Enhanced CO₂ Adsorption in Metal-Organi Open-Metal Sites by Coordinated Water Molecules

Chemistry of Materials 21, 1425-1430

DOI: 10.1021/cm900049x

Citation Report

#	Article	IF	CITATIONS
6	Strong CO ₂ Binding in a Water-Stable, Triazolate-Bridged Metalâ^'Organic Framework Functionalized with Ethylenediamine. Journal of the American Chemical Society, 2009, 131, 8784-8786.	13.7	1,047
7	Virtual High Throughput Screening Confirmed Experimentally: Porous Coordination Polymer Hydration. Journal of the American Chemical Society, 2009, 131, 15834-15842.	13.7	848
8	Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. Journal of Materials Chemistry, 2009, 19, 7362.	6.7	633
9	Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification. Journal of Materials Chemistry, 2009, 19, 2131.	6.7	370
10	Understanding gas separation in metal–organic frameworks using computer modeling. Journal of Materials Chemistry, 2010, 20, 10308.	6.7	80
11	Doping of Alkali, Alkaline-Earth, and Transition Metals in Covalent-Organic Frameworks for Enhancing CO ₂ Capture by First-Principles Calculations and Molecular Simulations. ACS Nano, 2010, 4, 4225-4237.	14.6	206
12	Highly Porous Ionic rht Metalâ^'Organic Framework for H2 and CO2 Storage and Separation: A Molecular Simulation Study. Langmuir, 2010, 26, 11196-11203.	3.5	72
13	New Microporous Materials for Acetylene Storage and C ₂ H ₂ /CO ₂ Separation: Insights from Molecular Simulations. ChemPhysChem, 2010, 11, 2220-2229.	2.1	118
14	A Bioâ€Metal–Organic Framework for Highly Selective CO ₂ Capture: A Molecular Simulation Study. ChemSusChem, 2010, 3, 982-988.	6.8	95
15	Highâ€Surfaceâ€Area Carbon Molecular Sieves for Selective CO ₂ Adsorption. ChemSusChem, 2010, 3, 974-981.	6.8	316
16	Can Metal–Organic Framework Materials Play a Useful Role in Largeâ€Scale Carbon Dioxide Separations?. ChemSusChem, 2010, 3, 879-891.	6.8	556
18	Carbon Dioxide Capture: Prospects for New Materials. Angewandte Chemie - International Edition, 2010, 49, 6058-6082.	13.8	3,452
19	Asymmetric Matrimid $\hat{A}^{@}/[Cu3(BTC)2]$ mixed-matrix membranes for gas separations. Journal of Membrane Science, 2010, 362, 478-487.	8.2	259
20	Molecular simulation of propane/propylene separation on the metal–organic framework CuBTC. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 357, 27-34.	4.7	70
21	CO ₂ and CH ₄ Separation by Adsorption Using Cu-BTC Metalâ^'Organic Framework. Industrial & Description Using Cu-BTC Metalâ^'Organic Framework. Industrial & Description Chemistry Research, 2010, 49, 7497-7503.	3.7	233
22	A Highly Hydrophobic Metalâ^'Organic Framework Zn(BDC)(TED)0.5 for Adsorption and Separation of CH3OH/H2O and CO2/CH4: An Integrated Experimental and Simulation Study. Journal of Physical Chemistry C, 2010, 114, 6602-6609.	3.1	94
23	Molecular Simulation Studies of Separation of CO ₂ /N ₂ , CO ₂ /CH ₄ , and CH ₄ /N ₂ by ZIFs. Journal of Physical Chemistry C, 2010, 114, 8515-8522.	3.1	266
24	Flexible metal–organic supramolecular isomers for gas separation. Chemical Communications, 2010, 46, 538-540.	4.1	173

#	Article	IF	CITATIONS
25	CO ₂ /H ₂ O Adsorption Equilibrium and Rates on Metalâ^'Organic Frameworks: HKUST-1 and Ni/DOBDC. Langmuir, 2010, 26, 14301-14307.	3.5	390
26	Self-Diffusion Studies in CuBTC by PFG NMR and MD Simulations. Journal of Physical Chemistry C, 2010, 114, 10527-10534.	3.1	82
27	Generation of 2D and 3D (PtS, Adamantanoid) Nets with a Flexible Tetrahedral Building Block. Crystal Growth and Design, 2010, 10, 3843-3846.	3.0	16
28	Caging Carbon Dioxide. Science, 2010, 330, 595-596.	12.6	79
29	Support and Size Effects of Activated Hydrotalcites for Precombustion CO ₂ Capture. Industrial & Engineering Chemistry Research, 2010, 49, 1229-1235.	3.7	98
30	Cu2O: A Versatile Reagent for Base-Free Direct Synthesis of NHC-Copper Complexes and Decoration of 3D-MOF with Coordinatively Unsaturated NHC-Copper Species. Organometallics, 2010, 29, 1518-1521.	2.3	91
31	Metal organic gels (MOGs): a new class of sorbents for CO2 separation applications. Journal of Materials Chemistry, 2010, 20, 7623.	6.7	80
32	First-Principles-Derived Force Field for Copper Paddle-Wheel-Based Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2010, 114, 14402-14409.	3.1	85
33	Sorbents for CO2 capture from flue gasâ€"aspects from materials and theoretical chemistry. Nanoscale, 2010, 2, 1819.	5.6	213
34	Optimal Single-Walled Carbon Nanotube Vessels for Short-Term Reversible Storage of Carbon Dioxide at Ambient Temperatures. Journal of Physical Chemistry C, 2010, 114, 21465-21473.	3.1	26
35	Unraveling the High Uptake and Selectivity of CO ₂ in the Zeolitic Imidazolate Frameworks ZIF-68 and ZIF-69. Journal of Physical Chemistry C, 2010, 114, 13501-13508.	3.1	38
36	Evaluation of Energy Heterogeneity in Metalâ^'Organic Frameworks: Absence of Henry's Region in MIL-53 and MIL-68 Materials?. Journal of Physical Chemistry C, 2010, 114, 17665-17674.	3.1	17
37	Metalâ^'Organic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing. Analytical Chemistry, 2010, 82, 8042-8046.	6.5	317
38	A Systematic Investigation of Decomposition of Nano Zn ₄) ₃ Metalâ^'Organic Framework. Journal of Physical Chemistry C, 2010, 114, 2566-2572.	3.1	91
39	Metalâ^'Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From Quantum Mechanics to Molecular Simulation. Langmuir, 2010, 26, 8743-8750.	3.5	113
40	Computational screening of metal–organic frameworks for large-molecule chemical sensing. Physical Chemistry Chemical Physics, 2010, 12, 12621.	2.8	83
41	Water adsorption in hydrophobic MOF channels. Physical Chemistry Chemical Physics, 2010, 12, 8123.	2.8	72
42	Effect of air humidity on the removal of carbon tetrachloride from air using Cu–BTC metal–organic framework. Physical Chemistry Chemical Physics, 2011, 13, 11165.	2.8	40

#	Article	IF	Citations
43	Molecular simulation investigation into the performance of Cu–BTC metal–organic frameworks for carbon dioxide–methane separations. Physical Chemistry Chemical Physics, 2011, 13, 20453.	2.8	25
44	A route to functionalised pores in coordination polymers via mixed phosphonate and amino-triazole linkers. Supramolecular Chemistry, 2011, 23, 278-282.	1.2	13
45	Strong Effects of Higher-Valent Cations on the Structure of the Zeolitic Zn(2-methylimidazole) ₂ Framework (ZIF-8). Journal of Physical Chemistry C, 2011, 115, 7967-7971.	3.1	57
46	Separation of CO ₂ Mixtures Using Zn(bdc)(ted) _{0.5} Membranes and Composites: A Molecular Simulation Study. Journal of Physical Chemistry C, 2011, 115, 13637-13644.	3.1	23
47	Pore partition effect on gas sorption properties of an anionic metal–organic framework with exposed Cu2+ coordination sites. Chemical Communications, 2011, 47, 10647.	4.1	139
48	Biomedical Applications of Metal Organic Frameworks. Industrial & Engineering Chemistry Research, 2011, 50, 1799-1812.	3.7	520
49	CO2 capture by solid adsorbents and their applications: current status and new trends. Energy and Environmental Science, 2011, 4, 42-55.	30.8	1,353
50	CO ₂ Capture from the Atmosphere and Simultaneous Concentration Using Zeolites and Amine-Grafted SBA-15. Environmental Science & Environment	10.0	215
51	In silico screening of metal–organic frameworks in separation applications. Physical Chemistry Chemical Physics, 2011, 13, 10593.	2.8	300
52	Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri. Chemical Science, 2011, 2, 2022.	7.4	491
53	Screening Metal–Organic Frameworks by Analysis of Transient Breakthrough of Gas Mixtures in a Fixed Bed Adsorber. Journal of Physical Chemistry C, 2011, 115, 12941-12950.	3.1	197
54	Understanding CO ₂ Adsorption in CuBTC MOF: Comparing Combined DFT–ab Initio Calculations with Microcalorimetry Experiments. Journal of Physical Chemistry C, 2011, 115, 17925-17933.	3.1	146
55	Effect of Humidity on the Performance of Microporous Coordination Polymers as Adsorbents for CO ₂ Capture. Langmuir, 2011, 27, 6368-6373.	3.5	409
56	Poly(<scp>I</scp> -lactic acid) Metal Organic Framework Composites. Mass Transport Properties. Industrial & Samp; Engineering Chemistry Research, 2011, 50, 11136-11142.	3.7	24
57	Adsorption and Transport of CH ₄ , CO ₂ , H ₂ Mixtures in a Bio-MOF Material from Molecular Simulations. Journal of Physical Chemistry C, 2011, 115, 6833-6840.	3.1	72
58	Exploring Network Topologies of Copper Paddle Wheel Based Metal–Organic Frameworks with a First-Principles Derived Force Field. Journal of Physical Chemistry C, 2011, 115, 15133-15139.	3.1	47
59	Adsorption and Separation of CO ₂ /CH ₄ on Amorphous Silica Molecular Sieve. Journal of Physical Chemistry C, 2011, 115, 9713-9718.	3.1	44
60	Luminescent infinite coordination polymer materials from metal-terpyridine ligation. Dalton Transactions, 2011, 40, 9189.	3.3	22

#	ARTICLE	IF	CITATIONS
61	Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy and Environmental Science, 2011, 4, 3059.	30.8	558
62	Why hybrid porous solids capture greenhouse gases?. Chemical Society Reviews, 2011, 40, 550-562.	38.1	603
63	Sulfonate-Grafted Porous Polymer Networks for Preferential CO ₂ Adsorption at Low Pressure. Journal of the American Chemical Society, 2011, 133, 18126-18129.	13.7	522
64	Computational screening of metal-organic frameworks for xenon/krypton separation. AICHE Journal, 2011, 57, 1759-1766.	3. 6	147
65	Colloidal Processing and Thermal Treatment of Binderless Hierarchically Porous Zeolite 13X Monoliths for CO2 Capture. Journal of the American Ceramic Society, 2011, 94, 92-98.	3.8	49
66	Interaction of H2 with fragments of MOF-5 and its implications for the design and development of new MOFs: A computational study. International Journal of Hydrogen Energy, 2011, 36, 10737-10747.	7.1	18
67	Two Novel Zinc(II) Metal–Organic Frameworks Based on Triazole-Carboxylate Shared Paddle-Wheel Units: Synthesis, Structure, and Gas Adsorption. Crystal Growth and Design, 2011, 11, 2811-2816.	3.0	37
68	Increasing Selective CO ₂ Adsorption on Amine-Grafted SBA-15 by Increasing Silanol Density. Journal of Physical Chemistry C, 2011, 115, 21264-21272.	3.1	199
69	Guest-induced gate-opening of a zeolite imidazolate framework. New Journal of Chemistry, 2011, 35, 546-550.	2.8	172
70	Modeling gas separation in metal-organic frameworks. Adsorption, 2011, 17, 255-264.	3.0	20
71	CO2 adsorption on binderless activated carbon monoliths. Adsorption, 2011, 17, 497-504.	3.0	77
72	Remarkable Uptake of CO ₂ and CH ₄ by Grapheneâ€Like Borocarbonitrides, B _{<i>x</i>} C _{<i>y</i>} ChemSusChem, 2011, 4, 1662-1670.	6.8	58
73	Enhancing Gas Adsorption and Separation Capacity through Ligand Functionalization of Microporous Metal–Organic Framework Structures. Chemistry - A European Journal, 2011, 17, 5101-5109.	3.3	176
74	Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews, 2011, 255, 1791-1823.	18.8	1,805
75	Simulations of model metal-organic frameworks for the separation of carbon dioxide. Energy Procedia, 2011, 4, 568-575.	1.8	6
76	Enhancement of CO2/CH4 selectivity in metal-organic frameworks containing lithium cations. Microporous and Mesoporous Materials, 2011, 141, 231-235.	4.4	128
77	Desorption of dimethylformamide from Zn4O(C8H4O4)3 framework. Applied Surface Science, 2011, 257, 3392-3398.	6.1	11
78	Observation of ZnO nanoparticles outside pores of nano Zn4O(C8H4O4)3 metal–organic framework. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 1514-1517.	2.1	6

#	ARTICLE	IF	CITATIONS
79	Exploring the interplay of adsorption and diffusion for separation of CO ₂ /CH ₄ in zeolite-like metalâ€"organic frameworks by a molecular dynamics simulation. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2011, 225, 288-297.	1.1	1
80	Computational structure characterisation tools in application to ordered and disordered porous materials. Molecular Simulation, 2011, 37, 1248-1257.	2.0	548
81	Quantifying cooperative intermolecular interactions for improved carbon dioxide capture materials. Journal of Chemical Physics, 2011, 135, 064304.	3.0	25
82	Synthesis of Hierarchical Porous Carbon Monoliths with Incorporated Metal–Organic Frameworks for Enhancing Volumetric Based CO ₂ Capture Capability. ACS Applied Materials & amp; Interfaces, 2012, 4, 6125-6132.	8.0	126
83	Post-Combustion CO ₂ Capture Using Solid Sorbents: A Review. Industrial & Engineering Chemistry Research, 2012, 51, 1438-1463.	3.7	1,524
84	FT-IR spectroscopic and thermodynamic study on the adsorption of carbon dioxide and dinitrogen in the alkaline zeolite K-L. Applied Surface Science, 2012, 259, 367-370.	6.1	13
85	A pcu-type metal–organic framework based on covalently quadruple cross-linked supramolecular building blocks (SBBs): structure and adsorption properties. CrystEngComm, 2012, 14, 1929.	2.6	34
86	Enhanced selectivity and capacity of adsorption of CO ₂ and CH ₄ in zeolite-like metal-organic frameworks with different extra-framework cations: a molecular simulation study. Molecular Simulation, 2012, 38, 72-83.	2.0	21
87	Calculation and visualization of free energy barriers for several VOCs and TNT in HKUST-1. Physical Chemistry Chemical Physics, 2012, 14, 15438.	2.8	13
88	High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal–organic frameworks. Chemical Communications, 2012, 48, 7025.	4.1	174
89	Tuning MOF Stability and Porosity via Adding Rigid Pillars. Inorganic Chemistry, 2012, 51, 9649-9654.	4.0	79
90	Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nature Communications, 2012, 3, 954.	12.8	716
91	Progress in adsorption-based CO ₂ capture by metal–organic frameworks. Chemical Society Reviews, 2012, 41, 2308-2322.	38.1	1,205
92	High performance metal–organic-framework coatings obtained via thermal gradient synthesis. Chemical Communications, 2012, 48, 9708.	4.1	47
93	Grand Canonical Monte Carlo Simulation of Low-Pressure Methane Adsorption in Nanoporous Framework Materials for Sensing Applications. Journal of Physical Chemistry C, 2012, 116, 3492-3502.	3.1	30
94	How Well Do Metal–Organic Frameworks Tolerate Flue Gas Impurities?. Journal of Physical Chemistry C, 2012, 116, 22987-22991.	3.1	60
95	Accelerating Applications of Metal–Organic Frameworks for Gas Adsorption and Separation by Computational Screening of Materials. Langmuir, 2012, 28, 14114-14128.	3.5	202
96	Colloidal processing and CO2 capture performance of sacrificially templated zeolite monoliths. Applied Energy, 2012, 97, 289-296.	10.1	55

#	ARTICLE	IF	CITATIONS
97	How Water Fosters a Remarkable 5-Fold Increase in Low-Pressure CO ₂ Uptake within Mesoporous MIL-100(Fe). Journal of the American Chemical Society, 2012, 134, 10174-10181.	13.7	198
98	Evaluation of the Impact of H ₂ 0, O ₂ , and SO ₂ on Postcombustion CO ₂ Capture in Metal–Organic Frameworks. Langmuir, 2012, 28, 8064-8071.	3 . 5	85
99	Displacement of Methane by Coadsorbed Carbon Dioxide Is Facilitated In Narrow Carbon Nanopores. Journal of Physical Chemistry C, 2012, 116, 13640-13649.	3.1	48
100	Highly selective CO2 capture of an agw-type metal–organic framework with inserted amides: experimental and theoretical studies. Chemical Communications, 2012, 48, 3058.	4.1	166
101	Synthesis of porous carbons derived from metal-organic coordination polymers and their adsorption performance for carbon dioxide. New Carbon Materials, 2012, 27, 194-199.	6.1	14
102	Low-temperature CO2 adsorption on alkali metal titanate nanotubes. International Journal of Greenhouse Gas Control, 2012, 10, 191-198.	4.6	32
103	CO2 adsorption on carbon molecular sieves. Microporous and Mesoporous Materials, 2012, 164, 280-287.	4.4	108
104	Water in metal-organic frameworks: structure and diffusion of H ₂ O in MIL-53(Cr) from quantum simulations. Molecular Simulation, 2012, 38, 631-641.	2.0	28
105	Understanding Carbon Monoxide Capture Using Metal–Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 6655-6663.	3.1	62
106	Significantly Increased CO ₂ Adsorption Performance of Nanostructured Templated Carbon by Tuning Surface Area and Nitrogen Doping. Journal of Physical Chemistry C, 2012, 116, 1099-1106.	3.1	192
107	Metal–Organic Frameworks for Separations. Chemical Reviews, 2012, 112, 869-932.	47.7	5,588
108	Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 724-781.	47.7	5,612
109	Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO ₂ adsorption capacity. Chemical Communications, 2012, 48, 248-250.	4.1	244
110	Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg ₂ (dobpdc). Journal of the American Chemical Society, 2012, 134, 7056-7065.	13.7	1,038
111	Coordination-Chemistry Control of Proton Conductivity in the Iconic Metal–Organic Framework Material HKUST-1. Journal of the American Chemical Society, 2012, 134, 51-54.	13.7	382
112	Recent advances in carbon dioxide capture with metalâ€organic frameworks. , 2012, 2, 239-259.		301
113	Guest-Induced Gate Opening and Breathing Phenomena in Soft Porous Crystals: Building Thermodynamically Consistent Isotherms. Journal of Physical Chemistry C, 2012, 116, 1638-1649.	3.1	37
114	Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks. Chemical Reviews, 2012, 112, 836-868.	47.7	985

#	Article	IF	CITATIONS
115	Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 2012, 112, 1105-1125.	47.7	6,221
116	How Can a Hydrophobic MOF be Waterâ€Unstable? Insight into the Hydration Mechanism of IRMOFs. ChemPhysChem, 2012, 13, 3497-3503.	2.1	116
117	Temperatureâ€/Pressureâ€Dependent Selective Separation of CO ₂ or Benzene in a Chiral Metal–Organic Framework Material. ChemSusChem, 2012, 5, 1597-1601.	6.8	26
118	Investigation of the synthesis, activation, and isosteric heats of CO2 adsorption of the isostructural series of metal–organic frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu, Mo, Ru). Dalton Transactions, 2012, 41, 7931.	3.3	184
119	Synthesis, characterization and experimental investigation of Cu-BTC as CO2 adsorbent from flue gas. Journal of Environmental Sciences, 2012, 24, 640-644.	6.1	27
120	Molecular simulations for adsorption and separation of thiophene and benzene in Cu-BTC and IRMOF-1 metal–organic frameworks. Separation and Purification Technology, 2012, 95, 149-156.	7.9	39
121	High Adsorption Capacities and Two-Step Adsorption of Polar Adsorbates on Copper–Benzene-1,3,5-tricarboxylate Metal–Organic Framework. Journal of Physical Chemistry C, 2013, 18100-18111.	3.1	67
122	Effects of Solvation on the Framework of a Breathing Copper MOF Employing a Semirigid Linker. Inorganic Chemistry, 2013, 52, 2182-2187.	4.0	24
123	Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal–organic frameworks: Adsorption, separation and regeneration investigations. Microporous and Mesoporous Materials, 2013, 179, 191-197.	4.4	109
124	Adsorption of CO ₂ , CH ₄ , and H ₂ O in Zeolite ZSM-5 Studied Using In Situ ATR-FTIR Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 16972-16982.	3.1	92
125	Carbon dioxide adsorption in microwave-synthesized metal organic framework CPM-5: Equilibrium and kinetics study. Microporous and Mesoporous Materials, 2013, 175, 85-91.	4.4	64
126	Carbon dioxide storage and sustained delivery by Cu2(pzdc)2L [L=dipyridyl-based ligand] pillared-layer porous coordination networks. Microporous and Mesoporous Materials, 2013, 177, 54-58.	4.4	14
128	A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture. Energy and Environmental Science, 2013, 6, 3684.	30.8	429
129	Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. Chemical Society Reviews, 2013, 42, 9304.	38.1	366
130	Building multiple adsorption sites in porous polymer networks for carbon capture applications. Energy and Environmental Science, 2013, 6, 3559.	30.8	130
131	Functionalized metal–organic framework MIL-101 for CO2 capture: multi-scale modeling from ab initio calculation and molecular simulation to breakthrough prediction. CrystEngComm, 2013, 15, 10358.	2.6	36
132	Investigation of structure and dynamics of the hydrated metal–organic framework MIL-53(Cr) using first-principles molecular dynamics. Physical Chemistry Chemical Physics, 2013, 15, 19049.	2.8	50
133	Significant improvement of surface area and CO2 adsorption of Cu–BTC via solvent exchange activation. RSC Advances, 2013, 3, 17065.	3.6	88

#	Article	IF	CITATIONS
134	Monitoring the Activation of a Flexible Metal–Organic Framework Using Structurally Sensitive Spectroscopy Techniques. Journal of Physical Chemistry C, 2013, 117, 20068-20077.	3.1	22
135	The effect of SO2 on CO2 capture in zeolitic imidazolate frameworks. Physical Chemistry Chemical Physics, 2013, 15, 11856.	2.8	59
136	Rapid and enhanced activation of microporous coordination polymers by flowing supercritical CO2. Chemical Communications, 2013, 49, 1419.	4.1	63
137	Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. Journal of Hazardous Materials, 2013, 244-245, 444-456.	12.4	1,140
138	Enhanced isosteric heat, selectivity, and uptake capacity of CO ₂ adsorption in a metal-organic framework by impregnated metal ions. Chemical Science, 2013, 4, 685-690.	7.4	149
139	MOF stability and gas adsorption as a function of exposure to water, humid air, SO2, and NO2. Microporous and Mesoporous Materials, 2013, 173, 86-91.	4.4	94
140	Novel Pore-Expanded MCM-41 for CO ₂ Capture: Synthesis and Characterization. Langmuir, 2013, 29, 3491-3499.	3.5	127
141	Prediction of Water Adsorption in Copper-Based Metal–Organic Frameworks Using Force Fields Derived from Dispersion-Corrected DFT Calculations. Journal of Physical Chemistry C, 2013, 117, 7519-7525.	3.1	56
142	An Adsorbent Performance Indicator as a First Step Evaluation of Novel Sorbents for Gas Separations: Application to Metal–Organic Frameworks. Langmuir, 2013, 29, 3301-3309.	3.5	131
143	Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature, 2013, 495, 80-84.	27.8	2,005
144	Water Effects on Postcombustion CO ₂ Capture in Mg-MOF-74. Journal of Physical Chemistry C, 2013, 117, 3383-3388.	3.1	134
145	Selective Dynamic CO ₂ Separations on Mg-MOF-74 at Low Pressures: A Detailed Comparison with 13X. Journal of Physical Chemistry C, 2013, 117, 9301-9310.	3.1	79
146	Theoretical Investigations of CO ₂ and H ₂ Sorption in an Interpenetrated Square-Pillared Metal–Organic Material. Journal of Physical Chemistry C, 2013, 117, 9970-9982.	3.1	36
147	Superior Performance of Copper Based MOF and Aminated Graphite Oxide Composites as CO ₂ Adsorbents at Room Temperature. ACS Applied Materials & Diterfaces, 2013, 5, 4951-4959.	8.0	93
148	Isostructural Metal–Organic Frameworks Assembled from Functionalized Diisophthalate Ligands through a Ligandâ€√runcation Strategy. Chemistry - A European Journal, 2013, 19, 5637-5643.	3.3	115
149	Diffusion of Binary CO ₂ /CH ₄ Mixtures in the MIL-47(V) and MIL-53(Cr) Metalâ€"Organic Framework Type Solids: A Combination of Neutron Scattering Measurements and Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2013, 117, 11275-11284.	3.1	51
150	Molecular Mechanisms for Adsorption in Cu-BTC Metal Organic Framework. Journal of Physical Chemistry C, 2013, 117, 11357-11366.	3.1	81
151	Molecular Simulation of CO ₂ Adsorption in the Presence of Water in Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 13479-13491.	3.1	70

#	Article	IF	CITATIONS
152	Development of Computational Methodologies for Metal–Organic Frameworks and Their Application in Gas Separations. Chemical Reviews, 2013, 113, 8261-8323.	47.7	448
153	Carbon Nanofiber-Supported K ₂ CO ₃ as an Efficient Low-Temperature Regenerable CO ₂ Sorbent for Post-Combustion Capture. Industrial & Engineering Chemistry Research, 2013, 52, 12812-12818.	3.7	18
154	Porous aromatic frameworks: Synthesis, structure and functions. CrystEngComm, 2013, 15, 17-26.	2.6	241
155	SUMOF-5: a mesoporous metal-organic framework with the tbo topology built from the dicopper paddle-wheel cluster and a new tritopic linker. Zeitschrift Fur Kristallographie - Crystalline Materials, 2013, 228, 323-329.	0.8	9
156	Enhancement of Carbon Dioxide Adsorption by Lithium Decorating and Fullerene Encapsulating in Metal-Organic Frameworks. Advanced Materials Research, 0, 773, 927-931.	0.3	0
157	Investigation of the spin-lattice relaxation of 13CO and 13CO2 adsorbed in the metal-organic frameworks Cu3(btc)2 and Cu3â°'xZnx(btc)2. Journal of Chemical Physics, 2013, 139, 034202.	3.0	14
158	Adsorption of Carbon Dioxide by MIL-101(Cr): Regeneration Conditions and Influence of Flue Gas Contaminants. Scientific Reports, 2013, 3, 2916.	3.3	170
159	Exâ€Situ NMR Relaxometry of Metal–Organic Frameworks for Rapid Surfaceâ€Area Screening. Angewandte Chemie, 2013, 125, 12265-12268.	2.0	8
160	Exâ€Situ NMR Relaxometry of Metal–Organic Frameworks for Rapid Surfaceâ€Area Screening. Angewandte Chemie - International Edition, 2013, 52, 12043-12046.	13.8	36
161	Enhanced Uptake and Selectivity of CO ₂ Adsorption in a Hydrostable Metal–Organic Frameworks via Incorporating Methylol and Methyl Groups. ACS Applied Materials & Diterfaces, 2014, 6, 16932-16940.	8.0	46
162	Atomistic modeling toward high-efficiency carbon capture: A brief survey with a few illustrative examples. International Journal of Quantum Chemistry, 2014, 114, 163-175.	2.0	14
164	Carbon dioxide adsorption performance of ultramicroporous carbon derived from poly(vinylidene) Tj ETQq1 1 0.70	84314 rgl	3T/Overlock
165	Extremely enhanced CO2 uptake by HKUST-1 metal–organic framework via a simple chemical treatment. Microporous and Mesoporous Materials, 2014, 183, 69-73.	4.4	122
166	Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs). Environmental Science and Pollution Research, 2014, 21, 5427-5449.	5. 3	171
167	Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, 2014, 136, 4369-4381.	13.7	2,002
168	Alkylamineâ€Tethered Stable Metal–Organic Framework for CO ₂ Capture from Flue Gas. ChemSusChem, 2014, 7, 734-737.	6.8	131
169	The effect of pyridine modification of Ni–DOBDC on CO ₂ capture under humid conditions. Chemical Communications, 2014, 50, 3296-3298.	4.1	52
170	Two copper(II) complexes based on N,N \hat{a} \in 2-bis(4-pyridinecarboxamide)-1,2-ethane and tricarboxylate ligands: a 5-fold interpenetrating 3 D network and a 1 D ribbon-like chain. Transition Metal Chemistry, 2014, 39, 343-351.	1.4	1

#	Article	IF	CITATIONS
171	Porous Materials for Carbon Dioxide Capture. Green Chemistry and Sustainable Technology, 2014, , .	0.7	19
172	High CO ₂ /N ₂ /O ₂ /CO separation in a chemically robust porous coordination polymer with low binding energy. Chemical Science, 2014, 5, 660-666.	7.4	181
173	Amine-functionalized low-cost industrial grade multi-walled carbon nanotubes for the capture of carbon dioxide. Journal of Energy Chemistry, 2014, 23, 111-118.	12.9	61
174	Porous Inorganic Membranes for CO ₂ Capture: Present and Prospects. Chemical Reviews, 2014, 114, 1413-1492.	47.7	481
175	Combinational Synthetic Approaches for Isoreticular and Polymorphic Metal–Organic Frameworks with Tuned Pore Geometries and Surface Properties. Chemistry of Materials, 2014, 26, 1711-1719.	6.7	38
176	Four MOFs with 2,2′-dimethoxy-4,4′-biphenyldicarboxylic acid: syntheses, structures, topologies and properties. CrystEngComm, 2014, 16, 784-796.	2.6	55
177	Site characteristics in metal organic frameworks for gas adsorption. Progress in Surface Science, 2014, 89, 56-79.	8.3	86
178	ROD-8, a rod MOF with a pyrene-cored tetracarboxylate linker: framework disorder, derived nets and selective gas adsorption. CrystEngComm, 2014, 16, 6291-6295.	2.6	28
179	A family of microporous carbons prepared via a simple metal salt carbonization route with high selectivity for exceptional gravimetric and volumetric post-combustion CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 14696.	10.3	75
180	Structure–property relationships of water adsorption in metal–organic frameworks. New Journal of Chemistry, 2014, 38, 3102-3111.	2.8	252
181	Thermodynamic and Kinetic Analyses of the CO ₂ Chemisorption Mechanism on Na ₂ TiO ₃ : Experimental and Theoretical Evidences. Journal of Physical Chemistry C, 2014, 118, 19822-19832.	3.1	37
182	Water Dynamics in Metal–Organic Frameworks: Effects of Heterogeneous Confinement Predicted by Computational Spectroscopy. Journal of Physical Chemistry Letters, 2014, 5, 2897-2902.	4.6	43
183	Water Stability and Adsorption in Metal–Organic Frameworks. Chemical Reviews, 2014, 114, 10575-10612.	47.7	1,951
184	Targeted Manipulation of Metal–Organic Frameworks To Direct Sorption Properties. ChemPhysChem, 2014, 15, 823-839.	2.1	46
185	Development of a photo-electrochemical (PEC) reactor to convert carbon dioxide into methanol for biorefining., 2014, , 186-215.		1
186	Divergent Kinetic and Thermodynamic Hydration of a Porous Cu(II) Coordination Polymer with Exclusive CO ₂ Sorption Selectivity. Journal of the American Chemical Society, 2014, 136, 10906-10909.	13.7	227
187	Perspective of microporous metal–organic frameworks for CO ₂ capture and separation. Energy and Environmental Science, 2014, 7, 2868.	30.8	693
188	Effects of Water Vapor and Trace Gas Impurities in Flue Gas on CO ₂ /N ₂ Separation Using ZIF-68. Journal of Physical Chemistry C, 2014, 118, 6744-6751.	3.1	61

#	Article	IF	CITATIONS
189	Guest Adsorption in the Nanoporous Metal–Organic Framework Cu3(1,3,5-Benzenetricarboxylate)2: Combined In Situ X-ray Diffraction and Vapor Sorption. Chemistry of Materials, 2014, 26, 4712-4723.	6.7	26
190	Adsorption of Phenol and <i>p</i> -Nitrophenol from Aqueous Solutions on Metal–Organic Frameworks: Effect of Hydrogen Bonding. Journal of Chemical & Engineering Data, 2014, 59, 1476-1482.	1.9	208
191	Programming MIL-101Cr for selective and enhanced CO ₂ adsorption at low pressure by postsynthetic amine functionalization. Dalton Transactions, 2014, 43, 1338-1347.	3.3	69
192	M ₂ (<i>m</i>)-dobdc) (M = Mg, Mn, Fe, Co, Ni) Metal–Organic Frameworks Exhibiting Increased Charge Density and Enhanced H ₂ Binding at the Open Metal Sites. Journal of the American Chemical Society, 2014, 136, 12119-12129.	13.7	207
193	Excess-entropy scaling of dynamics for methane in various nanoporous materials. Chemical Physics Letters, 2014, 593, 83-88.	2.6	11
194	Effect of water content on separation of CO2/CH4 with active carbon by adsorption–hydration hybrid method. Separation and Purification Technology, 2014, 130, 132-140.	7.9	55
195	Microporous Metal–Organic Frameworks for Gas Separation. Chemistry - an Asian Journal, 2014, 9, 1474-1498.	3.3	183
196	Swellable, Water- and Acid-Tolerant Polymer Sponges for Chemoselective Carbon Dioxide Capture. Journal of the American Chemical Society, 2014, 136, 9028-9035.	13.7	201
197	Water adsorption in MOFs: fundamentals and applications. Chemical Society Reviews, 2014, 43, 5594-5617.	38.1	1,094
199	Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal–organic framework. Journal of Colloid and Interface Science, 2014, 430, 78-84.	9.4	84
200	Advancing Adsorption and Membrane Separation Processes for the Gigaton Carbon Capture Challenge. Annual Review of Chemical and Biomolecular Engineering, 2014, 5, 479-505.	6.8	79
201	CO2 adsorption performance of ZIF-7 and its endurance in flue gas components. Frontiers of Environmental Science and Engineering, 2014, 8, 162-168.	6.0	23
202	Synthesis and CO2 Adsorption Properties of Hydrophobic Porous Coordination Polymer Featuring [Zn9(MeBTZ)12]6+ Building Units. Bulletin of the Chemical Society of Japan, 2014, 87, 740-745.	3.2	2
203	Density functional theory meta-GGA + U study of water incorporation in the metal-organic framework material Cu-BTC. Journal of Chemical Physics, 2015, 143, 024701.	3.0	14
204	Chemical Property Change in a Metalâ€Organic Framework by Fluoro Functionality. Bulletin of the Korean Chemical Society, 2015, 36, 327-332.	1.9	11
205	Exploiting Largeâ€Pore Metal–Organic Frameworks for Separations through Entropic Molecular Mechanisms. ChemPhysChem, 2015, 16, 2046-2067.	2.1	27
206	Strong binding site molarity of MOFs and its effect on CO2 adsorption. Microporous and Mesoporous Materials, 2015, 214, 242-245.	4.4	26
207	Computational exploration of the gas adsorption on the iron tetracarboxylate metal-organic framework MIL-102. Molecular Simulation, 2015, 41, 1357-1370.	2.0	14

#	Article	IF	Citations
208	Molecular dynamics simulation of carbon dioxide in single-walled carbon nanotubes in the presence of water: structure and diffusion studies. Molecular Physics, 2015, 113, 1124-1136.	1.7	21
209	Unexpected Carbon Dioxide Inclusion in Waterâ€Saturated Pores of Metal–Organic Frameworks with Potential for Highly Selective Capture of CO ₂ . Chemistry - A European Journal, 2015, 21, 1125-1129.	3.3	22
210	Water adsorption in metal–organic frameworks with openâ€metal sites. AICHE Journal, 2015, 61, 677-687.	3.6	37
211	Understanding the Effects of Preadsorbed Perfluoroalkanes on the Adsorption of Water and Ammonia in MOFs. Journal of Physical Chemistry C, 2015, 119, 3163-3170.	3.1	20
212	Selective Adsorption of Water from Mixtures with 1-Alcohols by Exploitation of Molecular Packing Effects in CuBTC. Journal of Physical Chemistry C, 2015, 119, 3658-3666.	3.1	29
213	Water Stability and Competition Effects Toward CO ₂ Adsorption on Metal Organic Frameworks. Separation and Purification Reviews, 2015, 44, 19-27.	5.5	51
214	Valorization of Lignin Waste: Carbons from Hydrothermal Carbonization of Renewable Lignin as Superior Sorbents for CO ₂ and Hydrogen Storage. ACS Sustainable Chemistry and Engineering, 2015, 3, 1658-1667.	6.7	144
215	Hydrotalcite-SBA-15 composite material for efficient carbondioxide capture. Journal of CO2 Utilization, 2015, 12, 109-115.	6.8	28
216	Water Structure and Dynamics in Homochiral [Zn(<i>l</i> l)[X)] Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 18239-18247.	3.1	11
217	Real-Time Multiple Beam Interferometry Reveals Complex Deformations of Metal–Organic-Framework Crystals upon Humidity Adsorption/Desorption. Journal of Physical Chemistry C, 2015, 119, 16769-16776.	3.1	7
218	Cu-BTC and Fe-BTC metal-organic frameworks: Role of the materials structural features on their performance for volatile hydrocarbons separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481, 351-357.	4.7	31
219	A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal–Organic Framework Materials HKUST-1 and Cu-MOF-2. Journal of the American Chemical Society, 2015, 137, 10009-10015.	13.7	199
220	Adsorption properties and performance of CPO-27-Ni/alginate spheres during multicycle pressure-vacuum-swing adsorption (PVSA) CO2 capture in the presence of moisture. Chemical Engineering Science, 2015, 137, 525-531.	3.8	18
221	Phase Equilibria of CO ₂ and CH ₄ Hydrates in Intergranular Meso/Macro Pores of MIL-53 Metal Organic Framework. Journal of Chemical & Engineering Data, 2015, 60, 2178-2185.	1.9	51
222	Micro- and mesoporous CuBTCs for CO2/CH4 separation. Korean Journal of Chemical Engineering, 2015, 32, 2501-2506.	2.7	13
223	Water stabilization of Zr ₆ -based metal–organic frameworks via solvent-assisted ligand incorporation. Chemical Science, 2015, 6, 5172-5176.	7.4	102
224	An experimental and simulation study of binary adsorption in metal–organic frameworks. Separation and Purification Technology, 2015, 146, 136-142.	7.9	6
225	A template-free method for stable CuO hollow microspheres fabricated from a metal organic framework (HKUST-1). Nanoscale, 2015, 7, 9411-9415.	5.6	33

#	Article	IF	CITATIONS
226	Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Combustion Carbon Capture via Multicomponent Adsorption of CO ₂ , N ₂ , and H ₂ O. Journal of the American Chemical Society, 2015, 137, 4787-4803.	13.7	305
227	Origins of contrasting copper coordination geometries in crystalline copper sulfate pentahydrate. Physical Chemistry Chemical Physics, 2015, 17, 31023-31029.	2.8	34
228	Atomistic Modeling of Water Thermodynamics and Kinetics within MIL-100(Fe). Journal of Physical Chemistry C, 2015, 119, 20074-20084.	3.1	21
229	Development of a Semiautomated Zero Length Column Technique for Carbon Capture Applications: Study of Diffusion Behavior of CO ₂ in MOFs. Industrial & Engineering Chemistry Research, 2015, 54, 5777-5783.	3.7	28
230	Ionized Zr-MOFs for highly efficient post-combustion CO2 capture. Chemical Engineering Science, 2015, 124, 61-69.	3.8	108
231	Charge Equilibration Based on Atomic Ionization in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 456-466.	3.1	37
232	Impact of H ₂ O on CO ₂ Separation from Natural Gas: Comparison of Carbon Nanotubes and Disordered Carbon. Journal of Physical Chemistry C, 2015, 119, 407-419.	3.1	47
233	Mesoporous alumina–zirconia–organosilica composites for CO ₂ capture at ambient and elevated temperatures. Journal of Materials Chemistry A, 2015, 3, 2707-2716.	10.3	25
234	How Impurities Affect CO ₂ Capture in Metal–Organic Frameworks Modified with Different Functional Groups. ACS Sustainable Chemistry and Engineering, 2015, 3, 117-124.	6.7	27
235	Tuning the functional sites in metal–organic frameworks to modulate CO ₂ heats of adsorption. CrystEngComm, 2015, 17, 706-718.	2.6	60
236	Propane simulated in silica pores: Adsorption isotherms, molecular structure, and mobility. Chemical Engineering Science, 2015, 121, 292-299.	3.8	43
237	Ce(III) and Lu(III) metal–organic frameworks with Lewis acid metal sites: Preparation, sorption properties and catalytic activity in Knoevenagel condensation. Catalysis Today, 2015, 243, 184-194.	4.4	66
238	Structural stability of metal organic frameworks in aqueous media â€" Controlling factors and methods to improve hydrostability and hydrothermal cyclic stability. Microporous and Mesoporous Materials, 2015, 201, 61-90.	4.4	142
239	Investigation by Raman Spectroscopy of the Decomposition Process of HKUST-1 upon Exposure to Air. Journal of Spectroscopy, 2016, 2016, 1-7.	1.3	56
240	Hydrate Networks under Mechanical Stress - A Case Study for Co3(PO4)2·8H2O. European Journal of Inorganic Chemistry, 2016, 2016, 2072-2081.	2.0	15
241	Elaboration of a Highly Porous Ru ^{II,II} Analogue of HKUST-1. Inorganic Chemistry, 2016, 55, 12492-12495.	4.0	15
242	Tetraphenylethylene-based microporous organic polymers: insight into structure geometry, porosity, and CO ₂ /CH ₄ selectivity. RSC Advances, 2016, 6, 51411-51418.	3.6	12
243	Decomposition Process of Carboxylate MOF HKUST-1 Unveiled at the Atomic Scale Level. Journal of Physical Chemistry C, 2016, 120, 12879-12889.	3.1	99

#	Article	IF	CITATIONS
244	Single-crystal and humidity-controlled powder diffraction study of the breathing effect in a metal–organic framework upon water adsorption/desorption. Chemical Communications, 2016, 52, 7229-7232.	4.1	15
245	Dubinin-Astakhov model for acetylene adsorption on metal-organic frameworks. Applied Surface Science, 2016, 377, 349-354.	6.1	14
246	Templating of carbon in zeolites under pressure: synthesis of pelletized zeolite templated carbons with improved porosity and packing density for superior gas (CO ₂ and H ₂) uptake properties. Journal of Materials Chemistry A, 2016, 4, 14254-14266.	10.3	35
247	Improvement of CO2 capture performance of calcium-based absorbent modified with palygorskite. Chinese Journal of Chemical Engineering, 2016, 24, 1283-1289.	3.5	11
248	Understanding the Mechanisms of CO ₂ Adsorption Enhancement in Pure Silica Zeolites under Humid Conditions. Journal of Physical Chemistry C, 2016, 120, 23500-23510.	3.1	33
249	Graphyne nanostructure as a potential adsorbent for separation of H2S/CH4 mixture: Combining grand canonical Monte Carlo simulations with ideal adsorbed solution theory. Fuel, 2016, 182, 210-219.	6.4	39
250	MOF–aminoclay composites for superior CO ₂ capture, separation and enhanced catalytic activity in chemical fixation of CO ₂ . Chemical Communications, 2016, 52, 11378-11381.	4.1	62
251	Postextraction Separation, On-Board Storage, and Catalytic Conversion of Methane in Natural Gas: A Review. Chemical Reviews, 2016, 116, 11436-11499.	47.7	176
252	Diffusion of CO ₂ in Large Crystals of Cu-BTC MOF. Journal of the American Chemical Society, 2016, 138, 11449-11452.	13.7	84
253	A microporous Cu-MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO ₂ . Chemical Communications, 2016, 52, 11147-11150.	4.1	119
254	Water Adsorption Properties of NOTT-401 and CO ₂ Capture under Humid Conditions. ACS Omega, 2016, 1, 305-310.	3.5	43
255	A unique (3,10)-connected magnesium/nickel-based metal–organic framework constructed from an unusual kgd supermolecular building layer via mixed linkers and solid solution approach. CrystEngComm, 2016, 18, 8358-8361.	2.6	3
256	Highly selective sorption of CO ₂ and N ₂ O and strong gas-framework interactions in a nickel(<scp>ii</scp>) organic material. Journal of Materials Chemistry A, 2016, 4, 16198-16204.	10.3	42
257	A HKUST-1 MOF inclusion compound with in-situ reduced copper(I) as [Cu(NCCH3)4]+ cation complex in the octahedral A-type pore. Polyhedron, 2016, 117, 579-584.	2.2	11
258	Multilayer graphene nanostructure separate CO2/CH4 mixture: Combining molecular simulations with ideal adsorbed solution theory. Chemical Physics Letters, 2016, 661, 31-35.	2.6	8
260	High-Throughput Screening of Metal–Organic Frameworks for Hydrogen Storage at Cryogenic Temperature. Journal of Physical Chemistry C, 2016, 120, 27328-27341.	3.1	130
261	Multiscale Computational Study on the Adsorption and Separation of CO ₂ /CH ₄ and CO ₂ /H _{>2} on Li ⁺ â€Doped Mixedâ€Ligand Metal–Organic Framework Zn ₂ (NDC) ₂ (diPyNI). ChemPhysChem, 2016, 17, 4124-4133.	2.1	20
262	Enhanced adsorptive desulfurization with flexible metal–organic frameworks in the presence of diethyl ether and water. Chemical Communications, 2016, 52, 8667-8670.	4.1	32

#	Article	IF	CITATIONS
263	Cu-BTC metal-organic framework as a novel catalyst for low temperature selective catalytic reduction (SCR) of NO by NH ₃ : Promotional effect of activation temperature. Integrated Ferroelectrics, 2016, 172, 169-179.	0.7	31
264	Liquid self-diffusion of H ₂ O and DMF molecules in Co-MOF-74: molecular dynamics simulations and dielectric spectroscopy studies. Physical Chemistry Chemical Physics, 2016, 18, 19605-19612.	2.8	21
265	Mesoporous calcium oxide–silica and magnesium oxide–silica composites for CO ₂ capture at ambient and elevated temperatures. Journal of Materials Chemistry A, 2016, 4, 10914-10924.	10.3	44
266	Adsorption mechanism on metal organic frameworks of Cu-BTC, Fe-BTC and ZIF-8 for CO2 capture investigated by X-ray absorption fine structure. RSC Advances, 2016, 6, 62705-62716.	3.6	50
267	Molecular Dynamics Simulations of Carbon Dioxide, Methane, and Their Mixture in Montmorillonite Clay Hydrates. Journal of Physical Chemistry C, 2016, 120, 12517-12529.	3.1	82
268	Ultralong Persistent Room Temperature Phosphorescence of Metal Coordination Polymers Exhibiting Reversible pH-Responsive Emission. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15489-15496.	8.0	153
269	Mixed-Metal Zeolitic Imidazolate Frameworks and their Selective Capture of Wet Carbon Dioxide over Methane. Inorganic Chemistry, 2016, 55, 6201-6207.	4.0	52
270	Optimization of Two-Stage Pressure/Vacuum Swing Adsorption with Variable Dehydration Level for Postcombustion Carbon Capture. Industrial & Engineering Chemistry Research, 2016, 55, 3338-3350.	3.7	7 5
271	Microporous Metal–Organic Framework Stabilized by Balanced Multiple Host–Couteranion Hydrogen-Bonding Interactions for High-Density CO ₂ Capture at Ambient Conditions. Inorganic Chemistry, 2016, 55, 292-299.	4.0	82
272	A Facile Post-Synthetic Modification Method To Improve Hydrothermal Stability and CO ₂ Selectivity of CuBTC Metal–Organic Framework. Industrial & Description Chemistry Research, 2016, 55, 7941-7949.	3.7	65
273	Enhanced CO ₂ Adsorption Capacity and Hydrothermal Stability of HKUST-1 via Introduction of Siliceous Mesocellular Foams (MCFs). Industrial & Engineering Chemistry Research, 2016, 55, 7950-7957.	3.7	30
274	Enhancing the rate of ex situ mineral carbonation in dunites via ball milling. Advanced Powder Technology, 2016, 27, 360-371.	4.1	30
275	The effects of framework dynamics on the behavior of water adsorbed in the [Zn(l-L)(Cl)] and Co-MOF-74 metal–organic frameworks. Physical Chemistry Chemical Physics, 2016, 18, 8196-8204.	2.8	12
276	Response of Metal Sites toward Water Effects on Postcombustion CO ₂ Capture in Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2016, 4, 2387-2394.	6.7	24
277	Two isomeric Zn(<scp>ii</scp>)-based metalâ€"organic frameworks constructed from a bifunctional triazolateâ€"carboxylate tecton exhibiting distinct gas sorption behaviors. CrystEngComm, 2016, 18, 2579-2584.	2.6	24
278	Functionalized UiO-66 by Single and Binary (OH) < sub>2 < /sub> and NO < sub>2 < /sub> Groups for Uptake of CO < sub>2 < /sub> and CH < sub>4 < /sub>. Industrial & amp; Engineering Chemistry Research, 2016, 55, 7924-7932.	3.7	61
279	Amino-impregnated MOF materials for CO 2 capture at post-combustion conditions. Chemical Engineering Science, 2016, 142, 55-61.	3.8	103
280	Is N-Doping in Porous Carbons Beneficial for CO ₂ Storage? Experimental Demonstration of the Relative Effects of Pore Size and N-Doping. Chemistry of Materials, 2016, 28, 994-1001.	6.7	113

#	Article	IF	CITATIONS
281	Metal–organic frameworks for the control and management of air quality: advances and future direction. Journal of Materials Chemistry A, 2016, 4, 345-361.	10.3	120
282	A well-defined nitro-functionalized aromatic framework (NO ₂ -PAF-1) with high CO ₂ adsorption: synthesis via the copper-mediated Ullmann homo-coupling polymerization of a nitro-containing monomer. Polymer Chemistry, 2016, 7, 770-774.	3.9	35
283	Systematic evaluation of materials for post-combustion CO 2 capture in a Temperature Swing Adsorption process. Chemical Engineering Journal, 2016, 284, 438-447.	12.7	118
284	An adsorption study on STA-16(Co). Microporous and Mesoporous Materials, 2016, 222, 169-177.	4.4	2
285	Molecular simulation study of metal organic frameworks for methane capture from low-concentration coal mine methane gas. Journal of Porous Materials, 2016, 23, 107-122.	2.6	13
286	Metal–organic frameworks containing N-heterocyclic carbenes and their precursors. Coordination Chemistry Reviews, 2016, 307, 188-210.	18.8	107
287	Synthesis of bare and functionalized porous adsorbent materials for CO ₂ capture., 2017, 7, 399-459.		30
288	Carbon dioxide capture using ammonium sulfate surface modified activated biomass carbon. Biomass and Bioenergy, 2017, 98, 53-60.	5.7	40
289	CO ₂ capture under humid conditions in metal–organic frameworks. Materials Chemistry Frontiers, 2017, 1, 1471-1484.	5.9	92
290	Density-functional based tight-binding for the study of CO ₂ /MOF interactions: the case of Zn(ADC)·DMSO. Molecular Simulation, 2017, 43, 428-438.	2.0	8
291	Effects of Sulfur Doping and Humidity on CO ₂ Capture by Graphite Split Pore: A Theoretical Study. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8336-8343.	8.0	53
292	Computer simulation of adsorption and sitting of CO2, N2, CH4 and water on a new Al(OH)-fumarate MOF. Adsorption, 2017, 23, 423-431.	3.0	12
293	Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO ₂ Capture from Flue Gas in Metal–Organic Frameworks. ChemSusChem, 2017, 10, 1543-1553.	6.8	89
294	A Robust Metal–Organic Framework Combining Open Metal Sites and Polar Groups for Methane Purification and CO ₂ /Fluorocarbon Capture. Chemistry - A European Journal, 2017, 23, 4060-4064.	3.3	62
295	Monitoring instability of linear amine impregnated UiO-66 by in-situ temperature resolved powder X-ray diffraction. Microporous and Mesoporous Materials, 2017, 243, 85-90.	4.4	7
296	Why Porous Materials Have Selective Adsorptions: A Rational Aspect from Electrodynamics. Inorganic Chemistry, 2017, 56, 2614-2620.	4.0	12
297	CO ₂ Capture and Separations Using MOFs: Computational and Experimental Studies. Chemical Reviews, 2017, 117, 9674-9754.	47.7	837
298	Design of electric field controlled molecular gates mounted on metal–organic frameworks. Journal of Materials Chemistry A, 2017, 5, 8690-8696.	10.3	51

#	Article	IF	CITATIONS
299	Metalâ€Organic Frameworks for Carbon Dioxide Capture and Methane Storage. Advanced Energy Materials, 2017, 7, 1601296.	19.5	334
300	Structure stability of HKUST-1 towards water and ethanol and their effect on its CO ₂ capture properties. Dalton Transactions, 2017, 46, 9192-9200.	3.3	102
301	Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal–Organic Framework with Mesoporous Silica for CO ₂ Adsorption. ACS Applied Materials & Adsorption. ACS Applied Materials & Adsorption. ACS Applied Materials & Adsorption.	8.0	105
302	Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 2017, 46, 3134-3184.	38.1	861
303	Effects of water vapor and trace gas impurities in flue gas on CO2 capture in zeolitic imidazolate frameworks: The significant role of functional groups. Fuel, 2017, 200, 244-251.	6.4	54
304	Perspectives on water-facilitated CO ₂ capture materials. Journal of Materials Chemistry A, 2017, 5, 6794-6816.	10.3	56
305	A Porous Zn(II)-Metal–Organic Framework Constructed from Fluorinated Ligands for Gas Adsorption. Crystal Growth and Design, 2017, 17, 1476-1479.	3.0	25
306	An Inâ€Depth Structural Study of the Carbon Dioxide Adsorption Process in the Porous Metal–Organic Frameworks CPOâ€27â€M. ChemSusChem, 2017, 10, 1710-1719.	6.8	30
307	Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications. Progress in Materials Science, 2017, 86, 25-74.	32.8	324
308	A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO ₂ from CO ₂ –N ₂ and CO ₂ –CH ₄ gas mixtures with high CO ₂ loading. Dalton Transactions, 2017, 46, 15280-15286.	3.3	46
309	Understanding the Inhibiting Effect of BTC on CuBTC Growth through Experiment and Modeling. Crystal Growth and Design, 2017, 17, 5603-5607.	3.0	22
310	Stomata-like metal peptide coordination polymer. Journal of Materials Chemistry A, 2017, 5, 23440-23445.	10.3	9
311	A new layer-stacked porous framework showing sorption selectivity for CO ₂ and luminescence. Dalton Transactions, 2017, 46, 11722-11727.	3.3	20
312	Computational materials chemistry for carbon capture using porous materials. Journal Physics D: Applied Physics, 2017, 50, 463002.	2.8	7
313	Spontaneous Cooling Absorption of CO ₂ by a Polymeric Ionic Liquid for Direct Air Capture. Journal of Physical Chemistry Letters, 2017, 8, 3986-3990.	4.6	39
314	Sulfur–Nitrogen Codoped Graphite Slit-Pore for Enhancing Selective Carbon Dioxide Adsorption: Insights from Molecular Simulations. ACS Sustainable Chemistry and Engineering, 2017, 5, 8815-8823.	6.7	23
316	CO2 - Reinforced nanoporous carbon potential energy field during CO2/CH4 mixture adsorption. A comprehensive volumetric, in-situ IR, and thermodynamic insight. Carbon, 2017, 122, 185-193.	10.3	5
317	Investigation on the selective adsorption and separation properties of coal mine methane in ZIF-68 by molecular simulations. Adsorption, 2017, 23, 163-174.	3.0	9

#	Article	IF	CITATIONS
318	Energetic evaluation of swing adsorption processes for CO 2 capture in selected MOFs and zeolites: Effect of impurities. Chemical Engineering Journal, 2018, 342, 458-473.	12.7	76
319	Efficient CO2 adsorption by Cu(II) acetate and itaconate bioproduct based MOF. Journal of Environmental Chemical Engineering, 2018, 6, 2910-2917.	6.7	10
320	A detailed atomistic molecular simulation study on adsorption-based separation of CO2 using a porous coordination polymer. RSC Advances, 2018, 8, 14144-14151.	3.6	6
321	Three Cd(II) MOFs with Different Functional Groups: Selective CO ₂ Capture and Metal Ions Detection. Inorganic Chemistry, 2018, 57, 5232-5239.	4.0	78
322	Improved CO ₂ Sorption in Freeze-Dried Amine Functionalized Mesoporous Silica Sorbent. Industrial & Description of the sorption of t	3.7	17
323	A catalytic role of surface silanol groups in CO ₂ capture on the amine-anchored silica support. Physical Chemistry Chemical Physics, 2018, 20, 12149-12156.	2.8	18
324	Testing the stability of novel adsorbents for carbon capture applications using the zero length column technique. Chemical Engineering Research and Design, 2018, 131, 406-413.	5.6	16
325	Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment. Journal of Industrial and Engineering Chemistry, 2018, 62, 130-145.	5.8	173
326	A 3D Microporous MOF with <i>mab</i> Topology for Selective CO ₂ Adsorption and Separation. ChemistrySelect, 2018, 3, 917-921.	1.5	15
327	Selective CO ₂ adsorption in water-stable alkaline-earth based metal–organic frameworks. Inorganic Chemistry Frontiers, 2018, 5, 541-549.	6.0	11
328	A Moistureâ€Stable 3D Microporous Co ^{II} â€Metal–Organic Framework with Potential for Highly Selective CO ₂ Separation under Ambient Conditions. Chemistry - A European Journal, 2018, 24, 5982-5986.	3.3	37
329	Theoretical study on the interaction of CO ₂ and H ₂ O molecules with metal doped-fluorinated phthalocyanines. New Journal of Chemistry, 2018, 42, 3465-3472.	2.8	15
330	A promising metal–organic framework (MOF), MIL-96(Al), for CO ₂ separation under humid conditions. Journal of Materials Chemistry A, 2018, 6, 2081-2090.	10.3	78
331	Role of Hydrogen Bonding on Transport of Coadsorbed Gases in Metal–Organic Frameworks Materials. Journal of the American Chemical Society, 2018, 140, 856-859.	13.7	26
332	Carbon dioxide capture in the presence of water by an amine-based crosslinked porous polymer. Journal of Materials Chemistry A, 2018, 6, 6455-6462.	10.3	39
333	Synthetic approaches for the incorporation of free amine functionalities in porous coordination polymers for enhanced CO2 sorption. Coordination Chemistry Reviews, 2018, 365, 1-22.	18.8	55
334	Screening of bimetallic M-Cu-BTC MOFs for CO2 activation and mechanistic study of CO2 hydrogenation to formic acid: A DFT study. Journal of CO2 Utilization, 2018, 24, 64-72.	6.8	27
335	Nanoarchitecturing of open metal site Cr-MOFs for oxodiperoxo molybdenum complexes [MoO(O2)2@En/MIL-100(Cr)] as promising and bifunctional catalyst for selective thioether oxidation. Molecular Catalysis, 2018, 445, 12-20.	2.0	61

#	Article	IF	CITATIONS
336	Advances in Porous Adsorbents for CO2 Capture and Storage. , 2018, , .		7
338	Humidity-induced CO ₂ capture enhancement in Mg-CUK-1. Dalton Transactions, 2018, 47, 15827-15834.	3.3	29
339	Potential of ultramicroporous metal–organic frameworks in CO ₂ clean-up. Chemical Communications, 2018, 54, 13472-13490.	4.1	49
340	Prediction of the monocomponent adsorption of H2S and mixtures with CO2 and CH4 on activated carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 342-350.	4.7	28
341	Unusual Moisture-Enhanced CO ₂ Capture within Microporous PCN-250 Frameworks. ACS Applied Materials & Distriction (1988) 10, 38638-38647.	8.0	57
342	Covalent and electrostatic incorporation of amines into hypercrosslinked polymers for increased CO ₂ selectivity. Journal of Polymer Science Part A, 2018, 56, 2513-2521.	2.3	9
343	High-Connectivity Approach to a Hydrolytically Stable Metal–Organic Framework for CO ₂ Capture from Flue Gas. Chemistry of Materials, 2018, 30, 6614-6618.	6.7	19
345	Molecular Modeling of Carbon Dioxide Adsorption in Metal-Organic Frameworks. , 2018, , 99-149.		6
346	Performance of Mixed Matrix Membranes Containing Porous Two-Dimensional (2D) and Three-Dimensional (3D) Fillers for CO2 Separation: A Review. Membranes, 2018, 8, 50.	3.0	66
347	Green applications of metal–organic frameworks. CrystEngComm, 2018, 20, 5899-5912.	2.6	54
348	Cobalt Incorporated Porous Aromatic Framework for CO ₂ /CH ₄ Separation. Industrial & Separation Chemistry Research, 2018, 57, 10985-10991.	3.7	14
350	Molecular Simulations of Binary Gas Mixture Transport and Separation in Slit Nanopores. Journal of Physical Chemistry C, 2018, 122, 20727-20735.	3.1	19
351	Enabling alternative ethylene production through its selective adsorption in the metal–organic framework Mn ₂ (<i>m</i> -dobdc). Energy and Environmental Science, 2018, 11, 2423-2431.	30.8	46
352	A Trifunctional Luminescent 3D Microporous MOF with Potential for CO ₂ Separation, Selective Sensing of a Metal Ion, and Recognition of a Small Organic Molecule. European Journal of Inorganic Chemistry, 2018, 2018, 2785-2792.	2.0	28
353	CO ₂ â€"H ₂ O Capture and Cyclability on Sodium Cobaltate at Low Temperatures (30â€"80°C): Experimental and Theoretical Analysis. Energy Technology, 2019, 7, 1800527.	3.8	4
354	Functional UiO-66 for the removal of sulfur-containing compounds in gas and liquid mixtures: A molecular simulation study. Chemical Engineering Journal, 2019, 356, 737-745.	12.7	15
355	Homochiral Metal–Organic Frameworks for Enantioselective Separations in Liquid Chromatography. Journal of the American Chemical Society, 2019, 141, 14306-14316.	13.7	93
356	Metal-organic framework based carbon capture and purification technologies for clean environment. , 2019, , 5-61.		21

#	Article	IF	CITATIONS
357	Expediting in-Situ Electrochemical Activation of Two-Dimensional Metal–Organic Frameworks for Enhanced OER Intrinsic Activity by Iron Incorporation. ACS Catalysis, 2019, 9, 7356-7364.	11.2	215
358	Metal-Assisted Salphen Organic Frameworks (MaSOFs) with Trinuclear Metal Units for Synergic Gas Sorption. Chemistry of Materials, 2019, 31, 6210-6223.	6.7	15
359	Visibleâ€Light Facilitated Fluorescence "Switchâ€On―Labelling of 5â€Formylpyrimidine RNA. Advanced Synthesis and Catalysis, 2019, 361, 5406-5411.	4.3	11
360	An Ultrastable Metal Azolate Framework with Binding Pockets for Optimal Carbon Dioxide Capture. Angewandte Chemie, 2019, 131, 16217-16222.	2.0	6
361	Computational Study of the Effect of Functional Groups on Water Adsorption in Mesoporous Carbons: Implications for Gas Adsorption. ACS Applied Nano Materials, 2019, 2, 7103-7113.	5.0	21
362	Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materials. Advanced Theory and Simulations, 2019, 2, 1900135.	2.8	41
363	An Ultrastable Metal Azolate Framework with Binding Pockets for Optimal Carbon Dioxide Capture. Angewandte Chemie - International Edition, 2019, 58, 16071-16076.	13.8	56
364	Adsorptive separation of carbon dioxide: From conventional porous materials to metal–organic frameworks. EnergyChem, 2019, 1, 100016.	19.1	107
365	Pressure-regulated synthesis of Cu(TPA) \hat{A} ·(DMF) in microdroplets for selective CO2 adsorption. Dalton Transactions, 2019, 48, 1006-1016.	3.3	13
366	Metal–Organic Frameworks Grafted by Univariate and Multivariate Heterocycles for Enhancing CO2 Capture: A Molecular Simulation Study. Industrial & Engineering Chemistry Research, 2019, 58, 2195-2205.	3.7	17
367	Two ultramicroporous metal–organic frameworks assembled from binuclear secondary building units for highly selective CO2/N2 separation. Dalton Transactions, 2019, 48, 1680-1685.	3.3	8
368	Mixed precious-group metal–organic frameworks: a case study of the HKUST-1 analogue [Ru _x Rh _{3â^²x} (BTC) ₂]. Dalton Transactions, 2019, 48, 12031-12039.	3.3	31
369	Porous Coordination Polymers. Polymers and Polymeric Composites, 2019, , 181-223.	0.6	1
370	Stability of amine-functionalized CO ₂ adsorbents: a multifaceted puzzle. Chemical Society Reviews, 2019, 48, 3320-3405.	38.1	260
371	Complexes of Zn(II)–Triazoles with CO ₂ and H ₂ O: Structures, Energetics, and Applications. Journal of Physical Chemistry A, 2019, 123, 5555-5565.	2.5	5
372	Unlocking CO2 separation performance of ionic liquid/CuBTC composites: Combining experiments with molecular simulations. Chemical Engineering Journal, 2019, 373, 1179-1189.	12.7	44
373	Partially fluorinated MIL-101(Cr): from a miniscule structure modification to a huge chemical environment transformation inspected by ¹²⁹ Xe NMR. Journal of Materials Chemistry A, 2019, 7, 15101-15112.	10.3	36
374	Impact of MOF defects on the binary adsorption of CO2 and water in UiO-66. Chemical Engineering Science, 2019, 203, 346-357.	3.8	76

#	Article	IF	CITATIONS
375	Synthesis and Characterization of an SWCNT@HKUST-1 Composite: Enhancing the CO ₂ Adsorption Properties of HKUST-1. ACS Omega, 2019, 4, 5275-5282.	3.5	54
376	Advancement in porous adsorbents for post-combustion CO2 capture. Microporous and Mesoporous Materials, 2019, 276, 107-132.	4.4	129
377	Porous Coordination Polymers. Polymers and Polymeric Composites, 2019, , 1-44.	0.6	2
378	Diffusion of Water and Carbon Dioxide and Mixtures Thereof in Mg-MOF-74. Journal of Physical Chemistry C, 2019, 123, 8212-8220.	3.1	19
379	Disclosing the Properties of a New Ce(III)-Based MOF: Ce ₂ (NDC) ₃ (DMF) ₂ . Crystal Growth and Design, 2019, 19, 787-796.	3.0	25
380	Catalytic improvement by open metal sites in a new mixed-ligand hetero topic metal–organic framework. Polyhedron, 2019, 159, 72-77.	2.2	5
381	Carbon Management and Greenhouse Gas Mitigation. , 2020, , 312-335.		8
382	Metal–Organic Framework Materials for the Separation and Purification of Light Hydrocarbons. Advanced Materials, 2020, 32, e1806445.	21.0	408
383	Multilinker phosphorous acid anchored En/MIL-100(Cr) as a novel nanoporous catalyst for the synthesis of new N-heterocyclic pyrimido[4,5-b]quinolines. Molecular Catalysis, 2020, 481, 110303.	2.0	41
384	Bimetallic metal-organic frameworks (MOFs) synthesized using the spray method for tunable CO2 adsorption. Chemical Engineering Journal, 2020, 382, 122825.	12.7	58
385	The effect of atomic point charges on adsorption isotherms of CO2 and water in metal organic frameworks. Adsorption, 2020, 26, 663-685.	3.0	36
387	Mg-MOF-74/Polyvinyl acetate (PVAc) mixed matrix membranes for CO2 separation. Separation and Purification Technology, 2020, 238, 116411.	7.9	52
389	CO2 capture ability of Cu-based metal-organic frameworks synergized with amino acid-functionalized layered materials. Catalysis Today, 2020, 356, 604-612.	4.4	13
390	The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: A state-of-the-art review. Chemical Engineering Journal, 2020, 391, 123601.	12.7	155
391	Metal–organic frameworks for carbon dioxide capture. MRS Energy & Sustainability, 2020, 7, 1.	3.0	31
392	Synthesis and characterization of bimetallic Cu-Al-BTC MOFs as an efficient catalyst for selective catalysis reduction of NO with CO. Ferroelectrics, 2020, 565, 58-65.	0.6	8
393	Porous Metal–Organic Frameworks for Carbon Dioxide Adsorption and Separation at Low Pressure. ACS Sustainable Chemistry and Engineering, 2020, 8, 15378-15404.	6.7	81
394	Porous and Nonporous Coordination Polymers Induced by Pseudohalide Ions for Luminescence and Gas Sorption. Inorganic Chemistry, 2020, 59, 15987-15999.	4.0	18

#	Article	IF	CITATIONS
395	The chemistry of Ce-based metal–organic frameworks. Dalton Transactions, 2020, 49, 16551-16586.	3.3	76
396	A Flexibleâ€"Robust Copper(II) Metalâ€"Organic Framework Constructed from a Fluorinated Ligand for CO ₂ /R22 Capture. Inorganic Chemistry, 2020, 59, 14856-14860.	4.0	14
397	Adsorption and Diffusion of Carbon Dioxide, Methane, and Their Mixture in Carbon Nanotubes in the Presence of Water. Journal of Physical Chemistry C, 2020, 124, 16478-16487.	3.1	40
398	Coordinated Water as New Binding Sites for the Separation of Light Hydrocarbons in Metal–Organic Frameworks with Open Metal Sites. ACS Applied Materials & 1, 19448-9456.	8.0	11
399	Coordination distortion induced water adsorption in hydrophobic flexible metal–organic frameworks. Chemical Communications, 2020, 56, 9106-9109.	4.1	3
400	Evaluation of porous adsorbents for CO2 capture under humid conditions: The importance of recyclability. Chemical Engineering Journal Advances, 2020, 3, 100021.	5.2	17
401	WO3.1/3H2O nanorods/nanoplates: Growth mechanism and CO2 uptake. Materialia, 2020, 14, 100943.	2.7	2
402	Dry and Wet CO 2 Capture from Milkâ€Derived Microporous Carbons with Tuned Hydrophobicity. Advanced Sustainable Systems, 2020, 4, 2000001.	5.3	3
403	Underlying mechanism of CO2 uptake onto biomass-based porous carbons: Do adsorbents capture CO2 chiefly through narrow micropores?. Fuel, 2020, 282, 118727.	6.4	75
404	Unraveling the Structure and Binding Energy of Adsorbed CO ₂ /H ₂ O on Amine Sorbents. Journal of Physical Chemistry C, 2020, 124, 24677-24689.	3.1	24
405	Reorientable fluorinated aryl rings in triangular channel Fe-MOFs: an investigation on CO ₂ â€"matrix interactions. Journal of Materials Chemistry A, 2020, 8, 11406-11413.	10.3	21
406	Emerging trends in porous materials for CO ₂ capture and conversion. Chemical Society Reviews, 2020, 49, 4360-4404.	38.1	473
407	Atomic-scale molecular models of oxidized activated carbon fibre nanoregions: Examining the effects of oxygen functionalities on wet formaldehyde adsorption. Carbon, 2020, 165, 67-81.	10.3	19
408	Mechanistic and Experimental Study of the Formation of MoS ₂ /HKUST-1 Core–Shell Composites on MoS ₂ Quantum Dots with an Enhanced CO ₂ Adsorption Capacity. Industrial & Dots with an Enhanced CO ₂ Adsorption Capacity. Industrial & Dots with an Enhanced CO ₂	3.7	12
409	Critical role of water stability in metal–organic frameworks and advanced modification strategies for the extension of their applicability. Environmental Science: Nano, 2020, 7, 1319-1347.	4.3	79
410	Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications. Chemical Society Reviews, 2020, 49, 2751-2798.	38.1	449
411	Computational screening of heterocycle decorations in metal-organic frameworks for efficient C2/C1 adsorption and separation. Fuel, 2020, 279, 118431.	6.4	6
412	Structural Transitions of the Metal–Organic Framework DUT-49(Cu) upon Physi- and Chemisorption Studied by <i>in Situ</i> Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 5856-5862.	4.6	14

#	Article	IF	CITATIONS
414	High performance MIL-101(Cr)@6FDA-mPD and MOF-199@6FDA-mPD mixed-matrix membranes for CO2/CH4 separation. Dalton Transactions, 2020, 49, 1822-1829.	3.3	14
415	Easy Processing of Metal–Organic Frameworks into Pellets and Membranes. Applied Sciences (Switzerland), 2020, 10, 798.	2.5	6
416	Performance of Activated Carbons Derived from Date Seeds in CO ₂ Swing Adsorption Determined by Combining Experimental and Molecular Simulation Data. Industrial & Determined Samp; Engineering Chemistry Research, 2020, 59, 7161-7173.	3.7	25
417	Adsorption Properties and Microscopic Mechanism of CO ₂ Capture in 1,1-Dimethyl-1,2-ethylenediamine-Grafted Metal–Organic Frameworks. ACS Applied Materials & Los	8.0	36
418	Potential of adsorbents and membranes for SF6 capture and recovery: A review. Chemical Engineering Journal, 2021, 404, 126577.	12.7	49
419	Selective adsorption of CO2 by Hex-star phosphorene from natural gas: Combining molecular simulation and real adsorbed solution theory. Chemical Engineering Science, 2021, 231, 116283.	3.8	8
420	Twoâ€Dimensional Metal–Organic Frameworksâ€Based Electrocatalysts for Oxygen Evolution and Oxygen Reduction Reactions. Advanced Energy and Sustainability Research, 2021, 2, 2000067.	5.8	29
421	Investigation of the MOF adsorbents and the gas adsorptive separation mechanisms. Journal of Environmental Chemical Engineering, 2021, 9, 104790.	6.7	46
422	ReS ₂ Nanosheets with In Situ Formed Sulfur Vacancies for Efficient and Highly Selective Photocatalytic CO ₂ Reduction. Small Science, 2021, 1, 2000052.	9.9	66
423	Inquiry for the multifunctional design of metal–organic frameworks: in situ equipping additional open metal sites (OMSs) inducing high CO2 capture/conversion abilities. Materials Chemistry Frontiers, 2021, 5, 1398-1404.	5.9	10
424	Fluorinated MIL-101 for carbon capture utilisation and storage: uptake and diffusion studies under relevant industrial conditions. RSC Advances, 2021, 11, 13304-13310.	3.6	10
425	CO ₂ capture enhancement in MOFs <i>via</i> the confinement of molecules. Reaction Chemistry and Engineering, 2021, 6, 441-453.	3.7	13
426	Rapid temperature-assisted synthesis of nanoporous γ-cyclodextrin-based metal–organic framework for selective CO2 adsorption. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 99, 245-253.	1.6	22
427	Metal-Organic Frameworks for Environmental Applications. Engineering Materials, 2021, , 1-39.	0.6	0
428	Metal-organic frameworks and permeable natural polymers for reasonable carbon dioxide fixation. , 2021, , 417-440.		0
429	Gas hydrates in confined space of nanoporous materials: new frontier in gas storage technology. Nanoscale, 2021, 13, 7447-7470.	5.6	28
430	MOFâ€Based Hybrids for Solar Fuel Production. Advanced Energy Materials, 2021, 11, 2003052.	19.5	58
431	Carbon capture Using Metal–Organic Frameworks. , 2021, , 155-204.		1

#	Article	IF	Citations
432	Lanthanide metal–organic frameworks for catalytic oxidation of olefins. New Journal of Chemistry, 2021, 45, 2090-2102.	2.8	12
433	Activated carbonâ€based composites for capturing CO ₂ : a review., 2021, 11, 377-393.		27
434	Environmental Applications of Nanotechnology: Nano-enabled Remediation Processes in Water, Soil and Air Treatment. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	14
435	Optimal Performance of Nanoporous Carbons on Adsorptive Separation of CO ₂ from Flue Gas. Energy & Samp; Fuels, 2021, 35, 8069-8080.	5.1	5
436	Porous organic frameworks for carbon dioxide capture and storage. Journal of Environmental Chemical Engineering, 2021, 9, 105090.	6.7	23
437	Understanding the Effect of Water on CO ₂ Adsorption. Chemical Reviews, 2021, 121, 7280-7345.	47.7	194
438	Humid Ethylene/Ethane Separation on Ethylene-Selective Materials. Industrial & Engineering Chemistry Research, 2021, 60, 9940-9947.	3.7	16
439	Photoinduced Electronâ€Transfer (PIET) Strategy for Selective Adsorption of CO ₂ over C ₂ H ₂ in a MOF. Angewandte Chemie - International Edition, 2021, 60, 18223-18230.	13.8	56
440	Photoinduced Electronâ€Transfer (PIET) Strategy for Selective Adsorption of CO ₂ over C ₂ H ₂ in a MOF. Angewandte Chemie, 2021, 133, 18371-18378.	2.0	5
441	Overview of the Adsorption and Transport Properties of Water, lons, Carbon Dioxide, and Methane in Swelling Clays. ACS Earth and Space Chemistry, 2021, 5, 2599-2611.	2.7	23
442	High-performance Fe-doped ZIF-8 adsorbent for capturing tetracycline from aqueous solution. Journal of Hazardous Materials, 2021, 416, 126046.	12.4	109
443	The Review of Carbon Capture-Storage Technologies and Developing Fuel Cells for Enhancing Utilization. Energies, 2021, 14, 4978.	3.1	25
444	Enhancing in the hydrogen storage by SWCNT/HKUST-1 composites: Effect of SWCNT amount. Catalysis Today, 2022, 394-396, 357-364.	4.4	11
445	Water Bridges Substitute for Defects in Amine-Functionalized UiO-66, Boosting CO ₂ Adsorption. Langmuir, 2021, 37, 10439-10449.	3.5	12
446	External electric field enhances CO2 geological Storage: A molecular dynamics simulation. Applied Surface Science, 2022, 572, 151312.	6.1	13
447	Enhancing effect of UV activation of graphene oxide on carbon capture performance of metal-organic framework / graphene oxide hybrid adsorbents. Chemical Engineering Journal, 2021, 420, 129677.	12.7	36
448	Carbon Dioxide Capture Enhanced by Preâ€Adsorption of Water and Methanol in UiOâ€66. Chemistry - A European Journal, 2021, 27, 14653-14659.	3.3	17
449	Synergistic and competitive effect of H2O on CO2 adsorption capture: Mechanism explanations based on molecular dynamic simulation. Journal of CO2 Utilization, 2021, 52, 101662.	6.8	16

#	Article	IF	CITATIONS
450	In silico design of a new Zn–triazole based metal–organic framework for CO2 and H2O adsorption. Journal of Chemical Physics, 2021, 154, 024303.	3.0	5
451	The application of amine-based materials for carbon capture and utilisation: an overarching view. Materials Advances, 2021, 2, 5843-5880.	5.4	45
452	Polyamine-Appended Porous Organic Copolymers with Controlled Structural Properties for Enhanced CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2021, 9, 2017-2026.	6.7	23
453	Metal–organic framework structure–property relationships for high-performance multifunctional polymer nanocomposite applications. Journal of Materials Chemistry A, 2021, 9, 4348-4378.	10.3	34
454	CO2 Capture Using Solid Sorbents. , 2015, , 1-56.		2
455	Metal-Organic Frameworks (MOFs) for CO2 Capture. Green Chemistry and Sustainable Technology, 2014, , 79-113.	0.7	2
456	Carbon Dioxide Capture in Porous Aromatic Frameworks. Green Chemistry and Sustainable Technology, 2014, , 115-142.	0.7	1
457	Cyclic adsorption of water vapour on CuBTC MOF: Sustaining the hydrothermal stability under non-equilibrium conditions. Chemical Engineering Journal, 2018, 333, 594-602.	12.7	36
458	High CO 2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand. Microporous and Mesoporous Materials, 2018, 256, 25-31.	4.4	81
459	Positional Installation of Unsymmetrical Fluorine Functionalities onto Metal–Organic Frameworks for Efficient Carbon Dioxide Separation under Humid Conditions. Inorganic Chemistry, 2020, 59, 18048-18054.	4.0	14
460	Ultramicroporous Carbons Derived from Semi-Cycloaliphatic Polyimide with Outstanding Adsorption Properties for H ₂ , CO ₂ , and Organic Vapors. Journal of Physical Chemistry C, 2017, 121, 22753-22761.	3.1	17
461	Metal–Organic Framework (MOF)-based CO2 Adsorbents. Inorganic Materials Series, 2018, , 153-205.	0.7	1
462	METAL ORGANIC FRAMEWORKS–SYNTHESIS AND APPLICATIONS. , 2014, , 61-103.		6
463	Molecular Modeling of Gas Separation in Metal–Organic Frameworks. , 2015, , 295-337.		1
464	The Application of Metal-Organic Frameworks to CO2 Capture. , 2013, , 233-257.		1
465	Molecular Modeling of Metal–Organic Frameworks for Carbon Dioxide Separation Applications. , 2015, , 339-379.		0
466	Modeling the Adsorption of Small Molecules at Coordinatively Unsaturated Metal Sites: Density Functional Theory and Molecular Mechanics Approaches. , 2015, , 113-174.		0
468	CO2 Capture Using Solid Sorbents. , 2017, , 2349-2404.		0

#	Article	IF	Citations
469	An overview of the materials and methodologies for CO ₂ capture under humid conditions. Journal of Materials Chemistry A, 2021, 9, 26498-26527.	10.3	29
470	Mixed-Linker Metal-Organic frameworks for carbon and hydrocarbons capture under moist conditions. Chemical Engineering Journal, 2022, 433, 134447.	12.7	16
471	Research needs targeting direct air capture of carbon dioxide: Material & process performance characteristics under realistic environmental conditions. Korean Journal of Chemical Engineering, 2022, 39, 1-19.	2.7	40
472	Study on CO2 capture in humid flue gas using amine-modified ZIF-8. Separation and Purification Technology, 2022, 287, 120535.	7.9	24
473	Influence of ammonia treatment on the CO2 adsorption of activated carbon. Journal of Environmental Chemical Engineering, 2022, 10, 107273.	6.7	15
474	A Step in Carbon Capture from Wet Gases: Understanding the Effect of Water on CO ₂ Adsorption and Diffusion in UiO-66. Journal of Physical Chemistry C, 2022, 126, 3211-3220.	3.1	12
475	Isolated molybdenum-based microporous POMs for selective adsorption of gases. Dalton Transactions, 2022, 51, 5239-5249.	3.3	4
476	Exchange of coordinated carboxylates with azolates as a route to obtain a microporous zinc–azolate framework. Chemical Communications, 2022, 58, 4028-4031.	4.1	2
477	Modulating Carbon Dioxide Storage by Facile Synthesis of Nanoporous Pillared-Layered Metal–Organic Framework with Different Synthetic Routes. Inorganic Chemistry, 2022, 61, 3893-3902.	4.0	24
478	Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms. Renewable and Sustainable Energy Reviews, 2022, 162, 112441.	16.4	35
479	Integrating of metal-organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption of dye rose bengal. Frontiers of Chemical Science and Engineering, 2022, 16, 1387-1398.	4.4	5
480	CO ₂ Capture by Hybrid Ultramicroporous TIFSIXâ€3â€Ni under Humid Conditions Using Nonâ€Equilibrium Cycling. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
481	CO2 Capture by Hybrid Ultramicroporous TIFSIXâ€3â€Ni under Humid Conditions Using Nonâ€Equilibrium Cycling. Angewandte Chemie, 0, , .	2.0	3
482	Recent advances in CO ₂ capture and reduction. Nanoscale, 2022, 14, 11869-11891.	5.6	30
483	Nitrogen doped activated carbon derived from chitosan/hexamethylenetetramine: structural and CO2 adsorption properties. Journal of Porous Materials, 2022, 29, 1539-1550.	2.6	4
484	Porous Adsorption Materials for Carbon Dioxide Capture in Industrial Flue Gas. Frontiers in Chemistry, 0, 10 , .	3.6	20
485	Separation of Volatile Organic Compounds in TAMOF-1. ACS Applied Materials & Samp; Interfaces, 2022, 14, 30772-30785.	8.0	3
486	Survey on Adsorption of Low Molecular Weight Compounds in Cu-BTC Metal–Organic Framework: Experimental Results and Thermodynamic Modeling. International Journal of Molecular Sciences, 2022, 23, 9406.	4.1	2

#	Article	IF	CITATIONS
487	Hofmann-type metal-organic frameworks with dual open nickel centers for efficient capture of CO2 from CH4 and N2. Journal of Solid State Chemistry, 2022, 315, 123532.	2.9	2
488	On the HKUST-1/GO and HKUST-1/rGO Composites: The Impact of Synthesis Method on Physicochemical Properties. Molecules, 2022, 27, 7082.	3.8	8
489	Water boosted CO2/C2H2 separation in L-arginine functionalized metalâ€"organic framework. Nano Research, 2023, 16, 6113-6119.	10.4	9
490	Synthesis of amine grafted Cu-BTC and its application in regenerable adsorption of ultra-low concentration methyl mercaptan. Separation and Purification Technology, 2023, 304, 122356.	7.9	5
491	Metal–Organic Frameworks and Gas Hydrate Synergy: A Pandora's Box of Unanswered Questions and Revelations. Energies, 2023, 16, 111.	3.1	3
492	A series of cation-modified robust zirconium-based metal–organic frameworks for carbon dioxide capture. CrystEngComm, 2023, 25, 1067-1075.	2.6	1
493	Metal–Organic Frameworks for Water Harvesting and Concurrent Carbon Capture: A Review for Hygroscopic Materials. Advanced Materials, 2024, 36, .	21.0	25
494	MOFs-based advanced materials for gaseous adsorption: Sustainable environmental remediation. , 2023, , 185-205.		0
495	Organic polymers for CO2 capture and conversion. , 2023, , 77-99.		0
496	Highly scalable acid-base resistant Cu-Prussian blue metal-organic framework for C2H2/C2H4, biogas, and flue gas separations. Chemical Engineering Journal, 2023, 460, 141795.	12.7	12
497	Advances in metal-organic frameworks for efficient separation and purification of natural gas., 2023, 42, 100034.		14
498	Enhancing selective adsorption of CO2 through encapsulating FeTPPs into Cu-BTC. Chemical Engineering Journal, 2023, 461, 141977.	12.7	12
499	Challenges in Developing MOF-Based Membranes for Gas Separation. Langmuir, 2023, 39, 2871-2880.	3 . 5	25
500	Insertion of CO ₂ in metal ion-doped two-dimensional covalent organic frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	5
501	Efficient CO ₂ Capture under Humid Conditions on a Novel Amide-Functionalized Fe- soc Metal–Organic Framework. ACS Applied Materials & Samp; Interfaces, 2023, 15, 12240-12247.	8.0	5
502	Synthesis of Fluoro-Bridged Ho ³⁺ and Gd ³⁺ 1,3,5-Tris(4-carboxyphenyl)benzene Metal–Organic Frameworks from Perfluoroalkyl Substances. Inorganic Chemistry, 2023, 62, 4314-4321.	4.0	5
503	Green and facile production of UTSA-16 (Zn) in aqueous media with improved CO2 adsorption performance. Journal of Industrial and Engineering Chemistry, 2023, 126, 444-453.	5.8	0
504	Ultra-trace chlorinated gases optical sensor with moisture-resistant based on structural-customizable UiO-66 3D photonic crystals. Sensors and Actuators B: Chemical, 2023, 393, 134219.	7.8	2

#	Article	IF	CITATIONS
505	Cold, Hot, Dry, and Wet: Locations and Dynamics of CO ₂ and H ₂ O Co-Adsorbed in an Ultramicroporous MOF. Inorganic Chemistry, 2023, 62, 11152-11167.	4.0	0
506	A solvent-responsive terbium-organic framework for photocatalytic CO ₂ reduction. Dalton Transactions, 0, , .	3.3	0
507	Efficient Generation of Large Collections of Metal–Organic Framework Structures Containing Well-Defined Point Defects. Journal of Physical Chemistry Letters, 2023, 14, 6658-6665.	4.6	4
508	Water Unexpectedly Impacts Both Thermodynamics and Kinetics of Rn Removal in HKUST-1. Journal of Physical Chemistry C, 0, , .	3.1	0
509	Screening, preparation, and prototyping of metal–organic frameworks for adsorptive carbon capture under humid conditions. SusMat, 2023, 3, 609-638.	14.9	0
510	Effect of Water and Carbon Dioxide on the Performance of Basolite Metal–Organic Frameworks for Methane Adsorption. Energy & Dioxide on the Performance of Basolite Metal–Organic Frameworks for Methane Adsorption. Energy & Dioxide on the Performance of Basolite Metal–Organic Frameworks for Methane Adsorption.	5.1	O
511	High-Throughput Computational Screening of Experimental Zr-Based MOFs for Elemental Mercury Capture. Industrial & Engineering Chemistry Research, 2023, 62, 14497-14506.	3.7	1
512	Preparation and applications of water-based isoreticular metal–organic frameworks. , 2024, , 199-218.		0
513	Cu-ATC <i>vs.</i> Cu-BTC: comparing the H ₂ adsorption mechanism through experiment, molecular simulation, and inelastic neutron scattering studies. Journal of Materials Chemistry A, O, , .	10.3	0
515	Synthesis, physical properties, and carbon dioxide uptake of new metal-sulfamethoxazole complexes. Results in Chemistry, 2023, 6, 101137.	2.0	0
516	Molecular Simulations of MXene Nanosheet-Based Membranes for Syngas Separation. ACS Applied Nano Materials, $0, \dots$	5.0	1
517	Optimum relative humidity enhances CO2 uptake in diamine-appended M2(dobpdc). Chemical Engineering Journal, 2023, 477, 147119.	12.7	2
518	Recent Advancements and Strategies of Improving CO2 Utilization Efficiency in Bio-Succinic Acid Production. Fermentation, 2023, 9, 967.	3.0	0
519	Abnormal CO ₂ and H ₂ O Diffusion in CALF-20(Zn) Metal–Organic Framework: Fundamental Understanding of CO ₂ Capture. ACS Applied Nano Materials, 2023, 6, 19963-19971.	5.0	4
520	A comprehensive review of carbon capture science and technologies. Carbon Capture Science & Technology, 2023, , 100178.	10.4	2
521	Metal-organic-framework transparency to water interactions for enhanced <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CO</mml:mi><mml:mn>2<td>nn2.4/mml:</td><td>:meub></td></mml:mn></mml:msub></mml:math>	nn 2.4 /mml:	:m e ub>
523	Recent advance in MOFs and MOF-based composites: synthesis, properties, and applications. Materials Today Energy, 2024, 41, 101542.	4.7	0