Investigation of Crohn's Disease Risk Loci in Ulcerative Molecular Relationship

Gastroenterology 136, 523-529.e3 DOI: 10.1053/j.gastro.2008.10.032

Citation Report

#	Article	IF	CITATIONS
1	The Genetic Basis of Inflammatory Bowel Disease. Digestive Diseases, 2009, 27, 428-442.	0.8	57
2	Susceptibility Genes and Overall Pathogenesis of Inflammatory Bowel Disease: Where Do We Stand?. Digestive Diseases, 2009, 27, 226-235.	0.8	17
4	Established genetic risk factors do not distinguish early and later onset Crohn's disease. Inflammatory Bowel Diseases, 2009, 15, 1508-1514.	0.9	41
5	Inflammatory bowel disease: review from the aspect of genetics. Journal of Gastroenterology, 2009, 44, 1097-1108.	2.3	45
6	Insights into IBD pathogenesis. Current Gastroenterology Reports, 2009, 11, 473-480.	1.1	72
7	Differential contribution of CDKAL1 variants to psoriasis, Crohn's disease and type II diabetes. Genes and Immunity, 2009, 10, 654-658.	2.2	53
8	A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nature Genetics, 2009, 41, 1325-1329.	9.4	241
9	Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nature Genetics, 2009, 41, 1330-1334.	9.4	483
11	Clustering and commonalities among autoimmune diseases. Journal of Autoimmunity, 2009, 33, 170-177.	3.0	90
12	Exposed: The Genetic Underpinnings of Ulcerative Colitis Relative to Crohn's Disease. Gastroenterology, 2009, 136, 396-399.	0.6	5
13	Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut, 2009, 58, 1152-1167.	6.1	558
14	Evolving Inflammatory Bowel Disease Treatment Paradigms: Top-Down Versus Step-Up. Gastroenterology Clinics of North America, 2009, 38, 577-594.	1.0	22
16	Genetics and the pathogenesis of ankylosing spondylitis. Current Opinion in Rheumatology, 2009, 21, 318-323.	2.0	56
17	Genetics of ankylosing spondylitis. Current Opinion in Rheumatology, 2010, 22, 126-132.	2.0	68
19	Genome-wide association studies for blood lipids. A great start but a long way to go. Current Opinion in Lipidology, 2010, 21, 101-103.	1.2	6
20	STAT3 and its activators in intestinal defense and mucosal homeostasis. Current Opinion in Gastroenterology, 2010, 26, 109-115.	1.0	38
21	Gatekeepers of intestinal inflammation. Inflammation Research, 2010, 59, 1-14.	1.6	14
22	Genetic factors in chronic inflammation: Single nucleotide polymorphisms in the STAT-JAK pathway, susceptibility to DNA damage and Crohn's disease in a New Zealand population. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis. 2010. 690. 108-115.	0.4	99

TION REI

#	Article	IF	Citations
23	Differential mucosal expression of Th17-related genes between the inflamed colon and ileum of patients with inflammatory bowel disease. BMC Immunology, 2010, 11, 61.	0.9	53
24	Analysis of JAK2 and STAT3 polymorphisms in patients with ankylosing spondylitis in Chinese Han population. Clinical Immunology, 2010, 136, 442-446.	1.4	43
25	Fine-scale geographic variations of inflammatory bowel disease in France: Correlation with socioeconomic and house equipment variables. Inflammatory Bowel Diseases, 2010, 16, 813-821.	0.9	38
26	Genome wide association (GWA) predictors of anti-TNFα therapeutic responsiveness in pediatric inflammatory bowel disease. Inflammatory Bowel Diseases, 2010, 16, 1357-1366.	0.9	124
27	Genetic predictors of medically refractory ulcerative colitis. Inflammatory Bowel Diseases, 2010, 16, 1830-1840.	0.9	135
28	STAT3 locus in inflammatory bowel disease and multiple sclerosis susceptibility. Genes and Immunity, 2010, 11, 264-268.	2.2	54
29	The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nature Reviews Microbiology, 2010, 8, 564-577.	13.6	329
30	Replication of KIF21B as a susceptibility locus for multiple sclerosis. Journal of Medical Genetics, 2010, 47, 775-776.	1.5	38
31	Phospholipid Scramblase 1 Is Secreted by a Lipid Raft-dependent Pathway and Interacts with the Extracellular Matrix Protein 1 in the Dermal Epidermal Junction Zone of Human Skin. Journal of Biological Chemistry, 2010, 285, 37823-37837.	1.6	31
32	Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects. Human Molecular Genetics, 2010, 19, 2059-2067.	1.4	157
33	Evolving Inflammatory Bowel Disease Treatment Paradigms: Top-Down Versus Step-Up. Medical Clinics of North America, 2010, 94, 1-18.	1.1	33
34	Genetic Analysis in A Dutch Study Sample Identifies More Ulcerative Colitis Susceptibility Loci and Shows Their Additive Role in Disease Risk. American Journal of Gastroenterology, 2010, 105, 395-402.	0.2	39
35	Inflammatory Bowel Disease. Annual Review of Immunology, 2010, 28, 573-621.	9.5	1,642
36	A Novel Mouse Model of Inflammatory Bowel Disease Links Mammalian Target of Rapamycin-Dependent Hyperproliferation of Colonic Epithelium to Inflammation-Associated Tumorigenesis. American Journal of Pathology, 2010, 176, 952-967.	1.9	202
37	No association between TNFSF15 and IL23R with ulcerative colitis in Koreans. Journal of Human Genetics, 2011, 56, 200-204.	1.1	21
38	HLA-Cw*1202-B*5201-DRB1*1502 Haplotype Increases Risk for Ulcerative Colitis but Reduces Risk for Crohn's Disease. Gastroenterology, 2011, 141, 864-871.e5.	0.6	90
39	"ER Stress(ed Out)!â€i Paneth Cells and Ischemia–Reperfusion Injury of the Small Intestine. Gastroenterology, 2011, 140, 393-396.	0.6	13
40	Association of FCGR2A, JAK2 or HNF4A variants with ulcerative colitis in Koreans. Digestive and Liver Disease, 2011, 43, 856-861.	0.4	28

#	Article	IF	CITATIONS
41	Genetic polymorphisms of IL-23R and IL-17A and novel insights into their associations with inflammatory bowel disease. Gut, 2011, 60, 1527-1536.	6.1	119
42	Inflammatory bowel disease: beyond the boundaries of the bowel. Expert Review of Gastroenterology and Hepatology, 2011, 5, 401-410.	1.4	17
43	Macrophages from IBD patients exhibit defective tumour necrosis factor-α secretion but otherwise normal or augmented pro-inflammatory responses to infection. Immunobiology, 2011, 216, 961-970.	0.8	36
44	Comparative Genetic Analysis of Type 1 Diabetes and Inflammatory Bowel Disease. , 0, , .		0
45	Pediatric Inflammatory Bowel Disease (IBD): Phenotypic, Genetic and Therapeutic Differences between Early-Onset and Adult-Onset IBD. Korean Journal of Pediatric Gastroenterology and Nutrition, 2011, 14, 1.	0.2	13
46	Familial aggregation in inflammatory bowel disease: Is it genes or environment?. World Journal of Gastroenterology, 2011, 17, 2715.	1.4	38
47	Identification of disease-associated DNA methylation in intestinal tissues from patients with inflammatory bowel disease. Clinical Genetics, 2011, 80, 59-67.	1.0	78
48	Shared genetics in coeliac disease and other immune-mediated diseases. Journal of Internal Medicine, 2011, 269, 591-603.	2.7	62
49	New IBD genetics: common pathways with other diseases. Gut, 2011, 60, 1739-1753.	6.1	504
50	Genetics of ulcerative colitis. Inflammatory Bowel Diseases, 2011, 17, 831-848.	0.9	133
51	Distinct and overlapping genetic loci in crohn's disease and ulcerative colitis: Correlations with pathogenesis. Inflammatory Bowel Diseases, 2011, 17, 1936-1942.	0.9	105
52	Differential association of two PTPN22 coding variants with Crohn's disease and ulcerative colitis. Inflammatory Bowel Diseases, 2011, 17, 2287-2294.	0.9	73
53	Meta-analysis of published studies identified eight additional common susceptibility loci for Crohn's disease and ulcerative colitis. Inflammatory Bowel Diseases, 2011, 17, 2407-2415.	0.9	95
54	Practical application of anti-TNF therapy for luminal Crohn's disease. Inflammatory Bowel Diseases, 2011, 17, 2366-2391.	0.9	18
55	Th17 Cells Induce Colitis and Promote Th1 Cell Responses through IL-17 Induction of Innate IL-12 and IL-23 Production. Journal of Immunology, 2011, 186, 6313-6318.	0.4	157
56	Crohn disease: A current perspective on genetics, autophagy and immunity. Autophagy, 2011, 7, 355-374.	4.3	94
57	Prostaglandin E2 and SOCS1 have a role in intestinal immune tolerance. Nature Communications, 2011, 2, 190.	5.8	110
58	Association of CARD8 with inflammatory bowel disease in Koreans. Journal of Human Genetics, 2011, 56, 217-223.	1.1	37

# 59	ARTICLE Vitamin D and Inflammatory Bowel Disease. , 2011, , 1879-1889.	IF	CITATIONS
60	Macrophage-stimulating protein polymorphism rs3197999 is associated with a gain of function: implications for inflammatory bowel disease. Genes and Immunity, 2012, 13, 321-327.	2.2	16
61	Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Frontiers in Immunology, 2012, 3, 107.	2.2	311
62	<i>JAK2</i> and <i>STAT3</i> Polymorphisms in a Han Chinese Population with Behçet's Disease. , 2012, 53, 538.		40
64	HLA-DRhi and CCR9 Define a Pro-Inflammatory Monocyte Subset in IBD. Clinical and Translational Gastroenterology, 2012, 3, e29.	1.3	30
65	Meta-analysis reveals an association of PTPN22 C1858T with autoimmune diseases, which depends on the localization of the affected tissue. Genes and Immunity, 2012, 13, 641-652.	2.2	95
66	Genetic variations in interleukin-12 related genes in immune-mediated diseases. Journal of Autoimmunity, 2012, 39, 359-368.	3.0	42
67	Maintenance of small intestinal and colonic tolerance by IL-10-producing regulatory T cell subsets. Current Opinion in Immunology, 2012, 24, 269-276.	2.4	40
68	Metaâ€analysis of genetic polymorphisms in granulomatosis with polyangiitis (Wegener's) reveals shared susceptibility loci with rheumatoid arthritis. Arthritis and Rheumatism, 2012, 64, 3463-3471.	6.7	33
69	Host-microbiota interactions in inflammatory bowel disease. Gut Microbes, 2012, 3, 332-344.	4.3	100
70	Diet and risk of inflammatory bowel disease. Digestive and Liver Disease, 2012, 44, 185-194.	0.4	114
71	Non-MHC Genes Linked to Autoimmune Disease. Critical Reviews in Immunology, 2012, 32, 193-285.	1.0	9
72	Changes of the cytokine profile in inflammatory bowel diseases. World Journal of Gastroenterology, 2012, 18, 5848.	1.4	197
73	Genetics of inflammatory bowel disease in Asia: Systematic review and meta-analysis. Inflammatory Bowel Diseases, 2012, 18, 1164-1176.	0.9	151
74	The JAK2 variant rs10758669 in Crohn's disease: altering the intestinal barrier as one mechanism of action. International Journal of Colorectal Disease, 2012, 27, 565-573.	1.0	42
75	Macrophage-related diseases of the gut: a pathologist's perspective. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2012, 460, 555-567.	1.4	26
76	Inflamed gut mucosa: downstream of interleukinâ€10. European Journal of Clinical Investigation, 2012, 42, 95-109.	1.7	96
77	Investigation of <i>JAK2</i> , <i>STAT3</i> and <i>CCR6</i> polymorphisms and their gene–gene interactions in inflammatory bowel disease. International Journal of Immunogenetics, 2012, 39, 247-252.	0.8	40

#	Article	IF	CITATIONS
78	Lack of association of <i>ACP1</i> gene with inflammatory bowel disease: a case–control study. Tissue Antigens, 2012, 80, 61-64.	1.0	2
79	Barrett's Esophagus: Evolutionary Insights From Genomics. Gastroenterology, 2013, 144, 667-669.	0.6	7
80	TRAF3IP2 gene is associated with cutaneous extraintestinal manifestations in Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2013, 7, 44-52.	0.6	51
81	Interleukin-10 prevents epithelial cell apoptosis by regulating IFNγ and TNFα expression in rhesus macaque colon explants. Cytokine, 2013, 64, 30-34.	1.4	11
82	Gene network analysis of small molecules with autoimmune disease associated genes predicts a novel strategy for drug efficacy. Autoimmunity Reviews, 2013, 12, 510-522.	2.5	6
83	Immune-mediated disease genetics: the shared basis of pathogenesis. Trends in Immunology, 2013, 34, 22-26.	2.9	88
84	IL-10 Promotes Production of Intestinal Mucus by Suppressing Protein Misfolding and Endoplasmic Reticulum Stress in Goblet Cells. Gastroenterology, 2013, 144, 357-368.e9.	0.6	190
85	High Intestinal and Systemic Levels of Interleukin-23/T-Helper 17 Pathway in Chinese Patients with Inflammatory Bowel Disease. Mediators of Inflammation, 2013, 2013, 1-10.	1.4	33
86	Nucleotide-Binding Oligomerization Domain 2 Signaling Promotes Hyperresponsive Macrophages and Colitis in IL-10–Deficient Mice. Journal of Immunology, 2013, 190, 2948-2958.	0.4	34
87	Genetic variants in the IL12B gene are associated with inflammatory bowel diseases in the K orean population. Journal of Gastroenterology and Hepatology (Australia), 2013, 28, 1588-1594.	1.4	15
88	Genetic Susceptibility in IBD. Inflammatory Bowel Diseases, 2013, 19, 240-245.	0.9	37
89	<i>JAK1</i> , but Not <i>JAK2</i> and <i>STAT3</i> , Confers Susceptibility to Vogt–Koyanagi–Harada (VKH) Syndrome in a Han Chinese Population. , 2013, 54, 3360.		21
91	Functional Consequences of the Macrophage Stimulating Protein 689C Inflammatory Bowel Disease Risk Allele. PLoS ONE, 2013, 8, e83958.	1.1	17
92	Genetic update on inflammatory factors in ulcerative colitis: Review of the current literature. World Journal of Gastrointestinal Pathophysiology, 2014, 5, 304.	0.5	28
93	Abundant kif21b is associated with accelerated progression in neurodegenerative diseases. Acta Neuropathologica Communications, 2014, 2, 144.	2.4	30
94	Role of Omega-6 and Omega-3 Fatty Acids in Inflammatory Bowel Disease. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 75-89.	0.2	2
95	NOD-Like Receptors in Intestinal Homeostasis and Epithelial Tissue Repair. International Journal of Molecular Sciences, 2014, 15, 9594-9627.	1.8	64
96	An insight into JAK-STAT signalling in dermatology. Clinical and Experimental Dermatology, 2014, 39, 513-518.	0.6	32

#	Article	IF	CITATIONS
97	IBD Candidate Genes and Intestinal Barrier Regulation. Inflammatory Bowel Diseases, 2014, 20, 1829-1849.	0.9	125
98	Inflammatory bowel diseases: from pathogenesis to laboratory testing. Clinical Chemistry and Laboratory Medicine, 2014, 52, 471-81.	1.4	34
99	Molecular Genetic Markers as a Basis for Personalized Medicine / MOLEKULARNO-GENETIÄŒKI MARKERI KAO OSNOV ZA PERSONALIZOVANU MEDICINU. Journal of Medical Biochemistry, 2014, 33, 8-21.	0.7	11
100	JAK2 rs10758669 Polymorphisms and Susceptibility to Ulcerative Colitis and Crohn's Disease: A Meta-analysis. Inflammation, 2014, 37, 793-800.	1.7	12
101	Identification of inflammatory bowel disease-related proteins using a reverse k-nearest neighbor search. Journal of Bioinformatics and Computational Biology, 2014, 12, 1450017.	0.3	13
102	Single-nucleotide polymorphisms in SLC22A23 are associated with ulcerative colitis in a Canadian white cohort. American Journal of Clinical Nutrition, 2014, 100, 289-294.	2.2	12
103	Influence of molecular genetics in Vogt-Koyanagi-Harada disease. Journal of Ophthalmic Inflammation and Infection, 2014, 4, 20.	1.2	32
104	NOD2 gene mutations in ulcerative colitis: useless or misunderstood?. International Journal of Colorectal Disease, 2014, 29, 653-661.	1.0	15
105	Pharma-Nutrition. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , .	0.2	0
106	An analysis of genetic factors related to risk of inflammatory bowel disease and colon cancer. Cancer Epidemiology, 2014, 38, 583-590.	0.8	26
107	An Excess of Risk-Increasing Low-Frequency Variants Can Be a Signal of Polygenic Inheritance in Complex Diseases. American Journal of Human Genetics, 2014, 94, 437-452.	2.6	55
108	Genetic susceptibility and genotype–phenotype association in 588 Danish children with inflammatory bowel disease. Journal of Crohn's and Colitis, 2014, 8, 678-685.	0.6	26
109	<i>Interleukin-23R</i> rs7517847 T/G Polymorphism Contributes to the Risk of Crohn's Disease in Caucasians: A Meta-Analysis. Journal of Immunology Research, 2015, 2015, 1-5.	0.9	4
110	Tofacitinib for the treatment of moderate-to-severe psoriasis. Expert Review of Clinical Immunology, 2015, 11, 443-455.	1.3	38
111	STAT3-Activating Cytokines: A Therapeutic Opportunity for Inflammatory Bowel Disease?. Journal of Interferon and Cytokine Research, 2015, 35, 340-350.	0.5	84
112	Association of KIF21B genetic polymorphisms with ankylosing spondylitis in a Chinese Han population of Shandong Province. Clinical Rheumatology, 2015, 34, 1729-1736.	1.0	11
113	Genetic and Serological Markers in Identifying Unclassified Colitis. , 0, , .		0
114	Psoriasis and inflammatory bowel disease: links and risks. Psoriasis: Targets and Therapy, 2016, Volume 6, 73-92.	1.2	37

#	Article	IF	CITATIONS
115	Identification of Ten Additional Susceptibility Loci for Ulcerative Colitis Through Immunochip Analysis in Koreans. Inflammatory Bowel Diseases, 2016, 22, 13-19.	0.9	40
116	Exome-wide study of ankylosing spondylitis demonstrates additional shared genetic background with inflammatory bowel disease. Npj Genomic Medicine, 2016, 1, 16008.	1.7	32
117	Transmissible Plasmid Containing <i>Salmonella enterica</i> Heidelberg Isolates Modulate Cytokine Production During Early Stage of Interaction with Intestinal Epithelial Cells. DNA and Cell Biology, 2016, 35, 443-453.	0.9	10
118	Tofacitinib in ulcerative colitis. Immunotherapy, 2016, 8, 495-502.	1.0	9
119	Tofacitinib for the treatment of psoriasis. Expert Opinion on Pharmacotherapy, 2016, 17, 1421-1433.	0.9	20
120	Genetic variants in ANCA-associated vasculitis: a meta-analysis. Annals of the Rheumatic Diseases, 2016, 75, 1687-1692.	0.5	84
121	Janus kinase inhibitors in dermatology: A systematic review. Journal of the American Academy of Dermatology, 2017, 76, 745-753.e19.	0.6	112
122	CD14 Plays a Protective Role in Experimental Inflammatory Bowel Disease by Enhancing Intestinal Barrier Function. American Journal of Pathology, 2017, 187, 1106-1120.	1.9	30
123	Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue. Molecular Metabolism, 2017, 6, 1212-1225.	3.0	44
124	Expression of the JAK/STAT Signaling Pathway in Bullous Pemphigoid and Dermatitis Herpetiformis. Mediators of Inflammation, 2017, 2017, 1-12.	1.4	34
125	Kinesin-4 KIF21B is a potent microtubule pausing factor. ELife, 2017, 6, .	2.8	51
126	Region-Resolved Quantitative Proteome Profiling Reveals Molecular Dynamics Associated With Chronic Pain in the PNS and Spinal Cord. Frontiers in Molecular Neuroscience, 2018, 11, 259.	1.4	16
127	Effector T Helper Cell Subsets in Inflammatory Bowel Diseases. Frontiers in Immunology, 2018, 9, 1212.	2.2	189
128	Vitamin D and Inflammatory Bowel Disease. , 2018, , 1025-1036.		0
129	Allergic and Immunologic Perspectives of Inflammatory Bowel Disease. Clinical Reviews in Allergy and Immunology, 2019, 57, 179-193.	2.9	28
130	Association Analysis of Polymorphic Gene Variants in the JAK/STAT Signaling Pathway with Aging and Longevity. Russian Journal of Genetics, 2019, 55, 728-737.	0.2	7
131	V617Fâ€independent upregulation of JAK2 gene expression in patients with inflammatory bowel disease. Journal of Cellular Biochemistry, 2019, 120, 15746-15755.	1.2	12
132	ATF4 Deficiency Promotes Intestinal Inflammation in Mice by Reducing Uptake of Glutamine and Expression of Antimicrobial Peptides. Gastroenterology, 2019, 156, 1098-1111.	0.6	67

# 133	ARTICLE Fine-Tuning Cytokine Signals. Annual Review of Immunology, 2019, 37, 295-324.	IF 9.5	Citations 98
134	Association between IL12B polymorphisms and inflammatory bowel disease in Caucasian population: A meta-analysis. Cytokine, 2020, 136, 155296.	1.4	2
135	Functional genomics in autoimmune diseases. Human Molecular Genetics, 2020, 29, R59-R65.	1.4	10
136	Polysaccharides from natural resources exhibit great potential in the treatment of ulcerative colitis: A review. Carbohydrate Polymers, 2021, 254, 117189.	5.1	102
137	The Polymorphisms of Interleukin-12B Gene and Susceptibility to Inflammatory Bowel Diseases: A Meta-analysis and Trial Sequential Analysis. Immunological Investigations, 2021, 50, 987-1006.	1.0	4
138	KIF21B Expression in Osteosarcoma and Its Regulatory Effect on Osteosarcoma Cell Proliferation and Apoptosis Through the PI3K/AKT Pathway. Frontiers in Oncology, 2020, 10, 606765.	1.3	7
139	Synthesized Drug from Medicinal Plant phytochemicals Effectively Targets ECM1 Gene Mutations in Ulcerative Colitis. Letters in Drug Design and Discovery, 2021, 18, .	0.4	0
140	The Candidate IBD Risk Gene CCNY Is Dispensable for Intestinal Epithelial Homeostasis. Cells, 2021, 10, 2330.	1.8	2
141	Functional interrogation of autoimmune disease genetics using CRISPR/Cas9 technologies and massively parallel reporter assays. Seminars in Immunopathology, 2022, 44, 137-147.	2.8	5
142	Genetics of Ulcerative Colitis. , 2013, , 119-134.		1
143	Inherited Syndromes Predisposing to Inflammation and GI Cancer. Recent Results in Cancer Research, 2011, 185, 35-50.	1.8	2
144	Methylation in Colorectal Cancer. , 2015, , 373-455.		1
145	Genetics and Therapeutics in Pediatric Ulcerative Colitis: the Past, Present and Future. F1000Research, 2016, 5, 240.	0.8	5
146	Involvement of Interleukin-17A-Induced Hypercontractility of Intestinal Smooth Muscle Cells in Persistent Gut Motor Dysfunction. PLoS ONE, 2014, 9, e92960.	1.1	9
147	A two-locus system controls susceptibility to colitis-associated colon cancer in mice. Oncotarget, 2010, 1, 436-46.	0.8	180
148	A Two-Locus System Controls Susceptibility to Colitis-Associated Colon Cancer in Mice. Oncotarget, 2010, 1, 436-446.	0.8	16
149	Rs2476601 polymorphism in PTPN22 is associated with Crohn's disease but not with ulcerative colitis: a meta-analysis of 16,838 cases and 13,356 controls. Annals of Gastroenterology, 2017, 30, 197-208.	0.4	8
150	Cross-talk of Signaling Pathways in the Pathogenesis of Allergic Asthma and Cataract. Protein and Peptide Letters, 2020, 27, 810-822.	0.4	12

#	Article	IF	CITATIONS
151	The Extracellular Matrix Protein 1 (ECM1) in Skin Biology: An Update for the Pleiotropic Action. Open Dermatology Journal, 2013, 7, 29-41.	0.5	3
152	Under Development JAK Inhibitors for Dermatologic Diseases. Mediterranean Journal of Rheumatology, 2020, 31, 137.	0.3	13
153	Genome-wide association studies - A summary for theclinical gastroenterologist. World Journal of Gastroenterology, 2009, 15, 5377.	1.4	14
154	NKX2-3 and IRGM variants are associated with disease susceptibility to IBD in Eastern European patients. World Journal of Gastroenterology, 2010, 16, 5233.	1.4	17
155	Therapy with stem cells in inflammatory bowel disease. World Journal of Gastroenterology, 2014, 20, 1211.	1.4	54
156	Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn's disease. World Journal of Gastroenterology, 2020, 26, 4055-4075.	1.4	51
158	Increased KIF21B expression is a potential prognostic biomarker in hepatocellular carcinoma. World Journal of Gastrointestinal Oncology, 2020, 12, 276-288.	0.8	13
159	Cytokine-induced alterations of gastrointestinal motility in gastrointestinal disorders. World Journal of Gastrointestinal Pathophysiology, 2011, 2, 72.	0.5	88
160	Kinesin-4 KIF21B limits microtubule growth to allow rapid centrosome polarization in T cells. ELife, 2020, 9, .	2.8	29
161	Dickdarm. , 2010, , 334-371.		0
164	Single Nucleotide Polymorphisms in Colitis-Associated Colorectal Cancer: A Current Overview with Emphasis on the Role of the Associated Genes Products. Current Drug Targets, 2020, 21, 1456-1462.	1.0	1
166	Inflammatory bowel disease: recent advances on genetics and innate immunity. Annals of Gastroenterology, 2011, 24, 164-172.	0.4	9
167	Common and differential genetically pathways between ulcerative colitis and colon adenocarcinoma. Gastroenterology and Hepatology From Bed To Bench, 2017, 10, S93-S101.	0.6	4
168	Epistasis Detection via the Joint Cumulant. Statistics in Biosciences, 0, , 1.	0.6	0
189	Single-Cell Sequencing-Based Validation of T Cell-Associated Diagnostic Model Genes and Drug Response in Crohn's Disease. International Journal of Molecular Sciences, 2023, 24, 6054.	1.8	1
195	Vitamin D, microbiota, and inflammatory bowel disease. , 2024, , 1057-1073.		0