1.0	7

#	Article	IF	CITATIONS
1310	Local Perceptions of Fires Risk and Policy Implications in the Hills of ValparaÃso, Chile. Sustainability, 2020, 12, 4298.	1.6	7
1311	Performance Evaluation of Machine Learning Methods for Forest Fire Modeling and Prediction. Symmetry, 2020, 12, 1022.	1.1	115
1312	Seed traits determine species' responses to fire under varying soil heating scenarios. Functional Ecology, 2020, 34, 1967-1978.	1.7	29
1313	First study of Sentinel-3 SLSTR active fire detection and FRP retrieval: Night-time algorithm enhancements and global intercomparison to MODIS and VIIRS AF products. Remote Sensing of Environment, 2020, 248, 111947.	4.6	24
1314	Wildfire evolution and response to climate change in the Yinchuan Basin during the past 1.5ÂMa based on the charcoal records of the PLO2 core. Quaternary Science Reviews, 2020, 241, 106393.	1.4	9
1315	Carbon balance and fire emissions in Andean cypress (Austrocedrus chilensis) forests of Patagonia, Argentina. International Journal of Wildland Fire, 2020, 29, 661.	1.0	2
1316	Conserving Australia's threatened native mammals in predator-invaded, fire-prone landscapes. Wildlife Research, 2020, 47, 1.	0.7	31
1317	Consideration of anthropogenic factors in boreal forest fire regime changes during rapid socio-economic development: case study of forestry districts with increasing burnt area in the Sakha Republic, Russia. Environmental Research Letters, 2020, 15, 035009.	2.2	29
1318	A long-term assessment of fire regimes in a Brazilian ecotone between seasonally dry tropical forests and savannah. Ecological Indicators, 2020, 113, 106151.	2.6	11
1319	Climate Extremes and Compound Hazards in a Warming World. Annual Review of Earth and Planetary Sciences, 2020, 48, 519-548.	4.6	330
1320	Estimating burn severity and carbon emissions from a historic megafire in boreal forests of China. Science of the Total Environment, 2020, 716, 136534.	3.9	18
1321	The potential for rapid determination of charcoal from wetland sediments using infrared spectroscopy. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 542, 109562.	1.0	9
1322	Reconstruction of Paleofire Emissions Over the Past Millennium From Measurements of Ice Core Acetylene. Geophysical Research Letters, 2020, 47, e2019GL085101.	1.5	9
1323	Sustainable Land Management, Wildfire Risk and the Role of Grazing in Mediterranean Urban-Rural Interfaces: A Regional Approach from Greece. Land, 2020, 9, 21.	1.2	33
1324	CO2-induced climate forcing on the fire record during the initiation of Cretaceous oceanic anoxic event 2. Bulletin of the Geological Society of America, 2020, 132, 321-333.	1.6	11
1325	Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya. Remote Sensing Applications: Society and Environment, 2020, 18, 100324.	0.8	65
1326	Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Composites Part B: Engineering, 2020, 193, 108017.	5.9	176
1327	Late Pleistocene fire in the Ili Basin, Central Asia, and its potential links to paleoclimate change and human activities. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 547, 109700.	1.0	14

#	Article	IF	CITATIONS
1328	Shoot flammability of vascular plants is phylogenetically conserved and related to habitat fire-proneness and growth form. Nature Plants, 2020, 6, 355-359.	4.7	29
1329	Integrating permanent plot and palaeoecological data to determine subalpineÂpostâ€fire succession, recovery and convergence over 128 years. Journal of Vegetation Science, 2020, 31, 755-767.	1.1	1
1330	Spatiotemporal dynamics of ecosystem fires and biomass burning-induced carbon emissions in China over the past two decades. Geography and Sustainability, 2020, 1, 47-58.	1.9	14
1331	Can Landsat-Derived Variables Related to Energy Balance Improve Understanding of Burn Severity From Current Operational Techniques?. Remote Sensing, 2020, 12, 890.	1.8	6
1332	Fire decline in dry tropical ecosystems enhances decadal land carbon sink. Nature Communications, 2020, 11, 1900.	5.8	30
1333	Where to prescribe burn: the costs and benefits of prescribed burning close to houses. International Journal of Wildland Fire, 2020, 29, 440.	1.0	33
1334	Uncovering spatial and ecological variability in gap size frequency distributions in the Canadian boreal forest. Scientific Reports, 2020, 10, 6069.	1.6	38
1335	Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 2020, 108, 2047-2069.	1.9	281
1336	Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe. Biogeosciences, 2020, 17, 1213-1230.	1.3	52
1337	The wildland fire system and challenges for engineering. Fire Safety Journal, 2021, 120, 103085.	1.4	13
1338	Post-fire vegetation succession in the Siberian subarctic tundra over 45Âyears. Science of the Total Environment, 2021, 760, 143425.	3.9	27
1339	WETKF for wildfire propagation prediction employing observations with missing values and/or spatial variations of error variance. Proceedings of the Combustion Institute, 2021, 38, 5091-5099.	2.4	3
1340	Macroscopic fossil charcoals as proxy of a local fire linked to conifer-rich forest from the late Pliocene of northwestern Yunnan, Southwest China. Palaeoworld, 2021, 30, 551-561.	0.5	4
1341	Herbaceous diversity and biomass under different fire regimes in a seasonally dry forest ecosystem. Environment, Development and Sustainability, 2021, 23, 6800-6818.	2.7	37
1342	Spatial analysis of wildfire incidence in the USA: the role of climatic spillovers. Environment, Development and Sustainability, 2021, 23, 6084-6105.	2.7	6
1343	Litter removal through fire – A key process for wetland vegetation and ecosystem dynamics. Science of the Total Environment, 2021, 755, 142659.	3.9	7
1344	Does forest thinning reduce fire severity in Australian eucalypt forests?. Conservation Letters, 2021, 14, e12766.	2.8	22
1345	Resilient responses by bats to a severe wildfire: conservation implications. Animal Conservation, 2021, 24, 470-481.	1.5	24

#	Article	IF	CITATIONS
1346	Australian forests, megafires and the risk of dwindling carbon stocks. Plant, Cell and Environment, 2021, 44, 347-355.	2.8	49
1347	Plant material and its biochar differ in their effects on nitrogen mineralization and nitrification in a subtropical forest soil. Science of the Total Environment, 2021, 763, 143048.	3.9	18
1348	Vegetation dynamics and Fire History in Fänebofjäden National Park, Central Sweden. Holocene, 2021, 31, 28-37.	0.9	1
1349	Multiscale assessment of the impact on air quality of an intense wildfire season in southern Italy. Science of the Total Environment, 2021, 761, 143271.	3.9	15
1350	Probability and Consequence of Postfire Erosion for Treatability of Water in an Unfiltered Supply System. Water Resources Research, 2021, 57, .	1.7	10
1351	Plant succession and geochemical indices in immature peatlands in the Changbai Mountains, northeastern region of China: Implications for climate change and peatland development. Science of the Total Environment, 2021, 773, 143776.	3.9	7
1352	Wildfire and earth surface processes. Earth Surface Processes and Landforms, 2021, 46, 1099.	1.2	2
1353	A new conifer stem, Ductoagathoxylon wangii from the Middle Jurassic of the Santanghu Basin, Xinjiang, Northwest China. Review of Palaeobotany and Palynology, 2021, 285, 104357.	0.8	8
1354	A burned area mapping method for the FY-3D MERSI based on the single-temporal L1 data and multi-temporal daily active fire products. International Journal of Remote Sensing, 2021, 42, 1292-1310.	1.3	4
1355	Faunal responses to fire in Australian tropical savannas: Insights from field experiments and their lessons for conservation management. Diversity and Distributions, 2021, 27, 828-843.	1.9	36
1356	Forest Fire Susceptibility Mapping for Uttarakhand State by Using Geospatial Techniques. Earth and Environmental Sciences Library, 2021, , 173-188.	0.3	2
1357	Identified main fire hotspots and seasons in Côte d'Ivoire (West Africa) using MODIS fire data. South African Journal of Science, 2021, 117, .	0.3	8
1358	Tactics and strategies for the future. , 2021, , 235-254.		0
1359	Historical survey of research related to fire management and fauna conservation in the world and in Brazil. Biota Neotropica, 2021, 21, .	0.2	5
1360	Holocene fire history in China: Responses to climate change and human activities. Science of the Total Environment, 2021, 753, 142019.	3.9	36
1361	Development of a Pine Tree Thermal Model Used in Forest Fire Environments. , 2021, , 495-504.		0
1362	Mapping the research history, collaborations and trends of remote sensing in fire ecology. Scientometrics, 2021, 126, 1359-1388.	1.6	4
1363	Temperature-based fire frequency analysis using machine learning: A case of Changsha, China. Climate Risk Management, 2021, 31, 100276.	1.6	10

#	Article	IF	CITATIONS
1364	Biomass burning aerosols in most climate models are too absorbing. Nature Communications, 2021, 12, 277.	5.8	84
1365	Fire threatens the diversity and structure of tropical gallery forests. Ecosphere, 2021, 12, e03347.	1.0	10
1366	Long-term effects of TBBPA-contaminated pyrogenic organic matter under abiotic aging: insights on immobilization capacity, surface functionality correlation, and phytotoxicity to <i>Thinopyrum ponticum</i> . Environmental Science: Nano, 2021, 8, 1896-1909.	2.2	1
1367	Fire Effects on Plants, Soils, and Animals. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 259-318.	0.1	Ο
1368	A Durable, Flexible, Largeâ€Area, Flameâ€Retardant, Early Fire Warning Sensor with Builtâ€In Patterned Electrodes. Small Methods, 2021, 5, e2001040.	4.6	67
1369	Ecosystem engineering in the Quaternary of the West Coast of South Africa. Evolutionary Anthropology, 2021, 30, 50-62.	1.7	11
1370	From Fuels to Smoke: Chemical Processes. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 19-37.	0.1	0
1371	The Use of Unmanned Aerial Vehicles (UAVs) for Estimating Soil Volumes Retained by Check Dams after Wildfires in Mediterranean Forests. Soil Systems, 2021, 5, 9.	1.0	8
1372	Will land use land cover change drive atmospheric conditions to become more conducive to wildfires in the United States?. International Journal of Climatology, 2021, 41, 3578-3597.	1.5	4
1373	Key drivers of pyrogenic carbon redistribution during a simulated rainfall event. Biogeosciences, 2021, 18, 1105-1126.	1.3	8
1374	Modeling fuel loads dynamics and fire spread probability in the Brazilian Cerrado. Forest Ecology and Management, 2021, 482, 118889.	1.4	32
1375	Examining Landscape-Scale Fuel and Terrain Controls of Wildfire Spread Rates Using Repetitive Airborne Thermal Infrared (ATIR) Imagery. Fire, 2021, 4, 6.	1.2	7
1376	Humans dominated biomass burning variations in Equatorial Asia over the past 200 years: Evidence from a lake sediment charcoal record. Quaternary Science Reviews, 2021, 253, 106778.	1.4	5
1377	Assessing the Ecological Need for Prescribed Fire in Michigan Using GIS-Based Multicriteria Decision Analysis: Igniting Fire Gaps. Diversity, 2021, 13, 100.	0.7	2
1378	A Framework for Multi-Dimensional Assessment of Wildfire Disturbance Severity from Remotely Sensed Ecosystem Functioning Attributes. Remote Sensing, 2021, 13, 780.	1.8	8
1379	Improving prediction and assessment of global fires using multilayer neural networks. Scientific Reports, 2021, 11, 3295.	1.6	18
1380	Fifty years of wildland fire science in Canada. Canadian Journal of Forest Research, 2021, 51, 283-302.	0.8	40
1381	Changes in the Cerrado vegetation structure: insights from more than three decades of ecological succession. Web Ecology, 2021, 21, 55-64.	0.4	17

#	Article	IF	CITATIONS
1382	Characterizing Spatial and Temporal Variability of Lightning Activity Associated with Wildfire over Tasmania, Australia. Fire, 2021, 4, 10.	1.2	18
1383	Global Wildfire Plumeâ€Rise Data Set and Parameterizations for Climate Model Applications. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033085.	1.2	9
1384	A global assessment of wildfire potential under climate change utilizing Keetch-Byram drought index and land cover classifications. Environmental Research Communications, 2021, 3, 035002.	0.9	25
1385	Direct radiative forcing of biomass burning aerosols from the extensive Australian wildfires in 2019–2020. Environmental Research Letters, 2021, 16, 044041.	2.2	21
1386	ENSO modulates wildfire activity in China. Nature Communications, 2021, 12, 1764.	5.8	69
1387	Meteorological Environments Associated With California Wildfires and Their Potential Roles in Wildfire Changes During 1984–2017. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033180.	1.2	19
1388	Interactive effects of hydrology and fire drive differential biogeochemical legacies in subtropical wetlands. Ecosphere, 2021, 12, e03408.	1.0	2
1389	Forest Fuel Loads Estimation from Landsat ETM+ and ALOS PALSAR Data. Remote Sensing, 2021, 13, 1189.	1.8	7
1390	Palaeobotanical and biomarker evidence for Early Permian (Artinskian) wildfire in the Rajmahal Basin, India. Journal of Palaeogeography, 2021, 10, .	0.9	11
1391	Potentialité des données satellitaires Sentinel-2 pour la cartographie de l'impact des feux de végétation en Afrique tropicale : application au Togo. Bois Et Forets Des Tropiques, 0, 347, 59-73.	0.2	1
1392	Interactions between Air Pollution and Terrestrial Ecosystems: Perspectives on Challenges and Future Directions. Bulletin of the American Meteorological Society, 2021, 102, E525-E538.	1.7	10
1393	Importance of Uncertainties in the Spatial Distribution of Preindustrial Wildfires for Estimating Aerosol Radiative Forcing. Geophysical Research Letters, 2021, 48, e2020GL089758.	1.5	1
1394	Satellite-Derived Variation in Burned Area in China from 2001 to 2018 and Its Response to Climatic Factors. Remote Sensing, 2021, 13, 1287.	1.8	6
1395	Domestic Livestock and Rewilding: Are They Mutually Exclusive?. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	18
1396	Kentucky Bluegrass Invasion in the Northern Great Plains and Prospective Management Approaches to Mitigate Its Spread. Plants, 2021, 10, 817.	1.6	10
1397	On the Use of Standardized Multi-Temporal Indices for Monitoring Disturbance and Ecosystem Moisture Stress across Multiple Earth Observation Systems in the Google Earth Engine. Remote Sensing, 2021, 13, 1448.	1.8	4
1398	The effects of high-severity fires on the arboreal ant community of a Neotropical savanna. Oecologia, 2021, 196, 951-961.	0.9	11
1399	Multi-criteria decision analysis for forest fire risk assessment by coupling AHP and GIS: method and case study. Environment, Development and Sustainability, 2021, 23, 17443-17458.	2.7	25

#	Article	IF	CITATIONS
1400	The DLR FireBIRD Small Satellite Mission: Evaluation of Infrared Data for Wildfire Assessment. Remote Sensing, 2021, 13, 1459.	1.8	6
1401	Towards a comprehensive look at global drivers of novel extreme wildfire events. Climatic Change, 2021, 165, 1.	1.7	96
1402	Synergistic impacts of anthropogenic fires and aridity on plant diversity in the Western Ghats: Implications for management of ancient social-ecological systems. Journal of Environmental Management, 2021, 283, 111957.	3.8	1
1403	Estimates of temporal-spatial variability of wildfire danger across the Pan-Arctic and extra-tropics. Environmental Research Letters, 2021, 16, 044060.	2.2	9
1404	Postglacial anthropogenic fires related to cultural changes in central Japan, inferred from sedimentary charcoal records spanning glacial–interglacial cycles. Journal of Quaternary Science, 2021, 36, 628-637.	1.1	3
1405	A review of fire effects across South American ecosystems: the role of climate and time since fire. Fire Ecology, 2021, 17, .	1.1	14
1406	Compound Extremes Drive the Western Oregon Wildfires of September 2020. Geophysical Research Letters, 2021, 48, e2021GL092520.	1.5	53
1407	Análise de séries temporais de focos de calor em biomas brasileiros utilizando o método Gráfico de Recorrência. Research, Society and Development, 2021, 10, e16010413925.	0.0	0
1408	Historical and future global burned area with changing climate and human demography. One Earth, 2021, 4, 517-530.	3.6	43
1409	Direct and indirect disturbance impacts in forests. Ecology Letters, 2021, 24, 1225-1236.	3.0	25
1410	The Long-Term Consequences of Forest Fires on the Carbon Fluxes of a Tropical Forest in Africa. Applied Sciences (Switzerland), 2021, 11, 4696.	1.3	14
1411	Toxicity of Water- and Organic-Soluble Wood Tar Fractions from Biomass Burning in Lung Epithelial Cells. Chemical Research in Toxicology, 2021, 34, 1588-1603.	1.7	17
1412	Fire, drought and flooding rains: The effect of climatic extremes on bird species' responses to time since fire. Diversity and Distributions, 2022, 28, 417-438.	1.9	10
1413	Using Landsat Imagery to Assess Burn Severity of National Forest Inventory Plots. Remote Sensing, 2021, 13, 1935.	1.8	5
1414	Post-fire effects of soil heating intensity and pyrogenic organic matter on microbial anabolism. Biogeochemistry, 2021, 154, 555-571.	1.7	4
1415	A review of the responses of medium- to large-sized African mammals to fire. African Journal of Range and Forage Science, 2022, 39, 249-263.	0.6	6
1416	Survival of young, dense <i>Betula ermanii</i> stands after wildfire at top soil removal sites. Forestry, 2022, 95, 130-141.	1.2	0
1417	Modelled land use and land cover change emissions – a spatio-temporal comparison of different approaches. Earth System Dynamics, 2021, 12, 635-670.	2.7	29

#	Article	IF	CITATIONS
1418	The severity and extent of the Australia 2019–20 Eucalyptus forest fires are not the legacy of forest management. Nature Ecology and Evolution, 2021, 5, 1003-1010.	3.4	48
1419	Prior disturbance legacy effects on plant recovery postâ€highâ€severity wildfire. Ecosphere, 2021, 12, e03480.	1.0	26
1420	Metacommunity resilience against simulated gradients of wildfire: disturbance intensity and species dispersal ability determine landscape recover capacity. Ecography, 2021, 44, 1022-1034.	2.1	16
1421	Observed evidence of the growing contributions to aerosol pollution of wildfires with diverse spatiotemporal distinctions in China. Journal of Cleaner Production, 2021, 298, 126860.	4.6	5
1422	A Bi-Spectral Microbolometer Sensor for Wildfire Measurement. Sensors, 2021, 21, 3690.	2.1	7
1423	A Disrupted Historical Fire Regime in Central British Columbia. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	20
1424	Fire in Semi-Arid Shrublands and Woodlands: Spatial and Temporal Patterns in an Australian Landscape. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	2
1425	Spatiotemporal variability of fire effects on soil carbon and nitrogen: A global metaâ€analysis. Global Change Biology, 2021, 27, 4196-4206.	4.2	35
1426	The influence of fire aerosols on surface climate and gross primary production in the Energy Exascale Earth System Model (E3SM). Journal of Climate, 2021, , 1-60.	1.2	3
1427	Biomass Burning and Water Balance Dynamics in the Lake Chad Basin in Africa. Earth, 2021, 2, 340-356.	0.9	1
1428	Prescribed fire management. Current Opinion in Environmental Science and Health, 2021, 21, 100250.	2.1	29
1429	Short-term impacts of 2017 western North American wildfires on meteorology, the atmosphere's energy budget, and premature mortality. Environmental Research Letters, 2021, 16, 064065.	2.2	5
1430	Human-climate interactions shape fire regimes in the Cerrado of São Paulo state, Brazil. Journal for Nature Conservation, 2021, 61, 126006.	0.8	15
1431	A synthesis of the Devonian wildfire record: Implications for paleogeography, fossil flora, and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 571, 110321.	1.0	13
1432	Evaluation of geomorphometric characteristics and soil properties after a wildfire using Sentinel-2 MSI imagery for future fire-safe forest. Fire Safety Journal, 2021, 122, 103318.	1.4	22
1433	Quantifying the impacts of Australian bushfires on native forests and gray-headed flying foxes. Global Ecology and Conservation, 2021, 27, e01566.	1.0	9
1434	Post-fire co-stimulation of gross primary production and ecosystem respiration in a meadow grassland on the Tibetan Plateau. Agricultural and Forest Meteorology, 2021, 303, 108388.	1.9	13
1435	Litter trait driven dampening of flammability following deciduous forest community shifts in eastern North America. Forest Ecology and Management, 2021, 489, 119100.	1.4	14

#	Article	IF	CITATIONS
1436	Detecting high-temperature anomalies from Sentinel-2 MSI images. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 177, 174-193.	4.9	16
1437	CNN-based burned area mapping using radar and optical data. Remote Sensing of Environment, 2021, 260, 112468.	4.6	46
1438	Smouldering fire and emission characteristics of <i>Eucalyptus</i> litter fuel. Fire and Materials, 2022, 46, 576-586.	0.9	5
1439	The effect of species, size, and fire intensity on tree mortality within a catastrophic bushfire complex. Ecological Applications, 2021, 31, e02383.	1.8	13
1440	Wildfires in the Early Triassic of northeastern Pangaea: Evidence from fossil charcoal in the Bogda Mountains, northwestern China. Palaeoworld, 2021, 30, 593-601.	0.5	8
1441	Fighting Insurgency, Ruining the Environment: the Case of Forest Fires in the Dersim Province of Turkey. Human Ecology, 2021, 49, 481-493.	0.7	2
1442	Effects of prescribed fire frequency on wildfire emissions and carbon sequestration in a fire adapted ecosystem using a comprehensive carbon model. Journal of Environmental Management, 2021, 290, 112673.	3.8	14
1443	Managing fires in a changing world: Fuel and weather determine fire behavior and safety in the neotropical savannas. Journal of Environmental Management, 2021, 289, 112508.	3.8	17
1444	Rehabilitation of Nothofagus pumilio forests in Chilean Patagonia: can fencing and planting season effectively protect against exotic European hare browsing?. New Forests, 2022, 53, 469-485.	0.7	2
1445	Um Estudo de Focos de Calor no Bioma Caatinga e suas Relações com Variáveis Meteorológicas. Revista Brasileira De Meteorologia, 2021, 36, 513-527.	0.2	4
1446	Five thousand years of fire history in the high North Atlantic region: natural variability and ancient human forcing. Climate of the Past, 2021, 17, 1533-1545.	1.3	3
1447	Asymmetrical Lightning Fire Season Expansion in the Boreal Forest of Northeast China. Forests, 2021, 12, 1023.	0.9	3
1448	Wildfires and deforestation during the Permian–Triassic transition in the southern Junggar Basin, Northwest China. Earth-Science Reviews, 2021, 218, 103670.	4.0	16
1449	Intensified fire activity induced by aridification facilitated Late Miocene C4 plant expansion in the northeastern Tibetan Plateau, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 573, 110437.	1.0	7
1451	Study of Forest Productivity in the Occurrence of Forest Fires in Galicia (Spain). Sustainability, 2021, 13, 8472.	1.6	8
1452	Record of North American boreal forest fires in northwest Greenland snow. Chemosphere, 2021, 276, 130187.	4.2	6
1453	Using charcoal, ATR FTIR and chemometrics to model the intensity of pyrolysis: Exploratory steps towards characterising fire events. Science of the Total Environment, 2021, 783, 147052.	3.9	18
1454	Annual fires reduce local species richness but do not homogenize the composition of savanna woody species. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 281, 151868.	0.6	4

#	Article	IF	CITATIONS
1455	Grazing in California's Mediterranean Multi-Firescapes. Frontiers in Sustainable Food Systems, 2021, 5,	1.8	7
1456	Intermediate fire severity diversity promotes richness of forest carnivores in California. Diversity and Distributions, 2022, 28, 493-505.	1.9	14
1457	Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests. Ecological Applications, 2021, 31, e02431.	1.8	153
1458	Reactive oxygen species formation in thiols solution mediated by pyrogenic carbon under aerobic conditions. Journal of Hazardous Materials, 2021, 415, 125726.	6.5	1
1459	Conservation of Earth's biodiversity is embedded in Indigenous fire stewardship. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	47
1460	Fire-induced loss of the world's most biodiverse forests in Latin America. Science Advances, 2021, 7, .	4.7	33
1461	Coal petrology of the Yimin Formation (Albian) in the Hailar Basin, NE China: Paleoenvironments and wildfires during peat formation. Cretaceous Research, 2021, 124, 104815.	0.6	11
1462	Climate Impacts on Fire Risk in Desert Shrublands: A Modeling Study. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	2
1463	Event Based Post-Fire Hydrological Modeling of the Upper Arroyo Seco Watershed in Southern California. Water (Switzerland), 2021, 13, 2303.	1.2	2
1464	Empirical analyses of the factors influencing fire severity in southeastern Australia. Ecosphere, 2021, 12, e03721.	1.0	21
1465	Long term post-fire recovery of woody plants in savannas of central Brazil. Forest Ecology and Management, 2021, 493, 119255.	1.4	10
1466	Optimization studies for hydrothermal gasification of partially burnt wood from forest fires for hydrogen-rich syngas production using Taguchi experimental design. Environmental Pollution, 2021, 283, 117040.	3.7	15
1467	Your best buds are worth protecting: Variation in bud protection in a fireâ€prone cerrado system. Functional Ecology, 2021, 35, 2424-2434.	1.7	9
1468	Ecosystem Functioning Influences Species Fitness at Upper Trophic Levels. Ecosystems, 2022, 25, 1037-1051.	1.6	5
1469	Modelling Human-Fire Interactions: Combining Alternative Perspectives and Approaches. Frontiers in Environmental Science, 2021, 9, .	1.5	11
1470	Continental risk assessment for understudied taxa postâ€catastrophic wildfire indicates severe impacts on the Australian bee fauna. Clobal Change Biology, 2021, 27, 6551-6567.	4.2	12
1471	Welcome to the Pyrocene: Animal survival in the age of megafire. Global Change Biology, 2021, 27, 5684-5693.	4.2	52
1472	Moving toward a new era of ecosystem science. Geography and Sustainability, 2021, 2, 151-162.	1.9	15

#	Article	IF	CITATIONS
1473	The Dust Emission Potential of Agricultural‣ike Fires—Theoretical Estimates From Two Conceptually Different Dust Emission Parameterizations. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034355.	1.2	6
1474	Fire effects on anurans: What we know so far?. Forest Ecology and Management, 2021, 495, 119338.	1.4	5
1475	Unveiling the Factors Responsible for Australia's Black Summer Fires of 2019/2020. Fire, 2021, 4, 58.	1.2	18
1476	Rapid estimation of CO2 emissions from forest fire events using cloud-based computation of google earth engine. Environmental Monitoring and Assessment, 2021, 193, 669.	1.3	4
1477	Organic matter chemistry and bacterial community structure regulate decomposition processes in post-fire forest soils. Soil Biology and Biochemistry, 2021, 160, 108311.	4.2	49
1478	Temperature-induced resistance transition behaviors of melamine sponge composites wrapped with different graphene oxide derivatives. Journal of Materials Science and Technology, 2021, 85, 194-204.	5.6	52
1479	Fire Dynamics in Boreal Forests Over the 20th Century: A Data-Model Comparison. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	2
1480	Droughts and heatwaves in the Western Mediterranean: impact on vegetation and wildfires using the coupled WRF-ORCHIDEE regional model (RegIPSL). Climate Dynamics, 2022, 58, 2881-2903.	1.7	17
1481	Using the International Tree-Ring Data Bank (ITRDB) records as century-long benchmarks for global land-surface models. Geoscientific Model Development, 2021, 14, 5891-5913.	1.3	6
1482	Relative humidity and agricultural activities dominate wildfire ignitions in Yunnan, Southwest China: Patterns, thresholds, and implications. Agricultural and Forest Meteorology, 2021, 307, 108540.	1.9	18
1483	Recent trends in the fire dynamics in Brazilian Legal Amazon: Interaction between the ENSO phenomenon, climate and land use. Environmental Development, 2021, 39, 100648.	1.8	14
1484	Temporal patterns of vegetation recovery after wildfire in two obligate seeder ash forests. Forest Ecology and Management, 2021, 496, 119409.	1.4	7
1485	352 years long fire history of a Siberian boreal forest and its primary driving factor. Global and Planetary Change, 2021, 207, 103653.	1.6	10
1486	Soil calcium content as the driving factor for vegetative structure and soil microbial function diverging across a fire chronosequence of the boreal forests in northeast China. Journal of Plant Ecology, 2022, 15, 372-384.	1.2	1
1487	Design of a Water Control System Installed in the Tree Trunk in Forest Fire Environment. Lecture Notes in Networks and Systems, 2022, , 1302-1309.	0.5	0
1488	Contributions of biomass burning to global and regional SO2 emissions. Atmospheric Research, 2021, 260, 105709.	1.8	23
1489	Economic drivers of global fire activity: A critical review using the DPSIR framework. Forest Policy and Economics, 2021, 131, 102563.	1.5	5
1490	Modern relationships between microscopic charcoal in marine sediments and fire regimes on adjacent landmasses to refine the interpretation of marine paleofire records: An Iberian case study. Quaternary Science Reviews, 2021, 270, 107148.	1.4	9

#	Article	IF	CITATIONS
1491	Fire history of Pinus nigra in Western Anatolia: A first dendrochronological study. Dendrochronologia, 2021, 69, 125874.	1.0	8
1492	Interannual variability and climatic sensitivity of global wildfire activity. Advances in Climate Change Research, 2021, 12, 686-695.	2.1	9
1493	Long-term post-fire resprouting dynamics and reproduction of woody species in a Brazilian savanna. Basic and Applied Ecology, 2021, 56, 58-71.	1.2	9
1494	Observed and estimated consequences of climate change for the fire weather regime in the moist-temperate climate of the Czech Republic. Agricultural and Forest Meteorology, 2021, 310, 108583.	1.9	10
1495	Effects of experimental fire in combination with climate warming on greenhouse gas fluxes in Arctic tundra soils. Science of the Total Environment, 2021, 795, 148847.	3.9	8
1496	The relative importance of driving factors of wildfire occurrence across climatic gradients in the Inner Mongolia, China. Ecological Indicators, 2021, 131, 108249.	2.6	1
1497	Effects of fire season on the reproductive success of the post-fire flowerer Doryanthes excelsa. Environmental and Experimental Botany, 2021, 192, 104634.	2.0	7
1498	Analysis of challenges, costs, and governance alternative for peatland restoration in Central Kalimantan, Indonesia. Trees, Forests and People, 2021, 6, 100131.	0.8	16
1499	Fire risk and severity decline with stand development in Tasmanian giant Eucalyptus forest. Forest Ecology and Management, 2021, 502, 119724.	1.4	24
1500	Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chemical Engineering Journal, 2022, 427, 131615.	6.6	149
1501	Recovery patterns of soil bacterial and fungal communities in Chinese boreal forests along a fire chronosequence. Science of the Total Environment, 2022, 805, 150372.	3.9	15
1502	Fire and Forests in the 21st Century: Managing Resilience Under Changing Climates and Fire Regimes in USA Forests. Managing Forest Ecosystems, 2021, , 465-502.	0.4	8
1503	Changes in Vegetation of Flooded Savannas Subject to Cattle Grazing and Fire in Plains of Colombia. Land, 2021, 10, 108.	1.2	2
1504	Fire history as a key determinant of grassland soil CO2 flux. Plant and Soil, 2021, 460, 579-592.	1.8	4
1506	Assessing the accuracy of remotely sensed fire datasets across the southwestern Mediterranean Basin. Natural Hazards and Earth System Sciences, 2021, 21, 73-86.	1.5	8
1507	Integrated Fire Management. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 509-597.	0.1	2
1508	Climate change and terrestrial biodiversity. , 2021, , 85-114.		3
1509	Numerical Evaluation of the Temperature Distribution in a Tree Trunk in a Forest Fire Environment. Environmental Science and Engineering, 2021, , 85-94.	0.1	0

	Chand	IN REPORT	
#	Article	IF	Citations
			CITATION
1510	Mobilizing the past to shape a better Anthropocene. Nature Ecology and Evolution, 2021, 5, 273-284.	3.4	68
1511	Fireâ€induced albedo change and surface radiative forcing in subâ€Saharan Africa savanna ecosystems: Implications for the energy balance. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6186-6201.	1.2	28
1517	Wildfires and landscape dynamics in Portugal: a regional assessment and global implications. , 2014, , 51-73.		8
1518	Landscape Disturbance Dynamics. , 2015, , 175-228.		15
1520	Climate Change and the Future of Natural Disturbances in the Central Hardwood Region. Managing Forest Ecosystems, 2016, , 355-369.	0.4	9
1521	Sustainable Fire Management. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-11.	0.0	3
1522	Toxicology of Ambient Particulate Matter. Exs, 2012, 101, 165-217.	1.4	41
1524	Effects of Disturbance, Succession and Management on Carbon Sequestration. , 2010, , 103-157.		5
1525	Toward a Theory of Landscape Fire. Ecological Studies, 2011, , 3-25.	0.4	28
1526	Synthesis: Landscape Ecology and Changing Fire Regimes. Ecological Studies, 2011, , 295-303.	0.4	1
1527	Effect of Forest Fires on Hydrology and Biogeochemistry of Watersheds. Ecological Studies, 2011, , 599-621.	0.4	7
1528	Climate Change and Early Warning Systems for Wildland Fire. , 2014, , 127-151.		5
1529	Effect of salvage logging and forest type on the post-fire regeneration of Scots pine in hemiboreal forests. New Forests, 2020, 51, 1069-1085.	0.7	7
1530	Disturbance Regimes and the Historical Range and Variation in Terrestrial Ecosystems \hat{a} †. , 2017, , .		7
1531	Presence of charcoal as evidence of paleofires in the ClaromecÃ ³ Basin, Permian of Gondwana, Argentina: Diagenetic and paleoenvironment analysis based on coal petrography studies. GeoResJ, 2017, 14, 121-134.	1.4	10
1532	Training data requirements for fire severity mapping using Landsat imagery and random forest. Remote Sensing of Environment, 2020, 245, 111839.	4.6	65
1535	Ageing mallee eucalypt vegetation after fire: insights for successional trajectories in semi-arid mallee ecosystems. Australian Journal of Botany, 2010, 58, 363.	0.3	69
1536	Effects of vegetation zones and climatic changes on fire-induced atmospheric carbon emissions: a model based on paleodata. International Journal of Wildland Fire, 2010, 19, 1015.	1.0	11

#	Article	IF	CITATIONS
1537	The role of fire in southern Scandinavian forests during the late Holocene. International Journal of Wildland Fire, 2010, 19, 1040.	1.0	36
1538	The art of learning: wildfire, amenity migration and local environmental knowledge. International Journal of Wildland Fire, 2011, 20, 612.	1.0	63
1539	Modelling the potential for prescribed burning to mitigate carbon emissions from wildfires in fire-prone forests of Australia. International Journal of Wildland Fire, 2012, 21, 629.	1.0	57
1540	Measurements relating fire radiative energy density and surface fuel consumption – RxCADRE 2011 and 2012. International Journal of Wildland Fire, 2016, 25, 25.	1.0	64
1541	Quantifying how sources of uncertainty in combustible biomass propagate to prediction of wildland fire emissions. International Journal of Wildland Fire, 2020, 29, 793.	1.0	11
1542	Widespread fire years in the US–Mexico Sky Islands are contingent on both winter and monsoon precipitation. International Journal of Wildland Fire, 2020, 29, 1072.	1.0	8
1545	Addressing trait selection patterns in temporary ponds in response to wildfire disturbance and seasonal succession. Journal of Animal Ecology, 2020, 89, 2134-2144.	1.3	11
1546	Asymmetric response of forest and grassy biomes to climate variability across the African Humid Period: influenced by anthropogenic disturbance?. Ecography, 2020, 43, 1118-1142.	2.1	16
1547	Nonlinear dynamics of fires in Africa over recent decades controlled by precipitation. Global Change Biology, 2020, 26, 4495-4505.	4.2	34
1548	Accuracy assessment of the latest generations of MODIS burned area products for mapping fire scars on a regional scale over Campos Amazônicos Savanna Enclave (Brazilian Amazon). Journal of Applied Remote Sensing, 2018, 12, 1.	0.6	10
1549	Insights into burned areas detection from Sentinel-1 data and locally adaptive algorithms. , 2018, , .		2
1550	Fire and land cover change in the Palouse Prairie–forest ecotone, Washington and Idaho, USA. Fire Ecology, 2020, 16, .	1.1	7
1551	The Impact of Climate Change on Human Health. , 2012, , 75-105.		2
1552	Spatial analysis of Fire Characterization along with various gradients of Season, Administrative units, Vegetation, Socio economy, Topography and Future climate change: A case study of Orissa state of India. Ecological Questions, 2018, 29, 1.	0.1	2
1554	Housing Arrangement and Location Determine the Likelihood of Housing Loss Due to Wildfire. PLoS ONE, 2012, 7, e33954.	1.1	131
1555	The Roles of Dispersal, Fecundity, and Predation in the Population Persistence of an Oak (Quercus) Tj ETQq1 1 0	.784314 r 1.1	gBT /Overlock
1556	Cyclic Occurrence of Fire and Its Role in Carbon Dynamics along an Edaphic Moisture Gradient in Longleaf Pine Ecosystems. PLoS ONE, 2013, 8, e54045.	1.1	33
1557	Limited Population Structure, Genetic Drift and Bottlenecks Characterise an Endangered Bird Species in a Dynamic, Fire-Prone Ecosystem. PLoS ONE, 2013, 8, e59732.	1.1	29

		EPORI	
#	Article	IF	Citations
1558	Wildfire Selectivity for Land Cover Type: Does Size Matter?. PLoS ONE, 2014, 9, e84760.	1.1	105
1559	Does Fire Influence the Landscape-Scale Distribution of an Invasive Mesopredator?. PLoS ONE, 2014, 9, e107862.	1.1	16
1560	Remote Sensing Analysis of Vegetation Recovery following Short-Interval Fires in Southern California Shrublands. PLoS ONE, 2014, 9, e110637.	1.1	45
1561	Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States. PLoS ONE, 2015, 10, e0140839.	1.1	36
1562	Modelling Carbon Emissions in Calluna vulgaris–Dominated Ecosystems when Prescribed Burning and Wildfires Interact. PLoS ONE, 2016, 11, e0167137.	1.1	9
1563	Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape. PLoS ONE, 2017, 12, e0176445.	1.1	53
1564	Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management. PLoS ONE, 2017, 12, e0179294.	1.1	20
1565	The theory, direction, and magnitude of ecosystem fire probability as constrained by precipitation and temperature. PLoS ONE, 2017, 12, e0180956.	1.1	4
1566	High-severity wildfires in temperate Australian forests have increased in extent and aggregation in recent decades. PLoS ONE, 2020, 15, e0242484.	1.1	32
1567	Retrato a carvão: a gestão do fogo no âmbito da administração florestal e do ordenamento florestal do território. SubsÃdios para uma perspetiva histórica e de futuro. Territorium: Revista Portuguesa De Riscos, Prevenção E Segurança, 2019, , 61-88.	0.1	2
1568	The effect of different fire-intensity on soil organic matter and aggregates stability. Acta Fytotechnica Et Zootechnica, 2015, 18, 1-5.	0.1	3
1569	Charcoal remains from a tonstein layer in the Faxinal Coalfield, Lower Permian, southern ParanÃ; Basin, Brazil. Anais Da Academia Brasileira De Ciencias, 2011, 83, 471-481.	0.3	24
1570	Estimation of Crown Fuel Load of Suppressed Trees in Non-treated Young Calabrian Pine (Pinus brutia) Tj ETQqC	0 0 rgBT	Overlock 10
1571	EVIDÊNCIAS PALEOBOTÃ,NICAS DE INCÊNDIOS VEGETACIONAIS NO AFLORAMENTO MORRO PAPALÉO, PALEOZÓICO SUPERIOR DO RIO GRANDE DO SUL, BRASIL Revista Geonomos, 0, , .	0.0	2
1573	Modeling anthropic factors as drivers of wildfire occurrence at the Monarch Butterfly Biosphere. Madera Bosques, 2018, 24, .	0.1	4
1574	Modelo de vulnerabilidad ante incendios forestales para el Ãrea de Conservación Guanacaste, Costa Rica. Cuadernos De Investigación UNED, 2018, 10, 435-446.	0.1	3
1575	Forest Fire Trend and Influence of Climate Variability in India: A Geospatial Analysis at National and Local Scale. Ekologia, 2019, 38, 49-68.	0.2	10
1576	Analysis of forest fire and climate variability using Geospatial Technology for the State of Telangana, India. Environmental and Socio-Economic Studies, 2019, 7, 24-37.	0.3	2

#	Article	IF	CITATIONS
1578	Wildfires, soil carbon balance and resilient organic matter in Mediterranean ecosystems. A review Spanish Journal of Soil Science, 0, 2, .	0.0	17
1579	What Are the Grand Challenges for Plant Conservation in the 21st Century?. Frontiers in Conservation Science, 2020, 1, .	0.9	7
1580	Indigenous Knowledge and Seasonal Calendar Inform Adaptive Savanna Burning in Northern Australia. Sustainability, 2020, 12, 995.	1.6	40
1581	Fire History Across Forest Types in the Southern Beartooth Mountains, Wyoming. Tree-Ring Research, 2020, 76, 27.	0.4	7
1582	Modelling Weather and Climate Related Fire Risk in Africa. American Journal of Climate Change, 2013, 02, 209-224.	0.5	3
1583	Inverse modeling of fire emissions constrained by smoke plume transport using HYSPLIT dispersion model and geostationary satellite observations. Atmospheric Chemistry and Physics, 2020, 20, 10259-10277.	1.9	14
1584	Tropospheric ozone radiative forcing uncertainty due to pre-industrial fire and biogenic emissions. Atmospheric Chemistry and Physics, 2020, 20, 10937-10951.	1.9	15
1585	Quantifying the effects of environmental factors on wildfire burned area in the south central US using integrated machine learning techniques. Atmospheric Chemistry and Physics, 2020, 20, 11065-11087.	1.9	11
1586	Using CESM-RESFire to understand climate–fire–ecosystem interactions and the implications for decadal climate variability. Atmospheric Chemistry and Physics, 2020, 20, 995-1020.	1.9	31
1606	Future challenges of representing land-processes in studies on land-atmosphere interactions. Biogeosciences, 2012, 9, 3587-3599.	1.3	56
1626	The Global Fire Atlas of individual fire size, duration, speed and direction. Earth System Science Data, 2019, 11, 529-552.	3.7	227
1627	Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geoscientific Model Development, 2020, 13, 3299-3318.	1.3	63
1628	Modeling long-term fire impact on ecosystem characteristics and surface energy using a process-based vegetation–fire model SSiB4/TRIFFID-Fire v1.0. Geoscientific Model Development, 2020, 13, 6029-6050.	1.3	6
1629	INFERNO: a fire and emissions scheme for the UK Met Office's Unified Model. Geoscientific Model Development, 2016, 9, 2685-2700.	1.3	37
1637	Assessments of Harvesting Regimes in Central Hardwood Forests under Climate and Fire Uncertainty. Forest Science, 2017, , .	0.5	2
1638	Forest Ecosystem Reorganization Underway in the Southwestern United States: A Preview of Widespread Forest Changes in the Anthropocene?. , 2016, , 57-69.		3
1639	La forêt boréale du QuébecÂ: influence du gradient longitudinal. Le Naturaliste Canadien, 2019, 143, 18-32.	0.2	3
1640	Using ForeStereo and LIDAR data to assess fire and canopy structure-related risks in relict <i>Abies pinsapo</i> Boiss. forests. PeerJ, 2020, 8, e10158.	0.9	4

1441Does ecophysiology mediate reptile responses to fire regimes? Evidence from lberian lizards. Peerl,0.9181442Haman dimensions of wildfires in NW Spatric causes, value of the burned vegetation and administrative0.911444Heat triggered high performancels enable a self-powered forest fire alarn. Journal of3.23.21449Predecting 14 Doad fuel Moisture Content at Regional Scales Using Machine Learning from Himawards3.23.21440Scalellite remote sensing for the scale mapping and impact assessment of fires in agroforest3.23.21451Sole Photovoltaics, 2021, s.03.23.21452Policy Frameworks and institutions for Decarbonisation: The Energy Sector as & Cluthnus Testa(¹⁸⁴ , 2021),0.23.21453Design considerations for rapid biodiversity recommiscing sector as & Cluthnus Testa(¹⁸⁴ , 2021),1.93.21454Design considerations for rapid biodiversity recommiscing sector as & Cluthnus Testa(¹⁸⁴ , 2021),1.93.21455Design considerations for rapid biodiversity recommiscing sector as & Cluthnus Testa(¹⁸⁴ , 2021),1.93.21456Design considerations for rapid biodiversity recommiscing sector as & Cluthnus Testa(¹⁸⁴ , 2021),1.93.21456Design considerations for rapid biodiversity recommiscing sector as & Cluthnus Testa(¹⁸⁴ , 2021),1.93.21457The dimatology of externe wildfilters in Portugal, 1980@C2018. Contributions, 2021, 2023,	#	Article	IF	CITATIONS
1012 measures. Peerl, 2018, 6, e567. 0.00 11 11447 Heat-triggered high-performance thermocells enable a self-powered forest fire alarm. Journal of 5.2 17 11447 Materials Chemistry A, 2021, 9, 26119-26126. 1 1 1148 Predicting 14 Decad Fuel Molisture Content at Regional Scales Using Machine Learning from Himawart3 1 1149 Satellite remote sensing for fine scale mapping and impact assessment of fires in agroforest 0 11600 Diversity mediates the responses of invertebrate density to duration and frequency of rivers' annual 1.2 15 11611 Solar Photovoltaics., 2021, 100, 2148-2160. 0 0 11622 Policy Frameworks and Institutions for Decarbonisation: The Energy Sector as SC Litmus Testat ^{EW} , 2021. 0 11631 Solar Photovoltaics., 2021, 60-71. 0 0 11632 Design considerations for rapid biodiversity reconnaissance surveys and long3C term monitoring to 1.9 9 11644 The climatology of extreme widtfres in Portugal, 1980&C'2018. Contributions to forecasting and 1.5 11 11645 Decarbonisation Strategies and Economic Opportunities in Australia, 2021, 203-236. 0 1 11646 Precabulistic free-danger forecasting: A framework for week-two fore	1641		0.9	18
1647 MaterialS Chemistry A, 2021, 9, 26119-26126. 5-2 17 1648 Predicting 1-H Dead Fuel Moisture Content at Regional Scales Using Machine Learning from Himawari-3 1 1649 Satellite remote sensing for fine scale mapping and impact assessment of fires in agroforest 0 1649 Satellite remote sensing for fine scale mapping and impact assessment of fires in agroforest 0 1649 Diversity meditaes the responses of invertebrate density to duration and frequency of rivers' annual 1.2 15 1660 Diversity meditaes the responses of invertebrate density to duration and frequency of rivers' annual 1.2 16 1661 Solar Photovoltalcs. 2021, 130, 2148-2160. 0 0 1662 Policy Frameworks and Institutions for Decarbonisation: The Energy Sector as &Clitmus Testactiv, 2021, 2021, 2021, 27-38. 0 1663 Design considerations for rapid biodiversity reconnaissance surveys and long&Eterm monitoring to assess the impact of wildfire. Diversity and Distributions, 2022, 28, 559-570. 19 9 1664 Ine climatology of extreme wildfire in Pertugal, 1990&CC018: Contributions to forecasting and preparedness. International of Climatology, 2022, 42, 3123-3146. 0 0 1665 Decarbonisation Strategies and Economic Opportunities in Australia., 2021, 203-236. 0 0 <tr< td=""><td>1642</td><td></td><td>0.9</td><td>11</td></tr<>	1642		0.9	11
1045 Data., 2021, 1 1049 Satellite remote sensing for fine scale mapping and impact assessment of fires in agroforest cosystems., 2021, 0 1050 Diversity mediates the responses of invertebrate density to duration and frequency of rivers' annual fologa frees is free frequ	1647		5.2	17
1049 ecosystems., 2021, 11 1060 Diversity mediates the responses of invertebrate density to duration and frequency of rivers' annual 1.2 15 1061 Solar Photovoltaics., 2021, 130, 2148-2160. 0 1062 Policy Frameworks and Institutions for Decarbonisation: The Energy Sector as \$£Utruus Testã€ ¹⁴¹ , 2021, 0 1063 Design considerations for rapid biodiversity reconnaissance surveys and long&Eterm monitoring to 1.9 9 1064 The climatology of extreme wikifres in Portugal, 1980&C'2018: Contributions to forecasting and preparedness. International Journal of Climatology, 2022, 24, 3123-3146. 1.5 11 1063 Decarbonisation Strategies and Economic Opportunities in Australia., 2021,203-236. 0 0 1064 Hydropower., 2021,125-138. 0 0 1 1 1060 Probabilistic fire danger forecasting: A framework for week-two forecasts using statistical potyprocessing techniques and the Oldbal ECMWF The Forecast System (CLFF), Weather and O.5 1 1 1064 Financing the Transition., 2021, .621-645. 0 0 2 2 2 1065 Disturbance alters the forest sol microbiome. Molecular Ecology, 2022, 31, 419-447. 2.0 27 2 27 <	1648			1
Holo dying regime. Oikos, 2021, 130, 2148-2160. L2 L3 1651 Solar Photovoltaics., 2021, 130, 2148-2160. 0 1651 Solar Photovoltaics., 2021, 60-71. 0 1652 Policy frameworks and Institutions for Decarbonisation: The Energy Sector as &CUtmus Test&C ^{M.} , 2021, , 738. 0 1653 Design considerations for rapid biodiversity reconnaissance surveys and long&Cerm monitoring to assess the impact of wildfire. Diversity and Distributions, 2022, 28, 559-570. 1.9 9 1654 The climatology of extreme wildfires in Portugal, 1980&C ^M 2018: Contributions to forecasting and preparedness. International Journal of Climatology, 2022, 42, 3123-3146. 0 1656 Decarbonisation Strategles and Economic Opportunities in Australia., 2021, 203-236. 0 1658 Hydropower: , 2021, , 125-138. 0 1669 Transitioning to a Prosperous, Resilient and Carbon-Free Economy., 2021, 1 1660 Probabilistic fire-danger forecasting: A framework for week-two forecasts using statistical post-processing techniques and the Global ECMWF Fire Forecast System (GEFF). Weather and O.5 1 1664 Financing the Transition., 2021, 621-645. 0 1665 Disturbance alters the forest soil microbiome. Molecular Ecology, 2022, 31, 419-447. 2.0 27 1666 Dis	1649			0
1652 Policy Frameworks and Institutions for Decarbonisation: The Energy Sector as à€Litmus Test䀙., 2021,, 7238. 0 1653 Design considerations for rapid biodiversity reconnaissance surveys and longå€term monitoring to assess the impact of wildfire. Diversity and Distributions, 2022, 28, 559-570. 1.9 9 1654 The climatology of extreme wildfires in Portugal, 1980å€"2018: Contributions to forecasting and preparedness. International Journal of Climatology, 2022, 42, 3123-3146. 1.5 11 1656 Decarbonisation Strategies and Economic Opportunities in Australia., 2021,, 203-236. 0 1657 Transitioning to a Prosperous, Resilient and Carbon-Free Economy., 2021,, 1. 1 1668 Probabilistic fire-danger forecasting: A framework for week-two forecasts using statistical Forecasting techniques and the Clobal ECM/VF Fire Forecast System (CEFF). Weather and Spree System Science 3.7 2.0 1666 Disturbance alters the forest soil microbiome. Molecular Ecology, 2022, 31, 419-447. 2.0 27 1667 Mapping global forest age from forest inventories, biomass and climate data. Earth System Science 3.7 42	1650		1.2	15
1027.38.01653Design considerations for rapid biodiversity reconnaissance surveys and longå&term monitoring to assess the impact of wildfire. Diversity and Distributions, 2022, 28, 559-570.1.991654The climatology of extreme wildfires in Portugal, 1980åC*2018: Contributions to forecasting and preparedness. International Journal of Climatology, 2022, 42, 3123-3146.1.5111656Decarbonisation Strategies and Economic Opportunities in Australia., 2021,, 203-236.001658Hydropower., 2021,, 125-138.01669Transitioning to a Prosperous, Resilient and Carbon-Free Economy., 2021,,11660Probabilistic fire-danger forecasting: A framework for week-two forecasts using statistical post-processing techniques and the Clobal ECMWF Fire Forecast System (CEFF). Weather and Forecasting, 2021,0.511664Financing the Transition., 2021,, 621-645.001665Disturbance alters the forest soil microbiome. Molecular Ecology, 2022, 31, 419-447.2.0271667Mapping global forest age from forest inventories, biomass and climate data. Earth System Science Data, 2021, 13, 4881-4896.3.742	1651	Solar Photovoltaics. , 2021, , 60-71.		0
1053 assess the impact of wildfire. Diversity and Distributions, 2022, 28, 559-570. 1000 119 9 1054 The climatology of extreme wildfires in Portugal, 1980&C"2018: Contributions to forecasting and preparedness. International Journal of Climatology, 2022, 42, 3123-3146. 11 1056 Decarbonisation Strategies and Economic Opportunities in Australia., 2021, , 203-236. 0 1058 Hydropower., 2021, , 125-138. 0 1059 Transitioning to a Prosperous, Resilient and Carbon-Free Economy., 2021, , . 1 1060 post-processing techniques and the Clobal ECMWF Fire Forecast susing statistical post-processing techniques and the Clobal ECMWF Fire Forecast System (CEFF). Weather and Porecasting, 2021, , . 0 1064 Financing the Transition., 2021, , 621-645. 0 10650 Disturbance alters the forest soil microbiome. Molecular Ecology, 2022, 31, 419-447. 2.0 27 1067 Mapping global forest age from forest inventories, biomass and climate data. Earth System Science Data, 2021, 13, 4881-4896. 3.7 42	1652	Policy Frameworks and Institutions for Decarbonisation: The Energy Sector as †Litmus Test'. , 2021, , 7-38.		0
1094preparedness: International Journal of Climatology, 2022, 42, 3123-3146.1.51.5111656Decarbonisation Strategies and Economic Opportunities in Australia., 2021,, 203-236.01658Hydropower., 2021,, 125-138.01659Transitioning to a Prosperous, Resilient and Carbon-Free Economy., 2021,,.11660Probabilistic fire-danger forecasting: A framework for week-two forecasts using statistical post-processing techniques and the Global ECMWF Fire Forecast System (GEFF). Weather and Forecasting, 2021,,.0.51664Financing the Transition., 2021,, 621-645.01665Disturbance alters the forest soil microbiome. Molecular Ecology, 2022, 31, 419-447.2.01667Mapping global forest age from forest inventories, biomass and climate data. Earth System Science Data, 2021, 13, 4881-4896.3.7	1653	Design considerations for rapid biodiversity reconnaissance surveys and longâ€ŧerm monitoring to assess the impact of wildfire. Diversity and Distributions, 2022, 28, 559-570.	1.9	9
1658Hydropower., 2021,, 125-138.01659Transitioning to a Prosperous, Resilient and Carbon-Free Economy., 2021, ,.11660Probabilistic fire-danger forecasting: A framework for week-two forecasts using statistical post-processing techniques and the Global ECMWF Fire Forecast System (CEFF). Weather and Forecasting, 2021, ,.0.51664Financing the Transition., 2021,, 621-645.01665Disturbance alters the forest soil microbiome. Molecular Ecology, 2022, 31, 419-447.2.01667Mapping global forest age from forest inventories, biomass and climate data. Earth System Science Data, 2021, 13, 4881-4896.3.7	1654		1.5	11
1659Transitioning to a Prosperous, Resilient and Carbon-Free Economy. , 2021, , .11660Probabilistic fire-danger forecasting: A framework for week-two forecasts using statistical post-processing techniques and the Global ECMWF Fire Forecast System (GEFF). Weather and Forecasting, 2021, .0.511664Financing the Transition. , 2021, , 621-645.01665Disturbance alters the forest soil microbiome. Molecular Ecology, 2022, 31, 419-447.2.0271667Mapping global forest age from forest inventories, biomass and climate data. Earth System Science Data, 2021, 13, 4881-4896.3.742	1656	Decarbonisation Strategies and Economic Opportunities in Australia. , 2021, , 203-236.		0
Probabilistic fire-danger forecasting: A framework for week-two forecasts using statistical post-processing techniques and the Global ECMWF Fire Forecast System (GEFF). Weather and Forecasting, 2021, , .0.511664Financing the Transition., 2021,, 621-645.01666Disturbance alters the forest soil microbiome. Molecular Ecology, 2022, 31, 419-447.2.0271667Mapping global forest age from forest inventories, biomass and climate data. Earth System Science3.742	1658	Hydropower. , 2021, , 125-138.		0
1660post-processing techniques and the Global ECMWF Fire Forecast System (GEFF). Weather and Forecasting, 2021, , .0.511664Financing the Transition. , 2021, , 621-645.01666Disturbance alters the forest soil microbiome. Molecular Ecology, 2022, 31, 419-447.2.0271667Mapping global forest age from forest inventories, biomass and climate data. Earth System Science Data, 2021, 13, 4881-4896.3.742	1659	Transitioning to a Prosperous, Resilient and Carbon-Free Economy. , 2021, , .		1
1666Disturbance alters the forest soil microbiome. Molecular Ecology, 2022, 31, 419-447.2.0271667Mapping global forest age from forest inventories, biomass and climate data. Earth System Science Data, 2021, 13, 4881-4896.3.742	1660	post-processing techniques and the Global ECMWF Fire Forecast System (GEFF). Weather and	0.5	1
Mapping global forest age from forest inventories, biomass and climate data. Earth System Science 3.7 42 Data, 2021, 13, 4881-4896.	1664	Financing the Transition. , 2021, , 621-645.		0
Data, 2021, 13, 4881-4896.	1666	Disturbance alters the forest soil microbiome. Molecular Ecology, 2022, 31, 419-447.	2.0	27
1668 Forests. , 2021, , 462-500. 0	1667		3.7	42
	1668	Forests. , 2021, , 462-500.		0

#	Article	IF	CITATIONS
1670	Solar Thermal Energy. , 2021, , 72-104.		1
1671	Improving the Governance of Governments. , 2021, , 591-620.		2
1672	Influences of climate fluctuations on northeastern North America's burned areas largely outweigh those of European settlement since AD 1850. Environmental Research Letters, 2021, 16, 114007.	2.2	3
1673	Palaeoecological records as a guide for fire management in Killarney National Park, Ireland. Proceedings of the Geologists Association, 2023, 134, 403-415.	0.6	1
1674	Trade and Climate Change. , 2021, , 571-590.		1
1678	Industry and Manufacturing. , 2021, , 408-438.		0
1682	Buildings and Precincts. , 2021, , 301-337.		0
1683	Active Fire Dynamics in the Amazon: New Perspectives From Highâ€Resolution Satellite Observations. Geophysical Research Letters, 2021, 48, e2021GL093789.	1.5	8
1684	Rapid assessment of the biodiversity impacts of the 2019–2020 Australian megafires to guide urgent management intervention and recovery and lessons for other regions. Diversity and Distributions, 2022, 28, 571-591.	1.9	43
1685	Fire increases soil nitrogen retention and alters nitrogen uptake patterns among dominant shrub species in an Arctic dry heath tundra. Science of the Total Environment, 2022, 807, 150990.	3.9	11
1688	Land Use. , 2021, , 441-461.		0
1689	Social Movements for Change. , 2021, , 646-667.		0
1690	Decarbonisation Strategies and Economic Opportunities in Indonesia. , 2021, , 237-268.		0
1691	Mining, Metals, Oil and Gas. , 2021, , 529-568.		0
1692	The Hydrogen Economy. , 2021, , 173-200.		0
1693	National Climate Change Adaptation Case Study: Early Adaptation to Climate Change through Climate-Compatible Development and Adaptation Pathways. , 2021, , 365-388.		1
1694	Urban Water. , 2021, , 338-364.		0
1695	Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sensing of Environment, 2021, 267, 112694.	4.6	92

CITATION REPOR	~		~	
	(ITA	TION		DUBL

#	Article	IF	CITATIONS
1696	Different post-fire stages encompass different plant community compositions in fire-prone grasslands from Southern Brazil. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 285, 151937.	0.6	4
1698	Postglacial human activity recorded as combustion remains in sediments. The Quaternary Research, 2010, 49, 173-180.	0.2	1
1699	Impacts of Climate Change on Terrestrial Ecosystems and Adaptation Measures for Natural Resource Management. , 2010, , 5-20.		2
1700	Biodiversity Conservation in Tropical Forests Managed for Timber. Tropical Forestry, 2011, , 91-101.	1.0	0
1702	Chemical Engineering for Bioenergy Plants. , 2012, , 133-164.		0
1703	GLOBAL BURNED AREA MAPPING FROM EUROPEAN SATELLITES: THE ESA FIRE_CCI PROJECT. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XXXIX-B8, 13-16.	0.2	1
1707	Homo sapiens' War Against Nature. SpringerBriefs in Earth Sciences, 2014, , 105-131.	0.5	0
1708	Geographical variability of relationships among black carbon from wildfires, climate and vegetation in Africa. Climate Research, 2013, 57, 221-231.	0.4	0
1710	Analysis of the Effect of Particle Size and Humidity on Reaction Characteristics of CaCO3 Sorbent Particle under Air and O2/CO2 Atmospheric Conditions. The Journal of Korean Association for Particle and Aerosol Research, 2014, 10, 75-82.	0.0	0
1711	Taxodioxylon-like charcoal from the Late Miocene of western Bulgaria. Acta Palaeobotanica, 2014, 54, 101-111.	0.2	7
1712	Fires: Wildland. , 2014, , 210-213.		0
1724	Fire and the Biosphere. Modern Approaches in Solid Earth Sciences, 2016, , 85-121.	0.1	0
1725	The Anthropocene. Modern Approaches in Solid Earth Sciences, 2016, , 123-176.	0.1	1
1726	Fire in Borneo Peatlands. , 2016, , 1-7.		0
1727	Biorefinery of Lignocellulosics for Biofuels and Biochemicals. Green Chemistry and Sustainable Technology, 2016, , 143-191.	0.4	0
1728	Fire in Borneo Peatlands. , 2016, , 1-7.		0
1729	Chapitre 12Â/ Les échelles du feu de la brousse. , 2016, , 305-324.		0
1731	Using Ants to Fight Wildfire. Lecture Notes in Computer Science, 2017, , 371-380.	1.0	0

	CITATION R	EPORT	
#	Article	IF	CITATIONS
1732	Resilienz und Nachhaltigkeit in anthropogen beeinflussten, natürlichen Systemen. , 2017, , 77-97.		0
1733	Introdução à vigilância em saúde: vigilância epidemiológica, vigilância sanitária, ambiental e saúde dc trabalhador. , 2017, , 83-116.		1
1734	Homo Prometheus. Modern Approaches in Solid Earth Sciences, 2017, , 109-122.	0.1	0
1735	"How Safe is Safe Enough?―Using Beck's Risk Society Constructs to Facilitate Changes to Unsustainable Notions of Accountability. Advances in Public Interest Accounting, 2017, , 167-219.	0.2	1
1736	RECONSTRUCCIÓN DEL RÉGIMEN DE INCENDIOS EN ECOSISTEMAS TEMPLADOS PATAGÓNICOS SOBRE LA BASE DE REGISTROS DE CARBÓN VEGETAL SEDIMENTARIO (CHARCOAL) Y POLEN DURANTE EL CUATERNARIO TARDÃO. TENDENCIAS METODOLÓGICAS, RESULTADOS Y PERSPECTIVAS. Publicacion Electronica De La Asociacion Paleontologica Argentina, 0, , .	0.2	2
1737	Fire in Borneo Peatlands. , 2018, , 65-71.		0
1738	Research Advancement on the Paleofire Occurrences and Its Significance of Global Change since the Last Deglaciation. Advances in Geosciences, 2018, 08, 106-119.	0.0	0
1741	Temporal backscattering coefficient decorrelation in burned areas. , 2018, , .		Ο
1742	Evaluation of long term forest fires in India with respect to state administrative boundary, forest category of LULC and future climate change scenario: A Geospatial Perspective. Forest Research Papers, 2018, 79, 335-343.	0.2	1
1743	Cost of Suppression. , 2019, , 1-11.		2
1744	Post-fire Tree Mortality. , 2019, , 1-10.		1
1745	Fire Ecology. , 2019, , 1-12.		2
1746	EFEITO DO FOGO NA ESTRUTURA E ESTOCAGEM DE CARBONO DE UM FRAGMENTO FLORESTAL DA MATA ATLÃ,NTICA. Nativa, 2019, 7, 306.	0.2	1
1748	Walking through a 'phoenix landscape': hiker surveys reveal nuanced perceptions of wildfire effects. International Journal of Wildland Fire, 2020, 29, 561.	1.0	3
1749	Fire Frequency. , 2020, , 379-383.		0
1753	MODELLING OF NATURAL FIRE OCCURRENCES: A CASE OF SOUTH AFRICA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIII-B3-2020, 1477-1482.	0.2	0
1756	Fire's Effects on Grassland Restoration and Biodiversity Conservation. Sustainability, 2021, 13, 12016.	1.6	5
1757	A Preliminary Global Automatic Burned-Area Algorithm at Medium Resolution in Google Earth Engine. Remote Sensing, 2021, 13, 4298.	1.8	17

#	Article	IF	CITATIONS
1758	Coupling interactive fire with atmospheric composition and climate in the UK Earth System Model. Geoscientific Model Development, 2021, 14, 6515-6539.	1.3	5
1759	Implementation of the Burned Area Component of the Copernicus Climate Change Service: From MODIS to OLCI Data. Remote Sensing, 2021, 13, 4295.	1.8	17
1760	Impact of COVID-19 lockdown on the optical properties and radiative effects of urban brown carbon aerosol. Geoscience Frontiers, 2022, 13, 101320.	4.3	6
1761	Cost of Suppression. , 2020, , 139-149.		0
1762	Mismatches in prescribed fire awareness and implementation in Oklahoma, USA. Rangelands, 2020, 42, 196-202.	0.9	2
1763	Charcoalified vegetation from the Pennsylvanian of Yorkshire, England: Implications for the interpretation of Carboniferous wildfires. Review of Palaeobotany and Palynology, 2022, 296, 104540.	0.8	4
1764	Fire Investigation and Ignitable Liquid Residue Analysis. Advances in Digital Crime, Forensics, and Cyber Terrorism, 2022, , 91-118.	0.4	0
1765	Australian fire nourishes ocean phytoplankton bloom. Science of the Total Environment, 2022, 807, 150775.	3.9	11
1766	Do fires affects growth, seed production and germination of the globose cactus Gymnocalycium monvillei?. Journal of Arid Environments, 2022, 197, 104663.	1.2	1
1767	Challenges and opportunities of hydrothermal carbonisation in the UK; case study in Chirnside. RSC Advances, 2021, 11, 34870-34897.	1.7	10
1768	Evaluation of backscatter coefficient temporal indices for burned area mapping. , 2019, , .		0
1769	Fire-severity classification across temperate Australian forests: random forests versus spectral index thresholding. , 2019, , .		6
1770	Fire Ecology. , 2020, , 358-369.		0
1772	Fire history and its drivers based on peatland charcoal analysis in the Changbai Mountains, north-east China, during the last 13Â000 years. International Journal of Wildland Fire, 2020, 29, 841.	1.0	5
1773	Post-Fire Tree Mortality. , 2020, , 836-844.		0
1775	An "OFF-to-ON―shape memory polymer conductor for early fire disaster alarming. Chemical Engineering Journal, 2022, 431, 133285.	6.6	18
1776	The interactive global fire module pyrE (v1.0). Geoscientific Model Development, 2020, 13, 3091-3118.	1.3	1
1777	Research Background. Springer Theses, 2021, , 1-6.	0.0	0

#	Article	IF	CITATIONS
1778	Sustainable Fire Management. Encyclopedia of the UN Sustainable Development Goals, 2021, , 1001-1010.	0.0	0
1779	Observed and expected changes in wildfire-conducive weather and fire events in peri-urban zones and key nature reserves of the Czech Republic. Climate Research, 2020, 82, 33-54.	0.4	8
1780	Tracing devastating fires in Portugal to a snow archive in the Swiss Alps: a case study. Cryosphere, 2020, 14, 3731-3745.	1.5	4
1781	Regional drought synchronised historical fires in dry forests of the Montane Cordillera Ecozone, Canada. International Journal of Wildland Fire, 2022, 31, 67-80.	1.0	10
1782	Characteristics of lightning-caused wildfires in central Brazil in relation to cloud-ground and dry lightning. Agricultural and Forest Meteorology, 2022, 312, 108723.	1.9	11
1783	Large wildfire driven increases in nighttime fire activity observed across CONUS from 2003–2020. Remote Sensing of Environment, 2022, 268, 112777.	4.6	13
1784	Past and future of wildfires in Northern Hemisphere's boreal forests. Forest Ecology and Management, 2022, 504, 119859.	1.4	6
1785	Changes in tree growth synchrony and resilience in Siberian Pinus sylvestris forests are modulated by fire dynamics and ecohydrological conditions. Agricultural and Forest Meteorology, 2022, 312, 108712.	1.9	6
1786	Southern hemisphere fire history since the late glacial, reconstructed from an Antarctic sediment core. Quaternary Science Reviews, 2022, 276, 107300.	1.4	5
1787	Using long temporal reference units to assess the spatial accuracy of global satellite-derived burned area products. Remote Sensing of Environment, 2022, 269, 112823.	4.6	29
1788	Integrating geospatial wildfire models to delineate landscape management zones and inform decision-making in Mediterranean areas. Safety Science, 2022, 147, 105616.	2.6	10
1789	Structural resilience and high interaction dissimilarity of plant–pollinator interaction networks in fire-prone grasslands. Oecologia, 2022, 198, 179-192.	0.9	4
1790	Land use/land cover and climate change interaction in the derived savannah region of Nigeria. Environmental Monitoring and Assessment, 2021, 193, 848.	1.3	7
1791	The fire regime response of a reintroduced endangered species. Restoration Ecology, 2022, 30, e13607.	1.4	1
1792	Fossil evidence that increased wildfire activity occurs in tandem with periods of global warming in Earth's past. Earth-Science Reviews, 2022, 224, 103871.	4.0	22
1793	Pyrogenic dissolved organic matter produced at higher temperature is more photoactive: Insight into molecular changes and reactive oxygen species generation. Journal of Hazardous Materials, 2022, 425, 127817.	6.5	16
1794	Understanding and modelling wildfire regimes: an ecological perspective. Environmental Research Letters, 2021, 16, 125008.	2.2	34
1795	Impacts of Forest Fire on Understory Species Diversity in Canary Pine Ecosystems on the Island of La Palma. Forests, 2021, 12, 1638.	0.9	4

#	Article	IF	Citations
1796	Carbon and nitrogen dynamics in tropical ecosystems following fire. Global Ecology and Biogeography, 2022, 31, 378-391.	2.7	8
1797	Microwave Limb Sounder (MLS) observations of biomass burning products in the stratosphere from Canadian forest fires in August 2017. Atmospheric Chemistry and Physics, 2021, 21, 16645-16659.	1.9	7
1799	Modelling Forest Fire and Post-Fire Management in a Catchment Prone to Erosion: Impacts on Sediment Yield. SSRN Electronic Journal, 0, , .	0.4	0
1800	Population ecology and conservation status of Parodia carambeiensis (Cactaceae). Rodriguesia, 0, 72, .	0.9	0
1801	The sum of small parts: changing landscape fire regimes across multiple small landholdings in north-western Australia with collaborative fire management. International Journal of Wildland Fire, 2021, , .	1.0	3
1802	Animal mortality during fire. Global Change Biology, 2022, 28, 2053-2065.	4.2	45
1803	Key challenges for tropospheric chemistry in the Southern Hemisphere. Elementa, 2022, 10, .	1.1	7
1804	Effect of burning on the distribution pattern and isotopic composition of plant biomolecules: Implications for paleoecological studies. Geochimica Et Cosmochimica Acta, 2022, 318, 305-327.	1.6	8
1805	Carbon stocks and stability are diminished by short-interval wildfires in fire-tolerant eucalypt forests. Forest Ecology and Management, 2022, 505, 119919.	1.4	14
1806	Highly-sensitive fire alarm system based on cellulose paper with low-temperature response and wireless signal conversion. Chemical Engineering Journal, 2022, 431, 134108.	6.6	34
1807	Effects of fire history on thermal regimes of permafrost in the northern Da Xing'anling Mountains, NE China. Geoderma, 2022, 410, 115670.	2.3	9
1808	Unburnt patches maintain bird abundance and species richness following large wildfires in an Australian semiarid woodland ecosystem. Journal of Arid Environments, 2022, 199, 104713.	1.2	1
1809	FIRE BEHAVIOR PREDICTION USING MACHINE LEARNING ALGORITHMS. Revista Brasileira De Biometria, 2020, 38, 343-352.	0.1	2
1810	The Structure, Composition, and Health of Remnant Forest Vegetation of West Timor, Indonesia. Asian Journal of Environment & Ecology, 0, , 1-14.	0.2	1
1812	Spatio-Temporal Patterns of Joshua Tree Stand Structure and Regeneration Following Mojave Desert Wildfires. Frontiers in Ecology and Evolution, 2022, 9, .	1.1	1
1813	Supervised Machine Learning Approaches on Multispectral Remote Sensing Data for a Combined Detection of Fire and Burned Area. Remote Sensing, 2022, 14, 657.	1.8	13
1814	Climate-driven Mediterranean fire hazard assessments for 2020–2100 on the light of past millennial variability. Climatic Change, 2022, 170, 1.	1.7	4
1815	Fire-prone Rhamnaceae with South African affinities in Cretaceous Myanmar amber. Nature Plants, 2022, 8, 125-135.	4.7	24

#	Article	IF	CITATIONS
1816	Characterization of global wildfire burned area spatiotemporal patterns and underlying climatic causes. Scientific Reports, 2022, 12, 644.	1.6	14
1817	GF-4 Satellite Fire Detection With an Improved Contextual Algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 163-172.	2.3	1
1818	Combined effects of climate and fireâ€driven vegetation change constrain the distributions of forest vertebrates during the 21st century. Diversity and Distributions, 2022, 28, 727-744.	1.9	1
1819	Do you CBI what I see? The relationship between the Composite Burn Index and quantitative field measures of burn severity varies across gradients of forest structure. International Journal of Wildland Fire, 2022, 31, 112-123.	1.0	13
1820	Active fires show an increasing elevation trend in the tropical highlands. Global Change Biology, 2022, 28, 2790-2803.	4.2	5
1821	Bio-inspired, sustainable and mechanically robust graphene oxide-based hybrid networks for efficient fire protection and warning. Chemical Engineering Journal, 2022, 439, 134516.	6.6	81
1822	Weather pattern associated with climate change during Canadian Arctic wildfires: A case study in July 2019. Remote Sensing Applications: Society and Environment, 2022, 25, 100698.	0.8	3
1823	Direct and Indirect Electron Transfer Routes of Chromium(VI) Reduction with Different Crystalline Ferric Oxyhydroxides in the Presence of Pyrogenic Carbon. Environmental Science & Technology, 2022, 56, 1724-1735.	4.6	40
1824	Duff burning from wildfires in a moist region: different impacts on PM _{2.5} and ozone. Atmospheric Chemistry and Physics, 2022, 22, 597-624.	1.9	4
1825	Changes in land use enhance the sensitivity of tropical ecosystems to fire-climate extremes. Scientific Reports, 2022, 12, 964.	1.6	22
1826	Contrasting successional responses of soil bacteria and fungi to post-logging burn severity. Forest Ecology and Management, 2022, 508, 120059.	1.4	19
1827	Regional-scale fire severity mapping of Eucalyptus forests with the Landsat archive. Remote Sensing of Environment, 2022, 270, 112863.	4.6	11
1828	Plant-water sensitivity regulates wildfire vulnerability. Nature Ecology and Evolution, 2022, 6, 332-339.	3.4	21
1829	Pyrogenic carbon decomposition critical to resolving fire's role in the Earth system. Nature Geoscience, 2022, 15, 135-142.	5.4	22
1830	Evidence of local adaptation in litter flammability of a widespread fireâ€adaptive pine. Journal of Ecology, 2022, 110, 1138-1148.	1.9	3
1831	Charcoal morphotypes and potential fuel types from a Mexican lake during MIS 5a and MIS 3. Journal of South American Earth Sciences, 2022, 115, 103724.	0.6	3
1832	Mortality and resprouting responses in forest trees driven more by tree and ecosystem characteristics than drought severity and fire frequency. Forest Ecology and Management, 2022, 509, 120070.	1.4	9
1833	Temporal dynamics of carbon storage in a Mediterranean mountain scrubland managed by prescribed fire. Catena, 2022, 212, 106107.	2.2	5

#	Article	IF	CITATIONS
1834	The Carbon Cycle of Southeast Australia During 2019–2020: Drought, Fires, and Subsequent Recovery. AGU Advances, 2021, 2, .	2.3	21
1835	Semantic Segmentation and Analysis on Sensitive Parameters of Forest Fire Smoke Using Smoke-Unet and Landsat-8 Imagery. Remote Sensing, 2022, 14, 45.	1.8	34
1838	Fire and regeneration from seeds in a warming world, with emphasis on Australia. , 2022, , 229-242.		2
1839	The role of decomposer communities in managing surface fuels: a neglected ecosystem service. International Journal of Wildland Fire, 2022, 31, 350-368.	1.0	6
1840	Stratospheric Aerosol of Siberian Forest Fires According to Lidar Observations in Tomsk in August 2019. Atmospheric and Oceanic Optics, 2022, 35, 57-64.	0.6	14
1842	Tracking fire activity and post-fire limnological responses using the varved sedimentary sequence of Lake Jaczno, Poland. Holocene, 2022, 32, 515-528.	0.9	6
1843	Upland and Riparian Surface Soil Processes in an Urban Creek with Native and Non-Native Vegetation after Fire. Fire, 2022, 5, 32.	1.2	1
1844	The Response of Spore Germination of Sphagnum Mosses to Single and Combined Fire-Related Cues. Plants, 2022, 11, 485.	1.6	2
1845	Disruption of cultural burning promotes shrub encroachment and unprecedented wildfires. Frontiers in Ecology and the Environment, 2022, 20, 292-300.	1.9	46
1846	The influence of thinning and prescribed burning on future forest fires in fire-prone regions of Europe. Environmental Research Letters, 2022, 17, 055010.	2.2	10
1847	Fire (plus) flood (equals) beach: coastal response to an exceptional river sediment discharge event. Scientific Reports, 2022, 12, 3848.	1.6	21
1848	Nitrogen cycle impacts on CO ₂ fertilisation and climate forcing of land carbon stores. Environmental Research Letters, 2022, 17, 044072.	2.2	6
1849	Remote Sensing and Meteorological Data Fusion in Predicting Bushfire Severity: A Case Study from Victoria, Australia. Remote Sensing, 2022, 14, 1645.	1.8	6
1850	Environmental indicators combined with risk analysis to evaluate potential wildfire incidence on the Dadu Plateau in Taiwan. Natural Hazards, 2022, 113, 287-313.	1.6	2
1851	Projecting Future Fire Regimes in a Semiarid Watershed of the Inland Northwestern United States: Interactions Among Climate Change, Vegetation Productivity, and Fuel Dynamics. Earth's Future, 2022, 10, .	2.4	7
1852	Short-Interval, Severe Wildfires Alter Saproxylic Beetle Diversity in Andean Araucaria Forests in Northwest Chilean Patagonia. Forests, 2022, 13, 441.	0.9	7
1853	Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nature Communications, 2022, 13, 1250.	5.8	19
1854	Early Oligocene—Late Miocene Wildfire History in the Northern Tibetan Plateau and Links to Temperature-Driven Precipitation Changes. Frontiers in Earth Science, 2022, 10, .	0.8	1

	CITATION	NREPORT	
#	Article	IF	CITATIONS
1856	Fire as a driver and mediator of predator–prey interactions. Biological Reviews, 2022, 97, 1539-1558.	4.7	41
1857	Fire as a driver of fungal diversity — A synthesis of current knowledge. Mycologia, 2022, 114, 215-241.	0.8	36
1858	Wild, tamed, and domesticated: Three fire macroregimes for global pyrogeography in the Anthropocene. Ecological Applications, 2022, 32, .	1.8	11
1859	Legacies of Indigenous land use and cultural burning in the Bolivian Amazon rainforest ecotone. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200499.	1.8	12
1861	Spatio-Temporal Variation in Soil Nutrients and Plant Recovery across a Fire-Severity Gradient in Old-Growth Araucaria-Nothofagus Forests of South-Central Chile. Forests, 2022, 13, 448.	0.9	1
1862	Spatial and temporal expansion of global wildland fire activity in response to climate change. Nature Communications, 2022, 13, 1208.	5.8	63
1863	Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon. Nature Communications, 2022, 13, 1097.	5.8	58
1864	Large fires or small fires, will they differ in affecting shifts in species composition and distributions under climate change?. Forest Ecology and Management, 2022, 510, 120131.	1.4	4
1865	Effects of African BaP emission from wildfire biomass burning on regional and global environment and human health. Environment International, 2022, 162, 107162.	4.8	14
1866	Fire Intumescent, High-Temperature Resistant, Mechanically Flexible Graphene Oxide Network for Exceptional Fire Shielding and Ultra-Fast Fire Warning. Nano-Micro Letters, 2022, 14, 92.	14.4	79
1867	Forest fire susceptibility prediction using machine learning models with resampling algorithms, Northern part of Eastern Ghat Mountain range (India). Geocarto International, 2022, 37, 11756-11781.	1.7	11
1868	Climate drivers of global wildfire burned area. Environmental Research Letters, 2022, 17, 045021.	2.2	14
1869	Leveraging Google Earth Engine and Semi-Supervised Generative Adversarial Networks to Assess Initial Burn Severity in Forest. Canadian Journal of Remote Sensing, 2022, 48, 411-424.	1.1	0
1870	Adaptation Strategies and Approaches for Managing Fire in a Changing Climate. Climate, 2022, 10, 58.	1.2	15
1871	Blazing the trail: Social innovation supporting wildfire-resilient territories in Catalonia (Spain). Forest Policy and Economics, 2022, 138, 102719.	1.5	8
1872	Decreasing causal impacts of El Niño–Southern Oscillation on future fire activities. Science of the Total Environment, 2022, 826, 154031.	3.9	4
1873	Covid-19 and Air Pollution Impacts at the Beginning of "Confinement―in Paraguay. , 2021, , .		0
1874	Syringaldehyde is a novel smoke-derived germination cue for the native fire-chasing tobacco, <i>Nicotiana attenuata</i> . Seed Science Research, 2021, 31, 292-299.	0.8	6

#	Article	IF	CITATIONS
1875	A global synthesis of fire effects on ecosystem services of forests and woodlands. Frontiers in Ecology and the Environment, 2022, 20, 170-178.	1.9	25
1876	Global intercomparison of functional pyrodiversity from two satellite sensors. International Journal of Remote Sensing, 2021, 42, 9523-9541.	1.3	3
1877	Long Term Post-Fire Vegetation Dynamics in North-East Mediterranean Ecosystems. The Case of Mount Athos Greece. Fire, 2021, 4, 92.	1.2	9
1878	Bones, carnivores, and grassland fires. Actualistic taphonomy of faunal assemblages from two caves in Central Argentina and its implication for the fossil record. Historical Biology, 0, , 1-14.	0.7	3
1879	Modeling the short-term fire effects on vegetation dynamics and surface energy in southern Africa using the improved SSiB4/TRIFFID-Fire model. Geoscientific Model Development, 2021, 14, 7639-7657.	1.3	4
1880	Assessment of Wildfire Activity Development Trends for Eastern Australia Using Multi-Sensor Earth Observation Data. Remote Sensing, 2021, 13, 4975.	1.8	3
1881	Fire effects on the persistence of soil organic matter and long-term carbon storage. Nature Geoscience, 2022, 15, 5-13.	5.4	42
1882	Fire Seasonality, Seasonal Temperature Cues, Dormancy Cycling, and Moisture Availability Mediate Post-fire Germination of Species With Physiological Dormancy. Frontiers in Plant Science, 2021, 12, 795711.	1.7	6
1883	Direct and indirect disturbance impacts on forest biodiversity. Ecosphere, 2021, 12, .	1.0	7
1885	Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 2022, 60,	9.0	182
1886	Spatially calibrating polycyclic aromatic hydrocarbons (PAHs) as proxies of area burned by vegetation fires: Insights from comparisons of historical data and sedimentary PAH fluxes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 596, 110995.	1.0	12
1887	Wildfire controls on land surface properties in mixed conifer and ponderosa pine forests of Sierra Nevada and Klamath mountains, Western US. Agricultural and Forest Meteorology, 2022, 320, 108939.	1.9	1
1888	Holocene fire records and their drivers in the westerlies-dominated Central Asia. Science of the Total Environment, 2022, 833, 155153.	3.9	6
1889	High-resolution mapping of wildfire drivers in California based on machine learning. Science of the Total Environment, 2022, 833, 155155.	3.9	10
1890	Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: A case study of Adana and Mersin provinces, Turkey. Ecological Informatics, 2022, 69, 101647.	2.3	55
1899	Arbutus unedo L. VE Phillyrea latifolia L. İÇİN AKTİF YANICI MADDE VE TOPRAK ÜSTÜ TOPLAM BİYOKÃ MİKTARININ TAHMİN EDİLMESİ. Turkish Journal of Forest Science, 0, , 48-59.	œTLE 0.1	0
1900	Postâ€fire pickings: Large herbivores alter understory vegetation communities in a coastal eucalypt forest. Ecology and Evolution, 2022, 12, e8828.	0.8	4
1901	Determination of optimal set of spatio-temporal features for predicting burn probability in the state of California, USA. , 2022, , .		0

		CITATION REPORT		
#	Article		IF	CITATIONS
1902	Characterizing Global Fire Regimes from Satellite-Derived Products. Forests, 2022, 13,	699.	0.9	6
1903	Direct and indirect effects of fire on microbial communities in a pyrodiverse dryâ€sclero Journal of Ecology, 2022, 110, 1687-1703.	ophyll forest.	1.9	9
1904	Potential fire risks in South America under anthropogenic forcing hidden by the Atlanti Multidecadal Oscillation. Nature Communications, 2022, 13, 2437.	c	5.8	9
1905	Climate drove the fire cycle and humans influenced fire occurrence in the East Europea forest. Ecological Monographs, 2022, 92, .	n boreal	2.4	6
1906	Pyrogenic organic matter as a nitrogen source to microbes and plants following fire in a heath tundra. Soil Biology and Biochemistry, 2022, 170, 108699.	an Arctic	4.2	8
1907	Comparison of Wildfire Meteorology and Climate at the Adriatic Coast and Southeast Atmosphere, 2022, 13, 755.	Australia.	1.0	7
1908	Reduced global fire activity due to human demography slows global warming by enhan carbon uptake. Proceedings of the National Academy of Sciences of the United States 119, e2101186119.	ced land of America, 2022,	3.3	12
1909	Restoration of a declining foundation plant species: Testing the roles of competitor sup reintroduction and herbivore exclusion. Journal of Applied Ecology, 2022, 59, 1852-186	ppression, fire 52.	1.9	1
1910	Reduced fire frequency over three decades hastens loss of the grassy forest habitat of a songbird. Biological Conservation, 2022, 270, 109570.	an endangered	1.9	5
1911	A gap analysis of reconnaissance surveys assessing the impact of the 2019–20 wildfi in Australia. Biological Conservation, 2022, 270, 109573.	res on vertebrates	1.9	2
1912	A global synthesis of fire effects on soil seed banks. Global Ecology and Conservation, 2 e02132.	2022, 36,	1.0	6
1913	The state of wildfire and bushfire science: Temporal trends, research divisions and know Safety Science, 2022, 153, 105797.	vledge gaps.	2.6	12
1915	Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emi of Western U.S. Wildfires. Environmental Science & amp; Technology, 2022, 56, 7564-7		4.6	15
1916	Black carbon aerosol number and mass concentration measurements by picosecond sh elastic backscatter lidar. Scientific Reports, 2022, 12, 8443.	ort-range	1.6	7
1917	Madagascar's fire regimes challenge global assumptions about landscape degradation. Biology, 2022, 28, 6944-6960.	Global Change	4.2	16
1919	Anthropogenic origin of a change in the fire-climate relationship in northern China afte Evidence from a 15,500-year black carbon record from Dali Lake. Journal of Chinese Ge 32, 1136-1156.		1.5	7
1920	Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Remote Sensing, 2022, 14, 2510.	Deep Learning.	1.8	28
1921	Carbon dioxide and particulate emissions from the 2013 Tasmanian firestorm: implicat Australian carbon accounting. Carbon Balance and Management, 2022, 17, .	ons for	1.4	2

#	Article	IF	CITATIONS
1923	Multi-century spatiotemporal patterns of fire history in black pine forests, Turkey. Forest Ecology and Management, 2022, 518, 120296.	1.4	7
1924	Late Quaternary fire and vegetation history inferred from the Xifeng loess-paleosol sequence of the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 599, 111072.	1.0	4
1925	Changes in Climate Drive Spatial and Temporal Variation of Wildfire in a Natural Boreal Forest Landscape. SSRN Electronic Journal, 0, , .	0.4	0
1926	California wildfire spread derived using VIIRS satellite observations and an object-based tracking system. Scientific Data, 2022, 9, .	2.4	15
1927	Reconstructing burnt area during the Holocene: an Iberian case study. Climate of the Past, 2022, 18, 1189-1201.	1.3	2
1928	The Impact of a Forest Fire Event on Moth Assemblages in Western Bohemia, Czech Republic. Polish Journal of Ecology, 2022, 69, .	0.2	1
1929	Geospatial characteristics of fire occurrences in southern hemispheric Africa and Madagascar during 2001–2020. Journal of Forestry Research, 2023, 34, 553-563.	1.7	10
1930	How Does Cultural Burning Impact Biodiversity?. Frontiers for Young Minds, 0, 10, .	0.8	0
1931	The carbon cost of the 2019–20 Australian fires varies with fire severity and forest type. Global Ecology and Biogeography, 2022, 31, 2131-2146.	2.7	3
1932	Impacts of the Western Pacific and Indian Ocean Warm Pools on Wildfires in Yunnan, Southwest China: Spatial Patterns With Interannual and Intraannual Variations. Geophysical Research Letters, 2022, 49, .	1.5	4
1933	Assessing anthropogenic influence on fire history during the Holocene in the Iberian Peninsula. Quaternary Science Reviews, 2022, 287, 107562.	1.4	10
1934	Changes in grassland phenology and growth rate, rather than diversity, drive biomass production after fire. Agricultural and Forest Meteorology, 2022, 322, 109028.	1.9	6
1935	Rivers up in smoke: impacts of Australia's 2019–2020 megafires on riparian systems. International Journal of Wildland Fire, 2022, 31, 720-727.	1.0	4
1936	FIRE EFFECTS ON NATURAL REGENERATION IN SEASONAL SEMIDECIDUOUS FOREST. Revista Arvore, 0, 46, .	0.5	0
1937	Anthropogenic Land Use and Land Cover Changes—A Review on Its Environmental Consequences and Climate Change. Journal of the Indian Society of Remote Sensing, 2022, 50, 1615-1640.	1.2	53
1938	Synthesized effects of medium-term exposure to seawater acidification and microplastics on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Environmental Pollution, 2022, 308, 119598.	3.7	5
1939	Soot biodegradation by psychrotolerant bacterial consortia. Biodegradation, 2022, 33, 407-418.	1.5	2
1940	Climate-Driven Changes in High-Intensity Wildfire on Orbital Timescales in Eurasia since 320 ka. Lithosphere, 2022, 2022, .	0.6	2

#	Article	IF	CITATIONS
1941	Facile Fabrication of Graphene Oxide Nanoribbon-Based Nanocomposite Papers with Different Oxidation Degrees and Morphologies for Tunable Fire-Warning Response. Nanomaterials, 2022, 12, 1963.	1.9	7
1942	Changes in the resilience of resprouting juvenile tree populations in temperate forests due to coupled severe drought and fire. Plant Ecology, 2022, 223, 907-923.	0.7	6
1943	Role of landâ€cover and WUI types on spatioâ€ŧemporal dynamics of fires in the French Mediterranean area. Risk Analysis, 2023, 43, 1032-1057.	1.5	5
1944	Quantifying the environmental limits to fire spread in grassy ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
1945	Polycyclic Aromatic Compounds in Rivers Dominated by Petrogenic Sources after a Boreal Megafire. Environmental Science & Technology, 2022, 56, 9408-9416.	4.6	3
1946	Hydroclimate variability was the main control on fire activity in northern Africa over the last 50,000 years. Quaternary Science Reviews, 2022, 288, 107578.	1.4	4
1947	Fire and human management of late Holocene ecosystems in southern Africa. Quaternary Science Reviews, 2022, 289, 107600.	1.4	9
1948	Disruption of terrestrial plant ecosystem in Miocene (sub) tropics: A palynological perspective from Fotan Formation, Southeast China. Review of Palaeobotany and Palynology, 2022, 304, 104715.	0.8	1
1949	Resilience in soil bacterial communities of the boreal forest from one to five years after wildfire across a severity gradient. Soil Biology and Biochemistry, 2022, 172, 108755.	4.2	8
1950	A Characterization of Fire-Management Research: A Bibliometric Review of Global Networks and Themes. Fire, 2022, 5, 89.	1.2	7
1951	RADAR-Vegetation Structural Perpendicular Index (R-VSPI) for the Quantification of Wildfire Impact and Post-Fire Vegetation Recovery. Remote Sensing, 2022, 14, 3132.	1.8	6
1952	éiè—é«~原ä,œåŒ—éf¨è¾¾å°"宗湖黑碳记录的近åƒå¹′区域宗教活动åĩè¿• SCIENTIA SINICA	Te or.a e, 202	22),.
1953	Can fireâ€age mosaics really deal with conflicting needs of species? A study using population hotspots of multiple threatened birds. Journal of Applied Ecology, 2022, 59, 2128-2141.	1.9	4
1954	Combining financial costs and statistical power to optimize monitoring to detect recoveries of species after megafire. Global Ecology and Biogeography, 2022, 31, 2147-2157.	2.7	2
1955	Social and historical dimensions of wildfire research and the consideration given to practical knowledge: a systematic review. Natural Hazards, 2022, 114, 1103-1123.	1.6	7
1956	Fire Regions as Environmental Niches: A New Paradigm to Define Potential Fire Regimes in Africa and Australia. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	2
1957	Fire history and its forcing in Northeastern Asia boreal forests. Natural Hazards Research, 2022, 2, 166-171.	2.0	4
1958	The 2019–2020 Australian forest fires are a harbinger of decreased prescribed burning effectiveness under rising extreme conditions. Scientific Reports, 2022, 12, .	1.6	17

#	Article	IF	CITATIONS
1959	The North American treeâ€ring fireâ€scar network. Ecosphere, 2022, 13, .	1.0	26
1960	Wildfire burn severity and emissions inventory: an example implementation over California. Environmental Research Letters, 2022, 17, 085008.	2.2	9
1961	Fire Aerosols Slow Down the Global Water Cycle. Journal of Climate, 2022, 35, 7219-7233.	1.2	1
1962	Quartz luminescence sensitivity variation in the Chinese loess deposits: the potential role of wildfires. Journal of Quaternary Science, 2023, 38, 49-60.	1.1	2
1963	Landscape Planning Integrated Approaches to Support Post-Wildfire Restoration in Natural Protected Areas: The Vesuvius National Park Case Study. Land, 2022, 11, 1024.	1.2	4
1964	Smart fire-warning materials and sensors: Design principle, performances, and applications. Materials Science and Engineering Reports, 2022, 150, 100690.	14.8	91
1965	Holocene fire history in southwestern China linked to climate change and human activities. Quaternary Science Reviews, 2022, 289, 107615.	1.4	8
1966	Palaeoecology and depositional setting of an Early Permian (Artinskian) mire based on a multi-proxy study at the Jagannath coal mine (Talcher Coalfield), Mahanadi Basin, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601, 111124.	1.0	5
1967	Biomarker signatures of the Middle Jurassic coals from the Zhangjialiang mine in Dongsheng coalfield, North China: Implications for palaeoenvironment and palaeovegetation. Energy Exploration and Exploitation, 2023, 41, 3-18.	1.1	1
1968	Impact of image acquisition lag-time on monitoring short-term postfire spectral dynamics in tropical savannas: the Campos Amazônicos Fire Experiment. Journal of Applied Remote Sensing, 2022, 16, .	0.6	1
1969	Rapid bird species recovery following highâ€severity wildfire but in the absence of early successional specialists. Diversity and Distributions, 2022, 28, 2110-2123.	1.9	6
1970	Biochar colloids facilitate transport and transformation of Cr(VI) in soil: Active site competition coupling with reduction reaction. Journal of Hazardous Materials, 2022, 440, 129691.	6.5	14
1971	Estimation of biomass burning emissions by integrating ICESat-2, Landsat 8, and Sentinel-1 data. Remote Sensing of Environment, 2022, 280, 113172.	4.6	10
1972	IntelliSense silk fibroin ionotronic batteries for wildfire detection and alarm. Nano Energy, 2022, 101, 107630.	8.2	9
1973	Ecological Economics Foundations to Improve Environmental Education Practices: Designing Regenerative Cultures*. World Futures, 2022, 78, 456-483.	0.8	1
1974	Decoupling between soil moisture and biomass drives seasonal variations in live fuel moisture across co-occurring plant functional types. Fire Ecology, 2022, 18, .	1.1	10
1975	Country-level fire perimeter datasets (2001–2021). Scientific Data, 2022, 9, .	2.4	8
1978	Fire severity has lasting effects on the distribution of arboreal mammals in a resprouting forest. Austral Ecology, 2022, 47, 1456-1469.	0.7	2

#	Article	IF	CITATIONS
1979	Important role of stratospheric injection height for the distribution and radiative forcing of smoke aerosol from the 2019–2020 Australian wildfires. Atmospheric Chemistry and Physics, 2022, 22, 9969-9985.	1.9	6
1980	New techniques for old fires: Using deep learning to augment fire maps from the early satellite era. Frontiers in Environmental Science, 0, 10, .	1.5	1
1981	Fire severity and postâ€fire mulching effects on N transformation rates of temperate soils during the first critical winter–spring period. European Journal of Soil Science, 2022, 73, .	1.8	2
1982	Spatial-Statistical Analysis of Landscape-Level Wildfire Rate of Spread. Remote Sensing, 2022, 14, 3980.	1.8	4
1983	Towards an atmosphere more favourable to firestorm development in Europe. Environmental Research Letters, 2022, 17, 094015.	2.2	1
1984	Anthroponumbers.org: A quantitative database of human impacts on Planet Earth. Patterns, 2022, 3, 100552.	3.1	1
1985	Tailored P/Si-decorated graphene oxide-based fire sensor for sensitive detection at low-temperature via local and remote wireless transmission. Construction and Building Materials, 2022, 349, 128600.	3.2	5
1986	Patch and landscape features drive fire regime in a Brazilian flammable ecosystem. Journal for Nature Conservation, 2022, 69, 126261.	0.8	2
1987	Patterns and drivers of recent land cover change on two trailing-edge forest landscapes. Forest Ecology and Management, 2022, 521, 120449.	1.4	6
1988	Wildfire history and savanna expansion across southern Africa since the late Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 603, 111189.	1.0	1
1989	Late Holocene fire regime reconstruction and vegetation dynamics of southern Monte desert region. Journal of South American Earth Sciences, 2022, 119, 103976.	0.6	1
1990	Differential Post-Fire Recovery of Tree and Shrub Growth and Water-Use Efficiency in a Mediterranean Coastal Dune System. Fire, 2022, 5, 135.	1.2	1
1991	Trajectories of wildfire behavior under climate change. Can forest management mitigate the increasing hazard?. Journal of Environmental Management, 2022, 322, 116134.	3.8	6
1992	Two-million-year record of fire in temperate East Asia. Quaternary Science Reviews, 2022, 295, 107765.	1.4	2
1993	Ecological impacts of forest fire on composition and structure of tropical deciduous forests of central India. Physics and Chemistry of the Earth, 2022, 128, 103240.	1.2	6
1994	Post-Fire Forest Floor Succession in a Central European Temperate Forest Depends on Organic Matter Input from Recovering Vegetation Rather than on Pyrogenic Carbon Input from Fire. SSRN Electronic Journal, 0, , .	0.4	0
1995	Fire regime in GoiÃis - Brazil and Mozambique between 2010 and 2019: frequency, recurrence, and most affected cover classes. Brazilian Journal of Environmental Sciences (Online), 2022, 57, 375-385.	0.1	0
1996	Smoke Plume Dynamics. , 2022, , 83-119.		0

#	Article	IF	CITATIONS
1997	Aerosol in the Earth system. , 2022, , 53-99.		0
1998	Assessment of the Meteorological Factors of Fire Hazards for the Southern Ural Region. Geography and Natural Resources, 2022, 43, 175-181.	0.1	2
1999	How Environmental Factors Affect Forest Fire Occurrence in Yunnan Forest Region. Forests, 2022, 13, 1392.	0.9	5
2000	Comparison of airborne measurements of NO, NO ₂ , HONO, NO _{<i>y</i>} , and CO during FIREX-AQ. Atmospheric Measurement Techniques, 2022, 15, 4901-4930.	1.2	17
2001	Investigation of post fire vegetation regrowth under different burn severities based on satellite observations. International Journal of Environmental Science and Technology, 0, , .	1.8	3
2002	Building resilient landscapes in a semi-arid watershed: Anthropogenic and natural burning histories in Late Holocene Tesuque Creek, northern New Mexico. Holocene, 2022, 32, 1437-1449.	0.9	1
2003	Pyrophilic Plants Respond to Postfire Soil Conditions in a Frequently Burned Longleaf Pine Savanna. American Naturalist, 2023, 201, 389-403.	1.0	3
2004	Global assessment and mapping of ecological vulnerability to wildfires. Natural Hazards and Earth System Sciences, 2022, 22, 2981-3003.	1.5	3
2005	The contribution of Indigenous stewardship to an historical mixedâ€severity fire regime in British Columbia, Canada. Ecological Applications, 2023, 33, .	1.8	5
2006	Monoculture plantations fuel fires amid heat waves. Science, 2022, 377, 1498-1498.	6.0	1
2007	Reviewing the links and feedbacks between climate change and air pollution in Europe. Frontiers in Environmental Science, 0, 10, .	1.5	7
2008	Variation of luminescence sensitivity of quartz grains from loess in eastern Tibetan Plateau and its provenance significance. Frontiers in Earth Science, 0, 10, .	0.8	1
2009	When Mediterranean Plant Diversity Profits From Wildfires. Frontiers for Young Minds, 0, 10, .	0.8	0
2010	Fire history and vegetation data reveal ecological benefits of recent mixed-severity fires in the Cumberland Mountains, West Virginia, USA. Fire Ecology, 2022, 18, .	1.1	1
2011	Global effects of forest modification on herpetofauna communities. Conservation Biology, 2023, 37, .	2.4	7
2012	Wildfire Danger Prediction and Understanding With Deep Learning. Geophysical Research Letters, 2022, 49, .	1.5	22
2013	Recent Advances on Early-Stage Fire-Warning Systems: Mechanism, Performance, and Perspective. Nano-Micro Letters, 2022, 14, .	14.4	22
2014	Using modelled relationships and satellite observations to attribute modelled aerosol biases over biomass burning regions. Nature Communications, 2022, 13, .	5.8	6

#	Article	IF	CITATIONS
2015	Fire decreases gross mineralization rate but does not alter gross nitrification rate in boreal forest soils. Soil Biology and Biochemistry, 2022, 175, 108838.	4.2	4
2016	Visualization and modeling of forest fire propagation in Patagonia. Environmental Modelling and Software, 2022, 158, 105526.	1.9	5
2017	Modelling ignition probability for human- and lightning-caused wildfires in Victoria, Australia. Natural Hazards and Earth System Sciences, 2022, 22, 3487-3499.	1.5	6
2018	Fire Severity Causes Temporal Changes in Ground-Dwelling Arthropod Assemblages of Patagonian Araucaria–Nothofagus Forests. Fire, 2022, 5, 168.	1.2	3
2019	Enhanced dust emission following large wildfires due to vegetation disturbance. Nature Geoscience, 2022, 15, 878-884.	5.4	20
2020	Wildfire evacuation patterns and syndromes across Canada's forested regions. Ecosphere, 2022, 13, .	1.0	4
2021	Spatial variations in vegetation fires and emissions in South and Southeast Asia during COVID-19 and pre-pandemic. Scientific Reports, 2022, 12, .	1.6	14
2022	Forest Burned Area Detection Using a Novel Spectral Index Based on Multi-Objective Optimization. Forests, 2022, 13, 1787.	0.9	5
2023	Assessment of Fire Regimes and Post-Fire Evolution of Burned Areas with the Dynamic Time Warping Method on Time Series of Satellite Images—Setting the Methodological Framework in the Peloponnese, Greece. Remote Sensing, 2022, 14, 5237.	1.8	3
2024	Short-term effects of wildfire on soil arthropods in a semi-arid grassland on the Loess Plateau. Frontiers in Microbiology, 0, 13, .	1.5	1
2026	High-latitude fire activity of recent decades derived from microscopic charcoal and black carbon in Greenland ice cores. Holocene, 2023, 33, 238-244.	0.9	1
2027	Modeled dispersal patterns for wood and grass charcoal are different: Implications for paleofire reconstruction. Holocene, 2023, 33, 159-166.	0.9	5
2028	Soil biogeochemistry and microbial community dynamics in Pinus pinaster Ait. forests subjected to increased fire frequency. Science of the Total Environment, 2023, 858, 159912.	3.9	4
2029	Overview of extreme weather events, impacts and forecasting techniques. , 2023, , 1-86.		0
2030	Like moths to a flame: A review of what we know about pyrophilic insects. Forest Ecology and Management, 2023, 528, 120629.	1.4	2
2031	Classification of MODIS fire emission data based on aerosol absorption Angstrom exponent retrieved from AERONET data. Science of the Total Environment, 2023, 858, 159898.	3.9	1
2032	Forest restoration in a time of fire: perspectives from tall, wet eucalypt forests subject to stand-replacing wildfires. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	1.8	7
2033	Experimental evidence that leaf litter decomposability and flammability are decoupled across gymnosperm species. Journal of Ecology, 2023, 111, 761-772.	1.9	2

ARTICLE IF CITATIONS Drought then wildfire reveals a compound disturbance in a resprouting forest. Ecological 2034 1.8 6 Applications, 2023, 33, . Modeling Wildfire Spread with an Irregular Graph Network. Fire, 2022, 5, 185. 1.2 The potential for storing carbon by harvested wood products. Frontiers in Forests and Global 2036 1.0 7 Change, 0, 5, . Temporal differences in snail diversity responses to wildfires and salvage logging. Environmental 0.7 Conservation, 2023, 50, 40-49. Regional Variability and Driving Forces behind Forest Fires in Sweden. Remote Sensing, 2022, 14, 5826. 2038 1.8 4 Role of space station instruments for improving tropical carbon flux estimates using atmospheric 2039 data. Npj Microgravity, 2022, 8, . Paleo-wildfire signatures revealing co-occurrence of angiosperm-gymnosperm in the early Paleogene: 2040 Evidences from woody charcoal and biomarker analysis from the Gurha lignite mine, Rajasthan, India. 1.9 3 International Journal of Coal Geology, 2023, 265, 104164. Post-fire forest floor succession in a Central European temperate forest depends on organic matter input from recovering vegetation rather than on pyrogenic carbon input from fire. Science of the 2041 3.9 Total Environment, 2023, 861, 160659. Fire affects wood formation dynamics and ecophysiology of Pinus pinaster Aiton growing in a dry 2042 1.0 5 Mediterranean area. Dendrochronologia, 2023, 77, 126044. Spatial and Temporal Distribution Characteristics of Active Fires in China Using Remotely Sensed Data. 2043 1.2 Fire, 2022, 5, 200. Increased fire activity under high atmospheric oxygen concentrations is compatible with the presence 2044 5.8 5 of forests. Nature Communications, 2022, 13, . Does fire drive fatty acid composition in seed coats of physically dormant species?. Plant Biology, 2046 1.8 2023, 25, 268-275. Examining the existing definitions of wildlandâ€urban interface for California. Ecosphere, 2022, 13, . 2048 1.0 8 Changes in regional religious activities in the last millennium recorded by black carbon in Lake 2049 2.3 Dalzong, northeastern Tibetan Plateau. Science China Earth Sciences, 2023, 66, 303-315. Improved burn severity estimation by using Land Surface Phenology metrics and red edge information estimated from Landsat. International Journal of Applied Earth Observation and Geoinformation, 2022, 2050 0.9 3 115, 103126. A Semi-Empirical Retrieval Method of Above-Ground Live Forest Fuel Loads by Combining SAR and 1.8 Optical Data. Remote Sensing, 2023, 15, 5. Soil characteristics and bare ground cover differ among jurisdictions and disturbance histories in 2052 1.1 0 Western US protected area-centered ecosystems. Frontiers in Ecology and Evolution, 0, 10, . Indigenous fire management and cross-scale fire-climate relationships in the Southwest United States from 1500 to 1900 CE. Science Advances, 2022, 8, .

#	Article	IF	CITATIONS
2054	Increasing aridity causes larger and more severe forest fires across Europe. Global Change Biology, 2023, 29, 1648-1659.	4.2	29
2055	Lightning Over Central Canada: Skill Assessment for Various Landâ€Atmosphere Model Configurations and Lightning Indices Over a Boreal Study Area. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	2
2057	A framework for quantifying forest wildfire hazard and fuel treatment effectiveness from stands to landscapes. Fire Ecology, 2022, 18, .	1.1	7
2058	Evaluating methods to map burned area at 30-meter resolution in forests and agricultural areas of Central India. Frontiers in Forests and Global Change, 0, 5, .	1.0	1
2060	Spatiotemporal Characteristics and Regional Variations of Active Fires in China since 2001. Remote Sensing, 2023, 15, 54.	1.8	4
2061	Anthropogenic Transformations of Vegetation in the Kuyalnik Estuary Valley (Ukraine, Odesa District). Diversity, 2022, 14, 1115.	0.7	2
2062	Biomimetic, Mechanically Strong Supramolecular Nanosystem Enabling Solvent Resistance, Reliable Fire Protection and Ultralong Fire Warning. ACS Nano, 2022, 16, 20865-20876.	7.3	60
2063	Regional ecological forecasting across scales: A manifesto for a biodiversity hotspot. Methods in Ecology and Evolution, 2023, 14, 757-770.	2.2	5
2064	Polyimide/Ionic Crystal-Based Hybrid Electrolyte for a Self-Powered Multistage Fire Alarm. ACS Applied Polymer Materials, 2023, 5, 1293-1301.	2.0	2
2065	Tree Species Composition and Diversity in Fire-Affected Areas of Miombo Woodlands, Central Mozambique. Fire, 2023, 6, 26.	1.2	2
2066	Evaluations on the Consequences of Fire Suppression and the Ecological Effects of Fuel Treatment Scenarios in a Boreal Forest of the Great Xing'an Mountains, China. Forests, 2023, 14, 85.	0.9	2
2067	A data-driven model for Fennoscandian wildfire danger. Natural Hazards and Earth System Sciences, 2023, 23, 65-89.	1.5	3
2068	Large-Fire Ignitions Are Higher in Protected Areas than Outside Them in West-Central Spain. Fire, 2023, 6, 28.	1.2	3
2069	Novel climate–fire–vegetation interactions and their influence on forest ecosystems in the western <scp>USA</scp> . Functional Ecology, 2023, 37, 2126-2142.	1.7	3
2070	Skillful seasonal prediction of summer wildfires over Central Asia. Global and Planetary Change, 2023, 221, 104043.	1.6	0
2071	Coastal Forest in Eastern Southern Africa has Savanna Bush-clump Origins. Ecosystems, 0, , .	1.6	1
2072	Effects of severe fires on the survival and body condition of Gracilinanus agilis in a Cerrado remnant. Mammalian Biology, 2023, 103, 205-214.	0.8	1
2073	Independence Effects of Heat and Ash on Forest Soil Nematode-Trapping Fungi Communities. Fire, 2023, 6, 27.	1.2	0

#	Article	IF	CITATIONS
2074	Development of high diversity beech forest in the eastern Carpathians. Journal of Biogeography, 2023, 50, 699-714.	1.4	1
2075	Effects of Post-Fire Management on a Mediterranean Small Mammal Community. Fire, 2023, 6, 34.	1.2	3
2076	Modeling and prediction of fire occurrences along an elevational gradient in Western Himalayas. Applied Geography, 2023, 151, 102867.	1.7	8
2077	Assessing the resilience of ecosystem functioning to wildfires using satellite-derived metrics of post-fire trajectories. Remote Sensing of Environment, 2023, 286, 113441.	4.6	7
2078	An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA. Ecological Modelling, 2023, 477, 110277.	1.2	0
2079	Long eccentricity forcing of the Late Pliensbachian to Early Toarcian (Jurassic) terrestrial wildfire activities in the Tarim Basin, northwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 613, 111408.	1.0	1
2080	Avaliação da Fórmula de Monte Alegre modificada aplicada aos dados da Flona de Ipanema, MERRA-2 e produtos de sensoriamento remoto. Revista Brasileira De Climatologia, 0, 31, 857-878.	0.3	0
2081	Characterization of land cover-specific fire regimes in the Brazilian Amazon. Regional Environmental Change, 2023, 23, .	1.4	3
2082	Investigation of Fire Weather Danger under a Changing Climate at High Resolution in Greece. Sustainability, 2023, 15, 2498.	1.6	4
2083	Investigating the Relationship between Fire Severity and Post-Fire Vegetation Regeneration and Subsequent Fire Vulnerability. Forests, 2023, 14, 222.	0.9	2
2084	A threeâ€dimensional approach to general plant fire syndromes. Functional Ecology, 2023, 37, 2143-2158.	1.7	1
2085	An Unsupervised Burned Area Mapping Approach Using Sentinel-2 Images. Land, 2023, 12, 379.	1.2	4
2086	Identifying building locations in the wildland–urban interface before and after fires with convolutional neural networks. International Journal of Wildland Fire, 2023, , .	1.0	0
2087	Wildfires Impact Assessment on PM Levels Using Generalized Additive Mixed Models. Atmosphere, 2023, 14, 231.	1.0	0
2088	Integrating plant physiology into simulation of fire behavior and effects. New Phytologist, 2023, 238, 952-970.	3.5	10
2089	Modelling the daily probability of lightning-caused ignition in the Iberian Peninsula. International Journal of Wildland Fire, 2023, 32, 351-362.	1.0	7
2090	Water pollution risks by smoldering fires in degraded peatlands. Science of the Total Environment, 2023, 871, 161979.	3.9	4
2091	Marsupials of Australia's Temperate and Subtropical Forests, Woodlands and Heathlands. , 2023, , 1-37.		0

#	Article	IF	CITATIONS
2092	Soil seed bank development of smokeâ€responsive plant species in a 23â€year restoration chronosequence and implications for resilience to fire. Applied Vegetation Science, 2023, 26, .	0.9	2
2093	Visual supervision of largeâ€scope heat source factories based on knowledge graph. Transactions in GIS, 2023, 27, 408-424.	1.0	4
2094	Tracking Changes in Vegetation Structure Following Fire in the Cerrado Biome Using ICESatâ€2. Journal of Geophysical Research C: Biogeosciences, 2023, 128, .	1.3	2
2095	Cats, foxes and fire: quantitative review reveals that invasive predator activity is most likely to increase shortly after fire. Fire Ecology, 2023, 19, .	1.1	5
2096	Mid–Miocene Palaeofire and Its Complex Relationship With Vegetation Changes in the Wushan Basin, Northeastern Tibetan Plateau, China: Evidence From a High–Resolution Charcoal Record. Paleoceanography and Paleoclimatology, 2023, 38, .	1.3	0
2097	Characterization of global fire activity and its spatiotemporal patterns for different land cover types from 2001 to 2020. Environmental Research, 2023, 227, 115746.	3.7	2
2098	Optode-based chemical imaging of laboratory burned soil reveals millimeter-scale heterogeneous biogeochemical responses. Environmental Research, 2023, 224, 115469.	3.7	4
2099	Fire-induced geochemical changes in soil: Implication for the element cycling. Science of the Total Environment, 2023, 868, 161714.	3.9	7
2100	Seasonal differences in the spatial patterns of wildfire drivers and susceptibility in the southwest mountains of China. Science of the Total Environment, 2023, 869, 161782.	3.9	15
2101	Fire Impact on the Formation and Development of the Boreal Pine Wooded Mires. Diversity, 2023, 15, 159.	0.7	1
2102	Modeling mammal response to fire based on species' traits. Conservation Biology, 2023, 37, .	2.4	3
2103	AttentionFire_v1.0: interpretable machine learning fire model for burned-area predictions over tropics. Geoscientific Model Development, 2023, 16, 869-884.	1.3	8
2104	Recent fire in a Mediterranean ecosystem strengthens hoverfly populations and their interaction networks with plants. Ecology and Evolution, 2023, 13, .	0.8	3
2105	Invasiveness, Monitoring and Control of Hakea sericea: A Systematic Review. Plants, 2023, 12, 751.	1.6	3
2107	Biomass burning CO, PM and fuel consumption per unit burned area estimates derived across Africa using geostationary SEVIRI fire radiative power and Sentinel-5P CO data. Atmospheric Chemistry and Physics, 2023, 23, 2089-2118.	1.9	2
2108	Changes in wildfire occurrence and risk to homes from 1990 through 2019 in the Southern Rocky Mountains, <scp>USA</scp> . Ecosphere, 2023, 14, .	1.0	2
2109	Comparison of Individual Sensors in the Electronic Nose for Stress Detection in Forest Stands. Sensors, 2023, 23, 2001.	2.1	3
2110	The role of fire in terrestrial vertebrate richness patterns. Ecology Letters, 2023, 26, 563-574.	3.0	0

#	Article	IF	CITATIONS
2111	Fire Has a Positive Effect on the Abundance of Sun Spiders (Arachnida: Solifugae) in the Cerrado-Pantanal Ecotone. Fire, 2023, 6, 69.	1.2	1
2112	Projections of fire emissions and the consequent impacts on air quality under 1.5°C and 2°C global warming. Environmental Pollution, 2023, 323, 121311.	3.7	3
2113	Land-use change and windstorms legacies drove the recolonization dynamics of laurel forests in Tenerife, Canary islands. Forest Ecosystems, 2023, 10, 100098.	1.3	0
2114	Wildfire activity driven by the 405-kyr orbital climate cycles in the Middle Jurassic. Global and Planetary Change, 2023, 222, 104069.	1.6	2
2115	Exploring Spatial Distributions of Land Use and Land Cover Change in Fire-Affected Areas of Miombo Woodlands of the Beira Corridor, Central Mozambique. Fire, 2023, 6, 77.	1.2	1
2116	Photodegradation of clindamycin by the dissolved black carbon is simultaneously regulated by ROS generation and the binding effect. Water Research, 2023, 233, 119784.	5.3	6
2117	Too hot, too cold, or just right: Can wildfire restore dry forests of the interior Pacific Northwest?. PLoS ONE, 2023, 18, e0281927.	1.1	3
2118	A Bayesian Analysis of Technological Intelligence in Land and Oceans. Astrophysical Journal, 2023, 945, 23.	1.6	5
2119	Abundance and detection of feral cats decreases after severe fire on Kangaroo Island, Australia. Austral Ecology, 2023, 48, 600-615.	0.7	5
2120	Orman Yangınları Sonrası Ekosistem Tabanlı Planlamaya DoÄŸru: Yanma DerinliÄŸinin SınıflandırÄ Ve Risk Dergisi, 0, , .	±lması. , 0.2	Afet O
2121	Is global burned area declining due to cropland expansion? How much do we know based on remotely sensed data?. International Journal of Remote Sensing, 2023, 44, 1132-1150.	1.3	3
2122	Species-Specific Responses of Medium and Large Mammals to Fire Regime Attributes in a Fire-Prone Neotropical Savanna. Fire, 2023, 6, 110.	1.2	1
2123	Effects of Rossby Waves Breaking and Atmospheric Blocking Formation on the Extreme Forest Fire and Floods in Eastern Siberia 2019. Fire, 2023, 6, 122.	1.2	1
2124	Stable isotopes in tree rings record physiological trends in <i>Larix gmelinii</i> after fires. Tree Physiology, 2023, 43, 1066-1080.	1.4	3
2125	The importance degree of weather elements in driving wildfire occurrence in mainland China. Ecological Indicators, 2023, 148, 110152.	2.6	3
2126	Classification and mapping of European fuels using a hierarchical, multipurpose fuel classification system. Earth System Science Data, 2023, 15, 1287-1315.	3.7	13
2127	Differentiating effects of salvage logging and recovery patterns on post-fire boreal forests in Northeast China using a modified forest disturbance index. GIScience and Remote Sensing, 2023, 60, .	2.4	2
2128	Late-Holocene wildfire record from the Stagmo peat section, Leh valley, NW Himalaya. Holocene, 2023, 33, 685-694.	0.9	0

#	Article	IF	CITATIONS
2129	A Review of Speleothems as Archives for Paleofire Proxies, With Australian Case Studies. Reviews of Geophysics, 2023, 61, .	9.0	5
2130	No short-term effects of fire on termite diversity in a tropical mountain. Insectes Sociaux, 0, , .	0.7	1
2132	The magnitude and pace of photosynthetic recovery after wildfire in California ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	4
2133	Fire responses shape plant communities in a minimal model for fire ecosystems across the world. American Naturalist, 0, , .	1.0	0
2134	The effect of post-wildfire management practices on vegetation recovery: Insights from the Sapadere fire, Antalya, Türkiye. Frontiers in Earth Science, 0, 11, .	0.8	1
2135	A Bioâ€Inspired Temperatureâ€Arousing Battery with Giant Power for Fire Alarming. Advanced Functional Materials, 2023, 33, .	7.8	4
2136	Spot-fire distance increases disproportionately for wildfires compared to prescribed fires as grasslands transition to Juniperus woodlands. PLoS ONE, 2023, 18, e0283816.	1.1	0
2137	Composition of the Gas-Air Mixture in the Containment and Suppression of Forest Fires with Promising Extinguishing Agents. Forests, 2023, 14, 786.	0.9	0
2138	Probabilistic Wildfire Risk Assessment and Modernization Transitions: The Case of Greece. Fire, 2023, 6, 158.	1.2	3
2139	Impacts of fire suppression on aboveâ€ground carbon stock and soil properties in Borana rangelands, southern Ethiopia. , 2023, 2, 1-14.		2
2140	Coğrafi bilgi sistemleri (CBS) tabanlı orman yangını risk analizi: Bartın İli örneği. Geomatik, 2023, 8, 250-263.	1.0	2
2141	Shape memory polymer-based thermal-responsive circuit switches. Journal of Materials Chemistry C, 2023, 11, 6276-6289.	2.7	3
2142	Microscopic charcoals in ocean sediments off Africa track past fire intensity from the continent. Communications Earth & Environment, 2023, 4, .	2.6	2
2147	Wildfires in Australia: a bibliometric analysis and a glimpse on â€ [~] Black Summer' (2019/2020) disaster. Environmental Science and Pollution Research, 2023, 30, 73061-73086.	2.7	1
2174	Marsupials of Australia's Temperate and Subtropical Forests, Woodlands and Heathlands. , 2023, , 839-875.		0
2187	Charred particles and other paleofire proxies. , 2023, , .		1
2205	Wildfire Risk Assessment Using Earth Observation Data: A Case Study of the Eastern Carpathians at the Slovak-Ukrainian Frontier. Studies in Systems, Decision and Control, 2023, , 131-143.	0.8	0
2216	Transdisciplinary. , 2023, , 491-495.		0

#	Article	IF	CITATIONS
2218	Rangeland Biodiversity. , 2023, , 209-249.		0
2226	Fires, Ecological Effects of. , 2024, , 536-545.		0
2230	Estimation of the Post-burning Area of the Fire Hazard Severity Zone in California from Landsat 8 OLI Images Using Deep Learning Machine Intelligence Model. Lecture Notes in Electrical Engineering, 2024, , 109-123.	0.3	0
2252	Dynamic Clobal Vegetation Models. , 2013, , 845-867.		0
2261	Severe Global Environmental Issues Caused by Canada's Record-Breaking Wildfires in 2023. Advances in Atmospheric Sciences, 2024, 41, 565-571.	1.9	1
2269	The Impact of Digital Transformation on the Sustainable Development of Social Innovation, Socio-ecological Resilience and Governance. , 2024, , 187-208.		0
2304	Wildland Fire Rate of Spread Estimation Using an Autonomous Unmanned Aerial System: A Case Study. , 2024, , .		0