Evaluating the evolution of the Red River system based analysis of zircons

Geochemistry, Geophysics, Geosystems

10,

DOI: 10.1029/2009gc002819

Citation Report

#	Article	IF	CITATIONS
1	Lithofacies and depositional environments of Miocene deposits from tectonically-controlled basins (Red River Fault Zone, northern Vietnam). Journal of Asian Earth Sciences, 2010, 39, 109-124.	2.3	14
2	Sr–Nd–Os evidence for a stable erosion regime in the Himalaya during the past 12Myr. Earth and Planetary Science Letters, 2010, 290, 474-480.	4.4	79
3	Zircon effect alone insufficient to generate seawater Ndâ€Hf isotope relationships. Geochemistry, Geophysics, Geosystems, 2011, 12, .	2.5	18
4	Understanding sedimentation in the Song Hong-Yinggehai Basin, South China Sea. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	67
5	Neodymium isotopic variations of the late Cenozoic sediments in the Jianghan Basin: Implications for sediment source and evolution of the Yangtze River. Journal of Asian Earth Sciences, 2012, 45, 57-64.	2.3	25
6	Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China. Chemical Geology, 2012, 296-297, 26-38.	3.3	82
7	Constraints on Cenozoic regional drainage evolution of SW China from the provenance of the Jianchuan Basin. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	41
8	Provenance and time constraints on the formation of the first bend of the Yangtze River. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	50
9	The sedimentary, magmatic and tectonic evolution of the southwestern South China Sea revealed by seismic stratigraphic analysis. Marine Geophysical Researches, 2013, 34, 341-365.	1.2	30
10	Sediment fluxes and buffering in the postâ€glacial Indus Basin. Basin Research, 2014, 26, 369-386.	2.7	62
11	The U–Pb ages and Hf isotopes of detrital zircons from Hainan Island, South China: implications for sediment provenance and the crustal evolution. Environmental Earth Sciences, 2014, 71, 1619-1628.	2.7	31
12	Tectonics, topography, and river system transition in East Tibet: Insights from the sedimentary record in Taiwan. Geochemistry, Geophysics, Geosystems, 2014, 15, 3658-3674.	2.5	26
13	Pb isotope compositions of detrital Kâ€feldspar grains in the upperâ€middle Yangtze River system: Implications for sediment provenance and drainage evolution. Geochemistry, Geophysics, Geosystems, 2014, 15, 2765-2779.	2.5	33
14	Provenance of Upper Miocene sediments in the Yinggehai and Qiongdongnan basins, northwestern South China Sea: Evidence from REE, heavy minerals and zircon U–Pb ages. Marine Geology, 2015, 361, 136-146.	2.1	116
15	Provenance signature of changing plate boundary conditions along a convergent margin: Detrital record of spreading-ridge and flat-slab subduction processes, Cenozoic forearc basins, Alaska. , 2015, 11, 823-849.		21
16	Provenance of Central Canyon in Qiongdongnan Basin as evidenced by detrital zircon U-Pb study of Upper Miocene sandstones. Science China Earth Sciences, 2015, 58, 1337-1349.	5.2	20
17	U-Pb age and Hf-O isotopes of detrital zircons from Hainan Island: Implications for Mesozoic subduction models. Lithos, 2015, 239, 60-70.	1.4	37
18	Insights from heavy minerals and zircon U–Pb ages into the middle Miocene–Pliocene provenance evolution of the Yinggehai Basin, northwestern South China Sea. Sedimentary Geology, 2015, 327, 32-42.	2.1	54

CITATION REPORT

#	Article	IF	CITATIONS
19	Changing provenance of late Cenozoic sediments in the Jianghan Basin. Geoscience Frontiers, 2015, 6, 605-615.	8.4	9
20	Temporal and spatial patterns of sediment routing across the southeast margin of the Tibetan Plateau: Insights from detrital zircon. Tectonics, 2016, 35, 2538-2563.	2.8	55
21	Eastern margin of Tibet supplies most sediment to the Yangtze River. Lithosphere, 2016, 8, 601-614.	1.4	15
22	Detrital zircon provenance of the <scp>P</scp> aleogene synâ€rift sediments in the northern <scp>S</scp> outh <scp>C</scp> hina <scp>S</scp> ea. Geochemistry, Geophysics, Geosystems, 2016, 17, 255-269.	2.5	79
23	Late Quaternary tectonics, sea-level change and lithostratigraphy along the northern coast of the South China Sea. Geological Society Special Publication, 2016, 429, 123-136.	1.3	14
24	Zircon age peaks: Production or preservation of continental crust?. , 2017, 13, 227-234.		63
25	Provenance and paleogeography of the Mesozoic strata in the Muang Xai Basin, northern Laos: petrology, whole-rock geochemistry, and U–Pb geochronology constraints. International Journal of Earth Sciences, 2017, 106, 1409-1427.	1.8	7
26	Using zircon U–Pb ages to constrain the provenance and transport of heavy minerals within the northwestern shelf of the South China Sea. Journal of Asian Earth Sciences, 2017, 134, 176-190.	2.3	32
27	Continental igneous rock composition: A major control of past global chemical weathering. Science Advances, 2017, 3, e1602183.	10.3	32
28	Evolving Yangtze River reconstructed by detrital zircon Uâ€Pb dating and petrographic analysis of Miocene marginal Sea sedimentary rocks of the Western Foothills and Hengchun Peninsula, Taiwan. Tectonics, 2017, 36, 634-651.	2.8	37
29	Tectonic and erosional history of southern Tibet recorded by detrital chronological signatures along the Yarlung River drainage. Bulletin of the Geological Society of America, 2017, 129, 570-581.	3.3	22
30	Detrital zircon ages and elemental characteristics of the Eocene sequence in IODP Hole U1435A: Implications for rifting and environmental changes before the opening of the South China Sea. Marine Geology, 2017, 394, 39-51.	2.1	29
31	Sedimentary provenance constraints on drainage evolution models for SE Tibet: Evidence from detrital Kâ€feldspar. Geophysical Research Letters, 2017, 44, 4064-4073.	4.0	28
32	U-Pb ages of detrital zircons from deep-water Well LS33A at Lingnan Low Uplift of the Qiongdongnan Basin and their geological significances. IOP Conference Series: Earth and Environmental Science, 2017, 100, 012202.	0.3	2
33	Heavy mineral analysis and detrital U-Pb ages of the intracontinental Paleo-Yangzte basin: Implications for a transcontinental source-to-sink system during Late Cretaceous time. Bulletin of the Geological Society of America, 2018, 130, 2087-2109.	3.3	31
34	Oligocene fossil assemblages from Lake Nanning (Yongning Formation; Nanning Basin, Guangxi) Tj ETQq1 1 0.78 Palaeoecology, 2018, 505, 100-119.	4314 rgB 2.3	「/Overlock 13
35	Upper Miocene–Pliocene provenance evolution of the Central Canyon in northwestern South China Sea. Marine Geophysical Researches, 2019, 40, 223-235.	1.2	21
36	Changes in environment and provenance within the Changjiang (Yangtze River) Delta during Pliocene to Pleistocene transition. Marine Geology, 2019, 416, 105976.	2.1	10

ARTICLE

IF CITATIONS

Neotectonic (Miocene to recent) vertical movements in the Lao Cai Basin (Red River Fault Zone,) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 7

38	Drainage control of Eocene to Miocene sedimentary records in the southeastern margin of Eurasian Plate. Bulletin of the Geological Society of America, 2019, 131, 461-478.	3.3	37
39	Using seismic geomorphology and detrital zircon geochronology to constrain provenance evolution and its response of Paleogene Enping Formation in the Baiyun Sag, Pearl River Mouth Basin, South China sea: Implications for paleo-Pearl River drainage evolution. Journal of Petroleum Science and Engineering, 2019, 177, 663-680.	4.2	27
40	Provenances of Cenozoic sediments in the Jianghan Basin and implications for the formation of the Three Gorges. International Geology Review, 2019, 61, 1980-1999.	2.1	18
41	A river runs through it both ways across time: 40Ar/39Ar detrital and bedrock muscovite geochronology constraints on the Neogene paleodrainage history of the Nenana River system, Alaska Range. , 2019, 15, 682-701.		16
42	Detrital zircon ages: A key to unraveling provenance variations in the eastern Yinggehai–Song Hong Basin, South China Sea. AAPG Bulletin, 2019, 103, 1525-1552.	1.5	13
43	Hinterland setting and composition of an Oligocene deep rift-lake sequence, Gulf of Tonkin, Vietnam: Implications for petroleum source rock deposition. Marine and Petroleum Geology, 2020, 111, 496-509.	3.3	10
44	The zircon story of the Pearl River (China) from Cretaceous to present. Earth-Science Reviews, 2020, 201, 103078.	9.1	36
45	Quaternary drainage evolution of the Datong River, Qilian Mountains, northeastern Tibetan Plateau, China. Geomorphology, 2020, 353, 107021.	2.6	11
46	Comparison of Detrital Zircon U-Pb and Muscovite 40Ar/39Ar Ages in the Yangtze Sediment: Implications for Provenance Studies. Minerals (Basel, Switzerland), 2020, 10, 643.	2.0	6
47	Tracking the Detrital Zircon Provenance of Early Miocene Sediments in the Continental Shelf of the Northwestern South China Sea. Minerals (Basel, Switzerland), 2020, 10, 752.	2.0	2
48	Evolution of the paleo-Mekong River in the Early Cretaceous: Insights from the provenance of sandstones in the Vientiane Basin, central Laos. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545, 109651.	2.3	13
49	⁴⁰ Ar/ ³⁹ Ar mica dating of late Cenozoic sediments in SE Tibet: implications for sediment recycling and drainage evolution. Journal of the Geological Society, 2020, 177, 843-854.	2.1	8
50	Late Cenozoic drainage reorganization of the paleo-Yangtze river constrained by multi-proxy provenance analysis of the Paleo-lake Xigeda. Bulletin of the Geological Society of America, 2021, 133, 199-211.	3.3	21
51	Formation and paleogeographic evolution of the Palawan continental terrane along the Southeast Asian margin revealed by detrital fingerprints. Bulletin of the Geological Society of America, 2021, 133, 1167-1193.	3.3	9
52	Paleoenvironmental evolution of South Asia and its link to Himalayan uplift and climatic change since the late Eocene. Global and Planetary Change, 2021, 200, 103459.	3.5	14
53	Insights into evolution of a rift basin: Provenance of the middle Eocene-lower Oligocene strata of the Beibuwan Basin, South China Sea from detrital zircon. Sedimentary Geology, 2021, 419, 105908.	2.1	11
54	Detrital zircon ages reveal Yangtze provenance since the early Oligocene in the East China Sea Shelf Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 577, 110548.	2.3	4

CITATION REPORT

#	Article	IF	CITATIONS
55	Magnetic Properties of Late Cenozoic Sediments in the Subei Basin: Implications for the Yangtze River Run-through Time. Journal of Coastal Research, 2020, 37, .	0.3	0
56	Detrital zircons record the evolution of the Cathaysian Coastal Mountains along the South China margin. Basin Research, 2022, 34, 688-701.	2.7	15
57	Spatial-temporal evolution of the source-to-sink system in the northwestern South China Sea from the Eocene to the Miocene. Global and Planetary Change, 2022, 214, 103851.	3.5	1
58	Source-to-Sink Comparative Study between Gas Reservoirs of the Ledong Submarine Channel and the Dongfang Submarine Fan in the Yinggehai Basin, South China Sea. Energies, 2022, 15, 4298.	3.1	5
59	The Hoanh Bo Troughâ€a landward keyhole to the synâ€rift Late <scp>Eocene–Early</scp> Oligocene terrestrial succession of the northern Song Hong Basin (onshore northâ€east Vietnam). Geological Journal, 2022, 57, 4216-4241.	1.3	0
60	Late Cenozoic locally landslide-dammed lakes across the Middle Yangtze River. Geomorphology, 2022, 413, 108366.	2.6	2
62	Runup of landslide-generated tsunamis controlled by paleogeography and sea-level change. Communications Earth & Environment, 2022, 3, .	6.8	30
63	Mineralogy and geochemistry of modern Red River sediments (North Vietnam): Provenance and weathering implications. Journal of Sedimentary Research, 2022, 92, 1169-1185.	1.6	1
64	A freshwater mussel species reflects a Miocene stream capture between the Mekong Basin and East Asian rivers. Zoosystematics and Evolution, 2023, 99, 29-43.	1.1	2
65	Molecular phylogeny and description of Hygrobates cyrnusensis sp. nov. reveals multiple colonization of Corsica by water mites of the H. fluviatilis-complex (Acariformes, Hydrachnidia,) Tj ETQq1 1 0.78	43 b4orgBT	- /Oz verlock 10
66	Geochemical characteristics of Sr isotopes in the LS33 drill core from the Qiongdongnan Basin, South China Sea, and their response to the uplift of the Tibetan Plateau. Acta Oceanologica Sinica, 2023, 42, 117-129.	1.0	0
67	Mesozoic evolution of large-scale drainage systems in the Indochina Block: evidence from paleomagnetic and U-Pb geochronological constraints. Journal of the Geological Society, 0, ,	2.1	0
68	A Critical Appraisal of the Sensitivity of Detrital Zircon U–Pb Provenance Data to Constrain Drainage Network Evolution in Southeast Tibet. Journal of Geophysical Research F: Earth Surface, 2024, 129, .	2.8	0