Large breathing effects in three-dimensional porous hy and consequences

Chemical Society Reviews 38, 1380 DOI: 10.1039/b804302g

Citation Report

#	Article	IF	CITATIONS
2	MPFs (Metal–Peptide Frameworks). , 2004, , 1-13.		0
3	Facile Purification of Porous Metal Terephthalates with Ultrasonic Treatment in the Presence of Amides. Chemistry - A European Journal, 2009, 15, 11730-11736.	1.7	50
4	A 3D Copper(II) Coordination Framework Showing Different Kinetic and Thermodynamic Crystal Transformations through Removal of Guest Water Cubes. Chemistry - A European Journal, 2009, 15, 12974-12977.	1.7	110
7	Transport Diffusivity of CO ₂ in the Highly Flexible Metal–Organic Framework MILâ€53(Cr). Angewandte Chemie - International Edition, 2009, 48, 8335-8339.	7.2	109
8	Breathing Transitions in MILâ€53(Al) Metal–Organic Framework Upon Xenon Adsorption. Angewandte Chemie - International Edition, 2009, 48, 8314-8317.	7.2	176
9	Virtual High Throughput Screening Confirmed Experimentally: Porous Coordination Polymer Hydration. Journal of the American Chemical Society, 2009, 131, 15834-15842.	6.6	848
10	Modulating Metalâ^'Organic Frameworks To Breathe: A Postsynthetic Covalent Modification Approach. Journal of the American Chemical Society, 2009, 131, 16675-16677.	6.6	216
11	Cobalt(II) Sheet-Like Systems Based on Diacetic Ligands: from Subtle Structural Variances to Different Magnetic Behaviors. Inorganic Chemistry, 2009, 48, 6086-6095.	1.9	51
12	Guest-Induced Irreversible Sliding in a Flexible 2D Rectangular Grid with Selective Sorption Characteristics. Inorganic Chemistry, 2009, 48, 10886-10888.	1.9	67
13	A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 2009, 131, 10857-10859.	6.6	1,127
14	Response of CPO-27-Ni towards CO, N2 and C2H4. Physical Chemistry Chemical Physics, 2009, 11, 9811.	1.3	87
15	Describing the Diffusion of Guest Molecules Inside Porous Structures. Journal of Physical Chemistry C, 2009, 113, 19756-19781.	1.5	263
16	A Pillared-Layer Coordination Polymer with a Rotatable Pillar Acting as a Molecular Gate for Guest Molecules. Journal of the American Chemical Society, 2009, 131, 12792-12800.	6.6	298
17	Turning MIL-53(Al) Redox-Active by Functionalization of the Bridging OH-Group with 1,1′-Ferrocenediyl-Dimethylsilane. Journal of the American Chemical Society, 2009, 131, 9644-9645.	6.6	96
18	Some suggested perspectives for multifunctional hybrid porous solids. Dalton Transactions, 2009, , 4400.	1.6	168
19	Host–guest transformational correlations for a gas inclusion co-crystal on changing gas pressure and temperature. Chemical Communications, 2009, , 6625.	2.2	27
20	Polymorphism and variable structural dimensionality in the iron(III) phosphate oxalate system: a new polymorph of 3D [Fe2(HPO4)2(C2O4)(H2O)2]·2H2O and the layered material [Fe2(HPO4)2(C2O4)(H2O)2]. Dalton Transactions, 2009, , 9176.	1.6	16
21	Lotus-Root-like One-Dimensional Polymetallocages with Drastic Void Adaptability Constructed from 4,4′-Bis(1,2,4-triazol-1-ylmethyl)biphenyl and Zn(II) or Co(II) and Their Fluorescein Encapsulation Properties. Crystal Growth and Design, 2010, 10, 943-951.	1.4	35

ATION RED

#	Article	lF	CITATIONS
22	A Multifaceted Cage Cluster, [Co ^{II} ₆ O ₁₂ ⊃ X] ^{â^'} (X =) Tj E Materials, 2010, 22, 4328-4334.	TQq0 0 0 3.2	rgBT /Overloc 78
23	Coordination Assemblies of Co ^{II} /Cu ^{II} /Zn ^{II} /Cd ^{II} with 2,5-Bipyridyl-1,3,4-Oxadiazole and Dicyanamide Anion: Structural Diversification and Properties. Crystal Growth and Design, 2010, 10, 3285-3296.	1.4	36
24	MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New Journal of Chemistry, 2010, 34, 2366.	1.4	1,039
25	Cubic Octanuclear Ni(II) Clusters in Highly Porous Polypyrazolyl-Based Materials. Journal of the American Chemical Society, 2010, 132, 7902-7904.	6.6	140
26	Stress-Based Model for the Breathing of Metalâ^'Organic Frameworks. Journal of Physical Chemistry Letters, 2010, 1, 445-449.	2,1	209
27	Investigating the reasons for the significant influence of lattice flexibility on self-diffusivity of ethane in Zn(tbip). Microporous and Mesoporous Materials, 2010, 130, 92-96.	2.2	39
28	Layer-pillared zinc(II) metal–organic framework built from 4,4′-azo(bis)pyridine and 1,4-BDC. Microporous and Mesoporous Materials, 2010, 129, 354-359.	2.2	25
29	Can Metal–Organic Framework Materials Play a Useful Role in Large cale Carbon Dioxide Separations?. ChemSusChem, 2010, 3, 879-891.	3.6	556
30	Effect of Water Concentration and Acidity on the Synthesis of Porous Chromium Benzenedicarboxylates. European Journal of Inorganic Chemistry, 2010, 2010, 1043-1048.	1.0	46
31	A Tripleâ€Decker Heptadecanuclear (Cu ^{II}) ₁₅ (Cr ^{III}) ₂ Complex Assembled from Pentanuclear Metallacrowns. European Journal of Inorganic Chemistry, 2010, 2010, 4851-4858.	1.0	51
32	Dynamic Calcium Metal–Organic Framework Acts as a Selective Organic Solvent Sponge. Chemistry - A European Journal, 2010, 16, 11632-11640.	1.7	53
33	Flexibility and Sorption Selectivity in Rigid Metal–Organic Frameworks: The Impact of Etherâ€Functionalised Linkers. Chemistry - A European Journal, 2010, 16, 14296-14306.	1.7	128
34	Highly Selective CO ₂ Capture by a Flexible Microporous Metal–Organic Framework (MMOF) Material. Chemistry - A European Journal, 2010, 16, 13951-13954.	1.7	167
42	Flexibility in a Metal–Organic Framework Material Controlled by Weak Dispersion Forces: The Bistability of MILâ€53(Al). Angewandte Chemie, 2010, 122, 7663-7665.	1.6	35
43	Using Pressure to Provoke the Structural Transition of Metal–Organic Frameworks. Angewandte Chemie, 2010, 122, 7688-7691.	1.6	34
44	Local Vibrational Mechanism for Negative Thermal Expansion: A Combined Neutron Scattering and Firstâ€Principles Study. Angewandte Chemie - International Edition, 2010, 49, 585-588.	7.2	87
45	Carbon Dioxide Capture: Prospects for New Materials. Angewandte Chemie - International Edition, 2010, 49, 6058-6082.	7.2	3,452
46	Solid Solutions of Soft Porous Coordination Polymers: Fineâ€Tuning of Gas Adsorption Properties. Angewandte Chemie - International Edition, 2010, 49, 4820-4824.	7.2	291

#	Article	IF	CITATIONS
47	Dynamics of Benzene Rings in MILâ€53(Cr) and MILâ€47(V) Frameworks Studied by ² Hâ€NMR Spectroscopy. Angewandte Chemie - International Edition, 2010, 49, 4791-4794.	7.2	127
48	Generating Reactive MILs: Isocyanate―and Isothiocyanateâ€Bearing MILs through Postsynthetic Modification. Angewandte Chemie - International Edition, 2010, 49, 4644-4648.	7.2	117
49	Oriented Nanoscale Films of Metal–Organic Frameworks By Roomâ€Temperature Gel‣ayer Synthesis. Angewandte Chemie - International Edition, 2010, 49, 7225-7228.	7.2	132
50	Control of Interpenetration for Tuning Structural Flexibility Influences Sorption Properties. Angewandte Chemie - International Edition, 2010, 49, 7660-7664.	7.2	184
51	Flexibility in a Metal–Organic Framework Material Controlled by Weak Dispersion Forces: The Bistability of MILâ€53(Al). Angewandte Chemie - International Edition, 2010, 49, 7501-7503.	7.2	158
52	Using Pressure to Provoke the Structural Transition of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2010, 49, 7526-7529.	7.2	200
53	Coordination steric effect of N,N-dimethylformamide, N,N-dimethylacetamide and N-methyl-2-pyrrolidone on the assembly of coordination polymers. Polyhedron, 2010, 29, 2851-2856.	1.0	9
54	Vapor-phase adsorption of alkylaromatics on aluminum-trimesate MIL-96: An unusual increase of adsorption capacity with temperature. Microporous and Mesoporous Materials, 2010, 129, 274-277.	2.2	24
55	Three New Iron(II) Thiocyanato Coordination Polymers Based on 4,4′â€Bipyridine as Ligand and the Influence of Methanol on Their StructuresÂÂ. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 1061-1068.	0.6	5
56	Rapid preparation of flexible porous coordination polymer nanocrystals with accelerated guest adsorption kinetics. Nature Chemistry, 2010, 2, 410-416.	6.6	324
57	Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nature Chemistry, 2010, 2, 633-637.	6.6	306
58	Porous metal–organic-framework nanoscale carriers as a potential platform for drug deliveryÂand imaging. Nature Materials, 2010, 9, 172-178.	13.3	3,629
60	Flexible Two-Dimensional Square-Grid Coordination Polymers: Structures and Functions. International Journal of Molecular Sciences, 2010, 11, 3803-3845.	1.8	113
61	Opening the Door to Peptide-Based Porous Solids. Science, 2010, 329, 1025-1026.	6.0	14
63	Structural diversification and metal-directed assembly of coordination architectures based on tetrabromoterephthalic acid and a bent dipyridyl tecton 2,5-bis(4-pyridyl)-1,3,4-oxadiazole. CrystEngComm, 2010, 12, 4392.	1.3	39
64	Rational synthesis and characterization of porous Cu(ii) coordination polymers. Physical Chemistry Chemical Physics, 2010, 12, 2519.	1.3	38
65	Ethane/Ethene Separation Turned on Its Head: Selective Ethane Adsorption on the Metalâ^'Organic Framework ZIF-7 through a Gate-Opening Mechanism. Journal of the American Chemical Society, 2010, 132, 17704-17706.	6.6	650
67	Incorporation of metallocenes into the channel structured Metal–Organic Frameworks MIL-53(Al) and MIL-47(V). Dalton Transactions, 2010, 39, 10990.	1.6	56

#	Article	IF	CITATIONS
68	Single-Crystalline Thin Films by a Rare Molecular Calcium Carboxyphosphonate Trimer Offer Prophylaxis From Metallic Corrosion. ACS Applied Materials & Interfaces, 2010, 2, 1814-1816.	4.0	32
69	Synthesis of isostructural porous metal-benzenedicarboxylates: Effect of metal ions on the kinetics of synthesis. CrystEngComm, 2010, 12, 2749.	1.3	47
70	The Behavior of Flexible MIL-53(Al) upon CH ₄ and CO ₂ Adsorption. Journal of Physical Chemistry C, 2010, 114, 22237-22244.	1.5	197
71	Pd Nanoparticles Embedded into a Metal-Organic Framework: Synthesis, Structural Characteristics, and Hydrogen Sorption Properties. Journal of the American Chemical Society, 2010, 132, 2991-2997.	6.6	320
72	Flexibility of Porous Coordination Polymers Strongly Linked to Selective Sorption Mechanism. Chemistry of Materials, 2010, 22, 4129-4131.	3.2	40
73	Selective Sorption of Organic Molecules by the Flexible Porous Hybrid Metalâ^'Organic Framework MIL-53(Fe) Controlled by Various Hostâ^'Guest Interactions. Chemistry of Materials, 2010, 22, 4237-4245.	3.2	104
74	Describing Mixture Diffusion in Microporous Materials under Conditions of Pore Saturation. Journal of Physical Chemistry C, 2010, 114, 11557-11563.	1.5	28
75	Magnetic metal–organic framework constructed from a paramagnetic metalloligand exhibiting a significant sorption and reversible magnetic conversions. Chemical Communications, 2010, 46, 8779.	2.2	59
76	Highlighting a Variety of Unusual Characteristics of Adsorption and Diffusion in Microporous Materials Induced by Clustering of Guest Molecules. Langmuir, 2010, 26, 8450-8463.	1.6	55
77	Monitoring adsorption-induced switching by 129Xe NMR spectroscopy in a new metal–organic framework Ni2(2,6-ndc)2(dabco). Physical Chemistry Chemical Physics, 2010, 12, 11778.	1.3	139
78	Mn ^{II} -based MIL-53 Analogues: Synthesis Using Neutral Bridging μ ₂ -Ligands and Application in Liquid-Phase Adsorption and Separation of C6â^'C8 Aromatics. Journal of the American Chemical Society, 2010, 132, 3656-3657.	6.6	102
79	Functionalized MOFs for Enhanced CO ₂ Capture. Crystal Growth and Design, 2010, 10, 2839-2841.	1.4	258
80	Molecular dynamics simulations of stability of metal–organic frameworks against H2O using the ReaxFF reactive force field. Chemical Communications, 2010, 46, 5713.	2.2	121
81	Largest Molecular Clusters in the Supertetrahedral T <i>n</i> Series. Journal of the American Chemical Society, 2010, 132, 10823-10831.	6.6	102
82	Latent Porosity in Potassium Dodecafluoro- <i>closo</i> -dodecaborate(2â~). Structures and Rapid Room Temperature Interconversions of Crystalline K ₂ B ₁₂ F ₁₂ , K ₂ (H ₂ O) ₂ B ₁₂ F ₁₂ , and K ₂ (H ₂ O) ₄ B ₁₂ F ₁₂ in the Presence of Water	6.6	46
83	Vapor. Journal of the American Chemical Society, 2010, 132, 13902-13913. Efficient Calculation of Diffusion Limitations in Metal Organic Framework Materials: A Tool for Identifying Materials for Kinetic Separations. Journal of the American Chemical Society, 2010, 132, 7528-7539.	6.6	273
84	Physics Behind the Guest-Assisted Structural Transitions of a Porous Metalâ^'Organic Framework Material. Journal of Physical Chemistry Letters, 2010, 1, 2810-2815.	2.1	59
85	Cobalt Doping of the MOF-5 Framework and Its Effect on Gas-Adsorption Properties. Langmuir, 2010, 26, 5300-5303.	1.6	202

#	Article	IF	CITATIONS
86	Microporous PILCs — Synthesis, pillaring mechanism and selective cation exchange. Applied Clay Science, 2010, 48, 146-153.	2.6	20
87	Two-Step Adsorption on Jungle-Gym-Type Porous Coordination Polymers: Dependence on Hydrogen-Bonding Capability of Adsorbates, Ligand-Substituent Effect, and Temperature. Inorganic Chemistry, 2010, 49, 10133-10143.	1.9	66
88	Selective Gas Adsorption in the Flexible Metal–Organic Frameworks Cu(BDTri)L (L=DMF, DEF). Chemistry - A European Journal, 2010, 16, 5902-5908.	1.7	114
89	Multistep N ₂ Breathing in the Metalâ~Organic Framework Co(1,4-benzenedipyrazolate). Journal of the American Chemical Society, 2010, 132, 13782-13788.	6.6	220
90	First-Principles-Derived Force Field for Copper Paddle-Wheel-Based Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2010, 114, 14402-14409.	1.5	85
91	Gas-Induced Expansion and Contraction of a Fluorinated Metalâ^'Organic Framework. Crystal Growth and Design, 2010, 10, 1037-1039.	1.4	152
92	Phase-Transition and Phase-Selective Synthesis of Porous Chromium-Benzenedicarboxylates. Crystal Growth and Design, 2010, 10, 1860-1865.	1.4	102
93	Long-range ordering or not: magnetic properties modulated by second ligands in flexible three-dimensional metal–organic frameworks. Chemical Communications, 2010, 46, 5349.	2.2	44
94	Unusual Adsorption Behavior on Metalâ~'Organic Frameworks. Langmuir, 2010, 26, 14694-14699.	1.6	52
95	Evaluation of Energy Heterogeneity in Metalâ^'Organic Frameworks: Absence of Henry's Region in MIL-53 and MIL-68 Materials?. Journal of Physical Chemistry C, 2010, 114, 17665-17674.	1.5	17
96	Functional Mesoporous Metalâ^'Organic Frameworks for the Capture of Heavy Metal Ions and Size-Selective Catalysis. Inorganic Chemistry, 2010, 49, 11637-11642.	1.9	283
97	From Infinite One-Dimensional Helix to Discrete Cu ^{II} ₁₅ Cluster along with in Situ S _N 2 Ring-Cleavage of <i>cis</i> Epoxysuccinic Acid: pH-Controlled Assemblies, Crystal Structures, and Properties. Inorganic Chemistry, 2010, 49, 9617-9626.	1.9	71
98	Sorption behavior of an oriented surface-grown MOF-film studied by in situ X-ray diffraction. Journal of Materials Chemistry, 2010, 20, 3046.	6.7	45
99	X-ray absorption spectroscopies: useful tools to understand metallorganic frameworks structure and reactivity. Chemical Society Reviews, 2010, 39, 4885.	18.7	130
100	Adsorption of Harmful Organic Vapors by Flexible Hydrophobic Bis-pyrazolate Based MOFs. Chemistry of Materials, 2010, 22, 1664-1672.	3.2	138
101	Explanation of the Adsorption of Polar Vapors in the Highly Flexible Metal Organic Framework MIL-53(Cr). Journal of the American Chemical Society, 2010, 132, 9488-9498.	6.6	185
102	Self and Transport Diffusivity of CO ₂ in the Metalâ^'Organic Framework MIL-47(V) Explored by Quasi-elastic Neutron Scattering Experiments and Molecular Dynamics Simulations. ACS Nano, 2010, 4, 143-152.	7.3	109
103	Investigating Cluster Formation in Adsorption of CO ₂ , CH ₄ , and Ar in Zeolites and Metal Organic Frameworks at Subcritical Temperatures. Langmuir, 2010, 26, 3981-3992.	1.6	74

#	Article	IF	CITATIONS
104	A microporous metal–organic framework constructed from a 1D column made of linear trinuclear manganese secondary building units. CrystEngComm, 2010, 12, 2179.	1.3	13
105	Solid state interconversion of cages and coordination networks via conformational change of a semi-rigid ligand. Chemical Communications, 2010, 46, 5064.	2.2	25
106	Stepwise and hysteretic sorption of N ₂ , O ₂ , CO ₂ , and H ₂ gases in a porous metal–organic framework [Zn2(BPnDC)2(bpy)]. Chemical Communications, 2010, 46, 610-612.	2.2	143
107	Versatile functionalities in MOFs assembled from the same building units: interplay of structural flexibility, rigidity and regularity. Journal of Materials Chemistry, 2010, 20, 1322-1331.	6.7	71
108	Architecture of europium complexes with sulfobenzenedicarboxylates. CrystEngComm, 2010, 12, 3145.	1.3	30
109	Water and ethanol desorption in the flexible metal organic frameworks, MIL-53 (Cr, Fe), investigated by complex impedance spectrocopy and density functional theory calculations. Physical Chemistry Chemical Physics, 2010, 12, 12478.	1.3	41
110	Unique ZnII coordination entanglement networks with a flexible fluorinated bis-pyridinecarboxamide tecton and benzenedicarboxylates. Chemical Communications, 2010, 46, 8427.	2.2	58
111	Chirality and magnetism of an open-framework cobalt phosphite containing helical channels from achiral materials. Chemical Communications, 2010, 46, 2614.	2.2	55
112	Modification of flexible part in Cu2+ interdigitated framework for CH4/CO2 separation. Chemical Communications, 2010, 46, 9229.	2.2	86
113	¹²⁹ Xe NMR Study of the Framework Flexibility of the Porous Hybrid MIL-53(Al). Journal of the American Chemical Society, 2010, 132, 11599-11607.	6.6	109
114	A new Cd4-2,4-pyridinedicarboxylate layered coordination polymer consisting of intralayer cavities and reversible network self-adaptation upon dehydration/moisture-absorption. CrystEngComm, 2010, 12, 1779.	1.3	21
115	A versatile V-shaped tetracarboxylate building block for constructing mixed-ligand Co(ii) and Mn(ii) complexes incorporating various N-donor co-ligands. CrystEngComm, 2010, 12, 1227-1237.	1.3	61
116	Two-step synthesis, structure and adsorption property of a dynamic zinc phosphonocarboxylate framework. CrystEngComm, 2011, 13, 3378.	1.3	30
117	Engineering MIL-53(Al) flexibility by controlling amino tags. Dalton Transactions, 2011, 40, 11359.	1.6	44
118	Differences of crystal structure and dynamics between a soft porous nanocrystal and a bulk crystal. Chemical Communications, 2011, 47, 7632.	2.2	60
119	A guest-induced reversible switching of a self-assembled H-bonded supramolecular framework. Chemical Communications, 2011, 47, 9630.	2.2	4
120	Implementing chemical functionality into oriented films of metal–organic frameworks on self-assembled monolayers. Journal of Materials Chemistry, 2011, 21, 14849.	6.7	29
121	Metal–organic frameworks with rare topologies: lonsdaleite-type metal formates and their magnetic properties. CrystEngComm, 2011, 13, 2197.	1.3	16

#	Article	IF	CITATIONS
122	Facile fabrication of photonic MOF films through stepwise deposition on a colloid crystal substrate. Chemical Communications, 2011, 47, 10094.	2.2	55
123	Synthesis, structure, surface photovoltage and magnetic properties of a novel 3D homochiral manganese phosphonate with right-handed helical chains. CrystEngComm, 2011, 13, 3317.	1.3	43
124	A pillared-bilayer porous coordination polymer with a 1D channel and a 2D interlayer space, showing unique gas and vapor sorption. Chemical Communications, 2011, 47, 8106.	2.2	96
125	Vapour-adsorption and chromic behaviours of luminescent coordination polymers composed of a Pt(ii)-diimine metalloligand and alkaline-earth metal ions. Dalton Transactions, 2011, 40, 8012.	1.6	39
126	Understanding ligand-centred photoluminescence through flexibility and bonding of anthraquinone inorganic–organic frameworks. Journal of Materials Chemistry, 2011, 21, 6595.	6.7	17
127	Multiple phase-transitions upon selective CO2 adsorption in an alkyl ether functionalized metal–organic framework—an in situ X-ray diffraction study. CrystEngComm, 2011, 13, 6399.	1.3	50
128	Infrared study of the influence of reducible iron(iii) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal–organic framework MIL-100. Physical Chemistry Chemical Physics, 2011, 13, 11748.	1.3	192
129	Inclusion and dynamics of a polymer–Li salt complex in coordination nanochannels. Chemical Communications, 2011, 47, 1722.	2.2	47
130	Small chemical causes drastic structural effects: the case of calcium glutarate. CrystEngComm, 2011, 13, 1894-1898.	1.3	35
131	Selective Incorporation of Auxiliary Organic Ligands in Metal–Organic Frameworks Based on Twisted Î-Shaped Building Blocks. Crystal Growth and Design, 2011, 11, 5167-5170.	1.4	5
132	Homochiral, Helical Supramolecular Metalâ^'Organic Frameworks Organized by Strong π··Â-Ï€ Stacking Interactions: Single-Crystal to Single-Crystal Transformations in Closely Packed Solids. Inorganic Chemistry, 2011, 50, 686-704.	1.9	77
133	Structure and Gas Sorption Behavior of a New Three Dimensional Porous Magnesium Formate. Inorganic Chemistry, 2011, 50, 1392-1401.	1.9	39
134	Syntheses of Metal–Organic Frameworks and Aluminophosphates under Microwave Heating: Quantitative Analysis of Accelerations. Crystal Growth and Design, 2011, 11, 4413-4421.	1.4	44
135	A Cubic, 12-Connected, Microporous Metalâ^'Organometallic Phosphate Framework Sustained by Truncated Tetrahedral Nodes. Journal of the American Chemical Society, 2011, 133, 1634-1637.	6.6	56
136	Molecular Insight into the Adsorption and Diffusion of Water in the Versatile Hydrophilic/Hydrophobic Flexible MIL-53(Cr) MOF. Journal of Physical Chemistry C, 2011, 115, 10764-10776.	1.5	128
137	Syntheses, Structures, and Structural Transformations of Mixed Na(I) and Zn(II) Metal–Organic Frameworks with 1,3,5-Benzenetricarboxylate Ligands. Crystal Growth and Design, 2011, 11, 2243-2249.	1.4	18
138	Consequences of Partial Flexibility in 1,3-Benzenedicarboxylate Linkers: Kagomé Lattice and NbO Supramolecular Isomers from Complexation of a Bulky 1,3-Benzenedicarboxylate to Cu(II) Paddlewheel Moieties. Crystal Growth and Design, 2011, 11, 1441-1445.	1.4	39
139	High-Pressure in Situ ¹²⁹ Xe NMR Spectroscopy and Computer Simulations of Breathing Transitions in the Metal–Organic Framework Ni ₂ (2,6-ndc) ₂ (dabco) (DUT-8(Ni)). Journal of the American Chemical Society, 2011, 133, 8681-8690.	6.6	113

#	Article	IF	CITATIONS
140	Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nature Materials, 2011, 10, 787-793.	13.3	395
141	Substituent effect of R-isophthalates (R = –H, –CH3, –OCH3, –tBu, –OH, and –NO2) on the construction of CdIIcoordination polymers incorporating a dipyridyl tecton 2,5-bis(3-pyridyl)-1,3,4-oxadiazole. CrystEngComm, 2011, 13, 1885-1893.	1.3	84
142	Thermodynamic Methods for Prediction of Gas Separation in Flexible Frameworks. , 2011, , 49-68.		2
143	Biomedical Applications of Metal Organic Frameworks. Industrial & Engineering Chemistry Research, 2011, 50, 1799-1812.	1.8	520
144	Shape controlled synthesis of superhydrophobic zinc coordination polymers particles and their calcination to superhydrophobic ZnO. Journal of Materials Chemistry, 2011, 21, 8633.	6.7	33
145	Molecular Tectonics of Entangled Metalâ^'Organic Frameworks Based on Different Conformational Carboxylates Mixed with a Flexible N,N′-Type Ligand. Crystal Growth and Design, 2011, 11, 569-574.	1.4	61
147	Temperature-dependent supramolecular isomerism in three zinc coordination polymers with pamoic acid and 1,4-bis(imidazol-1-ylmethyl)-benzene. CrystEngComm, 2011, 13, 5313.	1.3	60
148	Porous Metal–Organic Frameworks as New Drug Carriers. , 2011, , 559-573.		4
149	Solvent/additive-free synthesis of porous/zeolitic metal azolate frameworks from metal oxide/hydroxide. Chemical Communications, 2011, 47, 9185.	2.2	146
150	Facile fabrication of magnetic metal–organic framework nanocomposites for potential targeted drug delivery. Journal of Materials Chemistry, 2011, 21, 3843.	6.7	343
151	Three three-dimensional anionic metal–organic frameworks with (4,8)-connected alb topology constructed from a semi-rigid ligand and polynuclear metal clusters. CrystEngComm, 2011, 13, 6057.	1.3	19
152	A hierarchical supra-nanostructure of HKUST-1 featuring enhanced H2 adsorption enthalpy and higher mesoporosity. CrystEngComm, 2011, 13, 3314.	1.3	48
153	Wide Control of Proton Conductivity in Porous Coordination Polymers. Journal of the American Chemical Society, 2011, 133, 2034-2036.	6.6	559
154	Incorporation of active metal sites in MOFs via in situ generated ligand deficient metal–linker complexes. Chemical Communications, 2011, 47, 11882.	2.2	35
155	The coordination chemistry of Zn(ii), Cd(ii) and Hg(ii) complexes with 1,2,4-triazole derivatives. Dalton Transactions, 2011, 40, 8475.	1.6	128
156	Lnâ^'Co-Based Rock-Salt-Type Porous Coordination Polymers: Vapor Response Controlled by Changing the Lanthanide Ion. Inorganic Chemistry, 2011, 50, 2061-2063.	1.9	24
157	Modeling the Effect of Structural Changes during Dynamic Separation Processes on MOFs. Langmuir, 2011, 27, 13064-13071.	1.6	59
158	An Fe-based MOF constructed from paddle-wheel and rod-shaped SBUs involved in situ generated acetate. CrystEngComm, 2011, 13, 6002.	1.3	38

#	Article	IF	Citations
159	Complexity behind CO ₂ Capture on NH ₂ -MIL-53(Al). Langmuir, 2011, 27, 3970-3976.	1.6	274
160	Structural Transitions in MIL-53 (Cr): View from Outside and Inside. Langmuir, 2011, 27, 4734-4741.	1.6	143
161	A Nine-Connected Mixed-Ligand Nickel-Organic Framework and Its Gas Sorption Properties. Crystal Growth and Design, 2011, 11, 3713-3716.	1.4	54
162	A robust porous PtS-type Cu(ii) metal–organic framework: single-crystal-to-single-crystal transformation with reversible guest intercalation accompanied by colour change. CrystEngComm, 2011, 13, 768-770.	1.3	19
163	Guest-Specific Double- or Single-Step Adsorption in a Flexible Porous Framework Based on a Mixed-Ligand System. Inorganic Chemistry, 2011, 50, 400-402.	1.9	48
164	Engineering structured MOF at nano and macroscales for catalysis and separation. Journal of Materials Chemistry, 2011, 21, 7582.	6.7	140
165	Pro-porous Coordination Polymers of the 1,4-Bis((3,5-dimethyl-1 <i>H</i> -pyrazol-4-yl)-methyl)benzene Ligand with Late Transition Metals. Inorganic Chemistry, 2011, 50, 11506-11513.	1.9	29
166	A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide. Chemical Science, 2011, 2, 2214.	3.7	117
167	Pressure-Responsive Curvature Change of a "Rigid―Geodesic Ligand in a (3,24)-Connected Mesoporous Metal–Organic Framework. Inorganic Chemistry, 2011, 50, 10528-10530.	1.9	74
169	Metal–biomolecule frameworks (MBioFs). Chemical Communications, 2011, 47, 7287.	2.2	371
170	Exploring Network Topologies of Copper Paddle Wheel Based Metal–Organic Frameworks with a First-Principles Derived Force Field. Journal of Physical Chemistry C, 2011, 115, 15133-15139.	1.5	47
171	Enhancement of CO2/N2 Mixture Separation Using the Thermodynamic Stepped Behavior of Adsorption in Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2011, 115, 2790-2797.	1.5	28
172	Mechanism of Breathing Transitions in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2011, 2, 2033-2037.	2.1	74
174	Tripodal imidazole frameworks: Reversible vapour sorption both with and without significant structural changes. Dalton Transactions, 2011, 40, 573-582.	1.6	35
175	Are MOF membranes better in gas separation than those made of zeolites?. Current Opinion in Chemical Engineering, 2011, 1, 77-83.	3.8	169
176	Impact of Metal-Ion Dependence on the Porous and Electronic Properties of TCNQ-Dianion-Based Porous Coordination Polymers. Inorganic Chemistry, 2011, 50, 172-177.	1.9	52
177	Why hybrid porous solids capture greenhouse gases?. Chemical Society Reviews, 2011, 40, 550-562.	18.7	603
178	Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chemical Society Reviews, 2011, 40, 696.	18.7	1,235

#	Article	IF	CITATIONS
179	End-functionalization of a vinylidene fluoride oligomer in coordination nanochannels. Journal of Materials Chemistry, 2011, 21, 8021.	6.7	9
181	Unprecedented Tuning of Structures and Gas Sorption Properties of Two 2D Nickel Metalâ ''Organic Frameworks via Altering the Positions of Fluorine Atoms in Azamacrocyclic Ligands. Crystal Growth and Design, 2011, 11, 2020-2025.	1.4	26
182	"Nanoscale Lattice Fence―in a Metal–Organic Framework: Interplay between Hinged Topology and Highly Anisotropic Thermal Response. Journal of the American Chemical Society, 2011, 133, 14848-14851.	6.6	137
183	Flexible Mixed-Spin Kagomel•Coordination Polymers with Reversible Magnetism Triggered by Dehydration and Rehydration. Inorganic Chemistry, 2011, 50, 309-316.	1.9	59
184	Asymmetric Catalysis with Chiral Porous Metal–Organic Frameworks: Critical Issues. Journal of Physical Chemistry Letters, 2011, 2, 1701-1709.	2.1	125
185	Rapid and reversible formation of a crystalline hydrate of a metal–organic framework containing a tube of hydrogen-bonded water. Chemical Communications, 2011, 47, 713-715.	2.2	43
186	New Functionalized Flexible Al-MIL-53-X (X = -Cl, -Br, -CH ₃ , -NO ₂ ,) Tj ETQq0 0 0 rgBT /C Chemistry, 2011, 50, 9518-9526.	verlock 10 1.9) Tf 50 507 T 254
187	Supramolecular Assembly of Calcium Metalâ^'Organic Frameworks with Structural Transformations. Crystal Growth and Design, 2011, 11, 699-708.	1.4	90
189	Tuning the activity by controlling the wettability of MOF eggshell catalysts: A quantitative structure–activity study. Journal of Catalysis, 2011, 284, 207-214.	3.1	59
190	Synthesis of Phase-Pure Interpenetrated MOF-5 and Its Gas Sorption Properties. Inorganic Chemistry, 2011, 50, 3691-3696.	1.9	114
191	Influence of the Oxidation State of the Metal Center on the Flexibility and Adsorption Properties of a Porous Metal Organic Framework: MIL-47(V). Journal of Physical Chemistry C, 2011, 115, 19828-19840.	1.5	89
192	Two Novel Zinc(II) Metal–Organic Frameworks Based on Triazole-Carboxylate Shared Paddle-Wheel Units: Synthesis, Structure, and Gas Adsorption. Crystal Growth and Design, 2011, 11, 2811-2816.	1.4	37
193	Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chemical Communications, 2011, 47, 9522.	2.2	340
194	Understanding the Preferential Adsorption of CO ₂ over N ₂ in a Flexible Metal–Organic Framework. Journal of the American Chemical Society, 2011, 133, 12849-12857.	6.6	103
195	Mechanism of the order–disorder phase transition, and glassy behavior in the metal-organic framework [(CH ₃) ₂ NH ₂]Zn(HCOO) ₃ . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6828-6832.	3.3	187
196	A sixfold interpenetrated microporous MOF constructed from heterometallic tetranuclear cluster exhibiting selective gas adsorption. Dalton Transactions, 2011, 40, 10319.	1.6	28
197	Soft porous crystal meets TCNQ: charge transfer-type porous coordination polymers. Journal of Materials Chemistry, 2011, 21, 5537.	6.7	54
198	How Linker's Modification Controls Swelling Properties of Highly Flexible Iron(III) Dicarboxylates MIL-88. Journal of the American Chemical Society, 2011, 133, 17839-17847.	6.6	383

#	Article	IF	CITATIONS
199	Dynamic microporous indium(<scp>iii</scp>)-4,4′-oxybis(benzoate) framework with high selectivity for the adsorption of CO ₂ over N ₂ . Chemical Communications, 2011, 47, 770-772.	2.2	87
200	Postsynthetic modification of metal–organic frameworks—a progress report. Chemical Society Reviews, 2011, 40, 498-519.	18.7	1,035
201	Breathing and Twisting: An Investigation of Framework Deformation and Guest Packing in Single Crystals of a Microporous Vanadium Benzenedicarboxylate. Inorganic Chemistry, 2011, 50, 2028-2036.	1.9	34
202	Soft Secondary Building Unit: Dynamic Bond Rearrangement on Multinuclear Core of Porous Coordination Polymers in Gas Media. Journal of the American Chemical Society, 2011, 133, 9005-9013.	6.6	184
203	Semirigid Aromatic Sulfone–Carboxylate Molecule for Dynamic Coordination Networks: Multiple Substitutions of the Ancillary Ligands. Inorganic Chemistry, 2011, 50, 7142-7149.	1.9	20
204	Phosphonate Monoesters as Carboxylate-like Linkers for Metal Organic Frameworks. Journal of the American Chemical Society, 2011, 133, 20048-20051.	6.6	85
205	Losing control? "Design―of crystalline organic and metal–organic networks using conformationally flexible building blocks. CrystEngComm, 2011, 13, 1733.	1.3	50
206	Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation. Nanomedicine, 2011, 6, 1683-1695.	1.7	95
207	pH- and metal-dependent structural diversity from mononuclear to two-dimensional polymers based on a flexible tricarboxylate ligand. Journal of Solid State Chemistry, 2011, 184, 1581-1590.	1.4	18
208	Synthesis, Crystal Structures, Thermal and Magnetic Properties of New Selenocyanato Coordination Polymers with Pyrazine as Coâ€Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 666-671.	0.6	14
209	Water Adsorption Characteristics of MILâ€101 for Heatâ€Transformation Applications of MOFs. European Journal of Inorganic Chemistry, 2011, 2011, 471-474.	1.0	276
210	Magnetic and Sorption Properties of Supramolecular Systems Based on Pentanuclear Copper(II) 12â€Metallacrownâ€4 Complexes and Isomeric Phthalates: Structural Modeling of the Different Stages of Alcohol Sorption. European Journal of Inorganic Chemistry, 2011, 2011, 4826-4836.	1.0	47
211	Structural Flexibility and Sorption Properties of 2D Porous Coordination Polymers Constructed from Trinuclear Heterometallic Pivalates and 4,4′â€Bipyridine. European Journal of Inorganic Chemistry, 2011, 2011, 4985-4992.	1.0	28
212	Thermodynamic Methods and Models to Study Flexible Metal–Organic Frameworks. ChemPhysChem, 2011, 12, 247-258.	1.0	105
213	Oberflähenchemie Metallâ€organischer Gerüste an der Flüssigâ€festâ€Grenzflähe. Angewandte Chemie, 2011, 123, 184-208.	1.6	43
221	Surface Chemistry of Metal–Organic Frameworks at the Liquid–Solid Interface. Angewandte Chemie - International Edition, 2011, 50, 176-199.	7.2	292
222	A Metal–Organic Framework with Optimized Open Metal Sites and Pore Spaces for High Methane Storage at Room Temperature. Angewandte Chemie - International Edition, 2011, 50, 3178-3181.	7.2	340
223	Variant Luminescence from an Organic–Inorganic Hybrid Structure with an Isolated 4â€Ring Zinc Phosphate Tecton. Angewandte Chemie - International Edition, 2011, 50, 5319-5322.	7.2	41

#	Article	IF	CITATIONS
224	Functional Mixed Metal–Organic Frameworks with Metalloligands. Angewandte Chemie - International Edition, 2011, 50, 10510-10520.	7.2	384
225	Kinetic Control of Metal–Organic Framework Crystallization Investigated by Timeâ€Resolved Inâ€Situ Xâ€Ray Scattering. Angewandte Chemie - International Edition, 2011, 50, 9624-9628.	7.2	182
226	Sequential Functionalization of Porous Coordination Polymer Crystals. Angewandte Chemie - International Edition, 2011, 50, 8057-8061.	7.2	175
227	Metal–Organic Frameworks with a Threeâ€Dimensional Ordered Macroporous Structure: Dynamic Photonic Materials. Angewandte Chemie - International Edition, 2011, 50, 12518-12522.	7.2	204
228	Metal–Organic Framework Regioisomers Based on Bifunctional Ligands. Angewandte Chemie - International Edition, 2011, 50, 12193-12196.	7.2	57
229	Pyrazolateâ€Based Cobalt(II)â€Containing Metal–Organic Frameworks in Heterogeneous Catalytic Oxidation Reactions: Elucidating the Role of Entatic States for Biomimetic Oxidation Processes. Chemistry - A European Journal, 2011, 17, 8671-8695.	1.7	138
230	Spin Canting and Metamagnetism in the First Hybrid Cobalt–Hypoxanthine Open Framework with <i>umr</i> Topology. Chemistry - A European Journal, 2011, 17, 5588-5594.	1.7	41
231	Uptake of Liquid Alcohols by the Flexible Fe ^{III} Metal–Organic Framework MILâ€53 Observed by Timeâ€Resolved In Situ Xâ€ray Diffraction. Chemistry - A European Journal, 2011, 17, 7069-7079.	1.7	42
232	Understanding the Anomalous Alkane Selectivity of ZIFâ€7 in the Separation of Light Alkane/Alkene Mixtures. Chemistry - A European Journal, 2011, 17, 8832-8840.	1.7	274
233	Selective Palladium‣oaded MILâ€101 Catalysts. Chemistry - A European Journal, 2011, 17, 8071-8077.	1.7	122
234	A cadmium coordination polymer with anatase topology constructed from a tetrapodal ligand: Synthesis, crystal structures and luminescence. Inorganic Chemistry Communication, 2011, 14, 366-369.	1.8	8
235	"Fluoride molecular scissors― A rational construction of new Mo(VI) oxofluorido/1,2,4-triazole MOFs. Inorganic Chemistry Communication, 2011, 14, 1365-1368.	1.8	14
236	Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews, 2011, 255, 1791-1823.	9.5	1,805
237	A simplified procedure for estimation of mixture permeances from unary permeation data. Journal of Membrane Science, 2011, 367, 204-210.	4.1	13
238	Structural diversity of Cu(II) compounds of Schiff bases derived from 2-hydroxy-1-naphthaldehyde and a series of aminobenzoic acid. Journal of Molecular Structure, 2011, 996, 101-109.	1.8	13
239	Understanding adsorption-induced structural transitions in metal-organic frameworks: From the unit cell to the crystal. Journal of Chemical Physics, 2012, 137, 184702.	1.2	35
240	Assembly and Post-Modification of a Metal–Organic Nanotube for Highly Efficient Catalysis. Journal of the American Chemical Society, 2012, 134, 19851-19857.	6.6	234
241	Anisotropic Elastic Properties of Flexible Metal-Organic Frameworks: How Soft are Soft Porous Crystals?. Physical Review Letters, 2012, 109, 195502.	2.9	265

#	Article	IF	Citations
π 242	Behavior of Binary Guests in a Porous Coordination Polymer. Chemistry of Materials, 2012, 24,	3.2	32
242	4744-4749.	5.2	52
243	Three unprecedented open frameworks based on a pyridyl-carboxylate: synthesis, structures and properties. CrystEngComm, 2012, 14, 1681-1686.	1.3	19
244	Syntheses, structures and photoluminescence of five zinc(ii) coordination polymers based on 5-methoxyisophthalate and flexible N-donor ancillary ligands. CrystEngComm, 2012, 14, 2891.	1.3	93
245	Structure Modulation in Zn(II)–1,4-Bis(imidazol-1-yl)benzene Frameworks by Varying Dicarboxylate Anions. Crystal Growth and Design, 2012, 12, 189-196.	1.4	162
246	Reversible Phase Transformation and Luminescence of Cadmium(II)–Dipyridylamideâ€Based Coordination Frameworks. Chemistry - A European Journal, 2012, 18, 16443-16449.	1.7	13
247	Structural diversity through tuning pillar: Porous robust [Zn3(FDA)3·bpp·H2O]·2H2O and 3-/3-D dual interpenetrating [Zn·(FDA)·bipy]À·2H2O. Inorganic Chemistry Communication, 2012, 25, 86-88.	1.8	11
249	Guest-induced crystal-to-crystal expansion and contraction of a 3-D porous coordination polymer. Chemical Communications, 2012, 48, 2534.	2.2	48
250	Self-assembly, metal binding ability, and magnetic properties of dinickel(ii) and dicobalt(ii) triple mesocates. CrystEngComm, 2012, 14, 5639.	1.3	14
251	Control over multifarious entangled Co(ii) metal–organic frameworks: role of steric bulk and molar ratio of organic ligands. CrystEngComm, 2012, 14, 2906.	1.3	57
252	A microporous indium–organic framework with high capacity and selectivity for CO2 or organosulfurs. Dalton Transactions, 2012, 41, 2873.	1.6	20
253	Microwave synthesis and gas sorption of calcium and strontium metal–organic frameworks with high thermal stability. CrystEngComm, 2012, 14, 1219.	1.3	65
254	Crystal surface mediated structure transformation of a kinetic framework composed of multi-interactive ligand TPHAP and Co(ii). Chemical Communications, 2012, 48, 10651.	2.2	31
255	Two topologically new trinodal cobalt(ii) metal–organic frameworks characterized as a 1D metallic oxide and a 2D → 3D penetrated porous solid. CrystEngComm, 2012, 14, 5315.	1.3	21
256	Toward heteronuclear supramolecular architectures of pyridine-4-thiolate. CrystEngComm, 2012, 14, 8228.	1.3	10
257	A novel metal–organic framework displaying reversibly shrinking and expanding pore modulation. CrystEngComm, 2012, 14, 5757.	1.3	26
258	Metal–Organic Frameworks Based on Flexible V-Shaped Polycarboxylate Acids: Hydrogen Bondings, Non-Interpenetrated and Polycatenated. Crystal Growth and Design, 2012, 12, 4072-4082.	1.4	67
259	Liquid-Phase Adsorption and Separation of Xylene Isomers by the Flexible Porous Metal–Organic Framework MIL-53(Fe). Chemistry of Materials, 2012, 24, 2781-2791.	3.2	160
260	Solvent- and Vapor-Mediated Solid-State Transformations in 1,3,5-Benzenetricarboxylate Metal–Organic Frameworks. Crystal Growth and Design, 2012, 12, 1999-2003.	1.4	25

#	Article	IF	CITATIONS
261	Dense Coordination Network Capable of Selective CO ₂ Capture from C1 and C2 Hydrocarbons. Journal of the American Chemical Society, 2012, 134, 9852-9855.	6.6	82
262	Metal(II) Complexes Derived from Conformation Flexible Cyclic Imide Tethered Carboxylic Acids: Syntheses, Supramolecular Structures, and Molecular Properties. Crystal Growth and Design, 2012, 12, 2109-2121.	1.4	29
263	Comparative Guest, Thermal, and Mechanical Breathing of the Porous Metal Organic Framework MIL-53(Cr): A Computational Exploration Supported by Experiments. Journal of Physical Chemistry C, 2012, 116, 13289-13295.	1.5	90
264	Predicting Mixture Coadsorption in Soft Porous Crystals: Experimental and Theoretical Study of CO ₂ /CH ₄ in MIL-53(Al). Langmuir, 2012, 28, 494-498.	1.6	45
265	Absorption of Hydrogen Bond Donors by Pyridyl Bis-Urea Crystals. Chemistry of Materials, 2012, 24, 4773-4781.	3.2	9
266	A Homochiral Luminescent 2D Porous Coordination Polymer with Collagen-Type Triple Helices Showing Selective Guest Inclusion. Inorganic Chemistry, 2012, 51, 4644-4649.	1.9	32
267	Adsorption-Induced Structural Transition of an Interpenetrated Porous Coordination Polymer: Detailed Exploration of Free Energy Profiles. Langmuir, 2012, 28, 5093-5100.	1.6	24
268	Role of Temperature on Framework Dimensionality: Supramolecular Isomers of Zn ₃ (RCOO) ₈ Based Metal Organic Frameworks. Crystal Growth and Design, 2012, 12, 572-576.	1.4	78
269	Synthesis, structure, and photoluminescence of ZnII and CdII coordination complexes constructed by structurally related 5,6-substituted pyrazine-2,3-dicarboxylate ligands. Solid State Sciences, 2012, 14, 1117-1125.	1.5	15
270	Interplay of Metal Node and Amine Functionality in NH ₂ -MIL-53: Modulating Breathing Behavior through Intra-framework Interactions. Langmuir, 2012, 28, 12916-12922.	1.6	98
271	Conductive metal–organic frameworks and networks: fact or fantasy?. Physical Chemistry Chemical Physics, 2012, 14, 13120.	1.3	258
272	Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nature Chemistry, 2012, 4, 887-894.	6.6	466
273	Microporous metal–organic frameworks for storage and separation of small hydrocarbons. Chemical Communications, 2012, 48, 11813.	2.2	297
274	Systematic structural control of multichromic platinum(<scp>ii</scp>)-diimine complexes ranging from ionic solid to coordination polymer. Dalton Transactions, 2012, 41, 1878-1888.	1.6	22
275	Inclusion and dielectric properties of a vinylidene fluoride oligomer in coordination nanochannels. Dalton Transactions, 2012, 41, 4195.	1.6	16
276	Bimetallic poly- and oligo-nuclear complexes based on a rhodium(III) metalloligand. Journal of Molecular Structure, 2012, 1026, 8-16.	1.8	5
277	Synthesis of 2D metal–organic coordination polymers with large internal cavities and their magnetic properties. Inorganic Chemistry Communication, 2012, 21, 137-141.	1.8	3
278	Insights from theoretical calculations on structure, dynamics, phase behavior and hydrogen sorption in nanoporous metal organic frameworks. Computational and Theoretical Chemistry, 2012, 987, 42-56.	1.1	14

#	Article	IF	CITATIONS
279	Understanding the Potential of Zeolite Imidazolate Framework Membranes in Gas Separations Using Atomically Detailed Calculations. Journal of Physical Chemistry C, 2012, 116, 15525-15537.	1.5	42
281	Lowâ€Energy Selective Capture of Carbon Dioxide by a Preâ€designed Elastic Singleâ€Molecule Trap. Angewandte Chemie - International Edition, 2012, 51, 9804-9808.	7.2	151
282	Exceptional Crystallization Diversity and Solidâ€State Conversions of Cd ^{II} Coordination Frameworks with 5â€Bromonicotinate Directed by Solvent Media. Chemistry - A European Journal, 2012, 18, 12437-12445.	1.7	60
283	On the Mechanism Behind the Instability of Isoreticular Metal–Organic Frameworks (IRMOFs) in Humid Environments. Chemistry - A European Journal, 2012, 18, 12260-12266.	1.7	66
284	Supramolecular Approach by Using Jahn–Teller Sites to Construct a {Mn ₁₃ }â€Based Coordination Polymer and Modify its Magnetic Properties. Chemistry - A European Journal, 2012, 18, 13984-13988.	1.7	30
285	Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 18082-18088.	6.6	702
286	Spectroscopic characterization of van der Waals interactions in a metal organic framework with unsaturated metal centers: MOF-74–Mg. Journal of Physics Condensed Matter, 2012, 24, 424203.	0.7	32
287	Guest-to-Host Transmission of Structural Changes for Stimuli-Responsive Adsorption Property. Journal of the American Chemical Society, 2012, 134, 4501-4504.	6.6	326
288	Connecting structure with function in metal–organic frameworks to design novel photo- and radioluminescent materials. Journal of Materials Chemistry, 2012, 22, 10235.	6.7	105
289	Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films. Applied Physics Letters, 2012, 101, .	1.5	82
290	Selective CO ₂ Adsorption in a Robust and Water-Stable Porous Coordination Polymer with New Network Topology. Inorganic Chemistry, 2012, 51, 572-576.	1.9	94
291	Anion Modulated Structural Diversification in the Assembly of Cd(II) Complexes Based on a Balance-like Dipodal Ligand. Crystal Growth and Design, 2012, 12, 2389-2396.	1.4	25
292	From Stimuli-Responsive Polymorphic Organic Dye Crystals to Photoluminescent Cationic Open-Framework Metal Phosphate. Journal of the American Chemical Society, 2012, 134, 9848-9851.	6.6	89
294	Organic–Inorganic Hybrids Constructed from Mixed-Valence Multinuclear Copper Complexes and Templated by Keggin Polyoxometalates. Crystal Growth and Design, 2012, 12, 1273-1281.	1.4	102
295	Rotational flexibility of bridging ligands in paddle–wheel layer–pillar metal–organic frameworks studied by quantum calculations. Computational and Theoretical Chemistry, 2012, 1001, 33-38.	1.1	1
296	Bistable Dynamic Coordination Polymer Showing Reversible Structural and Functional Transformations. Inorganic Chemistry, 2012, 51, 8317-8321.	1.9	17
297	Chiral porous metal-organic frameworks with dual active sites for sequential asymmetric catalysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2035-2052.	1.0	35
298	NH ₂ -MIL-53(Al): A High-Contrast Reversible Solid-State Nonlinear Optical Switch. Journal of the American Chemical Society, 2012, 134, 8314-8317.	6.6	144

#	Article	IF	CITATIONS
299	Hysteretic carbon dioxide sorption in a novel copper(ii)-indazole-carboxylate porous coordination polymer. Chemical Communications, 2012, 48, 11558.	2.2	39
300	Three-Dimensional Metal–Organic Framework with Highly Polar Pore Surface: H ₂ and CO ₂ Storage Characteristics. Inorganic Chemistry, 2012, 51, 7103-7111.	1.9	66
301	Tuning the breathing behaviour of MIL-53 by cation mixing. Chemical Communications, 2012, 48, 10237.	2.2	129
302	Understanding Gas-Induced Structural Deformation of ZIF-8. Journal of Physical Chemistry Letters, 2012, 3, 1159-1164.	2.1	143
303	Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66. Physical Review B, 2012, 86, .	1.1	196
304	Swelling Hybrid Solids. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1897-1909.	0.6	30
305	Combination of Magnetic Susceptibility and Electron Paramagnetic Resonance to Monitor the 1D to 2D Solid State Transformation in Flexible Metal–Organic Frameworks of Co(II) and Zn(II) with 1,4-Bis(triazol-1-ylmethyl)benzene. Inorganic Chemistry, 2012, 51, 4403-4410.	1.9	37
306	New Coordination Polymers and Porous Supramolecular Metal Organic Network Based on the Trinuclear Triangular Secondary Building Unit [Cu3(μ3-OH)(μ-pz)3]2+ and 4,4′-Bypiridine. 1°. Crystal Growth and Design, 2012, 12, 2890-2901.	1.4	40
307	Deconstructing the Crystal Structures of Metal–Organic Frameworks and Related Materials into Their Underlying Nets. Chemical Reviews, 2012, 112, 675-702.	23.0	1,942
308	Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 703-723.	23.0	1,085
309	Single-Atom Ligand Changes Affect Breathing in an Extended Metal–Organic Framework. Inorganic Chemistry, 2012, 51, 5671-5676.	1.9	61
310	Structural flexibility and intrinsic dynamics in the M2(2,6-ndc)2(dabco) (M = Ni, Cu, Co, Zn) metal–organic frameworks. Journal of Materials Chemistry, 2012, 22, 10303.	6.7	139
311	Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 2012, 112, 933-969.	23.0	3,923
312	Metal–Organic Frameworks for Separations. Chemical Reviews, 2012, 112, 869-932.	23.0	5,588
313	Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 2012, 112, 1232-1268.	23.0	3,593
314	Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 724-781.	23.0	5,612
315	Ligand design for functional metal–organic frameworks. Chemical Society Reviews, 2012, 41, 1088-1110.	18.7	725
316	Growth of preferential orientation of MIL-53(Al) film as nano-assembler. CrystEngComm, 2012, 14, 5487.	1.3	30

#	Article	IF	CITATIONS
317	Pt Nanoparticles@Photoactive Metal–Organic Frameworks: Efficient Hydrogen Evolution via Synergistic Photoexcitation and Electron Injection. Journal of the American Chemical Society, 2012, 134, 7211-7214.	6.6	657
318	A Robust Metal–Organic Framework Constructed from Alkoxo-Bridged Binuclear Nodes and Hexamethylenetetramine Spacers: Crystal Structure and Sorption Studies. Inorganic Chemistry, 2012, 51, 7954-7956.	1.9	15
319	MOFs for Use in Adsorption Heat Pump Processes. European Journal of Inorganic Chemistry, 2012, 2012, 2625-2634.	1.0	286
320	Post-synthetic modification of isomorphic coordination layers: exchange dynamics of metal ions in a single crystal to single crystal fashion. Chemical Communications, 2012, 48, 4293.	2.2	94
321	Homogeneity of flexible metal–organic frameworks containing mixed linkers. Journal of Materials Chemistry, 2012, 22, 10287.	6.7	71
322	Quantitative Characterization of Breathing upon Adsorption for a Series of Amino-Functionalized MIL-53. Journal of Physical Chemistry C, 2012, 116, 9507-9516.	1.5	34
323	Guest-Induced Gate Opening and Breathing Phenomena in Soft Porous Crystals: Building Thermodynamically Consistent Isotherms. Journal of Physical Chemistry C, 2012, 116, 1638-1649.	1.5	37
324	A novel MOF with mesoporous cages for kinetic trapping of hydrogen. Chemical Communications, 2012, 48, 254-256.	2.2	41
325	Breathing effects of CO2 adsorption on a flexible 3D lanthanide metal–organic framework. Journal of Materials Chemistry, 2012, 22, 10172.	6.7	67
326	Accelerated aging: a low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal–organic materials. Chemical Science, 2012, 3, 2495-2500.	3.7	181
327	How Interpenetration Ensures Rigidity and Permanent Porosity in a Highly Flexible Hybrid Solid. Chemistry of Materials, 2012, 24, 2486-2492.	3.2	50
328	Solvent-induced single-crystal to single-crystal transformation of a 2D coordination network to a 3D metal–organic framework greatly enhances porosity and hydrogen uptake. Chemical Communications, 2012, 48, 2846.	2.2	99
329	Highly Photoconducting π-Stacked Polymer Accommodated in Coordination Nanochannels. Journal of the American Chemical Society, 2012, 134, 8360-8363.	6.6	97
330	Directing the Breathing Behavior of Pillared-Layered Metal–Organic Frameworks via a Systematic Library of Functionalized Linkers Bearing Flexible Substituents. Journal of the American Chemical Society, 2012, 134, 9464-9474.	6.6	415
331	A partially interpenetrated metal–organic framework for selective hysteretic sorption ofÂcarbon dioxide. Nature Materials, 2012, 11, 710-716.	13.3	430
332	Targeted functionalisation of a hierarchically-structured porous coordination polymer crystal enhances its entire function. Chemical Communications, 2012, 48, 6472.	2.2	48
333	A solid solution approach to 2D coordination polymers for CH ₄ /CO ₂ and CH ₄ /C ₂ H ₆ gas separation: equilibrium and kinetic studies. Chemical Science, 2012, 3, 116-120.	3.7	148
334	Well-studied Cu–BTC still serves surprises: evidence for facile Cu2+/Cu+ interchange. Physical Chemistry Chemical Physics, 2012, 14, 4383.	1.3	91

		PORT	
# 335	ARTICLE Patterning Techniques for Metal Organic Frameworks. Advanced Materials, 2012, 24, 3153-3168.	IF 11.1	CITATIONS
336	Largeâ€scale computational screening of metalâ€organic frameworks for CH ₄ /H ₂ separation. AICHE Journal, 2012, 58, 2078-2084.	1.8	91
340	Directional Selfâ€Assembly of a Colloidal Metal–Organic Framework. Angewandte Chemie - International Edition, 2012, 51, 5638-5641.	7.2	123
341	Two Zeoliteâ€Type Frameworks in One Metal–Organic Framework with Zn ₂₄ @Zn ₁₀₄ Cubeâ€inâ€Sodalite Architecture. Angewandte Chemie - International Edition, 2012, 51, 8538-8541.	7.2	62
342	Design of Flexible Lewis Acidic Sites in Porous Coordination Polymers by using the Viologen Moiety. Angewandte Chemie - International Edition, 2012, 51, 8369-8372.	7.2	74
343	Reversible Phase Transformation and Mechanochromic Luminescence of Zn ^{II} â€Dipyridylamideâ€Based Coordination Frameworks. Chemistry - A European Journal, 2012, 18, 5105-5112.	1.7	42
344	A Guestâ€Dependent Approach to Retain Permanent Pores in Flexible Metal–Organic Frameworks by Cation Exchange. Chemistry - A European Journal, 2012, 18, 7896-7902.	1.7	66
345	Controlling State of Breathing of Two Isoreticular Microporous Metal–Organic Frameworks with Triazole Homologues. Chemistry - A European Journal, 2012, 18, 10525-10529.	1.7	30
346	Adsorption and Separation of Light Gases on an Aminoâ€Functionalized Metal–Organic Framework: An Adsorption and Inâ€Situ XRD Study. ChemSusChem, 2012, 5, 740-750.	3.6	115
347	Porous Metalloporphyrinic Frameworks Constructed from Metal 5,10,15,20-Tetrakis(3,5-biscarboxylphenyl)porphyrin for Highly Efficient and Selective Catalytic Oxidation of Alkylbenzenes. Journal of the American Chemical Society, 2012, 134, 10638-10645.	6.6	265
348	Molecular-Level Characterization of the Breathing Behavior of the Jungle-Gym-type DMOF-1 Metal–Organic Framework. Journal of the American Chemical Society, 2012, 134, 4207-4215.	6.6	87
349	Structure–activity relationships of simple molecules adsorbed on CPO-27-Ni metal–organic framework: In situ experiments vs. theory. Catalysis Today, 2012, 182, 67-79.	2.2	67
350	Synthesis and structural characterisation of a Co(II) coordination polymer incorporating a novel dicarboxy-Trögers base/bis-pyrazole mixed ligand system. Inorganica Chimica Acta, 2012, 389, 112-117.	1.2	25
351	Syntheses, structures and magnetic properties of two new complexes constructed from mixed rigid ligands. Inorganic Chemistry Communication, 2012, 16, 55-60.	1.8	12
352	A 3D photoluminescent Cd(II) polymer based on mixed 3,5-bis-oxyacetate-benzoic acid and rigid bis(imidazole) ligands with an unusual (4,8)-connected topology. Inorganic Chemistry Communication, 2012, 17, 180-183.	1.8	22
353	Epitaxially grown metal-organic frameworks. Materials Today, 2012, 15, 110-116.	8.3	117
354	Ethene/ethane mixture diffusion in the MOF sieve ZIF-8 studied by MAS PFG NMR diffusometry. Microporous and Mesoporous Materials, 2012, 147, 135-141.	2.2	100
355	The progression of Al-based metal-organic frameworks – From academic research to industrial production and applications. Microporous and Mesoporous Materials, 2012, 157, 131-136.	2.2	329

#	Article	IF	CITATIONS
356	Zeolitic metal azolate frameworks (MAFs) from ZnO/Zn(OH)2 and monoalkyl-substituted imidazoles and 1,2,4-triazoles: Efficient syntheses and properties. Microporous and Mesoporous Materials, 2012, 157, 42-49.	2.2	82
357	Bottom-up synthesis of three heterometallic coordination polymers with layered structures constructed from presynthesized [Sb2(tart)2]2â^' metalloligands. Solid State Sciences, 2012, 14, 62-71.	1.5	7
358	Reversible Solvatomagnetic Switching in a Spongelike Manganese(II)–Copper(II) 3D Open Framework with a Pillared Square/Octagonal Layer Architecture. Chemistry - A European Journal, 2012, 18, 1608-1617.	1.7	86
359	Zeolite-imidazolate framework (ZIF-8) membrane synthesis on a mixed-matrix substrate. Chemical Communications, 2013, 49, 9419.	2.2	53
360	Carbon dioxide (CO2) absorption behavior of mixed matrix polymer composites containing a flexible coordination polymer. Journal of Colloid and Interface Science, 2013, 393, 278-285.	5.0	26
361	Preparation, structural diversity and characterization of a family of Cd(ii)–organic frameworks. Dalton Transactions, 2013, 42, 12468.	1.6	15
362	Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal–Organic Frameworks. Chemistry of Materials, 2013, 25, 2767-2776.	3.2	412
363	Syntheses, Structures, and Properties of a Series of Multidimensional Metal–Organic Polymers Based on 3,3′,5,5′-Biphenyltetracarboxylic Acid and N-Donor Ancillary Ligands. Crystal Growth and Design, 2013, 13, 792-803.	1.4	97
364	Single- and Double-Layer Structures and Sorption Properties of Two Microporous Metal–Organic Frameworks with Flexible Tritopic Ligand. Crystal Growth and Design, 2013, 13, 1458-1463.	1.4	42
365	Unprecedented activation and CO2 capture properties of an elastic single-molecule trap. Chemical Communications, 2013, 49, 9612.	2.2	11
366	Controlled Synthesis of Anisotropic Polymer Particles Templated by Porous Coordination Polymers. Chemistry of Materials, 2013, 25, 3772-3776.	3.2	56
367	Effects of Solvation on the Framework of a Breathing Copper MOF Employing a Semirigid Linker. Inorganic Chemistry, 2013, 52, 2182-2187.	1.9	24
368	Metal–organic frameworks with wine-rack motif: What determines their flexibility and elastic properties?. Journal of Chemical Physics, 2013, 138, 174703.	1.2	139
369	C ₃ -symmetric trinuclear copper(<scp>ii</scp>) species as tectons in crystal engineering. CrystEngComm, 2013, 15, 294-301.	1.3	11
370	Metal–Organic Frameworks as A Tunable Platform for Designing Functional Molecular Materials. Journal of the American Chemical Society, 2013, 135, 13222-13234.	6.6	801
371	Using hinged ligands to target structurally flexible copper(ii) MOFs. CrystEngComm, 2013, 15, 9663.	1.3	27
372	A three-dimensional structure built of paddle-wheel and triazolate-dinuclear metal clusters: synthesis, deformation and reformation of paddle-wheel unit in the single-crystal-to-single-crystal transformation. CrystEngComm, 2013, 15, 7031.	1.3	27
373	Linker extension through hard-soft selective metal coordination for the construction of a non-rigid metal-organic framework. Science China Chemistry, 2013, 56, 418-422.	4.2	20

ARTICLE

IF CITATIONS

375	Adsorption in Metal-Organic Frameworks. , 2013, , 989-1006.		3
376	Bistable and Porous Metal–Organic Frameworks with Charge-Neutral acs Net Based on Heterometallic M3O(CO2)6 Building Blocks. Crystal Growth and Design, 2013, 13, 4066-4070.	1.4	23
377	A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chemical Communications, 2013, 49, 9500.	2.2	514
378	High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal–organic framework material HKUST-1. Chemical Physics, 2013, 427, 9-17.	0.9	14
379	Synthesis of Zeolitic Imidazolate Frameworkâ€7 in a Water/Ethanol Mixture and Its Ethanolâ€Induced Reversible Phase Transition. ChemPlusChem, 2013, 78, 1222-1225.	1.3	58
380	Adsorption induced transitions in soft porous crystals: An osmotic potential approach to multistability and intermediate structures. Journal of Chemical Physics, 2013, 138, 174706.	1.2	74
381	Acid directed in situ oxidation and decarboxylation of 4,4′,6,6′-tetra-methyl-2,2′-bipyridine: Synthesis and structural characterisation of 4,4′,6-tri-carboxy-2,2′-bipyridine and its copper(II) coordination polymer. Inorganica Chimica Acta, 2013, 403, 102-109.	1.2	11
382	Molecular Mechanisms of Water-Mediated Proton Transport in MIL-53 Metal–Organic Frameworks. Journal of Physical Chemistry C, 2013, 117, 19508-19516.	1.5	42
383	Synthesis, Crystal Structure and Magnetic Characterization of a Series of Compounds with an Unusual Single Crystal to Single Crystal Phase Transition. Crystal Growth and Design, 2013, 13, 4735-4745.	1.4	16
384	Gabapentin Coordination Networks: Mechanochemical Synthesis and Behavior under Shelf Conditions. Crystal Growth and Design, 2013, 13, 5007-5017.	1.4	11
385	A flexible porous Cu(ii) bis-imidazolate framework with ultrahigh concentration of active sites for efficient and recyclable CO2 capture. Chemical Communications, 2013, 49, 11728.	2.2	60
386	Accelerating the Controlled Synthesis of Metal–Organic Frameworks by a Microfluidic Approach: A Nanoliter Continuous Reactor. ACS Applied Materials & Interfaces, 2013, 5, 9405-9410.	4.0	101
387	Grafting of hydrophilic ethylene glycols or ethylenediamine on coordinatively unsaturated metal sites in MIL-100(Cr) for improved water adsorption characteristics. Inorganica Chimica Acta, 2013, 407, 145-152.	1.2	75
388	Adsorption Deformation and Structural Transitions in Metal–Organic Frameworks: From the Unit Cell to the Crystal. Journal of Physical Chemistry Letters, 2013, 4, 3198-3205.	2.1	148
389	Syntheses of two imidazolate-4-amide-5-imidate linker-based hexagonal metal–organic frameworks with flexible ethoxy substituent. CrystEngComm, 2013, 15, 9394.	1.3	27
390	Molecularly designed architectures – the metalloligand way. Chemical Society Reviews, 2013, 42, 9403.	18.7	218
391	Formation of a mixed valence copper(II)–copper(I) coordination polymer {[Cu(1,2-pn) ₂ (μ ₃ -I)Cu ₂ (μ ₂ -I) ₃ 3333 <i>in situ</i> feduction of copper(II) at ambient condition. Journal of Coordination Chemistry, 2013, 66. 3906-3914.	ub>CN)]á	â‹. ₁₀ CH <sut< td=""></sut<>

ARTICLE IF CITATIONS # New Functionalized Metalâ€"Organic Frameworks MIL-47-X (X = â^'Cl, â^'Br, â^'CH₃,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 392 1.5 79 Adsorption Properties. Journal of Physical Chemistry C, 2013, 117, 22784-22796. High-Capacity Gas Storage by a Microporous Oxalamide-Functionalized NbO-Type Metal–Organic 1.4 Framework. Ćrystal Growth and Design, 2013, 13, 5001-5006. Permanent Porosity Derived From the Selfâ€Assembly of Highly Luminescent Molecular Zinc Carbonate 395 7.2 46 Nanoclusters. Angewandte Chemie - International Edition, 2013, 52, 13414-13418. Hydrogenation catalysts based on metal nanoparticles stabilized by organic ligands. Russian Chemical Bulletin, 2013, 62, 1465-1492. Effect of central metal ions of analogous metal-organic frameworks on the adsorptive removal of 397 6.5 65 benzothiophene from a model fuel. Journal of Hazardous Materials, 2013, 260, 1050-1056. A novel magnetic recyclable photocatalyst based on a core–shell metal–organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. Journal of Materials Chemistry A, 5.2 2013, 1, 14329. Wings waving: coordinating solvent-induced structural diversity of new Cu(ii) flexible MOFs with 400 1.3 20 crystal to crystal transformation and gas sorption capability. CrystEngComm, 2013, 15, 9513. How ligands improve the hydrothermal stability and affect the adsorption in the IRMOF family. 401 1.3 29 Physical Chemistry Chemical Physics, 2013, 15, 17696. Bi-porous metal–organic framework with hydrophilic and hydrophobic channels: selective gas 402 1.3 64 sorption and reversible iodine uptake studies. CrystEngComm, 2013, 15, 9465. A highly porous 4,4-paddlewheel-connected NbO-type metal–organic framework with a large 1.6 34 gas-uptake capacity. Dalton Transactions, 2013, 42, 11304. Direct visualization of a guest-triggered crystal deformation based on a flexible ultramicroporous 404 120 5.8 framework. Nature Communications, 2013, 4, 2534. Sorption and breathing properties of difluorinated MIL-47 and Al-MIL-53 frameworks. Microporous and 2.2 36 Mesoporous Materials, 2013, 181, 175-181. Metal organic frameworkâ€"organic polymer monolith stationary phases for capillary 406 2.6 120 electrochromatography and nano-liquid chromatography. Analytica Chimica Acta, 2013, 779, 96-103. An alternative pathway for the synthesis of isocyanato- and urea-functionalised metal–organic 1.6 frameworks. Dalton Transactions, 2013, 42, 8249. Metal–organic frameworks from novel flexible triptycene- and pentiptycene-based ligands. 408 1.3 17 CrystEngComm, 2013, 15, 9811. Three pillared-layer $3d\hat{\epsilon}^{e}$ 4f heterometallic frameworks based on tetranuclear lanthanide clusters. 409 14 CrystEngComm, 2013, 15, 9504. Computational studies on the adsorption of CO₂in the flexible perfluorinated 411 metalâ€"organic framework zinc 1,2-bis(4-pyridyl)ethane tetrafluoroterephthalate. Physical Chemistry 1.311 Chemical Physics, 2013, 15, 176-182. A unique 3-D (3,18)-connected coordination framework based on a new type of $\{Zn18\}$ double-stranded 1.3 metallacrown. CrystEngComm, 2013, 15, 10171.

#	Article	IF	CITATIONS
413	Syntheses, structures and characteristics of four metal–organic coordination polymers based on 5-hydroxyisophthalic acid and N-containing auxiliary ligands. CrystEngComm, 2013, 15, 9578.	1.3	29
414	Adsorption and Diffusion of Small Alcohols in Zeolitic Imidazolate Frameworks ZIF-8 and ZIF-90. Journal of Physical Chemistry C, 2013, 117, 3169-3176.	1.5	135
415	A Luminescent Metal–Organic Framework as a Turnâ€On Sensor for DMF Vapor. Angewandte Chemie - International Edition, 2013, 52, 710-713.	7.2	346
416	Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing. Science, 2013, 339, 193-196.	6.0	483
417	Applications of Nanomaterial-Based Membranes in Pollution Control. Critical Reviews in Environmental Science and Technology, 2013, 43, 2389-2438.	6.6	21
418	Partially fluorinated MIL-47 and Al-MIL-53 frameworks: influence of functionalization on sorption and breathing properties. Physical Chemistry Chemical Physics, 2013, 15, 3552.	1.3	63
419	Crystalline Structural Intermediates of a Breathing Metal–Organic Framework That Functions as a Luminescent Sensor and Gas Reservoir. Chemistry - A European Journal, 2013, 19, 1891-1895.	1.7	80
420	Coordination Polymers Based on the Trinuclear Triangular Secondary Building Unit [Cu ₃ (μ ₃ -OH)(μ-pz) ₃] ²⁺ (pz = pyrazolate) and Succinate Anion. Crystal Growth and Design, 2013, 13, 126-135.	1.4	26
421	Electric Field-Induced Assembly of Monodisperse Polyhedral Metal–Organic Framework Crystals. Journal of the American Chemical Society, 2013, 135, 34-37.	6.6	158
422	New V ^{IV} -Based Metal–Organic Framework Having Framework Flexibility and High CO ₂ Adsorption Capacity. Inorganic Chemistry, 2013, 52, 113-120.	1.9	68
423	Synthesis, breathing, and gas sorption study of the first isoreticular mixed-linker phosphonate based metal–organic frameworks. Chemical Communications, 2013, 49, 1315.	2.2	85
424	Solidâ€State Structural Transformations and Photoreactivity of 1Dâ€Ladder Coordination Polymers of Pb ^{II} . Chemistry - A European Journal, 2013, 19, 3962-3968.	1.7	32
425	Dynamic magnetic MOFs. Chemical Society Reviews, 2013, 42, 1525-1539.	18.7	577
427	Effect of Spinâ€Crossoverâ€Induced Pore Contraction on CO ₂ –Host Interactions in the Porous Coordination Polymers [Fe(pyrazine)M(CN) ₄] (M = Ni, Pt). European Journal of Inorganic Chemistry, 2013, 2013, 511-519.	1.0	15
428	Molecular Motions in Functional Self-Assembled Nanostructures. International Journal of Molecular Sciences, 2013, 14, 2303-2333.	1.8	52
429	High-throughput studies of highly porous Al-based MOFs. Microporous and Mesoporous Materials, 2013, 171, 156-165.	2.2	39
430	A new 8-connected self-penetrating metal–organic framework based on dinuclear cadmium clusters as secondary building units. Chinese Chemical Letters, 2013, 24, 691-694.	4.8	6
431	Interaction of methanol with the flexible metal-organic framework MIL-53(Fe) observed by inelastic neutron scattering. Chemical Physics, 2013, 427, 30-37.	0.9	24

#	Article	IF	CITATIONS
432	Self-assembly of three cadmium(II) complexes based on 5-methylisophthalic acid and flexible bis(imidazole) ligands with different spacer lengths. Inorganica Chimica Acta, 2013, 407, 153-159.	1.2	10
433	A Porous 4-Fold-Interpenetrated Chiral Framework Exhibiting Vapochromism, Single-Crystal-to-Single-Crystal Solvent Exchange, Gas Sorption, and a Poisoning Effect. Inorganic Chemistry, 2013, 52, 2353-2360.	1.9	114
434	Coordination polymers of flexible polycarboxylic acids with metal ions. V. polymeric frameworks of 5-(3,5-dicarboxybenzyloxy)-3-pyridine carboxylic acid with Cd(ii), Cu(ii), Co(ii), Mn(ii) and Ni(ii) ions; synthesis, structure, and magnetic properties. CrystEngComm, 2013, 15, 2863.	1.3	28
435	Discrete and Polymeric Cu(II) Coordination Complexes with a Flexible bis-(pyridylpyrazole) Ligand: Structural Diversity and Unexpected Solvothermal Reactivity. Australian Journal of Chemistry, 2013, 66, 401.	0.5	12
436	Reversible Switching from Antiferro- to Ferromagnetic Behavior by Solvent-Mediated, Thermally-Induced Phase Transitions in a Trimorphic MOF-Based Magnetic Sponge System. Journal of the American Chemical Society, 2013, 135, 4040-4050.	6.6	209
437	A Route to Metal–Organic Frameworks through Framework Templating. Inorganic Chemistry, 2013, 52, 1164-1166.	1.9	83
438	Porous metal–organic frameworks with high stability and selective sorption for CO2 over N2. Microporous and Mesoporous Materials, 2013, 172, 61-66.	2.2	36
439	Solvent-Induced Structural Dynamics in Noninterpenetrating Porous Coordination Polymeric Networks. Inorganic Chemistry, 2013, 52, 2951-2957.	1.9	45
440	Solid-state reactivity and structural transformations involving coordination polymers. Chemical Society Reviews, 2013, 42, 1755-1775.	18.7	457
441	Diffusion of Xylene Isomers in the MIL-47(V) MOF Material: A Synergic Combination of Computational and Experimental Tools. Journal of Physical Chemistry C, 2013, 117, 6293-6302.	1.5	44
442	A dynamic, luminescent and entangled MOF as a qualitative sensor for volatile organic solvents and a quantitative monitor for acetonitrile vapour. Chemical Science, 2013, 4, 1793.	3.7	293
443	Iron-Based Metal–Organic Frameworks MIL-88B and NH ₂ -MIL-88B: High Quality Microwave Synthesis and Solvent-Induced Lattice "Breathing― Crystal Growth and Design, 2013, 13, 2286-2291.	1.4	199
444	Four Honeycomb Metal–Organic Frameworks with a Flexible Tripodal Polyaromatic Acid. Crystal Growth and Design, 2013, 13, 1429-1437.	1.4	36
445	Sorption-Induced Structural Transition of Zeolitic Imidazolate Framework-8: A Hybrid Molecular Simulation Study. Journal of the American Chemical Society, 2013, 135, 3722-3728.	6.6	160
446	Reversible structural transformation and selective gas adsorption in a unique aqua-bridged Mn(ii) metal–organic framework. Chemical Communications, 2013, 49, 2329.	2.2	28
447	Coordination Assembly of Zn ^{II} /Cd ^{II} Terephthalate with Bis-Pyridinecarboxamide Tectons: Establishing Net Entanglements from [3 + 3] Interpenetration to High-Connected Self-Penetration. Crystal Growth and Design, 2013, 13, 996-1001.	1.4	34
448	Highly Selective Detection of Nitro Explosives by a Luminescent Metal–Organic Framework. Angewandte Chemie - International Edition, 2013, 52, 2881-2885.	7.2	1,206
449	Water Sorption Cycle Measurements on Functionalized MIL-101Cr for Heat Transformation Application. Chemistry of Materials, 2013, 25, 790-798.	3.2	238

ARTICLE IF CITATIONS Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption 450 23.0 553 Techniques. Chemical Reviews, 2013, 113, 1736-1850. Synthesis and engineering porosity of a mixed metal Fe₂Ni MIL-88B metal–organic 1.6 139 framework. Dalton Transactions, 2013, 42, 550-557. Turning on the flexibility of isoreticular porous coordination frameworks for drastically tunable 452 3.7 163 framework breathing and thermal expansion. Chemical Science, 2013, 4, 1539. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal $\hat{a} \in \hat{c}$ organic frameworks. Chemical Science, 2013, 4, 1597. Coordination polymers of flexible poly-carboxylic acids with metal ions. IV. Syntheses, structures, 454 and magnetic properties of polymeric networks of 5-(3,5)-(dicarboxybenzyloxy) isophthalic acid with 1.332 Cd(ii), Ču(ii), Ċo(ii) and Mn(ii) ions. CrystEngComm, 2013, 15, 2853. Tandem Postsynthetic Metal Ion and Ligand Exchange in Zeolitic Imidazolate Frameworks. Inorganic Chemistry, 2013, 52, 4011-4016. 209 Mass transfer in mesoporous materials: the benefit of microscopic diffusion measurement. Chemical 456 18.7 221 Society Reviews, 2013, 42, 4172. Irreversible Network Transformation in a Dynamic Porous Host Catalyzed by Sulfur Dioxide. Journal 6.6 of the American Chemical Society, 2013, 135, 4954-4957. Temperature-Induced Structural Transitions in the Gallium-Based MIL-53 Metal–Organic Framework. 458 1.5 59 Journal of Physical Chemistry C, 2013, 117, 8180-8188. Screening Hofmann Compounds as CO₂ Sorbents: Nontraditional Synthetic Route to Over 40 Different Pore-Functionalized and Flexible Pillared Cyanonickelates. Inorganic Chemistry, 2013, 52, 1.9 4205-4216. High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal–organic frameworks, 460 1.3 64 STAM-1 and HKUST-1. Physical Chemistry Chemical Physics, 2013, 15, 919-929. Solid-state NMR: A powerful tool for characterization of metal–organic frameworks. Solid State 461 1.5 Nuclear Magnetic Resonance, 2013, 49-50, 1-11. A flexible porous metal–azolate framework constructed by [Cu3(μ3-OH)(μ2-O)(triazolate)2]+ building 462 blocks: synthesis, reversible structural transformation and related magnetic properties. 1.3 20 CrystEngComm, 2013, 15, 3484. Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal–Organic Frameworks. Chemistry of 3.2 243 Materials, 2013, 25, 1592-1599. Research Front on Coordination Polymers. Australian Journal of Chemistry, 2013, 66, 397. 464 0.53 Ancillary Ligands Dependent Structural Diversity of A Series of Metal–Organic Frameworks Based on 123 3,5-Bis(3-carboxyphenyl)pyridine. Crystal Growth and Design, 2013, 13, 2462-2475. Structural and fluorescent regulation of Cd(ii) coordination polymers with homoterephthalate by 466 1.345 N-donor second ligands. CrystEngComm, 2013, 15, 2428. Post-synthetic Structural Processing in a Metal–Organic Framework Material as a Mechanism for Exceptional CO₂/N₂ Selectivity. Journal of the American Chemical Society, 190 6.6 2013, 135, 10441-10448.

#	Article	IF	CITATIONS
469	Three series of MOFs featuring various metal(ii)-carboxylate chains cross-linked by dipyridyl-typed coligands: synthesis, structure, and solvent-dependent luminescence. CrystEngComm, 2013, 15, 4571.	1.3	55
470	Solvent-modified dynamic porosity in chiral 3D kagome frameworks. Dalton Transactions, 2013, 42, 7871.	1.6	33
471	Dynamic Zn-based metal–organic framework: stepwise adsorption, hysteretic desorption and selective carbon dioxide uptake. Journal of Materials Chemistry A, 2013, 1, 6535.	5.2	58
472	On the Thermodynamics of Framework Breathing: A Free Energy Model for Gas Adsorption in MIL-53. Journal of Physical Chemistry C, 2013, 117, 11540-11554.	1.5	61
473	Solvent-Mediated Crystal-to-Crystal Interconversion between Discrete Lanthanide Complexes and One-Dimensional Coordination Polymers and Selective Sensing for Small Molecules. Inorganic Chemistry, 2013, 52, 6450-6456.	1.9	34
474	Elucidating the Breathing of the Metal–Organic Framework MIL-53(Sc) with ab Initio Molecular Dynamics Simulations and in Situ X-ray Powder Diffraction Experiments. Journal of the American Chemical Society, 2013, 135, 15763-15773.	6.6	173
475	Rapid synthesis of nanoscale terbium-based metal–organic frameworks by a combined ultrasound-vapour phase diffusion method for highly selective sensing of picric acid. Journal of Materials Chemistry A, 2013, 1, 8745.	5.2	182
476	<i>In Situ</i> Growth of Metal–Organic Framework Thin Films with Gas Sensing and Molecule Storage Properties. Langmuir, 2013, 29, 8657-8664.	1.6	53
477	Structure Versatility of Coordination Polymers Constructed from a Semirigid Tetracarboxylate Ligand: Syntheses, Structures, and Photoluminescent Properties. Crystal Growth and Design, 2013, 13, 255-263.	1.4	65
478	Heterometallic Supramolecular Architecture Based on a Trinuclear [Mn(H2O)4(NiL)2] Unit: Crystal Structure and Magnetic Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 989-995.	1.9	1
479	Immobilizing Metal Nanoparticles to Metal–Organic Frameworks with Size and Location Control for Optimizing Catalytic Performance. Journal of the American Chemical Society, 2013, 135, 10210-10213.	6.6	661
480	CHAPTER 6. Computational Approach to Chemical Reactivity of MOFs. RSC Catalysis Series, 0, , 209-234.	0.1	3
481	Entrapment of Metal Clusters in Metal–Organic Framework Channels by Extended Hooks Anchored at Open Metal Sites. Journal of the American Chemical Society, 2013, 135, 10270-10273.	6.6	154
482	Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4]. CrystEngComm, 2013, 15, 4684.	1.3	22
483	Magnetic porous carbons with high adsorption capacity synthesized by a microwave-enhanced high temperature ionothermal method from a Fe-based metal-organic framework. Carbon, 2013, 59, 372-382.	5.4	123
484	MOFâ€FF – A flexible firstâ€principles derived force field for metalâ€organic frameworks. Physica Status Solidi (B): Basic Research, 2013, 250, 1128-1141.	0.7	162
485	Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Microporous and Mesoporous Materials, 2013, 166, 67-78.	2.2	434
486	Dehydration induced 2D-to-3D crystal-to-crystal network re-assembly and ferromagnetism tuning within two chiral copper(ii)–tartrate coordination polymers. Dalton Transactions, 2013, 42, 16857.	1.6	15

#	Article	IF	CITATIONS
487	A 3D Hybrid Praseodymium–Antimony–Oxochloride Compound: Single rystalâ€ŧo‧ingleâ€Crystal Transformation and Photocatalytic Properties. Chemistry - A European Journal, 2013, 19, 15396-15403.	1.7	15
488	Syntheses, structures and magnetic properties of three Co(II) coordination architectures based on a flexible multidentate carboxylate ligand and different N-donor ligands. Science China Chemistry, 2013, 56, 1693-1700.	4.2	9
489	M(ii) (M = Mn, Co, Ni) variants of the MIL-53-type structure with pyridine-N-oxide as a co-ligand. CrystEngComm, 2013, 15, 9679.	1.3	28
490	Identification of Nonequivalent Framework Oxygen Species in Metal–Organic Frameworks by ¹⁷ O Solid-State NMR. Journal of Physical Chemistry C, 2013, 117, 16953-16960.	1.5	59
491	Impact of the Flexible Character of MIL-88 Iron(III) Dicarboxylates on the Adsorption of <i>n</i> -Alkanes. Chemistry of Materials, 2013, 25, 479-488.	3.2	65
492	On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films. Applied Physics Letters, 2013, 103, .	1.5	111
493	Adsorption-Induced Breathing Transitions in Metal-Organic Frameworks. , 2013, , .		0
494	Combined study of structural properties on metal-organic frameworks with same topology but different linkers or metal. Journal of Physics: Conference Series, 2013, 430, 012134.	0.3	8
495	Hydrothermal Synthesis, Crystal Structure, and Luminescent Properties of Two Zinc(II) and Cadmium(II) 3D Metalâ€ÂOrganic Frameworks. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 826-831.	0.6	6
496	Breathing Effect in a Cobalt Phosphonate upon Dehydration/Rehydration: A Singleâ€Crystalâ€ŧoâ€&ingleâ€Crystal Study. Chemistry - A European Journal, 2013, 19, 16394-16402.	1.7	40
497	Metal–Organic Frameworks: From Design to Materials. Structure and Bonding, 2013, , 1-26.	1.0	4
498	Massive Anisotropic Thermal Expansion and Thermoâ€Responsive Breathing in Metal–Organic Frameworks Modulated by Linker Functionalization. Advanced Functional Materials, 2013, 23, 5990-5996.	7.8	187
499	POLYMERIZATION WITHIN CONFINED NANOCHANNELS OF POROUS METAL-ORGANIC FRAMEWORKS. Journal of Molecular and Engineering Materials, 2013, 01, 1330001.	0.9	3
500	Controlled Encapsulation of Photoresponsive Macromolecules in Porous Coordination Polymer. Chemistry Letters, 2013, 42, 222-223.	0.7	14
502	Resolving Multiple Nonâ€equivalent Metal Sites in Magnesiumâ€Containing Metal–Organic Frameworks by Natural Abundance ²⁵ Mg Solidâ€State NMR Spectroscopy. Chemistry - A European Journal, 2013, 19, 4432-4436.	1.7	45
503	Crystallisation Kinetics of Metal Organic Frameworks From <i>in situ</i> Time-Resolved X-ray Diffraction, 2013, 28, S256-S275.	0.4	52
504	Synthesis and Characterization of a 2D Cobalt(II) Coordination Polymer Containing the Adiponitrile Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 2134-2137.	0.6	2
506	Ag(I) and Cu(II) Coordination Polymers of Pyridylmethyl-Benzimidazole Ligand: Syntheses, Crystal Structure, and Influence of Metal Ion. Molecular Crystals and Liquid Crystals, 2014, 605, 197-205.	0.4	0

#	Article	IF	CITATIONS
508	Porous Lanthanide Metal–Organic Frameworks for Gas Storage and Separation. Structure and Bonding, 2014, , 75-107.	1.0	15
509	Exploring the interplay between ligand and topology in zeolitic imidazolate frameworks with computational chemistry. Molecular Simulation, 2014, 40, 25-32.	0.9	7
511	A three-dimensional metal–organic framework for selective sensing of nitroaromatic compounds. APL Materials, 2014, 2, .	2.2	44
512	A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption. Materials, 2014, 7, 3198-3250.	1.3	262
513	Structural dynamics inside a functionalized metal–organic framework probed by ultrafast 2D IR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18442-18447.	3.3	76
514	Zn ^{II} –Dipyridylamideâ€Based Coordination Frameworks: Structural Transformation and Anion Effect. ChemPlusChem, 2014, 79, 387-393.	1.3	7
515	A thermodynamic description of the adsorption-induced structural transitions in flexible MIL-53 metal-organic framework. Molecular Physics, 2014, 112, 1257-1261.	0.8	18
516	Challenges in first-principles NPT molecular dynamics of soft porous crystals: A case study on MIL-53(Ga). Journal of Chemical Physics, 2014, 141, 064703.	1.2	25
517	Templateâ€Induced Diverse Metal–Organic Materials as Catalysts for the Tandem Acylation–Nazarov Cyclization. Chemistry - A European Journal, 2014, 20, 16156-16163.	1.7	25
518	Distortional Supramolecular Isomers of Polyrotaxane Coordination Polymers: Photoreactivity and Sensing of Nitro Compounds. Angewandte Chemie, 2014, 126, 5697-5701.	1.6	26
519	A New 3D Coordination Polymer Based on Pentanuclear Cd(II) Rod-Shaped Secondary Building Unit: Synthesis, Crystal Structure and Luminescent Property. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 971-976.	1.9	1
520	Assembly of Zn(II) Coordination Polymers Based on Tetrachloroterephthalate and Dipyridyl-type Ligands. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2014, 69, 299-304.	0.3	0
521	Adsorption by Metal-Organic Frameworks. , 2014, , 565-610.		13
522	Synthesis, structures, characterization and antimicrobial activity of two novel coordination complexes derived from 2-naphthoxyacetic acid. Journal of the Iranian Chemical Society, 2014, 11, 1321-1328.	1.2	3
523	The Largely Unknown Class of Microporous Hybrid Materials: Clays Pillared by Molecules. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 547-560.	0.6	15
524	Interaction of Various Gas Molecules with Paddle-Wheel-Type Open Metal Sites of Porous Coordination Polymers: Theoretical Investigation. Inorganic Chemistry, 2014, 53, 2417-2426.	1.9	21
525	A copper based pillared-bilayer metal organic framework: its synthesis, sorption properties and catalytic performance. Dalton Transactions, 2014, 43, 7191-7199.	1.6	43
526	Thermal expansion behaviors of Mn(II)-pyridylbenzoate frameworks based on metal-carboxylate chains. Science China Chemistry, 2014, 57, 365-370.	4.2	20

ARTICLE IF CITATIONS # Exploration of Structural Topologies in Metalâ€"Organic Frameworks Based on 3-(4-Carboxyphenyl)propionic Acid, Their Synthesis, Sorption, and Luminescent Property Studies. 527 46 1.4 Crystal Growth and Design, 2014, 14, 2022-2033. Approaches for synthesizing breathing MOFs by exploiting dimensional rigidity. Coordination Chemistry Reviews, 2014, 258-259, 119-136. 528 Metalâ€"organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chemical 529 18.7 739 Society Reviews, 2014, 43, 5867-5895. Synthesis, supramolecular assemblies and luminescence of nickel(II) complexes based on a series of 530 1.2 N-(2-pyridylmethyl) amino acid derivatives. Inorganica Chimica Acta, 2014, 418, 59-65. Achieving a Rare Breathing Behavior in a Polycatenated 2 D to 3 D Net through a Pillarâ€Ligand Extension 17 531 38 Strategy. Chemistry - A European Journal, 2014, 20, 649-652. Distortional Supramolecular Isomers of Polyrotaxane Coordination Polymers: Photoreactivity and Sensing of Nitro Compounds. Angewandte Chemie - International Edition, 2014, 53, 5591-5595. Stepwise Synthesis of Robust Metalâ€"Organic Frameworks via Postsynthetic Metathesis and Oxidation of Metal Nódes in a Single-Crystal to Single-Crystal Transformation. Journal of the American Chemical Society, 2014, 136, 7813-7816. 533 6.6 215 Oxamato-based coordination polymers: recent advances in multifunctional magnetic materials. 534 Chemical Communications, 2014, 50, 7569-7585. Synthesis of Nanoporous Carbon–Cobaltâ€Oxide Hybrid Electrocatalysts by Thermal Conversion of 535 253 1.7 Metal–Organic Frameworks. Chemistry - A European Journal, 2014, 20, 4217-4221. Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials. Nature 13.3 Materials, 2014, 13, 333-343. Rigidifying Fluorescent Linkers by Metal–Organic Framework Formation for Fluorescence Blue Shift 537 6.6 531 and Quantum Yield Enhancement. Journal of the American Chemical Society, 2014, 136, 8269-8276. $\begin{array}{l} {\sf Bis(pyrazolato)-Based Metala} \in ``Organic Frameworks Fabricated with $4,4a \in 2-Bis((3,5-dimethyl-1<i>H</i>-pyrazol-4-yl)methyl) biphenyl and Late Transition Metals. Crystal Growth $(1,1,1)$ Crystal Growth $(1,1,$ 1.4 and Design, 2014, 14, 3142-3152. Postsynthetic modification of IRMOFâ€3 with a copper iminopyridine complex as heterogeneous catalyst 539 1.7 24 for the synthesis of 2â€aminobenzothiazoles. Applied Organometallic Chemistry, 2014, 28, 198-203. Porous Inorganic Membranes for CO₂ Capture: Present and Prospects. Chemical Reviews, 2014, 114, 1413-1492. 540 23.0 481 Recent NMR developments applied to organic–inorganic materials. Progress in Nuclear Magnetic 541 3.9 78 Resonance Spectroscopy, 2014, 77, 1-48. From assembled metal–organic framework nanoparticles to hierarchically porous carbon for 542 2.2 329 electrochemical energy storage. Chemical Communications, 2014, 50, 1519-1522. Fluorinated metalâ€"organic frameworks of 1,4-bis(1,2,4-triazol-1-ylmethyl)-2,3,5,6-tetrafluorobenzene: 543 synergistic interactions of ligand isomerism and counteranions. Dalton Transactions, 2014, 43, 1.6 18 646-655. Molecular Engineering of Functional Inorganic and Hybrid Materials. Chemistry of Materials, 2014, 26, 544 3.2 221-238.

#	Article	IF	CITATIONS
545	One-dimensional coordination polymers constructed from di- and trinuclear {3d–4f} tectons. A new useful spacer in crystal engineering: 1,3-bis(4-pyridyl)azulene. CrystEngComm, 2014, 16, 319-327.	1.3	20
546	Single Crystal to Single Crystal Polymerization of a Self-Assembled Diacetylene Macrocycle Affords Columnar Polydiacetylenes. Crystal Growth and Design, 2014, 14, 993-1002.	1.4	53
547	On the Flexibility of Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 2228-2231.	6.6	198
548	Ligand Dynamics of Drug-Loaded Microporous Zirconium Terephthalates-Based Metal–Organic Frameworks: Impact of the Nature and Concentration of the Guest. Journal of Physical Chemistry C, 2014, 118, 1983-1989.	1.5	26
549	Construction of Two Microporous Metal–Organic Frameworks with flu and pyr Topologies Based on Zn ₄ (μ ₃ -OH) ₂ (CO ₂) ₆ and Zn ₆ (μ ₆ -O)(CO ₂) ₆ Secondary Building Units. Inorganic Chemistry, 2014, 53, 1032-1038.	1.9	48
550	Rotating Phenyl Rings as a Guest-Dependent Switch in Two-Dimensional Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 671-678.	6.6	65
551	Formation of Coordination Polymers or Discrete Adducts via Reactions of Gadolinium(III)–Copper(II) 15-Metallacrown-5 Complexes with Polycarboxylates: Synthesis, Structures and Magnetic Properties. Inorganic Chemistry, 2014, 53, 1320-1330.	1.9	49
552	From Hydrated Ni ₃ (OH) ₂ (C ₈ H ₄ O ₄) ₂ (H _{2<!--<br-->to Anhydrous Ni₂(OH)₂(C₈H₄O₄): Impact of Structural Transformations on Magnetic Properties. Inorganic Chemistry. 2014. 53. 872-881.}	/sub>0) <s< td=""><td>ubչ4չ/sub></td></s<>	ubչ4չ/sub>
553	Hydrocarbon Separations in Metal–Organic Frameworks. Chemistry of Materials, 2014, 26, 323-338.	3.2	517
554	Structural Dynamics in a "Breathing―Metal–Organic Framework Studied by Electron Paramagnetic Resonance of Nitroxide Spin Probes. Journal of Physical Chemistry Letters, 2014, 5, 20-24.	2.1	48
555	Guestâ€Responsive Function of a Dynamic Metal–Organic Framework with a Ï€ Lewis Acidic Pore Surface. Chemistry - A European Journal, 2014, 20, 15303-15308.	1.7	43
556	A Complete Separation of Hexane Isomers by a Functionalized Flexible Metal Organic Framework. Advanced Functional Materials, 2014, 24, 7666-7673.	7.8	81
557	Two Homochiral Bimetallic Metal–Organic Frameworks Composed of a Paramagnetic Metalloligand and Chiral Camphorates: Multifunctional Properties of Sorption, Magnetism, and Enantioselective Separation. Crystal Growth and Design, 2014, 14, 6472-6477.	1.4	39
558	Visualizing the distinctly different crystal-to-crystal structural dynamism and sorption behavior of interpenetration-direction isomeric coordination networks. Chemical Science, 2014, 5, 4755-4762.	3.7	56
559	Metal-ion controlled solid-state reactivity and photoluminescence in two isomorphous coordination polymers. Inorganic Chemistry Frontiers, 2014, 1, 172.	3.0	15
560	Metal ions and solvents ratio co-regulate four new magnetic coordination polymers based upon an unsymmetric tricarboxylate acid ligand. Dalton Transactions, 2014, 43, 10947.	1.6	18
561	Controlled Cyclopolymerization of Difunctional Vinyl Monomers in Coordination Nanochannels. Macromolecules, 2014, 47, 7321-7326.	2.2	26
562	Highly Selective Adsorption and Separation of Aniline/Phenol from Aqueous Solutions by Microporous MIL-53(Al): A Combined Experimental and Computational Study. Langmuir, 2014, 30, 12229-12235.	1.6	47

#	Article	IF	CITATIONS
563	Structural diversity and magnetic properties of six metal–organic polymers based on semirigid tricarboxylate ligand of 3,5-bi(4-carboxyphenoxy)benzoic acid. Dalton Transactions, 2014, 43, 15979-15989.	1.6	39
564	Modulating guest binding in sulfonylcalixarene-based metal–organic supercontainers. Chemical Communications, 2014, 50, 5385-5387.	2.2	55
565	Syntheses, structures, and properties of a series of 2D and 3D coordination polymers based on trifunctional pyridinedicarboxylate and different (bis)imidazole bridging ligands. CrystEngComm, 2014, 16, 2144-2157.	1.3	48
566	Highly active AuCo alloy nanoparticles encapsulated in the pores of metal–organic frameworks for hydrolytic dehydrogenation of ammonia borane. Chemical Communications, 2014, 50, 5899.	2.2	115
567	Water and methanol adsorption on MOFs for cycling heat transformation processes. New Journal of Chemistry, 2014, 38, 1846-1852.	1.4	215
568	Two porous metal–organic frameworks (MOFs) based on mixed ligands: synthesis, structure and selective gas adsorption. CrystEngComm, 2014, 16, 3097.	1.3	14
569	Guest Controlled Rotational Dynamics of Terephthalate Phenylenes in Metal–Organic Framework MIL-53(Al): Effect of Different Xylene Loadings. Journal of Physical Chemistry C, 2014, 118, 15978-15984.	1.5	42
570	Conformation-Controlled Sorption Properties and Breathing of the Aliphatic Al-MOF [Al(OH)(CDC)]. Inorganic Chemistry, 2014, 53, 4610-4620.	1.9	74
571	A Luminescent Mixed-Lanthanide-Organic Framework Sensor for Decoding Different Volatile Organic Molecules. Analytical Chemistry, 2014, 86, 6648-6653.	3.2	91
572	Vanadium metal–organic frameworks: structures and applications. New Journal of Chemistry, 2014, 38, 1853-1867.	1.4	57
573	Synthesis, characterization and selective hysteretic sorption property of metal–organic frameworks with 3,5-di(pyridine-4-yl)benzoate. CrystEngComm, 2014, 16, 6300.	1.3	25
574	Diffusion-Coupled Molecular Assembly: Structuring of Coordination Polymers Across Multiple Length Scales. Journal of the American Chemical Society, 2014, 136, 14966-14973.	6.6	50
575	The role of C–Hâ<¯ï€ interactions in modulating the breathing amplitude of a 2D square lattice net: alcohol sorption studies. CrystEngComm, 2014, 16, 8160-8168.	1.3	20
576	Solvent-Free and Time Efficient Postsynthetic Modification of Amino-Tagged Metal–Organic Frameworks with Carboxylic Acid Derivatives. Chemistry of Materials, 2014, 26, 6722-6728.	3.2	65
577	Crystal Transformation in Zeolitic-Imidazolate Framework. Crystal Growth and Design, 2014, 14, 6589-6598.	1.4	157
578	Five Cd(<scp>ii</scp>) coordination polymers based on 2,3′,5,5′-biphenyltetracarboxylic acid and N-donor coligands: syntheses, structures and fluorescent properties. CrystEngComm, 2014, 16, 6417-6424.	1.3	62
579	Host–guest interaction dictated selective adsorption and fluorescence quenching of a luminescent lightweight metal–organic framework toward liquid explosives. Dalton Transactions, 2014, 43, 15237-15244.	1.6	26
580	Dynamic 2D manganese(ii) isonicotinate framework with reversible crystal-to-amorphous transformation and selective guest adsorption. CrystEngComm, 2014, 16, 4959.	1.3	21

#	Article	IF	CITATIONS
581	Unprecedented metal-ion metathesis in a metal–carboxylate chain-based metal–organic framework. CrystEngComm, 2014, 16, 2344.	1.3	17
582	Impact of crystal orientation on the adsorption kinetics of a porous coordination polymer–quartz crystal microbalance hybrid sensor. Journal of Materials Chemistry C, 2014, 2, 3336.	2.7	38
583	A supramolecular Co(<scp>ii</scp>) ₁₄ -metal–organic cube in a hydrogen-bonded network and a Co(<scp>ii</scp>)–organic framework with a flexible methoxy substituent. Chemical Communications, 2014, 50, 5441-5443.	2.2	39
584	Syntheses, structures, and luminescence properties of four metal–organic polymers with undocumented topologies constructed from 3,5-bis((4′-carboxylbenzyl)oxy)benzoate ligand. RSC Advances, 2014, 4, 30274-30281.	1.7	25
585	Three metal–organic frameworks based on the semirigid V-shaped 5-(3-amino-tetrazole-5-phenoxy)-isophthalic acid ligand: syntheses, topological structures and properties. CrystEngComm, 2014, 16, 4382.	1.3	24
586	ZIF-8 micromembranes for gas separation prepared on laser-perforated brass supports. Journal of Materials Chemistry A, 2014, 2, 11177-11184.	5.2	22
587	Syntheses, structures, and magnetic properties of five coordination polymers constructed from biphenyl-3,4′,5-tricarboxylic acid and (bis)imidazole linkers. CrystEngComm, 2014, 16, 3203-3213.	1.3	48
588	Dehydration-triggered magnetic phase conversion in the porous Cu(ii)Mn(iii) metal–organic framework. Dalton Transactions, 2014, 43, 6994.	1.6	3
589	Water Stability and Adsorption in Metal–Organic Frameworks. Chemical Reviews, 2014, 114, 10575-10612.	23.0	1,951
590	Targeted Manipulation of Metal–Organic Frameworks To Direct Sorption Properties. ChemPhysChem, 2014, 15, 823-839.	1.0	46
591	Distortions of a flexible metal-organic framework from substituted pendant ligands. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 11-18.	0.5	6
592	Discrete and Polymeric Cu(II) Complexes Derived from in Situ Generated Pyridyl-Functionalized Bis(amido)phosphate Ligands, [PO ₂ (NHPy) ₂] ^{â~`} . Crystal Growth and Design, 2014, 14, 1701-1709.	1.4	9
593	A luminescent metal–organic framework demonstrating ideal detection ability for nitroaromatic explosives. Journal of Materials Chemistry A, 2014, 2, 1465-1470.	5.2	396
594	Multicycle water vapour stability of microporous breathing MOF aluminium isophthalate CAU-10-H. Dalton Transactions, 2014, 43, 15300-15304.	1.6	145
595	Construction of Three Novel Coordination Complexes by 3-Nitrophthalic Acid Plus N-Donor Ligands: Synthesis, Structure, and Properties. Molecular Crystals and Liquid Crystals, 2014, 593, 214-231.	0.4	0
596	Remarkable Pressure Responses of Metal–Organic Frameworks: Proton Transfer and Linker Coiling in Zinc Alkyl Gates. Journal of the American Chemical Society, 2014, 136, 11540-11545.	6.6	82
597	Perspective of microporous metal–organic frameworks for CO ₂ capture and separation. Energy and Environmental Science, 2014, 7, 2868.	15.6	693
598	Substitution reactions in metal–organic frameworks and metal–organic polyhedra. Chemical Society Reviews, 2014, 43, 5952-5981.	18.7	204

#	Article	IF	CITATIONS
599	Syntheses, topologies, and luminescence of four Ln–organic polymers constructed from aromatic tetracarboxylic acids. CrystEngComm, 2014, 16, 9191-9197.	1.3	23
600	High valence 3p and transition metal based MOFs. Chemical Society Reviews, 2014, 43, 6097-6115.	18.7	437
601	Prediction of flexibility of metal–organic frameworks CAU-13 and NOTT-300 by first principles molecular simulations. Chemical Communications, 2014, 50, 5867.	2.2	46
602	A porous metal–organic framework with an elongated anthracene derivative exhibiting a high working capacity for the storage of methane. Journal of Materials Chemistry A, 2014, 2, 11516.	5.2	40
603	Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chemical Society Reviews, 2014, 43, 5789-5814.	18.7	408
604	Carboxyl Group (CO ₂ H) Functionalized Coordination Polymer Nanoparticles as Efficient Platforms for Drug Delivery. Chemistry - A European Journal, 2014, 20, 15443-15450.	1.7	49
605	Synthesis and characterization of zeolitic imidazolate framework ZIF-7 for CO2 and CH4 separation. Microporous and Mesoporous Materials, 2014, 190, 189-196.	2.2	100
606	Water Adsorption in Flexible Gallium-Based MIL-53 Metal–Organic Framework. Journal of Physical Chemistry C, 2014, 118, 5397-5405.	1.5	55
607	Structure versatility of coordination polymers constructed from a semirigid ligand and polynuclear metal clusters. CrystEngComm, 2014, 16, 8047-8057.	1.3	44
608	Synthetic Supercontainers Exhibit Distinct Solution versus Solid State Guest-Binding Behavior. Journal of the American Chemical Society, 2014, 136, 7480-7491.	6.6	114
609	Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field. Physical Chemistry Chemical Physics, 2014, 16, 16060-16066.	1.3	31
610	Stoichiometry-Controlled Two Flexible Interpenetrated Frameworks: Higher CO ₂ Uptake in a Nanoscale Counterpart Supported by Accelerated Adsorption Kinetics. Inorganic Chemistry, 2014, 53, 5993-6002.	1.9	54
611	A three-dimensional porous and magnetic framework constructed from copper salt and 5-Methyltetrazole: [Cu8(Metz)9](OH)·xH2O. Journal of the Iranian Chemical Society, 2014, 11, 847-852.	1.2	5
612	A Porous Metal–Organic Framework with Dynamic Pyrimidine Groups Exhibiting Record High Methane Storage Working Capacity. Journal of the American Chemical Society, 2014, 136, 6207-6210.	6.6	311
613	Assembly of Two Flexible Metal–Organic Frameworks with Stepwise Gas Adsorption and Highly Selective CO2 Adsorption. Crystal Growth and Design, 2014, 14, 2375-2380.	1.4	42
614	Diamondoid Hydrazones and Hydrazides: Sterically Demanding Ligands for Sn/S Cluster Design. Organometallics, 2014, 33, 1678-1688.	1.1	30
615	Guest Exchange through Single Crystal–Single Crystal Transformations in a Flexible Hydrogen-Bonded Framework. Journal of the American Chemical Society, 2014, 136, 14200-14206.	6.6	93
616	Utilising hinged ligands in MOF synthesis: a covalent linking strategy for forming 3D MOFs. CrystEngComm, 2014, 16, 6364-6371.	1.3	10

#	Article	IF	CITATIONS
617	Series of Solvent-Induced Single-Crystal to Single-Crystal Transformations with Different Sizes of Solvent Molecules. Inorganic Chemistry, 2014, 53, 7527-7533.	1.9	48
619	Exploring and Exploiting Dynamic Noncovalent Chemistry for Effective Surface Modification of Nanoscale Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2014, 6, 5404-5412.	4.0	16
620	Syntheses, structures, and magnetic properties of six coordination polymers based on 4,5-di(4′-carboxylphenyl)phthalic acid and different bis(imidazole) bridging linkers. CrystEngComm, 2014, 16, 7649-7659.	1.3	40
621	In situ monitoring of structural changes during the adsorption on flexible porous coordination polymers by X-ray powder diffraction: Instrumentation and experimental results. Microporous and Mesoporous Materials, 2014, 188, 190-195.	2.2	58
622	MIL-53 frameworks in mixed-matrix membranes. Microporous and Mesoporous Materials, 2014, 196, 165-174.	2.2	106
623	Microporous Metal–Organic Frameworks for Gas Separation. Chemistry - an Asian Journal, 2014, 9, 1474-1498.	1.7	183
624	Guest-dependent mechanical anisotropy in pillared-layered soft porous crystals – a nanoindentation study. Chemical Science, 2014, 5, 2392.	3.7	62
625	Flexible metal–organic frameworks. Chemical Society Reviews, 2014, 43, 6062-6096.	18.7	1,741
626	From Metal–Organic Framework to Intrinsically Fluorescent Carbon Nanodots. Chemistry - A European Journal, 2014, 20, 8279-8282.	1.7	68
627	Nanoporous Designer Solids with Huge Lattice Constant Gradients: Multiheteroepitaxy of Metal–Organic Frameworks. Nano Letters, 2014, 14, 1526-1529.	4.5	130
628	Two kinds of 3D coordination frameworks from monometallic to 4d–4f heterometallic: Synthesis, crystal structures, photoluminescence and magnetic properties. Inorganic Chemistry Communication, 2014, 46, 163-171.	1.8	7
629	Unusual adsorption behavior of volatile hydrocarbons on MOF-5 studied using thermodesorption methods. Thermochimica Acta, 2014, 587, 1-10.	1.2	17
630	Nanoporous Materials Can Tune the Critical Point of a Pure Substance. Angewandte Chemie - International Edition, 2015, 54, 14349-14352.	7.2	16
631	Coordination Polymer Flexibility Leads to Polymorphism and Enables a Crystalline Solid–Vapour Reaction: A Multiâ€ŧechnique Mechanistic Study. Chemistry - A European Journal, 2015, 21, 8799-8811.	1.7	25
632	Computational Approaches to the Design, Crystal Structure Prediction, and Structure–Property Relationships of Metal–Organic Frameworks. , 2015, , 1-52.		0
633	Structural, energetic and dynamic insights into the abnormal xylene separation behavior of hierarchical porous crystal. Scientific Reports, 2015, 5, 11537.	1.6	29
635	Stable Heterometallic Cu ^{II} â€Ba ^{II} â€2,5â€Thiophenedicarboxylate Framework with High Capacity for Light Hydrocarbons. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1307-1310.	0.6	2
636	Hydrothermal Syntheses, Crystal Structures, and Luminescent Properties of Two Zinc(II) Coordination Polymers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1767-1771.	0.6	1

#	Article	IF	CITATIONS
637	Flexible Metal–Organic Frameworks: Recent Advances and Potential Applications. Advanced Materials, 2015, 27, 5432-5441.	11.1	470
640	A Robust Infinite Zirconium Phenolate Building Unit to Enhance the Chemical Stability of Zr MOFs. Angewandte Chemie - International Edition, 2015, 54, 13297-13301.	7.2	116
641	Influence of Solvent‣ike Sidechains on the Adsorption of Light Hydrocarbons in Metal–Organic Frameworks. Chemistry - A European Journal, 2015, 21, 18764-18769.	1.7	32
642	A Flexible Photoactive Titanium Metal–Organic Framework Based on a [Ti ^{IV} ₃ (μ ₃ â€O)(O) ₂ (COO) ₆] Cluster. Angewandte Chemie - International Edition, 2015, 54, 13912-13917.	7.2	103
643	An Ideal Detector Composed of Twoâ€Dimensional Cd(II)–Triazole Frameworks for Nitroâ€Compound Explosives and Potassium Dichromate. Chemistry - A European Journal, 2015, 21, 14171-14178.	1.7	42
644	High CO ₂ /CH ₄ Selectivity of a Flexible Copper(II) Porous Coordination Polymer under Humid Conditions. ChemPlusChem, 2015, 80, 1517-1524.	1.3	19
645	Probing Solid-State Breathing and Structural Transformations in a Series of Silver(I) Porous Coordination Polymers. European Journal of Inorganic Chemistry, 2015, 2015, 3723-3729.	1.0	10
647	Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane. Materials, 2015, 8, 4512-4534.	1.3	22
648	Post-Synthetic Shaping of Porosity and Crystal Structure of Ln-Bipy-MOFs by Thermal Treatment. Molecules, 2015, 20, 12125-12153.	1.7	14
649	Application of MD Simulations to Predict Membrane Properties of MOFs. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	21
651	Reversible photoluminescence switching behavior and luminescence thermochromism of copper(I) halide cluster coordination polymers. RSC Advances, 2015, 5, 40792-40797.	1.7	18
652	Structural diversity of five coordination polymers based on 2,6-bis(3,5-dicarboxyphenyl)pyridine ligand: solvothermal syntheses, structural characterizations, and magnetic properties. CrystEngComm, 2015, 17, 4669-4679.	1.3	41
653	Investigating adsorption of organic compounds in metal-organic framework MIL-53. Canadian Journal of Chemistry, 2015, 93, 960-969.	0.6	15
654	Flexible Solid Sorbents for CO2 CaptureÂand Separation. , 2015, , 149-176.		2
655	Preparation and catalytic applications of nanomaterials: a review. RSC Advances, 2015, 5, 53381-53403.	1.7	231
656	Guest-containing supramolecular isomers of silver(<scp>i</scp>) 3,5-dialkyl-1,2,4-triazolates: syntheses, structures, and structural transformation behaviours. CrystEngComm, 2015, 17, 8843-8849.	1.3	8
657	Double-step CO ₂ sorption and guest-induced single-crystal-to-single-crystal transformation in a flexible porous framework. Dalton Transactions, 2015, 44, 10141-10145.	1.6	16
658	Single-crystal-to-single-crystal transformation of an anion exchangeable dynamic metal–organic framework. CrystEngComm, 2015, 17, 8796-8800.	1.3	20

#	Article	IF	CITATIONS
659	A 2D metal–organic framework composed of a bi-functional ligand with ultra-micropores for post-combustion CO ₂ capture. RSC Advances, 2015, 5, 47384-47389.	1.7	10
661	Control of Diffusion and Conformation Behavior of Methyl Methacrylate Monomer by Phenylene Fin in Porous Coordination Polymers. Journal of Physical Chemistry C, 2015, 119, 27291-27297.	1.5	10
662	Coligand syntheses, crystal structures, luminescence and photocatalytic properties of five coordination polymers based on rigid tetracarboxylic acids and imidazole linkers. CrystEngComm, 2015, 17, 9413-9422.	1.3	75
663	Electronic and magnetic properties of DUT-8(Ni). Physical Chemistry Chemical Physics, 2015, 17, 17122-17129.	1.3	29
664	Crystal chemistry of aluminium carboxylates: From molecular species towards porous infinite three-dimensional networks. Comptes Rendus Chimie, 2015, 18, 1350-1369.	0.2	56
665	Metal-Cation-Independent Dynamics of Phenylene Ring in Microporous MOFs: A ² H Solid-State NMR Study. Journal of Physical Chemistry C, 2015, 119, 28038-28045.	1.5	36
666	A New Class of Cuprous Bromide Cluster-Based Hybrid Materials: Direct Observation of the Stepwise Replacement of Hydrogen Bonds by Coordination Bonds. Inorganic Chemistry, 2015, 54, 554-559.	1.9	19
667	A stable zinc-4-carboxypyrazole framework with high uptake and selectivity of light hydrocarbons. Dalton Transactions, 2015, 44, 2893-2896.	1.6	47
668	Effect of synthesis solvent on the breathing behavior of MIL-53(Al). Journal of Colloid and Interface Science, 2015, 447, 33-39.	5.0	88
669	Structural Origin of Unusual CO ₂ Adsorption Behavior of a Small-Pore Aluminum Bisphosphonate MOF. Journal of Physical Chemistry C, 2015, 119, 4208-4216.	1.5	63
670	Interaction of the Trinuclear Triangular Secondary Building Unit [Cu ₃ (μ ₃ -OH)(μ-pz) ₃] ²⁺ with 4,4â€ ² -Bipyridine. Structural Characterizations of New Coordination Polymers and Hexanuclear Cu ^{II} Clusters. 2ð. Crystal Growth and Design, 2015, 15, 1259-1272.	1.4	20
671	Perceptive Approach in Assessing Rigidity versus Flexibility in the Construction of Diverse Metal–Organic Coordination Networks: Synthesis, Structure, and Magnetism. Crystal Growth and Design, 2015, 15, 1407-1421.	1.4	42
672	Responsive Metal–Organic Frameworks and Framework Materials: Under Pressure, Taking the Heat, in the Spotlight, with Friends. Chemistry of Materials, 2015, 27, 1905-1916.	3.2	432
674	Hysteretic Gas and Vapor Sorption in Flexible Interpenetrated Lanthanide-Based Metal–Organic Frameworks with Coordinated Molecular Gating via Reversible Single-Crystal-to-Single-Crystal Transformation for Enhanced Selectivity. Chemistry of Materials, 2015, 27, 1502-1516.	3.2	76
675	Syntheses, structures, topologies, and luminescence properties of four coordination polymers based on bifunctional 6-(4-pyridyl)-terephthalic acid and bis(imidazole) bridging linkers. RSC Advances, 2015, 5, 14897-14905.	1.7	27
676	New forms of old drugs: improving without changing. Journal of Pharmacy and Pharmacology, 2015, 67, 830-846.	1.2	76
677	Using Hansen solubility parameters to study the encapsulation of caffeine in MOFs. Organic and Biomolecular Chemistry, 2015, 13, 1724-1731.	1.5	53
678	A "green―strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Scientific Reports, 2015, 5, 7925.	1.6	139

#	Article	IF	CITATIONS
679	Metal organic framework synthesis in the presence of surfactants: towards hierarchical MOFs?. CrystEngComm, 2015, 17, 1693-1700.	1.3	78
680	Lanthanide Metal-Organic Frameworks. Structure and Bonding, 2015, , .	1.0	33
681	Two Distinct Redox Intercalation Reactions of Hydroquinone with Porous Vanadium Benzenedicarboxylate MIL-47. Inorganic Chemistry, 2015, 54, 1822-1828.	1.9	15
682	A Two-Dimensional Lead(II) Coordination Polymer Based on Rectangular Hexanuclear Lead(II): Synthesis, Crystal Structure, and Properties. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 725-729.	0.6	0
683	Efficient synthesis of aluminum- and zinc-containing metal-organic frameworks. Inorganic Materials, 2015, 51, 236-240.	0.2	3
684	Photoluminescence and Gas Sorption Properties of a New Zinc(II) Coordination Polymer Constructed from Biphenylâ€3,3â€2,5,5â€2â€ŧetracarboxylate Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 596-600.	0.6	4
685	Self-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behaviours. Nature Communications, 2015, 6, 6350.	5.8	65
686	Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO ₂ capture?. Chemical Society Reviews, 2015, 44, 2421-2454.	18.7	732
687	Monolithic High Performance Surface Anchored Metalâ^'Organic Framework Bragg Reflector for Optical Sensing. Chemistry of Materials, 2015, 27, 1991-1996.	3.2	54
688	Beyond the H ₂ /CO ₂ upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes. Journal of Materials Chemistry A, 2015, 3, 6549-6556.	5.2	99
689	Multiphoton harvesting metal–organic frameworks. Nature Communications, 2015, 6, 7954.	5.8	149
690	Radical Copolymerization Mediated by Unsaturated Metal Sites in Coordination Nanochannels. ACS Macro Letters, 2015, 4, 788-791.	2.3	24
691	Modulating the microporosity of cobalt phosphonates via positional isomerism of co-linkers. CrystEngComm, 2015, 17, 8926-8932.	1.3	11
692	Direct Guest Exchange Induced Single-Crystal to Single-Crystal Transformation Accompanying Irreversible Crystal Expansion in Soft Porous Coordination Polymers. Crystal Growth and Design, 2015, 15, 4266-4271.	1.4	20
693	Fast and long-range triplet exciton diffusion inÂmetal–organic frameworks for photon upconversion at ultralow excitation power. Nature Materials, 2015, 14, 924-930.	13.3	111
694	Assembly of a series of d ¹⁰ coordination polymers based on W-shaped 1,3-di(2′,4′-dicarboxyphenyl)benzene: from syntheses, structural diversity, luminescence, to photocatalytic properties. CrystEngComm, 2015, 17, 6681-6692.	1.3	39
695	Functional map of biological and biomimetic materials with hierarchical surface structures. RSC Advances, 2015, 5, 66901-66926.	1.7	43
696	Porous metal–organic frameworks with Lewis basic nitrogen sites for high-capacity methane storage. Energy and Environmental Science, 2015, 8, 2504-2511.	15.6	126

#	Article	IF	CITATIONS
697	Unusually Large Band Gap Changes in Breathing Metal–Organic Framework Materials. Journal of Physical Chemistry C, 2015, 119, 16667-16677.	1.5	52
698	Metal–Organic Frameworks Encapsulated in Photocleavable Capsules for UV-Light Triggered Catalysis. Chemistry of Materials, 2015, 27, 5495-5502.	3.2	31
699	Porous frameworks constructed by non-covalent linking of substitution-inert metal complexes. Dalton Transactions, 2015, 44, 15334-15342.	1.6	14
700	A self-catenated rob-type porous coordination polymer constructed from triazolate and carboxylate ligands: fluorescence response to the reversible phase transformation. CrystEngComm, 2015, 17, 6023-6029.	1.3	9
701	Ion template effects of 4,5-dicyanoimidazole in the assembly of a series of 3D bimetallic coordination networks. CrystEngComm, 2015, 17, 6103-6106.	1.3	6
702	A series of multi-dimensional metal–organic frameworks with trans-4,4′-azo-1,2,4-triazole: polymorphism, guest induced single-crystal-to-single-crystal transformation and solvatochromism. CrystEngComm, 2015, 17, 5396-5409.	1.3	31
703	Syntheses, structures, luminescence and magnetic properties of eleven coordination polymers constructed by a N,N′-sulfuryldiimidazole ligand. CrystEngComm, 2015, 17, 5054-5065.	1.3	18
704	Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and <i>ab-initio</i> calculations. Journal of Chemical Physics, 2015, 142, 124702.	1.2	47
705	Theoretical study of conformational disorder and selective adsorption of small organic molecules in the flexible metal-organic framework material MIL-53-Fe. Molecular Simulation, 2015, 41, 1348-1356.	0.9	7
706	Syntheses, structures, luminescent and magnetic properties of two coordination polymers based on a flexible multidentate carboxylate ligand. Chinese Chemical Letters, 2015, 26, 499-503.	4.8	11
707	Extreme Flexibility in a Zeolitic Imidazolate Framework: Porous to Dense Phase Transition in Desolvated ZIFâ€4. Angewandte Chemie - International Edition, 2015, 54, 6447-6451.	7.2	87
708	Zinc-Formate Metal–Organic Frameworks: Watch Out for Reactive Solvents. Journal of Chemical Crystallography, 2015, 45, 178-188.	0.5	10
709	A flexible zinc tetrazolate framework exhibiting breathing behaviour on xenon adsorption and selective adsorption of xenon over other noble gases. Journal of Materials Chemistry A, 2015, 3, 10747-10752.	5.2	80
710	Hydrothermal syntheses, structural characterizations, and magnetic properties of five MOFs assembled from C ₂ -symmetric ligand of 1,3-di(2′,4′-dicarboxylphenyl)benzene with various coordination modes. RSC Advances, 2015, 5, 39854-39863.	1.7	21
712	Multifunctional lanthanide coordination polymers. Progress in Polymer Science, 2015, 48, 40-84.	11.8	176
713	Pd nanoparticles supported on hierarchically porous carbons derived from assembled nanoparticles of a zeolitic imidazolate framework (ZIF-8) for methanol electrooxidation. Chemical Communications, 2015, 51, 10827-10830.	2.2	62
714	Novel metal–organic framework with tunable fluorescence property: supramolecular signaling platform for polynitrophenolics. Dalton Transactions, 2015, 44, 6348-6352.	1.6	29
715	Radical polymerization of 2,3-dimethyl-1,3-butadiene in coordination nanochannels. Chemical Communications, 2015, 51, 9892-9895.	2.2	24

#	Article	IF	CITATIONS
716	A new 3D cobalt (II) metal–organic framework nanostructure for heavy metal adsorption. Inorganica Chimica Acta, 2015, 430, 261-267.	1.2	70
717	Carbohydrate-Mediated Purification of Petrochemicals. Journal of the American Chemical Society, 2015, 137, 5706-5719.	6.6	112
718	Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule. Chemical Science, 2015, 6, 1949-1958.	3.7	40
719	Confinement of Single Polysilane Chains in Coordination Nanospaces. Journal of the American Chemical Society, 2015, 137, 5231-5238.	6.6	70
720	Synthesis, Crystal Structure, and Properties of Two 2D Lamella Coordination Polymers Generated from Unsymmetrically Carboxylate Bridging Ligand. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 914-920.	0.6	6
721	Electrochromic switching of monolithic Prussian blue thin film devices. Optics Express, 2015, 23, 13725.	1.7	19
722	Tolerance of Flexible MOFs toward Repeated Adsorption Stress. ACS Applied Materials & Interfaces, 2015, 7, 22292-22300.	4.0	67
723	Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers. Applied Physics Letters, 2015, 107, .	1.5	9
724	Solid-State Reversible Nucleophilic Addition in a Highly Flexible MOF. Journal of the American Chemical Society, 2015, 137, 13072-13078.	6.6	35
725	Molecular-Level Studies on Dynamic Behavior of Oligomeric Chain Molecules in Porous Coordination Polymers. Journal of Physical Chemistry C, 2015, 119, 21504-21514.	1.5	33
726	A Comparison of Barostats for the Mechanical Characterization of Metal–Organic Frameworks. Journal of Chemical Theory and Computation, 2015, 11, 5583-5597.	2.3	83
727	Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature, 2015, 527, 357-361.	13.7	817
728	Reversible Single-Crystal to Single-Crystal Transformations of a Zn(II)–Salicyaldimine Coordination Polymer Accompanying Changes in Coordination Sphere and Network Dimensionality upon Dehydration and Rehydration. Inorganic Chemistry, 2015, 54, 10918-10924.	1.9	20
729	Structural Transformation of Zn ^{II} â€Dipyridylamideâ€Based Coordination Frameworks: Hybridâ€Ligand and Metal Effects. ChemPlusChem, 2015, 80, 878-885.	1.3	3
730	Isoreticular synthesis of 2D MOFs with rotating aryl rings. Inorganic Chemistry Frontiers, 2015, 2, 1001-1005.	3.0	4
731	Hydrothermal Breakdown of Flexible Metal–Organic Frameworks: A Study by First-Principles Molecular Dynamics. Journal of Physical Chemistry Letters, 2015, 6, 4365-4370.	2.1	23
732	Hierarchical structuring of metal–organic framework thin-films on quartz crystal microbalance (QCM) substrates for selective adsorption applications. Journal of Materials Chemistry A, 2015, 3, 23385-23394.	5.2	56
733	Spatial, Hysteretic, and Adaptive Host–Guest Chemistry in a Metal–Organic Framework with Open Watson–Crick Sites. Angewandte Chemie - International Edition, 2015, 54, 10454-10459.	7.2	81

#	Article	IF	CITATIONS
734	Recent advances in metal–organic frameworks based on pyridylbenzoate ligands: properties and applications. RSC Advances, 2015, 5, 88218-88233.	1.7	17
735	Softening upon Adsorption in Microporous Materials: A Counterintuitive Mechanical Response. Journal of Physical Chemistry Letters, 2015, 6, 4265-4269.	2.1	20
736	Solvent-Free Synthesis of a Pillared Three-Dimensional Coordination Polymer with Magnetic Ordering. Inorganic Chemistry, 2015, 54, 10490-10496.	1.9	19
737	Reversible Tuning Hydroquinone/Quinone Reaction in Metal–Organic Framework: Immobilized Molecular Switches in Solid State. Chemistry of Materials, 2015, 27, 6426-6431.	3.2	72
738	Semi-analytical mean-field model for predicting breathing in metal–organic frameworks. Molecular Simulation, 2015, 41, 1311-1328.	0.9	21
739	Five metal imidazole dicarboxylate-based compounds comprising M ₃ (MIDC) ₂ entities (M = Zn ²⁺ , Co ²⁺ , Mn ²⁺): syntheses, structures and properties. Journal of Coordination Chemistry, 2015, 68, 3651-3666.	0.8	3
740	Synthesis and Structural Characterizations of New Coordination Polymers Generated by the Interaction Between the Trinuclear Triangular SBU [Cu ₃ (1¼ ₃ 33	al ^{1.4}	21
741	A series of mixed-ligand 2D and 3D coordination polymers assembled from a novel multifunctional pyridine-tricarboxylate building block: hydrothermal syntheses, structural and topological diversity, and magnetic and luminescent properties. RSC Advances, 2015, 5, 78889-78901.	1.7	79
742	Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology. Journal of the American Chemical Society, 2015, 137, 13183-13190.	6.6	149
743	Influence of Guest Molecules on the Crystal Lattice Structure and Porous Structure Characteristics of Coordination Polymers. Theoretical and Experimental Chemistry, 2015, 51, 301-306.	0.2	1
744	A 2D Semiquinone Radical-Containing Microporous Magnet with Solvent-Induced Switching from <i>T</i> _c = 26 to 80 K. Journal of the American Chemical Society, 2015, 137, 15699-15702.	6.6	164
745	Reaction of Copper(II) Chloroacetate with Pyrazole. Synthesis of a One-Dimensional Coordination Polymer and Unexpected Dehydrochlorination Reaction. Crystal Growth and Design, 2015, 15, 5910-5918.	1.4	18
747	Chemical and Structural Stability of Zirconiumâ€based Metal–Organic Frameworks with Large Threeâ€Dimensional Pores by Linker Engineering. Angewandte Chemie - International Edition, 2015, 54, 221-226.	7.2	141
748	Thermally induced polymerization of binuclear [Ni2(en)2(H2O)6(pyr)]·4H2O complex. Thermochimica Acta, 2015, 607, 82-91.	1.2	7
749	Structural diversities and related properties of four coordination polymers synthesized from original ligand of 3,3′,5,5′-azobenzenetetracarboxylic acid. Dalton Transactions, 2015, 44, 2380-2389.	1.6	63
750	Hierarchical embedding of micro-mesoporous MIL-101(Cr) in macroporous poly(2-hydroxyethyl) Tj ETQq1 1 0.784 applications. Microporous and Mesoporous Materials, 2015, 204, 242-250.	1314 rgBT 2.2	/Overlock 1(56
752	Bivalent metal-based MIL-53 analogues: Synthesis, properties and application. Journal of Solid State Chemistry, 2015, 223, 84-94.	1.4	10
753	Flexible metal–organic framework-based one-dimensional photonic crystals. Journal of Materials Chemistry C, 2015, 3, 211-216.	2.7	61

#	Article	IF	Citations
754	Switchable Guest Molecular Dynamics in a Perovskite‣ike Coordination Polymer toward Sensitive Thermoresponsive Dielectric Materials. Angewandte Chemie - International Edition, 2015, 54, 914-918.	7.2	186
755	Experimental evidence of negative linear compressibility in the MIL-53 metal–organic framework family. CrystEngComm, 2015, 17, 276-280.	1.3	119
756	Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal–organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation. Catalysis Science and Technology, 2015, 5, 525-530.	2.1	179
757	Design of Highly Porous Singleâ€Site Catalysts through Twoâ€Step Postsynthetic Modification of Mixedâ€Linker MILâ€53(Al). ChemPlusChem, 2015, 80, 188-195.	1.3	26
758	Real-time monitoring of breathing of MIL-53(Al) by environmental SEM. Microporous and Mesoporous Materials, 2015, 203, 17-23.	2.2	33
759	Synthesis of chiral porous coordination polymer that shows structural transformation induced by guest molecules. Inorganica Chimica Acta, 2015, 424, 221-225.	1.2	3
760	Separation of CO 2 /CH 4 mixtures over NH 2 -MIL-53—An experimental and modelling study. Chemical Engineering Science, 2015, 124, 96-108.	1.9	28
761	Sonochemical syntheses of binuclear lead(II)-azido supramolecule with ligand 3,4,7,8-tetramethyl-1,10-phenanthroline as precursor for preparation of lead(II) oxide nanoparticles. Ultrasonics Sonochemistry, 2015, 23, 275-281.	3.8	40
762	Transport Phenomena in Nanoporous Materials. ChemPhysChem, 2015, 16, 24-51.	1.0	105
763	Location of CO ₂ during its uptake by the flexible porous metal–organic framework MIL-53(Fe): a high resolution powder X-ray diffraction study. CrystEngComm, 2015, 17, 422-429.	1.3	19
764	Flexibility transition and guest-driven reconstruction in a ferroelastic metal–organic framework. CrystEngComm, 2015, 17, 361-369.	1.3	24
766	Highly and Stably Water Permeable Thin Film Nanocomposite Membranes Doped with MIL-101 (Cr) Nanoparticles for Reverse Osmosis Application. Materials, 2016, 9, 870.	1.3	90
767	Bio-Inspired Metal-Organic Frameworks in the Pharmaceutical World: A Brief Review. , 0, , .		5
768	Anionâ€Directed Entangling Coordination Networks: Luminescence Sensing and Magnetic Properties. ChemPlusChem, 2016, 81, 857-863.	1.3	11
769	Direct Evidence of CO ₂ Capture under Low Partial Pressure on a Pillared Metal–Organic Framework with Improved Stabilization through Intramolecular Hydrogen Bonding. ChemPlusChem, 2016, 81, 850-856.	1.3	21
770	Iron and Groups V- and VI-based MOFs. , 0, , 171-202.		2
771	Radical Polymerization of Vinyl Monomers in Porous Organic Cages. Angewandte Chemie, 2016, 128, 6553-6557.	1.6	11
772	A Breathing Zirconium Metal–Organic Framework with Reversible Loss of Crystallinity by Correlated Nanodomain Formation. Chemistry - A European Journal, 2016, 22, 3264-3267.	1.7	41

#	Article	IF	Citations
773	Metal Organic Framework Crystals in Mixedâ€Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance. Advanced Functional Materials, 2016, 26, 3154-3163.	7.8	225
774	Visualizing the Dynamics of Temperature―and Solventâ€Responsive Soft Crystals. Angewandte Chemie - International Edition, 2016, 55, 7478-7482.	7.2	59
775	A Baseâ€Resistant Zn ^{II} â€Based Metal–Organic Framework: Synthesis, Structure, Postsynthetic Modification, and Gas Adsorption. ChemPlusChem, 2016, 81, 864-871.	1.3	16
776	Crystal Structure and Luminescent Properties of Diverse Cadmium(II) Coordination Polymers Based on A Semirigid Multicarboxylate Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 492-499.	0.6	4
777	Extraordinary Separation of Acetyleneâ€Containing Mixtures with Microporous Metal–Organic Frameworks with Open O Donor Sites and Tunable Robustness through Control of the Helical Chain Secondary Building Units. Chemistry - A European Journal, 2016, 22, 5676-5683.	1.7	113
778	Thermal and Gas Dualâ€Responsive Behaviors of an Expanded UiOâ€66â€Type Porous Coordination Polymer. ChemPlusChem, 2016, 81, 817-821.	1.3	11
779	Visualizing the Dynamics of Temperature―and Solventâ€Responsive Soft Crystals. Angewandte Chemie, 2016, 128, 7604-7608.	1.6	44
780	Inâ€Situ Observation of Successive Crystallizations and Metastable Intermediates in the Formation of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2016, 55, 2012-2016.	7.2	53
781	A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO ₂ Removal and Air Capture Using Physisorption. Journal of the American Chemical Society, 2016, 138, 9301-9307.	6.6	366
782	Evidence of Gate-Opening on Xenon Adsorption on ZIF-8: An Adsorption and Computer Simulation Study. Journal of Physical Chemistry C, 2016, 120, 16649-16657.	1.5	22
783	Radical Polymerization of Vinyl Monomers in Porous Organic Cages. Angewandte Chemie - International Edition, 2016, 55, 6443-6447.	7.2	30
784	Synthesis, Structure, and Selected Properties of Aluminum-, Gallium-, and Indium-Based Metal-Organic Frameworks. , 0, , 105-135.		5
785	Origins of Negative Gas Adsorption. CheM, 2016, 1, 873-886.	5.8	89
786	Communication: Many-body stabilization of non-covalent interactions: Structure, stability, and mechanics of Ag3Co(CN)6 framework. Journal of Chemical Physics, 2016, 145, 241101.	1.2	11
787	Syntheses, structural diversity and photocatalytic properties of various Co(<scp>ii</scp>) coordination polymers based on a "V―shaped 1,3-di(4′-carboxyl-phenyl)benzene acid and different imidazole bridging ligands. CrystEngComm, 2016, 18, 2901-2912.	1.3	58
788	Exchange of Coordinated Solvent During Crystallization of a Metal–Organic Framework Observed by In Situ Highâ€Energy Xâ€ray Diffraction. Angewandte Chemie - International Edition, 2016, 55, 4992-4996.	7.2	41
789	Syntheses, structures and properties of group 12 element (Zn, Cd, Hg) coordination polymers with a mixed-functional phosphonate-biphenyl-carboxylate linker. CrystEngComm, 2016, 18, 5209-5223.	1.3	23
790	A highly electrical conducting, 3D supermolecular Ag(I) coordination polymer material with luminescent properties. Inorganic Chemistry Communication, 2016, 70, 31-34.	1.8	4

#	Article	IF	CITATIONS
791	Waste PET (bottles) as a resource or substrate for MOF synthesis. Journal of Materials Chemistry A, 2016, 4, 9519-9525.	5.2	100
792	Selective CO ₂ adsorption in four zinc(<scp>ii</scp>)-based metal organic frameworks constructed using a rigid N,N′-donor linker and various dicarboxylate ligands. CrystEngComm, 2016, 18, 4395-4404.	1.3	25
793	Exchange of Coordinated Solvent During Crystallization of a Metal–Organic Framework Observed by In Situ Highâ€Energy Xâ€ray Diffraction. Angewandte Chemie, 2016, 128, 5076-5080.	1.6	14
794	Assembly of a 3D chiral Cu(I) metal–organic framework based on 4,5-dicyanoimidazole: CD spectrum, luminescence and selective gas adsorption. Inorganic Chemistry Communication, 2016, 68, 17-20.	1.8	4
795	A pressure-amplifying framework material with negative gas adsorption transitions. Nature, 2016, 532, 348-352.	13.7	490
796	Tuning the adsorption behaviors of water, methanol, and ethanol in a porous material by varying the flexibility of substituted groups. Dalton Transactions, 2016, 45, 7235-7239.	1.6	19
797	A Fluorinated Metal–Organic Framework for High Methane Storage at Room Temperature. Crystal Growth and Design, 2016, 16, 3395-3399.	1.4	36
798	Heterometallic Alkaline Earth–Lanthanide Ba ^{II} –La ^{III} Microporous Metal–Organic Framework as Bifunctional Luminescent Probes of Al ³⁺ and MnO ₄ [–] . Inorganic Chemistry, 2016, 55, 4391-4402.	1.9	195
799	Ambient pressure synthesis of MIL-100(Fe) MOF from homogeneous solution using a redox pathway. Dalton Transactions, 2016, 45, 8637-8644.	1.6	50
800	Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr). Dalton Transactions, 2016, 45, 9565-9573.	1.6	70
801	A Microporous Metal–Organic Framework with Lewis Basic Nitrogen Sites for High C ₂ H ₂ Storage and Significantly Enhanced C ₂ H ₂ /CO ₂ Separation at Ambient Conditions. Inorganic Chemistry, 2016, 55, 7214-7218.	1.9	124
802	Crystal Dynamics in Multiâ€stimuliâ€Responsive Entangled Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 15864-15873.	1.7	46
803	Highly stable MIL-101(Cr) doped water permeable thin film nanocomposite membranes for water treatment. RSC Advances, 2016, 6, 82669-82675.	1.7	43
804	Influence of the Amide Groups in the CO ₂ /N ₂ Selectivity of a Series of Isoreticular, Interpenetrated Metal–Organic Frameworks. Crystal Growth and Design, 2016, 16, 6016-6023.	1.4	73
805	Variation of Desolvation Behavior in Two Isostructural Metal–Organic Frameworks Based on a Flexible, Racemic Bifunctional Organic Linker. European Journal of Inorganic Chemistry, 2016, 2016, 4430-4439.	1.0	4
806	lodine sequestration by thiol-modified MIL-53(Al). CrystEngComm, 2016, 18, 8108-8114.	1.3	54
807	The Impact of Mesopores on the Mechanical Stability of HKUSTâ€1: A Multiscale Investigation. European Journal of Inorganic Chemistry, 2016, 2016, 4517-4523.	1.0	21
808	Dual structure evolution of a Ag(<scp>i</scp>) supramolecular framework triggered by anion-exchange: replacement of terminal ligand and switching of network interpenetration degree. Chemical Communications, 2016, 52, 11060-11063.	2.2	23

#	Article	IF	Citations
809	A four-fold interpenetrated metal–organic framework as a fluorescent sensor for volatile organic compounds. Dalton Transactions, 2016, 45, 14888-14892.	1.6	56
810	Structural diversity, luminescence and photocatalytic properties of six coordination polymers based on designed bifunctional 2-(imidazol-1-yl)terephthalic acid. CrystEngComm, 2016, 18, 6914-6925.	1.3	48
811	Tetragonal versus Hexagonal: Structure-Dependent Catalytic Activity of Co/Zn Bimetallic Metal–Organic Frameworks. Inorganic Chemistry, 2016, 55, 9250-9257.	1.9	18
812	Ultraslow Dynamics of a Framework Linker in MIL-53 (Al) as a Sensor for Different Isomers of Xylene. Journal of Physical Chemistry C, 2016, 120, 21704-21709.	1.5	27
813	High-Pressure Chemistry of a Zeolitic Imidazolate Framework Compound in the Presence of Different Fluids. Journal of the American Chemical Society, 2016, 138, 11477-11480.	6.6	40
814	M(II)-dipyridylamide-based coordination frameworks (M=Mn, Co, Ni): Structural transformation. Journal of Solid State Chemistry, 2016, 243, 70-76.	1.4	3
815	Metal-organic frameworks based mixed matrix membranes for pervaporation. Microporous and Mesoporous Materials, 2016, 235, 151-159.	2.2	124
816	A Rigid Nested Metal–Organic Framework Featuring a Thermoresponsive Gating Effect Dominated by Counterions. Angewandte Chemie, 2016, 128, 15251-15254.	1.6	16
817	A New Cu ^{II} Coordination Polymer: Structural Elucidation, EPR and Sensing Studies for Detection of Volatile Organic Solvents. ChemistrySelect, 2016, 1, 2192-2198.	0.7	5
818	A Seed-mediated Spray-drying Method for Facile Syntheses of Zr-MOF and a Pillared-layer-type MOF. Chemistry Letters, 2016, 45, 1313-1315.	0.7	6
819	Coordination Polymers of M ₂ L ₂ Macrocycles and M ₃ L ₂ Podands Containing Tris (pyridyl) Tripodal Amide: Anion Bridging, Agâ‹â‹â Interactions and Solidâ€5tate Luminescence. ChemistrySelect, 2016, 1, 2299-2306.	g0.7	1
820	Facile Separation of Regioisomeric Compounds by a Heteronuclear Organometallic Capsule. Journal of the American Chemical Society, 2016, 138, 10700-10707.	6.6	102
821	Exploring the Flexibility of MIL-47(V)-Type Materials Using Force Field Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2016, 120, 14934-14947.	1.5	48
822	Single-Crystal-to-Single-Crystal Breathing and Guest Exchange in Co ^{II} Metal–Organic Frameworks. Crystal Growth and Design, 2016, 16, 5247-5259.	1.4	28
823	Deformation of Microporous Carbons during N ₂ , Ar, and CO ₂ Adsorption: Insight from the Density Functional Theory. Langmuir, 2016, 32, 8265-8274.	1.6	49
824	Precise Modulation of the Breathing Behavior and Pore Surface in Zrâ€MOFs by Reversible Postâ€5ynthetic Variableâ€5pacer Installation to Fineâ€Tune the Expansion Magnitude and Sorption Properties. Angewandte Chemie, 2016, 128, 10086-10090.	1.6	30
825	Precise Modulation of the Breathing Behavior and Pore Surface in Zrâ€MOFs by Reversible Post‧ynthetic Variable‧pacer Installation to Fineâ€Tune the Expansion Magnitude and Sorption Properties. Angewandte Chemie - International Edition, 2016, 55, 9932-9936.	7.2	125
826	Tin Sulfide Clusters with Polyheteroatomic Ligands: Syntheses, Structures, and Photoluminescence Properties. European Journal of Inorganic Chemistry, 2016, 2016, 5300-5304.	1.0	8

#	Article	IF	CITATIONS
827	Influence of Pore Dimension on the Host–Guest Interaction in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2016, 120, 27319-27327.	1.5	15
828	Polymerâ€based monolithic column with incorporated chiral metal–organic framework for enantioseparation of methyl phenyl sulfoxide using nanoâ€liquid chromatography. Journal of Separation Science, 2016, 39, 4544-4548.	1.3	33
829	A Rigid Nested Metal–Organic Framework Featuring a Thermoresponsive Gating Effect Dominated by Counterions. Angewandte Chemie - International Edition, 2016, 55, 15027-15030.	7.2	166
830	Arene Selectivity by a Flexible Coordination Polymer Host. Chemistry - A European Journal, 2016, 22, 13120-13126.	1.7	17
831	An Efficient Synthesis Strategy for Metal-Organic Frameworks: Dry-Gel Synthesis of MOF-74 Framework with High Yield and Improved Performance. Scientific Reports, 2016, 6, 28050.	1.6	67
832	A porous magnesium metal–organic framework showing selective adsorption and separation of nitrile guest molecules. RSC Advances, 2016, 6, 104451-104455.	1.7	7
833	Ferro- or antiferromagnetic interactions controlled by ditopic or chelating auxiliary ligands in 3D metal–organic frameworks. Dalton Transactions, 2016, 45, 18696-18703.	1.6	6
834	Tuning the Adsorption-Induced Phase Change in the Flexible Metal–Organic Framework Co(bdp). Journal of the American Chemical Society, 2016, 138, 15019-15026.	6.6	123
835	CO-releasing molecule (CORM) conjugate systems. Dalton Transactions, 2016, 45, 18045-18063.	1.6	105
836	Anion―and Solventâ€Induced Assembly and Reversible Structural Transformation of d ¹⁰ â€Metal Coordination Architectures Containing <i>N</i> â€(4â€Aminophenyloxy)phenyl)isonicotinamide. Chemistry - A European Journal, 2016, 22, 1522-1530.	1.7	5
837	Adsorbent–Adsorbate Interactions in the Oxidation of HMF Catalyzed by Ni-Based MOFs: A DRIFT and FT-IR Insight. Journal of Physical Chemistry C, 2016, 120, 15310-15321.	1.5	20
838	Thermo-responsive Ruthenium Dendrimer-based Catalysts for Hydrogenation of the Aromatic Compounds and Phenols. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1264-1279.	1.9	16
839	Supported Zeolite and MOF Molecular Sieve Membranes. , 2016, , 283-307.		3
840	Probing the structural flexibility of MOFs by constructing metal oxide@MOF-based heterostructures for size-selective photoelectrochemical response. Nanoscale, 2016, 8, 13181-13185.	2.8	27
841	Towards scalable and controlled synthesis of metal–organic framework materials using continuous flow reactors. Reaction Chemistry and Engineering, 2016, 1, 352-360.	1.9	68
842	Zeolites as coating materials for Fiber Bragg Grating chemical sensors for extreme conditions. Sensors and Actuators B: Chemical, 2016, 235, 698-706.	4.0	24
843	Inâ€Situ Observation of Successive Crystallizations and Metastable Intermediates in the Formation of Metal–Organic Frameworks. Angewandte Chemie, 2016, 128, 2052-2056.	1.6	15
844	<scp>¹³C NMR</scp> Study of <scp>CO₂</scp> Adsorbed in Highly Flexible Porous Metalâ€Organic Frameworks. Bulletin of the Korean Chemical Society, 2016, 37, 588-591.	1.0	8

#	Article	IF	CITATIONS
845	Application of metal–organic frameworks for purification of vegetable oils. Food Chemistry, 2016, 190, 103-109.	4.2	48
846	Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples. Journal of Chromatography A, 2016, 1428, 236-245.	1.8	88
847	Second harmonic generation microscopy reveals hidden polar organization in fluoride doped MIL-53(Fe). Dalton Transactions, 2016, 45, 4401-4406.	1.6	19
848	Exploration of Gate-Opening and Breathing Phenomena in a Tailored Flexible Metal–Organic Framework. Inorganic Chemistry, 2016, 55, 1920-1925.	1.9	81
849	Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering. Chemical Communications, 2016, 52, 3639-3642.	2.2	106
850	A porous metal–organic framework with a unique hendecahedron-shaped cage: structure and controlled drug release. Dalton Transactions, 2016, 45, 3694-3697.	1.6	18
851	Nanoporous lanthanide metal–organic frameworks as efficient heterogeneous catalysts for the Henry reaction. CrystEngComm, 2016, 18, 1337-1349.	1.3	43
852	Synthesis, structure and adsorption properties of lanthanide–organic frameworks with pyridine-3,5-bis(phenyl-4-carboxylate). Dalton Transactions, 2016, 45, 2591-2597.	1.6	22
853	Mechanism of water adsorption in the large pore form of the gallium-based MIL-53 metal-organic framework. Microporous and Mesoporous Materials, 2016, 222, 145-152.	2.2	14
854	Postsynthetic bromination of UiO-66 analogues: altering linker flexibility and mechanical compliance. Dalton Transactions, 2016, 45, 4132-4135.	1.6	34
855	A responsive MOF nanocomposite for decoding volatile organic compounds. Chemical Communications, 2016, 52, 2265-2268.	2.2	128
856	Synthesis, structure and characterization of a layered coordination polymer based on Zn(<scp>ii</scp>) and 6-(methylmercapto)purine. RSC Advances, 2016, 6, 260-268.	1.7	9
857	Iron-based metal–organic framework, Fe(BTC): an effective dual-functional catalyst for oxidative cyclization of bisnaphthols and tandem synthesis of quinazolin-4(3H)-ones. RSC Advances, 2016, 6, 1136-1142.	1.7	55
858	The dynamic response of a flexible indium based metal–organic framework to gas sorption. Chemical Communications, 2016, 52, 2277-2280.	2.2	36
859	The controlled synthesis of polyglucose in one-dimensional coordination nanochannels. Chemical Communications, 2016, 52, 5156-5159.	2.2	32
860	Model Study of Thermoresponsive Behavior of Metal–Organic Frameworks Modulated by Linker Functionalization. Journal of Physical Chemistry C, 2016, 120, 6835-6841.	1.5	14
861	A pH-responsive phase transformation of a sulfonated metal–organic framework from amorphous to crystalline for efficient CO ₂ capture. CrystEngComm, 2016, 18, 2803-2807.	1.3	34
862	Metal–organic frameworks with a large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125 °C. Journal of Materials Chemistry A, 2016, 4, 4062-4070.	5.2	109

#	Article	IF	CITATIONS
863	An Adsorbate Discriminatory Gate Effect in a Flexible Porous Coordination Polymer for Selective Adsorption of CO ₂ over C ₂ H ₂ . Journal of the American Chemical Society, 2016, 138, 3022-3030.	6.6	359
864	Synthesis, crystal structures and luminescence properties of rare earth-cadmium hydroxycarbonats with the formula RE 2 Cd(CO 3)(OH) 6 (RE = Y, Er). Inorganica Chimica Acta, 2016, 444, 217-220.	1.2	4
865	Multiscale adsorption and transport in hierarchical porous materials. New Journal of Chemistry, 2016, 40, 4078-4094.	1.4	88
866	Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metal–organic framework. CrystEngComm, 2016, 18, 4303-4312.	1.3	96
867	Tuning the flexibility in MOFs by SBU functionalization. Dalton Transactions, 2016, 45, 4407-4415.	1.6	34
868	Automated design of flexible linkers. Dalton Transactions, 2016, 45, 4338-4345.	1.6	3
869	129Xenon NMR: Review of recent insights into porous materials. Microporous and Mesoporous Materials, 2016, 225, 41-65.	2.2	67
870	Encapsulation of essential oils in porous silica and MOFs for trichloroisocyanuric acid tablets used for water treatment in swimming pools. Chemical Engineering Journal, 2016, 292, 28-34.	6.6	41
871	How Guest Molecules Stabilize the Narrow Pore Phase of Soft Porous Crystals: Structural and Mechanical Properties of MIL-53(Al)⊃H2O. Journal of Physical Chemistry C, 2016, 120, 5059-5066.	1.5	14
872	Diffusion in nanoporous materials: fundamental principles, insights and challenges. New Journal of Chemistry, 2016, 40, 4027-4048.	1.4	153
873	Isoreticular zirconium-based metal–organic frameworks: discovering mechanical trends and elastic anomalies controlling chemical structure stability. Physical Chemistry Chemical Physics, 2016, 18, 9079-9087.	1.3	46
874	Recent emergence of photon upconversion based on triplet energy migration in molecular assemblies. Chemical Communications, 2016, 52, 5354-5370.	2.2	152
875	Adsorption deformation of microporous composites. Dalton Transactions, 2016, 45, 4136-4140.	1.6	14
876	Exploring biphenyl-2,4,4′-tricarboxylic acid as a flexible building block for the hydrothermal self-assembly of diverse metal–organic and supramolecular networks. CrystEngComm, 2016, 18, 765-778.	1.3	15
877	Molecular simulation of low temperature argon adsorption in several models of IRMOF-1 with defects and structural disorder. Dalton Transactions, 2016, 45, 4203-4212.	1.6	25
878	Coarse graining of force fields for metal–organic frameworks. Dalton Transactions, 2016, 45, 4370-4379.	1.6	32
879	Syntheses, structures, and properties of transition metal coordination polymers based on a long semirigid tetracarboxylic acid and multidentate N-donor ligands. Solid State Sciences, 2016, 52, 118-125.	1.5	2
880	40-Fold Enhanced Intrinsic Proton Conductivity in Coordination Polymers with the Same Proton-Conducting Pathway by Tuning Metal Cation Nodes. Inorganic Chemistry, 2016, 55, 983-986.	1.9	68

#	Article	IF	CITATIONS
881	General Deposition of Metal–Organic Frameworks on Highly Adaptive Organic–Inorganic Hybrid Electrospun Fibrous Substrates. ACS Applied Materials & Interfaces, 2016, 8, 2552-2561.	4.0	84
882	Guest water-controlled reversible crystalline-to-amorphous transition and concomitant fluorescence shift in a polar open coordination polymer. Inorganica Chimica Acta, 2016, 443, 64-68.	1.2	11
883	Role of molecular simulations in the structure exploration of Metal-Organic Frameworks: Illustrations through recent advances in the field. Comptes Rendus Chimie, 2016, 19, 207-215.	0.2	12
884	Flexibility in MOFs: do scalar and group-theoretical counting rules work?. Dalton Transactions, 2016, 45, 4360-4369.	1.6	10
885	Diverse Zn(II) MOFs assembled from V-shaped asymmetric multicarboxylate and N-donor ligands. Journal of Molecular Structure, 2016, 1106, 192-199.	1.8	23
886	Self-assembly, binding ability and magnetic properties of dicopper(ii) pyrazolenophanes. CrystEngComm, 2016, 18, 437-449.	1.3	6
887	Two New Series of Coordination Polymers and Evaluation of Their Properties by Density Functional Theory. Crystal Growth and Design, 2016, 16, 339-346.	1.4	6
888	MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance. Sensors and Actuators B: Chemical, 2016, 225, 158-166.	4.0	191
889	Two double and triple interpenetrated Cd(II) and Zn(II) coordination polymers based on mixed O- and N-donor ligands: Syntheses, crystal structures and luminescent properties. Journal of Molecular Structure, 2016, 1103, 56-60.	1.8	11
890	Metal–organic frameworks for photocatalysis. Physical Chemistry Chemical Physics, 2016, 18, 7563-7572.	1.3	304
891	Synthesis, structure and sorption property of metal complexes with mixed multicarboxylate and imidazole-containing ligands. Microporous and Mesoporous Materials, 2016, 219, 199-208.	2.2	13
892	Coordination polymers and metal–organic frameworks based on poly(pyrazole)-containing ligands. Coordination Chemistry Reviews, 2016, 307, 1-31.	9.5	222
893	Spectral and dynamical properties of a Zr-based MOF. Physical Chemistry Chemical Physics, 2016, 18, 5112-5120.	1.3	36
894	Neutral N-donor ligand based flexible metal–organic frameworks. Dalton Transactions, 2016, 45, 4060-4072.	1.6	73
895	Compositional dependence of anomalous thermal expansion in perovskite-like ABX ₃ formates. Dalton Transactions, 2016, 45, 4169-4178.	1.6	78
896	The flexibility of modified-linker MIL-53 materials. Dalton Transactions, 2016, 45, 4162-4168.	1.6	37
897	Hierarchy in inorganic membranes. Chemical Society Reviews, 2016, 45, 3468-3478.	18.7	76
898	van der Waals Metalâ€Organic Framework as an Excitonic Material for Advanced Photonics. Advanced Materials, 2017, 29, 1606034.	11.1	67

		CITATION REPORT		
#	Article		IF	Citations
899	Application of metal â^' organic frameworks. Polymer International, 2017, 66	, 731-744.	1.6	163
900	Combined in- and ex situ studies of pyrazine adsorption into the aliphatic MOF Al-CAU dynamics and correlations. Dalton Transactions, 2017, 46, 1397-1405.	-13: structures,	1.6	21
901	Statistical mechanical model of gas adsorption in porous crystals with dynamic moieti of the National Academy of Sciences of the United States of America, 2017, 114, E287	es. Proceedings 7-E296.	3.3	34
902	Adsorbate-induced lattice deformation in IRMOF-74 series. Nature Communications, 2	017, 8, 13945.	5.8	34
903	Uncovering the Rotation and Translational Mobility of Benzene Confined in UiO-66 (Zr Metal–Organic Framework by the ² H NMR–QENS Experimental Tool Physical Chemistry C, 2017, 121, 2844-2857.) box. Journal of	1.5	35
904	Two new isomeric zinc(II) metal–organic frameworks based on 1,5-bis(2-methyl-1 <i>H</i> -imidazol-1-yl)pentane and 5-methylisophthalate ligands. Ac Crystallographica Section C, Structural Chemistry, 2017, 73, 78-83.	ta	0.2	2
905	Robust Multifunctional Yttrium-Based Metal–Organic Frameworks with Breathing Ef Chemistry, 2017, 56, 1193-1208.	fect. Inorganic	1.9	47
906	Dynamic behaviours of a rationally prepared flexible MOF by postsynthetic modificatio struts. Chemical Communications, 2017, 53, 3220-3223.	n of ligand	2.2	12
907	Rationally tuning host–guest interactions to free hydroxide ions within intertrimeric cuprophilic metal–organic frameworks for high OH ^{â^'} conductivity. Jou Chemistry A, 2017, 5, 7816-7824.		5.2	71
908	Preparation of Porous Polysaccharides Templated by Coordination Polymer with Three Nanochannels. ACS Applied Materials & amp; Interfaces, 2017, 9, 11373-11379.	Dimensional	4.0	25
909	Highly Enhanced Gas Uptake and Selectivity via Incorporating Methoxy Groups into a I Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 2172-2177.	Vicroporous	1.4	26
910	Thermodynamics of the Flexible Metal–Organic Framework Material MIL-53(Cr) Fror Journal of Physical Chemistry C, 2017, 121, 4312-4317.	n First-Principles.	1.5	40
911	Gas confinement in compartmentalized coordination polymers for highly selective sor Science, 2017, 8, 3109-3120.	otion. Chemical	3.7	15
912	Pyrolysis of Helical Coordination Polymers for Metal-Sulfide-Based Helices with Broadb Chiroptical Activity. ACS Nano, 2017, 11, 5309-5317.	and	7.3	14
913	Beyond Equilibrium: Metal–Organic Frameworks for Molecular Sieving and Kinetic G Crystal Growth and Design, 2017, 17, 2291-2308.	as Separation.	1.4	109
914	Cation-Exchange Approach to Tuning the Flexibility of a Metal–Organic Framework f Adsorption. Inorganic Chemistry, 2017, 56, 5069-5075.	or Gated	1.9	16
915	Infrared laser writing of MOFs. Chemical Communications, 2017, 53, 5275-5278.		2.2	11
916	Confinement of alcohols to enhance CO ₂ capture in MIL-53(Al). RSC Adv 24833-24840.	ances, 2017, 7,	1.7	24

#	Article	IF	CITATIONS
917	Guest Hydrogen Bond Dynamics and Interactions in the Metal–Organic Framework MIL-53(Al) Measured with Ultrafast Infrared Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 11880-11890.	1.5	21
918	The â€~folklore' and reality of reticular chemistry. Materials Chemistry Frontiers, 2017, 1, 1304-1309.	3.2	47
919	Crystalline bilayers unzipped and rezipped: solid-state reaction cycle of a metal–organic framework with triple rearrangement of intralayer bonds. CrystEngComm, 2017, 19, 2987-2995.	1.3	12
920	Isoreticular rare earth fcu-MOFs for the selective removal of H2S from CO2 containing gases. Chemical Engineering Journal, 2017, 324, 392-396.	6.6	98
921	Exploring 4-(3-carboxyphenyl)picolinic acid as a semirigid building block for the hydrothermal self-assembly of diverse metal–organic and supramolecular networks. CrystEngComm, 2017, 19, 117-128.	1.3	14
922	Assembly of an indium–porphyrin framework JLU-Liu7 : a mesoporous metal–organic framework with high gas adsorption and separation of light hydrocarbons. Inorganic Chemistry Frontiers, 2017, 4, 139-143.	3.0	32
923	A highly stable metalâ€organic framework with optimum aperture size for CO ₂ capture. AICHE Journal, 2017, 63, 4103-4114.	1.8	85
924	Multiscale study of the structure and hydrogen storage capacity of an aluminum metal-organic framework. International Journal of Hydrogen Energy, 2017, 42, 15271-15282.	3.8	25
925	A Flexible Doubly Interpenetrated Metal–Organic Framework with Breathing Behavior and Tunable Gate Opening Effect by Introducing Co ²⁺ into Zn ₄ O Clusters. Inorganic Chemistry, 2017, 56, 6645-6651.	1.9	39
926	A review on synthesis, crystal structure and functionality of naphthalenedicarboxylate ligated metal-organic frameworks. Inorganica Chimica Acta, 2017, 466, 308-323.	1.2	26
927	Versatile Assembly of Metal-Coordinated Calix[4]resorcinarene Cavitands and Cages through Ancillary Linker Tuning. Journal of the American Chemical Society, 2017, 139, 7648-7656.	6.6	92
928	Porous Iron-Carboxylate Metal–Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity. ACS Applied Materials & Interfaces, 2017, 9, 19248-19257.	4.0	123
929	Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chemical Society Reviews, 2017, 46, 3402-3430.	18.7	1,033
930	Tunability in Metal Coordination Sphere, Ligand Coordination Mode, Network Topology, and Magnetism via Stepwise Dehydration Induced Single-Crystal to Single-Crystal Transformation. Crystal Growth and Design, 2017, 17, 3724-3730.	1.4	12
931	Pillared-Layer Metal–Organic Frameworks for Improved Lithium-Ion Storage Performance. ACS Applied Materials & Interfaces, 2017, 9, 21839-21847.	4.0	66
932	A potential Cu/V-organophosphonate platform for tailored void spaces <i>via</i> terpyridine mold casting. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 296-303.	0.5	15
933	Tuning Synergistic Effect of Au–Pd Bimetallic Nanocatalyst for Aerobic Oxidative Carbonylation of Amines. Chemistry of Materials, 2017, 29, 3671-3677.	3.2	38
934	Phosphotungstic acid encapsulated in MILâ€53(Fe) as efficient visibleâ€light photocatalyst for rhodamine B degradation. Environmental Progress and Sustainable Energy, 2017, 36, 1342-1350.	1.3	13

#	Article	IF	CITATIONS
935	Macroscopic Simulation of Deformation in Soft Microporous Composites. Journal of Physical Chemistry Letters, 2017, 8, 1578-1584.	2.1	13
936	Electrically Induced Breathing of the MIL-53(Cr) Metal–Organic Framework. ACS Central Science, 2017, 3, 394-398.	5.3	102
937	A Dynamic Three-Dimensional Covalent Organic Framework. Journal of the American Chemical Society, 2017, 139, 4995-4998.	6.6	213
938	The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials. Journal of the American Chemical Society, 2017, 139, 5547-5557.	6.6	100
939	Tailoring adsorption induced phase transitions in the pillared-layer type metal–organic framework DUT-8(Ni). Dalton Transactions, 2017, 46, 4685-4695.	1.6	68
940	Solvent-switchable continuous-breathing behaviour in a diamondoid metal–organic framework and its influence on CO2 versus CH4 selectivity. Nature Chemistry, 2017, 9, 882-889.	6.6	293
941	Synthesis, structure and gas adsorption properties of a stable microporous Cu-based metal–organic framework assembled from a T-shaped pyridyl dicarboxylate ligand. RSC Advances, 2017, 7, 17697-17703.	1.7	5
942	The Assembly of an Allâ€Inorganic Porous Soft Framework from Metal Oxide Molecular Nanowires. Chemistry - A European Journal, 2017, 23, 1972-1980.	1.7	11
943	Arene guest selectivity and pore flexibility in a metal–organic framework with semi-fluorinated channel walls. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160031.	1.6	5
944	Membranes for helium recovery: An overview on the context, materials and future directions. Separation and Purification Technology, 2017, 176, 335-383.	3.9	77
945	Effect of ring rotation upon gas adsorption in SIFSIX-3-M (M = Fe, Ni) pillared square grid networks. Chemical Science, 2017, 8, 2373-2380.	3.7	121
946	AFM Nanoindentation To Quantify Mechanical Properties of Nano- and Micron-Sized Crystals of a Metal–Organic Framework Material. ACS Applied Materials & Interfaces, 2017, 9, 39839-39854.	4.0	54
947	Influence of the Synthesis Conditions and the Presence of Guest Molecules on the Structures of Coordination Polymers [Fe2MO(Piv)6(L) x] n (L = 4,4′-Bipyridine, Bis(4-Pyridyl)ethane) with the Labile Crystal Lattice. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2017, 43, 619-629.	0.3	3
948	Probing Dielectric Properties of Metal–Organic Frameworks: MIL-53(Al) as a Model System for Theoretical Predictions and Experimental Measurements via Synchrotron Far- and Mid-Infrared Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 5035-5040.	2.1	39
950	Exploring the geometric, magnetic and electronic properties of Hofmann MOFs for drug delivery. Physical Chemistry Chemical Physics, 2017, 19, 31316-31324.	1.3	14
951	The studies on gas adsorption properties of MIL-53 series MOFs materials. AIP Advances, 2017, 7, .	0.6	23
952	Forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices. Chemical Society Reviews, 2017, 46, 7421-7437.	18.7	78
953	Defibrillation of soft porous metal-organic frameworks with electric fields. Science, 2017, 358, 347-351.	6.0	352

#	Article	IF	Citations
954	Fabrication of a magnetic nanocomposite photocatalysts Fe3O4@ZIF-67 for degradation of dyes in water under visible light irradiation. Journal of Solid State Chemistry, 2017, 255, 150-156.	1.4	67
955	Computational materials chemistry for carbon capture using porous materials. Journal Physics D: Applied Physics, 2017, 50, 463002.	1.3	7
956	A functionalized metal–organic framework decorated with O ^{â~`} groups showing excellent performance for lead(<scp>ii</scp>) removal from aqueous solution. Chemical Science, 2017, 8, 7611-7619.	3.7	187
957	Tuning the gate-opening pressure and particle size distribution of the switchable metal–organic framework DUT-8(Ni) by controlled nucleation in a micromixer. Dalton Transactions, 2017, 46, 14002-14011.	1.6	63
958	Understanding the breathing phenomena in nano-ZIF-7 upon gas adsorption. Journal of Materials Chemistry A, 2017, 5, 20938-20946.	5.2	50
959	Pore Breathing of Metal–Organic Frameworks by Environmental Transmission Electron Microscopy. Journal of the American Chemical Society, 2017, 139, 13973-13976.	6.6	56
960	Interactions on External MOF Surfaces: Desorption of Water and Ethanol from CuBDC Nanosheets. Langmuir, 2017, 33, 10153-10160.	1.6	27
961	A 2D Coordination Network That Detects Nitro Explosives in Water, Catalyzes Baylis–Hillman Reactions, and Undergoes Unusual 2D→3D Single-Crystal to Single-Crystal Transformation. Inorganic Chemistry, 2017, 56, 8847-8855.	1.9	43
962	Elucidating the CO ₂ adsorption mechanisms in the triangular channels of the bis(pyrazolate) MOF Fe ₂ (BPEB) ₃ by in situ synchrotron X-ray diffraction and molecular dynamics simulations. Journal of Materials Chemistry A, 2017, 5, 16964-16975.	5.2	21
963	Molecular Borromean Rings Based on Dihalogenated Ligands. CheM, 2017, 3, 110-121.	5.8	94
964	Synthesis, crystal structure and adsorption properties of a novel Mn(II) coordination polymer. Journal of Molecular Structure, 2017, 1147, 317-321.	1.8	1
965	Metal Organic Frameworks: A New Generation Coordination Polymers for Visible Light Photocatalysis. ChemistrySelect, 2017, 2, 6163-6177.	0.7	23
966	Five 1D to 3D Zn(<scp>ii</scp>)/Mn(<scp>ii</scp>)-CPs based on dicarboxyphenyl-terpyridine ligand: stepwise adsorptivity and magnetic properties. CrystEngComm, 2017, 19, 4789-4796.	1.3	14
967	Coordination change, lability and hemilability in metal–organic frameworks. Chemical Society Reviews, 2017, 46, 5444-5462.	18.7	216
968	Two cadmium coordination polymers based on tris(p-carboxyphenyl) phosphane oxide with highly selective sensing of nitrobenzene derivatives and Hg ²⁺ cations. CrystEngComm, 2017, 19, 5285-5292.	1.3	43
970	Efficient Construction of Free Energy Profiles of Breathing Metal–Organic Frameworks Using Advanced Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2017, 13, 5861-5873.	2.3	45
971	Tuning the separation properties of zeolitic imidazolate framework core–shell structures <i>via</i> post-synthetic modification. Journal of Materials Chemistry A, 2017, 5, 25601-25608.	5.2	56
972	An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity. Advanced Materials, 2017, 29, 1704210.	11.1	310

ARTICLE IF CITATIONS Microwave-assisted one-pot functionalization of metalâ€"organic framework MIL-53(Al)-NH₂ with copper(<scp>ii</scp>) complexes and its application in olefin 973 2.1 36 oxidation. Catalysis Science and Technology, 2017, 7, 6069-6079. Unidirectional compression and expansion of a crosslinked MOF crystal prepared via axis-dependent crosslinking and ligand exchange. Polymer Journal, 2017, 49, 685-689. 974 1.3 A Flexible Fluorescent Zr Carboxylate Metal–Organic Framework for the Detection of Electron-Rich 975 1.9 23 Molecules in Solution. Inorganic Chemistry, 2017, 56, 8423-8429. UV-induced single-crystal-to-single-crystal conversion from a coordination ladder to a two-dimensional network through an intermolecular carbon–carbon coupling reaction. Dalton Transactions, 2017, 46, 9755-9759. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal. 977 4.1 182 Journal of Membrane Science, 2017, 541, 262-270. Strategy for chemotherapeutic delivery using a nanosized porous metal-organic framework with a central composite design. International Journal of Nanomedicine, 2017, Volume 12, 1465-1474. 978 3.3 Recent Advances on Anilato-Based Molecular Materials with Magnetic and/or Conducting Properties. 979 1.0 70 Magnetochemistry, 2017, 3, 17. Dynamic Behavior of Porous Coordination Polymers., 2017, , 425-474. 980 Exploring mechanochemistry to turn organic bio-relevant molecules into metal-organic frameworks: 981 1.3 27 a short review. Beilstein Journal of Organic Chemistry, 2017, 13, 2416-2427. A novel MIL-53(Cr-Fe)/Ag/CNT nanocomposite based resistive sensor for sensing of volatile organic compounds. Sensors and Actuators B: Chemical, 2018, 267, 381-391. Conformational analysis of 1,2-dichloroethane adsorbed in metal-organic frameworks. Vibrational 983 1.2 6 Spectroscopy, 2018, 95, 68-74. Flexibility of metal-organic frameworks for separations: utilization, suppression and regulation. 984 3.8 Current Opinion in Chemical Engineering, 2018, 20, 107-113. Controlled flexibility of porous coordination polymers by shifting the position of the 985 $\hat{a} \in CH < sub > 3 < /sub > group around coordination sites and their highly efficient gas separation.$ 3.0 23 Inorganic Chemistry Frontiers, 2018, 5, 1780-1786. Incorporation of In₂S₃ Nanoparticles into a Metalâ€"Organic Framework for Ultrafast Removal of Hg from Water. Inorganic Chemistry, 2018, 57, 4891-4897. Phase Transition Induced by Gas Adsorption in Metalâ€Organic Frameworks. Chemistry - A European 987 1.7 15 Journal, 2018, 24, 8530-8534. Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie -161 International Edition, 2018, 57, 5684-5689. Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid 989 Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie, 1.6 27 2018, 130, 5786-5791.

CITATION REPORT

990Guest-dependent pressure induced gate-opening effect enables effective separation of propene and
propane in a flexible MOF. Chemical Engineering Journal, 2018, 346, 489-496.6.687

#	Article	IF	CITATIONS
991	Translating MOF chemistry into supramolecular chemistry: soluble coordination nanofibers showing efficient photon upconversion. Chemical Communications, 2018, 54, 6828-6831.	2.2	15
992	An unusual (4,6)-coordinated copper(II) coordination polymer: High efficient degradation of organic dyes under visible light irradiation and electrochemical properties. Polyhedron, 2018, 148, 81-87.	1.0	12
993	Different Breathing Mechanisms in Flexible Pillared-Layered Metal–Organic Frameworks: Impact of the Metal Center. Chemistry of Materials, 2018, 30, 1667-1676.	3.2	76
994	The Importance of Cell Shape Sampling To Accurately Predict Flexibility in Metal–Organic Frameworks. Journal of Chemical Theory and Computation, 2018, 14, 1186-1197.	2.3	13
995	Expanding the dimensions of metal–organic framework research towards dielectrics. Coordination Chemistry Reviews, 2018, 360, 77-91.	9.5	48
996	NMR Crystallography: A tool for the characterization of microporous hybrid solids. Current Opinion in Colloid and Interface Science, 2018, 33, 35-43.	3.4	20
997	Multifunctional Metal–Organic Frameworks Based on Redox-Active Rhenium Octahedral Clusters. Inorganic Chemistry, 2018, 57, 2072-2084.	1.9	53
998	Pillar-Assisted Construction of a Three-Dimensional Framework from a Two-Dimensional Bilayer Based on a Zn/Cd Heterometal Cluster: Pore Tuning and Gas Adsorption. Crystal Growth and Design, 2018, 18, 1826-1833.	1.4	6
999	Structure and properties of dynamic metal–organic frameworks: a brief accounts of crystalline-to-crystalline and crystalline-to-amorphous transformations. CrystEngComm, 2018, 20, 1322-1345.	1.3	54
1000	Sequence-regulated copolymerization based on periodic covalent positioning of monomers along one-dimensional nanochannels. Nature Communications, 2018, 9, 329.	5.8	60
1001	Modeling of Diffusion in MOFs. , 2018, , 63-97.		2
1002	Flexibility in Metal–Organic Frameworks: A fundamental understanding. Coordination Chemistry Reviews, 2018, 358, 125-152.	9.5	175
1003	Box-like gel capsules from heterostructures based on a core–shell MOF as a template of crystal crosslinking. Chemical Communications, 2018, 54, 1437-1440.	2.2	36
1004	Thermodynamic insight into stimuli-responsive behaviour of soft porous crystals. Nature Communications, 2018, 9, 204.	5.8	104
1005	An implanted paramagnetic metallofullerene probe within a metal–organic framework. Nanoscale, 2018, 10, 3291-3298.	2.8	22
1006	Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach. Journal of Physical Chemistry C, 2018, 122, 2734-2746.	1.5	70
1007	Hydrogen Storage in Porous Materials: Status, Milestones, and Challenges. Chemical Record, 2018, 18, 900-912.	2.9	62
1008	Controllable Fluorescence Switching of a Coordination Chain Based on the Photoinduced Single-Crystal-to-Single-Crystal Reversible Transformation of a <i>syn</i> -[2.2]Metacyclophane. Inorganic Chemistry, 2018, 57, 849-856.	1.9	67

#	Article	IF	CITATIONS
1009	Pore closure in zeolitic imidazolate frameworks under mechanical pressure. Chemical Science, 2018, 9, 1654-1660.	3.7	63
1010	Mechanochemical solvent-free in situ synthesis of drug-loaded {Cu2(1,4-bdc)2(dabco)}n MOFs for controlled drug delivery. Journal of Solid State Chemistry, 2018, 259, 35-42.	1.4	27
1011	Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives. Journal of Membrane Science, 2018, 558, 64-77.	4.1	126
1012	Supramolecular solvatochromism: mechanistic insight from crystallography, spectroscopy and theory. Chemical Communications, 2018, 54, 6975-6978.	2.2	13
1013	Polymer‣tabilized Percolation Membranes Based on Nanosized Zeolitic Imidazolate Frameworks for H ₂ /CO ₂ Separation. ChemNanoMat, 2018, 4, 698-703.	1.5	4
1014	Dye confined in metal-organic framework for two-photon fluorescent temperature sensing. Microporous and Mesoporous Materials, 2018, 268, 202-206.	2.2	20
1015	Readily accessible shape-memory effect in a porous interpenetrated coordination network. Science Advances, 2018, 4, eaaq1636.	4.7	61
1016	One-of-a-kind: a microporous metal–organic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers <i>via</i> temperature- and adsorbate-dependent molecular sieving. Energy and Environmental Science, 2018, 11, 1226-1231.	15.6	103
1017	Same Not the Same: Thermally Driven Transformation of Nickel Phosphinate-Bipyridine One-Dimensional Chains into Three-Dimensional Coordination Polymers. Crystal Growth and Design, 2018, 18, 2234-2242.	1.4	9
1018	Three-dimensional iron(<scp>ii</scp>) porous coordination polymer exhibiting carbon dioxide-dependent spin crossover. Chemical Communications, 2018, 54, 4262-4265.	2.2	29
1019	CO2 Sequestration: Processes and Methodologies. , 2018, , 1-50.		1
1020	Tuning Connectivity and Flexibility of Two Zinc-Triazolate-Carboxylate Type Porous Coordination Polymers. Crystal Growth and Design, 2018, 18, 2694-2698.	1.4	16
1021	Extension of the Pd-catalyzed C N bond forming reaction to the synthesis of large polydentate ligands containing N H functions. Inorganica Chimica Acta, 2018, 470, 416-422.	1.2	9
1022	Dynamic sorption properties of Metal-Organic Frameworks for the capture of methyl iodide. Microporous and Mesoporous Materials, 2018, 259, 244-254.	2.2	48
1023	Controlling flexibility of metal–organic frameworks. National Science Review, 2018, 5, 907-919.	4.6	240
1024	Two new zinc(II) coordination polymers based on asymmetric tetracarboxylic acid for fluorescent sensing. Inorganica Chimica Acta, 2018, 469, 298-305.	1.2	7
1025	1D and 3D coordination polymers based on the Cu 3 (μ 3 -OH)(μ -pz) 3 and Cu(Hpz) 3 SBUs connected by the flexible glutarate dianion. Inorganica Chimica Acta, 2018, 470, 385-392.	1.2	7
1026	A Metal–Organic Framework with Exceptional Activity for Câ^'H Bond Amination. Angewandte Chemie, 2018, 130, 520-524.	1.6	8

#	Article	IF	CITATIONS
1027	Highly Fluorescent Metal–Organic-Framework Nanocomposites for Photonic Applications. Nano Letters, 2018, 18, 528-534.	4.5	37
1028	Smart Metalâ€Organic Frameworks (MOFs): Switching Gas Permeation through MOF Membranes by External Stimuli. Chemical Engineering and Technology, 2018, 41, 224-234.	0.9	40
1029	Purely Physisorptionâ€Based COâ€Selective Gateâ€Opening in Microporous Organically Pillared Layered Silicates. Angewandte Chemie, 2018, 130, 573-577.	1.6	4
1030	Synthesis, Structure, and Magnetic Properties of a Copper(II) Metalâ€Organic Framework with Biphenylâ€2,2′,4,4′â€ŧetracarboxylic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 109-113.	0.6	1
1031	Joint Experimental and Computational Investigation of the Flexibility of a Diacetyleneâ€Based Mixedâ€Linker MOF: Revealing the Existence of Two Lowâ€Temperature Phase Transitions and the Presence of Colossal Positive and Giant Negative Thermal Expansions. Chemistry - A European Journal, 2018, 24, 1586-1605.	1.7	10
1032	A 3D Ag(I) metal-organic framework for sensing luminescence and photocatalytic activities. Journal of Molecular Structure, 2018, 1155, 496-502.	1.8	27
1033	Reliably Modeling the Mechanical Stability of Rigid and Flexible Metal–Organic Frameworks. Accounts of Chemical Research, 2018, 51, 138-148.	7.6	88
1034	A Metal–Organic Framework with Exceptional Activity for Câ^'H Bond Amination. Angewandte Chemie - International Edition, 2018, 57, 511-515.	7.2	47
1035	Development of citric anhydride anchored mesoporous MOF through post synthesis modification to sequester potentially toxic lead (II) from water. Microporous and Mesoporous Materials, 2018, 261, 198-206.	2.2	146
1037	Morphological evolution of Co phosphate and its electrochemical and photocatalytic performance. CrystEngComm, 2018, 20, 6982-6988.	1.3	13
1038	A highly sensitive flexible metal–organic framework sets a new benchmark for separating propyne from propylene. Journal of Materials Chemistry A, 2018, 6, 24452-24458.	5.2	67
1039	Photochromic naphthalene diimide Cd-MOFs based on different second dicarboxylic acid ligands. CrystEngComm, 2018, 20, 7567-7573.	1.3	43
1040	A Dynamic, Breathing, Water-Stable, Partially Fluorinated, Two-Periodic, Mixed-Ligand Zn(II) Metal–Organic Framework Modulated by Solvent Exchange Showing a Large Change in Cavity Size: Gas and Vapor Sorption Studies. Crystal Growth and Design, 2018, 18, 7570-7578.	1.4	19
1041	Influence of Metal Substitution on the Pressure-Induced Phase Change in Flexible Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 2018, 140, 15924-15933.	6.6	62
1042	Dynamic Nuclear Polarization of Metal–Organic Frameworks Using Photoexcited Triplet Electrons. Journal of the American Chemical Society, 2018, 140, 15606-15610.	6.6	29
1043	Guest Exchange through Facilitated Transport in a Seemingly Impenetrable Hydrogen-Bonded Framework. Journal of the American Chemical Society, 2018, 140, 12915-12921.	6.6	35
1044	Theoretical Insight into Gate-Opening Adsorption Mechanism and Sigmoidal Adsorption Isotherm into Porous Coordination Polymer. Journal of the American Chemical Society, 2018, 140, 13958-13969.	6.6	48
1045	Metal–Organic Frameworks for Water Harvesting from Air. Advanced Materials, 2018, 30, e1704304.	11.1	500

#	Article	IF	CITATIONS
1046	Enabling Computational Design of ZIFs Using ReaxFF. Journal of Physical Chemistry B, 2018, 122, 9616-9624.	1.2	49
1047	Molecular Weaving of Covalent Organic Frameworks for Adaptive Guest Inclusion. Journal of the American Chemical Society, 2018, 140, 16015-16019.	6.6	107
1048	Biocompatible Fe-Based Micropore Metal-Organic Frameworks as Sustained-Release Anticancer Drug Carriers. Molecules, 2018, 23, 2490.	1.7	53
1049	Selective Formation of End-on Orientation between Polythiophene and Fullerene Mediated by Coordination Nanospaces. Journal of Physical Chemistry C, 2018, 122, 24182-24189.	1.5	11
1050	Solventâ€Mediated Synthesis of Cyclobutane Isomers in a Photoactive Cadmium(II) Porous Coordination Polymer. Angewandte Chemie - International Edition, 2018, 57, 15563-15566.	7.2	40
1051	Comparing Geometry and Chemistry When Confined Molecules Diffuse in Monodisperse Metal–Organic Framework Pores. Journal of Physical Chemistry Letters, 2018, 9, 6399-6403.	2.1	3
1052	Solventâ€Mediated Synthesis of Cyclobutane Isomers in a Photoactive Cadmium(II) Porous Coordination Polymer. Angewandte Chemie, 2018, 130, 15789-15792.	1.6	7
1053	Coordination Network That Reversibly Switches between Two Nonporous Polymorphs and a High Surface Area Porous Phase. Journal of the American Chemical Society, 2018, 140, 15572-15576.	6.6	51
1054	Amine-Grafted MIL-101(Cr) via Double-Solvent Incorporation for Synergistic Enhancement of CO ₂ Uptake and Selectivity. ACS Sustainable Chemistry and Engineering, 2018, 6, 16493-16502.	3.2	44
1055	Protocol for Identifying Accurate Collective Variables in Enhanced Molecular Dynamics Simulations for the Description of Structural Transformations in Flexible Metal–Organic Frameworks. Journal of Chemical Theory and Computation, 2018, 14, 5511-5526.	2.3	19
1056	A Selfâ€Folding Polymer Film Based on Swelling Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 15646-15650.	1.6	14
1057	A Selfâ€Folding Polymer Film Based on Swelling Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 15420-15424.	7.2	71
1058	Controlled polymerizations using metal–organic frameworks. Chemical Communications, 2018, 54, 11843-11856.	2.2	81
1059	Mechano-regulated metal–organic framework nanofilm for ultrasensitive and anti-jamming strain sensing. Nature Communications, 2018, 9, 3813.	5.8	57
1060	Metal Acetylacetonates as a Source of Metals for Aqueous Synthesis of Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2018, 6, 14554-14560.	3.2	41
1061	Modulation of Water Vapor Sorption by a Fourth-Generation Metal–Organic Material with a Rigid Framework and Self-Switching Pores. Journal of the American Chemical Society, 2018, 140, 12545-12552.	6.6	42
1062	MILâ€53 and its Isoreticular Analogues: a Review of the Chemistry and Structure of a Prototypical Flexible Metalâ€Organic Framework. Israel Journal of Chemistry, 2018, 58, 1019-1035.	1.0	82
1063	Tuning the Mechanical Response of Metal–Organic Frameworks by Defect Engineering. Journal of the American Chemical Society, 2018, 140, 11581-11584.	6.6	82

#	Article	IF	CITATIONS
1064	(Fe)MIL-100-Met@alginate: a hybrid polymer–MOF for enhancement of metformin's bioavailability and pH-controlled release. New Journal of Chemistry, 2018, 42, 11137-11146.	1.4	24
1065	Trinuclear Dioxidomolybdenum(VI) Complexes of Tritopic Phloroglucinol-Based Ligands and Their Catalytic Applications for the Selective Epoxidation of Olefins. European Journal of Inorganic Chemistry, 2018, 2018, 2952-2964.	1.0	21
1066	Supramolecular recognition of benzene homologues in a 2D coordination polymer through variable inter-layer π–΀ interaction. CrystEngComm, 2018, 20, 3313-3317.	1.3	12
1067	Adventures in boron chemistry – the prediction of novel ultra-flexible boron oxide frameworks. Faraday Discussions, 2018, 211, 569-591.	1.6	5
1068	Syntheses, structures and luminescent properties of Zn/Cd coordination polymers based on 4′-(2-carboxyphenyl)-3,2′:6′,3″-terpyridine. Polyhedron, 2018, 151, 43-50.	1.0	18
1069	Three metal-organic frameworks constructed from 3,3′,5,5′-azobenzene-tetracarboxylic acid: Synthesis, structure and luminescent sensing. Inorganica Chimica Acta, 2018, 480, 166-172.	1.2	7
1070	The Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 8678-8681.	7.2	33
1071	The Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 8814-8817.	1.6	11
1072	Characterization of Fast Restricted Librations of Terephthalate Linkers in MOF UiO-66(Zr) by ² H NMR Spin–Lattice Relaxation Analysis. Journal of Physical Chemistry C, 2018, 122, 12956-12962.	1.5	19
1073	Activation Entropy for Diffusion of Gases Through Mixed Matrix Membranes. , 2018, , 547-572.		1
1074	Metal–Organic Frameworks for Separation. Advanced Materials, 2018, 30, e1705189.	11.1	835
1075	Single-Atom-Based Vanadium Oxide Catalysts Supported on Metal–Organic Frameworks: Selective Alcohol Oxidation and Structure–Activity Relationship. Journal of the American Chemical Society, 2018, 140, 8652-8656.	6.6	181
1076	Guest-Induced Switchable Breathing Behavior in a Flexible Metal–Organic Framework with Pronounced Negative Gas Pressure. Inorganic Chemistry, 2018, 57, 8627-8633.	1.9	54
1077	Co(II) coordination polymers exhibiting reversible structural transformation and color change: A comparative analysis with Ni(II) analogue. Polyhedron, 2018, 152, 225-232.	1.0	15
1078	Trisiloxane-centred metal–organic frameworks and hydrogen bonded assemblies. CrystEngComm, 2018, 20, 4541-4545.	1.3	4
1079	A dynamic and multi-responsive porous flexible metal–organic material. Nature Communications, 2018, 9, 3080.	5.8	89
1080	Breathing-Dependent Redox Activity in a Tetrathiafulvalene-Based Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 10562-10569.	6.6	62
1081	Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks. Journal of Physical Chemistry C, 2018, 122, 19171-19179.	1.5	52

#	Article	IF	CITATIONS
1082	Controlling Thermal Expansion Behaviors of Fence-Like Metal-Organic Frameworks by Varying/Mixing Metal Ions. Frontiers in Chemistry, 2018, 6, 306.	1.8	3
1083	Switchable gate-opening effect in metal–organic polyhedra assemblies through solution processing. Chemical Science, 2018, 9, 6463-6469.	3.7	40
1084	Quo Vadis, MOF?. Chemie-Ingenieur-Technik, 2018, 90, 1759-1768.	0.4	26
1085	Aluminum metal–organic frameworks for sorption in solution: A review. Coordination Chemistry Reviews, 2018, 374, 236-253.	9.5	89
1086	A Zn based anionic metal-organic framework for trace Hg2+ ion detection. Journal of Solid State Chemistry, 2018, 266, 70-73.	1.4	21
1087	An expanded MIL-53-type coordination polymer with a reactive pendant ligand. CrystEngComm, 2018, 20, 4355-4358.	1.3	5
1088	Fighting at the Interface: Structural Evolution during Heteroepitaxial Growth of Cyanometallate Coordination Polymers. Inorganic Chemistry, 2018, 57, 8701-8704.	1.9	14
1089	Thermal and Guest-Assisted Structural Transition in the NH2-MIL-53(Al) Metal Organic Framework: A Molecular Dynamics Simulation Investigation. Nanomaterials, 2018, 8, 531.	1.9	4
1090	Nitroâ€Functionalized Bis(pyrazolate) Metal–Organic Frameworks as Carbon Dioxide Capture Materials under Ambient Conditions. Chemistry - A European Journal, 2018, 24, 13170-13180.	1.7	29
1091	Synthesis chemistry of metal-organic frameworks for CO 2 capture and conversion for sustainable energy future. Renewable and Sustainable Energy Reviews, 2018, 92, 570-607.	8.2	89
1093	Visualizing Structural Transformation and Guest Binding in a Flexible Metal–Organic Framework under High Pressure and Room Temperature. ACS Central Science, 2018, 4, 1194-1200.	5.3	46
1094	Hydrolytic stability in hemilabile metal–organic frameworks. Nature Chemistry, 2018, 10, 1096-1102.	6.6	134
1095	Metal-organic framework anchored sulfonated poly(ether sulfone) as a high temperature proton exchange membrane for fuel cells. Journal of Membrane Science, 2018, 565, 281-292.	4.1	94
1096	The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of Metal–organic frameworks. Polyhedron, 2018, 155, 232-253.	1.0	34
1097	Structural Modularity of Unique Multicomponent Hydrogen-Bonded Organic Frameworks Based on Organosilanetriols and Silanediols as Molecular Building Blocks. Crystal Growth and Design, 2018, 18, 3805-3819.	1.4	4
1098	A vapochromic strategy for ammonia sensing based on a bipyridinium constructed porous framework. Dalton Transactions, 2018, 47, 8204-8208.	1.6	22
1099	Solventâ€Triggered Reversible Phase Changes in Two Manganeseâ€Based Metal–Organic Frameworks and Associated Sensing Events. Chemistry - A European Journal, 2018, 24, 13231-13237.	1.7	15
1100	Synthesis of ZIFâ€93/11 Hybrid Nanoparticles via Post ynthetic Modification of ZIFâ€93 and Their Use for H ₂ /CO ₂ Separation. Chemistry - A European Journal, 2018, 24, 11211-11219.	1.7	27

#	Article	IF	CITATIONS
1101	Benzene, Toluene, and Xylene Transport through UiO-66: Diffusion Rates, Energetics, and the Role of Hydrogen Bonding. Journal of Physical Chemistry C, 2018, 122, 16060-16069.	1.5	60
1102	A bifunctional cationic metal–organic framework based on unprecedented nonanuclear copper(<scp>ii</scp>) cluster for high dichromate and chromate trapping and highly efficient photocatalytic degradation of organic dyes under visible light irradiation. Dalton Transactions, 2018, 47. 9103-9113.	1.6	51
1103	History of Organic–Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Advanced Functional Materials, 2018, 28, 1704158.	7.8	264
1104	Structured Growth of Metal–Organic Framework MIL-53(Al) from Solid Aluminum Carbide Precursor. Journal of the American Chemical Society, 2018, 140, 9148-9153.	6.6	39
1105	Two 2D multiresponsive luminescence coordination polymers for selective sensing of Fe ³⁺ , Cr ^{VI} anions and TNP in aqueous medium. CrystEngComm, 2019, 21, 5185-5194.	1.3	40
1106	Effect of the Metal within Regioisomeric Paddleâ€Wheelâ€Type Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 14414-14420.	1.7	7
1107	A Multistimulus Responsive Porous Coordination Polymer: Temperature-Mediated Control of Solid-State [2+2] Cycloaddition. Journal of the American Chemical Society, 2019, 141, 11425-11429.	6.6	79
1108	Efficient Gas Separation and Transport Mechanism in Rare Hemilabile Metal–Organic Framework. Chemistry of Materials, 2019, 31, 5856-5866.	3.2	18
1109	A Ligand Field Molecular Mechanics Study of CO 2 â€Induced Breathing in the Metal–Organic Framework DUTâ€8(Ni). Advanced Theory and Simulations, 2019, 2, 1900098.	1.3	9
1110	Lockâ€andâ€Key and Shapeâ€Memory Effects in an Unconventional Synthetic Path to Magnesium Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 11757-11762.	7.2	56
1111	Effects of Intrinsic Flexibility on Adsorption Properties of Metal–Organic Frameworks at Dilute and Nondilute Loadings. ACS Applied Materials & Interfaces, 2019, 11, 31060-31068.	4.0	50
1112	Tuning Packing, Structural Flexibility, and Porosity in 2D Metal–Organic Frameworks by Metal Node Choice. Australian Journal of Chemistry, 2019, 72, 797.	0.5	4
1113	High-Pressure in Situ ¹²⁹ Xe NMR Spectroscopy: Insights into Switching Mechanisms of Flexible Metal–Organic Frameworks Isoreticular to DUT-49. Chemistry of Materials, 2019, 31, 6193-6201.	3.2	41
1114	Tuning the Electric Field Response of MOFs by Rotatable Dipolar Linkers. ACS Central Science, 2019, 5, 1440-1448.	5.3	28
1115	Lockâ€andâ€Key and Shapeâ€Memory Effects in an Unconventional Synthetic Path to Magnesium Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 11883-11888.	1.6	10
1116	Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 17342-17350.	7.2	16
1117	The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metal–organic framework DUT-98. Beilstein Journal of Nanotechnology, 2019, 10, 1737-1744.	1.5	28
1118	Engineering Structural Dynamics of Zirconium Metal–Organic Frameworks Based on Natural C4 Linkers. Journal of the American Chemical Society, 2019, 141, 17207-17216.	6.6	54

#	Article	IF	CITATIONS
1119	Enhanced Gas Uptake in a Microporous Metal–Organic Framework <i>via</i> a Sorbate Induced-Fit Mechanism. Journal of the American Chemical Society, 2019, 141, 17703-17712.	6.6	152
1120	Stepwise Evolution of Molecular Nanoaggregates Inside the Pores of a Highly Flexible Metal–Organic Framework. Angewandte Chemie, 2019, 131, 17503-17511.	1.6	11
1121	Molecular Dynamics Simulations of the "Breathing―Phase Transformation of MOF Nanocrystallites. Advanced Theory and Simulations, 2019, 2, 1900117.	1.3	47
1122	The Anisotropic Responses of a Flexible Metal–Organic Framework Constructed from Asymmetric Flexible Linkers and Heptanuclear Zinc Carboxylate Secondary Building Units. Crystal Growth and Design, 2019, 19, 5604-5618.	1.4	6
1123	Density functional theory meta GGA study of water adsorption in MIL-53(Cr). Powder Diffraction, 2019, 34, 227-232.	0.4	6
1124	Crystal size <i>versus</i> paddle wheel deformability: selective gated adsorption transitions of the switchable metal–organic frameworks DUT-8(Co) and DUT-8(Ni). Journal of Materials Chemistry A, 2019, 7, 21459-21475.	5.2	54
1125	CO ₂ -induced single-crystal to single-crystal transformations of an interpenetrated flexible MOF explained by <i>in situ</i> crystallographic analysis and molecular modeling. Chemical Science, 2019, 10, 10018-10024.	3.7	39
1126	Europium-Functionalized Flexible Luminescent Zeolite-like Supramolecular Assembly for Ratiometric Anthrax Biomarker Determination. ACS Applied Materials & Interfaces, 2019, 11, 36081-36089.	4.0	34
1127	Adsorption of 2,4-dichlorophenoxyacetic acid in an aqueous medium on nanoscale MIL-53(Al) type materials. Dalton Transactions, 2019, 48, 15091-15104.	1.6	31
1128	Experimental Evidence for Vibrational Entropy as Driving Parameter of Flexibility in the Metal–Organic Framework ZIF-4(Zn). Chemistry of Materials, 2019, 31, 8366-8372.	3.2	29
1129	Syntheses, structural diversity and photocatalytic properties of three coordination polymers assembled by different N-heterocyclic ligands. New Journal of Chemistry, 2019, 43, 320-329.	1.4	11
1130	Conformational isomerism controls collective flexibility in metal–organic framework DUT-8(Ni). Physical Chemistry Chemical Physics, 2019, 21, 674-680.	1.3	39
1131	Creation of MOFs with open metal sites by partial replacement of metal ions with different coordination numbers. Dalton Transactions, 2019, 48, 2545-2548.	1.6	17
1132	Proton transfer in hydrogen-bonded degenerate systems of water and ammonia in metal–organic frameworks. Chemical Science, 2019, 10, 16-33.	3.7	224
1133	Toward Green Production of Water-Stable Metal–Organic Frameworks Based on High-Valence Metals with Low Toxicities. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	21
1134	Understanding structural flexibility of the paddle-wheel Zn-SBU motif in MOFs: influence of pillar ligands. Physical Chemistry Chemical Physics, 2019, 21, 11977-11982.	1.3	5
1135	Flexibility in Metal–Organic Frameworks: A Basic Understanding. Catalysts, 2019, 9, 512.	1.6	35
1136	Imparting gas selective and pressure dependent porosity into a non-porous solid <i>via</i> coordination flexibility. Materials Horizons, 2019, 6, 1883-1891.	6.4	17

#	Article	IF	CITATIONS
1137	Preparation of cyclodextrin-based porous polymeric membrane by bulk polymerization of ethyl acrylate in the presence of cyclodextrin. Polymer, 2019, 177, 208-213.	1.8	22
1138	New One-Dimensional Chain Polymer Based on [Zn2(OCO)2] Rhomboid Clusters. Journal of Structural Chemistry, 2019, 60, 294-298.	0.3	0
1139	Exploring the thermodynamic criteria for responsive adsorption processes. Chemical Science, 2019, 10, 5011-5017.	3.7	29
1141	Highly selective C ₂ H ₂ and CO ₂ capture and magnetic properties of a robust Co-chain based metal–organic framework. Dalton Transactions, 2019, 48, 7938-7945.	1.6	18
1142	Structural tuning of zinc–porphyrin frameworks <i>via</i> auxiliary nitrogen-containing ligands towards selective adsorption of cationic dyes. Chemical Communications, 2019, 55, 6527-6530.	2.2	23
1143	Enhanced Activity of Heterogeneous Pd(II) Catalysts on Acid-Functionalized Metal–Organic Frameworks. ACS Catalysis, 2019, 9, 5383-5390.	5.5	77
1144	A Flexible and Stable Interpenetrated Indium Pyridylcarboxylate Framework with Breathing Behaviors and Highly Selective Adsorption of Cationic Dyes. Inorganic Chemistry, 2019, 58, 4019-4025.	1.9	22
1145	Chemiresistive Detection of Gaseous Hydrocarbons and Interrogation of Charge Transport in Cu[Ni(2,3-pyrazinedithiolate) ₂] by Gas Adsorption. Journal of the American Chemical Society, 2019, 141, 5005-5013.	6.6	77
1146	Anomalous Dynamics of a Nanoconfined Gas in a Soft Metal–Organics Framework. Journal of Physical Chemistry Letters, 2019, 10, 1698-1708.	2.1	5
1147	Cobalt substitution in a flexible metal–organic framework: modulating a soft paddle-wheel unit for tunable gate-opening adsorption. Dalton Transactions, 2019, 48, 7100-7104.	1.6	9
1148	Metal–Organic Framework Breathing in the Electric Field: A Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 10333-10338.	1.5	17
1149	Programmable Selfâ€Assembling 3D Architectures Generated by Patterning of Swellable MOFâ€Based Composite Films. Advanced Materials, 2019, 31, e1808235.	11.1	100
1150	An Allosteric Metal–Organic Framework That Exhibits Multiple Pore Configurations for the Optimization of Hydrocarbon Separation. Chemistry - an Asian Journal, 2019, 14, 3552-3556.	1.7	11
1151	Elucidation of flexible metal-organic frameworks: Research progresses and recent developments. Coordination Chemistry Reviews, 2019, 389, 161-188.	9.5	163
1152	Flexible films enabled by coordination polymer nanoarchitectonics. Molecular Systems Design and Engineering, 2019, 4, 531-544.	1.7	7
1153	Changing the Hydrophobic MOF Pores through Encapsulating Fullerene C ₆₀ and Metallofullerene Sc ₃ C ₂ @C ₈₀ . Journal of Physical Chemistry C, 2019, 123, 6265-6269.	1.5	21
1154	Synthesis of coordination polymer thin films with conductance-response to mechanical stimulation. Chemical Communications, 2019, 55, 2545-2548.	2.2	9
1155	New functionalized MIL-53(In) solids: syntheses, characterization, sorption, and structural flexibility. RSC Advances, 2019, 9, 1918-1928.	1.7	13

#	Article	IF	CITATIONS
1157	Guests Like Gear Levers: Donor Binding to Coordinatively Unsaturated Metal Sites in MILâ€101 Controls the Linker′s Rotation. Chemistry - A European Journal, 2019, 25, 5163-5168.	1.7	8
1158	Modeling Gas Adsorption in Flexible Metal–Organic Frameworks via Hybrid Monte Carlo/Molecular Dynamics Schemes. Advanced Theory and Simulations, 2019, 2, 1800177.	1.3	40
1159	Phonons in deformable microporous crystalline solids. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 513-527.	0.4	7
1160	Thermodynamic Modeling of the Selective Adsorption of Carbon Dioxide over Methane in the Mechanically Constrained Breathing MILâ€53(Cr). Advanced Theory and Simulations, 2019, 2, 1900124.	1.3	3
1161	A porous and redox active ferrocenedicarboxylic acid based aluminium MOF with a MIL-53 architecture. Dalton Transactions, 2019, 48, 16737-16743.	1.6	12
1162	A Gaâ€MILâ€53â€type Framework based on 1,4â€Phenylenediacetate Showing Subtle Flexibility. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1334-1340.	0.6	0
1163	Synthesis of nanorod MOF catalyst containing Cu ²⁺ and its selective oxidation of styrene. Materials Research Express, 2019, 6, 125101.	0.8	5
1165	Pillared-layered metal–organic frameworks for mechanical energy storage applications. Journal of Materials Chemistry A, 2019, 7, 22663-22674.	5.2	34
1166	Microporous Organically Pillared Layered Silicates (MOPS): A Versatile Class of Functional Porous Materials. Chemistry - A European Journal, 2019, 25, 2103-2111.	1.7	4
1167	Mechanical Properties of a Metal–Organic Framework formed by Covalent Cross-Linking of Metal–Organic Polyhedra. Journal of the American Chemical Society, 2019, 141, 1045-1053.	6.6	89
1168	Azide and carboxylate as simultaneous coupler for magnetic coordination polymers. Coordination Chemistry Reviews, 2019, 382, 1-31.	9.5	113
1169	CO2 Sequestration: Processes and Methodologies. , 2019, , 1-50.		0
1170	Zeolitic Imidazolate Framework Membranes for Light Olefin/Paraffin Separation. Crystals, 2019, 9, 14.	1.0	23
1171	Complex Phase Behaviour and Structural Transformations of Metalâ€Organic Frameworks with Mixed Rigid and Flexible Bridging Ligands. Chemistry - A European Journal, 2019, 25, 1353-1362.	1.7	2
1172	Intrinsically Stretchable Resistive Switching Memory Enabled by Combining a Liquid Metal–Based Soft Electrode and a Metal–Organic Framework Insulator. Advanced Electronic Materials, 2019, 5, 1800655.	2.6	53
1173	Zn-free MOFs like MIL-53(Al) and MIL-125(Ti) for the preparation of defect-rich, ultrafine ZnO nanosheets with high photocatalytic performance. Applied Catalysis B: Environmental, 2019, 244, 719-731.	10.8	85
1174	Order-disorder phase transitions in Zn2(C8H4O4)2.C6H12N2 in atmospheres of noble gases. Journal of Chemical Thermodynamics, 2019, 130, 147-153.	1.0	6
1175	Click chemistry as a versatile reaction for construction and modification of metal-organic frameworks. Coordination Chemistry Reviews, 2019, 380, 484-518.	9.5	86

#	Article	IF	CITATIONS
1176	Soft Crystals: Flexible Response Systems with High Structural Order. Chemistry - A European Journal, 2019, 25, 5105-5112.	1.7	232
1177	Metal–Organic Frameworks Derived from Zeroâ€Valent Metal Substrates: Mechanisms of Formation and Modulation of Properties. Advanced Functional Materials, 2019, 29, 1808466.	7.8	18
1178	Guest-Dependent Dynamics in a 3D Covalent Organic Framework. Journal of the American Chemical Society, 2019, 141, 3298-3303.	6.6	121
1179	Coating of 2D Flexible Metal–Organic Frameworks on Metal Nanocrystals. Chemistry Letters, 2019, 48, 173-176.	0.7	3
1180	Probing Local Structural Changes at Cu ²⁺ in a Flexible Mixed-Metal Metal-Organic Framework by <i>in Situ</i> Electron Paramagnetic Resonance during CO ₂ Ad- and Desorption. Journal of Physical Chemistry C, 2019, 123, 2940-2952.	1.5	24
1181	Silicon Electrodes for Li-Ion Batteries. Addressing the Challenges through Coordination Chemistry. ACS Energy Letters, 2019, 4, 550-557.	8.8	43
1182	Palladium nanoparticles embedded in MOF matrices: Catalytic activity and structural stability in iodobenzene methoxycarbonylation. Polyhedron, 2019, 158, 55-64.	1.0	17
1183	Highly responsive nature of porous coordination polymer surfaces imaged by in situ atomic force microscopy. Nature Chemistry, 2019, 11, 109-116.	6.6	75
1184	Kinetic Control in Synthesis of Polymers Using Nanoporous Metal-Organic Frameworks. , 2019, , 185-204.		1
1185	Effect of low frequency phonons on structural properties of ZIFs with SOD topology. Microporous and Mesoporous Materials, 2020, 304, 109132.	2.2	13
1186	A New Dimension for Coordination Polymers and Metal–Organic Frameworks: Towards Functional Glasses and Liquids. Angewandte Chemie - International Edition, 2020, 59, 6652-6664.	7.2	146
1187	Reversible Phase Transition of Porous Coordination Polymers. Chemistry - A European Journal, 2020, 26, 2766-2779.	1.7	32
1188	Eine neue Dimension von Koordinationspolymeren und Metallâ€organischen Gerüsten: hin zu funktionellen GlÃsern und Flüssigkeiten. Angewandte Chemie, 2020, 132, 6716-6729.	1.6	17
1189	Collective Breathing in an Eightfold Interpenetrated Metal–Organic Framework: From Mechanistic Understanding towards Threshold Sensing Architectures. Angewandte Chemie - International Edition, 2020, 59, 4491-4497.	7.2	46
1190	Breathing-Ignited Long Persistent Luminescence in a Resilient Metal–Organic Framework. Chemistry of Materials, 2020, 32, 841-848.	3.2	87
1191	Alterations to secondary building units of metal–organic frameworks for the development of new functions. Inorganic Chemistry Frontiers, 2020, 7, 12-27.	3.0	60
1192	Trans Influence across a Metal–Metal Bond of a Paddle-Wheel Unit on Interaction with Gases in a Metal–Organic Framework. Inorganic Chemistry, 2020, 59, 1193-1203.	1.9	9
1193	High-Performance CO ₂ -Selective Hybrid Membranes by Exploiting MOF-Breathing Effects. ACS Applied Materials & Interfaces, 2020, 12, 2952-2961.	4.0	32

#	Article	IF	CITATIONS
1194	Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination, 2020, 475, 114171.	4.0	209
1195	Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials, 2020, 230, 119619.	5.7	378
1196	Nanoscale metal–organic frameworks as key players in the context of drug delivery: evolution toward theranostic platforms. Analytical and Bioanalytical Chemistry, 2020, 412, 37-54.	1.9	35
1197	Adsorption-Induced Deformation of Microporous Solids: A New Insight from a Century-Old Theory. Journal of Physical Chemistry C, 2020, 124, 749-755.	1.5	18
1198	Solvent―and HFâ€Free Synthesis of Flexible Chromiumâ€Based MILâ€53 and MILâ€88B. ChemNanoMat, 2020, (204-207.	6, 1.5	11
1199	Functionalized Dynamic Metal–Organic Frameworks as Smart Switches for Sensing and Adsorption Applications. Topics in Current Chemistry, 2020, 378, 5.	3.0	14
1200	Water-alcohol adsorptive separations using metal-organic frameworks and their composites as adsorbents. Microporous and Mesoporous Materials, 2020, 295, 109946.	2.2	21
1201	Breathing Metal–Organic Framework Based on Flexible Inorganic Building Units. Crystal Growth and Design, 2020, 20, 320-329.	1.4	31
1202	A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of the Total Environment, 2020, 707, 135090.	3.9	385
1203	Swift and Efficient Nuclear Spin Conversion of Molecular Hydrogen Confined in Prussian Blue Analogs. Chemistry Letters, 2020, 49, 149-152.	0.7	1
1204	Metal-organic frameworks for flame retardant polymers application: A critical review. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106113.	3.8	80
1205	Molecular Mobility of Tertâ€butyl Alcohol Confined in a Breathing MILâ€53 (Al) Metalâ€Organic Framework. ChemPhysChem, 2020, 21, 1951-1956.	1.0	3
1206	Transport properties in porous coordination polymers. Coordination Chemistry Reviews, 2020, 421, 213447.	9.5	63
1207	Coordination distortion induced water adsorption in hydrophobic flexible metal–organic frameworks. Chemical Communications, 2020, 56, 9106-9109.	2.2	3
1208	Structural Tuning and Pore Modulation of Three Cu(II)–Organic Frameworks: Enhancement of Stability and Functionality. Inorganic Chemistry, 2020, 59, 10953-10961.	1.9	13
1209	A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation. CheM, 2020, 6, 3409-3427.	5.8	41
1210	Design principles for the ultimate gas deliverable capacity material: nonporous to porous deformations without volume change. Molecular Systems Design and Engineering, 2020, 5, 1491-1503.	1.7	5
1211	Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations. Coordination Chemistry Reviews, 2020, 422, 213470.	9.5	124

#	Article	IF	CITATIONS
1212	Dynamics of isobutane is a sensitive probe for framework breathing in MIL-53 (Al) MOF. Physical Chemistry Chemical Physics, 2020, 22, 18695-18702.	1.3	8
1213	Facile directions for synthesis, modification and activation of MOFs. Materials Today Chemistry, 2020, 17, 100343.	1.7	53
1214	The Catalytic Mechanics of Dynamic Surfaces: Stimulating Methods for Promoting Catalytic Resonance. ACS Catalysis, 2020, 10, 12666-12695.	5.5	54
1215	Lattice expansion and ligand twist during CO ₂ adsorption in flexible Cu bipyridine metal–organic frameworks. Journal of Materials Chemistry A, 2020, 8, 18903-18915.	5.2	10
1216	Synthesis, Structural Features, and Hydrogen Adsorption Properties of Three New Flexible Sulfur-Containing Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 6707-6714.	1.4	6
1217	Quantitatively Predicting Impact of Structural Flexibility on Molecular Diffusion in Small Pore Metal–Organic Frameworks—A Molecular Dynamics Study of Hypothetical ZIF-8 Polymorphs. Journal of Physical Chemistry C, 2020, 124, 20203-20212.	1.5	13
1218	Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: formation, metal sites in catalysis and thin films. Chemical Society Reviews, 2020, 49, 6694-6732.	18.7	71
1219	Temperature dependence of adsorption hysteresis in flexible metal organic frameworks. Communications Chemistry, 2020, 3, .	2.0	20
1220	Tailoring the Adsorption-Induced Flexibility of a Pillared Layer Metal–Organic Framework DUT-8(Ni) by Cobalt Substitution. Chemistry of Materials, 2020, 32, 5670-5681.	3.2	29
1221	Four-dimensional metal-organic frameworks. Nature Communications, 2020, 11, 2690.	5.8	109
1221 1222	Four-dimensional metal-organic frameworks. Nature Communications, 2020, 11, 2690. Proton Transport in Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8416-8467.	5.8 23.0	109 382
1222	Proton Transport in Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8416-8467. Water and Metal–Organic Frameworks: From Interaction toward Utilization. Chemical Reviews, 2020,	23.0	382
1222 1223	Proton Transport in Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8416-8467. Water and Metal–Organic Frameworks: From Interaction toward Utilization. Chemical Reviews, 2020, 120, 8303-8377. London Dispersion Governs the Interaction Mechanism of Small Polar and Nonpolar Molecules in	23.0 23.0	382 303
1222 1223 1224	Proton Transport in Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8416-8467. Water and Metal–Organic Frameworks: From Interaction toward Utilization. Chemical Reviews, 2020, 120, 8303-8377. London Dispersion Governs the Interaction Mechanism of Small Polar and Nonpolar Molecules in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2020, 124, 11985-11989. Die Chemie verformbarer por¶ser Kristalle – Strukturdynamik und Gasadsorptionseigenschaften.	23.0 23.0 1.5	382 303 7
1222 1223 1224 1225	Proton Transport in Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8416-8467. Water and Metal–Organic Frameworks: From Interaction toward Utilization. Chemical Reviews, 2020, 120, 8303-8377. London Dispersion Governs the Interaction Mechanism of Small Polar and Nonpolar Molecules in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2020, 124, 11985-11989. Die Chemie verformbarer poröser Kristalle – Strukturdynamik und Gasadsorptionseigenschaften. Angewandte Chemie, 2020, 132, 15438-15456. Chemistry of Soft Porous Crystals: Structural Dynamics and Gas Adsorption Properties. Angewandte	23.0 23.0 1.5 1.6	382 303 7 28
1222 1223 1224 1225 1226	Proton Transport in Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8416-8467. Water and Metal–Organic Frameworks: From Interaction toward Utilization. Chemical Reviews, 2020, 120, 8303-8377. London Dispersion Governs the Interaction Mechanism of Small Polar and Nonpolar Molecules in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2020, 124, 11985-11989. Die Chemie verformbarer por¶ser Kristalle – Strukturdynamik und Gasadsorptionseigenschaften. Angewandte Chemie, 2020, 132, 15438-15456. Chemistry of Soft Porous Crystals: Structural Dynamics and Gas Adsorption Properties. Angewandte Chemie - International Edition, 2020, 59, 15325-15341. Control of the Porosity in Manganese Trimer-Based Metal–Organic Frameworks by Linker	23.0 23.0 1.5 1.6 7.2	 382 303 7 28 236

#	Article	IF	CITATIONS
1230	Impact of the Preparation Procedure on the Performance of the Microporous HKUST-1 Metal-Organic Framework in the Liquid-Phase Separation of Aromatic Compounds. Molecules, 2020, 25, 2648.	1.7	12
1232	A periodic table of metal-organic frameworks. Coordination Chemistry Reviews, 2020, 414, 213295.	9.5	84
1233	Tailoring the separation properties of flexible metal-organic frameworks using mechanical pressure. Nature Communications, 2020, 11, 1216.	5.8	88
1234	Stimuli-responsive structural changes in metal–organic frameworks. Chemical Communications, 2020, 56, 9416-9432.	2.2	50
1235	Stable melt formation of 2D nitrile-based coordination polymer and hierarchical crystal–glass structuring. Chemical Communications, 2020, 56, 8980-8983.	2.2	27
1236	Recognition of Polymer Terminus by Metal–Organic Frameworks Enabling Chromatographic Separation of Polymers. Journal of the American Chemical Society, 2020, 142, 3701-3705.	6.6	50
1237	Impact of intrinsic framework flexibility for selective adsorption of sarin in non-aqueous solvents using metal–organic frameworks. Physical Chemistry Chemical Physics, 2020, 22, 6441-6448.	1.3	22
1238	Inserting V-Shaped Bidentate Partition Agent into MIL-88-Type Framework for Acetylene Separation from Acetylene-Containing Mixtures. Crystal Growth and Design, 2020, 20, 2099-2105.	1.4	17
1239	Enhanced dispersibility of metal–organic frameworks (MOFs) in the organic phase <i>via</i> surface modification for TFN nanofiltration membrane preparation. RSC Advances, 2020, 10, 4045-4057.	1.7	75
1240	Multiscale Design of Flexible Metal–Organic Frameworks. Trends in Chemistry, 2020, 2, 199-213.	4.4	43
1241	Gibbs Ensemble Monte Carlo Simulation of Fluids in Confinement: Relation between the Differential and Integral Pressures. Nanomaterials, 2020, 10, 293.	1.9	15
1242	MOF Materials for the Capture of Highly Toxic H ₂ S and SO ₂ . Organometallics, 2020, 39, 883-915.	1.1	122
1243	Unraveling Structure and Dynamics in Porous Frameworks via Advanced In Situ Characterization Techniques. Advanced Functional Materials, 2020, 30, 1907847.	7.8	73
1244	Hydrophobic Metal–Organic Frameworks: Assessment, Construction, and Diverse Applications. Advanced Science, 2020, 7, 1901758.	5.6	136
1245	Collective Breathing in an Eightfold Interpenetrated Metal–Organic Framework: From Mechanistic Understanding towards Threshold Sensing Architectures. Angewandte Chemie, 2020, 132, 4521-4527.	1.6	7
1246	Circumventing Wear and Tear of Adaptive Porous Materials. Advanced Functional Materials, 2020, 30, 1908547.	7.8	16
1247	Materials chemistry of triplet dynamic nuclear polarization. Chemical Communications, 2020, 56, 7217-7232.	2.2	26
1248	Unravelling Crystal Structures of Covalent Organic Frameworks by Electron Diffraction Tomography. Chinese Journal of Chemistry, 2020, 38, 1153-1166.	2.6	31

#	Article	IF	CITATIONS
1249	Influence of different activation strategies on the activity and stability of MIL-53(Fe) as a dark-Fenton heterogeneous catalyst. Microporous and Mesoporous Materials, 2020, 303, 110267.	2.2	8
1250	Water-based routes for synthesis of metal-organic frameworks: A review. Science China Materials, 2020, 63, 667-685.	3.5	131
1251	The role of flexibility in MOFs. , 2020, , 93-110.		4
1252	Interactions of Multiple Water Molecules with MIL-53(Al) and Understanding the Mechanism of Breathing: The DFT Study. Journal of Physical Chemistry C, 2020, 124, 9281-9288.	1.5	5
1253	Symmetry breakings in a metal organic framework with a confined guest. Physical Review B, 2020, 101, .	1.1	10
1254	Metal–Organic Frameworks with Hexakis(4-carboxyphenyl)benzene: Extensions to Reticular Chemistry and Introducing Foldable Nets. Journal of the American Chemical Society, 2020, 142, 9471-9481.	6.6	26
1255	Eight new coordination polymers containing rigid 4-(4-carboxy-phenyl)-pyridine-2-carboxylic acid: Synthesis, structural diversity, fluorescence and magnetic properties. Inorganica Chimica Acta, 2020, 507, 119600.	1.2	4
1256	Metal–organic frameworks and their catalytic applications. Journal of Saudi Chemical Society, 2020, 24, 461-473.	2.4	75
1257	New Chiral Hydrogen-Bonded Organic Framework Based on Substituted Diarylacetylene Dicarboxylic Acid. Crystal Growth and Design, 2020, 20, 3713-3721.	1.4	9
1258	The role of temperature and adsorbate on negative gas adsorption transitions of the mesoporous metal–organic framework DUT-49. Faraday Discussions, 2021, 225, 168-183.	1.6	19
1259	Dynamic properties of a flexible metal-organic framework exhibiting a unique "picture frame―like crystal morphology. Nano Research, 2021, 14, 432-437.	5.8	4
1260	Homologous series of coordination polymers based on semi-rigid tricarboxylato-bridged Co2+/Ni2+: Syntheses, structures, and magnetic properties. Inorganica Chimica Acta, 2021, 515, 120045.	1.2	4
1261	Improved propylene/propane separation performance under high temperature and pressures on in-situ ligand-doped ZIF-8 membranes. Journal of Membrane Science, 2021, 617, 118655.	4.1	35
1262	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	1.6	70
1263	Metal–Organic Frameworks and Coordination Polymers Composed of Sulfur-based Nodes. Chemistry Letters, 2021, 50, 523-533.	0.7	23
1264	A novel approach to achieve the tin (II) oxide based proton conductive sensor for ammonia detection at room temperature. Materials Letters, 2021, 285, 129049.	1.3	3
1265	Porous flexible frameworks: origins of flexibility and applications. Materials Horizons, 2021, 8, 700-727.	6.4	48
1266	Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews, 2021, 430, 213655.	9.5	56

#	Article	IF	CITATIONS
1267	Multi-stimulus linear negative expansion of a breathing M(O ₂ CR) ₄ -node MOF. Faraday Discussions, 2021, 225, 133-151.	1.6	2
1268	Precise regulating synergistic effect in metal–organic framework for stepwise-controlled adsorption. Inorganic Chemistry Frontiers, 2021, 8, 1666-1674.	3.0	3
1269	Scalable crystalline porous membranes: current state and perspectives. Chemical Society Reviews, 2021, 50, 1913-1944.	18.7	47
1270	Micro Solid Phase Extraction Using Novel Adsorbents. Critical Reviews in Analytical Chemistry, 2021, 51, 103-114.	1.8	28
1271	Controlling the off-center positions of anions through thermodynamics and kinetics in flexible perovskite-like materials. Physical Chemistry Chemical Physics, 2021, 23, 4491-4499.	1.3	2
1272	Long afterglow MOFs: a frontier study on synthesis and applications. Materials Chemistry Frontiers, 2021, 5, 6824-6849.	3.2	26
1273	CO2 capture by MOFs. , 2021, , 407-448.		5
1274	Recent progresses in luminescent metal–organic frameworks (LMOFs) as sensors for the detection of anions and cations in aqueous solution. Dalton Transactions, 2021, 50, 1950-1972.	1.6	74
1275	Synthesis of a new ATN-type zeolitic imidazolate framework through cooperative effects of <i>N</i> , <i>N</i> .dipropylformamide and <i>n</i> .butylamine. CrystEngComm, 2021, 23, 3429-3433.	1.3	6
1276	Non-stackable molecules assemble into porous crystals displaying concerted cavity-changing motions. Chemical Science, 2021, 12, 6378-6384.	3.7	7
1277	Photodynamic therapy: photosensitizers and nanostructures. Materials Chemistry Frontiers, 2021, 5, 3788-3812.	3.2	92
1278	Concluding remarks: current and next generation MOFs. Faraday Discussions, 2021, 231, 397-417.	1.6	17
1279	Spiers Memorial Lecture: Coordination networks that switch between nonporous and porous structures: an emerging class of soft porous crystals. Faraday Discussions, 2021, 231, 9-50.	1.6	34
1280	A Crystalline Three-Dimensional Covalent Organic Framework with Flexible Building Blocks. Journal of the American Chemical Society, 2021, 143, 2123-2129.	6.6	105
1281	Concluding remarks: Cooperative phenomena in framework materials. Faraday Discussions, 2021, 225, 442-454.	1.6	2
1282	Using geometric simulation software â€~GASP' to model conformational flexibility in a family of zinc metal–organic frameworks. New Journal of Chemistry, 2021, 45, 8728-8737.	1.4	2
1283	Evaluation of packing single and multiple atoms and molecules in the porous organic cage CC3- <i>R</i> . Physical Chemistry Chemical Physics, 2021, 23, 19255-19268.	1.3	2
1284	Influence of the porous structure and functionality of the MIL type metal-organic frameworks and carbon matrices on the adsorption of 2,4-dichlorophenoxyacetic acid. Russian Chemical Bulletin, 2021, 70, 67-74.	0.4	11

#	Article	IF	CITATIONS
1285	Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chemical Reviews, 2021, 121, 3751-3891.	23.0	442
1286	A Flexible and Porous Ferroceneâ€Based Gallium MOF with MILâ€53 Architecture. European Journal of Inorganic Chemistry, 2021, 2021, 713-719.	1.0	9
1287	Metal–Organic-Framework-Based Materials for Antimicrobial Applications. ACS Nano, 2021, 15, 3808-3848.	7.3	241
1288	Charge Transport, Conductivity and Seebeck Coefficient in Pristine and TCNQ Loaded Preferentially Grown Metal-Organic Framework Films. Journal of Physics Condensed Matter, 2021, , .	0.7	3
1289	Versatile Reactivity of MnII Complexes in Reactions with N-Donor Heterocycles: Metamorphosis of Labile Homometallic Pivalates vs. Assembling of Endurable Heterometallic Acetates. Molecules, 2021, 26, 1021.	1.7	4
1290	Tuning the hexane isomer separation performances of Zeolitic Imidazole Framework-8 using mechanical pressure. Journal of Chemical Physics, 2021, 154, 084702.	1.2	9
1291	Constructing a Resistive Gas Sensor Based on the Highly Stable Mil-53(Fe)/Ag/CNT Ternary Nanocomposite for Sensing Polar Volatile Organic Compounds Such as Methanol. Journal of Analytical Chemistry, 2021, 76, 399-412.	0.4	3
1292	One-Pot Preparation of Peptide-Doped Metal–Amino Acid Framework for General Encapsulation and Targeted Delivery. ACS Applied Materials & Interfaces, 2021, 13, 11195-11204.	4.0	18
1293	What Lies beneath a Metal–Organic Framework Crystal Structure? New Design Principles from Unexpected Behaviors. Journal of the American Chemical Society, 2021, 143, 6705-6723.	6.6	48
1294	From Macro- to Nanoscale: Finite Size Effects on Metal–Organic Framework Switchability. Trends in Chemistry, 2021, 3, 291-304.	4.4	41
1295	Mechanoresponsive Porosity in Metal-Organic Frameworks. Trends in Chemistry, 2021, 3, 254-265.	4.4	13
1296	Molecular Insight into the Swelling of a MOF: A Force-Field Investigation of Methanol Uptake in MIL-88B(Fe)‑'Cl. Journal of Physical Chemistry C, 2021, 125, 12837-12847.	1.5	13
1297	Continuous Breathing Rare-Earth MOFs Based on Hexanuclear Clusters with Gas Trapping Properties. Journal of the American Chemical Society, 2021, 143, 10250-10260.	6.6	30
1298	Metal-organic framework composites as green/sustainable catalysts. Coordination Chemistry Reviews, 2021, 436, 213827.	9.5	105
1299	Factors Affecting Hydrogen Adsorption in Metal–Organic Frameworks: A Short Review. Nanomaterials, 2021, 11, 1638.	1.9	31
1300	Breathing Metal–Organic Polyhedra Controlled by Light for Carbon Dioxide Capture and Liberation. CCS Chemistry, 2021, 3, 1659-1668.	4.6	28
1301	Frustrated flexibility in metal-organic frameworks. Nature Communications, 2021, 12, 4097.	5.8	55
1302	Dynamic Pendulum Effect of an Exceptionally Flexible <scp>Pillared‣ayer Metalâ€Organic</scp> Framework ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2718-2724.	2.6	7

	CHATION REL	PORT	
# 1303	ARTICLE Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature, 2021, 595, 542-548.	lF 13.7	Citations 273
1304	Post‧ynthetic Modification Unlocks a 2Dâ€ŧoâ€3D Switch in MOF Breathing Response: A Singleâ€Crystalâ€Diffraction Mapping Study. Angewandte Chemie, 2021, 133, 18064-18068.	1.6	1
1305	Post‧ynthetic Modification Unlocks a 2Dâ€toâ€3D Switch in MOF Breathing Response: A Singleâ€Crystalâ€Diffraction Mapping Study. Angewandte Chemie - International Edition, 2021, 60, 17920-17924.	7.2	13
1306	Density Functional Theory Study of the Structure of the Pillared Hofmann Compound Ni(3-Methyl-4,4â€2-bipyridine)[Ni(CN) ₄] (Ni-BpyMe or PICNIC-21). Journal of Physical Chemistry C, 2021, 125, 15882-15889.	1.5	3
1307	Review on Flexible Metalâ€Organic Frameworks. ChemistrySelect, 2021, 6, 8227-8243.	0.7	19
1308	Development of Functional Materials via Polymer Encapsulation into Metal–Organic Frameworks. Bulletin of the Chemical Society of Japan, 2021, 94, 2139-2148.	2.0	26
1309	Benchmark Acetylene Binding Affinity and Separation through Induced Fit in a Flexible Hybrid Ultramicroporous Material. Angewandte Chemie, 2021, 133, 20546-20553.	1.6	14
1310	Metal–Organic Frameworks: Molecules or Semiconductors in Photocatalysis?. Angewandte Chemie - International Edition, 2021, 60, 26038-26052.	7.2	91
1311	Benchmark Acetylene Binding Affinity and Separation through Induced Fit in a Flexible Hybrid Ultramicroporous Material. Angewandte Chemie - International Edition, 2021, 60, 20383-20390.	7.2	56
1312	Metal–Organic Frameworks: Molecules or Semiconductors in Photocatalysis?. Angewandte Chemie, 2021, 133, 26242-26256.	1.6	13
1313	Selective Photochemical Reaction by Fixing Reactant as a MOF Building Block. Chemistry Letters, 2021, 50, 1987-1989.	0.7	0
1314	Highâ€Throughput Discovery of a Rhombohedral Twelve onnected Zirconiumâ€Based Metalâ€Organic Framework with Ordered Terephthalate and Fumarate Linkers. Angewandte Chemie - International Edition, 2021, 60, 26939-26946.	7.2	10
1315	A unified topology approach to dot-, rod-, and sheet-MOFs. CheM, 2021, 7, 2491-2512.	5.8	30
1316	Monitoring Dynamics, Structure, and Magnetism of Switchable Metal–Organic Frameworks via ¹ Hâ€Detected MASâ€NMR. Angewandte Chemie - International Edition, 2021, 60, 21778-21783.	7.2	15
1317	Fabrication of Integrated Copperâ€Based Nanoparticles/Amorphous Metal–Organic Framework by a Facile Sprayâ€Drying Method: Highly Enhanced CO 2 Hydrogenation Activity for Methanol Synthesis. Angewandte Chemie, 2021, 133, 22457-22462.	1.6	4
1318	Structural heterogeneity and dynamics in flexible metal-organic frameworks. Cell Reports Physical Science, 2021, 2, 100544.	2.8	14
1319	Untersuchung von Dynamik, Struktur und Magnetismus von schaltbaren Metallâ€organischen Gerüstverbindungen mittels 1 Hâ€detektierter MASâ€NMRâ€6pektroskopie. Angewandte Chemie, 2021, 133, 21946-21952.	1.6	0
1321	Highâ€throughput discovery of a rhombohedral twelveâ€connected zirconiumâ€based metalâ€organic framework with ordered terephthalate and fumarate linkers. Angewandte Chemie, 0, , .	1.6	2

#	Article	IF	CITATIONS
1322	Investigation of CO ₂ Orientational Dynamics through Simulated NMR Line Shapes**. ChemPhysChem, 2021, 22, 2336-2341.	1.0	4
1323	Fabrication of Integrated Copperâ€Based Nanoparticles/Amorphous Metal–Organic Framework by a Facile Sprayâ€Drying Method: Highly Enhanced CO ₂ Hydrogenation Activity for Methanol Synthesis. Angewandte Chemie - International Edition, 2021, 60, 22283-22288.	7.2	29
1324	Metal–Organic Frameworks as Versatile Media for Polymer Adsorption and Separation. Accounts of Chemical Research, 2021, 54, 3593-3603.	7.6	29
1325	Breathingâ€Assisted Selective Adsorption of C ₈ Alkyl Aromatics in Znâ€Based Metalâ€Organic Frameworks. Chemistry - A European Journal, 2021, 27, 14851-14857.	1.7	4
1326	Exploring antibiotics as ligands in metal–organic and hydrogen bonding frameworks: Our novel approach towards enhanced antimicrobial activity (mini-review). Inorganica Chimica Acta, 2021, 525, 120474.	1.2	8
1327	Functionalized Zr-UiO-67 metal-organic frameworks: Structural landscape and application. Coordination Chemistry Reviews, 2021, 445, 214050.	9.5	57
1328	Natural gas dehydration by adsorption using MOFs and silicas: A review. Separation and Purification Technology, 2021, 276, 119409.	3.9	33
1329	Rapid reduction of real-time industry effluent using novel CuO/MIL composite. Chemosphere, 2022, 286, 131939.	4.2	3
1330	[Diaquo{bis(p-hydroxybenzoato-l̂º1O1)}(1-methylimidazole- l̂º1N1)}copper(II)]: Synthesis, crystal structure, catalytic activity and DFT study. Journal of Molecular Structure, 2022, 1247, 131323.	1.8	3
1331	Flexibility and Switchable Porosity in Metal-Organic Frameworks: Phenomena, Characterization and Functions. , 2021, , 328-375.		2
1332	Construction of three new Co(<scp>ii</scp>)-organic frameworks based on diverse metal clusters: highly selective C ₂ H ₂ and CO ₂ capture and magnetic properties. CrystEngComm, 2021, 23, 2439-2446.	1.3	6
1333	Towards correlating dimensionality and topology in luminescent MOFs based on terephthalato and bispyridyl-like ligands. Dalton Transactions, 2021, 50, 9269-9282.	1.6	5
1334	Recent progress in pristine MOF-based catalysts for electrochemical hydrogen evolution, oxygen evolution and oxygen reduction. Dalton Transactions, 2021, 50, 5732-5753.	1.6	48
1335	Mehr als nur ein Netzwerk: Strukturierung retikuläer Materialien im Nanoâ€, Meso―und Volumenbereich. Angewandte Chemie, 2020, 132, 22534-22556.	1.6	8
1336	Purely Physisorptionâ€Based COâ€Selective Gateâ€Opening in Microporous Organically Pillared Layered Silicates. Angewandte Chemie - International Edition, 2018, 57, 564-568.	7.2	7
1337	Beyond Frameworks: Structuring Reticular Materials across Nanoâ€, Mesoâ€, and Bulk Regimes. Angewandte Chemie - International Edition, 2020, 59, 22350-22370.	7.2	60
1338	The Amazing Chemistry of Metal-Organic Frameworks. , 2017, , 339-369.		3
1339	Metal-Organic Frameworks (MOFs) for CO2 Capture. Green Chemistry and Sustainable Technology, 2014, , 79-113.	0.4	2

#	Article	IF	Citations
1340	Tailoring the breathing behavior of functionalized MIL-53(Al,M)-NH2 materials by using the mixed-metal concept. Microporous and Mesoporous Materials, 2020, 308, 110329.	2.2	15
1341	An ultra-stable Cd coordination polymer based on double-chelated ligand for efficient dual-response of TNP and MnO4 Sensors and Actuators B: Chemical, 2020, 317, 128230.	4.0	27
1342	Halogen-Bonded Organic Frameworks of Perfluoroiodo- and Perfluorodiiodobenzene with 2,2′,7,7′-Tetrapyridyl-9,9′-spirobifluorene. Crystal Growth and Design, 2021, 21, 1045-1054.	1.4	11
1343	Thermal ring-opening polymerization of an unsymmetrical silicon-bridged [1]ferrocenophane in coordination nanochannels. Chemical Communications, 2017, 53, 6945-6948.	2.2	12
1344	Syntheses, structural diversity, magnetic properties and dye absorption of various Co(<scp>ii</scp>) MOFs based on a semi-flexible 4-(3,5-dicarboxylatobenzyloxy)benzoic acid. CrystEngComm, 2017, 19, 6630-6643.	1.3	25
1345	The Influence of Diamagnetic Substrates Absorption on Magnetic Properties of Porous Coordination Polymers. Current Inorganic Chemistry, 2013, 3, 144-160.	0.2	12
1346	A Series of Transition-metal Coordination Complexes Assembled from 3-Nitrophthalic Acid and Thiabendazole: Synthesis, Structure and Properties. Bulletin of the Korean Chemical Society, 2014, 35, 218-224.	1.0	3
1347	Controlled Polymer Synthesis in Coordination Nanochannels. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 324-330.	0.0	1
1348	ResponZIF Structures: Zeolitic Imidazolate Frameworks as Stimuli-Responsive Materials. ACS Applied Materials & Interfaces, 2021, 13, 50602-50642.	4.0	20
1349	Molecular Dynamics Simulations of the Breathing Phase Transition of MOF Nanocrystallites II: Explicitly Modeling the Pressure Medium. Frontiers in Chemistry, 2021, 9, 757680.	1.8	8
1350	Unraveling the Role of Structural Dynamism in Metal Organic Frameworks (MOF) for Excited-State Intramolecular Proton Transfer (ESIPT) Driven Water Sensing. Crystal Growth and Design, 2021, 21, 6110-6118.	1.4	10
1351	Coordination Nanochannels for Polymer Materials. Springer Briefs in Molecular Science, 2013, , 41-48.	0.1	1
1352	Modeled Catalytic Properties of MOF-Based Compounds. , 2015, , 517-551.		0
1353	Synthesis, crystal structure, and magnetic properties of a novel one-dimensional chain polymer based on 1-(4-nitrophenyl)-1,2,4-triazole. Inorganic and Nano-Metal Chemistry, 2017, 47, 1741-1745.	0.9	0
1354	CO2 Sequestration: Processes and Methodologies. , 2019, , 619-668.		2
1356	Computational investigations of Bio-MOF membranes for uremic toxin separation. Separation and Purification Technology, 2022, 281, 119852.	3.9	8
1358	Inclusion of cyclodextrins in a metallosupramolecular framework via structural transformations. CrystEngComm, 0, , .	1.3	1
1359	The chemistry and applications of flexible porous coordination polymers. EnergyChem, 2021, 3, 100067.	10.1	66

#	Article	IF	CITATIONS
1360	Research progress on porous low dielectric constant materials. Materials Science in Semiconductor Processing, 2022, 139, 106320.	1.9	23
1361	Coexistence of Naked-Eye Mechanochromism, Vapochromism, and Thermochromism in a Soft Crystalline Layered Nickel(II) Coordination Polymer. Inorganic Chemistry, 2021, 60, 18242-18250.	1.9	13
1362	Microscopic techniques for fabrication of polyethersulfone thinâ€film nanocomposite membranes intercalated with UiOâ€66â€SO 3 H for heavy metal ions removal from water. Microscopy Research and Technique, 2021, , .	1.2	4
1363	Molecule in soft-crystal at ground and excited states: Theoretical approach. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100482.	5.6	5
1364	Phenomenology of vapour sorption in polymers of intrinsic microporosity PIM-1 and PIM-EA-TB: envelopment of sorption isotherms. Current Opinion in Chemical Engineering, 2022, 35, 100786.	3.8	8
1365	Low temperature heat capacity and thermodynamic functions of Al-MIL-53-X metal-organic frameworks. Chemical Thermodynamics and Thermal Analysis, 2022, 5, 100027.	0.7	1
1366	A systematic examination of the impacts of MOF flexibility on intracrystalline molecular diffusivities. Journal of Materials Chemistry A, 2022, 10, 4242-4253.	5.2	25
1367	Triplet Dynamic Nuclear Polarization of Guest Molecules through Induced Fit in a Flexible Metal–Organic Framework**. Angewandte Chemie, 0, , .	1.6	3
1368	Metal-Organic Frameworks-Based Sensors for Food Safety. Foods, 2022, 11, 382.	1.9	29
1369	Design of a MOF based on octa-nuclear zinc clusters realizing both thermal stability and structural flexibility. Chemical Communications, 2022, 58, 1139-1142.	2.2	6
1370	Divergent Properties in Structural Isomers of Triphenylamine-Based Covalent Organic Frameworks. Chemistry of Materials, 2022, 34, 529-536.	3.2	28
1371	Triplet Dynamic Nuclear Polarization of Guest Molecules through Induced Fit in a Flexible Metal–Organic Framework**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
1372	Direct Observation of Modulated Radical Spin States in Metal–Organic Frameworks by Controlled Flexibility. Journal of the American Chemical Society, 2022, 144, 2685-2693.	6.6	23
1373	Direct observation of porous coordination polymer surfaces by atomic force microscopy. Japanese Journal of Applied Physics, 0, , .	0.8	1
1374	Understanding the ZIF-L to ZIF-8 transformation from fundamentals to fully costed kilogram-scale production. Communications Chemistry, 2022, 5, .	2.0	45
1375	Flexible metal–organic frameworks for gas storage and separation. Dalton Transactions, 2022, 51, 4608-4618.	1.6	66
1376	Topological transformations in metal–organic frameworks: a prospective design route?. CrystEngComm, 2022, 24, 2914-2924.	1.3	1
1377	Ab Initio Study of Hydrostable Metal–Organic Frameworks for Postsynthetic Modification and Tuning toward Practical Applications. ACS Omega, 2022, 7, 7791-7805.	1.6	1

#	Article	IF	CITATIONS
1378	Heterogeneous Dendrimer-Based Catalysts. Polymers, 2022, 14, 981.	2.0	10
1379	Near-Infrared Light-Driven Shape-Programmable Hydrogel Actuators Loaded with Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 11834-11841.	4.0	41
1380	Characterization of metal-organic frameworks by transmission electron microscopy. Advances in Physics: X, 2022, 7, .	1.5	3
1381	Identifying the Gate-Opening Mechanism in the Flexible Metal–Organic Framework UTSA-300. Inorganic Chemistry, 2022, 61, 5025-5032.	1.9	9
1382	Discovery of Colossal Breathing-Caloric Effect under Low Applied Pressure in the Hybrid Organic–Inorganic MIL-53(Al) Material. Chemistry of Materials, 2022, 34, 3323-3332.	3.2	13
1383	Chemical Diversity for Tailoring Negative Thermal Expansion. Chemical Reviews, 2022, 122, 8438-8486.	23.0	51
1384	Tuning Adsorption-Induced Responsiveness of a Flexible Metal–Organic Framework JUK-8 by Linker Halogenation. Chemistry of Materials, 2022, 34, 3430-3439.	3.2	6
1385	Carboxylic Group Rotation and Lattice Expansion in a Co ₂ (Pyrazine-2,3-Dicarboxylate) ₂ (4,4′-Bipyridine) Porous Coordination Polymer Induced by CO ₂ Adsorption at Ambient Temperature. Crystal Growth and Design, 2022, 22, 2382-2391.	1.4	Ο
1386	Synthesis of Coordination Polymers and Discrete Complexes from the Reaction of Copper(II) Carboxylates with Pyrazole: Role of Carboxylates Basicity. Crystal Growth and Design, 2022, 22, 1032-1044.	1.4	5
1387	Transformation of a Cluster-Based Metal–Organic Framework to a Rod Metal–Organic Framework. Chemistry of Materials, 2022, 34, 273-278.	3.2	14
1388	Correlation between the Metal and Organic Components, Structure Property, and Gas-Adsorption Capacity of Metal–Organic Frameworks. Journal of Chemical Information and Modeling, 2021, 61, 5785-5792.	2.5	3
1389	Generating Catalytic Sites in UiO-66 through Defect Engineering. ACS Applied Materials & Interfaces, 2021, 13, 60715-60735.	4.0	86
1390	Process-Oriented Smart Adsorbents: Tailoring the Properties Dynamically as Demanded by Adsorption/Desorption. Accounts of Chemical Research, 2022, 55, 75-86.	7.6	25
1391	CCIQS-1: A Dynamic Metal–Organic Framework with Selective Guest-Triggered Porosity Switching. Chemistry of Materials, 2022, 34, 669-677.	3.2	6
1395	Chelation-activated ultralong room-temperature phosphorescence and thermo-/excitation-dependent persistent luminescence. Chemical Communications, 2022, 58, 6136-6139.	2.2	1
1396	Experimental investigation of optical anisotropy of polymethyl methacrylate aligned by metal–organic framework via in situ polymerization and direct chainâ€introduction. Journal of Applied Polymer Science, 0, , .	1.3	Ο
1397	Advanced Anode Materials for Sodium-Ion Batteries: Confining Polyoxometalates in Flexible Metal–Organic Frameworks by the "Breathing Effect― ACS Applied Materials & Interfaces, 2022, 14, 22186-22196.	4.0	22
1398	Recent advances in the tuning of the organic framework materials $\hat{a} \in$ "The selections of ligands, reaction conditions, and post-synthesis approaches. Journal of Colloid and Interface Science, 2022, 623, 378-404	5.0	7

#	Article	IF	CITATIONS
1399	Triphenyllead Hydroperoxide: A 1D Coordination Peroxo Polymer, Single-Crystal-to-Single-Crystal Disproportionation to a Superoxo/Hydroxo Complex, and Application in Catalysis. Inorganic Chemistry, 2022, 61, 8193-8205.	1.9	5
1400	Molecular simulations to investigate the guest-induced flexibility of Pu-UiO-66 MOF. Materials Today: Proceedings, 2022, , .	0.9	0
1401	Controlling the Flexibility of MILâ€88A(Sc) Through Synthetic Optimisation and Postsynthetic Halogenation. Chemistry - A European Journal, 2022, 28, .	1.7	8
1402	MOF: A Heterogeneous Platform for CO ₂ Capture and Catalysis. ACS Symposium Series, 0, , 315-354.	0.5	1
1403	Solid-state NMR studies of metal ion and solvent influences upon the flexible metal-organic framework DUT-8. Solid State Nuclear Magnetic Resonance, 2022, 120, 101809.	1.5	5
1404	Dynamic Variation of Responsive Metal-Organic Frameworks toward Specific Stimuli. Bulletin of Japan Society of Coordination Chemistry, 2022, 79, 50-57.	0.1	0
1405	A Cu-based metal-organic framework with two types of connecting nodes as catalyst for oxygen activation. Chinese Chemical Letters, 2023, 34, 107635.	4.8	2
1406	Temperature Driven Transformation of the Flexible Metal–Organic Framework DUTâ€8(Ni). Chemistry - A European Journal, 2022, 28, .	1.7	7
1407	Multi-dimensional metal-organic frameworks based on mixed linkers: Interplay between structural flexibility and functionality. Coordination Chemistry Reviews, 2022, 469, 214645.	9.5	21
1408	A contemporary report on explications of flexible metal-organic frameworks with regards to structural simulation, dynamics and material applications. Polyhedron, 2022, 225, 116041.	1.0	2
1408 1409	A contemporary report on explications of flexible metal-organic frameworks with regards to	1.0 1.6	2
	A contemporary report on explications of flexible metal-organic frameworks with regards to structural simulation, dynamics and material applications. Polyhedron, 2022, 225, 116041. Formic Acid Generation from CO2 Reduction by MOF-253 Coordinated Transition Metal Complexes: A		
1409	A contemporary report on explications of flexible metal-organic frameworks with regards to structural simulation, dynamics and material applications. Polyhedron, 2022, 225, 116041. Formic Acid Generation from CO2 Reduction by MOF-253 Coordinated Transition Metal Complexes: A Computational Chemistry Perspective. Catalysts, 2022, 12, 890. Mechanical Characterization of Anhydrous Microporous Aluminophosphate Materials: Tridimensional Incompressibility, Ductility, Isotropy and Negative Linear Compressibility. Solids, 2022,	1.6	1
1409 1410	A contemporary report on explications of flexible metal-organic frameworks with regards to structural simulation, dynamics and material applications. Polyhedron, 2022, 225, 116041. Formic Acid Generation from CO2 Reduction by MOF-253 Coordinated Transition Metal Complexes: A Computational Chemistry Perspective. Catalysts, 2022, 12, 890. Mechanical Characterization of Anhydrous Microporous Aluminophosphate Materials: Tridimensional Incompressibility, Ductility, Isotropy and Negative Linear Compressibility. Solids, 2022, 3, 457-499. A Logic Gate Based on a Flexible Metal–Organic Framework (JUKâ€8) for the Concomitant Detection of	1.6	1 2
1409 1410 1411	A contemporary report on explications of flexible metal-organic frameworks with regards to structural simulation, dynamics and material applications. Polyhedron, 2022, 225, 116041. Formic Acid Generation from CO2 Reduction by MOF-253 Coordinated Transition Metal Complexes: A Computational Chemistry Perspective. Catalysts, 2022, 12, 890. Mechanical Characterization of Anhydrous Microporous Aluminophosphate Materials: Tridimensional Incompressibility, Ductility, Isotropy and Negative Linear Compressibility. Solids, 2022, 3, 457-499. A Logic Gate Based on a Flexible Metal–Organic Framework (JUKâ€8) for the Concomitant Detection of Hydrogen and Oxygen. Chemistry - A European Journal, 2022, 28, . Topochemical Synthesis of Ca ₃ CrN ₃ H Involving a Rotational Structural	1.6 1.1 1.7	1 2 5
1409 1410 1411 1412	A contemporary report on explications of flexible metal-organic frameworks with regards to structural simulation, dynamics and material applications. Polyhedron, 2022, 225, 116041. Formic Acid Generation from CO2 Reduction by MOF-253 Coordinated Transition Metal Complexes: A Computational Chemistry Perspective. Catalysts, 2022, 12, 890. Mechanical Characterization of Anhydrous Microporous Aluminophosphate Materials: Tridimensional Incompressibility, Ductility, Isotropy and Negative Linear Compressibility. Solids, 2022, 3, 457-499. A Logic Gate Based on a Flexible Metal–Organic Framework (JUKâ€8) for the Concomitant Detection of Hydrogen and Oxygen. Chemistry - A European Journal, 2022, 28, . Topochemical Synthesis of Ca ₃ CrN ₃ H Involving a Rotational Structural Transformation for Catalytic Ammonia Synthesis. Angewandte Chemie - International Edition, 2022, 61, . Flexible Coordination Network Exhibiting Water Vapor–Induced Reversible Switching between Closed	1.6 1.1 1.7 7.2	1 2 5 12
1409 1410 1411 1412 1413	A contemporary report on explications of flexible metal-organic frameworks with regards to structural simulation, dynamics and material applications. Polyhedron, 2022, 225, 116041. Formic Acid Generation from CO2 Reduction by MOF-253 Coordinated Transition Metal Complexes: A Computational Chemistry Perspective. Catalysts, 2022, 12, 890. Mechanical Characterization of Anhydrous Microporous Aluminophosphate Materials: Tridimensional Incompressibility, Ductility, Isotropy and Negative Linear Compressibility. Solids, 2022, 3, 457-499. A Logic Gate Based on a Flexible Metal–Organic Framework (JUKâ€8) for the Concomitant Detection of Hydrogen and Oxygen. Chemistry - A European Journal, 2022, 28, . Topochemical Synthesis of Ca ₃ CrN ₃ H Involving a Rotational Structural Transformation for Catalytic Ammonia Synthesis. Angewandte Chemie - International Edition, 2022, 61, . Flexible Coordination Network Exhibiting Water Vapor〓Induced Reversible Switching between Closed and Open Phases. ACS Applied Materials & amp; Interfaces, 2022, 14, 39560-39566.	1.6 1.1 1.7 7.2 4.0	1 2 5 12 6

#	Article	IF	CITATIONS
1417	An approach for the pore-centred description of adsorption in hierarchical porous materials. CrystEngComm, 2022, 24, 7326-7334.	1.3	2
1418	On the Role of Flexibility for Adsorptive Separation. Accounts of Chemical Research, 2022, 55, 2966-2977.	7.6	33
1419	Nanoparticle assembled structures for matter assays in human flowing systems. Matter, 2022, 5, 2760-2786.	5.0	2
1420	Stimuliâ€Responsive of Flexible Silver–Organic Framework Film with Molecular Rotors Based on Methylene Rotation. Small Structures, 2022, 3, .	6.9	4
1421	Highâ€Efficiency CO ₂ /N ₂ Separation Enabled by Rotation of Electrostatically Anchored Flexible Ligands in Metal–Organic Framework. Angewandte Chemie, 2022, 134, .	1.6	0
1422	Impact of Loading-Dependent Intrinsic Framework Flexibility on Adsorption in UiO-66. Journal of Physical Chemistry C, 2022, 126, 17699-17711.	1.5	7
1423	Highâ€Efficiency CO ₂ /N ₂ Separation Enabled by Rotation of Electrostatically Anchored Flexible Ligands in Metal–Organic Framework. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
1424	Insightful contribution of 57Fe Mössbauer spectrometry (and of Jean-Marc Grenèche) to the field of iron metal organic frameworks. Journal of Materials Research, 0, , .	1.2	1
1425	Recent advances and potential applications of flexible adsorption and separation materials: A review. Energy Science and Engineering, 2023, 11, 952-973.	1.9	0
1426	MOFs with bridging or terminal hydroxo ligands: Applications in adsorption, catalysis, and functionalization. Coordination Chemistry Reviews, 2023, 475, 214912.	9.5	43
1427	Cutting-edge molecular modelling to unveil new microscopic insights into the guest-controlled flexibility of metal–organic frameworks. Chemical Science, 2022, 13, 14336-14345.	3.7	2
1428	Boosting the Adsorption Performance of Thiophenic Sulfur Compounds with a Multimetallic Dual Metal–Organic Framework Composite. Langmuir, 2022, 38, 14451-14464.	1.6	10
1429	Solvothermal and hydrothermal methods for preparative solid-state chemistry. , 2023, , 40-110.		0
1430	Selective Separation of Hazardous Chemicals from Vapor Phase by an Easily Accessible Breathing Coordination Polymer Derived from Terpyridyl/terephthalate Mixed Ligands. Chemistry - A European Journal, 2023, 29, .	1.7	1
1431	First Example of Chromone-Based Nickel(II) Coordination Polymers with Tunable Magnetic Properties. Crystal Growth and Design, 2022, 22, 7544-7554.	1.4	1
1432	Reduced thermal expansion by surface-mounted nanoparticles in a pillared-layered metal-organic framework. Communications Chemistry, 2022, 5, .	2.0	1
1433	Structural Phase Transformations Induced by Guest Molecules in a Nickel-Based 2D Square Lattice Coordination Network. Chemistry of Materials, 2023, 35, 783-791.	3.2	6
1434	Effects of MOF linker rotation and functionalization on methane uptake and diffusion. Molecular Systems Design and Engineering, 2023, 8, 527-537.	1.7	1

#	Article	IF	CITATIONS
1435	Propagating MOF flexibility at the macroscale: the case of MOF-based mechanical actuators. Chemical Communications, 0, , .	2.2	1
1436	Investigation of Guest-Induced Flexibility in Pyrazine Derivative of ALFFIVE MOF via Molecular Simulation. Langmuir, 2023, 39, 1373-1385.	1.6	2
1437	Precisely modulating the branching functional groups of MIL-53(Al) for highly efficient sequestration of uranium. Journal of Environmental Chemical Engineering, 2023, 11, 109393.	3.3	0
1438	Nanotectonic Analysis Suggests Epitaxial Recrystallization in a Plastic Molecular Crystal. Crystal Growth and Design, 2023, 23, 1442-1447.	1.4	Ο
1439	Metal organic frameworks-derived sensing material of TiO2 thin film sensors for detection of NO2 gas. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
1440	Metal Doping to Control Gate Opening and Increase Methane Working Capacity in Isostructural Flexible Diamondoid Networks. ChemSusChem, 2023, 16, .	3.6	2
1441	A Luminescent Metalâ€Organic Framework with Boosted Picric Acid Fluorescence Detection Performance via a Complementary Captureâ€Quench Mechanism. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	0
1442	Water-stable MOFs and hydrophobically encapsulated MOFs for CO2 capture from ambient air and wet flue gas. Materials Today, 2023, 65, 207-226.	8.3	18
1443	Shape-Memory Effect Triggered by π–π Interactions in a Flexible Terpyridine Metal–Organic Framework. , 2023, 5, 1256-1260.		5
1444	Computational Modelling of MOF Mechanics: From Elastic Behaviour to Phase Transformations. , 2023, , 113-204.		Ο
1445	Multivariate Flexible Framework with High Usable Hydrogen Capacity in a Reduced Pressure Swing Process. Journal of the American Chemical Society, 2023, 145, 8033-8042.	6.6	10
1446	Entropy driven disorder–order transition of a metal–organic framework with frustrated flexibility. APL Materials, 2023, 11, .	2.2	1
1447	Understanding MOF Flexibility: An Analysis Focused on Pillared Layer MOFs as a Model System. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
1448	Understanding MOF Flexibility: An Analysis Focused on Pillared Layer MOFs as a Model System. Angewandte Chemie, 2023, 135, .	1.6	Ο
1449	The impact of solution <i>vs</i> . slurry <i>vs</i> . mechanochemical syntheses upon the sorption performance of a 2D switching coordination network. Inorganic Chemistry Frontiers, 2023, 10, 3821-3827.	3.0	1
1450	Elastic hydrogen-bonded ionic framework. Nano Research, 2023, 16, 10660-10665.	5.8	Ο
1456	Nuclear Magnetic Resonance (NMR): Physisorbed Xenon for Porosity. Springer Handbooks, 2023, , 813-848.	0.3	0
1461	Historical and contemporary perspectives on metal–organic frameworks for gas sensing applications: a review. , 2023, 1, 1125-1149.		2

#	Article	IF	CITATIONS
1473	Metal–organic frameworks for hydrocarbon separation: design, progress, and challenges. Journal of Materials Chemistry A, 2023, 11, 20459-20469.	5.2	5
1475	Tuning the guest-induced spatiotemporal response of isostructural dynamic frameworks towards efficient gas separation and storage. Journal of Materials Chemistry A, 2023, 11, 18646-18650.	5.2	2
1489	Recent advances in the nanoarchitectonics of metal–organic frameworks for light-activated tumor therapy. Dalton Transactions, 2023, 52, 16085-16102.	1.6	1
1506	Facile mechanochemical synthesis of MIL-53 and its isoreticular analogues with a glance at reaction reversibility. Dalton Transactions, 2024, 53, 4406-4411.	1.6	0
1508	Metal-organic frameworks as adsorbents for removal of pharmaceutical and personal care products (PPCPs). , 2024, , 141-147.		0
1509	The Dynamic View: Multiscale Characterisation Techniques for Flexible Frameworks. , 2024, , 145-230.		0
1510	Theoretical Understanding and Insights on Flexible Metal–Organic Frameworks. , 2024, , 231-303.		0
1511	New Dimensions of Flexible MOFs: Toward Complex Systems and Devices. , 2024, , 304-367.		0
1513	Metal-oxide adsorbents and mesoporous silica for natural gas dehydration. , 2024, , 213-235.		0