Transfer of Large-Area Graphene Films for High-Perform Electrodes

Nano Letters 9, 4359-4363

DOI: 10.1021/nl902623y

Citation Report

#	Article	IF	CITATIONS
14	Epitaxial graphene: dry transfer and materials characterization. Proceedings of SPIE, 2010, , .	0.8	0
15	Graphene production goes industrial. Physics Today, 2010, 63, 15-16.	0.3	3
16	Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. ACS Nano, 2010, 4, 2865-2873.	7.3	1,148
17	Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Letters, 2010, 10, 3209-3215.	4.5	2,317
18	Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density. Nanotechnology, 2010, 21, 465705.	1.3	86
19	Transparent, Flexible Conducting Hybrid Multilayer Thin Films of Multiwalled Carbon Nanotubes with Graphene Nanosheets. ACS Nano, 2010, 4, 3861-3868.	7.3	313
20	Graphene Fieldâ€Effect Transistors: Electrochemical Gating, Interfacial Capacitance, and Biosensing Applications. Chemistry - an Asian Journal, 2010, 5, 2144-2153.	1.7	64
21	Highly sensitive electrocatalytic biosensing of hypoxanthine based on functionalization of graphene sheets with water-soluble conducting graft copolymer. Biosensors and Bioelectronics, 2010, 26, 371-376.	5.3	104
22	Towards flexible all-carbon electronics: Flexible organic field-effect transistors and inverter circuits using solution-processed all-graphene source/drain/gate electrodes. Nano Research, 2010, 3, 714-721.	5.8	50
23	Large-Scale Synthesis of Graphene Films by Joule-Heating-Induced Chemical Vapor Deposition. Journal of Electronic Materials, 2010, 39, 2190-2195.	1.0	21
24	Grapheneâ€Onâ€Silicon Schottky Junction Solar Cells. Advanced Materials, 2010, 22, 2743-2748.	11.1	1,042
25	Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide. Advanced Materials, 2010, 22, 4467-4472.	11.1	1,044
26	Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 2010, 22, 3906-3924.	11.1	8,959
27	Bulk growth of mono- to few-layer graphene on nickel particles by chemical vapor deposition from methane. Carbon, 2010, 48, 3543-3550.	5.4	96
28	Growth and properties of chemically modified graphene. Physica Status Solidi (B): Basic Research, 2010, 247, 2915-2919.	0.7	15
29	Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010, 2, 1015-1024.	6.6	2,966
30	Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5, 574-578.	15.6	7,294
31	Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotechnology, 2010, 5, 651-654.	15.6	2,451

#	ARTICLE	IF	CITATIONS
32	A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling. Applied Physics Letters, 2010, 96, .	1.5	81
33	Controlling the electrical transport properties of graphene by <i>in situ</i> metal deposition. Applied Physics Letters, 2010, 97, .	1.5	66
34	Large low-frequency resistance noise in chemical vapor deposited graphene. Applied Physics Letters, 2010, 97, 133504.	1.5	36
35	Electrostatic transfer of patterned epitaxial graphene from SiC(0001) to glass. New Journal of Physics, 2010, 12, 125016.	1.2	9
36	Doped graphene electrodes for organic solar cells. Nanotechnology, 2010, 21, 505204.	1.3	241
37	Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. Analyst, The, 2010, 135, 2790.	1.7	150
38	Adsorption/desorption and electrically controlled flipping of ammonia molecules on graphene. New Journal of Physics, 2010, 12, 125011.	1.2	56
39	Liquid separation by a graphene membrane. Journal of Applied Physics, 2010, 108, 113527.	1.1	14
40	A Bioelectronic Platform Using a Grapheneâ°'Lipid Bilayer Interface. ACS Nano, 2010, 4, 7387-7394.	7.3	132
41	Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano Letters, 2010, 10, 4128-4133.	4.5	733
42	Synthesis of graphene on a polycrystalline Co film by radio-frequency plasma-enhanced chemical vapour deposition. Journal Physics D: Applied Physics, 2010, 43, 455402.	1.3	61
43	Large-area graphene on polymer film for flexible and transparent anode in field emission device. Applied Physics Letters, 2010, 96, .	1.5	166
44	Epitaxial Chemical Vapor Deposition Growth of Single-Layer Graphene over Cobalt Film Crystallized on Sapphire. ACS Nano, 2010, 4, 7407-7414.	7.3	279
45	Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell. Applied Physics Letters, 2010, 97, .	1.5	70
46	Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition. Applied Physics Letters, 2010, 97, .	1.5	176
47	Electrical and optical properties of graphene mono- and multi-layers; towards graphene-based optoelectronics., 2010,,.		1
48	Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano, 2010, 4, 2955-2963.	7.3	1,906
49	Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films. ACS Nano, 2010, 4, 5245-5252.	7.3	869

#	Article	IF	CITATIONS
50	Highly Uniform 300 mm Wafer-Scale Deposition of Single and Multilayered Chemically Derived Graphene Thin Films. ACS Nano, 2010, 4, 524-528.	7.3	209
51	Few-layer graphene direct deposition on Ni and Cu foil by cold-wall chemical vapor deposition. , 2010, ,		1
52	Conductivity of Ruthenate Nanosheets Prepared via Electrostatic Self-Assembly: Characterization of Isolated Single Nanosheet Crystallite to Mono- and Multilayer Electrodes. Langmuir, 2010, 26, 18049-18054.	1.6	51
53	Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure. Applied Physics Letters, 2010, 97, .	1.5	92
54	Layer-by-Layer Transfer of Multiple, Large Area Sheets of Graphene Grown in Multilayer Stacks on a Single SiC Wafer. ACS Nano, 2010, 4, 5591-5598.	7.3	65
55	Electronic transport in chemical vapor deposited graphene synthesized on Cu: Quantum Hall effect and weak localization. Applied Physics Letters, 2010, 96, .	1.5	160
56	Surface Energy Modification by Spin-Cast, Large-Area Graphene Film for Block Copolymer Lithography. ACS Nano, 2010, 4, 5464-5470.	7.3	132
57	Technique for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates. ACS Nano, 2010, 4, 1108-1114.	7. 3	190
58	Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. Nano Letters, 2010, 10, 4328-4334.	4.5	896
59	Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes. ACS Nano, 2010, 4, 3839-3844.	7.3	329
60	Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications. ACS Nano, 2010, 4, 3201-3208.	7.3	571
61	Nanocarbonic transparent conductive films. Chemical Society Reviews, 2010, 39, 2477.	18.7	43
62	Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films?. ACS Nano, 2010, 4, 2713-2720.	7.3	511
63	Electrochemical Deposition of Semiconductor Oxides on Reduced Graphene Oxide-Based Flexible, Transparent, and Conductive Electrodes. Journal of Physical Chemistry C, 2010, 114, 11816-11821.	1.5	159
64	Large Scale Pattern Graphene Electrode for High Performance in Transparent Organic Single Crystal Field-Effect Transistors. ACS Nano, 2010, 4, 3927-3932.	7.3	126
65	Layer-by-Layer Doping of Few-Layer Graphene Film. ACS Nano, 2010, 4, 4595-4600.	7.3	293
66	Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS Nano, 2010, 4, 5263-5268.	7.3	566
67	Graphene electrochemistry: an overview of potential applications. Analyst, The, 2010, 135, 2768.	1.7	481

#	Article	IF	CITATIONS
68	Toward High Throughput Interconvertible Graphane-to-Graphene Growth and Patterning. ACS Nano, 2010, 4, 6146-6152.	7.3	109
69	Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 2010, 21, 285205.	1.3	321
70	Growth Kinetics and Defects of CVD Graphene on Cu. ECS Transactions, 2010, 28, 109-114.	0.3	27
71	Electrically and Thermally Conducting Nanocomposites for Electronic Applications. Materials, 2010, 3, 1478-1496.	1.3	54
72	Optical properties of strained graphene. Europhysics Letters, 2010, 92, 67001.	0.7	112
73	Dual graphene films growth process based on plasma-assisted chemical vapor deposition. , 2010, , .		13
74	The evolution of graphene-based electronic devices. International Journal of Smart and Nano Materials, 2010, 1, 201-223.	2.0	40
75	Hollow Capsules of Reduced Graphene Oxide Nanosheets Assembled on a Sacrificial Colloidal Particle. Journal of Physical Chemistry Letters, 2010, 1, 3442-3445.	2.1	109
76	Synthesis and characterization of transferable graphene by CVD method. , 2010, , .		6
77	Detection of Biomolecules via Benign Surface Modification of Graphene. Chemistry of Materials, 2011, 23, 4879-4881.	3.2	36
78	Aligned Rectangular Few-Layer Graphene Domains on Copper Surfaces. Chemistry of Materials, 2011, 23, 4543-4547.	3.2	51
79	Low-stress transfer of graphene and its tuneable resistance by remote plasma treatments in hydrogen. , 2011, , .		2
80	Nucleation sites for multilayer graphene on nickel catalyst. , 2011, , .		1
81	Transfer printing of graphene strip from the graphene grown on copper wires. Nanotechnology, 2011, 22, 185309.	1.3	28
82	Structural Distortions in Few-Layer Graphene Creases. ACS Nano, 2011, 5, 9984-9991.	7.3	29
83	Nanoscale Mapping of Electrical Resistivity and Connectivity in Graphene Strips and Networks. Nano Letters, 2011, 11, 16-22.	4.5	170
84	Reduction of Charge Recombination by an Amorphous Titanium Oxide Interlayer in Layered Graphene/Quantum Dots Photochemical Cells. ACS Applied Materials & Eamp; Interfaces, 2011, 3, 1940-1945.	4.0	45
85	Conductance through Multilayer Graphene Films. Nano Letters, 2011, 11, 3629-3633.	4.5	23

#	Article	IF	CITATIONS
86	Ultrafast Electronâ^'Optical Phonon Scattering and Quasiparticle Lifetime in CVD-Grown Graphene. ACS Nano, 2011, 5, 3278-3283.	7.3	63
87	In Situ Electronic Characterization of Graphene Nanoconstrictions Fabricated in a Transmission Electron Microscope. Nano Letters, 2011, 11, 5184-5188.	4.5	56
88	One-step molybdate ion assisted electrochemical synthesis of \hat{l}_{\pm} -MoO3-decorated graphene sheets and its potential applications. Journal of Materials Chemistry, 2011, 21, 15009.	6.7	50
89	High-Performance Transparent Conductive Films Using Rheologically Derived Reduced Graphene Oxide. ACS Nano, 2011, 5, 870-878.	7.3	84
90	Fabrication of a large scale transparent conducting film using transformed few-layered graphene nanoribbons obtained from unzipping of single wall carbon nanotubes. Journal of Materials Chemistry, 2011, 21, 15655.	6.7	11
91	Facile one-step transfer process of graphene. Nanotechnology, 2011, 22, 225606.	1.3	14
92	Top-Gated Chemical Vapor Deposition Grown Graphene Transistors with Current Saturation. Nano Letters, 2011, 11, 2555-2559.	4.5	88
93	Graphene Nucleation on Transition Metal Surface: Structure Transformation and Role of the Metal Step Edge. Journal of the American Chemical Society, 2011, 133, 5009-5015.	6.6	315
94	Synthesis of few-layered graphene by ion implantation of carbon in nickel thin films. Nanotechnology, 2011, 22, 085601.	1.3	81
95	Transparent Electrode with a Nanostructured Coating. ACS Nano, 2011, 5, 2082-2089.	7.3	18
96	Flexible Organic Memory Devices with Multilayer Graphene Electrodes. ACS Nano, 2011, 5, 5995-6000.	7.3	131
97	Nanofabrication down to 10 nm on a plastic substrate. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 06FG07.	0.6	12
98	Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale, 2011, 3, 1361.	2.8	86
99	Fast growth of graphene patterns by laser direct writing. Applied Physics Letters, 2011, 98, .	1.5	107
100	Domain (Grain) Boundaries and Evidence of "Twinlike―Structures in Chemically Vapor Deposited Grown Graphene. ACS Nano, 2011, 5, 2433-2439.	7.3	173
101	Reliably Counting Atomic Planes of Few-Layer Graphene (<i>n</i> > 4). ACS Nano, 2011, 5, 269-274.	7.3	127
102	Atomic Structure of Interconnected Few-Layer Graphene Domains. ACS Nano, 2011, 5, 6610-6618.	7.3	77
103	Hexagonal Single Crystal Domains of Few-Layer Graphene on Copper Foils. Nano Letters, 2011, 11, 1182-1189.	4.5	289

#	Article	IF	Citations
104	Graphene Gate Electrode for MOS Structure-Based Electronic Devices. Nano Letters, 2011, 11, 5383-5386.	4. 5	65
105	Transparent, Conductive, and Flexible Graphene Films from Large-Size Graphene Oxide. Integrated Ferroelectrics, 2011, 128, 105-109.	0.3	8
106	Graphene on Ni(111): Coexistence of Different Surface Structures. Journal of Physical Chemistry Letters, 2011, 2, 759-764.	2.1	158
107	Defect-like Structures of Graphene on Copper Foils for Strain Relief Investigated by High-Resolution Scanning Tunneling Microscopy. ACS Nano, 2011, 5, 4014-4022.	7.3	186
108	Growth and Atomic-Scale Characterizations of Graphene on Multifaceted Textured Pt Foils Prepared by Chemical Vapor Deposition. ACS Nano, 2011, 5, 9194-9201.	7.3	84
109	Synthesis and Characterization of Large-Area Graphene and Graphite Films on Commercial Cu–Ni Alloy Foils. Nano Letters, 2011, 11, 3519-3525.	4.5	294
110	Direct Growth of Graphene/Hexagonal Boron Nitride Stacked Layers. Nano Letters, 2011, 11, 2032-2037.	4 . 5	466
111	Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano, 2011, 5, 9927-9933.	7.3	529
112	Electrochemistry of Individual Monolayer Graphene Sheets. ACS Nano, 2011, 5, 2264-2270.	7.3	243
113	Carbon-Based Materials: Growth, Properties, MEMS/NEMS Technologies, and MEM/NEM Switches. Critical Reviews in Solid State and Materials Sciences, 2011, 36, 66-101.	6.8	55
114	A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 2011, 21, 3324-3334.	6.7	1,239
115	Oxidative Doping Renders Graphene Hydrophilic, Facilitating Its Use As a Support in Biological TEM. Nano Letters, 2011, 11, 4319-4323.	4.5	52
116	Single Terrace Growth of Graphene on a Metal Surface. Nano Letters, 2011, 11, 1895-1900.	4.5	68
117	MnO2/graphene composite electrodes for supercapacitors: the effect of graphene intercalation on capacitance. Journal of Materials Chemistry, 2011, 21, 18215.	6.7	78
118	Graphene: preparation and structural perfection. Journal of Materials Chemistry, 2011, 21, 3280-3294.	6.7	123
119	Oxygen-Aided Synthesis of Polycrystalline Graphene on Silicon Dioxide Substrates. Journal of the American Chemical Society, 2011, 133, 17548-17551.	6.6	315
120	Enhanced gas-flow-induced voltage in graphene. Applied Physics Letters, 2011, 99, .	1.5	21
121	Electrical and thermal conductivity of low temperature CVD graphene: the effect of disorder. Nanotechnology, 2011, 22, 275716.	1.3	132

#	Article	IF	Citations
122	Flexible Zn ₂ SnO ₄ /MnO ₂ Core/Shell Nanocableâ^'Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes. Nano Letters, 2011, 11, 1215-1220.	4.5	807
123	A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology, 2011, 22, 215601.	1.3	211
124	Multivalent Binding Motifs for the Noncovalent Functionalization of Graphene. Journal of the American Chemical Society, 2011, 133, 17614-17617.	6.6	149
125	Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes. Journal of Materials Chemistry, 2011, 21, 11760.	6.7	58
126	Current Challenges in Organic Photovoltaic Solar Energy Conversion. Topics in Current Chemistry, 2011, 312, 175-212.	4.0	27
127	Universal Segregation Growth Approach to Wafer-Size Graphene from Non-Noble Metals. Nano Letters, 2011, 11, 297-303.	4.5	239
128	Effect of Graphene Fermi Level on the Raman Scattering Intensity of Molecules on Graphene. ACS Nano, 2011, 5, 5338-5344.	7.3	193
129	Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. Journal of Materials Chemistry, 2011, 21, 18792.	6.7	305
130	Selective Deposition of CdSe Nanoparticles on Reduced Graphene Oxide to Understand Photoinduced Charge Transfer in Hybrid Nanostructures. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2703-2709.	4.0	25
131	NiO/Graphene Composite for Enhanced Charge Separation and Collection in p-Type Dye Sensitized Solar Cell. Journal of Physical Chemistry C, 2011, 115, 12209-12215.	1.5	160
132	Graphene based new energy materials. Energy and Environmental Science, 2011, 4, 1113.	15.6	1,789
133	Clean Transfer of Graphene for Isolation and Suspension. ACS Nano, 2011, 5, 2362-2368.	7.3	285
134	Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society, 2011, 133, 2816-2819.	6.6	1,161
135	Graphene nanosheets deposited on polyurethane films by self-assembly for preparing transparent, conductive films. Journal of Materials Chemistry, 2011, 21, 14876.	6.7	23
136	Toward Clean and Crackless Transfer of Graphene. ACS Nano, 2011, 5, 9144-9153.	7.3	701
137	UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering. ACS Nano, 2011, 5, 9799-9806.	7.3	350
138	Wafer-scale graphene/ferroelectric hybrid devices for low-voltage electronics. Europhysics Letters, 2011, 93, 17002.	0.7	74
139	Inorganic nanostructures grown on graphene layers. Nanoscale, 2011, 3, 3522.	2.8	78

#	Article	IF	CITATIONS
140	Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Applied Physics Letters, 2011, 98, .	1.5	198
141	Scanning Noise Microscopy on Graphene Devices. ACS Nano, 2011, 5, 8620-8628.	7.3	20
142	Flexible Graphene-Based Electroluminescent Devices. ACS Nano, 2011, 5, 7149-7154.	7.3	132
143	Enhanced Electrical Properties of Reduced Graphene Oxide Multilayer Films by <i>In-Situ</i> Insertion of a TiO ₂ Layer. ACS Nano, 2011, 5, 8884-8891.	7.3	55
144	Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. Journal of Materials Chemistry, 2011, 21, 3438-3442.	6.7	194
145	Dye-sensitized solar cell with a titanium-oxide-modified carbon nanotube transparent electrode. Applied Physics Letters, 2011, 99, .	1.5	71
146	Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells. Journal of Materials Chemistry, 2011, 21, 17366.	6.7	96
147	Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition. Applied Physics Letters, 2011, 98, 263106-2631063.	1.5	156
148	Graphene-on-Paper Sound Source Devices. ACS Nano, 2011, 5, 4878-4885.	7.3	197
149	High Throughput Preparation of Large Area Transparent Electrodes Using Non-Functionalized Graphene Nanoribbons. Chemistry of Materials, 2011, 23, 935-939.	3.2	22
150	Effect of extended polymer chains on properties of transparent graphene nanosheets conductive film. Journal of Materials Chemistry, 2011, 21, 18236.	6.7	123
151	Direct physical exfoliation and transfer of graphene grown via ethanol chemical vapor deposition. , 2011, , .		3
152	POLY(ETHYLENE CO-VINYL ACETATE)-ASSISTED ONE-STEP TRANSFER OF ULTRA-LARGE GRAPHENE. Nano, 2011, 06, 59-65.	0.5	35
153	Three-Dimensional Stacked Multilayer Graphene Interconnects. IEEE Electron Device Letters, 2011, 32, 1110-1112.	2.2	36
154	Production of Extended Single-Layer Graphene. ACS Nano, 2011, 5, 1522-1528.	7.3	93
155	Ethanol-Assisted Graphene Oxide-Based Thin Film Formation at Pentane–Water Interface. Langmuir, 2011, 27, 9174-9181.	1.6	73
156	Local conductance measurement of graphene layer using conductive atomic force microscopy. Journal of Applied Physics, 2011, 110, .	1.1	49
157	Direct formation of graphene-metal hybrid on dielectric surfaces by metal-induced crystallization. , 2011, , .		O

#	Article	IF	CITATIONS
158	CVD graphene electrochemistry: biologically relevant molecules. Physical Chemistry Chemical Physics, 2011, 13, 20284.	1.3	53
159	Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates. Nano Letters, 2011, 11, 3881-3886.	4.5	307
160	Selective n-Type Doping of Graphene by Photo-patterned Gold Nanoparticles. ACS Nano, 2011, 5, 3639-3644.	7.3	85
161	High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties. Physical Chemistry Chemical Physics, 2011, 13, 11193.	1.3	167
162	Nanoscale Chemical Imaging of Single-Layer Graphene. ACS Nano, 2011, 5, 8442-8448.	7.3	162
163	Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes. ACS Nano, 2011, 5, 6472-6479.	7.3	290
164	Fluorinated Carbon Nanomaterials: XeF ₂ Fluorination of Graphene. ACS Symposium Series, 2011, , 11-30.	0.5	6
165	Long-Range Ordered Single-Crystal Graphene on High-Quality Heteroepitaxial Ni Thin Films Grown on MgO(111). Nano Letters, 2011, 11, 79-84.	4.5	141
166	Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. ACS Nano, 2011, 5, 6916-6924.	7.3	1,258
167	Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources. ACS Nano, 2011, 5, 3385-3390.	7.3	353
168	Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes. Applied Physics Letters, 2011, 99, .	1.5	97
169	Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Nanoscale, 2011, 3, 3084.	2.8	175
170	Electrical properties of CVD-graphene FETs. , 2011, , .		2
171	A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells. Nanoscale, 2011, 3, 1477.	2.8	80
172	Graphene: Substrate preparation and introduction. Journal of Structural Biology, 2011, 174, 234-238.	1.3	84
173	Transparent, Flexible, All-Reduced Graphene Oxide Thin Film Transistors. ACS Nano, 2011, 5, 5038-5044.	7.3	305
174	Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Physical Chemistry Chemical Physics, 2011, 13, 15384.	1.3	488
175	Graphene Transistors Are Insensitive to pH Changes in Solution. Nano Letters, 2011, 11, 3597-3600.	4.5	157

#	Article	IF	CITATIONS
176	Transparent gold nanowire electrodes., 2011,,.		0
177	Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene. Science, 2011, 332, 228-231.	6.0	997
178	Epitaxial Graphene on SiC(0001). Nanoscience and Technology, 2011, , 135-159.	1.5	1
179	Three-dimensional nanoporous gold for electrochemical supercapacitors. Scripta Materialia, 2011, 64, 923-926.	2.6	109
180	Direct evidence of advantage of Cu(111) for graphene synthesis by using Raman mapping and electron backscatter diffraction. Materials Letters, 2011, 65, 2864-2867.	1.3	47
181	High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano, 2011, 5, 2332-2339.	7.3	896
182	Solution processing of transparent conductors: from flask to film. Chemical Society Reviews, 2011, 40, 5406.	18.7	335
183	Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale, 2011, 3, 2118.	2.8	265
184	Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. Journal of Materials Chemistry, 2011, 21, 8038.	6.7	896
185	Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition. Journal of Materials Chemistry, 2011, 21, 7548.	6.7	243
186	Effective Work Function Modulation of Graphene/Carbon Nanotube Composite Films As Transparent Cathodes for Organic Optoelectronics. ACS Nano, 2011, 5, 6262-6271.	7.3	150
187	A highly practical route for large-area, single layer graphene from liquid carbon sources such as benzene and methanol. Journal of Materials Chemistry, 2011, 21, 16057.	6.7	44
188	Graphene Chemistry: Synthesis and Manipulation. Journal of Physical Chemistry Letters, 2011, 2, 2425-2432.	2.1	237
189	Cobalt-assisted large-area epitaxial graphene growth in thermal cracker enhanced gas source molecular beam epitaxy. Applied Physics A: Materials Science and Processing, 2011, 105, 341-345.	1.1	30
190	Synthesis of large area, homogeneous, single layer graphene films by annealing amorphous carbon on Co and Ni. Nano Research, 2011, 4, 531-540.	5.8	78
191	Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Research, 2011, 4, 1208-1214.	5.8	120
192	Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication. Nanoscale Research Letters, 2011, 6, 202.	3.1	123
193	Centimeterâ€Scale Highâ€Resolution Metrology of Entire CVDâ€Grown Graphene Sheets. Small, 2011, 7, 2599-2606.	5.2	25

#	ARTICLE	IF	CITATIONS
194	Triangular Graphene Grain Growth on Cubeâ€Textured Cu Substrates. Advanced Functional Materials, 2011, 21, 3868-3874.	7.8	31
195	Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Advanced Materials, 2011, 23, 1482-1513.	11.1	1,963
196	Transparent Conductive Graphene Films Synthesized by Ambient Pressure Chemical Vapor Deposition Used as the Front Electrode of CdTe Solar Cells. Advanced Materials, 2011, 23, 3202-3206.	11.1	140
197	Siteâ€Specific Transferâ€Printing of Individual Graphene Microscale Patterns to Arbitrary Surfaces. Advanced Materials, 2011, 23, 3938-3943.	11.1	55
198	Transferâ€Free Growth of Fewâ€Layer Graphene by Selfâ€Assembled Monolayers. Advanced Materials, 2011, 23, 4392-4397.	11.1	79
199	Graphene Electrochemistry: Surfactants Inherent to Graphene Can Dramatically Effect Electrochemical Processes. Electroanalysis, 2011, 23, 894-899.	1.5	85
201	Responsive Photonic Crystals. Angewandte Chemie - International Edition, 2011, 50, 1492-1522.	7.2	1,006
203	Tuning the electronic properties of graphene by hydrogenation in a plasma enhanced chemical vapor deposition reactor. Carbon, 2011, 49, 4420-4426.	5.4	101
204	Interfacial electronic structures between fullerene and multilayer graphene for n-type organic semiconducting devices. Carbon, 2011, 49, 4936-4939.	5.4	14
205	Layer-by-layer synthesis of large-area graphene films by thermal cracker enhanced gas source molecular beam epitaxy. Carbon, 2011, 49, 2046-2052.	5.4	26
206	The interlayer shear effect on graphene multilayer resonators. Journal of the Mechanics and Physics of Solids, 2011, 59, 1613-1622.	2.3	102
207	An overview of graphene in energy production and storage applications. Journal of Power Sources, 2011, 196, 4873-4885.	4.0	819
208	A new route to graphene layers by selective laser ablation. AIP Advances, 2011, 1, .	0.6	56
209	MOS photodetectors based on Au-nanorod doped graphene electrodes. Nanotechnology, 2011, 22, 305201.	1.3	3
210	Low-energy electron point projection microscopy of suspended graphene, the ultimate †microscope slide'. New Journal of Physics, 2011, 13, 063011.	1.2	46
211	Characteristics of CVD graphene nanoribbon formed by a ZnO nanowire hardmask. Nanotechnology, 2011, 22, 295201.	1.3	33
212	Growth of graphene layers for thin films. , 2011, , 211-227.		0
213	Graphitic carbon film formation under Ni templates by radio-frequency sputtering for transparent electrode applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	3

#	Article	IF	Citations
214	Doped graphene nanohole arrays for flexible transparent conductors. Applied Physics Letters, 2011, 99,	1.5	36
215	Transparent interconnections formed by rapid single-step fabrication of graphene patterns. Applied Physics Letters, 2011, 99, 053103.	1.5	27
216	Low-temperature graphene growth using epochal catalyst of PdCo alloy. Applied Physics Letters, 2011, 99, .	1.5	9
217	Broadband microwave and time-domain terahertz spectroscopy of chemical vapor deposition grown graphene. Journal of Applied Physics, 2011, 110, 083510.	1.1	28
218	Effects of electrostatic fields and charge doping on the linear bands in twisted graphene bilayers. Physical Review B, 2011, 84, .	1.1	37
219	Effective work function lowering of multilayer graphene films by subnanometer thick AlOx overlayers. Applied Physics Letters, 2011, 98, 013505.	1.5	29
220	Fabrication and performance of graphene nanoelectromechanical systems. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	55
221	A study of graphene films synthesized on nickel substrates: existence and origin of small-base-area peaks. Nanotechnology, 2011, 22, 045706.	1.3	27
222	Edge saturation effects on the magnetism and band gaps in multilayer graphene ribbons and flakes. Physical Review B, 2011, 84, .	1.1	12
223	Extraordinary magnetoresistance in shunted chemical vapor deposition grown graphene devices. Applied Physics Letters, 2011, 99, .	1.5	21
224	Laser direct writing of graphene patterns. Materials Research Society Symposia Proceedings, 2011, 1365, 1.	0.1	0
225	Analysis of a Graphene/Ultrathin Graphite Heat Exchanger for Aerospace Thermal Management. , 2011, , .		0
226	Synthesis of Graphene Films on Copper Substrates by CVD of Different Precursors. Carbon Nanostructures, 2012, , 109-118.	0.1	1
227	Graphene Film Growth on Cu Foil via Direct Carbon Atoms Deposition by Using SSMBE. Applied Mechanics and Materials, 0, 174-177, 241-244.	0.2	0
228	Controllable growth of triangular hexagonal boron nitride domains on copper foils by an improved low-pressure chemical vapor deposition method. Nanotechnology, 2012, 23, 415605.	1.3	78
229	Process Optimization for Synthesis of High-Quality Graphene Films by Low-Pressure Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 06FD21.	0.8	2
230	In-situ Observation of Surface Graphitization of Gallium Droplet and Concentration of Carbon in Liquid Gallium. Japanese Journal of Applied Physics, 2012, 51, 06FD28.	0.8	12
231	Direct deposition of semitransparent conducting pyrolytic carbon films. Journal of Nanophotonics, 2012, 6, 061703.	0.4	36

#	Article	IF	CITATIONS
232	Strain Gauge Based on Graphene. Applied Mechanics and Materials, 2012, 166-169, 2918-2923.	0.2	0
233	Growth of CVD graphene on copper by rapid thermal processing. Materials Research Society Symposia Proceedings, 2012, 1451, 27-32.	0.1	2
234	Organic photovoltaic devices with low resistance multilayer graphene transparent electrodes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	22
235	Low-temperature grown graphene films by using molecular beam epitaxy. Applied Physics Letters, 2012, 101, .	1.5	28
236	Carboxylic Group as the Origin of Electrical Performance Degradation during the Transfer Process of CVD Growth Graphene. Journal of the Electrochemical Society, 2012, 159, K107-K109.	1.3	41
237	Optical absorption in graphene integrated on silicon waveguides. Applied Physics Letters, 2012, 101, .	1.5	169
238	Graphene-lead zirconate titanate optothermal field effect transistors. Applied Physics Letters, 2012, 100, 113507.	1.5	31
239	Graphene for metal-semiconductor Ohmic contacts. , 2012, , .		3
240	Controllable Synthesis of High-Quality Graphene Using Inductively-Coupled Plasma Chemical Vapor Deposition. Journal of the Electrochemical Society, 2012, 159, K93-K96.	1.3	61
241	Epitaxial growth of graphene on transition metal surfaces: chemical vapor deposition versus liquid phase deposition. Journal of Physics Condensed Matter, 2012, 24, 314204.	0.7	35
242	Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping. Nanotechnology, 2012, 23, 365701.	1.3	122
243	Layer-by-layer assembled transparent conductive graphene films for solar cells application. Materials Research Society Symposia Proceedings, 2012, 1451, 75-81.	0.1	0
244	Influence of Thermal Annealing on the Microstructural Properties of Indium Tin Oxide Nanoparticles. Bulletin of the Korean Chemical Society, 2012, 33, 194-198.	1.0	8
245	Layer-by-Layer Assembled Transparent Conductive Graphene Films for Silicon Thin-Film Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 11PF01.	0.8	6
246	Bilayer graphene by bonding CVD graphene to epitaxial graphene. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 03D110.	0.6	10
247	Synthesis of patterned nanographene on insulators from focused ion beam induced deposition of carbon. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 03D113.	0.6	7
248	Different Characterization Techniques to Evaluate Graphene and Its Properties., 2012,, 118-161.		0
249	Perspectives of applied graphene: Polymer solar cells. Progress in Polymer Science, 2012, 37, 1805-1828.	11.8	143

#	Article	IF	CITATIONS
250	Highly bendable high-mobility graphene field effect transistors with multi-finger embedded gates on flexible substrates. , 2012 , , .		1
251	Graphene-based Schottky junction solar cells. Journal of Materials Chemistry, 2012, 22, 24224.	6.7	83
252	Hybrid Semiconductor Nanostructures with Graphene Layers. Nanoscience and Technology, 2012, , 167-195.	1.5	3
253	Growth and electronic structure of nitrogen-doped graphene on Ni(111). Physical Review B, 2012, 86, .	1.1	77
254	Self-Assembly-Induced Formation of High-Density Silicon Oxide Memristor Nanostructures on Graphene and Metal Electrodes. Nano Letters, 2012, 12, 1235-1240.	4.5	89
255	Personal perspectives on graphene: New graphene-related materials on the horizon. MRS Bulletin, 2012, 37, 1314-1318.	1.7	38
256	Terahertz optical properties of multilayer graphene: Experimental observation of strong dependence on stacking arrangements and misorientation angles. Physical Review B, 2012, 86, .	1.1	38
257	Adsorption kinetics of ammonia sensing by graphene films decorated with platinum nanoparticles. Journal of Applied Physics, 2012, 111, .	1.1	67
258	Ultrahigh conductivity of large area suspended few layer graphene films. Applied Physics Letters, 2012, 101, 263101.	1.5	22
259	Layer-by-Layer Graphene/TCNQ Stacked Films as Conducting Anodes for Organic Solar Cells. ACS Nano, 2012, 6, 5031-5039.	7.3	199
260	Highly Transparent and Conductive Films of Densely Aligned Ultrathin Au Nanowire Monolayers. Nano Letters, 2012, 12, 6066-6070.	4.5	109
261	Graphene decoration with metal nanoparticles: Towards easy integration for sensing applications. Nanoscale, 2012, 4, 438-440.	2.8	164
262	Progress of graphene growth on copper by chemical vapor deposition: Growth behavior and controlled synthesis. Science Bulletin, 2012, 57, 2995-2999.	1.7	15
263	Molecular Dynamics Simulation of Chemical Vapor Deposition Graphene Growth on Ni (111) Surface. Journal of Physical Chemistry C, 2012, 116, 6097-6102.	1.5	104
264	Carbon Nanotube–Nanocup Hybrid Structures for High Power Supercapacitor Applications. Nano Letters, 2012, 12, 5616-5621.	4.5	164
265	Preparation of a poly(methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method. European Polymer Journal, 2012, 48, 1674-1682.	2.6	74
266	Effects of alloying 30 at. % Ni using a Cu catalyst on the growth of bilayer graphene. Electronic Materials Letters, 2012, 8, 609-616.	1.0	4
267	Single-step formation of a graphene–metal hybrid transparent and electrically conductive film. Nanotechnology, 2012, 23, 115301.	1.3	7

#	Article	IF	CITATIONS
268	AN IMPROVED METHOD FOR TRANSFERRING GRAPHENE GROWN BY CHEMICAL VAPOR DEPOSITION. Nano, 2012, 07, 1150001.	0.5	37
269	Controlled growth of carbon nanotube–graphene hybrid materials for flexible and transparent conductors and electron field emitters. Nanoscale, 2012, 4, 632-638.	2.8	110
270	Large-Scale Graphene Micropatterns via Self-Assembly-Mediated Process for Flexible Device Application. Nano Letters, 2012, 12, 743-748.	4.5	68
271	Quantification of the Surface Diffusion of Tripodal Binding Motifs on Graphene Using Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2012, 134, 6224-6236.	6.6	56
272	Substrate grain size and orientation of Cu and Cu–Ni foils used for the growth of graphene films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	49
273	How to optically count graphene layers. Optics Letters, 2012, 37, 3765.	1.7	25
274	State-of-the-art graphene transistors on hexagonal boron nitride, high-k, and polymeric films for GHz flexible analog nanoelectronics. , 2012 , , .		7
275	Laser-assisted nanofabrication of carbon nanostructures. Journal of Laser Applications, 2012, 24, .	0.8	17
276	Humidity sensing properties of graphene quantum dots. , 2012, , .		0
277	Characteristics of Metal/Ferroelectric (PVDF-TrFE)/Graphene (MFG) device., 2012,,.		0
278	Analysis of an Ultrathin Graphite-Based Compact Heat Exchanger. Heat Transfer Engineering, 2012, 33, 947-956.	1.2	9
279	Widely Applicable Coinage Metal Window Electrodes on Flexible Polyester Substrates Applied to Organic Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2012, 4, 6013-6020.	4.0	35
280	Suppression of Grain Boundaries in Graphene Growth on Superstructured Mn-Cu(111) Surface. Physical Review Letters, 2012, 109, 265507.	2.9	36
281	Optical and structural characterization of epitaxial graphene on vicinal 6H-SiC(0001)–Si by spectroscopic ellipsometry, Auger spectroscopy, and STM. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	0.6	21
282	Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases. Nanotechnology, 2012, 23, 505704.	1.3	49
283	Polarity-controlled ultraviolet/visible light ZnO nanorods/p-Si photodetector. Journal of Applied Physics, 2012, 112, 123111.	1.1	15
284	Bilayer graphene anode for small molecular organic electroluminescence. Journal Physics D: Applied Physics, 2012, 45, 245103.	1.3	13
285	The Prospective Two-Dimensional Graphene Nanosheets: Preparation, Functionalization and Applications. Nano-Micro Letters, 2012, 4, 1-9.	14.4	133

#	Article	IF	CITATIONS
286	On-Surface Formation of Metal Nanowire Transparent Top Electrodes on CdSe Nanowire Array-Based Photoconductive Devices. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3157-3162.	4.0	22
287	Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes. Nanotechnology, 2012, 23, 425302.	1.3	9
288	Graphene as an anti-permeation and protective layer for indium-free transparent electrodes. Nanotechnology, 2012, 23, 395603.	1.3	12
289	Tunable Band Gaps and p-Type Transport Properties of Boron-Doped Graphenes by Controllable Ion Doping Using Reactive Microwave Plasma. ACS Nano, 2012, 6, 1970-1978.	7.3	244
290	Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes. Journal of Materials Chemistry, 2012, 22, 23759.	6.7	89
291	Remote Catalyzation for Direct Formation of Graphene Layers on Oxides. Nano Letters, 2012, 12, 1379-1384.	4.5	146
292	Simultaneous Transfer and Doping of CVD-Grown Graphene by Fluoropolymer for Transparent Conductive Films on Plastic. ACS Nano, 2012, 6, 1284-1290.	7.3	113
293	Large-area graphene synthesis and its application to interface-engineered field effect transistors. Solid State Communications, 2012, 152, 1350-1358.	0.9	26
294	Determination of Work Function of Graphene under a Metal Electrode and Its Role in Contact Resistance. Nano Letters, 2012, 12, 3887-3892.	4.5	306
295	Enhanced internal quantum efficiency in graphene/InGaN multiple-quantum-well hybrid structures. Applied Physics Letters, 2012, 101, 061905.	1.5	8
296	Optically Transparent and Flexible Graphene Reciprocal and Nonreciprocal Microwave Planar Components. IEEE Microwave and Wireless Components Letters, 2012, 22, 360-362.	2.0	24
297	Solution-processable organic dielectrics for graphene electronics. Nanotechnology, 2012, 23, 344017.	1.3	33
298	Preparation of transparent, conductive films by graphenenanosheet deposition on hydrophilic or hydrophobic surfaces through control of the pH value. Journal of Materials Chemistry, 2012, 22, 2545-2552.	6.7	43
299	Wetting transparency of graphene. Nature Materials, 2012, 11, 217-222.	13.3	971
300	Chemical Vapor Deposition-Derived Graphene with Electrical Performance of Exfoliated Graphene. Nano Letters, 2012, 12, 2751-2756.	4.5	365
301	Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors. Nano Letters, 2012, 12, 1806-1812.	4.5	852
302	Thermal Oxidation and Unwrinkling of Chemical Vapor Deposition-Grown Graphene. Journal of Physical Chemistry C, 2012, 116, 20600-20606.	1.5	58
303	Terahertz graphene optics. Nano Research, 2012, 5, 667-678.	5.8	95

#	Article	IF	CITATIONS
304	Improved Transfer of Graphene for Gated Schottky-Junction, Vertical, Organic, Field-Effect Transistors. ACS Nano, 2012, 6, 9095-9102.	7.3	105
305	Graphene-Enabled Silver Nanoantenna Sensors. Nano Letters, 2012, 12, 4090-4094.	4.5	168
306	All Graphene-Based Thin Film Transistors on Flexible Plastic Substrates. Nano Letters, 2012, 12, 3472-3476.	4.5	225
307	Graphene transfer: key for applications. Nanoscale, 2012, 4, 5527.	2.8	405
308	On the nucleation of graphene by chemical vapor deposition. New Journal of Chemistry, 2012, 36, 73-77.	1.4	16
309	A flexible angle sensor made from MWNT/CuO/Cu2O nanocomposite films deposited by an electrophoretic co-deposition process. Journal of Alloys and Compounds, 2012, 533, 62-66.	2.8	8
310	A facile route to fabricate stable reduced graphene oxide dispersions in various media and their transparent conductive thin films. Journal of Colloid and Interface Science, 2012, 383, 36-42.	5.0	57
311	Surfactants show both large positive and negative effects on observed electron transfer rates at thermally reduced graphenes. Electrochemistry Communications, 2012, 22, 105-108.	2.3	15
312	Metal-to-Multilayer-Graphene Contactâ€"Part I: Contact Resistance Modeling. IEEE Transactions on Electron Devices, 2012, 59, 2444-2452.	1.6	62
313	Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication. Advanced Materials, 2012, 24, 5284-5318.	11.1	727
314	Graphene: An Emerging Electronic Material. Advanced Materials, 2012, 24, 5782-5825.	11.1	718
315	Thermoacoustic Sound Generation from Monolayer Graphene for Transparent and Flexible Sound Sources. Advanced Materials, 2012, 24, 6342-6347.	11.1	144
316	New Routes to Graphene, Graphene Oxide and Their Related Applications. Advanced Materials, 2012, 24, 4924-4955.	11.1	329
318	Observation of Multiphotonâ€Induced Fluorescence from Graphene Oxide Nanoparticles and Applications in Inâ€Vivo Functional Bioimaging. Angewandte Chemie - International Edition, 2012, 51, 10570-10575.	7.2	147
319	Fast and controllable fabrication of suspended graphene nanopore devices. Nanotechnology, 2012, 23, 085301.	1.3	42
320	Biomimetic graphene films and their properties. Nanoscale, 2012, 4, 4858.	2.8	84
321	Gum arabic assisted exfoliation and fabrication of Ag–graphene-based hybrids. Journal of Materials Chemistry, 2012, 22, 13764.	6.7	69
322	Rational synthesis of graphene–metal coordination polymer composite nanosheet as enhanced materials for electrochemical biosensing. Journal of Materials Chemistry, 2012, 22, 13166.	6.7	48

#	Article	IF	Citations
323	Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement. Nanoscale, 2012, 4, 7046.	2.8	144
324	CVD growth of large area and uniform graphene on tilted copper foil for high performance flexible transparent conductive film. Journal of Materials Chemistry, 2012, 22, 18283.	6.7	66
325	Facile conversion of a cellulose acetate laminate film to graphene by a lamination process and post-annealing. Journal of Materials Chemistry, 2012, 22, 20026.	6.7	17
326	A facile method to observe graphene growth on copper foil. Nanotechnology, 2012, 23, 475705.	1.3	36
327	Photodiodes based on graphene oxide–silicon junctions. Solar Energy, 2012, 86, 2961-2966.	2.9	93
328	Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires. Nano Letters, 2012, 12, 5679-5683.	4.5	283
329	Synthesis of large-scale undoped and nitrogen-doped amorphous graphene on MgO substrate by chemical vapor deposition. Journal of Materials Chemistry, 2012, 22, 19679.	6.7	48
330	From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 2012, 48, 9254.	2.2	253
331	Removing graphite flakes for preparing mechanically exfoliated graphene sample. Micro and Nano Letters, 2012, 7, 1133-1135.	0.6	5
332	Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions. Journal of Materials Chemistry, 2012, 22, 2863.	6.7	115
333	Graphene Thickness Control via Gas-Phase Dynamics in Chemical Vapor Deposition. Journal of Physical Chemistry C, 2012, 116, 10557-10562.	1.5	70
334	Acoustically induced current flow in graphene. Applied Physics Letters, 2012, 100, .	1.5	90
335	Uniform Wafer-Scale Chemical Vapor Deposition of Graphene on Evaporated Cu (111) Film with Quality Comparable to Exfoliated Monolayer. Journal of Physical Chemistry C, 2012, 116, 24068-24074.	1.5	69
337	Facile Synthesis of Ag Interlayer Doped Graphene by Chemical Vapor Deposition Using Polystyrene As Solid Carbon Source. ACS Applied Materials & Interfaces, 2012, 4, 2041-2047.	4.0	76
338	Production and processing of graphene and 2d crystals. Materials Today, 2012, 15, 564-589.	8.3	866
339	Two-Dimensional Transition Metal Carbides. ACS Nano, 2012, 6, 1322-1331.	7.3	3,453
340	Graphene-based flexible and stretchable thin film transistors. Nanoscale, 2012, 4, 4870.	2.8	135
341	Langmuir-Blodgett assembly of ultra-large graphene oxide films for transparent electrodes. Transactions of Nonferrous Metals Society of China, 2012, 22, 2504-2511.	1.7	27

#	Article	IF	CITATIONS
342	Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid-State Electronics, 2012, 78, 159-165.	0.8	180
343	pH-tunable aqueous dispersion of graphene nanocomposites functionalized with poly(acrylic acid) brushes. Polymer, 2012, 53, 4955-4960.	1.8	29
344	Raman fingerprint of doping due to metal adsorbates on graphene. Journal of Physics Condensed Matter, 2012, 24, 335301.	0.7	110
345	Selective Graphene Formation on Copper Twin Crystals. Journal of the American Chemical Society, 2012, 134, 12492-12498.	6.6	60
346	Effects of ultra-violet laser irradiation on graphene. Microelectronic Engineering, 2012, 97, 144-146.	1.1	13
347	Unfolding the Damping Behavior of Multilayer Graphene Membrane in the Low-Frequency Regime. ACS Nano, 2012, 6, 3992-4000.	7.3	50
348	Ab initio study of energy-band modulation in graphene-based two-dimensional layered superlattices. Journal of Materials Chemistry, 2012, 22, 23821.	6.7	18
349	A hybrid reduction procedure for preparing flexible transparent graphene films with improved electrical properties. Journal of Materials Chemistry, 2012, 22, 18306.	6.7	17
350	Ice-assisted electron beam lithography of graphene. Nanotechnology, 2012, 23, 185302.	1.3	24
351	Layer-by-layer thinning of graphene by plasma irradiation and post-annealing. Nanotechnology, 2012, 23, 025704.	1.3	43
352	Characterizations of photoconductivity of graphene oxide thin films. AIP Advances, 2012, 2, .	0.6	12
353	Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices. ACS Applied Materials & Interfaces, 2012, 4, 1110-1117.	4.0	168
354	Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication. Nanoscale, 2012, 4, 3050.	2.8	118
355	Wafer-scale graphene on 2 inch SiC with uniform structural and electrical characteristics. Science Bulletin, 2012, 57, 3022-3025.	1.7	7
356	Nanorobotic handling of few-layer graphene membranes using a combined AFM/SEM/FIB setup., 2012,,.		3
357	Preparation and Properties of PEDOT/PSS Conductive Polymer Blended with Graphene/PVDF. Advanced Materials Research, 0, 608-609, 1318-1326.	0.3	2
358	Limitations of CVD graphene when utilised towards the sensing of heavy metals. RSC Advances, 2012, 2, 5385.	1.7	21
359	Homogeneous bilayer graphene film based flexible transparent conductor. Nanoscale, 2012, 4, 639-644.	2.8	48

#	Article	IF	CITATIONS
360	Single-layer graphene sound-emitting devices: experiments and modeling. Nanoscale, 2012, 4, 2272.	2.8	92
361	Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process. Nano Letters, 2012, 12, 1448-1452.	4.5	352
362	CVDgraphenevs. highly ordered pyrolytic graphite for use in electroanalytical sensing. Analyst, The, 2012, 137, 833-839.	1.7	33
363	Excitation of surface electromagnetic waves in a graphene-based Bragg grating. Scientific Reports, 2012, 2, 737.	1.6	97
364	Scanning Tunneling Microscopy Study and Nanomanipulation of Graphene-Coated Water on Mica. Nano Letters, 2012, 12, 2665-2672.	4. 5	102
365	Photochemical oxidation of CVD-grown single layer graphene. Nanotechnology, 2012, 23, 355703.	1.3	52
366	Hybrid graphene/organic semiconductor field-effect transistors. Applied Physics Letters, 2012, 101, .	1.5	30
367	Towards industrial applications of graphene electrodes. Physica Scripta, 2012, T146, 014024.	1.2	131
368	Mechanical and Environmental Stability of Polymer Thin-Film-Coated Graphene. ACS Nano, 2012, 6, 2096-2103.	7.3	61
369	Radiation Effects in Carbon Nanoelectronics. Electronics (Switzerland), 2012, 1, 23-31.	1.8	35
370	Subwavelength Plasmonic Waveguides and Plasmonic Materials. International Journal of Optics, 2012, 2012, 1-12.	0.6	35
371	Selective Pick-and-Place of Thin Film by Robotic Micromanipulation. International Journal of Intelligent Mechatronics and Robotics, 2012, 2, 24-37.	0.4	0
372	High openâ€circuit voltage of grapheneâ€based photovoltaic cells modulated by layerâ€byâ€layer transfer. Surface and Interface Analysis, 2012, 44, 744-748.	0.8	1
373	Chemical Approaches toward Grapheneâ€Based Nanomaterials and their Applications in Energyâ€Related Areas. Small, 2012, 8, 630-646.	5.2	368
374	Tuning the Doping Type and Level of Graphene with Different Gold Configurations. Small, 2012, 8, 3129-3136.	5.2	70
375	High Efficiency Graphene Solar Cells by Chemical Doping. Nano Letters, 2012, 12, 2745-2750.	4.5	861
376	The electrochemistry of CVD graphene: progress and prospects. Physical Chemistry Chemical Physics, 2012, 14, 8264.	1.3	148
377	Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New Journal of Chemistry, 2012, 36, 1385.	1.4	186

#	ARTICLE	IF	CITATIONS
378	Graphene Transistor as a Probe for Streaming Potential. Nano Letters, 2012, 12, 2931-2935.	4.5	53
379	Integration of Hexagonal Boron Nitride with Quasi-freestanding Epitaxial Graphene: Toward Wafer-Scale, High-Performance Devices. ACS Nano, 2012, 6, 5234-5241.	7.3	124
380	Thermal conductivity of isotopically modifiedÂgraphene. Nature Materials, 2012, 11, 203-207.	13.3	846
381	van der Waals Epitaxy of InAs Nanowires Vertically Aligned on Single-Layer Graphene. Nano Letters, 2012, 12, 1431-1436.	4.5	114
382	Synthesis of High Quality Monolayer Graphene at Reduced Temperature on Hydrogen-Enriched Evaporated Copper (111) Films. ACS Nano, 2012, 6, 2319-2325.	7.3	160
383	Harvesting Energy from Water Flow over Graphene?. Nano Letters, 2012, 12, 1736-1741.	4.5	132
384	Hydrothermal preparation of carbon nanosheets and their supercapacitive behavior. Journal of Materials Chemistry, 2012, 22, 11458.	6.7	18
385	High performance metal microstructure for carbon-based transparent conducting electrodes. Thin Solid Films, 2012, 520, 4827-4830.	0.8	14
386	Exceptional high Seebeck coefficient and gas-flow-induced voltage in multilayer graphene. Applied Physics Letters, 2012, 100, 183108.	1.5	60
387	Selective-Area Fluorination of Graphene with Fluoropolymer and Laser Irradiation. Nano Letters, 2012, 12, 2374-2378.	4.5	222
388	Embedded-gate graphene transistors for high-mobility detachable flexible nanoelectronics. Applied Physics Letters, 2012, 100, .	1.5	60
389	A theoretical analysis of the surface dependent binding, peeling and folding of graphene on single crystal copper. Carbon, 2012, 50, 3055-3063.	5.4	51
390	Graphene-based transparent flexible electrodes for polymer solar cells. Journal of Materials Chemistry, 2012, 22, 24254.	6.7	103
391	The application of graphene as electrodes in electrical and optical devices. Nanotechnology, 2012, 23, 112001.	1.3	329
392	Giant Optical Response from Graphene–Plasmonic System. ACS Nano, 2012, 6, 6244-6249.	7.3	78
393	Towards Rationally Designed Grapheneâ€Based Materials and Devices. Macromolecular Chemistry and Physics, 2012, 213, 1091-1100.	1.1	20
394	The Fabrication, Properties, and Uses of Graphene/Polymer Composites. Macromolecular Chemistry and Physics, 2012, 213, 1060-1077.	1.1	537
395	Efficient Transfer of Large-Area Graphene Films onto Rigid Substrates by Hot Pressing. ACS Nano, 2012, 6, 5360-5365.	7.3	172

#	Article	IF	CITATIONS
396	Electroluminescence of GaP x N y As1 \hat{a} x \hat{a} y nanoheterostructures through a transparent electrode made of CVD graphene. Semiconductors, 2012, 46, 796-800.	0.2	8
397	Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Applied Physics Letters, 2012, 100, .	1.5	182
398	Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology, 2012, 23, 035603.	1.3	106
399	Graphene electrochemistry: fundamental concepts through to prominent applications. Chemical Society Reviews, 2012, 41, 6944.	18.7	540
400	Nanostructured Hybrid Transparent Conductive Films with Antibacterial Properties. ACS Nano, 2012, 6, 5157-5163.	7.3	139
401	Industrial graphene metrology. Nanoscale, 2012, 4, 3807.	2.8	19
402	Metalâ€Free Growth of Nanographene on Silicon Oxides for Transparent Conducting Applications. Advanced Functional Materials, 2012, 22, 2123-2128.	7.8	150
403	Large-Scale Synthesis of High-Quality Hexagonal Boron Nitride Nanosheets for Large-Area Graphene Electronics. Nano Letters, 2012, 12, 714-718.	4.5	502
404	Graphene-Antenna Sandwich Photodetector. Nano Letters, 2012, 12, 3808-3813.	4.5	615
405	High-Contrast Imaging of Graphene via Time-Domain Terahertz Spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33, 839-845.	1.2	8
406	Synthesis of graphene ribbons using selective chemical vapor deposition. Current Applied Physics, 2012, 12, 1113-1117.	1.1	16
407	The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu. Carbon, 2012, 50, 134-141.	5.4	92
408	Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition. Carbon, 2012, 50, 551-556.	5.4	107
409	One-step metal electroplating and patterning on a plastic substrate using an electrically-conductive layer of few-layer graphene. Carbon, 2012, 50, 612-621.	5.4	21
410	Photo-thermal chemical vapor deposition growth of graphene. Carbon, 2012, 50, 668-673.	5.4	40
411	Few-layer graphene synthesis on a dielectric substrate. Carbon, 2012, 50, 1503-1509.	5.4	37
412	The effects of interlayer mismatch on electronic properties of bilayer armchair graphene nanoribbons. Carbon, 2012, 50, 1659-1666.	5.4	9
413	A comparison of single-wall carbon nanotube electrochemical capacitor electrode fabrication methods. Electrochimica Acta, 2012, 65, 37-43.	2.6	40

#	Article	IF	Citations
414	Excellent electrochemical performance of graphene-silver nanoparticle hybrids prepared using a microwave spark assistance process. Electrochimica Acta, 2012, 74, 207-214.	2.6	43
415	Single-layer CVD-grown graphene decorated with metal nanoparticles as a promising biosensing platform. Biosensors and Bioelectronics, 2012, 33, 56-59.	5. 3	57
416	Direct transfer of graphene without the removal of a metal substrate using a liquid polymer. Scripta Materialia, 2012, 66, 535-537.	2.6	8
417	Influence of pH condition on colloidal suspension of exfoliated graphene oxide by electrostatic repulsion. Journal of Solid State Chemistry, 2012, 186, 99-103.	1.4	8
418	Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Solar Energy Materials and Solar Cells, 2012, 96, 281-285.	3.0	125
419	Thermoresponsive graphene nanosheets by functionalization with polymer brushes. Polymer, 2012, 53, 316-323.	1.8	53
420	Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes. Advanced Functional Materials, 2012, 22, 421-428.	7.8	1,026
421	Autonomously Controlled Homogenous Growth of Waferâ€Sized Highâ€Quality Graphene via a Smart Janus Substrate. Advanced Functional Materials, 2012, 22, 1033-1039.	7.8	41
422	Preparation and characterization of high performance of graphene/nylon nanocomposites. European Polymer Journal, 2013, 49, 2617-2626.	2.6	95
423	Low damage-transfer of graphene using epoxy bonding. Electronic Materials Letters, 2013, 9, 517-521.	1.0	9
424	Simple and effective graphene laser processing for neuron patterning application. Scientific Reports, 2013, 3, 1954.	1.6	55
425	Direct synthesis of graphene on SiO2 substrates by chemical vapor deposition. CrystEngComm, 2013, 15, 1840.	1.3	68
426	Electrical control of kinesin–microtubule motility using a transparent functionalized-graphene substrate. Nanotechnology, 2013, 24, 195102.	1.3	12
427	Role of Dopants in Long-Range Charge Carrier Transport for p-Type and n-Type Graphene Transparent Conducting Thin Films. ACS Nano, 2013, 7, 7251-7261.	7.3	83
428	High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping. Journal of Materials Chemistry A, 2013, 1, 6593.	5.2	122
429	Copper-Vapor-Assisted Chemical Vapor Deposition for High-Quality and Metal-Free Single-Layer Graphene on Amorphous SiO ₂ Substrate. ACS Nano, 2013, 7, 6575-6582.	7.3	157
430	Radius-voltage relation of graphene bubbles controlled by gate voltage. Applied Physics Letters, 2013, 103, .	1.5	9
431	Graphene-metal contact resistivity on semi-insulating 6H-SiC(0001) measured with Kelvin probe force microscopy. Applied Physics Letters, 2013, 103, .	1.5	14

#	Article	IF	CITATIONS
432	Graphene as anode electrode for colloidal quantum dots based light emitting diodes. Applied Physics Letters, 2013, 103, 043124.	1.5	11
433	Optical Third-Harmonic Generation in Graphene. Physical Review X, 2013, 3, .	2.8	159
434	Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating. Applied Physics Letters, 2013, 102, .	1.5	109
435	Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chemical Engineering Journal, 2013, 231, 365-372.	6.6	127
436	Fabrication of Metallic Nanomesh: Pt Nano-Mesh as a Proof of Concept for Stretchable and Transparent Electrodes. Chemistry of Materials, 2013, 25, 3535-3538.	3.2	83
437	Poly(methyl methacrylate)/Graphene Oxide Layered Films as Generators for Mechanical Energy Harvesting. ACS Applied Materials & Interfaces, 2013, 5, 3770-3775.	4.0	8
438	Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots. Carbon, 2013, 61, 342-348.	5.4	96
439	Highly stable and flexible silver nanowire–graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale, 2013, 5, 7750.	2.8	196
440	Graphene-carbon nanotube hybrid transparent conductive films. Proceedings of SPIE, 2013, , .	0.8	3
441	Soft lithography of graphene sheets via surface energy modification. Journal of Materials Chemistry C, 2013, 1, 1076.	2.7	18
442	Graphene/silver nanowire sandwich structures for transparent conductive films. Carbon, 2013, 63, 390-396.	5.4	68
443	Mechanical properties of free-standing graphene oxide. Diamond and Related Materials, 2013, 38, 73-78.	1.8	35
444	Clean transfer of graphene on Pt foils mediated by a carbon monoxide intercalation process. Nano Research, 2013, 6, 671-678.	5.8	35
445	Fabrication of large area hexagonal boron nitride thin films for bendable capacitors. Nano Research, 2013, 6, 602-610.	5.8	61
446	One pot synthesis of a highly water-dispersible hybrid glucose carbides and reduced graphene oxide material with superior electrical capacitance. Journal of Materials Science, 2013, 48, 8277-8286.	1.7	8
447	Graphene transfer with reduced residue. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1455-1458.	0.9	140
448	Chemical Vapor Deposition Synthesis and Raman Spectroscopic Characterization of Large-Area Graphene Sheets. Journal of Physical Chemistry A, 2013, 117, 9454-9461.	1.1	57
449	Catalyst-free growth of readily detachable nanographene on alumina. Journal of Materials Chemistry C, 2013, 1, 6438.	2.7	10

#	Article	IF	CITATIONS
450	Multilayer HfO2/TiO2 gate dielectric engineering of graphene field effect transistors. Applied Physics Letters, 2013, 103, 073504.	1.5	9
451	Electrochemical biosensors on platforms of graphene. Chemical Communications, 2013, 49, 9526.	2.2	152
452	25 GHz Embedded-Gate Graphene Transistors with High-K Dielectrics on Extremely Flexible Plastic Sheets. ACS Nano, 2013, 7, 7744-7750.	7.3	127
454	Graphene Synthesis <i>via</i> Magnetic Inductive Heating of Copper Substrates. ACS Nano, 2013, 7, 7495-7499.	7.3	77
455	Synthesis of graphene by MEVVA source ion implantation. Nuclear Instruments & Methods in Physics Research B, 2013, 305, 29-32.	0.6	6
456	Broadband Modulation of Terahertz Waves With Non-Resonant Graphene Meta-Devices. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 764-771.	2.0	36
457	Formation of gold-coated multilayer graphene via thermal reduction. Materials Letters, 2013, 106, 200-203.	1.3	15
458	Electrical and mechanical properties of graphene oxide on flexible substrate. Journal of Physics and Chemistry of Solids, 2013, 74, 1783-1793.	1.9	39
459	Clean and efficient transfer of CVD-grown graphene by electrochemical etching of metal substrate. Journal of Electroanalytical Chemistry, 2013, 688, 243-248.	1.9	38
460	Selective photoredox using graphene-based composite photocatalysts. Physical Chemistry Chemical Physics, 2013, 15, 19102.	1.3	302
461	In Situ Study of Hydrogenation of Graphene and New Phases of Localization between Metal–Insulator Transitions. Nano Letters, 2013, 13, 5098-5105.	4.5	27
462	High-Temperature Growth of Graphene Films on Copper Foils by Ethanol Chemical Vapor Deposition. Journal of Physical Chemistry C, 2013, 117, 21569-21576.	1.5	68
463	Improved Transfer Quality of CVD-Grown Graphene by Ultrasonic Processing of Target Substrates: Applications for Ultra-fast Laser Photonics. ACS Applied Materials & Englishment (2013), 5, 10288-10293.	4.0	57
464	Boron and nitrogen co-doping of diamond-like carbon film for transparent conductive films. Applied Surface Science, 2013, 284, 53-58.	3.1	12
465	Laserâ€Induced Direct Graphene Patterning and Simultaneous Transferring Method for Graphene Sensor Platform. Small, 2013, 9, 4269-4275.	5.2	47
466	Propagation and excitation of graphene plasmon polaritons. , 2013, , .		0
467	A nitrogen-doped graphene film prepared by chemical vapor deposition of a methanol mist containing methylated melamine resin. Applied Physics A: Materials Science and Processing, 2013, 113, 645-650.	1.1	6
468	Graphene applications in electronic and optoelectronic devices and circuits. Chinese Physics B, 2013, 22, 098106.	0.7	58

#	Article	IF	Citations
469	The application of single-layer graphene modified with solution-processed TiOx and PEDOT:PSS as a transparent conductive anode in organic light-emitting diodes. Organic Electronics, 2013, 14, 3348-3354.	1.4	41
470	The effect of fluid mechanics on graphene growths by chemical vapor deposition. , 2013, , .		O
471	Surface modification of graphene nanopores for protein translocation. Nanotechnology, 2013, 24, 495102.	1.3	44
472	Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. Journal of Nanophotonics, 2013, 7, 073089.	0.4	88
473	Influence of the buffer layer properties on the intensity of Raman scattering of graphene. Journal of Raman Spectroscopy, 2013, 44, 803-809.	1.2	17
474	High quality graphene synthesized by atmospheric pressure CVD on copper foil. Surface and Coatings Technology, 2013, 230, 87-92.	2.2	25
475	Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes. Science, 2013, 342, 91-95.	6.0	1,289
476	Accurate layers determination of graphene on transparent substrate based on polarization-sensitive absorption effect. Applied Physics Letters, 2013, 103, .	1.5	17
477	The mechanism of caesium intercalation of graphene. Nature Communications, 2013, 4, 2772.	5.8	184
478	Macroscopic acoustoelectric charge transport in graphene. Applied Physics Letters, 2013, 103, .	1.5	61
479	Graphene – Properties and Characterization. , 2013, , 39-82.		7
480	An overview of the engineered graphene nanostructures and nanocomposites. RSC Advances, 2013, 3, 22790.	1.7	180
481	Towards the perfect graphene membrane? $\hat{a}\in$ Improvement and limits during formation of high quality graphene grown on Cu-foils. Carbon, 2013, 64, 377-390.	5.4	40
482	Formation of uniformly sized gold nanoparticles over graphene by MeV electron beam irradiation for transparent conducting films. Applied Physics Letters, 2013, 102 , .	1.5	11
483	Transparent and flexible toluene sensor with enhanced sensitivity using adsorption catalyst-functionalized graphene., 2013,,.		1
484	Catalytic, Conductive, and Transparent Platinum Nanofiber Webs for FTO-Free Dye-Sensitized Solar Cells. ACS Applied Materials & Description (2013), 5, 3176-3181.	4.0	46
485	Boron-substituted graphyne as a versatile material with high storage capacities of Li and H2: a multiscale theoretical study. Physical Chemistry Chemical Physics, 2013, 15, 16120.	1.3	96
486	Rectifying performance and negative differential resistance behavior in graphite-chain-nanoribbon junctions. Europhysics Letters, 2013, 101, 68005.	0.7	2

#	Article	IF	CITATIONS
487	Graphene chemical sensors for heliophysics applications. Radiation Effects and Defects in Solids, 2013, 168, 805-811.	0.4	1
488	Transparent, flexible, and solid-state supercapacitors based on graphene electrodes. APL Materials, 2013, 1, .	2.2	89
489	Rapidly characterize structural qualities of large-area graphene by optical anisotropy. , 2013, , .		0
490	Highly sensitive stretchable transparent piezoelectric nanogenerators. Energy and Environmental Science, 2013, 6, 169-175.	15.6	197
491	Nanogap based graphene coated AFM tips with high spatial resolution, conductivity and durability. Nanoscale, 2013, 5, 10816.	2.8	18
492	Sustainable and efficient protocol for the synthesis of a RGO–VPO composite with synergetic stability and reactivity. RSC Advances, 2013, 3, 4863.	1.7	11
493	Wafer-scale synthesis and transfer of monolayer graphene. , 2013, , .		2
494	Transfer-free synthesis of multilayer graphene using a single-step process in an evaporator and formation confirmation by laser mode-locking. Nanotechnology, 2013, 24, 365603.	1.3	11
495	On the growth mode of two-lobed curvilinear graphene domains at atmospheric pressure. Scientific Reports, 2013, 3, 2571.	1.6	8
496	Fabrication of highly transparent ultrathin films based on reduced graphene oxide. , 2013, , .		0
497	Field effect transport properties of electrochemically prepared graphene quantum dots., 2013,,.		2
498	Using Optical Anisotropy as a Quality Factor To Rapidly Characterize Structural Qualities of Large-Area Graphene Films. Analytical Chemistry, 2013, 85, 1605-1614.	3.2	11
499	Applications of Graphene., 2013,, 333-437.		9
500	Going active. Nature Materials, 2013, 12, 93-94.	13.3	23
501	Selective surface functionalization at regions of high local curvature in graphene. Chemical Communications, 2013, 49, 677-679.	2.2	135
502	Graphene growth by molecular beam epitaxy. , 2013, , 547-557.		0
503	Growth of Adlayer Graphene on Cu Studied by Carbon Isotope Labeling. Nano Letters, 2013, 13, 486-490.	4.5	236
504	A carbon nanotube-based transparent conductive substrate for flexible ZnO dye-sensitized solar cells. Thin Solid Films, 2013, 531, 391-397.	0.8	16

#	Article	IF	CITATIONS
505	Methods for Obtaining Graphene. , 2013, , 129-228.		13
506	Kinetics of Interfacial Electron Transfer at Single-Layer Graphene Electrodes in Aqueous and Nonaqueous Solutions. Langmuir, 2013, 29, 1683-1694.	1.6	106
507	Controlled water adhesion and electrowetting of conducting hydrophobic graphene/carbon nanotubes composite films on engineering materials. Journal of Materials Chemistry A, 2013, 1, 1254-1260.	5.2	63
508	Fabrication of graphene-carbon nanotubes composite-based flexible transparent conductive films and their improved durability on repetitive strain. Applied Physics A: Materials Science and Processing, 2013, 110, 29-34.	1.1	4
509	Graphite oxide platelets functionalized by poly(ionic liquid) brushes and their chemical reduction. Journal of Nanoparticle Research, 2013, 15 , 1 .	0.8	9
510	Recent trend in graphene for optoelectronics. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	20
511	Synthesis of Fullerene–, Carbon Nanotube–, and Graphene–TiO ₂ Nanocomposite Photocatalysts for Selective Oxidation: A Comparative Study. ACS Applied Materials & Diterfaces, 2013, 5, 1156-1164.	4.0	340
512	Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nature Materials, 2013, 12, 246-252.	13.3	812
513	Thermal relaxation and deformation of indented graphene. Computational Materials Science, 2013, 79, 105-109.	1.4	7
514	A Comprehensive Review of Graphene Nanocomposites: Research Status and Trends. Journal of Nanomaterials, 2013, 2013, 1-14.	1.5	190
515	Microstructural and Morphological Effects on Charge Storage Properties in MnO ₂ -Carbon Nanofibers Based Supercapacitors. Journal of the Electrochemical Society, 2013, 160, A2315-A2321.	1.3	32
516	Ultra-violet laser processing of graphene on SiO2/Si. Microelectronic Engineering, 2013, 110, 358-360.	1.1	12
517	Carbon nanotube cathode with capping carbon nanosheet. Applied Surface Science, 2013, 283, 740-743.	3.1	5
518	Heteroepitaxial nucleation and growth of graphene nanowalls on silicon. Carbon, 2013, 54, 234-240.	5.4	37
519	An important atomic process in the CVD growth of graphene: Sinking and up-floating of carbon atom on copper surface. Applied Surface Science, 2013, 284, 207-213.	3.1	19
520	Optical and magnetic properties of porous graphene films produced by electrospraying. Thin Solid Films, 2013, 527, 120-125.	0.8	9
521	Effect of repetitive strain on the electrical durability of graphene-based, flexible, transparent, conductive films. Journal of the Korean Physical Society, 2013, 62, 263-268.	0.3	1
522	High-Performance Current Saturating Graphene Field-Effect Transistor With Hexagonal Boron Nitride Dielectric on Flexible Polymeric Substrates. IEEE Electron Device Letters, 2013, 34, 172-174.	2.2	53

#	Article	IF	CITATIONS
523	Ultraviolet laser deposition of graphene thin films without catalytic layers. Applied Physics Letters, $2013,102,.$	1.5	32
524	Efficient catalytic conversion of ammonia borane to borazine and its use for hexagonal boron nitride (white graphene). Journal of Materials Chemistry A, 2013, 1, 1976-1981.	5.2	40
525	Reduced Graphene Oxide Nanoribbon Networks: A Novel Approach towards Scalable Fabrication of Transparent Conductive Films. Small, 2013, 9, 820-824.	5.2	26
526	High-quality and efficient transfer of large-area graphene films onto different substrates. Carbon, 2013, 56, 271-278.	5 . 4	143
527	Enhancement of the Electrical Properties of Graphene Grown by Chemical Vapor Deposition via Controlling the Effects of Polymer Residue. Nano Letters, 2013, 13, 1462-1467.	4.5	324
528	Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition. Nanoscale, 2013, 5, 1221.	2.8	104
529	Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. Analytica Chimica Acta, 2013, 771, 14-20.	2.6	136
530	Transparent, flexible conducting graphene hybrid films with a subpercolating network of silver nanowires. Journal of Materials Chemistry C, 2013, 1, 2970.	2.7	88
531	Resistivity and thermopower of graphene made by chemical vapor deposition technique. Journal of Applied Physics, 2013, 113 , .	1.1	44
532	Flexible transparent electrodes made of electrochemically exfoliated graphene sheets from low-cost graphite pieces. Displays, 2013, 34, 315-319.	2.0	56
533	Transferred wrinkled Al2O3 for highly stretchableÂand transparent graphene–carbon nanotube transistors. Nature Materials, 2013, 12, 403-409.	13.3	295
534	Procedure of removing polymer residues and its influences on electronic and structural characteristics of graphene. Applied Physics Letters, 2013, 102, 091602.	1.5	87
535	Graphene at the Atomicâ€Scale: Synthesis, Characterization, and Modification. Advanced Functional Materials, 2013, 23, 2554-2564.	7.8	30
536	Using self-assembly to prepare a graphene-silver nanowire hybrid film that is transparent and electrically conductive. Carbon, 2013, 58, 198-207.	5. 4	76
537	Flexible and transparent graphene-based loudspeakers. Applied Physics Letters, 2013, 102, .	1.5	81
538	Bioinspired Waferâ€Scale Production of Highly Stretchable Carbon Films for Transparent Conductive Electrodes. Angewandte Chemie - International Edition, 2013, 52, 5535-5538.	7.2	129
539	Tuning the Dirac Point in CVD-Grown Graphene through Solution Processed n-Type Doping with 2-(2-Methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1 <i>H</i> -benzoimidazole. Nano Letters, 2013, 13, 1890-1897.	4.5	129
540	Hydrogen-excluded graphene synthesis via atmospheric pressure chemical vapor deposition. Carbon, 2013, 59, 439-447.	5.4	43

#	Article	IF	Citations
541	Wettability of Graphene. Nano Letters, 2013, 13, 1509-1515.	4.5	400
542	Uniformly Interconnected Silverâ€Nanowire Networks for Transparent Film Heaters. Advanced Functional Materials, 2013, 23, 1250-1255.	7.8	405
543	Enhanced Optical Second-Harmonic Generation from the Current-Biased Graphene/SiO ₂ /Si(001) Structure. Nano Letters, 2013, 13, 2104-2109.	4.5	70
544	Manipulating the electronic and chemical properties of graphene via molecular functionalization. Progress in Surface Science, 2013, 88, 132-159.	3.8	157
545	Tuning the Electrical and Optical Properties of Graphene by Ozone Treatment for Patterning Monolithic Transparent Electrodes. ACS Nano, 2013, 7, 4233-4241.	7.3	84
546	The effects of oxygen on controlling the number of carbon layers in the chemical vapor deposition of graphene on a nickel substrate. Nanotechnology, 2013, 24, 185603.	1.3	8
547	Development of a Seedless Floating Growth Process in Solution for Synthesis of Crystalline ZnO Micro/Nanowire Arrays on Graphene: Towards Highâ€Performance Nanohybrid Ultraviolet Photodetectors. Advanced Functional Materials, 2013, 23, 4941-4948.	7.8	84
548	Microscopy of Graphene Growth, Processing, and Properties. Advanced Functional Materials, 2013, 23, 2617-2634.	7.8	35
549	Effects of multi-layer graphene capping on Cu interconnects. Nanotechnology, 2013, 24, 115707.	1.3	66
550	Coâ€Percolating Grapheneâ€Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes. Advanced Functional Materials, 2013, 23, 5150-5158.	7.8	223
551	Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon, 2013, 54, 58-67.	5.4	241
552	Interaction of single-layer CVD graphene with a metasurface of terahertz split-ring resonators. Proceedings of SPIE, 2013, , .	0.8	1
553	Enhanced electrochemical oxygen reduction reaction by restacking of N-doped single graphene layers. RSC Advances, 2013, 3, 4246.	1.7	30
554	Electromechanical properties of graphene transparent conducting films for flexible electronics. Current Applied Physics, 2013, 13, 1331-1334.	1.1	27
555	Monolayer Graphene Film on ZnO Nanorod Array for Highâ€Performance Schottky Junction Ultraviolet Photodetectors. Small, 2013, 9, 2872-2879.	5.2	271
556	Graphene Nanoelectrodes: Fabrication and Size-Dependent Electrochemistry. Journal of the American Chemical Society, 2013, 135, 10073-10080.	6.6	89
557	Stable colloidal dispersion of functionalized reduced graphene oxide in aqueous medium for transparent conductive film. Journal of Colloid and Interface Science, 2013, 406, 69-74.	5.0	45
558	Liquid Droplet excitation of freestanding poly(methyl methacrylate)/graphene oxide films for mechanical energy harvesting. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1028-1032.	2.4	11

#	Article	IF	CITATIONS
559	Laser direct synthesis of graphene on quartz. Carbon, 2013, 53, 374-379.	5.4	51
560	Facile Synthesis of Largeâ€Area Ultrathin Hexagonal BN Films via Selfâ€Limiting Growth at the Molten B ₂ O ₃ Surface. Small, 2013, 9, 1353-1358.	5.2	28
561	Tuning the Stability of Graphene Layers by Phthalocyanineâ€Based oPPV Oligomers Towards Photo―and Redoxactive Materials. Small, 2013, 9, 2348-2357.	5.2	25
562	Scalable, printable, surfactant-free graphene ink directly from graphite. Nanotechnology, 2013, 24, 205304.	1.3	59
563	Optical haze of transparent and conductive silver nanowire films. Nano Research, 2013, 6, 461-468.	5.8	173
564	Photo-switchable molecular monolayer anchored between highly transparent and flexible graphene electrodes. Nature Communications, 2013, 4, 1920.	5.8	119
565	Chemical vapor deposition of amorphous graphene on ZnO film. Synthetic Metals, 2013, 174, 50-53.	2.1	11
566	Effective hybrid graphene/carbon nanotubes field emitters by electrophoretic deposition. Journal of Applied Physics, 2013, 113, .	1.1	30
567	Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions. Nanoscale, 2013, 5, 5576.	2.8	80
568	Self-regulating homogenous growth of high-quality graphene on Co–Cu composite substrate for layer control. Nanoscale, 2013, 5, 5847.	2.8	25
569	Fabrication and scanning tunneling microscopy characterization of suspended monolayer graphene on periodic Si nanopillars. Applied Physics Letters, 2013, 102, 201602.	1.5	7
570	Stretch-Induced Stiffness Enhancement of Graphene Grown by Chemical Vapor Deposition. ACS Nano, 2013, 7, 1171-1177.	7. 3	75
571	High-Performance, Transparent, and Stretchable Electrodes Using Graphene–Metal Nanowire Hybrid Structures. Nano Letters, 2013, 13, 2814-2821.	4.5	607
572	Effective microwave-assisted synthesis of graphenenanosheets/NiO composite for high-performance supercapacitors. New Journal of Chemistry, 2013, 37, 439-443.	1.4	34
573	Graphene Growth and Device Integration. Proceedings of the IEEE, 2013, 101, 1536-1556.	16.4	46
574	Highly Stable Grapheneâ€Based Multilayer Films Immobilized via Covalent Bonds and Their Applications in Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2013, 23, 2422-2435.	7.8	56
575	A brief review of graphene–metal oxide composites synthesis and applications in photocatalysis. Journal of the Chinese Advanced Materials Society, 2013, 1, 21-39.	0.7	135
576	Monolayer Graphene Platform for the Study of DNA Damage by Low-Energy Electron Irradiation. Journal of Physical Chemistry Letters, 2013, 4, 2328-2333.	2.1	19

#	ARTICLE	IF	CITATIONS
577	Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes. Nano Letters, 2013, 13, 3237-3242.	4.5	332
578	Cleanâ€Lifting Transfer of Largeâ€area Residualâ€Free Graphene Films. Advanced Materials, 2013, 25, 4521-4526.	11.1	157
579	Graphene films grown at low substrate temperature and the growth model by using MBE technique. Journal of Crystal Growth, 2013, 378, 333-336.	0.7	2
580	Evolution of Raman spectra in nitrogen doped graphene. Carbon, 2013, 61, 57-62.	5.4	228
581	Defect Healing of Chemical Vapor Deposition Graphene Growth by Metal Substrate Step. Journal of Physical Chemistry C, 2013, 117, 15260-15265.	1.5	14
582	Plasmonics in Nanostructures. Advanced Materials, 2013, 25, 3840-3856.	11.1	134
583	Coherent and Broadband Enhanced Optical Absorption in Graphene. ACS Nano, 2013, 7, 4810-4817.	7.3	190
584	Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells. Journal of Materials Chemistry A, 2013, 1, 8567.	5.2	123
585	Controlling the Orientation, Edge Geometry, and Thickness of Chemical Vapor Deposition Graphene. ACS Nano, 2013, 7, 1351-1359.	7.3	182
586	Electronic and optical properties of metal-nanoparticle filled graphene sandwiches. Applied Physics Letters, 2013, 102, .	1.5	43
587	Synthesis and characterization of bi-functionalized graphene and expanded graphite using n-butyl lithium and their use for efficient water soluble dye adsorption. Journal of Materials Chemistry A, 2013, 1, 8144.	5.2	38
588	Photo-thermal chemical vapor deposition of graphene on copper. Carbon, 2013, 62, 43-50.	5.4	32
589	Ag nanowire-embedded ITO films as a near-infrared transparent and flexible anode for flexible organic solar cells. Solar Energy Materials and Solar Cells, 2013, 110, 147-153.	3.0	93
591	Electrical characteristics of graphene wrinkles extracted by conductive Atomic Force Microscopy and electrical measurements on kelvin structures. , 2013, , .		1
592	THERMOELECTRIC AND THERMOMAGNETIC PROPERTIES OF GRAPHENE IN THE PRESENCE OF DIFFERENT SCATTERING PROCESSES. Modern Physics Letters B, 2013, 27, 1350060.	1.0	4
593	The selective transfer of patterned graphene. Scientific Reports, 2013, 3, 3216.	1.6	21
594	Engineering Electronic Properties of Graphene by Coupling with Si-Rich, Two-Dimensional Islands. ACS Nano, 2013, 7, 301-307.	7.3	30
595	Controlled Synthesis of Surface-Clean Monolayer Graphene. Key Engineering Materials, 0, 562-565, 85-90.	0.4	2

#	Article	IF	CITATIONS
596	Ultraclean freestanding graphene by platinum-metal catalysis. Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics, $2013, 31, \ldots$	0.6	45
597	Optically transparent and flexible graphene planar microwave structures. , 2013, , .		1
598	Integration of graphene into thin film transistors. Materials Technology, 2013, 28, 175-180.	1.5	6
599	Graphene mediated domain formation in exchange coupled graphene/Co ₃ O ₄ (111)/Co(0001) trilayers. Journal of Physics Condensed Matter, 2013, 25, 472203.	0.7	7
600	Photo–Roll Lithography (PRL) for Continuous and Scalable Patterning with Application in Flexible Electronics. Advanced Materials, 2013, 25, 6554-6561.	11.1	86
601	GaN-based ultraviolet light-emitting diodes with AuCl_3-doped graphene electrodes. Optics Express, 2013, 21, 29025.	1.7	40
602	High Ion/Ioff ratio of electrochemically prepared graphene quantum dots. , 2013, , .		1
603	Effect of graphite oxide solution concentration on the properties of multilayer graphene. , 2013, , .		2
604	Flexible, Transparent, and Conductive Film Based on Random Networks of Ag Nanowires. Journal of Nanomaterials, 2013, 2013, 1-6.	1.5	8
605	MeV Electron-Beam Induced Clusterization of Platinum Chloride on Graphene for Transparent Conductive Electrodes. Advanced Materials Research, 2013, 677, 25-30.	0.3	1
606	GaN MSM UV Sensor Using Multi-Layer Graphene Schottky Electrodes. Applied Mechanics and Materials, 2013, 481, 146-149.	0.2	1
607	Enhanced optical second-harmonic generation from current-biased graphene on the substrates of Si and SiC., 2013,,.		0
608	Visualization of a Maze-Like Reconstruction of Graphene on a Copper Surface at the Atomic Scale. Chinese Physics Letters, 2013, 30, 056802.	1.3	2
609	Carrier Density and Electric Field Dependent Nonlinear Transport of Chemical Vapor Deposition Graphene. Chinese Physics Letters, 2013, 30, 037201.	1.3	1
610	Toward the High-Quality Graphene for Optoelectronic Applications by Optimization of the Growth and Transfer Parameters. Advanced Materials Research, 2013, 834-836, 33-36.	0.3	0
611	Synthesis and Biomedical Applications of Graphene: Present and Future Trends. , 0, , .		18
612	Uniformly Distributed Graphene Domain Grows on Standing Copper via Low-Pressure Chemical Vapor Deposition. Advances in Materials Science and Engineering, 2013, 2013, 1-5.	1.0	4
613	High frequency performance limits of nanointerconnects based on CVD-grown graphene films transferred on SiO <inf>2</inf> -substrate., 2013, , .		1

#	Article	IF	CITATIONS
614	Doping of monolayer graphene for silicon based Schottky junction solar cells. , 2013, , .		3
615	Thermal emission from large area chemical vapor deposited graphene devices. Applied Physics Letters, 2013, 103, .	1.5	25
616	Room-temperature observations of the weak localization in low-mobility graphene films. Journal of Applied Physics, 2013, 114, 214502.	1.1	13
617	Temperature dependent thermal conductivity of a free-standing graphene nanoribbon. Applied Physics Letters, 2013, 102, .	1.5	40
618	Influence of transfer residue on the optical properties of chemical vapor deposited graphene investigated through spectroscopic ellipsometry. Journal of Applied Physics, 2013, 114, .	1.1	37
619	Hysteresis and charge trapping in graphene quantum dots. Applied Physics Letters, 2013, 102, .	1.5	46
620	Fabrication of Graphene-Based Films Using Microwave-Plasma-Enhanced Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2013, 52, 01AK04.	0.8	10
621	Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films. AIP Advances, $2013, 3, .$	0.6	21
622	Simple, green, and clean removal of a poly(methyl methacrylate) film on chemical vapor deposited graphene. Applied Physics Letters, 2013 , 103 , .	1.5	29
623	Improving Graphene Diffusion Barriers via Stacking Multiple Layers and Grain Size Engineering. Advanced Functional Materials, 2013, 23, 3638-3644.	7.8	68
624	Hybrid multi-layer graphene/Si Schottky junction solar cells. , 2013, , .		2
625	Homogeneous and stable p-type doping of graphene by MeV electron beam-stimulated hybridization with ZnO thin films. Applied Physics Letters, 2013, 102, 053103.	1.5	15
626	Graphene heat spreader for thermal management of hot spots. , 2013, , .		7
627	ARCHITECTURE OF FLOWER-LIKE rGO/CNTs-LOADED Cu _x O NANOPARTICLES AND ITS PHOTOCATALYTIC PROPERTIES. Nano, 2013, 08, 1350052.	0.5	7
628	Effect of MeV Electron Beam Irradiation on Graphene Grown by Thermal Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2013, 52, 125104.	0.8	2
629	Grapheneâ€reinforced biodegradable poly(ethylene succinate) nanocomposites prepared by ⟨i⟩in situ⟨ i⟩ polymerization. Journal of Applied Polymer Science, 2013, 130, 3212-3220.	1.3	43
630	GRAPHENE-BASED TRANSPARENT CONDUCTIVE FILMS. Nano, 2013, 08, 1330001.	0.5	52
631	Electrical and optical properties of hybrid transparent electrodes that use metal grids and graphene films. Journal of Materials Research, 2013, 28, 620-626.	1.2	16

#	Article	IF	CITATIONS
632	P-Type Doping of Graphene Films by Hybridization with Nickel Nanoparticles. Japanese Journal of Applied Physics, 2013, 52, 075101.	0.8	7
633	Carbon Materials and Their Energy Conversion and Storage Applications. , 2013, , 59-94.		2
634	The transport behavior of graphene quantum dots. AIP Conference Proceedings, 2013, , .	0.3	1
635	Fast and low-temperature reduction of graphene oxide films using ammonia plasma. AIP Advances, 2013, 3, .	0.6	35
636	Nanowire modified carbon fibers for enhanced electrical energy storage. Journal of Applied Physics, 2013, 114, 104306.	1.1	14
637	Integrated Ring Oscillators based on high-performance Graphene Inverters. Scientific Reports, 2013, 3, 2592.	1.6	32
638	Films of Carbon Nanomaterials for Transparent Conductors. Materials, 2013, 6, 2155-2181.	1.3	19
639	Building up Graphene-Based Conductive Polymer Composite Thin Films Using Reduced Graphene Oxide Prepared by $\langle b \rangle \langle i \rangle \hat{l}^3 \langle i \rangle \langle b \rangle$ -Ray Irradiation. Scientific World Journal, The, 2013, 2013, 1-7.	0.8	9
640	Determination of the DC Electrical Conductivity of Multiwalled Carbon Nanotube Films and Graphene Layers from Noncontact Time-Domain Terahertz Measurements. Advances in Condensed Matter Physics, 2014, 2014, 1-6.	0.4	23
641	Graphene Channel Liquid Container Field Effect Transistor as pH Sensor. Journal of Nanomaterials, 2014, 2014, 1-6.	1.5	54
642	FABRICATION AND CHARACTERIZATION OF HYDROGEN SENSORS BASED ON TRANSFERRED GRAPHENE SYNTHESIZED BY ANNEALING OF Ni /3 C - SiC THIN FILMS. Surface Review and Letters, 2014, 21, 1450050.	0.5	4
643	Flexible Electronics from Foils to Textiles. , 2014, , 199-233.		1
644	Flexible electrochromic films based on CVD-graphene electrodes. Nanotechnology, 2014, 25, 395702.	1.3	28
645	Techniques for Production of Large Area Graphene for Electronic and Sensor Device Applications. Graphene and 2D Materials, 2014, 1, .	2.0	0
646	Influence of reaction parameters on synthesis of high-quality single-layer graphene on Cu using chemical vapor deposition. Chinese Physics B, 2014, 23, 096803.	0.7	6
647	Modification of the structural and electrical properties of graphene layers by Pt adsorbates. Science and Technology of Advanced Materials, 2014, 15, 055002.	2.8	20
648	Nd:YVO4laser ablation of graphene films on glass and poly(ethylene terephthalate) substrates. Japanese Journal of Applied Physics, 2014, 53, 08NL02.	0.8	7
649	Enhanced Raman scattering of graphene on Ag nanoislands. Science China: Physics, Mechanics and Astronomy, 2014, 57, 2021-2023.	2.0	2

#	Article	IF	Citations
650	Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate. Nanotechnology, 2014, 25, 165702.	1.3	40
651	Tuning the dispersion relation of a plasmonic waveguide via graphene contact. Europhysics Letters, 2014, 107, 34007.	0.7	11
652	Increasing the effective work function of multilayer graphene films using silver nanoparticles. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 011214.	0.6	5
653	Graphene films transfer using marker-frame method. AIP Advances, 2014, 4, .	0.6	24
654	Effect of copper surface pre-treatment on the properties of CVD grown graphene. AIP Advances, 2014, 4, .	0.6	29
655	Liquid-phase exfoliation of chemical vapor deposition-grown single layer graphene and its application in solution-processed transparent electrodes for flexible organic light-emitting devices. Applied Physics Letters, 2014, 105, .	1.5	15
656	Graphene Synthesis on Specified Location. Key Engineering Materials, 0, 609-610, 159-164.	0.4	0
657	Frequency readout of nanomechanical graphene drums via a microwave resonator coupling method., 2014,,.		1
658	Growth of graphene on copper and nickel foils via chemical vapour deposition using ethylene. Materials Research Innovations, 2014, 18, S4-706-S4-710.	1.0	16
659	Graphene transport properties upon exposure to PMMA processing and heat treatments. 2D Materials, 2014, 1, 035005.	2.0	7 3
660	Microwave propagation along graphene at microscopic and macroscopic scales. , 2014, , .		0
661	Microwave propagation along graphene at microscopic and macroscopic scales. , 2014, , .		0
662	Ultrafast linear dichroism-like absorption dynamics in graphene grown by chemical vapor deposition. Journal of Applied Physics, 2014, 115, .	1.1	5
663	Photo-patternable ion gel-gated graphene transistors and inverters on plastic. Nanotechnology, 2014, 25, 014002.	1.3	56
664	Temperature dependence of the Raman spectra of polycrystalline graphene grown by chemical vapor deposition. Applied Physics Letters, 2014, 105, .	1.5	11
665	Direct Growth of Nanocrystalline Graphene/Graphite Transparent Electrodes on Si/SiO ₂ for Metalâ€Free Schottky Junction Photodetectors. Advanced Functional Materials, 2014, 24, 835-840.	7.8	28
666	Cyclododecane as support material for clean and facile transfer of large-area few-layer graphene. Applied Physics Letters, 2014, 105, .	1.5	40
667	Electronically Transparent Graphene Barriers against Unwanted Doping of Silicon. ACS Applied Materials & Samp; Interfaces, 2014, 6, 20464-20472.	4.0	17

#	Article	IF	CITATIONS
668	Alleviation of fermi-level pinning effect at metal/germanium interface by the insertion of graphene layers. Applied Physics Letters, $2014,105,$.	1.5	25
669	Mechanical Properties and Failure Mechanisms of Graphene under a Central Load. ChemPhysChem, 2014, 15, 2749-2755.	1.0	38
670	Application of CVD graphene as transparent front electrode in Cu(In,Ga)Se <inf>2</inf> solar cell. , 2014, , .		5
671	Prospective for graphene based thermal mid-infrared light emitting devices. AIP Advances, 2014, 4, .	0.6	33
672	The growth mechanisms of graphene directly on sapphire substrates by using the chemical vapor deposition. Journal of Applied Physics, 2014, 115 , .	1.1	29
673	Low Temperature Direct of Graphene onto Metal Nanoâ€Spindt Tip with Applications in Electron Emission. Advanced Materials Interfaces, 2014, 1, 1300147.	1.9	11
674	Ultra Long-Range Interactions between Large Area Graphene and Silicon. ACS Nano, 2014, 8, 11234-11242.	7.3	75
675	Room-temperature direct bonding of graphene films by means of vacuum ultraviolet (VUV) / vapor-assisted method. , 2014, , .		1
676	Electron energy loss spectroscopy of gold nanoparticles on graphene. Journal of Applied Physics, 2014, 116, .	1.1	27
678	Immobilization of carbon nanotubes on functionalized graphene film grown by chemical vapor deposition and characterization of the hybrid material. Science and Technology of Advanced Materials, 2014, 15, 015007.	2.8	11
679	Synthesis of graphene pattern using laser-induced chemical vapor deposition. Proceedings of SPIE, 2014, , .	0.8	0
680	Multifunctional composites for energy storage. , 2014, , .		1
681	Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes. Optics Express, 2014, 22, A1040.	1.7	17
682	GaN-based light-emitting diodes on graphene-coated flexible substrates. Optics Express, 2014, 22, A812.	1.7	13
683	The deviation of growth model for transparent conductive graphene. Nanoscale Research Letters, 2014, 9, 581.	3.1	6
684	Investigation of a New High Sensitive Micro-Electromechanical Strain Gauge Sensor Based on Graphene Piezoresistivity. Key Engineering Materials, 0, 605, 207-210.	0.4	34
685	Rectifying performance and negative differential behavior in graphiteâ€"chainâ€"carbon nanotube junctions. Applied Physics Letters, 2014, 104, .	1.5	15
686	Electronic and electrochemical doping of graphene by surface adsorbates. Beilstein Journal of Nanotechnology, 2014, 5, 1842-1848.	1.5	105

#	Article	IF	CITATIONS
687	Wettability of graphene-laminated micropillar structures. Journal of Applied Physics, 2014, 116, .	1.1	7
688	Introduction to Graphene. , 2014, , 1-22.		4
689	Exceptionally strong and robust millimeter-scale graphene–alumina composite membranes. Nanotechnology, 2014, 25, 355701.	1.3	4
690	Direct Delamination of Graphene for Highâ€Performance Plastic Electronics. Small, 2014, 10, 694-698.	5.2	52
691	Super-tough functionalized graphene paper as a high-capacity anode for lithium ion batteries. Chemical Engineering Journal, 2014, 250, 257-266.	6.6	35
692	Graphene and graphene oxide and their uses in barrier polymers. Journal of Applied Polymer Science, 2014, 131, .	1.3	361
693	Metals on Graphene and Carbon Nanotube Surfaces: From Mobile Atoms to Atomtronics to Bulk Metals to Clusters and Catalysts. Chemistry of Materials, 2014, 26, 184-195.	3.2	57
694	Construction of 2D Atomic Crystals on Transition Metal Surfaces: Graphene, Silicene, and Hafnene. Small, 2014, 10, 2215-2225.	5.2	91
695	Integrated graphene/nanoparticle hybrids for biological and electronic applications. Nanoscale, 2014, 6, 6245-6266.	2.8	114
696	Enhancement of the effectiveness of graphene as a transparent conductive electrode by AgNO ₃ doping. Nanotechnology, 2014, 25, 125701.	1.3	23
697	Detection of graphene domains and defects using liquid crystals. Nature Communications, 2014, 5, 3484.	5.8	62
698	Generating electricity by moving a droplet of ionic liquid along graphene. Nature Nanotechnology, 2014, 9, 378-383.	15.6	488
699	Rebar Graphene. ACS Nano, 2014, 8, 5061-5068.	7.3	178
700	Graphene and Grapheneâ€ike Layered Transition Metal Dichalcogenides in Energy Conversion and Storage. Small, 2014, 10, 2165-2181.	5.2	535
701	Controllable Synthesis of Doped Graphene and Its Applications. Small, 2014, 10, 2975-2991.	5.2	58
702	25th Anniversary Article: MXenes: A New Family of Twoâ€Dimensional Materials. Advanced Materials, 2014, 26, 992-1005.	11.1	4,547
703	High-power thulium fiber laser Q switched with single-layer graphene. Optics Letters, 2014, 39, 614.	1.7	58
704	Novel Graphene-Gold Hybrid Nanostructures Constructed via Sulfur Modified Graphene: Preparation and Characterization by Surface and Electrochemical Techniques. Electrochimica Acta, 2014, 121, 376-385.	2.6	35

#	Article	IF	CITATIONS
705	Subnanometer Vacancy Defects Introduced on Graphene by Oxygen Gas. Journal of the American Chemical Society, 2014, 136, 2232-2235.	6.6	125
706	High-transmittance liquid-crystal displays using graphene conducting layers. Liquid Crystals, 2014, 41, 101-105.	0.9	41
707	The Anistropy of Field Effect Mobility of CVD Graphene Grown on Copper Foil. Small, 2014, 10, 1761-1764.	5.2	27
708	Structural Diversity of Bulky Graphene Materials. Small, 2014, 10, 2200-2214.	5.2	41
709	Formation and carrier transport properties of single-layer graphene/poly (methyl methacrylate) nanocomposite for resistiveÂmemory application. Vacuum, 2014, 101, 246-249.	1.6	6
710	Electromechanical characteristics of hybrid transparent conductive films based on graphene with a silver grid. Journal of the Korean Physical Society, 2014, 64, 177-181.	0.3	4
711	Controllable growth of 1–7 layers of graphene by chemical vapour deposition. Carbon, 2014, 73, 252-258.	5.4	125
712	Evolution of epitaxial graphene layers on 3C SiC/Si $(1\ 1\ 1)$ as a function of annealing temperature in UHV. Carbon, 2014, 68, 563-572.	5.4	87
713	Chemical vapor deposition of graphene on large-domain ultra-flat copper. Carbon, 2014, 69, 188-193.	5.4	49
714	Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Advances, 2014, 4, 3823-3851.	1.7	556
715	"Quasiâ€freestanding―Grapheneâ€onâ€Single Walled Carbon Nanotube Electrode for Applications in Organic Lightâ€emitting Diode. Small, 2014, 10, 944-949.	5.2	25
716	Direct Integration of Polycrystalline Graphene into Light Emitting Diodes by Plasma-Assisted Metal-Catalyst-Free Synthesis. ACS Nano, 2014, 8, 2230-2236.	7.3	55
717	Graphene oxide-based transparent conductive films. Progress in Materials Science, 2014, 64, 200-247.	16.0	263
718	Tunable, Ultralowâ€Power Switching in Memristive Devices Enabled by a Heterogeneous Graphene–Oxide Interface. Advanced Materials, 2014, 26, 3275-3281.	11.1	69
719	Heating graphene to incandescence and the measurement of its work function by the thermionic emission method. Nano Research, 2014, 7, 553-560.	5.8	50
720	Selfâ€Assembling Synthesis of Freeâ€standing Nanoporous Graphene–Transitionâ€Metal Oxide Flexible Electrodes for Highâ€Performance Lithiumâ€lon Batteries and Supercapacitors. Chemistry - an Asian Journal, 2014, 9, 206-211.	1.7	62
721	A graphene-based transparent electrode for use in flexible optoelectronic devices. Journal of Materials Chemistry C, 2014, 2, 2646-2656.	2.7	145
722	Carbon Nanotube and Graphene Hybrid Thin Film for Transparent Electrodes and Field Effect Transistors. Advanced Materials, 2014, 26, 4247-4252.	11.1	130

#	Article	IF	CITATIONS
723	A symmetrical bi-electrode electrochemical technique for high-efficiency transfer of CVD-grown graphene. Nanotechnology, 2014, 25, 145704.	1.3	13
724	Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 2014, 20, 2883-2887.	2.9	882
725	Graphene-based electrodes for enhanced organic thin film transistors based on pentacene. Physical Chemistry Chemical Physics, 2014, 16, 16701.	1.3	25
726	TiO2–graphene nanoparticle based electrochemical sensor for the bimodal-response detection of 4-chlorophenol. RSC Advances, 2014, 4, 13461.	1.7	31
727	Waving potential in graphene. Nature Communications, 2014, 5, 3582.	5.8	246
728	Alumina-coated graphene nanosheet and its composite of acrylic rubber. Journal of Colloid and Interface Science, 2014, 416, 38-43.	5.0	36
729	A Simple Method for Cleaning Graphene Surfaces with an Electrostatic Force. Advanced Materials, 2014, 26, 637-644.	11.1	25
730	Layerâ€byâ€layer AuCl ₃ doping of stacked graphene films. Physica Status Solidi - Rapid Research Letters, 2014, 8, 441-444.	1.2	12
731	Band gap effects of hexagonal boron nitride using oxygen plasma. Applied Physics Letters, 2014, 104, .	1.5	82
732	Ultra-high sensitivity graphene photosensors. Applied Physics Letters, 2014, 104, 041110.	1.5	16
733	25th Anniversary Article: Carbon Nanotube―and Grapheneâ€Based Transparent Conductive Films for Optoelectronic Devices. Advanced Materials, 2014, 26, 1958-1991.	11.1	350
734	Selfâ€Assembly of Graphene Oxide at Interfaces. Advanced Materials, 2014, 26, 5586-5612.	11.1	334
735	Cooperative Island Growth of Large-Area Single-Crystal Graphene on Copper Using Chemical Vapor Deposition. ACS Nano, 2014, 8, 5657-5669.	7.3	91
736	High-yield fabrication of nm-size gaps in monolayer CVD graphene. Nanoscale, 2014, 6, 7249-7254.	2.8	68
737	A Tough and High-Performance Transparent Electrode from a Scalable and Transfer-Free Method. ACS Nano, 2014, 8, 4782-4789.	7.3	94
738	Stress Generation and Tailoring of Electronic Properties of Expanded Graphite by Click Chemistry. ACS Applied Materials & Discrete Applied & Discrete Applie	4.0	16
739	Plasmon–Phonon Coupling in Large-Area Graphene Dot and Antidot Arrays Fabricated by Nanosphere Lithography. Nano Letters, 2014, 14, 2907-2913.	4.5	111
740	Graphene–Epoxy Flexible Transparent Capacitor Obtained By Graphene–Polymer Transfer and UVâ€Induced Bonding. Macromolecular Rapid Communications, 2014, 35, 355-359.	2.0	13

#	ARTICLE	IF	CITATIONS
741	Role of 1D Metallic Nanowires in Polydomain Graphene for Highly Transparent Conducting Films. Advanced Materials, 2014, 26, 4575-4581.	11.1	43
742	Graphene synthesis and application for solar cells. Journal of Materials Research, 2014, 29, 299-319.	1.2	77
743	Junction characteristics of chemically-derived graphene/p-Si heterojunction solar cell. Carbon, 2014, 67, 766-774.	5.4	58
744	Size Dependence of Compressive Strain in Graphene Flakes Directly Grown on SiO2/Si Substrate. Journal of Physical Chemistry C, 2014, 118, 12526-12531.	1.5	5
745	Hybrid structure of graphene sheets/ZnO nanorods for enhancing electron field emission properties. Applied Surface Science, 2014, 289, 384-387.	3.1	25
746	Penetration and lateral diffusion characteristics of polycrystalline graphene barriers. Nanoscale, 2014, 6, 151-156.	2.8	41
747	Direct preparation of well-dispersed graphene/gold nanorod composites and their application in electrochemical sensors for determination of ractopamine. Electrochimica Acta, 2014, 117, 322-328.	2.6	62
748	The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties. Nanoscale, 2014, 6, 472-476.	2.8	138
749	A universal transfer route for graphene. Nanoscale, 2014, 6, 889-896.	2.8	58
750	Silver nanowire transparent conducting paper-based electrode with high optical haze. Journal of Materials Chemistry C, 2014, 2, 1248-1254.	2.7	131
751	Graphene. , 2014, , 41-65.		11
752	Photoreduction of Graphene Oxides: Methods, Properties, and Applications. Advanced Optical Materials, 2014, 2, 10-28.	3.6	235
753	Improved transfer of chemical-vapor-deposited graphene through modification of intermolecular interactions and solubility of poly(methylmethacrylate) layers. Carbon, 2014, 66, 612-618.	5.4	49
7 54	Mask-free and programmable patterning of graphene by ultrafast laser direct writing. Chemical Physics, 2014, 430, 13-17.	0.9	37
755	Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene. Nanoscale, 2014, 6, 1607-1621.	2.8	177
756	A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate. ACS Nano, 2014, 8, 1784-1791.	7.3	155
757	Non-oxidized graphene nanoplatelets as an efficient hole transport layer in organic light-emitting diodes. Organic Electronics, 2014, 15, 792-797.	1.4	2
758	A novel method for direct growth of a few-layer graphene on Al2O3 film. Carbon, 2014, 71, 20-26.	5.4	15

#	Article	IF	CITATIONS
759	High-yield graphene production by electrochemical exfoliation of graphite: Novel ionic liquid (IL)–acetonitrile electrolyte with low IL content. Carbon, 2014, 71, 58-69.	5.4	91
760	Wafer scale catalytic growth of graphene on nickel by solid carbon source. Carbon, 2014, 66, 48-56.	5.4	39
761	Effects of the electric field on the properties of ZnO–graphene composites: a density functional theory study. Physical Chemistry Chemical Physics, 2014, 16, 3542-3548.	1.3	28
762	Electron Transfer in a Supramolecular Associate of a Fullerene Fragment. Angewandte Chemie - International Edition, 2014, 53, 2170-2175.	7.2	52
763	Surface-Energy-Assisted Perfect Transfer of Centimeter-Scale Monolayer and Few-Layer MoS ₂ Films onto Arbitrary Substrates. ACS Nano, 2014, 8, 11522-11528.	7.3	367
764	Graphene Properties and Application. , 2014, , 565-583.		2
765	Nanoscale patterning of graphene through femtosecond laser ablation. Applied Physics Letters, 2014, 104, .	1.5	103
766	Current induced doping in graphene-based transistor with asymmetrical contact barriers. Applied Physics Letters, 2014, 104, 083115.	1.5	6
767	Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures. Applied Physics Letters, 2014, 105, .	1.5	106
768	Effect of adsorbents on electronic transport in graphene. , 2014, , 265-291.		3
769	High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique. Nanoscale Research Letters, 2014, 9, 588.	3.1	60
770	The optimization of a self-focusing e-beam evaporator for carbon evaporation and the application for graphene growth. Surface and Coatings Technology, 2014, 258, 1196-1201.	2.2	1
771	Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nature Communications, 2014, 5, 5258.	5.8	485
772	High performance CNT point emitter with graphene interfacial layer. Nanotechnology, 2014, 25, 455601.	1.3	9
773	Inkjet printing of graphene. Faraday Discussions, 2014, 173, 323-336.	1.6	70
774	Graphene nano-floating gate transistor memory on plastic. Nanoscale, 2014, 6, 15286-15292.	2.8	28
775	N-doped nanoporous graphene decorated three-dimensional CuO nanowire network and its application to photocatalytic degradation of dyes. RSC Advances, 2014, 4, 47455-47460.	1.7	29
776	The glucose-assisted synthesis of a graphene nanosheet–NiO composite for high-performance supercapacitors. New Journal of Chemistry, 2014, 38, 2320.	1.4	56

#	Article	IF	CITATIONS
777	An internal electric field driving field emission cathode based on graphene. , 2014, , .		0
778	Piezoelectric coupling in a field-effect transistor with a nanohybrid channel of ZnO nanorods grown vertically on graphene. Nanoscale, 2014, 6, 15144-15150.	2.8	24
779	How good can CVD-grown monolayer graphene be?. Nanoscale, 2014, 6, 15255-15261.	2.8	48
780	Nondestructive Characterization of the Structural Quality and Thickness of Large-Area Graphene on Various Substrates. Analytical Chemistry, 2014, 86, 7192-7199.	3.2	8
781	Graphene based salisbury screen for terahertz absorber. Applied Physics Letters, 2014, 104, 081106.	1.5	78
782	Preparation of Graphene with Large Area. , 2014, , 39-76.		3
783	Stretchable and Transparent Electrodes using Hybrid Structures of Graphene–Metal Nanotrough Networks with High Performances and Ultimate Uniformity. Nano Letters, 2014, 14, 6322-6328.	4.5	168
784	Highly efficient field emission from large-scale and uniform monolayer graphene sheet supported on patterned ZnO nanorod arrays. Journal of Materials Chemistry C, 2014, 2, 3965.	2.7	18
785	Transfer of ordered nanoparticle array and its application in high-modulus membrane fabrication. Journal of Materials Chemistry C, 2014, 2, 6410.	2.7	7
786	Chemical vapor deposition (CVD) growth of graphene films. , 2014, , 27-49.		11
787	Graphene on Metal Grids as the Transparent Conductive Material for Dye Sensitized Solar Cell. Journal of Physical Chemistry C, 2014, 118, 25863-25868.	1.5	38
788	Spiers Memorial Lecture: Advances of carbon nanomaterials. Faraday Discussions, 2014, 173, 9-46.	1.6	24
789	A dual-gate ambipolar graphene field effect transistor. , 2014, , .		0
790	A systematic study of the atmospheric pressure growth of large-area hexagonal crystalline boron nitride film. Journal of Materials Chemistry C, 2014, 2, 1650.	2.7	72
791	Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors. Nanoscale, 2014, 6, 6346-6362.	2.8	83
792	Ultraclean transfer of CVD-grown graphene and its application to flexible organic photovoltaic cells. Journal of Materials Chemistry A, 2014, 2, 20474-20480.	5.2	31
793	Synthesis and electrochemistry of pseudocapacitive multilayer fullerenes and MnO ₂ nanocomposites. Journal of Materials Chemistry A, 2014, 2, 2152-2159.	5.2	64
794	Fabrication of free-standing Al2O3 nanosheets for high mobility flexible graphene field effect transistors. Journal of Materials Chemistry C, 2014, 2, 4759.	2.7	4

#	Article	IF	Citations
795	Iron (III) Chloride doping of CVD graphene. Nanotechnology, 2014, 25, 395701.	1.3	27
796	Thermal conductivity of twisted bilayer graphene. Nanoscale, 2014, 6, 13402-13408.	2.8	136
797	Direct Growth of Nanographene on Silicon with Thin Oxide Layer for Highâ€Performance Nanographeneâ€Oxideâ€Silicon Diodes. Advanced Functional Materials, 2014, 24, 7613-7618.	7.8	13
798	Simple brush painted Ag nanowire network on graphene sheets for flexible organic solar cells. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	0.9	36
799	Transfer patterning of large-area graphene nanomesh via holographic lithography and plasma etching. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	0.6	28
800	A Universal, Rapid Method for Clean Transfer of Nanostructures onto Various Substrates. ACS Nano, 2014, 8, 6563-6570.	7.3	192
801	All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon, 2014, 79, 156-164.	5 . 4	151
802	A Graphene Surface Force Balance. Langmuir, 2014, 30, 11485-11492.	1.6	21
803	High quality and large-scale manually operated monolayer graphene pasters. Nanotechnology, 2014, 25, 275704.	1.3	5
804	Controllable seeding of single crystal graphene islands from graphene oxide flakes. Carbon, 2014, 79, 406-412.	5.4	27
805	Water-dispersible graphene designed as a Pickering stabilizer for the suspension polymerization of poly(methyl methacrylate)/graphene core–shell microsphere exhibiting ultra-low percolation threshold ofÂelectrical conductivity. Polymer, 2014, 55, 4709-4719.	1.8	55
806	ITO-Free Organic Light-Emitting Transistors with Graphene Gate Electrode. ACS Photonics, 2014, 1, 1082-1088.	3.2	20
807	Tuning the Work Function of Graphene-on-Quartz with a High Weight Molecular Acceptor. Journal of Physical Chemistry C, 2014, 118, 4784-4790.	1.5	50
808	Inkjet-printed highly conductive transparent patterns with water based Ag-doped graphene. Journal of Materials Chemistry A, 2014, 2, 19095-19101.	5.2	62
809	Microstructural, Electrical, and Mechanical Properties of Graphene Films on Flexible Substrate Determined by Cyclic Bending Test. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19566-19573.	4.0	14
810	Durable and Water-Floatable Ionic Polymer Actuator with Hydrophobic and Asymmetrically Laser-Scribed Reduced Graphene Oxide Paper Electrodes. ACS Nano, 2014, 8, 2986-2997.	7.3	199
811	Graphene Field Effect Transistors with Mica as Gate Dielectric Layers. Small, 2014, 10, 4213-4218.	5.2	24
812	Photoelectron spectroscopy of wet and gaseous samples through graphene membranes. Nanoscale, 2014, 6, 14394-14403.	2.8	78

#	ARTICLE	IF	CITATIONS
813	Pt nanoparticles-chemical vapor deposited graphene composite based immunosensor for the detection of human cardiac troponin I. Sensors and Actuators B: Chemical, 2014, 205, 363-370.	4.0	43
814	Controlling the Physicochemical State of Carbon on Graphene Using Focused Electron-Beam-Induced Deposition. ACS Nano, 2014, 8, 6805-6813.	7.3	17
815	Large area uniformly oriented multilayer graphene with high transparency and conducting properties derived from highly oriented polyethylene films. Journal of Materials Chemistry C, 2014, 2, 6048-6055.	2.7	6
816	50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems. ACS Photonics, 2014, 1, 781-784.	3.2	162
817	Defect Evolution in Graphene upon Electrochemical Lithiation. ACS Applied Materials & Emp; Interfaces, 2014, 6, 17626-17636.	4.0	30
818	Graphene nanoelectromechanics (NEMS)., 2014,, 341-362.		5
819	Optical second-harmonic generation induced by electric current in graphene on Si and SiC substrates. Physical Review B, 2014, 89, .	1.1	64
820	Patterning of Graphene via an In Situ Electrochemical Method using Ni Opal or Inverse-Opal Structures. Journal of Physical Chemistry C, 2014, 118, 22785-22791.	1.5	2
821	Selective metal deposition at graphene line defects by atomic layer deposition. Nature Communications, 2014, 5, 4781.	5.8	243
822	Capillary-Force-Assisted Self-Assembly (CAS) of Highly Ordered and Anisotropic Graphene-Based Thin Films. Journal of Physical Chemistry C, 2014, 118, 259-267.	1.5	22
823	Interface Engineering for CVD Graphene: Current Status and Progress. Small, 2014, 10, 4443-4454.	5.2	29
824	Mechanical responses of a polymer graphene-sheet nano-sandwich. Polymer, 2014, 55, 4976-4982.	1.8	32
825	What's Next for Low-Dimensional Materials?. Materials Research Letters, 2014, 2, 1-9.	4.1	15
826	Understanding the mechanisms that change the conductivity of damaged ITO-coated polymeric films: A micro-mechanical investigation. Solar Energy Materials and Solar Cells, 2014, 130, 199-207.	3.0	31
827	Laminated Ultrathin Chemical Vapor Deposition Graphene Films Based Stretchable and Transparent High-Rate Supercapacitor. ACS Nano, 2014, 8, 9437-9445.	7.3	240
828	Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors. Applied Physics Letters, 2014, 104, .	1.5	96
829	Novel Fabrication of Flexible Graphene-Based Chemical Sensors with Heaters using Soft Lithographic Patterning Method. ACS Applied Materials & (amp; Interfaces, 2014, 6, 13319-13323.	4.0	43
830	Selective deposition of graphene sheets on a flexible substrate by a nonuniform electric field. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 020602.	0.6	3

#	Article	IF	CITATIONS
831	Graphene/LiNbO3 surface acoustic wave device based relative humidity sensor. Optik, 2014, 125, 5800-5802.	1.4	21
832	A highly sensitive electrode modified with graphene, gold nanoparticles, and molecularly imprinted over-oxidized polypyrrole for electrochemical determination of dopamine. Journal of Molecular Liquids, 2014, 198, 307-312.	2.3	52
833	Anisotropic Membrane Diffusion of Human Mesenchymal Stem Cells on Aligned Single-Walled Carbon Nanotube Networks. Journal of Physical Chemistry C, 2014, 118, 3742-3749.	1.5	8
834	Growing graphene on polycrystalline copper foils by ultra-high vacuum chemical vapor deposition. Carbon, 2014, 78, 347-355.	5 . 4	41
835	Highly efficient graphene-based Cu(In, Ga)Se ₂ solar cells with large active area. Nanoscale, 2014, 6, 10879-10886.	2.8	33
836	Controllable atmospheric pressure growth of mono-layer, bi-layer and tri-layer graphene. Chemical Communications, 2014, 50, 11012-11015.	2.2	28
837	Sum Frequency Generation Spectroscopy Study of an Ionic Liquid at a Graphene-BaF ₂ (111) Interface. Journal of Physical Chemistry B, 2014, 118, 5203-5210.	1.2	30
838	Effects of substrate defects on the carbon cluster formation in graphene growth on Ni(111) surface. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 3055-3059.	0.9	4
839	Large-Area Single-Layer MoSe ₂ and Its van der Waals Heterostructures. ACS Nano, 2014, 8, 6655-6662.	7.3	206
840	Multilayer Graphene: A Potential Anti-oxidation Barrier in Simulated Primary Water. Journal of Materials Science and Technology, 2014, 30, 1084-1087.	5.6	17
841	Edge Oxidation Effect of Chemical-Vapor-Deposition-Grown Graphene Nanoconstriction. ACS Applied Materials & Company (1988) (4.0	21
842	Electrophoretic and field-effect graphene for all-electrical DNA array technology. Nature Communications, 2014, 5, 4866.	5. 8	109
843	Toward 300 mm Wafer-Scalable High-Performance Polycrystalline Chemical Vapor Deposited Graphene Transistors. ACS Nano, 2014, 8, 10471-10479.	7.3	87
844	Ultraconformal Contact Transfer of Monolayer Graphene on Metal to Various Substrates. Advanced Materials, 2014, 26, 6394-6400.	11.1	63
845	Direct growth of patterned graphene on SiO ₂ substrates without the use of catalysts or lithography. Nanoscale, 2014, 6, 10100-10105.	2.8	66
846	One-step synthesis of carbon nanosheets converted from a polycyclic compound and their direct use as transparent electrodes of ITO-free organic solar cells. Nanoscale, 2014, 6, 678-682.	2.8	28
847	Low-Temperature Growth of Large-Area Heteroatom-Doped Graphene Film. Chemistry of Materials, 2014, 26, 2460-2466.	3.2	87
848	Quantifying the quality of femtosecond laser ablation of graphene. Applied Physics A: Materials Science and Processing, 2014, 116, 555-560.	1.1	12

#	Article	IF	CITATIONS
849	Carbon nanotubes and graphene towards soft electronics. Nano Convergence, 2014, 1, 15.	6.3	112
850	One-Step Sub-10 μm Patterning of Carbon-Nanotube Thin Films for Transparent Conductor Applications. ACS Nano, 2014, 8, 3285-3293.	7.3	76
851	Novel graphene–oxide–semiconductor nanowire phototransistors. Journal of Materials Chemistry C, 2014, 2, 1592.	2.7	19
852	Graphene Oxide Architectures Prepared by Molecular Combing on Hydrophilicâ€Hydrophobic Micropatterns. Small, 2014, 10, 2239-2244.	5.2	23
853	Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition. Nanotechnology, 2014, 25, 185601.	1.3	36
854	Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation. Nanotechnology, 2014, 25, 105701.	1.3	96
855	Combining the silver nanowire bridging effect with chemical doping for highly improved conductivity of CVD-grown graphene films. Journal of Materials Chemistry C, 2014, 2, 5902.	2.7	22
856	Observation of Strain-Free Rolled-Up CVD Graphene Single Layers: Toward Unstrained Heterostructures. Nano Letters, 2014, 14, 3919-3924.	4.5	21
857	Ultrathin Organic Solar Cells with Graphene Doped by Ferroelectric Polarization. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3299-3304.	4.0	91
858	Exploring and rationalising effective n-doping of large area CVD-graphene by NH3. Physical Chemistry Chemical Physics, 2014, 16, 3632.	1.3	43
859	Carbon black/sulfur-doped graphene composite prepared by pyrolysis of graphene oxide with sodium polysulfide for oxygen reduction reaction. Electrochimica Acta, 2014, 142, 51-60.	2.6	33
860	Characterization of the cleaning process on a transferred graphene. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	0.9	10
861	Motional Heating in a Graphene-Coated Ion Trap. Nano Letters, 2014, 14, 5712-5716.	4.5	10
862	Fluoropolymer-assisted graphene electrode for organic light-emitting diodes. Organic Electronics, 2014, 15, 3154-3161.	1.4	20
863	Novel etchings to transfer CVD-grown graphene from copper to arbitrary substrates. Chemical Physics Letters, 2014, 614, 89-94.	1.2	12
864	High-power ultrafast Nd:YVO4 laser mode-locked by graphene saturable absorber. Optics and Laser Technology, 2014, 64, 288-291.	2.2	6
865	Transferring MBE-Grown Topological Insulator Films to Arbitrary Substrates and Metal–Insulator Transition via Dirac Gap. Nano Letters, 2014, 14, 1343-1348.	4.5	29
866	Large-area graphene coating via superhydrophilic-assisted electro-hydrodynamic spraying deposition. Carbon, 2014, 79, 294-301.	5.4	18

#	Article	IF	CITATIONS
867	Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors. Nanoscale, 2014, 6, 13613-13622.	2.8	86
868	Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon, 2014, 69, 437-443.	5.4	159
869	Modelling of Plasmonic and Graphene Nanodevices. Springer Theses, 2014, , .	0.0	9
870	Wafer scale graphene transfer for back end of the line device integration. , 2014, , .		4
871	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-7188.	23.0	968
872	Charge Transport in Polycrystalline Graphene: Challenges and Opportunities. Advanced Materials, 2014, 26, 5079-5094.	11.1	166
873	Permselective properties of graphene oxide and reduced graphene oxide electrodes. Carbon, 2014, 68, 662-669.	5.4	28
874	A non-contact graphene surface scattering rate characterization method at microwave frequency by combining Raman spectroscopy and coaxial connectors measurement. Carbon, 2014, 77, 53-58.	5.4	17
875	Carbon scrolls from chemical vapor deposition grown graphene. Carbon, 2014, 76, 257-265.	5.4	18
876	A blister test for interfacial adhesion of large-scale transferred graphene. Carbon, 2014, 69, 390-400.	5.4	88
877	Graphene grown on Ge(0 0 1) from atomic source. Carbon, 2014, 75, 104-112.	5.4	54
878	How spectroscopic ellipsometry can aid graphene technology?. Thin Solid Films, 2014, 571, 389-394.	0.8	16
879	Diversity of ultrafast hot-carrier-induced dynamics and striking sub-femtosecond hot-carrier scattering times in graphene. Carbon, 2014, 72, 402-409.	5.4	14
880	Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochimica Acta, 2014, 116, 118-128.	2.6	558
881	Graphene synthesis by laser-assisted chemical vapor deposition on Ni plate and the effect of process parameters on uniform graphene growth. Thin Solid Films, 2014, 556, 206-210.	0.8	21
882	Flexible patterned micro-electrochemical capacitors based on PEDOT. Chemical Communications, 2014, 50, 6789-6792.	2.2	34
883	Solution-processed flexible transparent conductors based on carbon nanotubes and silver grid hybrid films. Nanoscale, 2014, 6, 4560-4565.	2.8	22
884	Fully Solution-Processed Semitransparent Organic Solar Cells with a Silver Nanowire Cathode and a Conducting Polymer Anode. ACS Nano, 2014, 8, 2857-2863.	7.3	120

#	Article	IF	CITATIONS
885	Direct graphene synthesis on a Si/SiO $<$ sub $>$ 2 $<$ /sub $>$ substrate by a simple annealing process. Materials Research Express, 2014, 1, 025028.	0.8	12
886	Synergy between Graphene and Au Nanoparticles (Heterojunction) towards Quenching, Improving Raman Signal, and UV Light Sensing. ACS Applied Materials & Samp; Interfaces, 2014, 6, 6384-6391.	4.0	36
887	Investigations on reduced graphene oxide film embedded with silver nanowire as a transparent conducting electrode. Solar Energy Materials and Solar Cells, 2014, 128, 264-269.	3.0	62
888	Microwave absorption and radiation from large-area multilayer CVD graphene. Carbon, 2014, 77, 814-822.	5.4	68
889	The Handbook of Graphene Electrochemistry. , 2014, , .		151
890	Flexible supercapacitors based on carbon nanomaterials. Journal of Materials Chemistry A, 2014, 2, 10756.	5. 2	402
891	Cactus-like and honeycomb-like Zinc Selenide microspheres on graphene oxide sheets with excellent optical properties. Journal of Colloid and Interface Science, 2014, 430, 116-120.	5.0	12
892	Induction heating-assisted repeated growth and electrochemical transfer of graphene on millimeter-thick metal substrates. Diamond and Related Materials, 2014, 47, 46-52.	1.8	16
893	Enhanced performance of graphene by using gold film for transfer and masking process. Current Applied Physics, 2014, 14, 1045-1050.	1.1	13
894	Improving Terahertz Sheet Conductivity of Graphene Films Synthesized by Atmospheric Pressure Chemical Vapor Deposition with Acetylene. Journal of Physical Chemistry C, 2014, 118, 15054-15060.	1.5	20
895	Growth of Epitaxial Graphene on SiC., 2014,, 47-78.		0
896	Raman and Infrared Spectroscopic Characterization of Graphene. , 2014, , 165-194.		0
897	Ultrasonic-sprayed Graphene Oxide and Air-sprayed Silver Nanowire for the Preparation of Flexible Transparent Conductive Films. Chemistry Letters, 2014, 43, 1242-1244.	0.7	10
898	Applications of Graphene in Lithium Ion Batteries. , 2014, , 78-149.		0
899	Carbon at the Nanoscale. , 2014, , 15-50.		3
900	Selfâ€ordering of iron oxide nanoparticles covered by graphene. Physica Status Solidi (B): Basic Research, 2014, 251, 2499-2504.	0.7	2
901	Graphene shield-enhancement of photosensitive surfaces and devices. , 2014, , .		1
902	Wavelength-selective visible-light detector based on integrated graphene transistor and surface plasmon coupler., 2014,,.		1

#	Article	IF	CITATIONS
903	Electrical and Photo-Induced Effects in Graphene Channels When Interfaced with Quantum Dots. Materials Research Society Symposia Proceedings, 2015, 1727, 62.	0.1	1
904	Nanowetting Microscopy Probes Liquid-Solid Interaction at the Nanoscale. , 2015, , .		3
905	Formation of Graphene P-N Junction Arrays Using Soft-Lithographic Patterning and Cross-Stacking. Advanced Materials Research, 0, 1098, 63-68.	0.3	1
906	Single-transfer method for fabrication of linear array of graphene-based nanodevices. , 2015, , .		0
907	Effect of Interlayer Coupling on Ultrafast Charge Transfer from Semiconducting Molecules to Monoand Bilayer Graphene. Physical Review Applied, 2015, 4, .	1.5	19
909	Electrical Double Layer Capacitance in a Graphene-embedded Al2O3 Gate Dielectric. Scientific Reports, 2015, 5, 16001.	1.6	34
910	Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure. Scientific Reports, 2015, 5, 17955.	1.6	108
911	Precise Control of the Number of Layers of Graphene by Picosecond Laser Thinning. Scientific Reports, 2015, 5, 11662.	1.6	91
912	Low-Temperature, Dry Transfer-Printing of a Patterned Graphene Monolayer. Scientific Reports, 2015, 5, 17877.	1.6	20
913	Space charge induced electrostatic doping of two-dimensional materials: Graphene as a case study. Applied Physics Letters, 2015, 107, 143103.	1.5	24
914	Fabrication of large size graphene and Ti- MWCNTs/ large size graphene composites: their photocatalytic properties and potential application. Scientific Reports, 2015, 5, 14242.	1.6	4
915	Field effect tuning of microwave Faraday rotation and isolation with large-area graphene. Applied Physics Letters, 2015, 107, 093106.	1.5	10
916	Synthesis and characterization of nitrogen-doped graphene films using C5NCl5. Applied Physics Letters, 2015, 106, .	1.5	15
918	Graphene wrinkling induced by monodisperse nanoparticles: facile control and quantification. Scientific Reports, 2015, 5, 15061.	1.6	35
919	Selective exfoliation of single-layer graphene from non-uniform graphene grown on Cu. Nanotechnology, 2015, 26, 455304.	1.3	6
920	Effect of Intrinsic Ripples on Elasticity of the Graphene Monolayer. Nanoscale Research Letters, 2015, 10, 422.	3.1	11
921	Uniformity of large-area bilayer graphene grown by chemical vapor deposition. Nanotechnology, 2015, 26, 395601.	1.3	21
922	Graphene transparent electrode for thin-film solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 777-780.	0.8	8

#	Article	IF	CITATIONS
923	Gasâ€Induced Reversible Dispersion/Aggregation of Graphene. ChemNanoMat, 2015, 1, 438-444.	1.5	5
924	Foldable Electrochromics Enabled by Nanopaper Transfer Method. Advanced Functional Materials, 2015, 25, 4203-4210.	7.8	96
925	Rollâ€toâ€Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator. Advanced Materials, 2015, 27, 5210-5216.	11.1	273
926	Gateâ€Tunable Ultrahigh Photoresponsivity of 2D Heterostructures Based on Few Layer MoS ₂ and Solutionâ€Processed rGO. Advanced Electronic Materials, 2015, 1, 1500267.	2.6	28
927	Growing Uniform Graphene Disks and Films on Molten Glass for Heating Devices and Cell Culture. Advanced Materials, 2015, 27, 7839-7846.	11.1	116
928	Thermal Boundary Conductance at Metal-Graphene-Metal Interfaces Using Time-Domain Thermoreflectance Method., 2015,,.		0
929	Spectral Monitoring CH/C ₂ Ratio of Methane Plasma for Growing Single-Layer Graphene on Cu. Journal of Nanomaterials, 2015, 2015, 1-5.	1.5	8
930	Substrate-Dependent Differences in the Crystal Structures and Optical Properties of ZnSe Nanowires. Journal of Nanomaterials, 2015, 2015, 1-6.	1.5	3
932	Mechanism of the Defect Formation in Supported Graphene by Energetic Heavy Ion Irradiation: the Substrate Effect. Scientific Reports, 2015, 5, 9935.	1.6	66
933	Measuring graphene adhesion using atomic force microscopy with a microsphere tip. Nanoscale, 2015, 7, 10760-10766.	2.8	93
934	Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Letters, 2015, 15, 4206-4213.	4.5	410
935	Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light: Science and Applications, 2015, 4, e253-e253.	7.7	148
936	Facile electrochemical transfer of large-area single crystal epitaxial graphene from Ir(1 1 1). Journal Physics D: Applied Physics, 2015, 48, 115306.	1.3	23
937	Quantum Chemical Molecular Dynamics Studies of Bilayer Graphene Growth on a Ni(111) Surface. Journal of Physical Chemistry C, 2015, 119, 12643-12650.	1.5	13
938	Epitaxial Growth of a Single-Crystal Hybridized Boron Nitride and Graphene Layer on a Wide-Band Gap Semiconductor. Journal of the American Chemical Society, 2015, 137, 6897-6905.	6.6	55
939	One-step synthesis of chlorinated graphene by plasma enhanced chemical vapor deposition. Applied Surface Science, 2015, 347, 632-635.	3.1	18
940	Graphene Nanocomposites for Electromagnetic Induction Shielding., 2015,, 345-372.		2
941	Graphene Nanocomposites in Optoelectronics. , 2015, , 131-156.		2

#	Article	IF	CITATIONS
942	Spectral characteristic of single layer graphene via terahertz time domain spectroscopy. Optik, 2015, 126, 1362-1365.	1.4	13
943	Room-temperature terahertz detection based on CVD graphene transistor. Chinese Physics B, 2015, 24, 047206.	0.7	7
944	Chemical vapor deposition growth of few-layer graphene for transparent conductive films. RSC Advances, 2015, 5, 44142-44148.	1.7	14
945	Support effects in the adsorption of water on CVD graphene: an ultra-high vacuum adsorption study. Chemical Communications, 2015, 51, 11463-11466.	2.2	26
946	A green, simple and cost-effective approach to synthesize high quality graphene by electrochemical exfoliation via process optimization. RSC Advances, 2015, 5, 54762-54768.	1.7	36
947	Efficient photovoltaic conversion of graphene–carbon nanotube hybrid films grown from solid precursors. 2D Materials, 2015, 2, 034003.	2.0	38
948	Contact-free sheet resistance determination of large area graphene layers by an open dielectric loaded microwave cavity. Journal of Applied Physics, 2015, 117, .	1.1	31
949	Single-walled carbon nanotubes–carboxyl-functionalized graphene oxide-based electrochemical DNA biosensor for thermolabile hemolysin gene detection. Analytical Methods, 2015, 7, 5303-5310.	1.3	29
950	Graphene transfer in vacuum yielding a high quality graphene. Carbon, 2015, 93, 286-294.	5.4	33
951	High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Scientific Reports, 2015, 5, 10257.	1.6	150
952	Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chemical Society Reviews, 2015, 44, 5638-5679.	18.7	283
953	A new type of counter electrode for dye sensitized solar cells based on solution processed SnO2 and activated carbon. Materials Science in Semiconductor Processing, 2015, 39, 223-228.	1.9	14
954	Fatigue Properties of ITO and Graphene on Flexible Substrates. IEEE Transactions on Device and Materials Reliability, 2015, 15, 423-428.	1.5	6
955	Graphene-based MMIC process development and RF passives design. , 2015, , .		1
956	Selective Growth and In Situ Transfer of Graphene on GaN Using Patterned SiO ₂ Supporting Layers. ECS Journal of Solid State Science and Technology, 2015, 4, M73-M76.	0.9	4
957	Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures. 2D Materials, 2015, 2, 044006.	2.0	12
958	Selfâ€supporting graphene films and their applications. IET Circuits, Devices and Systems, 2015, 9, 420-427.	0.9	9
959	A review of large-area bilayer graphene synthesis by chemical vapor deposition. Nanoscale, 2015, 7, 20335-20351.	2.8	70

#	Article	IF	Citations
960	Water-mediated and instantaneous transfer of graphene grown at 220 ${\rm \^{A}^oC}$ enabled by a plasma. Nanoscale, 2015, 7, 20564-20570.	2.8	24
961	Challenges and opportunities for graphene as transparent conductors in optoelectronics. Nano Today, 2015, 10, 681-700.	6.2	73
962	Modeling tunable graphene-based filters using leapfrog ADI-FDTD method. , 2015, , .		0
963	High electrical conductivity of graphene-based transparent conductive films with silver nanocomposites. RSC Advances, 2015, 5, 108044-108049.	1.7	20
964	Active terahertz modulations based on graphene-silicon hybrid structures. , 2015, , .		O
965	Large-area and uniform transparent electrodes fabricated by polymethylmethacrylate-assisted spin-coating of silver nanowires on rigid and flexible substrates. Optical Materials Express, 2015, 5, 2347.	1.6	19
966	van der waals interactions of graphene membranes with a sharp silicon tip. Journal of the Korean Physical Society, 2015, 67, 2003-2006.	0.3	5
967	Theory of Valley Hall Conductivity in Graphene with Gap. Journal of the Physical Society of Japan, 2015, 84, 114705.	0.7	39
968	Resonant Graphene-Based Tunable Optical Delay Line. IEEE Photonics Journal, 2015, 7, 1-9.	1.0	31
969	Formation of wrinkles on graphene induced by nanoparticles: Atomic force microscopy study. Carbon, 2015, 95, 573-579.	5.4	21
970	Direct graphene growth on (111) Cu2O templates with atomic Cu surface layer. Carbon, 2015, 95, 608-615.	5 . 4	7
971	AuCl3 chemical doping on defective graphene layer. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	8
972	Structural and electronic properties of an ordered grain boundary formed by separated (1,0) dislocations in graphene. Nanoscale, 2015, 7, 3055-3059.	2.8	7
973	Magnetoresistance and Charge Transport in Graphene Governed by Nitrogen Dopants. ACS Nano, 2015, 9, 1360-1366.	7. 3	51
974	Lattice Selective Growth of Graphene on Sapphire Substrate. Journal of Physical Chemistry C, 2015, 119, 426-430.	1.5	8
975	Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications. Nanotechnology, 2015, 26, 035302.	1.3	19
976	Non-metal catalytic synthesis of graphene from a polythiophene monolayer on silicon dioxide. Carbon, 2015, 86, 272-278.	5.4	11
977	Low Temperature Growth of Graphene on Glass by Carbon-Enclosed Chemical Vapor Deposition Process and Its Application as Transparent Electrode. Chemistry of Materials, 2015, 27, 1646-1655.	3.2	41

#	Article	IF	CITATIONS
978	Patterned growth of oriented 2 <scp>D</scp> covalent organic framework thin films on singleâ€layer graphene. Journal of Polymer Science Part A, 2015, 53, 378-384.	2.5	70
979	A simple and flexible route to large-area conductive transparent graphene thin-films. Synthetic Metals, 2015, 201, 67-75.	2.1	14
980	Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding. Carbon, 2015, 87, 206-214.	5.4	79
981	Characterization of graphene films grown on CuNi foil substrates. Surface Science, 2015, 634, 16-24.	0.8	15
982	Room temperature dry processing of patterned CVD graphene devices. Carbon, 2015, 86, 256-263.	5.4	22
983	Electrically Tunable Coherent Optical Absorption in Graphene with Ion Gel. Nano Letters, 2015, 15, 1570-1576.	4.5	85
984	Engineering the metal–organic interface by transferring a high-quality single layer graphene on top of organic materials. Carbon, 2015, 87, 78-86.	5.4	7
985	Molecular Orientation-Dependent Interfacial Energetics and Built-in Voltage Tuned by a Template Graphene Monolayer. Journal of Physical Chemistry C, 2015, 119, 45-54.	1.5	29
986	Epitaxially Grown Strained Pentacene Thin Film on Graphene Membrane. Small, 2015, 11, 2037-2043.	5.2	53
987	Using Metal-less Structures To Enhance the Raman Signals of Graphene by 100-fold while Maintaining the Band-to-Band Ratio and Peak Positions Precisely. Chemistry of Materials, 2015, 27, 876-884.	3.2	16
988	Reduced Graphene Oxide Micromesh Electrodes for Large Area, Flexible, Organic Photovoltaic Devices. Advanced Functional Materials, 2015, 25, 2213-2221.	7.8	118
989	A long-term oxidation barrier for copper nanowires: graphene says yes. Physical Chemistry Chemical Physics, 2015, 17, 4231-4236.	1.3	77
990	Nanomaterialâ€Enabled Stretchable Conductors: Strategies, Materials and Devices. Advanced Materials, 2015, 27, 1480-1511.	11.1	594
991	Observation of complete space-charge-limited transport in metal-oxide-graphene heterostructure. Applied Physics Letters, 2015, 106, 023122.	1.5	5
992	Tunable Piezoresistivity of Nanographene Films for Strain Sensing. ACS Nano, 2015, 9, 1622-1629.	7.3	246
993	Annealing free, clean graphene transfer using alternative polymer scaffolds. Nanotechnology, 2015, 26, 055302.	1.3	114
994	Scalable production of wrinkled and few-layered graphene sheets and their use for oil and organic solvent absorption. Physical Chemistry Chemical Physics, 2015, 17, 6913-6918.	1.3	23
995	Freestanding ZnO nanorod/graphene/ZnO nanorod epitaxial double heterostructure for improved piezoelectric nanogenerators. Nano Energy, 2015, 12, 268-277.	8.2	72

#	Article	IF	CITATIONS
996	Novel ALD-assisted growth of ZnO nanorods on graphene and its $Cu < sub > 2 < sub > ZnSn(S < sub > x < sub > Se < sub > 1 are sub > 4 < sub > solar cell application. Physical Chemistry Chemical Physics, 2015, 17, 4757-4762.$	1.3	9
997	Non-destructive electrochemical graphene transfer from reusable thin-film catalysts. Carbon, 2015, 85, 397-405.	5 . 4	41
998	Effect of Annealing in Ar/H ₂ Environment on Chemical Vapor Deposition-Grown Graphene Transferred With Poly (Methyl Methacrylate). IEEE Nanotechnology Magazine, 2015, 14, 70-74.	1,1	34
999	Graphene-based transparent conductive electrodes for GaN-based light emitting diodes: Challenges and countermeasures. Nano Energy, 2015, 12, 419-436.	8.2	86
1000	Silver Nanowire-Based Infrared-Transparent Contacts for Future High-Density Format Focal Plane Arrays. IEEE Nanotechnology Magazine, 2015, 14, 10-14.	1.1	6
1001	Efficient modification of transparent graphene electrodes by electron beam irradiation for organic solar cells. Journal of Industrial and Engineering Chemistry, 2015, 26, 210-213.	2.9	13
1002	Ultrahigh Responsivity in Graphene-ZnO Nanorod Hybrid UV Photodetector. Small, 2015, 11, 3054-3065.	5.2	161
1003	Evolution, kinetics, energetics, and environmental factors of graphene degradation on silicon dioxide. Nanoscale, 2015, 7, 6093-6103.	2.8	10
1004	Facile growth of centimeter-sized single-crystal graphene on copper foil at atmospheric pressure. Journal of Materials Chemistry C, 2015, 3, 3530-3535.	2.7	76
1005	Poly(styrene–maleic anhydride) functionalized graphene oxide. Journal of Applied Polymer Science, 2015, 132, .	1.3	9
1006	Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: From controllable growth to material characterization. Scientific Reports, 2014, 4, 4739.	1.6	42
1007	Large scale integration of graphene transistors for potential applications in the back end of the line. Solid-State Electronics, 2015, 108, 61-66.	0.8	19
1008	Continuous graphene and carbon nanotube based high flexible and transparent pressure sensor arrays. Nanotechnology, 2015, 26, 115501.	1.3	25
1009	Modeling study of mesh conductors and their electroluminescent devices. Applied Physics Letters, 2015, 106, 073302.	1.5	3
1010	Single layer graphene electrodes for quantum dot-light emitting diodes. Nanotechnology, 2015, 26, 135201.	1.3	19
1011	Observing Electron Extraction by Monolayer Graphene Using Time-Resolved Surface Photoresponse Measurements. ACS Nano, 2015, 9, 2510-2517.	7.3	10
1012	Clean Graphene Electrodes on Organic Thin-Film Devices via Orthogonal Fluorinated Chemistry. Nano Letters, 2015, 15, 2555-2561.	4.5	14
1013	Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures. Nanoscale Research Letters, 2015, 10, 27.	3.1	47

#	Article	IF	CITATIONS
1014	Influence of a gold substrate on the optical properties of graphene. Journal of Applied Physics, 2015, 117 , .	1.1	12
1015	Deformation of Wrinkled Graphene. ACS Nano, 2015, 9, 3917-3925.	7.3	143
1016	Facile transfer fabrication of transparent, conductive and flexible In2O3:Sn (ITO) nanowire arrays electrode via selective wet-etching ZnO sacrificial layer. Materials Letters, 2015, 158, 304-308.	1.3	8
1017	Multifunctional nano-accordion structures for stretchable transparent conductors. Materials Horizons, 2015, 2, 486-494.	6.4	29
1018	The influence of edge defects on the electrical and thermal transport of graphene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 363-370.	1.3	7
1019	Bromination of Graphene: A New Route to Making High Performance Transparent Conducting Electrodes with Low Optical Losses. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17692-17699.	4.0	41
1020	Improved performance in flexible organic solar cells via optimization of highly transparent silver grid/graphene electrodes. RSC Advances, 2015, 5, 65646-65650.	1.7	17
1021	Titania. , 2015, , 2525-2528.		0
1022	Dielectric environment as a factor to enhance the production yield of solvent exfoliated graphene. RSC Advances, 2015, 5, 64395-64403.	1.7	16
1023	13.7% Efficiency graphene–gallium arsenide Schottky junction solar cells with a P3HT hole transport layer. Nano Energy, 2015, 16, 91-98.	8.2	36
1024	Robust electromagnetic absorption by graphene/polymer heterostructures. Nanotechnology, 2015, 26, 285702.	1.3	32
1025	Graphene for Transparent Conductors. , 2015, , .		38
1027	Graphene-based protein biomarker detection. Bioanalysis, 2015, 7, 725-742.	0.6	26
1028	Multilayered graphene films prepared at moderate temperatures using energetic physical vapour deposition. Carbon, 2015, 94, 378-385.	5.4	11
1029	Effects of confinement, surface-induced orientations and strain on dynamical behaviors of bacteria in thin liquid crystalline films. Soft Matter, 2015, 11, 6821-6831.	1.2	44
1030	Clean graphene surface through high temperature annealing. Carbon, 2015, 94, 740-748.	5.4	81
1031	Graphene mobility mapping. Scientific Reports, 2015, 5, 12305.	1.6	89
1032	Thermoplastic Elastomers (TPEs) and Thermoplastic Vulcanizates (TPVs)., 2015,, 2517-2522.		6

#	Article	IF	CITATIONS
1033	Transferred Graphene. , 2015, , 2534-2543.		0
1034	Implementation of graphene multilayer electrodes in quantum dot light-emitting devices. Applied Physics A: Materials Science and Processing, 2015, 120, 1197-1203.	1.1	2
1035	Enhancement of resistive switching under confined current path distribution enabled by insertion of atomically thin defective monolayer graphene. Scientific Reports, 2015, 5, 11279.	1.6	10
1036	Graphene-Based Flexible and Transparent Tunable Capacitors. Nanoscale Research Letters, 2015, 10, 974.	3.1	5
1037	Synthesis of well-aligned millimeter-sized tetragon-shaped graphene domains by tuning the copper substrate orientation. Carbon, 2015, 93, 945-952.	5.4	14
1038	Probing patterned defects on graphene using differential interference contrast observation. Applied Physics Letters, 2015, 106, 081901.	1.5	6
1039	Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure. Applied Physics Letters, 2015, 106, .	1.5	33
1040	Gate Modulation of Graphene-ZnO Nanowire Schottky Diode. Scientific Reports, 2015, 5, 10125.	1.6	23
1041	Passivated graphene transistors fabricated on a millimeter-sized single-crystal graphene film prepared with chemical vapor deposition. Journal Physics D: Applied Physics, 2015, 48, 295106.	1.3	13
1042	Interface engineering for high performance graphene electronic devices. Nano Convergence, 2015, 2, .	6.3	22
1043	Photoelectric properties of reduced-graphene-oxide film and its photovoltaic application. RSC Advances, 2015, 5, 39630-39634.	1.7	3
1044	Maskless laser processing of graphene. Microelectronic Engineering, 2015, 141, 203-206.	1.1	8
1045	Transferrable superhydrophobic TiO ₂ nanorods on reduced graphene oxide films using block copolymer templates. Nanotechnology, 2015, 26, 165302.	1.3	9
1046	Preparation of graphene/nile blue nanocomposite: Application for oxygen reduction reaction and biosensing. Electrochimica Acta, 2015, 173, 354-363.	2.6	17
1047	Stacked Bilayer Graphene and Redox-Active Interlayer for Transparent and Flexible High-Performance Supercapacitors. Chemistry of Materials, 2015, 27, 3621-3627.	3.2	50
1048	Transparent, Broadband, Flexible, and Bifacial-Operable Photodetectors Containing a Large-Area Graphene–Gold Oxide Heterojunction. ACS Nano, 2015, 9, 5093-5103.	7.3	62
1049	Dual control of active graphene–silicon hybrid metamaterial devices. Carbon, 2015, 90, 146-153.	5.4	85
1050	Fabrication of graphene FETs combined with fluorescence and its Double Read-Out System. Sensors and Actuators B: Chemical, 2015, 214, 204-210.	4.0	10

#	Article	IF	CITATIONS
1051	Thermal transport behaviors of suspended graphene sheets with different sizes. International Journal of Thermal Sciences, 2015, 94, 221-227.	2.6	23
1052	Passively Q-switched Tm/Mg:LiTaO3 laser using single-layer graphene as a saturable absorber. Optics Communications, 2015, 349, 89-93.	1.0	2
1053	Top-grid monolayer graphene/Si Schottkey solar cell. Journal of Solid State Chemistry, 2015, 224, 102-106.	1.4	14
1054	Towards high quality CVD graphene growth and transfer. Carbon, 2015, 89, 82-92.	5 . 4	214
1055	Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode. Scientific Reports, 2015, 5, 9693.	1.6	54
1056	Development of a Highly Active Electrocatalyst via Ultrafine Pd Nanoparticles Dispersed on Pristine Graphene. Langmuir, 2015, 31, 2576-2583.	1.6	46
1057	Metallic Grid Electrode Fabricated via Flow Coating for High-Performance Flexible Piezoelectric Nanogenerators. Journal of Physical Chemistry C, 2015, 119, 7802-7808.	1.5	28
1058	Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials. Annual Review of Materials Research, 2015, 45, 63-84.	4.3	341
1059	Graphene-enhanced Raman spectroscopy of thymine adsorbed on single-layer graphene. Nanoscale Research Letters, 2015, 10, 163.	3.1	47
1060	Hierarchical Graphene/Metal Grid Structures for Stable, Flexible Transparent Conductors. ACS Nano, 2015, 9, 5440-5446.	7.3	65
1061	Surface treatment of polyimide substrates for the transfer and multitransfer of graphene films. Applied Surface Science, 2015, 349, 101-107.	3.1	12
1062	GaN metal–semiconductor–metal UV sensor with multi-layer graphene as Schottky electrodes. Japanese Journal of Applied Physics, 2015, 54, 06FF08.	0.8	20
1063	Tip-based nanofabrication of arbitrary shapes of graphene nanoribbons for device applications. RSC Advances, 2015, 5, 37006-37012.	1.7	10
1064	Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite. Nanoscale, 2015, 7, 11310-11320.	2.8	115
1065	Active graphene–silicon hybrid diode for terahertz waves. Nature Communications, 2015, 6, 7082.	5.8	215
1066	Photocatalytic decomposition of graphene over a ZnO surface under UV irradiation. Physical Chemistry Chemical Physics, 2015, 17, 15683-15686.	1.3	9
1067	Carbon nanomaterials for photovoltaic process. Nano Energy, 2015, 15, 490-522.	8.2	47
1068	Roll-to-roll continuous patterning and transfer of graphene via dispersive adhesion. Nanoscale, 2015, 7, 7138-7142.	2.8	33

#	ARTICLE	IF	CITATIONS
1069	Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 2015, 44, 5861-5896.	18.7	1,236
1070	Electrical and optical properties of layer-stacked graphene transparent electrodes using self-supporting transfer method. Synthetic Metals, 2015, 203, 215-220.	2.1	13
1071	Bilayer graphene based surface passivation enhanced nano structured self-powered near-infrared photodetector. Optics Express, 2015, 23, 4839.	1.7	39
1072	Transparent conductive graphene textile fibers. Scientific Reports, 2015, 5, 9866.	1.6	72
1073	Graphene as an Efficient Interfacial Layer for Electrochromic Devices. ACS Applied Materials & Samp; Interfaces, 2015, 7, 11330-11336.	4.0	19
1074	Rapid fabrication of graphene on dielectric substrates via solid-phase processes. , 2015, , .		1
1075	Au–Pd Nanoparticles Dispersed on Composite Titania/Graphene Oxide-Supports as a Highly Active Oxidation Catalyst. ACS Catalysis, 2015, 5, 3575-3587.	5 . 5	103
1076	Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Research, 2015, 8, 2562-2572.	5.8	323
1077	Effect of bending deformation on photovoltaic performance of flexible graphene/Ag electrode-based polymer solar cells. RSC Advances, 2015, 5, 30889-30901.	1.7	19
1078	Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping. Small, 2015, 11, 3143-3152.	5.2	13
1079	Fabrication of High-Performance Ultrathin In ₂ O ₃ Film Field-Effect Transistors and Biosensors Using Chemical Lift-Off Lithography. ACS Nano, 2015, 9, 4572-4582.	7.3	156
1080	Ultrafast Graphene Growth on Insulators via Metal-Catalyzed Crystallization by a Laser Irradiation Process: From Laser Selection, Thickness Control to Direct Patterned Graphene Utilizing Controlled Layer Segregation Process. Small, 2015, 11, 3017-3027.	5.2	11
1081	Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction. Scientific Reports, 2015, 5, 9304.	1.6	93
1082	Modifying the chemistry of graphene with substrate selection: A study of gold nanoparticle formation. Applied Physics Letters, 2015, 106, .	1.5	10
1083	The Conformal HIE-FDTD Method for Simulating Tunable Graphene-Based Couplers for THz Applications. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 368-376.	2.0	31
1084	Scalable Graphene Coatings for Enhanced Condensation Heat Transfer. Nano Letters, 2015, 15, 2902-2909.	4.5	236
1085	Ultraclean Patterned Transfer of Single-Layer Graphene by Recyclable Pressure Sensitive Adhesive Films. Nano Letters, 2015, 15, 3236-3240.	4.5	101
1086	Facile synthesis of nanosized graphene/Nafion hybrid materials and their application in electrochemical sensing of nitric oxide. Analytical Methods, 2015, 7, 3537-3544.	1.3	30

#	ARTICLE	IF	CITATIONS
1087	Graphene diamond-like carbon films heterostructure. Applied Physics Letters, 2015, 106, .	1.5	12
1088	Seamless lamination of a concave–convex architecture with single-layer graphene. Nanoscale, 2015, 7, 18138-18146.	2.8	1
1089	Wet adhesion of graphene. Extreme Mechanics Letters, 2015, 3, 130-140.	2.0	16
1090	Self-aligned growth of CdTe photodetectors using a graphene seed layer. Optics Express, 2015, 23, A1081.	1.7	10
1091	Telechelic Polymer: Preparation and Application. , 2015, , 2491-2498.		0
1092	Graphene-Based Dye-Sensitized Solar Cells: A Review. Science of Advanced Materials, 2015, 7, 1863-1912.	0.1	103
1093	Determination of High-Frequency Dielectric Constant and Surface Potential of Graphene Oxide and Influence of Humidity by Kelvin Probe Force Microscopy. Langmuir, 2015, 31, 11339-11343.	1.6	38
1094	Resistive graphene humidity sensors with rapid and direct electrical readout. Nanoscale, 2015, 7, 19099-19109.	2.8	252
1095	Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition. Progress in Natural Science: Materials International, 2015, 25, 291-299.	1.8	30
1096	Study on the graphene/silicon Schottky diodes by transferring graphene transparent electrodes on silicon. Thin Solid Films, 2015, 592, 281-286.	0.8	6
1097	Controlled synthesis of graphene nanoribbons for field effect transistors. Journal of Alloys and Compounds, 2015, 649, 933-938.	2.8	7
1098	Great surface-enhanced Raman scattering in hybrids consisting of graphene and silver nanoparticles with large particle sizes. Applied Physics Letters, 2015, 106, 211603.	1.5	10
1099	Non-vacuum growth of graphene films using solid carbon source. Applied Physics Letters, 2015, 106, 221604.	1.5	8
1100	High performance silver nanowire based transparent electrodes reinforced by conductive polymer adhesive., 2015,,.		2
1101	Imaging Local Heating and Thermal Diffusion of Nanomaterials with Plasmonic Thermal Microscopy. ACS Nano, 2015, 9, 11574-11581.	7.3	63
1102	Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air. Physical Chemistry Chemical Physics, 2015, 17, 31110-31116.	1.3	50
1103	One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications. Journal of Materials Chemistry A, 2015, 3, 22975-22988.	5.2	79
1104	Fabrication of Graphene-Based Transparent Conducting Thin Films. , 2015, , 95-122.		4

#	Article	IF	CITATIONS
1105	Synthesis, Structure, and Properties of Graphene and Graphene Oxide., 2015, , 29-94.		18
1106	Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation. Applied Physics Letters, 2015, 107, .	1.5	69
1107	Electron Transfer and Charge Storage in Thin Films of Nanoparticles. , 2015, , 1-62.		3
1108	Graphene-Assisted Solution Growth of Vertically Oriented Organic Semiconducting Single Crystals. ACS Nano, 2015, 9, 9486-9496.	7.3	46
1109	<i>In Situ</i> Transport Measurements and Band Gap Formation of Fluorinated Graphene. Journal of Physical Chemistry C, 2015, 119, 20150-20155.	1.5	17
1110	Composite Transparent Electrode of Graphene Nanowalls and Silver Nanowires on Micropyramidal Si for High-Efficiency Schottky Junction Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20179-20183.	4.0	32
1111	Electrical and photoresponse properties of graphene oxide:ZnO/Si photodiodes. Journal of Alloys and Compounds, 2015, 647, 259-264.	2.8	35
1112	Tuning the Electronic Structure of Graphene by Molecular Dopants: Impact of the Substrate. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19134-19144.	4.0	34
1113	Colloidal PbSe Solar Cells with Molybdenum Oxide Modified Graphene Anodes. ACS Applied Materials & Lamp; Interfaces, 2015, 7, 21082-21088.	4.0	10
1114	Directed self-assembly of graphene oxide on an electrospun polymer fiber template. Carbon, 2015, 95, 888-894.	5.4	11
1115	Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proceedings of SPIE, 2015, , .	0.8	27
1116	Corrosion resistant three-dimensional nanotextured silicon for water photo-oxidation. Nanoscale, 2015, 7, 16755-16762.	2.8	12
1117	Low damage pre-doping on CVD graphene/Cu using a chlorine inductively coupled plasma. Carbon, 2015, 95, 664-671.	5.4	47
1118	Improvement of graphene–Si solar cells by embroidering graphene with a carbon nanotube spider-web. Nano Energy, 2015, 17, 216-223.	8.2	30
1119	Water flattens graphene wrinkles: laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays. Nanoscale, 2015, 7, 19885-19893.	2.8	41
1120	Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending. ACS Nano, 2015, 9, 10453-10460.	7.3	277
1121	Laser heat treatment of aerosol-jet additive manufactured graphene patterns. Journal Physics D: Applied Physics, 2015, 48, 375503.	1.3	13
1122	Direct transfer of graphene films for polyurethane substrate. Applied Surface Science, 2015, 356, 1300-1305.	3.1	6

#	Article	IF	CITATIONS
1123	In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20957-20964.	4.0	210
1124	Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer. ACS Applied Materials & Layer, Interfaces, 2015, 7, 21727-21734.	4.0	140
1125	A novel method for transferring graphene onto PDMS. Applied Surface Science, 2015, 358, 70-74.	3.1	11
1126	Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids. Nanoscale, 2015, 7, 20188-20196.	2.8	85
1127	3-D conformal graphene for stretchable and bendable transparent conductive film. Journal of Materials Chemistry C, 2015, 3, 12379-12384.	2.7	14
1128	Ultrathin graphene-based solar cells. RSC Advances, 2015, 5, 99627-99631.	1.7	4
1129	New materials and advances in making electronic skin for interactive robots. Advanced Robotics, 2015, 29, 1359-1373.	1.1	155
1130	All-Optical Modulation of a Graphene-Cladded Silicon Photonic Crystal Cavity. ACS Photonics, 2015, 2, 1513-1518.	3.2	65
1131	Graphene-intercalated Fe ₂ O ₃ /TiO ₂ heterojunctions for efficient photoelectrolysis of water. RSC Advances, 2015, 5, 101401-101407.	1.7	9
1132	The electrochemical transfer of CVD-graphene using agarose gel as solid electrolyte and mechanical support layer. Chemical Communications, 2015, 51, 2987-2990.	2.2	16
1133	Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces. ACS Photonics, 2015, 2, 216-227.	3.2	210
1134	Thin and transparent films of graphene/silver nanoparticles obtained at liquid–liquid interfaces: Preparation, characterization and application as SERS substrates. Journal of Colloid and Interface Science, 2015, 438, 29-38.	5.0	49
1135	The growth behavior of graphene on iron-trichloride-solution-soaked copper substrates in a low pressure chemical vapor deposition. RSC Advances, 2015, 5, 2328-2332.	1.7	2
1136	Highly stable and stretchable graphene–polymer processed silver nanowires hybrid electrodes for flexible displays. Journal of Materials Chemistry C, 2015, 3, 1528-1536.	2.7	56
1137	Do CVD grown graphene films have antibacterial activity on metallic substrates?. Carbon, 2015, 84, 310-316.	5.4	51
1138	Facile synthesis of three-dimensional graphene/nickel oxide nanoparticles composites for high performance supercapacitor electrodes. Chemical Engineering Journal, 2015, 264, 603-609.	6.6	84
1139	Small variations in the sheet resistance of graphene layers with compressive and tensile bending. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 68, 33-37.	1.3	8
1140	A new approach for high-yield metal–molecule–metal junctions by direct metal transfer method. Nanotechnology, 2015, 26, 025601.	1.3	17

#	Article	IF	CITATIONS
1141	Rebar Graphene from Functionalized Boron Nitride Nanotubes. ACS Nano, 2015, 9, 532-538.	7.3	29
1142	Determination of a refractive index and an extinction coefficient of standard production of CVD-graphene. Nanoscale, 2015, 7, 1491-1500.	2.8	59
1143	Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance. Carbon, 2015, 84, 82-90.	5.4	187
1144	Quasi-free-standing monolayer and bilayer graphene growth on homoepitaxial on-axis 4H-SiC(0 0 0 1) layers. Carbon, 2015, 82, 12-23.	5.4	16
1145	Direct synthesis of few- and multi-layer graphene films on dielectric substrates by "etching-precipitation―method. Carbon, 2015, 82, 254-263.	5.4	31
1146	One-step transfer and doping of large area graphene by ultraviolet curing adhesive. Carbon, 2015, 84, 9-13.	5.4	12
1147	Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Scientific Reports, 2014, 4, 7191.	1.6	131
1148	Direct fabrication of graphene on SiO2 enabled by thin film stress engineering. Scientific Reports, 2014, 4, 5049.	1.6	52
1149	Morphological, optical, and electrical investigations of solution-processed reduced graphene oxide and its application to transparent electrodes in organic solar cells. Journal of Industrial and Engineering Chemistry, 2015, 21, 877-883.	2.9	17
1150	Copper substrate as a catalyst for the oxidation of chemical vapor deposition-grown graphene. Journal of Solid State Chemistry, 2015, 224, 14-20.	1.4	8
1151	A facile process for soak-and-peel delamination of CVD graphene from substrates using water. Scientific Reports, 2014, 4, 3882.	1.6	76
1152	Eco-friendly graphene synthesis on Cu foil electroplated by reusing Cu etchants. Scientific Reports, 2015, 4, 4830.	1.6	15
1153	Large-area bilayer graphene synthesis in the hot filament chemical vapor deposition reactor. Diamond and Related Materials, 2015, 51, 34-38.	1.8	23
1154	Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensors and Actuators B: Chemical, 2015, 207, 801-810.	4.0	385
1155	One-step etching, doping, and adhesion-control process for graphene electrodes. Carbon, 2015, 82, 168-175.	5.4	19
1156	High-mobility ambipolar ZnO-graphene hybrid thin film transistors. Scientific Reports, 2014, 4, 4064.	1.6	44
1157	Emerging applications of graphene and its derivatives in carbon capture and conversion: Current status and future prospects. Renewable and Sustainable Energy Reviews, 2015, 41, 1515-1545.	8.2	58
1158	Graphene as transparent front contact for dye sensitized solar cells. Solar Energy Materials and Solar Cells, 2015, 135, 99-105.	3.0	40

#	Article	IF	CITATIONS
1159	Large-scale and patternable graphene: direct transformation of amorphous carbon film into graphene/graphite on insulators via Cu mediation engineering and its application to all-carbon based devices. Nanoscale, 2015, 7, 1678-1687.	2.8	25
1160	Moistureâ€Responsive Graphene Paper Prepared by Selfâ€Controlled Photoreduction. Advanced Materials, 2015, 27, 332-338.	11.1	214
1161	Interlayer dependent polarity of magnetoresistance in graphene spin valves. Journal of Materials Chemistry C, 2015, 3, 298-302.	2.7	36
1162	Fabrication of shape-controlled reduced graphene oxide nanorings by Au@Pt nanoring lithography. Nanoscale, 2015, 7, 460-464.	2.8	14
1163	Au doping effect on chemically-exfoliated graphene and graphene grown via chemical vapor deposition. Carbon, 2015, 82, 96-102.	5.4	21
1164	Synthesis of dimension-controlled silver nanowires for highly conductive and transparent nanowire films. Acta Materialia, 2015, 83, 84-90.	3.8	37
1165	Metal-Etching-Free Direct Delamination and Transfer of Single-Layer Graphene with a High Degree of Freedom. Small, 2015, 11, 175-181.	5. 2	57
1166	Highly flexible and bendable carbon nanosheets as transparent conducting electrodes for organic solar cells. Carbon, 2015, 81, 546-551.	5.4	25
1167	The influence of chemical solvents on the properties of CVD graphene. Journal of Raman Spectroscopy, 2015, 46, 21-24.	1.2	24
1168	Programmed Synthesis of Freestanding Graphene Nanomembrane Arrays. Small, 2015, 11, 597-603.	5.2	30
1169	Graphene-Graphene Oxide Floating Gate Transistor Memory. Small, 2015, 11, 311-318.	5. 2	44
1170	Influence of the transfer and chemical treatment of monolayer graphene grown for flexible transparent electrodes. Carbon, 2015, 81, 458-464.	5.4	15
1171	Substrate Phononâ€Mediated Plasmon Hybridization in Coplanar Graphene Nanostructures for Broadband Plasmonic Circuits. Small, 2015, 11, 591-596.	5.2	11
1172	Graphene-protected copper and silver plasmonics. Scientific Reports, 2014, 4, 5517.	1.6	217
1173	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
1174	Graphene: Synthesis, bio-applications, and properties. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 150-156.	1.9	67
1177	Synthesis of Graphene Oxide by Modified Hummers Method and Hydrothermal Synthesis of Graphene-NiO Nano Composite for Supercapacitor Application. Journal of Material Science & Engineering, 2016, 05, .	0.2	7
1178	Specifics and Challenges to Flexible Organic Light-Emitting Devices. Advances in Materials Science and Engineering, 2016, 2016, 1-8.	1.0	29

#	ARTICLE	IF	CITATIONS
1179	Transparent Electrodes: A Review of the Use of Carbon-Based Nanomaterials. Journal of Nanomaterials, 2016, 2016, 1-12.	1.5	48
1180	Electrochemical Bubbling Transfer of Graphene Using a Polymer Support with Encapsulated Air Gap as Permeation Stopping Layer. Journal of Nanomaterials, 2016, 2016, 1-7.	1.5	18
1181	Highly sensitive UVA and violet photodetector based on single-layer graphene-TiO_2 heterojunction. Optics Express, 2016, 24, 25922.	1.7	22
1182	Hot Filament Chemical Vapor Deposition: Enabling the Scalable Synthesis of Bilayer Graphene and Other Carbon Materials. , 0, , .		3
1185	Effective fluorination of single-layer graphene by high-energy ion irradiation through a LiF overlayer. RSC Advances, 2016, 6, 68525-68529.	1.7	5
1186	3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices. Nanoscale, 2016, 8, 15870-15879.	2.8	108
1187	Encapsulated grapheneâ€based Hall sensors on foil with increased sensitivity. Physica Status Solidi (B): Basic Research, 2016, 253, 2316-2320.	0.7	21
1188	Surface and Interface Engineering of Graphene Oxide Films by Controllable Photoreduction. Chemical Record, 2016, 16, 1244-1255.	2.9	29
1189	Ultra-broadband and omnidirectional enhanced absorption of graphene in a simple nanocavity structure. Carbon, 2016, 108, 253-261.	5.4	31
1190	Bendable transparent conductive meshes based on multi-layer inkjet-printed silver patterns. Journal of Micromechanics and Microengineering, 2016, 26, 035012.	1.5	16
1191	Embedded Finâ€Like Metal/CNT Hybrid Structures for Flexible and Transparent Conductors. Small, 2016, 12, 1521-1526.	5.2	15
1192	Prospects of Graphene as a Potential Carrier-Transport Material in Third-Generation Solar Cells. Chemical Record, 2016, 16, 614-632.	2.9	14
1193	Temporal Stability of Metalâ€Chlorideâ€Doped Chemicalâ€Vapourâ€Deposited Graphene. ChemPhysChem, 2016, 17, 2545-2550.	1.0	9
1194	Dielectric Engineering of a Boron Nitride/Hafnium Oxide Heterostructure for Highâ€Performance 2D Field Effect Transistors. Advanced Materials, 2016, 28, 2062-2069.	11.1	65
1195	Stretchable conductive films based on carbon nanomaterials prepared by spray coating. Journal of Applied Polymer Science, 2016, 133, .	1.3	22
1196	Direct growth of densely aligned ZnO nanorods on graphene. Japanese Journal of Applied Physics, 2016, 55, 080301.	0.8	4
1197	Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition. Advanced Materials, 2016, 28, 6247-6252.	11.1	266
1198	Preparation of CO ₂ -switchable graphene dispersions and their polystyrene nanocomposite latexes by direct exfoliation of graphite using hyperbranched polyethylene surfactants. Polymer Chemistry, 2016, 7, 4881-4890.	1.9	18

#	Article	IF	CITATIONS
1199	Metal–Organic Frameworkâ€Templated Porous Carbon for Highly Efficient Catalysis: The Critical Role of Pyrrolic Nitrogen Species. Chemistry - A European Journal, 2016, 22, 3470-3477.	1.7	79
1200	Hexagonal Boron Nitride Thin Film for Flexible Resistive Memory Applications. Advanced Functional Materials, 2016, 26, 2176-2184.	7.8	167
1201	SYNTHESIS OF GRAPHENE/DIAMOND DOUBLE-LAYERED STRUCTURE FOR IMPROVING ELECTRON FIELD EMISSION PROPERTIES. Surface Review and Letters, 2016, 23, 1650011.	0.5	1
1202	Study on the optical and electrical properties of tetracyanoethylene doped bilayer graphene stack for transparent conducting electrodes. AIP Advances, 2016, 6, 035319.	0.6	11
1203	A Method to Manufacture Repeatible Graphene-Based NEMS Devices at the Wafer-Scale. , 2016, , .		4
1204	Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14633-14638.	3.3	200
1205	Scalable Fabrication of Infrared Detectors with Multispectral Photoresponse Based on Patterned Colloidal Quantum Dot Films. ACS Photonics, 2016, 3, 2396-2404.	3.2	70
1206	Molecular Caging of Graphene with Cyclohexane: Transfer and Electrical Transport. ACS Central Science, 2016, 2, 904-909.	5. 3	27
1207	Boron nitride encapsulated graphene infrared emitters. Applied Physics Letters, 2016, 108, .	1.5	31
1208	Initial evaluation and comparison of plasma damage to atomic layer carbon materials using conventional and low <i>Te</i> plasma sources. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	18
1209	Electronic properties and strain sensitivity of CVD-grown graphene with acetylene. Japanese Journal of Applied Physics, 2016, 55, 04EP05.	0.8	20
1210	Acoustically induced current in graphene by aluminum nitride transducers. Applied Physics Letters, 2016, 108, .	1.5	13
1211	Numerical study of electrical transport in co-percolative metal nanowire-graphene thin-films. Journal of Applied Physics, 2016, 120, 175106.	1.1	3
1212	A design of experiments investigation of the effects of synthesis conditions on the quality of CVD graphene. Materials Research Express, 2016, 3, 125601.	0.8	10
1213	Treatment of multiwall carbon nanotubes based on the modified Hummers method for supercapacitor electrode materials. Journal of Renewable and Sustainable Energy, 2016, 8, .	0.8	9
1214	Acoustic carrier transportation induced by surface acoustic waves in graphene in solution. Applied Physics Express, 2016, 9, 045104.	1.1	21
1215	Direct transfer of corrugated graphene sheets as stretchable electrodes. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	9
1216	Enhanced sensitivity of graphene ammonia gas sensors using molecular doping. Applied Physics Letters, 2016, 108, .	1.5	68

#	Article	IF	CITATIONS
1217	CMOS-compatible catalytic growth of graphene on a silicon dioxide substrate. Applied Physics Letters, $2016, 109, .$	1.5	14
1218	Ultrathin MoS2 and WS2 layers on silver nano-tips as electron emitters. Applied Physics Letters, 2016, 109, 133102.	1.5	9
1219	Graphene-Based Smart Nanomaterials: Novel Opportunities for Biology and Neuroengineering. Carbon Nanostructures, 2016, , 191-218.	0.1	0
1220	Graphene-based Materials in Health and Environment. Carbon Nanostructures, 2016, , .	0.1	5
1221	Van der Waals epitaxy of functional MoO2 film on mica for flexible electronics. Applied Physics Letters, 2016, 108, .	1.5	81
1223	Atomic layer deposition of HfO2 on graphene through controlled ion beam treatment. Applied Physics Letters, 2016, 108, .	1.5	7
1224	Doping enhanced barrier lowering in graphene-silicon junctions. Applied Physics Letters, 2016, 108, 263502.	1.5	10
1225	Adsorption kinetics of benzene on graphene: An ultrahigh vacuum study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	20
1226	Low-temperature growth of layered molybdenum disulphide with controlled clusters. Scientific Reports, 2016, 6, 21854.	1.6	59
1227	Enhancing the quality of transferred single-layer graphene with poly(4-vinylphenol) interlayer on flexible substrates. Japanese Journal of Applied Physics, 2016, 55, 060305.	0.8	1
1228	Black-wax assisted lift-off and transfer of CVD grown graphene from copper foil substrates to various foreign substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	3
1229	Surface treatment process applicable to next generation graphene-based electronics. Carbon, 2016, 104, 119-124.	5.4	10
1230	Review of Graphene as a Solid State Diffusion Barrier. Small, 2016, 12, 120-134.	5.2	38
1231	A Scalable Clean Graphene Transfer Process Using Polymethylglutarimide as a Support Scaffold. Journal of the Electrochemical Society, 2016, 163, E159-E161.	1.3	19
1232	Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere, 2016, 153, 365-385.	4.2	465
1233	Graphene-based microfluidics for serial crystallography. Lab on A Chip, 2016, 16, 3082-3096.	3.1	48
1234	A novel Au-loaded magnetic metal organic framework/graphene multifunctional composite: Green synthesis and catalytic application. Journal of Industrial and Engineering Chemistry, 2016, 38, 132-140.	2.9	19
1235	Polymer-free graphene transfer for enhanced reliability of graphene field-effect transistors. 2D Materials, 2016, 3, 021003.	2.0	14

#	Article	IF	CITATIONS
1236	Technologies for trapped-ion quantum information systems. Quantum Information Processing, 2016, 15, 5351-5383.	1.0	17
1237	Strong and ductile graphene oxide reinforced PVA nanocomposites. Journal of Alloys and Compounds, 2016, 684, 254-260.	2.8	124
1238	Formation of hexagonal boron nitride on graphene-covered copper surfaces. Journal of Materials Research, 2016, 31, 945-958.	1.2	17
1239	Optical characterization of directly deposited graphene on a dielectric substrate. Optics Express, 2016, 24, 2965.	1.7	5
1240	Polarization-independent terahertz wave modulator based on graphene-silicon hybrid structure. Chinese Physics B, 2016, 25, 027301.	0.7	7
1241	Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene. Applied Surface Science, 2016, 366, 219-226.	3.1	22
1242	Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene. Carbon, 2016, 102, 245-254.	5.4	39
1243	Reducing the graphene grain density in three steps. Nanotechnology, 2016, 27, 105602.	1.3	14
1244	Graphene water transfer printing for 3D surface. , 2016, , .		6
1245	Rethinking Coal: Thin Films of Solution Processed Natural Carbon Nanoparticles for Electronic Devices. Nano Letters, 2016, 16, 2951-2957.	4.5	39
1246	Contamination-free suspended graphene structures by a Ti-based transfer method. Carbon, 2016, 103, 305-310.	5.4	15
1247	Application of graphene based materials for adsorption of pharmaceutical traces from water and wastewater- a review. Desalination and Water Treatment, 0 , 1 -14.	1.0	50
1248	Horizontally-connected ZnO-graphene hybrid films for multifunctional devices. Applied Surface Science, 2016, 379, 238-241.	3.1	11
1249	Weak-Field Hall Effect in Graphene with Long-Range Scatterers. Journal of the Physical Society of Japan, 2016, 85, 014708.	0.7	14
1250	Substrate Effect on Atomic Force Microscopy-Based Nanolithography of Graphene. IEEE Nanotechnology Magazine, 2016, 15, 607-613.	1.1	8
1251	Experimental Demonstration of Phase Modulation and Motion Sensing Using Graphene-Integrated Metasurfaces. Nano Letters, 2016, 16, 3607-3615.	4.5	84
1252	GRAPHENE: FROM SYNTHESIS TO APPLICATIONS IN FLEXIBLE ELECTRONICS. , 2016, , 87-115.		0
1253	Graphene based two dimensional hybrid nanogenerator for concurrently harvesting energy from sunlight and water flow. Carbon, 2016, 105, 199-204.	5.4	57

#	Article	IF	CITATIONS
1254	Controlled synthesis of nanocrystalline glass-like carbon thin films with tuneable electrical and optical properties. Chemical Engineering Journal, 2016, 299, 8-14.	6.6	11
1255	Large-area layer-by-layer controlled and fully bernal stacked synthesis of graphene. Carbon, 2016, 105, 205-213.	5 . 4	18
1256	Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13009-13017.	4.0	105
1257	Gas-Phase Synthesis and Control of Structure and Thickness of Graphene Layers on Copper Substrates. Metal Science and Heat Treatment, 2016, 58, 40-45.	0.2	26
1258	Application of graphene in dye and quantum dots sensitized solar cell. Solar Energy, 2016, 137, 531-550.	2.9	32
1259	Selective Separation of Metal Ions via Monolayer Nanoporous Graphene with Carboxyl Groups. Analytical Chemistry, 2016, 88, 10002-10010.	3.2	45
1260	Microwave-hydrothermal synthesis of boron/nitrogen co-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 22026-22033.	3.8	51
1261	Transfer-Free Fabrication of Graphene Scaffolds on High-k Dielectrics from Metal–Organic Oligomers. ACS Applied Materials & Interfaces, 2016, 8, 25469-25475.	4.0	1
1262	Towards a cleaner graphene surface in graphene field effect transistor via N,N-Dimethylacetamide. Materials Research Express, 2016, 3, 095011.	0.8	3
1263	Low-temperature controllable preparation of vertically standing graphene sheets on indium tin oxide glass and their field emission properties. Chemical Physics Letters, 2016, 664, 29-32.	1.2	5
1264	High performance silver nanowire based transparent electrodes reinforced by EVA resin adhesive. , 2016, , .		3
1265	An ultra-long and low junction-resistance Ag transparent electrode by electrospun nanofibers. RSC Advances, 2016, 6, 91641-91648.	1.7	29
1266	Direct transfer of multilayer graphene grown on a rough metal surface using PDMS adhesion engineering. Nanotechnology, 2016, 27, 365705.	1.3	5
1267	Enhanced Nucleation of High-k Dielectrics on Graphene by Atomic Layer Deposition. Chemistry of Materials, 2016, 28, 7268-7275.	3.2	27
1268	Effects of Cu substrate surface fluctuations on graphene during transfer. Materials Letters, 2016, 185, 156-160.	1.3	2
1269	Substrate dependent photochemical oxidation of monolayer graphene. RSC Advances, 2016, 6, 8489-8494.	1.7	4
1270	Reduced graphene oxide wrapped core–shell metal nanowires as promising flexible transparent conductive electrodes with enhanced stability. Nanoscale, 2016, 8, 18938-18944.	2.8	35
1271	Control of device characteristics by passivation of graphene field effect transistors with polymers. Current Applied Physics, 2016, 16, 1506-1510.	1.1	7

#	Article	IF	CITATIONS
1272	Graphene Coatings as Barrier Layers to Prevent the Water-Induced Corrosion of Silicate Glass. ACS Nano, 2016, 10, 9794-9800.	7. 3	58
1273	The Role of the Fermi Level Pinning in Gate Tunable Graphene-Semiconductor Junctions. IEEE Transactions on Electron Devices, 2016, 63, 4521-4526.	1.6	8
1274	Functionalized Graphene Nanosheet as a Membrane for Water Desalination Using Applied Electric Fields: Insights from Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2016, 120, 23883-23891.	1.5	81
1275	Functionalized-Graphene Composites: Fabrication and Applications in Sustainable Energy and Environment. Chemistry of Materials, 2016, 28, 8082-8118.	3.2	179
1277	Atomic layer deposition of ZnO on graphene for thin film transistor. Materials Science in Semiconductor Processing, 2016, 56, 324-328.	1.9	28
1278	The effects of a cationic surfactant on copper nanowires and their dimensions. Materials Chemistry and Physics, 2016, 184, 279-284.	2.0	3
1279	"Bottom-up―transparent electrodes. Journal of Colloid and Interface Science, 2016, 482, 267-289.	5.0	17
1280	Human‣ike Sensing and Reflexes of Grapheneâ€Based Films. Advanced Science, 2016, 3, 1600130.	5.6	37
1281	High-yield fabrication of suspended two-dimensional materials for atomic resolution imaging. RSC Advances, 2016, 6, 76273-76279.	1.7	2
1282	A facile method for the synthesis of transfer-free graphene from co-deposited nickel–carbon layers. Carbon, 2016, 109, 154-162.	5.4	9
1283	Transfer and control of the orientation of 3D nanostructures fabricated by nanoskiving. Nanoscale Horizons, 2016, 1, 473-479.	4.1	10
1284	Symmetry and Topology of Graphenes. , 2016, , 177-182.		0
1285	Nonlinear resonant frequency of graphene/elastic/piezoelectric laminated films under active electric loading. International Journal of Mechanical Sciences, 2016, 115-116, 624-633.	3.6	9
1286	Progress and Challenges in Transfer of Largeâ€Area Graphene Films. Advanced Science, 2016, 3, 1500343.	5.6	271
1287	Optical Properties of Graphene and Its Applications under Total Internal Reflection., 2016,, 687-700.		0
1288	Kinetic Modulation of Outer-Sphere Electron Transfer Reactions on Graphene Electrode with a Sub-surface Metal Substrate. Electrochimica Acta, 2016, 211, 1016-1023.	2.6	37
1289	Highly Enhanced Electromechanical Stability of Large-Area Graphene with Increased Interfacial Adhesion Energy by Electrothermal-Direct Transfer for Transparent Electrodes. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 23396-23403.	4.0	3
1290	All-Carbon Ultrafast Supercapacitor by Integrating Multidimensional Nanocarbons. Small, 2016, 12, 5684-5691.	5.2	39

#	Article	IF	CITATIONS
1291	Improving the Performance of a CH ₃ NH ₃ PbBr ₃ Perovskite Microrod Laser through Hybridization with Fewâ€Layered Graphene. Advanced Optical Materials, 2016, 4, 2057-2062.	3.6	20
1292	Seed-Assisted Growth of Single-Crystalline Patterned Graphene Domains on Hexagonal Boron Nitride by Chemical Vapor Deposition. Nano Letters, 2016, 16, 6109-6116.	4.5	69
1293	Graphene-stabilized lipid monolayer heterostructures: a novel biomembrane superstructure. Nanoscale, 2016, 8, 18646-18653.	2.8	18
1294	Accelerating bioelectric functional development of neural stem cells by graphene coupling: Implications for neural interfacing with conductive materials. Biomaterials, 2016, 106, 193-204.	5.7	124
1296	Fabrication of a transparent conducting Ni-nanomesh-embedded film using template-assisted Ni electrodeposition and hot transfer process. RSC Advances, 2016, 6, 81814-81817.	1.7	3
1297	Toward clean suspended CVD graphene. RSC Advances, 2016, 6, 83954-83962.	1.7	22
1298	Recent trends in preparation and application of carbon nanotube–graphene hybrid thin films. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 033002.	0.7	41
1299	Illumination impact on electrical properties of Ag/0.6Âwt% nanographene oxide doped poly(vinyl) Tj ETQq1 1 0.78	84314 rgB 2.8	T /Overlock
1300	Nanostructured transparent conductive films: Fabrication, characterization and applications. Materials Science and Engineering Reports, 2016, 109, 1-101.	14.8	104
1301	Flexible graphene-/a-Si:H multispectral photodetectors. , 2016, , .		0
1302	Spatially Controlled Nucleation of Single-Crystal Graphene on Cu Assisted by Stacked Ni. ACS Nano, 2016, 10, 11196-11204.	7.3	43
1302	0014 10 11104 1104	7.3	147
	2016, 10, 11196-11204. An Elastic Transparent Conductor Based on Hierarchically Wrinkled Reduced Graphene Oxide for		
1303	An Elastic Transparent Conductor Based on Hierarchically Wrinkled Reduced Graphene Oxide for Artificial Muscles and Sensors. Advanced Materials, 2016, 28, 9491-9497. Transfer-Free Growth of Multilayer Graphene Using Self-Assembled Monolayers. ACS Applied Materials	11.1	147
1303	An Elastic Transparent Conductor Based on Hierarchically Wrinkled Reduced Graphene Oxide for Artificial Muscles and Sensors. Advanced Materials, 2016, 28, 9491-9497. Transfer-Free Growth of Multilayer Graphene Using Self-Assembled Monolayers. ACS Applied Materials & Semp; Interfaces, 2016, 8, 27115-27121. Large-scale cellulose-assisted transfer of graphene toward industrial applications. Carbon, 2016, 110,	11.1	147
1303 1304 1305	An Elastic Transparent Conductor Based on Hierarchically Wrinkled Reduced Graphene Oxide for Artificial Muscles and Sensors. Advanced Materials, 2016, 28, 9491-9497. Transfer-Free Growth of Multilayer Graphene Using Self-Assembled Monolayers. ACS Applied Materials & Self-Assembled Monolayers. ACS Applied Monolayers & Self-Assembled Monolayers & Self-Assembled Monolayers & Self-Assembled Monolayers & Self-Assem	11.1 4.0 5.4	147 24 38
1304 1305 1306	An Elastic Transparent Conductor Based on Hierarchically Wrinkled Reduced Graphene Oxide for Artificial Muscles and Sensors. Advanced Materials, 2016, 28, 9491-9497. Transfer-Free Growth of Multilayer Graphene Using Self-Assembled Monolayers. ACS Applied Materials & Earge-scale cellulose-assisted transfer of graphene toward industrial applications. Carbon, 2016, 110, 286-291. Observing the evolution of graphene layers at high current density. Nano Research, 2016, 9, 3663-3670.	11.1 4.0 5.4 5.8	147 24 38 21

#	Article	IF	CITATIONS
1310	Wideâ€Range Strain Sensors Based on Highly Transparent and Supremely Stretchable Graphene/Agâ€Nanowires Hybrid Structures. Small, 2016, 12, 5058-5065.	5.2	72
1311	Preparation of graphene/Nile blue nanostructure on glassy carbon electrode: Decoration with platinum nanoparticles and application for electro-oxidation of methanol. International Journal of Hydrogen Energy, 2016, 41, 13459-13468.	3.8	11
1312	Selective growth of graphene in layer-by-layer via chemical vapor deposition. Nanoscale, 2016, 8, 14633-14642.	2.8	10
1313	Key Points for Transferring Graphene Grown by Chemical Vapor Deposition. , 2016, , 3-18.		1
1314	Fabrication Methods of Graphene Nanoribbons. , 2016, , 151-166.		0
1315	Functionalized Graphene: Synthesis and Its Applications in Electrochemistry., 2016, , 167-188.		0
1316	Electronic transport in graphene nanoribbons with sublattice-asymmetric doping. Physical Review B, 2016, 93, .	1.1	11
1317	Electrically conducting, transparent, graphene based nanocomposite coatings on flexible film substrate. Polymer Science - Series A, 2016, 58, 793-800.	0.4	2
1318	Visiblyâ€Transparent Organic Solar Cells on Flexible Substrates with Allâ€Graphene Electrodes. Advanced Energy Materials, 2016, 6, 1600847.	10.2	138
1319	Synthesis of integrated graphene films with self-assembled single-layer channels and multi-layer electrodes via a single process. Carbon, 2016, 107, 837-843.	5 . 4	0
1320	Isotropic Growth of Graphene toward Smoothing Stitching. ACS Nano, 2016, 10, 7189-7196.	7.3	47
1321	Photoresponse enhancement in graphene/silicon infrared detector by controlling photocarrier collection. Materials Research Express, 2016, 3, 076203.	0.8	11
1323	Synthesis of large-area monolayer and bilayer graphene using solid coronene by chemical vapor deposition. Carbon, 2016, 108, 356-362.	5.4	34
1324	Subwavelength Terahertz Imaging of Graphene Photoconductivity. Nano Letters, 2016, 16, 7019-7024.	4. 5	27
1325	Graphene Synthesis., 2016,, 43-80.		0
1326	High surface area graphene foams by chemical vapor deposition. 2D Materials, 2016, 3, 045013.	2.0	53
1327	Strong hole-doping and robust resistance-decrease in proton-irradiated graphene. Scientific Reports, 2016, 6, 21311.	1.6	7
1328	Proposing the prospects of Ti ₃ CN transition metal carbides (MXenes) as anodes of Li-ion batteries: a DFT study. Physical Chemistry Chemical Physics, 2016, 18, 32937-32943.	1.3	105

#	Article	IF	CITATIONS
1329	Improved functionality of PEDOT:PSS thin films via graphene doping, fabricated by ultrasonic substrate vibration-assisted spray coating. Synthetic Metals, 2016, 222, 309-317.	2.1	39
1330	Efficient simulation of tunable graphene-based frequency selective surfaces (GFSS) with an improved HIE-FDTD method. , 2016, , .		0
1331	Graphene oxide nanoparticles for two-photon fluorescence imaging of zebrafish. Optical and Quantum Electronics, 2016, 48, 1.	1.5	10
1332	Automatic graphene transfer system for improved material quality and efficiency. Scientific Reports, 2016, 6, 21676.	1.6	34
1333	The effect of temperature and type of peroxide on graphene synthesized by improved Hummers' method. International Nano Letters, 2016, 6, 211-214.	2.3	9
1334	Graphene / a-Si:H multispectral photodetectors. , 2016, , .		0
1335	Application of the Generalized Relativistic Kinetic and Hydrodynamic Equations to the Study of Graphene., 2016,, 285-352.		0
1336	Growing Ultra-flat Organic Films on Graphene with a Face-on Stacking via Moderate Molecule-Substrate Interaction. Scientific Reports, 2016, 6, 28895.	1.6	31
1337	Graphene-coated meshes for electroactive flow control devices utilizing two antagonistic functions of repellency and permeability. Nature Communications, 2016, 7, 13345.	5.8	36
1338	Direct evaluation of CVD multilayer graphene elastic properties. RSC Advances, 2016, 6, 103707-103713.	1.7	7
1339	Reflection high-energy electron diffraction measurements of reciprocal space structure of 2D materials. Nanotechnology, 2016, 27, 485703.	1.3	21
1340	A Flexible and Thin Graphene/Silver Nanowires/Polymer Hybrid Transparent Electrode for Optoelectronic Devices. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31212-31221.	4.0	105
1341	First principles calculation of current-voltage characteristics of defected zigzag graphene nanoribons. , 2016, , .		1
1342	Influence of plasma process on the nitrogen configuration in graphene. Diamond and Related Materials, 2016, 70, 211-218.	1.8	23
1343	Architectural Engineering of Nanowire Network Fine Pattern for 30 νm Wide Flexible Quantum Dot Light-Emitting Diode Application. ACS Nano, 2016, 10, 10023-10030.	7.3	62
1344	Barrier height reconfiguration of graphene/ZnO:N barristor using ferroelectric polymer., 2016,,.		0
1345	Orientation Control of Selected Organic Semiconductor Crystals Achieved by Monolayer Graphene Templates. Advanced Materials Interfaces, 2016, 3, 1600621.	1.9	16
1346	Hexagonal Boron Nitride assisted transfer and encapsulation of large area CVD graphene. Scientific Reports, 2016, 6, 30210.	1.6	33

#	Article	IF	CITATIONS
1347	Gate-dependent asymmetric transport characteristics in pentacene barristors with graphene electrodes. Nanotechnology, 2016, 27, 475201.	1.3	3
1348	Piezoresistive Properties of Suspended Graphene Membranes under Uniaxial and Biaxial Strain in Nanoelectromechanical Pressure Sensors. ACS Nano, 2016, 10, 9879-9886.	7. 3	110
1349	Aligned silver nanowires as transparent conductive electrodes for flexible optoelectronic devices. Journal of Materials Chemistry C, 2016, 4, 11074-11080.	2.7	26
1350	Graphene in Photocatalysis: A Review. Small, 2016, 12, 6640-6696.	5.2	836
1351	Large-scale Growth and Simultaneous Doping of Molybdenum Disulfide Nanosheets. Scientific Reports, 2016, 6, 24054.	1.6	15
1353	Graphene Channels Interfaced with Quantum Dots in Field Effect Transistors: Electrical and Photo-Induced Effects. MRS Advances, 2016, 1, 1597-1603.	0.5	0
1355	Synthetic Twoâ€Dimensional Materials: A New Paradigm of Membranes for Ultimate Separation. Advanced Materials, 2016, 28, 6529-6545.	11.1	192
1356	Negative Quantum Capacitance Effects in Metal–Insulator–Semiconductor Devices with Composite Grapheneâ€Encapsulated Gates. Advanced Electronic Materials, 2016, 2, 1500297.	2.6	6
1357	Scattering strength of the scatterer inducing variability in graphene on silicon oxide. Journal of Physics Condensed Matter, 2016, 28, 115301.	0.7	3
1358	Vertically grown nanowire crystals of dibenzotetrathienocoronene (DBTTC) on large-area graphene. RSC Advances, 2016, 6, 59582-59589.	1.7	6
1359	Transparent conductive Ta/Al/Ta-grid electrode for optoelectronic and electromagnetic interference shielding applications. Thin Solid Films, 2016, 612, 350-357.	0.8	19
1360	Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-Performance Pressure-Sensitive Sensors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16869-16875.	4.0	35
1361	Graphene Oxide-Assisted Liquid Phase Exfoliation of Graphite into Graphene for Highly Conductive Film and Electromechanical Sensors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16521-16532.	4.0	98
1362	Two dimensional, electronic particle tracking in liquids with a graphene-based magnetic sensor array. Nanoscale, 2016, 8, 13652-13658.	2.8	3
1363	Flexible, transparent and high-power triboelectric generator with asymmetric graphene/ITO electrodes. Nanotechnology, 2016, 27, 30LT01.	1.3	11
1364	Duplex Bioelectronic Tongue for Sensing Umami and Sweet Tastes Based on Human Taste Receptor Nanovesicles. ACS Nano, 2016, 10, 7287-7296.	7.3	78
1365	Third order nonlinear optical response exhibited by mono- and few-layers of WS 2. 2D Materials, 2016, 3, 021005.	2.0	46
1366	Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate. Nano Energy, 2016, 26, 746-754.	8.2	179

#	Article	IF	Citations
1367	Substrate-dependent resistance decrease of graphene by ultraviolet-ozone charge doping. RSC Advances, 2016, 6, 62091-62098.	1.7	4
1368	Laminated Graphene Films for Flexible Transparent Thin Film Encapsulation. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 14725-14731.	4.0	78
1369	Grain Boundaries in Chemical Vapor Deposition-Grown Graphene. , 2016, , 123-142.		0
1370	Mechanisms of graphene fabrication through plasma-induced layer-by-layer thinning. Carbon, 2016, 105, 496-509.	5.4	27
1371	Perspectives of Polystyrene Composite with Fullerene, Carbon Black, Graphene, and Carbon Nanotube: A Review. Polymer-Plastics Technology and Engineering, 2016, 55, 1988-2011.	1.9	33
1372	Enhanced Ga2O3/SiC ultraviolet photodetector with graphene top electrodes. Journal of Alloys and Compounds, 2016, 680, 247-251.	2.8	93
1373	Local property change of graphene induced by a Cu nanoparticle. Carbon, 2016, 98, 666-670.	5 . 4	6
1374	Improved topological conformity enhances heat conduction across metal contacts on transferred graphene. Carbon, 2016, 105, 268-274.	5. 4	52
1375	Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters. Nanotechnology, 2016, 27, 275301.	1.3	4
1376	Ultra-thin Graphitic Film: Synthesis and Physical Properties. Nanoscale Research Letters, 2016, 11, 54.	3.1	15
1377	Matrix assisted low temperature growth of graphene. Carbon, 2016, 107, 325-331.	5 . 4	11
1378	Vapor–solid synthesis and enhanced thermoelectric properties of non-planar bismuth selenide nanoplates on graphene substrate. Journal of Materials Science, 2016, 51, 8224-8232.	1.7	17
1379	Manual turbostratic stacked graphene transistor: A study on electrical properties and device potential. Diamond and Related Materials, 2016, 68, 28-36.	1.8	0
1380	Probing the interaction of ionic liquids with graphene using surfaceâ€enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2016, 47, 585-590.	1.2	18
1381	On the use of two dimensional hexagonal boron nitride as dielectric. Microelectronic Engineering, 2016, 163, 119-133.	1.1	96
1382	Multilayer Graphene with a Rippled Structure as a Spacer for Improving Plasmonic Coupling. Advanced Functional Materials, 2016, 26, 5093-5101.	7.8	33
1383	A Rational Strategy for Graphene Transfer on Substrates with Rough Features. Advanced Materials, 2016, 28, 2382-2392.	11.1	78
1384	Frictional behaviour of polycrystalline graphene grown on liquid metallic matrix. Tribology International, 2016, 93, 628-639.	3.0	27

#	Article	IF	Citations
1385	Energy and resource use assessment of graphene as a substitute for indium tin oxide in transparent electrodes. Journal of Cleaner Production, 2016, 132, 289-297.	4.6	51
1386	Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3295-3300.	4.0	20
1387	Significantly improved thickness uniformity of graphene monolayers grown by chemical vapor deposition by texture and morphology control of the copper foil substrate. Carbon, 2016, 100, 441-449.	5.4	30
1388	A 250-mm-width, flexible, and continuous roll-to-roll slot-die coated carbon nanotube/silver nanowire film fabrication and a study on the effect of anti-reflective overcoat. Thin Solid Films, 2016, 598, 95-102.	0.8	29
1389	Effect of Residual Charge Carrier on the Performance of a Graphene Field Effect Transistor. Chinese Physics Letters, 2016, 33, 017201.	1.3	1
1390	Synthesis and characterization of porous carbon–MoS ₂ nanohybrid materials: electrocatalytic performance towards selected biomolecules. Journal of Materials Chemistry B, 2016, 4, 1448-1457.	2.9	23
1391	Probing weak localization in chemical vapor deposition graphene wide constriction using scanning gate microscopy. Nanotechnology, 2016, 27, 075601.	1.3	6
1392	Synthesis and functionalization of graphene and application in electrochemical biosensing. Nanotechnology Reviews, 2016, 5, .	2.6	26
1393	Mixed multilayered vertical heterostructures utilizing strained monolayer WS ₂ . Nanoscale, 2016, 8, 2639-2647.	2.8	27
1394	Flexible transparent conductive films combining flexographic printed silver grids with CNT coating. Nanotechnology, 2016, 27, 065202.	1.3	37
1395	Modulation characteristics of graphene-based thermal emitters. Applied Physics Express, 2016, 9, 012105.	1.1	16
1396	Transfer of Chemically Modified Graphene with Retention of Functionality for Surface Engineering. Nano Letters, 2016, 16, 1455-1461.	4.5	19
1397	Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications. Nano Research, 2016, 9, 72-93.	5.8	62
1398	Flexible, stretchable, transparent and electrically conductive polymer films via a hybrid electrospinning and solution casting process: In-plane anisotropic conductivity for electro-optical applications. Displays, 2016, 45, 48-57.	2.0	21
1399	Flexible polymer dispersed liquid crystal film with graphene transparent electrodes. Current Applied Physics, 2016, 16, 409-414.	1.1	29
1400	Enhanced sheet conductivity of Langmuir–Blodgett assembled graphene thin films by chemical doping. 2D Materials, 2016, 3, 015002.	2.0	26
1401	Photocatalytic ozonation of oxalic acid by g-C 3 N 4 /graphene composites under simulated solar irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 315, 138-144.	2.0	41
1402	NO2 sensor with a graphite nanopowder working electrode. Sensors and Actuators B: Chemical, 2016, 226, 299-304.	4.0	6

#	Article	IF	CITATIONS
1403	[Cu(phen)2]2+ acts as electrochemical indicator and anchor to immobilize probe DNA in electrochemical DNA biosensor. Analytical Biochemistry, 2016, 492, 56-62.	1.1	20
1404	Enhancement of the Electrical Properties of CVD-Grown Graphene with Ascorbic Acid Treatment. Journal of Electronic Materials, 2016, 45, 1160-1164.	1.0	1
1405	Moving beyond flexible to stretchable conductive electrodes using metal nanowires and graphenes. Nanoscale, 2016, 8, 1789-1822.	2.8	69
1406	Effects of thermally-induced changes of Cu grains on domain structure and electrical performance of CVD-grown graphene. Nanoscale, 2016, 8, 930-937.	2.8	5
1407	Crackless transfer of large-area graphene films for superior-performance transparent electrodes. Carbon, 2016, 98, 457-462.	5 . 4	53
1408	Interactions Between Electrolytes and Carbon-Based Materials—NMR Studies on Electrical Double-Layer Capacitors, Lithium-Ion Batteries, and Fuel Cells. Annual Reports on NMR Spectroscopy, 2016, , 237-318.	0.7	17
1409	Structure and field emission of graphene layers on top of silicon nanowire arrays. Applied Surface Science, 2016, 362, 250-256.	3.1	14
1410	Electrical and electrochemical properties of graphene modulated through surface functionalization. RSC Advances, 2016, 6, 27404-27415.	1.7	22
1411	High performance all-carbon composite transparent electrodes containing uniform carbon nanotube networks. Journal of Alloys and Compounds, 2016, 675, 37-45.	2.8	9
1412	Probing the adhesion interactions of graphene on silicon oxide by nanoindentation. Carbon, 2016, 103, 63-72.	5.4	50
1413	Study of nitrogen doping of graphene via in-situ transport measurements. Physica B: Condensed Matter, 2016, 490, 21-24.	1.3	9
1414	Flexible Hall sensors based on graphene. Nanoscale, 2016, 8, 7683-7687.	2.8	61
1415	Advances in Nanomaterials. Advanced Structured Materials, 2016, , .	0.3	5
1416	The Synthesis, Properties, and Applications of Heteroatom-Doped Graphenes. Advanced Structured Materials, 2016, , 103-133.	0.3	3
1417	Effect of glass surface treatments on the deposition of highly transparent reduced graphene oxide films by dropcasting method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498, 231-238.	2.3	19
1418	Controllable Sliding Transfer of Waferâ€Size Graphene. Advanced Science, 2016, 3, 1600006.	5.6	25
1419	Synthesis of Single-layer Graphene: A Review of Recent Development. Procedia Chemistry, 2016, 19, 916-921.	0.7	100
1420	Wide-range work-function tuning of active graphene transparent electrodes via hole doping. RSC Advances, 2016, 6, 32746-32756.	1.7	29

#	Article	IF	CITATIONS
1421	Synthesis of graphene. International Nano Letters, 2016, 6, 65-83.	2.3	516
1422	Enhanced Graphene Mechanical Properties through Ultrasmooth Copper Growth Substrates. Nano Letters, 2016, 16, 1657-1662.	4.5	59
1423	Substrate-Sensitive Graphene Oxidation. Journal of Physical Chemistry Letters, 2016, 7, 867-873.	2.1	26
1424	Deposition of graphene/graphene-related phases on different substrates by thermal decomposition of acetone. Optical and Quantum Electronics, 2016, 48, 1.	1.5	3
1425	CVD Graphene Transferred with Au Nanoparticles: An Ideal Platform for TERS and SERS on a Single Triangular Nanoplate. Journal of Physical Chemistry C, 2016, 120, 8315-8322.	1.5	13
1426	Two dimensional MoS2/graphene p-n heterojunction diode: Fabrication and electronic characteristics. Journal of Alloys and Compounds, 2016, 671, 276-282.	2.8	36
1427	Defects, a challenge for graphene in flexible electronics. Solid State Communications, 2016, 229, 49-52.	0.9	11
1428	Evaluation of PMMA Residues as a Function of Baking Temperature and a Graphene Heat-Free-Transfer Process to Reduce Them. ECS Journal of Solid State Science and Technology, 2016, 5, P138-P141.	0.9	7
1429	Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering Reports, 2016, 102, 1-72.	14.8	221
1430	Fabrication and design of metal nano-accordion structures using atomic layer deposition and interference lithography. Nanoscale, 2016, 8, 4984-4990.	2.8	4
1431	Synthesis and applications of large-area single-layer graphene. RSC Advances, 2016, 6, 17818-17844.	1.7	24
1432	Scalable residue-free graphene for surface-enhanced Raman scattering. Carbon, 2016, 98, 567-571.	5.4	16
1433	Copper induced synthesis of graphene using amorphous carbon. Microelectronics Reliability, 2016, 61, 87-90.	0.9	14
1434	Preparation of graphene–TiO ₂ nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation. Journal of Experimental Nanoscience, 2016, 11, 722-736.	1.3	45
1435	Combined effect of double antireflection coating and reversible molecular doping on performance of few-layer graphene/n-silicon Schottky barrier solar cells. Solar Energy, 2016, 127, 198-205.	2.9	26
1436	On adatomic-configuration-mediated correlation between electrotransport and electrochemical properties of graphene. Carbon, 2016, 101, 37-48.	5.4	35
1437	Free space material characterization of carbon nanotube thin films at sub-terahertz frequencies. Journal of Electromagnetic Waves and Applications, 2016, 30, 589-598.	1.0	0
1438	Modified silver nanowire transparent electrodes with exceptional stability against oxidation. Nanotechnology, 2016, 27, 105705.	1.3	22

#	Article	IF	Citations
1439	Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells. Nanoscale, 2016, 8, 6473-6478.	2.8	56
1440	Operating frequency of ferroelectric memory at low-terahertz range. Ferroelectrics, 2016, 493, 39-46.	0.3	2
1441	Spatial variation of wear and electrical properties across wrinkles in chemical vapour deposition graphene. Carbon, 2016, 102, 304-310.	5.4	90
1442	Direct Identification of Multilayer Graphene Stacks on Copper by Optical Microscopy. Chemistry of Materials, 2016, 28, 2165-2171.	3.2	19
1443	The green reduction of graphene oxide. RSC Advances, 2016, 6, 27807-27828.	1.7	235
1444	On the origin of contact resistances in graphene devices fabricated by optical lithography. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	17
1445	Graphene "microdrums―on a freestanding perforated thin membrane for high sensitivity MEMS pressure sensors. Nanoscale, 2016, 8, 7663-7671.	2.8	75
1446	Spectroscopic Investigation of Plasma-Fluorinated Monolayer Graphene and Application for Gas Sensing. ACS Applied Materials & Sensing. Sensing. ACS Applied Materials & Sensing. Sensing. Sensing. ACS Applied Materials & Sensing.	4.0	77
1447	Versatile Polymer-Free Graphene Transfer Method and Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8008-8016.	4.0	95
1448	Healing Graphene Defects Using Selective Electrochemical Deposition: Toward Flexible and Stretchable Devices. ACS Nano, 2016, 10, 1539-1545.	7.3	47
1449	High-quality monolayer graphene for bulk laser mode-locking near $2\hat{A}^{1/4}$ m. Optical and Quantum Electronics, 2016, 48, 1.	1.5	45
1450	Nano-Bioelectronics. Chemical Reviews, 2016, 116, 215-257.	23.0	530
1451	Oxygen intercalation at the graphene/Ni(111) interface: Evidences of non-metal islands underneath graphene layer. Carbon, 2016, 100, 258-264.	5.4	17
1452	Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper. Nanoscale, 2016, 8, 2434-2444.	2.8	81
1453	Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Physics Reports, 2016, 606, 1-58.	10.3	449
1454	Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns. ACS Nano, 2016, 10, 1404-1410.	7.3	69
1455	Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum Dots. ACS Applied Materials & Dots. ACS	4.0	86
1456	Conductive Polymer Hydrogels. Springer Series on Polymer and Composite Materials, 2016, , 19-44.	0.5	42

#	Article	IF	CITATIONS
1457	Robust graphene wet transfer process through low molecular weight polymethylmethacrylate. Carbon, 2016, 98, 352-357.	5.4	51
1458	Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory. Nano Letters, 2016, 16, 334-340.	4.5	117
1459	Effective transfer of micron-size graphene to microfibers for photonic applications. Carbon, 2016, 96, 1114-1119.	5 . 4	33
1460	Selective atomic layer deposition onto directly transferred monolayer graphene. Materials Letters, 2016, 165, 45-49.	1.3	10
1461	CVD growth of 1D and 2D sp2 carbon nanomaterials. Journal of Materials Science, 2016, 51, 640-667.	1.7	70
1462	Metal-catalyst-free and controllable growth of high-quality monolayer and AB-stacked bilayer graphene on silicon dioxide. Carbon, 2016, 96, 203-211.	5.4	48
1463	Transport in Disordered Graphene. Springer Theses, 2016, , 55-113.	0.0	0
1464	Perspectives of Epoxy/Graphene Oxide Composite: Significant Features and Technical Applications. Polymer-Plastics Technology and Engineering, 2016, 55, 704-722.	1.9	47
1465	Electron doping and stability enhancement of doped graphene using a transparent polar dielectric film. Journal of Materials Science, 2016, 51, 748-755.	1.7	2
1466	Multilayer stacking and metal deposition effects on large area graphene on GaAs. Carbon, 2016, 96, 83-90.	5.4	10
1467	Electrografting of thionine diazonium cation onto the graphene edges and decorating with Au nano-dendrites or glucose oxidase: Characterization and electrocatalytic applications. Biosensors and Bioelectronics, 2016, 77, 478-485.	5.3	20
1468	Printing Ink Formulations. , 2016, , 41-55.		20
1469	Fluorescent biosensors enabled by graphene and graphene oxide. Biosensors and Bioelectronics, 2017, 89, 96-106.	5. 3	215
1470	Graphene Q-Switched Vectorial Fiber Laser With Switchable Polarized Output. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 26-32.	1.9	16
1471	Capillary-Force-Induced Cold Welding in Silver-Nanowire-Based Flexible Transparent Electrodes. Nano Letters, 2017, 17, 1090-1096.	4. 5	207
1472	Efficient Flexible Organic/Inorganic Hybrid Perovskite Lightâ€Emitting Diodes Based on Graphene Anode. Advanced Materials, 2017, 29, 1605587.	11.1	200
1473	Enhanced universal absorption of graphene in a Salisbury screen. Journal of Applied Physics, 2017, 121, .	1.1	13
1474	Graphene and its nanocomposites as a platform for environmental applications. Chemical Engineering Journal, 2017, 315, 210-232.	6.6	108

#	Article	IF	CITATIONS
1475	Investigation of the electron-surface phonon interaction effects in graphene on a substrate made of polar materials. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87, 192-198.	1.3	4
1476	Flexible CuInSe ₂ Nanocrystal Solar Cells on Paper. ACS Energy Letters, 2017, 2, 574-581.	8.8	54
1477	Two-Dimensional SnS: A Phosphorene Analogue with Strong In-Plane Electronic Anisotropy. ACS Nano, 2017, 11, 2219-2226.	7.3	239
1478	Raman spectroscopy and imaging of Bernalâ€stacked bilayer graphene synthesized on copper foil by chemical vapour deposition: growth dependence on temperature. Journal of Raman Spectroscopy, 2017, 48, 639-646.	1.2	4
1479	Direct transfer of graphene and application in low-voltage hybrid transistors. RSC Advances, 2017, 7, 2172-2179.	1.7	16
1480	Precursor Geometry Determines the Growth Mechanism in Graphene Nanoribbons. Journal of Physical Chemistry C, 2017, 121, 2896-2904.	1.5	89
1481	Direct Observation of Poly(Methyl Methacrylate) Removal from a Graphene Surface. Chemistry of Materials, 2017, 29, 2033-2039.	3.2	41
1482	Self-Terminating Confinement Approach for Large-Area Uniform Monolayer Graphene Directly over Si/SiO _x by Chemical Vapor Deposition. ACS Nano, 2017, 11, 1946-1956.	7. 3	108
1483	Toward Green Synthesis of Graphene Oxide Using Recycled Sulfuric Acid via Couette–Taylor Flow. ACS Omega, 2017, 2, 186-192.	1.6	17
1484	Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates. 2D Materials, 2017, 4, 024002.	2.0	42
1485	Reviewâ€"Critical Considerations of High Quality Graphene Synthesized by Plasma-Enhanced Chemical Vapor Deposition for Electronic and Energy Storage Devices. ECS Journal of Solid State Science and Technology, 2017, 6, M3035-M3048.	0.9	30
1486	All-graphene strain sensor on soft substrate. Carbon, 2017, 116, 753-759.	5.4	164
1487	MATHEMATICAL MODELLING IN NANOTECHNOLOGY USING CALCULUS OF VARIATIONS. Bulletin of the Australian Mathematical Society, 2017, 95, 350-351.	0.3	0
1488	A Highly Stretchable and Fatigueâ€Free Transparent Electrode Based on an Inâ€Plane Buckled Au Nanotrough Network. Advanced Electronic Materials, 2017, 3, 1600534.	2.6	35
1489	Electrical tuning of the polarization state of light using graphene-integrated anisotropic metasurfaces. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160061.	1.6	18
1490	Growth Mechanism for Low Temperature PVD Graphene Synthesis on Copper Using Amorphous Carbon. Scientific Reports, 2017, 7, 44112.	1.6	23
1491	Microwave characterization of graphene field effect transistors on lithium niobate ferroelectric substrates. Materials Research Express, 2017, 4, 035042.	0.8	3
1492	Self-organized semiconductor nano-network on graphene. Nanotechnology, 2017, 28, 145602.	1.3	1

#	ARTICLE	IF	CITATIONS
1493	Growth behavior of Bi ₂ Te ₃ and Sb ₂ Te ₃ thin films on graphene substrate grown by plasma-enhanced chemical vapor deposition. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1600369.	1.2	11
1494	Fine tuning of optical transition energy of twisted bilayer graphene via interlayer distance modulation. Physical Review B, 2017, 95, .	1.1	12
1495	Development of graphene drum resonator with nanocavity by low-pressure dry transfer technique. , 2017, , .		0
1496	In-Plane Thermal Conductivity of Polycrystalline Chemical Vapor Deposition Graphene with Controlled Grain Sizes. Nano Letters, 2017, 17, 2361-2366.	4.5	66
1497	Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method. Carbon, 2017, 116, 167-173.	5.4	55
1498	High quality graphene films with a clean surface prepared by an UV/ozone assisted transfer process. Journal of Materials Chemistry C, 2017, 5, 1880-1884.	2.7	54
1499	Neutral plane control by using polymer/graphene flake composites for flexible displays. RSC Advances, 2017, 7, 8186-8191.	1.7	16
1500	Ultra-Thin Pyrocarbon Films as a Versatile Coating Material. Nanoscale Research Letters, 2017, 12, 121.	3.1	15
1501	Smart Polymer Nanocomposites. Springer Series on Polymer and Composite Materials, 2017, , .	0.5	17
1502	High-temperature creep of carbon nanofiber-reinforced and graphene oxide-reinforced alumina composites sintered by spark plasma sintering. Ceramics International, 2017, 43, 7136-7141.	2.3	21
1503	Nano gold decorated reduced graphene oxide wrapped polymethylmethacrylate for supercapacitor applications. RSC Advances, 2017, 7, 2137-2150.	1.7	48
1504	Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials. Carbon, 2017, 117, 75-81.	5.4	33
1505	The direct measurement of the electronic density of states of graphene using metastable induced electron spectroscopy. 2D Materials, 2017, 4, 025068.	2.0	15
1506	Dimensional-Hybrid Structures of 2D Materials with ZnO Nanostructures via pH-Mediated Hydrothermal Growth for Flexible UV Photodetectors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15031-15037.	4.0	38
1507	Effect of graphene grains size on the microwave electromagnetic shielding effectiveness of graphene/polymer multilayers. Journal of Nanophotonics, 2017, 11, 032511.	0.4	3
1508	Temperature-induced strain release via rugae on the nanometer and micrometer scale in graphene monolayer. Carbon, 2017, 119, 483-491.	5.4	13
1509	Alignment of liquid crystals on ion beam-spurted graphene oxide thin layers. Journal of the Society for Information Display, 2017, 25, 83-89.	0.8	2
1510	Graphene photodetectors with a bandwidth  >76 GHz fabricated in a 6″ wafer process line. Journal Physics D: Applied Physics, 2017, 50, 124004.	1.3	58

#	Article	IF	Citations
1511	A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?. Npj 2D Materials and Applications, 2017, 1 , .	3.9	211
1512	Defect-mediated leakage in lithium intercalated bilayer graphene. AIP Advances, 2017, 7, .	0.6	5
1513	Conductive nonwetting flexible substrate. Organic Electronics, 2017, 46, 247-252.	1.4	4
1514	Improvement of thermoelectric properties of Bi ₂ Te ₃ and Sb ₂ Te ₃ Telian Spid Research Letters, 2017, 11, 1700029.	1.2	14
1515	One-step electrochemical preparation of graphene-coated pencil graphite electrodes by cyclic voltammetry and their application in vanadium redox batteries. Electrochimica Acta, 2017, 243, 239-249.	2.6	69
1516	Role of Graphene in Water-Assisted Oxidation of Copper in Relation to Dry Transfer of Graphene. Chemistry of Materials, 2017, 29, 4546-4556.	3.2	63
1517	Xenon Flash Lampâ€Induced Ultrafast Multilayer Graphene Growth. Particle and Particle Systems Characterization, 2017, 34, 1600429.	1.2	26
1518	Graphene based nanosensor for aqueous phase detection of nitroaromatics. RSC Advances, 2017, 7, 25519-25527.	1.7	13
1519	Electrical transport properties of graphene nanowalls grown at low temperature using plasma enhanced chemical vapor deposition. Materials Research Express, 2017, 4, 055007.	0.8	15
1520	Efficient 2-D leaky-wave antenna configurations based on graphene metasurfaces. International Journal of Microwave and Wireless Technologies, 2017, 9, 1293-1303.	1.5	47
1521	Highly oriented CulnS 2 thin films on graphene electrodes for solar-cell applications. Thin Solid Films, 2017, 634, 1-5.	0.8	9
1522	Ag-nanowires-doped graphene/Si Schottky-junction solar cells encapsulated with another graphene layer. Current Applied Physics, 2017, 17, 1136-1141.	1.1	23
1523	Very large suspended graphene as an efficient electron-transparent gate electrode. Carbon, 2017, 119, 371-377.	5.4	5
1524	Preparation of Adhesive Carbon Film on Cu Substrate by Electro-Oxidation of C ^{2 ⰰ} ₂ in a LiCl-KCl-CaCl ₂ -CaC ₂ Melt. Journal of the Electrochemical Society, 2017, 164, D380-D385.	1.3	10
1525	Improved performance of graphene by effectively removing surface poly-methyl methacrylate residual during the process of wet-etching transfer. Molecular Crystals and Liquid Crystals, 2017, 644, 26-35.	0.4	1
1526	Towards the standardization of graphene growth through carbon depletion, refilling and nucleation. Carbon, 2017, 119, 350-354.	5.4	19
1527	Effects of substrates on Raman spectroscopy in chemical vapor deposition grown graphene transferred with poly (methyl methacrylate). Solid State Communications, 2017, 264, 31-34.	0.9	14
1528	Graphene-based CO ₂ sensing and its cross-sensitivity with humidity. RSC Advances, 2017, 7, 22329-22339.	1.7	68

#	Article	IF	CITATIONS
1529	Nondestructive rubbing fabrication of flexible graphene film for precise temperature controlling. AIP Advances, $2017, 7, .$	0.6	4
1530	Graphene-Al2O3-silicon heterojunction solar cells on flexible silicon substrates. Journal of Applied Physics, 2017, 121, .	1.1	34
1531	Ambient pressure photoelectron spectroscopy: Practical considerations and experimental frontiers. Journal of Physics Condensed Matter, 2017, 29, 053002.	0.7	63
1532	Silver-decorated reduced graphene oxides as novel building blocks for transparent conductive films. RSC Advances, 2017, 7, 2058-2065.	1.7	32
1533	Rapid synthesis of a continuous graphene film by chemical vapor deposition on Cu foil with the various morphological conditions modified by Ar plasma. Carbon, 2017, 120, 176-184.	5.4	10
1534	2D printing technologies using graphene-based materials. Physics-Uspekhi, 2017, 60, 204-218.	0.8	15
1535	Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 223, 1-23.	1.7	200
1536	Ferroelectric Polarizationâ€Assisted Sensitive and Highâ€Power Photodetector in Broad Ultravioletâ€toâ€Visible Range. Advanced Optical Materials, 2017, 5, 1700158.	3.6	19
1537	Optical properties of conductive silver-nanowire films with different nanowire lengths. Nano Research, 2017, 10, 3706-3714.	5.8	24
1538	Stretchable electronic devices using graphene and its hybrid nanostructures. FlatChem, 2017, 3, 71-91.	2.8	34
1539	Flexible hybrid graphene/a-Si:H multispectral photodetectors. Nanoscale, 2017, 9, 8573-8579.	2.8	23
1540	Graphene-based optically transparent dipole antenna. Applied Physics Letters, 2017, 110, .	1.5	32
1541	CMOS- compatible fabrication method of graphene-based micro devices. Materials Science in Semiconductor Processing, 2017, 67, 92-97.	1.9	16
1542	High-performance graphene-based flexible heater for wearable applications. RSC Advances, 2017, 7, 27001-27006.	1.7	91
1543	Fast Batch Production of High-Quality Graphene Films in a Sealed Thermal Molecular Movement System. Small, 2017, 13, 1700651.	5.2	33
1544	Directed growth of graphene nanomesh in purified argon via chemical vapor deposition. Nanotechnology, 2017, 28, 245604.	1.3	2
1545	Hybrid Doping of Few-Layer Graphene via a Combination of Intercalation and Surface Doping. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20020-20028.	4.0	11
1546	Nanowire-Mesh-Templated Growth of Out-of-Plane Three-Dimensional Fuzzy Graphene. ACS Nano, 2017, 11, 6301-6311.	7.3	46

#	Article	IF	CITATIONS
1547	3D N-doped graphene nanomesh foam for long cycle life lithium-sulfur battery. Chemical Engineering Journal, 2017, 326, 265-272.	6.6	43
1548	Graphene and Related Materials for Resistive Random Access Memories. Advanced Electronic Materials, 2017, 3, 1600195.	2.6	175
1549	Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices. Small, 2017, 13, 1700929.	5.2	33
1550	Controlled preparation of Ag nanoparticles on graphene with different amount of defects for surface-enhanced Raman scattering. RSC Advances, 2017, 7, 27105-27112.	1.7	3
1551	Achieving Low Contact Resistance by Engineering a Metal–Graphene Interface Simply with Optical Lithography. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21573-21578.	4.0	8
1552	Light-Triggered Ternary Device and Inverter Based on Heterojunction of van der Waals Materials. ACS Nano, 2017, 11, 6319-6327.	7.3	78
1553	Graphene on Pt ₃ Ni(1 1 1): a suitable platform for tunable charge doping, electron–phon coupling and plasmonic excitations. 2D Materials, 2017, 4, 035003.	on 2.0	11
1554	Enhanced photocatalytic properties of ZnO/reduced graphene oxide sheets (rGO) composites with controllable morphology and composition. Applied Surface Science, 2017, 412, 58-68.	3.1	132
1555	Roles of Oxygen and Hydrogen in Crystal Orientation Transition of Copper Foils for High-Quality Graphene Growth. Scientific Reports, 2017, 7, 45358.	1.6	34
1556	Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride. Scientific Reports, 2017, 7, 45584.	1.6	73
1557	Carbon nanofibers replacing graphene oxide in ceramic composites as a reinforcing-phase: Is it feasible?. Journal of the European Ceramic Society, 2017, 37, 3791-3796.	2.8	16
1558	Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction. Frontiers of Physics, 2017, 12, 1.	2.4	16
1559	Relation between growth rate and structure of graphene grown in a 4″ showerhead chemical vapor deposition reactor. Nanotechnology, 2017, 28, 185601.	1.3	5
1560	Influence of releasing graphene oxide into a clayey sand: physical and mechanical properties. RSC Advances, 2017, 7, 18060-18067.	1.7	31
1561	Functional Nanomaterials for Transparent Electrodes. Springer Series on Polymer and Composite Materials, 2017, , 345-376.	0.5	O
1562	All-Electrical Graphene DNA Sensor Array. Methods in Molecular Biology, 2017, 1572, 169-187.	0.4	1
1563	A coarse-grained model for the mechanical behavior of graphene oxide. Carbon, 2017, 117, 476-487.	5.4	47
1564	Graphene field emitters: A review of fabrication, characterization and properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 220, 44-58.	1.7	72

#	Article	IF	CITATIONS
1565	Energyâ€Autonomous, Flexible, and Transparent Tactile Skin. Advanced Functional Materials, 2017, 27, 1606287.	7.8	264
1566	Graphene Oxide Scroll Meshes Prepared by Molecular Combing for Transparent and Flexible Electrodes. Advanced Materials Technologies, 2017, 2, 1600231.	3.0	12
1567	Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Advanced Electronic Materials, 2017, 3, 1600260.	2.6	358
1568	Significant performance enhancement of InGaN/GaN nanorod LEDs with multi-layer graphene transparent electrodes by alumina surface passivation. Nanotechnology, 2017, 28, 055201.	1.3	28
1569	Grapheneâ€Piezoelectric Material Heterostructure for Harvesting Energy from Water Flow. Advanced Functional Materials, 2017, 27, 1604226.	7.8	121
1570	Single Type of Nanocavity Structure Enhances Light Outcouplings from Various Two-Dimensional Materials by over 100-Fold. ACS Photonics, 2017, 4, 93-105.	3.2	19
1571	Green and Mild Oxidation: An Efficient Strategy toward Water-Dispersible Graphene. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2856-2866.	4.0	24
1572	Electrical properties of bilayer graphene synthesized using surface wave microwave plasma techniques at low temperature. Nanotechnology, 2017, 28, 025705.	1.3	2
1573	Conversion of Langmuir–Blodgett monolayers and bilayers of poly(amic acid) through polyimide to graphene. 2D Materials, 2017, 4, 014005.	2.0	6
1574	Variability of graphene devices fabricated using graphene inks: Atomic force microscope tips. Surface and Coatings Technology, 2017, 320, 391-395.	2.2	6
1575	Facile Doping and Workâ€Function Modification of Fewâ€Layer Graphene Using Molecular Oxidants and Reductants. Advanced Functional Materials, 2017, 27, 1602004.	7.8	25
1576	Layerâ€Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination. Advanced Functional Materials, 2017, 27, 1604468.	7.8	189
1577	Graphene-Based Waveguide-Integrated Terahertz Modulator. ACS Photonics, 2017, 4, 316-321.	3.2	96
1578	Single-layer graphene-wrapped Li4Ti5O12 anode with superior lithium storage capability. Carbon, 2017, 114, 275-283.	5.4	59
1579	Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview. Advances in Colloid and Interface Science, 2017, 240, 15-30.	7.0	123
1580	Hybrid Graphene/Gold Plasmonic Fiberâ€Optic Biosensor. Advanced Materials Technologies, 2017, 2, 1600185.	3.0	58
1581	Large area fabrication of graphene nanoribbons by wetting transparency-assisted block copolymer lithography. Polymer, 2017, 110, 131-138.	1.8	9
1582	Optical and electrical effects of thin reduced graphene oxide layers on textured wafer-based c-Si solar cells for enhanced performance. Journal of Materials Chemistry C, 2017, 5, 1920-1934.	2.7	19

#	Article	IF	CITATIONS
1583	Ultraclean and Direct Transfer of a Waferâ€Scale MoS ₂ Thin Film onto a Plastic Substrate. Advanced Materials, 2017, 29, 1603928.	11.1	42
1584	Strong Fermi-Level Pinning at Metal/n-Si(001) Interface Ensured by Forming an Intact Schottky Contact with a Graphene Insertion Layer. Nano Letters, 2017, 17, 44-49.	4.5	26
1585	Optical and electrical smart response of chemically stabilized graphene oxide. Journal of Materials Science: Materials in Electronics, 2017, 28, 5235-5243.	1.1	23
1586	Effects of chemical and physical defects on the humidity sensitivity of graphene surface. Chemical Physics Letters, 2017, 689, 206-211.	1.2	4
1587	Liquid-assisted, etching-free, mechanical peeling of 2D materials. Extreme Mechanics Letters, 2017, 16, 33-40.	2.0	24
1588	Near room temperature chemical vapor deposition of graphene with diluted methane and molten gallium catalyst. Scientific Reports, 2017, 7, 12371.	1.6	75
1589	Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Science Advances, 2017, 3, e1701377.	4.7	113
1590	Asymmetric ferroelectric switching characteristics of ferroelectric poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Ov Organic Electronics, 2017, 51, 458-462.	erlock 10 1.4	Tf 50 467 To 5
1591	Far-field and near-field monitoring of hybridized optical modes from Au nanoprisms suspended on a graphene/Si nanopillar array. Nanoscale, 2017, 9, 16950-16959.	2.8	10
1592	Membrane thinning for efficient CO ₂ capture. Science and Technology of Advanced Materials, 2017, 18, 816-827.	2.8	30
1593	Enhanced Quality CVD-Grown Graphene via a Double-Plateau Copper Surface Planarization Methodology. Crystal Growth and Design, 2017, 17, 5725-5731.	1.4	8
1594	Bioinspired Antiâ€Moiré Random Grids via Patterning Foams. Advanced Optical Materials, 2017, 5, 1700751.	3.6	17
1595	Evolution of the electronic band structure of twisted bilayer graphene upon doping. Scientific Reports, 2017, 7, 7611.	1.6	7
1596	Properties of synthetic epitaxial graphene/molybdenum disulfide lateral heterostructures. Carbon, 2017, 125, 551-556.	5.4	27
1597	Graphene-laminated architectures obtained by chemical vapor deposition: From graphene to graphite. Chemical Physics Letters, 2017, 687, 303-306.	1.2	9
1598	Effect of carbide interlayers on the microstructure and properties of graphene-nanoplatelet-reinforced copper matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 311-318.	2.6	65
1599	Facile spectroscopic approach to obtain the optoelectronic properties of few-layered graphene oxide thin films and their role in photocatalysis. New Journal of Chemistry, 2017, 41, 14217-14227.	1.4	33
1600	Influential factors on thermoacoustic efficiency of multilayered graphene film loudspeakers for optimal design. Journal of Applied Physics, 2017, 122, .	1.1	15

#	Article	IF	CITATIONS
1601	Past and future of graphene/silicon heterojunction solar cells: a review. Journal of Materials Chemistry C, 2017, 5, 10701-10714.	2.7	48
1602	A highly flexible transparent conductive electrode based on nanomaterials. NPG Asia Materials, 2017, 9, e438-e438.	3.8	92
1603	Vacancyâ€Controlled Contact Friction in Graphene. Advanced Functional Materials, 2017, 27, 1702832.	7.8	21
1604	Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell. Applied Physics Letters, $2017,111,$	1.5	32
1605	Transfer of CVD-grown graphene for room temperature gas sensors. Nanotechnology, 2017, 28, 414001.	1.3	30
1606	Biomimetic super hydrophobic structured graphene on stainless steel surface by laser processing and transfer technology. Surface and Coatings Technology, 2017, 328, 152-160.	2.2	24
1607	Doping of multilayer graphene for silicon based solar cells., 2017,,.		3
1608	Advances in transferring chemical vapour deposition graphene: a review. Materials Horizons, 2017, 4, 1054-1063.	6.4	121
1609	Peeling process of thin-film solar cells using graphene layers. Applied Physics Express, 2017, 10, 082301.	1.1	5
1610	Si heterojunction solar cells employing graphene transparent conductive electrodes co-doped with gold chlorides and silver nanowires. Journal of Alloys and Compounds, 2017, 726, 1047-1052.	2.8	6
1611	Effects of the support on the desorption kinetics of <i>n</i> pentane from graphene: An ultrahigh vacuum adsorption study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	9
1612	Development of simple high-resolution embedded printing for transparent metal grid conductors. Applied Physics Letters, 2017, 111, .	1.5	10
1613	Direct growth of graphene on rigid and flexible substrates: progress, applications, and challenges. Chemical Society Reviews, 2017, 46, 6276-6300.	18.7	81
1614	Effect of graphene-substrate conformity on the in-plane thermal conductivity of supported graphene. Carbon, 2017, 125, 39-48.	5.4	24
1615	Investigation of electrochemical-based exfoliation of graphene with the aid of stabilizer. AIP Conference Proceedings, 2017, , .	0.3	0
1616	Ultratransparent and stretchable graphene electrodes. Science Advances, 2017, 3, e1700159.	4.7	231
1617	Atomic level cleaning of poly-methyl-methacrylate residues from the graphene surface using radiolized water at high temperatures. Applied Physics Letters, 2017, 111, .	1.5	13
1618	Electrochemical Formation of Germanene: pH 4.5. Journal of the Electrochemical Society, 2017, 164, D469-D477.	1.3	17

#	Article	IF	CITATIONS
1619	Enhancing light absorption in graphene with plasmonic lattices. Europhysics Letters, 2017, 119, 17006.	0.7	7
1620	Oneâ€Step Growth of Graphene/Carbon Nanotube Hybrid Films on Sodaâ€Lime Glass for Transparent Conducting Applications. Advanced Electronic Materials, 2017, 3, 1700212.	2.6	17
1621	Graphene/h-BN Heterostructures for Vertical Architecture of RRAM Design. Scientific Reports, 2017, 7, 9679.	1.6	29
1622	The Joule heating problem in silver nanowire transparent electrodes. Nanotechnology, 2017, 28, 425703.	1.3	66
1623	Low Resistive Edge Contacts to CVDâ€Grown Graphene Using a CMOS Compatible Metal. Annalen Der Physik, 2017, 529, 1600410.	0.9	29
1624	N-(4-Aminobutyl)-N-ethylisoluminol/CoFe ₂ O ₄ /graphene hybrids with unique chemiluminescence and magnetism. Journal of Materials Chemistry C, 2017, 5, 7612-7620.	2.7	12
1625	Microwave-assisted boron and nitrogen co-doped reduced graphene oxide as a transparent conductive electrode. Applied Physics Letters, 2017, 111, .	1.5	9
1626	Modified and improved Hummer's synthesis of graphene oxide for capacitors applications. Modern Electronic Materials, 2017, 3, 110-116.	0.2	104
1627	High performance graphene/semiconductor van der Waals heterostructure optoelectronic devices. Nano Energy, 2017, 40, 122-148.	8.2	96
1628	Adhesion energy of as-grown graphene on copper foil with a blister test. Carbon, 2017, 123, 243-249.	5.4	41
1629	Study of the impact of chemical etching on Cu surface morphology, graphene growth and transfer on SiO2/Si substrate. Carbon, 2017, 123, 402-414.	5.4	19
1630	Effect of different sizes of graphene on thermal transport performance of graphene paper. Composites Communications, 2017, 5, 46-53.	3.3	32
1631	Growth of few- and multilayer graphene on different substrates using pulsed nanosecond Q-switched Nd:YAG laser. Journal of Materials Science, 2017, 52, 12295-12306.	1.7	11
1632	Surface-enhanced Raman scattering of dipolar molecules by the graphene Fermi surface modulation with different dipole moments. Applied Surface Science, 2017, 425, 654-662.	3.1	9
1633	Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Materials Today Physics, 2017, 2, 6-34.	2.9	305
1634	High performance metal–insulator–graphene diodes for radio frequency power detection application. Nanoscale, 2017, 9, 11944-11950.	2.8	37
1635	Graphene gas sensing using a non-contact microwave method. Nanotechnology, 2017, 28, 395501.	1.3	2
1636	Revealing the Crystalline Integrity of Wafer-Scale Graphene on SiO ₂ /Si: An Azimuthal RHEED Approach. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23081-23091.	4.0	27

#	Article	IF	CITATIONS
1637	Oxygenâ€Dependent Synthesis of Graphene on γâ€Alumina Catalyst. Advanced Materials Interfaces, 2017, 4, 1700603.	1.9	6
1638	Wafer-Scale Statistical Analysis of Graphene FETsâ€"Part I: Wafer-Scale Fabrication and Yield Analysis. IEEE Transactions on Electron Devices, 2017, 64, 3919-3926.	1.6	9
1639	Selective and confined growth of transition metal dichalcogenides on transferred graphene. RSC Advances, 2017, 7, 37310-37314.	1.7	6
1640	Transparent graphene microstrip filters for wireless communications. Journal Physics D: Applied Physics, 2017, 50, 34LT01.	1.3	11
1641	Large-area release and transfer of ultrathin, freestanding nanocrystalline ceria films. Thin Solid Films, 2017, 638, 318-323.	0.8	0
1642	The effect of the graphene integration process on the performance of graphene-based Schottky junction solar cells. Journal of Materials Chemistry A, 2017, 5, 18716-18724.	5.2	13
1643	Synthesis of multi-layer graphene films on silica using physical vapour deposition. Carbon, 2017, 123, 683-687.	5.4	7
1644	A facile and efficient dry transfer technique for two-dimensional Van derWaals heterostructure. Chinese Physics B, 2017, 26, 087306.	0.7	7
1645	Touch sensor application of spray deposited ZnO films. , 2017, , .		0
1646	Realization of transparent conducting networks with high uniformity by spray deposition on flexible substrates. Thin Solid Films, 2017, 638, 367-374.	0.8	9
1647	Chemical environment dominated Fermi level pinning of a graphene gas sensor. Carbon, 2017, 124, 57-63.	5.4	35
1648	Tailoring the Aqueous Synthesis and Deposition of Copper Nanowires for Transparent Electrodes and Heaters. Advanced Materials Interfaces, 2017, 4, 1700568.	1.9	53
1649	Self-limited growth of large-area monolayer graphene films by low pressure chemical vapor deposition for graphene-based field effect transistors. Ceramics International, 2017, 43, 15010-15017.	2.3	11
1650	Graphene-enhanced gallium nitride ultraviolet photodetectors under 2 MeV proton irradiation. Applied Physics Letters, 2017, 111, .	1.5	5
1651	A flexible plasma-treated silver-nanowire electrode for organic light-emitting devices. Scientific Reports, 2017, 7, 16468.	1.6	51
1652	Graphene/PbS-Quantum Dots/Graphene Sandwich Structures Enabled by Laser Shock Imprinting for High Performance Photodetectors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44715-44723.	4.0	49
1653	Copper-embedded reduced graphene oxide fibers for multi-sensors. Journal of Materials Chemistry C, 2017, 5, 12825-12832.	2.7	17
1654	Graphene Characterization by Hilbert-Huang Transform-Based Terahertz Spectroscopy. IEEE Photonics Technology Letters, 2017, 29, 1880-1883.	1.3	3

#	Article	IF	Citations
1655	Eco-Friendly Synthesis and Characterization of Reduced Graphene Oxide. Journal of Physics: Conference Series, 2017, 902, 012027.	0.3	21
1656	Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Science Advances, 2017, 3, eaao3170.	4.7	252
1657	High-efficiency exfoliation of large-area mono-layer graphene oxide with controlled dimension. Scientific Reports, 2017, 7, 16414.	1.6	30
1658	Modulating the electronic and magnetic properties of graphene. RSC Advances, 2017, 7, 51546-51580.	1.7	53
1659	Simulation on effect of metal/graphene hybrid transparent electrode on characteristics of GaN light emitting diodes. Chinese Physics B, 2017, 26, 104402.	0.7	0
1660	Graphene. Springer Handbooks, 2017, , 363-391.	0.3	2
1661	Catalytic substrates for graphene growth. MRS Bulletin, 2017, 42, 819-824.	1.7	11
1662	Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding. Nanoscale, 2017, 9, 18613-18618.	2.8	57
1663	Stabilization of hybrid perovskite CH ₃ NH ₃ PbI ₃ thin films by graphene passivation. Nanoscale, 2017, 9, 19227-19235.	2.8	15
1664	Targeted removal of copper foil surface impurities for improved synthesis of CVD graphene. Carbon, 2017, 122, 207-216.	5.4	43
1665	Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices. Physical Review E, 2017, 96, 012702.	0.8	34
1666	Interfacial thermal resistance across graphene/Al2O3 and graphene/metal interfaces and post-annealing effects. Carbon, 2017, 123, 18-25.	5.4	20
1667	Tunable liquid microlens arrays actuated by infrared light-responsive graphene microsheets. Journal of Micromechanics and Microengineering, 2017, 27, 085006.	1.5	5
1668	Repeatable growth of graphene from "no―precursor. Carbon, 2017, 123, 628-634.	5.4	4
1669	Characteristics of Thermally Reduced Graphene Oxide Thin Film as DSSC Counter Electrode. IOP Conference Series: Materials Science and Engineering, 2017, 196, 012049.	0.3	6
1670	Graphene/Mo2C heterostructure directly grown by chemical vapor deposition. Chinese Physics B, 2017, 26, 067901.	0.7	28
1671	Fast Growth and Broad Applications of 25â€Inch Uniform Graphene Glass. Advanced Materials, 2017, 29, 1603428.	11.1	90
1672	Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy and Environmental Science, 2017, 10, 337-345.	15.6	391

#	Article	IF	CITATIONS
1673	Effect of grain boundaries on electrical properties of polycrystalline graphene. Carbon, 2017, 112, 142-148.	5.4	22
1674	Adsorption performance of MIL-100(Fe) for separation of olefin–paraffin mixtures. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70, 74-78.	2.7	27
1675	High performance flexible metal oxide/silver nanowire based transparent conductive films by a scalable lamination-assisted solution method. Journal of Materiomics, 2017, 3, 77-82.	2.8	9
1676	Polyacrylamide/reduced graphene oxide-Ag nanocomposite as highly efficient antibacterial transparent film. Journal of the Iranian Chemical Society, 2017, 14, 37-46.	1.2	15
1677	Flexible Transparent Triboelectric Nanogenerators with Graphene and Indium Tin Oxide Electrode Structures. Energy Technology, 2017, 5, 599-603.	1.8	11
1678	Effect of thermal reduction temperature on the optical and electrical properties of multilayer graphene. Journal of Materials Science: Materials in Electronics, 2017, 28, 1038-1041.	1.1	7
1679	Highly conductive reduced graphene oxide transparent ultrathin film through joule-heat induced direct reduction. Journal of Materials Science: Materials in Electronics, 2017, 28, 1419-1427.	1.1	12
1680	Rational design of multifunctional devices based on molybdenum disulfide and graphene hybrid nanostructures. Applied Surface Science, 2017, 392, 557-561.	3.1	10
1681	Graphene transfer with self-doping by amorphous thermoplastic resins. Carbon, 2017, 111, 215-220.	5 . 4	13
1682	Direct growth of nanocrystalline graphene/graphite all carbon transparent electrode for graphene glass and photodetectors. Carbon, 2017, 111, 1-7.	5.4	12
1683	Laser-patterned functionalized CVD-graphene as highly transparent conductive electrodes for polymer solar cells. Nanoscale, 2017, 9, 62-69.	2.8	50
1684	Flashâ€Induced Selfâ€Limited Plasmonic Welding of Silver Nanowire Network for Transparent Flexible Energy Harvester. Advanced Materials, 2017, 29, 1603473.	11.1	207
1685	Sensing at the Surface of Graphene Fieldâ€Effect Transistors. Advanced Materials, 2017, 29, 1603610.	11.1	230
1686	Large-scale nanometer-thickness graphite films synthesized on polycrystalline Ni foils by two-stage chemical vapor deposition process. Carbon, 2017, 113, 309-317.	5.4	18
1687	Advances in scalable gas-phase manufacturing and processing of nanostructured solids: A review. Particuology, 2017, 30, 15-39.	2.0	31
1688	Fast-response solar-blind ultraviolet photodetector with a graphene/l²-Ga2O3/graphene hybrid structure. Journal of Alloys and Compounds, 2017, 692, 634-638.	2.8	84
1689	Wettability of Supported Monolayer Hexagonal Boron Nitride in Air. Advanced Functional Materials, 2017, 27, 1603181.	7.8	54
1690	Millimetre-Wave and Terahertz Amplification in a Travelling Wave Graphene Structure. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 179-187.	1.9	7

#	Article	IF	CITATIONS
1691	Fabrication and characterization of graphene/molecule/graphene vertical junctions with aryl alkane monolayers. Journal of the Korean Physical Society, 2017, 71, 692-696.	0.3	1
1692	Green approach of graphene layer produced from waste cooking palm oil at different precursor temperatures., 2017,,.		0
1693	Femtosecond laser direct writing of graphene oxide film on polydimethylsiloxane (PDMS) for flexible and stretchable electronics., 2017,,.		2
1694	Effect of surface passivation on breakdown voltages of 4H-SiC Schottky barrier diodes. Journal of the Korean Physical Society, 2017, 71, 707-710.	0.3	2
1695	Electron beam induced removal of PMMA layer used for graphene transfer. Scientific Reports, 2017, 7, 18058.	1.6	29
1696	Electrohydrodynamic Atomization of Graphene Nano-Suspension. Applied Mechanics and Materials, 2017, 868, 236-241.	0.2	0
1697	Processing-induced strain in dual-gated graphene FETs. , 2017, , .		0
1698	Comparative study of organic transistors with different graphene electrodes fabricated using a simple patterning method. Applied Physics Letters, 2017, 111, .	1.5	4
1699	Temperature dependence of contact resistance for gold-graphene contacts., 2017,,.		4
1700	Graphene/Insulator Stack Based Ultrasensitive Terahertz Sensor With Surface Plasmon Resonance. IEEE Photonics Journal, 2017, 9, 1-11.	1.0	15
1701	Ultra-Easy and Fast Method for Transferring Graphene Grown on Metal Foil. Nano, 2017, 12, 1750140.	0.5	4
1702	DNA/AuNP-graphene back-gated field effect transistor as a biosensor for lead (II) ion detection. , 2017, , .		5
1703	Transparent 5.8 GHz filter based on graphene. , 2017, , .		4
1704	Layer Dependence of Graphene for Oxidation Resistance of Cu Surface. Chinese Journal of Chemical Physics, 2017, 30, 193-199.	0.6	0
1705	Anomalous light trapping enhancement in a two-dimensional gold nanobowl array with an amorphous silicon coating. Optics Express, 2017, 25, 14114.	1.7	7
1706	Characterization, uniformity and photo-catalytic properties of graphene/TiO_2 nanocomposites via Raman mapping. Optics Express, 2017, 25, 21496.	1.7	12
1707	Fluorescence evolution processes of visible/ultraviolet photo-reduced graphene oxide. Optical Materials Express, 2017, 7, 2519.	1.6	7
1708	Hybrid metasurface for broadband enhancing optical absorption and Raman spectroscopy of graphene. Optical Materials Express, 2017, 7, 3591.	1.6	8

#	Article	IF	CITATIONS
1709	Simple light-emitting electrochemical cell using reduced graphene oxide and a ruthenium (II) complex. Applied Optics, 2017, 56, 6476.	0.9	14
1710	Synthesis of Graphene Based Membranes: Effect of Substrate Surface Properties on Monolayer Graphene Transfer. Materials, 2017, 10, 86.	1.3	8
1711	Wettability Investigations and Wet Transfer Enhancement of Large-Area CVD-Graphene on Aluminum Nitride. Nanomaterials, 2017, 7, 226.	1.9	7
1712	Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix. Chinese Physics Letters, 2017, 34, 106801.	1.3	2
1713	Contamination-Free Graphene Transfer from Cu-Foil and Cu-Thin-Film/Sapphire. Coatings, 2017, 7, 218.	1.2	10
1714	Effects of carbon defects on ZnO nanorods directly grown on graphene. Japanese Journal of Applied Physics, 2017, 56, 110306.	0.8	3
1715	On-grating graphene surface plasmons enabling spatial differentiation in the terahertz region. Optics Letters, 2017, 42, 3840.	1.7	38
1716	Infrared Properties and Terahertz Wave Modulation of Graphene/MnZn Ferrite/p-Si Heterojunctions. Nanoscale Research Letters, 2017, 12, 482.	3.1	3
1717	Raman Enhancement and Photo-Bleaching of Organic Dyes in the Presence of Chemical Vapor Deposition-Grown Graphene. Nanomaterials, 2017, 7, 337.	1.9	8
1718	A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process. Beilstein Journal of Nanotechnology, 2017, 8, 2017-2025.	1.5	10
1719	Titanium contacts to graphene: process-induced variability in electronic and thermal transport. Nanotechnology, 2018, 29, 145201.	1.3	23
1720	On the optoelectronic properties of non-covalently functionalized graphene for solar cell application. Journal of Computational Electronics, 2018, 17, 791-809.	1.3	8
1722	The different paths and potential risks of photo(-electro)-catalytic degradation for rhodamine B in water by graphene/TiO2 membrane. Environmental Science and Pollution Research, 2018, 25, 13988-13999.	2.7	9
1723	Lateral Non-covalent Clamping of Graphene at the Edges Using a Lipid Scaffold. ACS Applied Materials & Lipid Scaffold.	4.0	6
1724	Direct Growth of Highly Stable Patterned Graphene on Dielectric Insulators using a Surfaceâ€Adhered Solid Carbon Source. Advanced Materials, 2018, 30, e1706569.	11.1	18
1725	Graphene coating on the surface of CoCrMo alloy enhances the adhesion and proliferation of bone marrow mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2018, 497, 1011-1017.	1.0	16
1726	Atomic layer deposited high- $\langle i \rangle k \langle i \rangle$ dielectric on graphene by functionalization through atmospheric plasma treatment. Nanotechnology, 2018, 29, 195602.	1.3	7
1727	Improve the surface of silver nanowire transparent electrode using a double-layer structure for the quantum-dot light-emitting diodes. Japanese Journal of Applied Physics, 2018, 57, 032101.	0.8	5

#	Article	IF	CITATIONS
1728	In vivo toxicity evaluation of pristine graphene in developing zebrafish (Danio rerio) embryos. Environmental Science and Pollution Research, 2018, 25, 12821-12829.	2.7	27
1729	Uniformly coated highly porous graphene/MnO ₂ foams for flexible asymmetric supercapacitors. Nanotechnology, 2018, 29, 225402.	1.3	18
1730	Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Science Advances, 2018, 4, eaaq0118.	4.7	229
1731	Graphene transfer by surface activated bonding with poly(methyl glutarimide). Japanese Journal of Applied Physics, 2018, 57, 02BB02.	0.8	1
1732	Enhanced nucleation and growth of HfO2 thin films grown by atomic layer deposition on graphene. Journal of Alloys and Compounds, 2018, 742, 676-682.	2.8	6
1733	Preparation of highly conductive, transparent, and flexible graphene/silver nanowires substrates using non-thermal laser photoreduction. Optics and Laser Technology, 2018, 103, 367-372.	2.2	54
1734	Quantitative optical mapping of two-dimensional materials. Scientific Reports, 2018, 8, 6381.	1.6	29
1735	Ensemble Effect of Ni in Bimetallic PtNi on Reduced Graphene Oxide Support for Temperatureâ€Dependent Formic Acid Oxidation. ChemistrySelect, 2018, 3, 3909-3917.	0.7	14
1736	Single-Crystal Antimonene Films Prepared by Molecular Beam Epitaxy: Selective Growth and Contact Resistance Reduction of the 2D Material Heterostructure. ACS Applied Materials & Emp; Interfaces, 2018, 10, 15058-15064.	4.0	43
1737	Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nature Electronics, 2018, 1, 237-245.	13.1	86
1738	Broadband graphene-based photoacoustic microscopy with high sensitivity. Nanoscale, 2018, 10, 8606-8614.	2.8	24
1739	Effect of layer number and metal-chloride dopant on multiple layers of graphene/porous Si solar cells. Journal of Applied Physics, 2018, 123, 123101.	1.1	22
1740	From a-C to nanographene by chemical nano-engineering. Materials Chemistry and Physics, 2018, 213, 177-182.	2.0	2
1741	Characterization of poly methyl methaacrylate and reduced graphene oxide composite for application as electrolyte in dye sensitized solar cells. Materials Research Express, 2018, 5, 046204.	0.8	7
1742	Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nature Nanotechnology, 2018, 13, 504-511.	15.6	242
1743	Phaseâ€Engineered PtSe ₂ â€Layered Films by a Plasmaâ€Assisted Selenization Process toward All PtSe ₂ â€Based Field Effect Transistor to Highly Sensitive, Flexible, and Wideâ€Spectrum Photoresponse Photodetectors. Small, 2018, 14, e1800032.	5.2	83
1744	Mixed Transition Metal Dichalcogenide as Saturable Absorber in Ytterbium, Praseodymium, and Erbium Fiber Laser. IEEE Journal of Quantum Electronics, 2018, 54, 1-9.	1.0	15
1745	Microscaleâ€Patterned Graphene Electrodes for Organic Lightâ€Emitting Devices by a Simple Patterning Strategy. Advanced Optical Materials, 2018, 6, 1701348.	3.6	20

#	Article	IF	Citations
1746	Multi-purposed Ar gas cluster ion beam processing for graphene engineering. Carbon, 2018, 131, 142-148.	5.4	18
1747	General Raman-based method for evaluating the carrier mobilities of chemical vapor deposited graphene. Carbon, 2018, 132, 263-270.	5 . 4	15
1748	Micromesh carbon nanosheet electrodes fabricated by phase-separation of immiscible polymer blends. Journal of Industrial and Engineering Chemistry, 2018, 64, 76-79.	2.9	3
1749	Properties of spray-deposited liquid-phase exfoliated graphene films. Japanese Journal of Applied Physics, 2018, 57, 01AF06.	0.8	2
1750	Effect of layer number on flexible perovskite solar cells employing multiple layers of graphene as transparent conductive electrodes. Journal of Alloys and Compounds, 2018, 744, 404-411.	2.8	25
1751	Graphene-based flexible and wearable electronics. Journal of Semiconductors, 2018, 39, 011007.	2.0	76
1752	Effect of Ni film structure and surface morphology on the growth of graphene by PECVD. Functional Materials Letters, 2018, 11, 1850011.	0.7	0
1753	Scalable MoS ₂ /graphene hetero-structures grown epitaxially on sapphire substrates for phototransistor applications. Semiconductor Science and Technology, 2018, 33, 025007.	1.0	11
1754	Graphene onto medical grade titanium: an atom-thick multimodal coating that promotes osteoblast maturation and inhibits biofilm formation from distinct species. Nanotoxicology, 2018, 12, 274-289.	1.6	52
1755	Layer-controllable graphene by plasma thinning and post-annealing. Applied Surface Science, 2018, 441, 639-646.	3.1	21
1756	Minimal layer graphene/TiO2 nanotube membranes used for enhancement of UV photodetectors. Materials Letters, 2018, 218, 274-279.	1.3	42
1757	Selective Proton/Deuteron Transport through Nafion Graphene Nafion Sandwich Structures at High Current Density. Journal of the American Chemical Society, 2018, 140, 1743-1752.	6.6	75
1758	Surfaceâ€Functionalizationâ€Mediated Direct Transfer of Molybdenum Disulfide for Largeâ€Area Flexible Devices. Advanced Functional Materials, 2018, 28, 1706231.	7.8	66
1759	Mitigating e-beam-induced hydrocarbon deposition on graphene for atomic-scale scanning transmission electron microscopy studies. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	32
1760	Fabrication of high-performance graphene nanoplatelet-based transparent electrodes <i>via</i> self-interlayer-exfoliation control. Nanoscale, 2018, 10, 2351-2362.	2.8	7
1761	Graphene Surface Acoustic Wave Sensor for Simultaneous Detection of Charge and Mass. ACS Sensors, 2018, 3, 200-204.	4.0	42
1762	Investigation of mechanochemical green synthesis of exfoliated graphite nano-platelets on conductivity and its nonlinear properties based on zinc oxide. Journal of Materials Science: Materials in Electronics, 2018, 29, 4345-4350.	1.1	1
1763	Flexible chemical sensors based on hybrid layer consisting of molybdenum disulphide nanosheets and carbon nanotubes. Carbon, 2018, 129, 607-612.	5.4	38

#	Article	IF	CITATIONS
1764	Preparation of bilayer graphene utilizing CuO as nucleation sites by CVD method. Journal of Materials Science: Materials in Electronics, 2018, 29, 4495-4502.	1.1	10
1765	Tailoring the energy band in flexible photodetector based on transferred ITO/Si heterojunction <i>via</i> interface engineering. Nanoscale, 2018, 10, 3893-3903.	2.8	13
1766	Decreasing graphene synthesis temperature by catalytic metal engineering and thermal processing. RSC Advances, 2018, 8, 1477-1480.	1.7	3
1767	Flexible and Transparent Graphene Electrode Architecture with Selective Defect Decoration for Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1704435.	7.8	67
1768	Simple and rapid cleaning of graphenes with a †bubble-free†electrochemical treatment. Journal of Materials Chemistry C, 2018, 6, 2234-2244.	2.7	8
1769	Approaching completely continuous centimeter-scale graphene by copolymer-assisted transfer. RSC Advances, 2018, 8, 1725-1729.	1.7	2
1770	Cavity enhanced third harmonic generation in graphene. Applied Physics Letters, 2018, 112, .	1.5	19
1771	An interdigitated ISFET-type sensor based on LPCVD grown graphene for ultrasensitive detection of carbaryl. Sensors and Actuators B: Chemical, 2018, 260, 78-85.	4.0	33
1772	Graphene or carbon nanofiber-reinforced zirconia composites: Are they really worthwhile for structural applications?. Journal of the European Ceramic Society, 2018, 38, 3994-4002.	2.8	25
1773	Modeling optical transmissivity of graphene grate in on-chip silicon photonic device. Results in Physics, 2018, 9, 1044-1049.	2.0	5
1774	Surface structure of few layer graphene. Carbon, 2018, 136, 255-261.	5.4	44
1775	Reed Leaf-Inspired Graphene Films with Anisotropic Superhydrophobicity. ACS Applied Materials & Interfaces, 2018, 10, 18416-18425.	4.0	43
1776	Acoustic Mode Hybridization in a Single Dimer of Gold Nanoparticles. Nano Letters, 2018, 18, 3800-3806.	4.5	29
1777	Thermoelectric Properties of Thermally Reduced Graphene Oxide Observed by Tuning the Energy States. ACS Sustainable Chemistry and Engineering, 2018, 6, 7468-7474.	3.2	21
1778	Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer. 2D Materials, 2018, 5, 035022.	2.0	37
1779	Making graphene luminescent by adsorption of an amphiphilic europium complex. Applied Physics Letters, 2018, 112, .	1.5	7
1780	Graphene transport mediated by micropatterned substrates. Applied Physics Letters, 2018, 112, .	1.5	9
1781	Using macroporous graphene networks to toughen ZrC–SiC ceramic. Journal of the European Ceramic Society, 2018, 38, 3752-3758.	2.8	37

#	Article	IF	CITATIONS
1782	Electrical percolation in graphene–polymer composites. 2D Materials, 2018, 5, 032003.	2.0	266
1783	Controlling the charge transfer flow at the graphene/pyrene–nitrilotriacetic acid interface. Journal of Materials Chemistry C, 2018, 6, 5046-5054.	2.7	18
1784	Direct formation of graphene on dielectric substrate: Controlling the location of graphene formation adopting carbon diffusion barrier. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	2
1785	Intriguing electronic insensitivity and high carrier mobility in monolayer hexagonal YN. Journal of Materials Chemistry C, 2018, 6, 4943-4951.	2.7	28
1786	Synthesis of high quality graphene on capped $(1\hat{a}\in\%.1\hat{a}\in\%.1)$ Cu thin films obtained by high temperature secondary grain growth on $\langle i\rangle c\langle i\rangle$ -plane sapphire substrates. 2D Materials, 2018, 5, 035008.	2.0	10
1787	Effect of annealing on doping of graphene with molybdenum oxide. Applied Physics Express, 2018, 11, 045101.	1.1	2
1788	Turbostratic stacked CVD graphene for high-performance devices. Japanese Journal of Applied Physics, 2018, 57, 030311.	0.8	38
1789	Temperature dependence of annealing on the contact resistance of MoS2with graphene electrodes observed. Japanese Journal of Applied Physics, 2018, 57, 04FP07.	0.8	1
1790	Graphene-supported high-efficient modulation based on electromagnetically induced transparency in silica microcavity. Optics Communications, 2018, 420, 40-45.	1.0	5
1791	Origin of Nonideal Graphene-Silicon Schottky Junction. IEEE Transactions on Electron Devices, 2018, 65, 1995-2002.	1.6	9
1792	Photonic surface waves enabled perfect infrared absorption by monolayer graphene. Nano Energy, 2018, 48, 161-169.	8.2	33
1793	Kelvin Probe Force Microscopy and Calculation of Charge Transport in a Graphene/Silicon Dioxide System at Different Relative Humidity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11987-11994.	4.0	16
1794	Graphene based hybrid/composite for electron field emission: AÂreview. Journal of Alloys and Compounds, 2018, 749, 60-84.	2.8	29
1795	Application of atomic simulation methods on the study of graphene nanostructure fabrication by particle beam irradiation: A review. Computational Materials Science, 2018, 149, 98-106.	1.4	17
1796	Vacuum-sealed microcavity formed from suspended graphene by using a low-pressure dry-transfer technique. Applied Physics Letters, 2018, 112, 041901.	1.5	7
1797	Transfer and patterning of chemical vapor deposited graphene by a multifunctional polymer film. Applied Physics Letters, 2018, 112, .	1.5	7
1798	A comparative study of graphene growth by APCVD, LPCVD and PECVD. Materials Research Express, 2018, 5, 035606.	0.8	16
1799	Temperature-dependence of stress and elasticity in wet-transferred graphene membranes. Journal of Applied Physics, 2018, 123, .	1.1	10

#	Article	IF	CITATIONS
1800	The effect of Au nanoparticles on the strain-dependent electrical properties of CVD graphene. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	4
1801	Adsorption of $17\hat{l}^2$ -estradiol by graphene oxide: Effect of heteroaggregation with inorganic nanoparticles. Chemical Engineering Journal, 2018, 343, 371-378.	6.6	36
1802	Graphene growth by molecular beam epitaxy: an interplay between desorption, diffusion and intercalation of elemental C species on islands. Nanoscale, 2018, 10, 7396-7406.	2.8	17
1803	Lifetime and linewidth of individual quantum dots interfaced with graphene. Nanoscale, 2018, 10, 7040-7046.	2.8	6
1804	Graphene for Thermoelectric Applications: Prospects and Challenges. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 133-157.	6.8	94
1805	The technique of electrospinning for manufacturing core-shell nanofibers. Materials and Manufacturing Processes, 2018, 33, 202-219.	2.7	28
1806	A review on corrosion protection with single-layer, multilayer, and composites of graphene. Corrosion Reviews, 2018, 36, 155-225.	1.0	31
1807	Enhanced Thermal Conductivity for Graphene Nanoplatelets/Epoxy Resin Composites. Journal of Thermal Science and Engineering Applications, 2018, 10, .	0.8	12
1808	Desorption Kinetics of Benzene and Cyclohexane from a Graphene Surface. Journal of Physical Chemistry B, 2018, 122, 587-594.	1.2	18
1809	Synthesis of tetrahexahedral Au-Pd core–shell nanocrystals and reduction of graphene oxide for the electrochemical detection of epinephrine. Journal of Colloid and Interface Science, 2018, 512, 812-818.	5.0	56
1810	Three dimensional phytic acid-induced graphene as a solid-phase microextraction fiber coating and its analytical applications for nerolidol in tea. Chinese Chemical Letters, 2018, 29, 107-110.	4.8	30
1811	Inhibitor or promoter: Insights on the corrosion evolution in a graphene protected surface. Carbon, 2018, 126, 225-231.	5.4	72
1812	Long-term air-stable Au doping of graphene by layer-by-layer assembly with graphene oxide for flexible transparent electrodes. Carbon, 2018, 126, 241-246.	5.4	20
1813	Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Materials Chemistry and Physics, 2018, 204, 1-7.	2.0	298
1814	Graphene. , 2018, , 197-228.		4
1815	Rollâ€ŧoâ€Roll Production of Layerâ€Controlled Molybdenum Disulfide: A Platform for 2D Semiconductorâ€Based Industrial Applications. Advanced Materials, 2018, 30, 1705270.	11.1	65
1816	Studies on hydrothermal synthesis of photolumniscent rare earth (Eu 3+ & 2) doped NG@FeMoO 4 for enhanced visible light photodegradation of methylene blue dye. Solid State Sciences, 2018, 76, 38-47.	1.5	28
1818	Carbon-metal vibrating nanomembranes for high frequency microresonators. Diamond and Related Materials, 2018, 81, 138-145.	1.8	3

#	Article	IF	CITATIONS
1819	Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD. Carbon, 2018, 129, 456-461.	5 . 4	60
1820	Pathways to Mesoporous Resin/Carbon Thin Films with Alternating Gyroid Morphology. ACS Nano, 2018, 12, 347-358.	7.3	35
1821	Engineering of electronic properties of single layer graphene by swift heavy ion irradiation. Journal of Applied Physics, 2018, 123, .	1.1	30
1822	Zero-Bias Operation of CVD Graphene Photodetector with Asymmetric Metal Contacts. ACS Photonics, 2018, 5, 365-370.	3.2	28
1823	Graphene integrated circuits: new prospects towards receiver realisation. Nanoscale, 2018, 10, 93-99.	2.8	20
1824	Engineering graphene properties by modulated plasma treatments. Carbon, 2018, 129, 869-877.	5 . 4	24
1825	Effects of different graphene dopants on double antireflection coatings/graphene/n-silicon heterojunction solar cells. Thin Solid Films, 2018, 646, 21-27.	0.8	23
1826	Influence of covalent and non-covalent modification of graphene on the mechanical, thermal and electrical properties of epoxy/graphene nanocomposites: a review. Composite Interfaces, 2018, 25, 381-414.	1.3	68
1827	Development of Cu Substrate Preparation Techniques for Graphene Synthesis., 2018,,.		0
1828	A highly robust and stable graphene-encapsulated Cu-grid hybrid transparent electrode demonstrating superior performance in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 24805-24813.	5. 2	21
1829	Comparative Studies on The Transfer of Chemical Vapor Deposition Grown Graphene Using Either Electrochemical Delamination or Chemical Etching Method. Journal of Physics: Conference Series, 2018, 1083, 012038.	0.3	3
1830	Direct Growth of Graphene on Flexible Substrates toward Flexible Electronics: A Promising Perspective., 0, , .		10
1831	Characteristics of graphene embedded indium tin oxide (ITO-graphene-ITO) transparent conductive films. Molecular Crystals and Liquid Crystals, 2018, 676, 95-104.	0.4	6
1832	Tunable Electric Properties of Bilayer α-GeTe with Different Interlayer Distances and External Electric Fields. Nanoscale Research Letters, 2018, 13, 400.	3.1	25
1833	Mechanistic Insights into the Fluorescence Quenching of Rhodamine 6G by Graphene Oxide. Chinese Journal of Chemical Physics, 2018, 31, 165-170.	0.6	8
1837	Laser-Cut Polymer Tape Templates for Scalable Filtration Fabrication of User-Designed and Carbon-Nanomaterial-Based Electrochemical Sensors. ACS Sensors, 2018, 3, 2518-2525.	4.0	16
1838	Facile process to clean PMMA residue on graphene using KrF laser annealing. AIP Advances, 2018, 8, .	0.6	10
1839	Near-Field Coupled Integrable Two-Dimensional InSe Photosensor on Optical Fiber. ACS Nano, 2018, 12, 12571-12577.	7.3	19

#	Article	IF	CITATIONS
1840	Electrical Conductivity Modeling of Graphene-based Conductor Materials. ACS Applied Materials & ACS Ap	4.0	35
1841	Effect of DI Water Content on the Growth of Anatase TiO ₂ Nanotubes Synthesized by Anodization Process. Key Engineering Materials, 2018, 789, 14-19.	0.4	1
1842	Selective Transfer of Rotationally Commensurate MoS ₂ from an Epitaxially Grown van der Waals Heterostructure. Chemistry of Materials, 2018, 30, 8495-8500.	3.2	6
1843	Graphene Nucleation Preference at CuO Defects Rather Than Cu ₂ O on Cu(111): A Combination of DFT Calculation and Experiment. ACS Applied Materials & Interfaces, 2018, 10, 43156-43165.	4.0	16
1845	Recent Advances in Smart Wearable Sensing Systems. Advanced Materials Technologies, 2018, 3, 1800444.	3.0	128
1846	Graphene-Incorporated Soft Capacitors for Mechanically Adjustable Electro-Optic Modulators. ACS Applied Materials & Diterfaces, 2018, 10, 40781-40788.	4.0	9
1847	Strain Engineering in Highly Wrinkled CVD Graphene/Epoxy Systems. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43192-43202.	4.0	14
1848	Laser power influence on Raman spectra of multilayer graphene, multilayer graphene oxide and reduced multilayer graphene oxide. Journal of Physics: Conference Series, 2018, 1143, 012020.	0.3	6
1849	A Novel Method for Fabricating Graphene Sensors in Channel for Biomedical Applications., 2018,,.		2
1850	Carbon Nanostructures as a Multi-Functional Platform for Sensing Applications. Chemosensors, 2018, 6, 60.	1.8	28
1851	Enhanced absorption of graphene with variable bandwidth in quarter-wavelength cavities. AIP Advances, 2018, 8, 125301.	0.6	4
1852	Controllable Growth of Graphene on Liquid Surfaces. Advanced Materials, 2019, 31, e1800690.	11.1	47
1853	Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes. Chinese Physics B, 2018, 27, 114401.	0.7	3
1854	Tuning Geometry of SWCNTs by CO ₂ in Floating Catalyst CVD for Highâ€Performance Transparent Conductive Films. Advanced Materials Interfaces, 2018, 5, 1801209.	1.9	20
1855	In-Depth Study of Laser Diode Ablation of Kapton Polyimide for Flexible Conductive Substrates. Nanomaterials, 2018, 8, 517.	1.9	53
1856	Electroactive Scaffolds for Neurogenesis and Myogenesis: Grapheneâ€Based Nanomaterials. Small, 2018, 14, e1801983.	5.2	81
1857	Synthesis and Optical Characterization of CVD Graphene. , 2018, , 793-804.		0
1858	Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting Substrates. Advanced Science, 2018, 5, 1800050.	5.6	81

#	Article	IF	CITATIONS
1859	Antioxidant efficacy of chitosan/graphene functionalized superparamagnetic iron oxide nanoparticles. Journal of Materials Science: Materials in Medicine, 2018, 29, 154.	1.7	14
1860	The effect of annealing graphene in O2 and N2 flow. AIP Conference Proceedings, 2018, , .	0.3	1
1861	Graphene-based integrated photonics for next-generation datacom and telecom. Nature Reviews Materials, 2018, 3, 392-414.	23.3	286
1862	Enhanced Environmental Stability Coupled with a 12.5% Power Conversion Efficiency in an Aluminum Oxide-Encapsulated n-Graphene/p-Silicon Solar Cell. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37181-37187.	4.0	13
1863	Wear and Adhesion Properties of Single-Layer Graphene. International Journal of Precision Engineering and Manufacturing, 2018, 19, 1539-1544.	1.1	5
1864	Graphene-enabled and directed nanomaterial placement from solution for large-scale device integration. Nature Communications, 2018, 9, 4095.	5.8	30
1867	Development of graphene capped silicon–silicon oxide core–shell nano-structure: Charge trapping characteristics at the interfaces. Applied Materials Today, 2018, 13, 370-380.	2.3	9
1868	A general and simple method for evaluating the electrical transport performance of graphene by the van der Pauw–Hall measurement. Science Bulletin, 2018, 63, 1521-1526.	4.3	15
1869	Conformal Physical Vapor Deposition Assisted by Atomic Layer Deposition and Its Application for Stretchable Conductors. Advanced Materials Interfaces, 2018, 5, 1801379.	1.9	4
1870	Heterogeneous Photo-Fenton Technology. Lecture Notes in Quantum Chemistry II, 2018, , 241-258.	0.3	2
1871	Aqueous Synthesis, Degradation, and Encapsulation of Copper Nanowires for Transparent Electrodes. Nanomaterials, 2018, 8, 767.	1.9	15
1872	Germanene Epitaxial Growth by Segregation through Ag(111) Thin Films on Ge(111). ACS Nano, 2018, 12, 11632-11637.	7.3	109
1873	Manufacturing Transparent Conducting Films Based on Directly Exfoliated Graphene Particles via Langmuir–Blodgett Technique. Inorganic Materials: Applied Research, 2018, 9, 794-802.	0.1	1
1874	Polarimetry Using Graphene-Integrated Anisotropic Metasurfaces. ACS Photonics, 2018, 5, 4283-4288.	3.2	35
1875	Fast and Stable Ionic Electroactive Polymer Actuators with PEDOT:PSS/(Graphene–Ag-Nanowires) Nanocomposite Electrodes. Sensors, 2018, 18, 3126.	2.1	30
1876	Adsorption Site-Dependent Mobility Behavior in Graphene Exposed to Gas Oxygen. Journal of Physical Chemistry C, 2018, 122, 21493-21499.	1.5	7
1877	Graphene–dielectric integrated terahertz metasurfaces. Semiconductor Science and Technology, 2018, 33, 104007.	1.0	10
1878	Palladium Nanoparticles Loaded on TiO2–Graphene Hybrids (Pd/TiO2–Gr) with Enhanced Electrocatalytic Activity in Formic Acid Oxidation. Russian Journal of Physical Chemistry A, 2018, 92, 1550-1557.	0.1	2

#	Article	IF	Citations
1879	Two-Dimensional Ti ₃ C ₂ MXene for High-Resolution Neural Interfaces. ACS Nano, 2018, 12, 10419-10429.	7.3	173
1880	Selective Process To Extract High-Quality Reduced Graphene Oxide Leaflets. ACS Applied Nano Materials, 2018, 1, 5920-5926.	2.4	9
1881	Giant and controllable Goos-HÃ#chen shifts based on surface plasmon resonance with graphene-MoS ₂ heterostructure. Optical Materials Express, 2018, 8, 3036.	1.6	47
1882	Flexible transparent electrodes for organic light-emitting diodes simply fabricated with AuCl3-modied graphene. Organic Electronics, 2018, 63, 71-77.	1.4	18
1883	Electrical and Physical Characteristics of WO3/Ag/WO3 Sandwich Structure Fabricated with Magnetic-Control Sputtering Metrology â€. Sensors, 2018, 18, 2803.	2.1	19
1884	Large-Area All-Carbon Nanocapacitors from Graphene and Carbon Nanomembranes. ACS Nano, 2018, 12, 10301-10309.	7.3	14
1885	Orientation of photosystem I on graphene through cytochrome <i>c</i> <csub>553 leads to improvement in photocurrent generation. Journal of Materials Chemistry A, 2018, 6, 18615-18626.</csub>	5.2	32
1886	Graphene & Drawn; two-dimensional devices for bioelectronics and neuroprosthetics. 2D Materials, 2018, 5, 042004.	2.0	40
1887	3D porous Mn3O4/PANi electrodes similar to reinforced concrete structure for high performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 16921-16931.	1.1	6
1888	A review on high throughput roll-to-roll manufacturing of chemical vapor deposition graphene. Applied Physics Reviews, 2018, 5, 031105.	5.5	40
1889	Acoustic performance of dual-electrode electrostatic sound generators based on CVD graphene on polyimide film. Nanotechnology, 2018, 29, 325502.	1.3	8
1890	Graphene and its derivatives: synthesis, modifications, and applications in wastewater treatment. Environmental Chemistry Letters, 2018, 16, 1301-1323.	8.3	84
1891	Graphene-wrapped nitrogen-doped hollow carbon spheres for high-activity oxygen electroreduction. Materials Chemistry Frontiers, 2018, 2, 1489-1497.	3.2	19
1892	Flexible Polymeric Substrates for Electronic Applications. Polymer Reviews, 2018, 58, 630-667.	5.3	73
1893	Electrical property of macroscopic graphene composite fibers prepared by chemical vapor deposition. Nanotechnology, 2018, 29, 305601.	1.3	7
1894	Improved thermal stability of Al/Ti $ ilde{A}$ ∞ 2/n-Ge ohmic contact by inserting single layer graphene. , 2018, , .		0
1895	Effects of etchants in the transfer of chemical vapor deposited graphene. Journal of Applied Physics, 2018, 123, .	1.1	19
1896	Highly Oriented Monolayer Graphene Grown on a Cu/Ni(111) Alloy Foil. ACS Nano, 2018, 12, 6117-6127.	7.3	132

#	Article	IF	CITATIONS
1897	Emerging trends in 2D nanotechnology that are redefining our understanding of "Nanocomposites― Nano Today, 2018, 21, 18-40.	6.2	59
1898	Strategies for Preparing Graphene Liquid Cells for Transmission Electron Microscopy. Nano Letters, 2018, 18, 3313-3321.	4.5	101
1899	Novel High Pressure Exfoliated Graphene-Based Semitransparent Stable DSSCs for Building Integrated Photovoltaics. ACS Applied Energy Materials, 2018, 1, 2512-2519.	2.5	22
1900	Camphorâ€Enabled Transfer and Mechanical Testing of Centimeterâ€Scale Ultrathin Films. Advanced Materials, 2018, 30, e1800888.	11.1	32
1901	Establishment of a reliable transfer process for fabricating chemical vapor deposition-grown graphene films with advanced and repeatable electrical properties. RSC Advances, 2018, 8, 19846-19851.	1.7	2
1902	Direct observation of grain boundaries in graphene through vapor hydrofluoric acid (VHF) exposure. Science Advances, 2018, 4, eaar5170.	4.7	25
1903	Transferrable polymeric carbon nitride/nitrogen-doped graphene films for solid state optoelectronics. Carbon, 2018, 138, 69-75.	5.4	20
1904	Comprehensive Synthesis Study of Well-Dispersed and Solution-Processed Metal Nanowires for Transparent Heaters. Journal of Nanomaterials, 2018, 2018, 1-13.	1.5	10
1905	Graphene as transparent electrode in Si solar cells: A dry transfer method. AIP Advances, 2018, 8, .	0.6	10
1906	Growth of Oriented Single Crystalline Hexagonal Boron Nitride Monolayers. Springer Theses, 2018, , 69-98.	0.0	0
1907	Chemical Vapor Deposition Growth and Characterization of Two-Dimensional Hexagonal Boron Nitride. Springer Theses, 2018, , .	0.0	3
1909	Vertical Graphene Tunneling Heterostructure with Ultrathin Ferroelectric BaTiO ₃ Film as a Tunnel Barrier. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800205.	1.2	1
1910	Direct Growth of 5 in. Uniform Hexagonal Boron Nitride on Glass for Highâ€Performance Deepâ€Ultraviolet Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2018, 5, 1800662.	1.9	18
1911	Preparation of light-sensitive polymer/graphene composite via molecular recognition by \hat{l}^2 -cyclodextrin. Journal of Materials Science, 2018, 53, 14337-14349.	1.7	11
1912	Effect of carrier doping and external electric field on the optical properties of graphene quantum dots. IOP Conference Series: Materials Science and Engineering, 2018, 310, 012014.	0.3	2
1913	Graphene Oxide-Like Materials in Organic and Perovskite Solar Cells., 2018,, 357-394.		5
1914	Potential of Graphene for Miniature Sensors and Conducting Devices for Biomedical Applications. , 2018, , .		0
1915	Smoothening of wrinkles in CVD-grown hexagonal boron nitride films. Nanoscale, 2018, 10, 16243-16251.	2.8	15

#	Article	IF	CITATIONS
1916	Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding. Thin Solid Films, 2018, 662, 76-82.	0.8	16
1917	Silicene, silicene derivatives, and their device applications. Chemical Society Reviews, 2018, 47, 6370-6387.	18.7	261
1918	Conductivity mapping of graphene on polymeric films by terahertz time-domain spectroscopy. Optics Express, 2018, 26, 17748.	1.7	29
1919	Study on the optical properties of ReS2 flakes by unpolarized and polarized optical contrast measurements. Optical Materials Express, 2018, 8, 1107.	1.6	6
1920	High-Performance Conducting Polymer/Si Nanowires Hybrid Solar Cells Using Multilayer-Graphene Transparent Conductive Electrode and Back Surface Passivation Layer. ACS Sustainable Chemistry and Engineering, 2018, 6, 12446-12452.	3.2	10
1921	Highly-flexible perovskite photodiodes employing doped multilayer-graphene transparent conductive electrodes. Nanotechnology, 2018, 29, 425203.	1.3	13
1922	Spatially resolved observation of water transport across nanomembranes using bright-field nanoscopy. Applied Physics Letters, 2018, 113, 043701.	1.5	4
1923	Improved air-stability of an organic–inorganic perovskite with anhydrously transferred graphene. Journal of Materials Chemistry C, 2018, 6, 8663-8669.	2.7	9
1924	Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Advanced Functional Materials, 2018, 28, 1801834.	7.8	357
1925	Optimized poly(methyl methacrylate)-mediated graphene-transfer process for fabrication of high-quality graphene layer. Nanotechnology, 2018, 29, 415303.	1.3	41
1926	A Review Paper on "Graphene Field Emission for Electron Microscopy― Applied Sciences (Switzerland), 2018, 8, 868.	1.3	15
1927	A Graphene-Based Microfluidic Platform for Electrocrystallization and In Situ X-ray Diffraction. Crystals, 2018, 8, 76.	1.0	13
1928	Low vacuum annealing of polymer at low temperatures towards direct and scalable growth of graphene. Materials Research Bulletin, 2018, 107, 147-153.	2.7	4
1929	Nondestructive Thickness Mapping of Wafer-Scale Hexagonal Boron Nitride Down to a Monolayer. ACS Applied Materials & Diterfaces, 2018, 10, 25804-25810.	4.0	17
1930	Toward high production of graphene flakes – a review on recent developments in their synthesis methods and scalability. Journal of Materials Chemistry A, 2018, 6, 15010-15026.	5.2	63
1931	Gate Tunable Transport in Graphene/MoS2/(Cr/Au) Vertical Field-Effect Transistors. Nanomaterials, 2018, 8, 14.	1.9	22
1932	Synthesis of Silver Nanowires with Reduced Diameters Using Benzoin-Derived Radicals to Make Transparent Conductors with High Transparency and Low Haze. Nano Letters, 2018, 18, 5329-5334.	4.5	96
1933	A simple means of producing highly transparent graphene on sapphire using chemical vapor deposition on a copper catalyst. Carbon, 2018, 139, 593-598.	5.4	2

#	Article	IF	CITATIONS
1934	Fabrication of graphene film composite electrochemical biosensor as a pre-screening algal toxin detection tool in the event of water contamination. Scientific Reports, 2018, 8, 10686.	1.6	31
1935	An Efficiency Enhanced Graphene/n-Si Schottky Junction for Solar Cells. Chinese Physics Letters, 2018, 35, 076801.	1.3	3
1936	Interface Engineering of Graphene/CH ₃ NH ₃ PbI ₃ Heterostructure for Novel p–i–n Structural Perovskites Solar Cells. Journal of Physical Chemistry C, 2018, 122, 17228-17237.	1.5	22
1937	Different spectroscopic behavior of coupled and freestanding monolayer graphene deposited by CVD on Cu foil. Applied Surface Science, 2018, 458, 580-585.	3.1	7
1938	Roll-to-Roll Mechanical Peeling for Dry Transfer of Chemical Vapor Deposition Graphene. Journal of Micro and Nano-Manufacturing, 2018, 6, .	0.8	26
1939	Flexible transparent conductive film based on silver nanowires and reduced graphene oxide. Optoelectronics Letters, 2018, 14, 195-199.	0.4	3
1940	Graphene Stress Transducer-Based Thermo-Mechanically Fractured Micro Valve. Journal of Microelectromechanical Systems, 2018, 27, 555-569.	1.7	1
1941	Co-synthesis of large-area graphene and syngas via CVD method from greenhouse gases. Materials Letters, 2018, 227, 132-135.	1.3	9
1942	Rapid preparation of conductive transparent films via solution printing of graphene precursor. Thin Solid Films, 2018, 657, 24-31.	0.8	14
1943	Rectification and Amplification of Ionic Current in Planar Graphene/Graphene-Oxide Junctions: An Electrochemical Diode and Transistor. Journal of Physical Chemistry C, 2018, 122, 11378-11384.	1.5	6
1944	Comparison on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fibre lasers. Laser Physics, 2018, 28, 065102.	0.6	0
1945	Highly Robust, Transparent, and Breathable Epidermal Electrode. ACS Nano, 2018, 12, 9326-9332.	7. 3	153
1946	A simple method to examine room-temperature corrosion of graphene-coated copper foil after stored for 2.5 years. Materials Research Express, 2018, 5, 105016.	0.8	4
1947	Non-phase-separated 2D B–C–N alloys <i>via</i> molecule-like carbon doping in 2D BN: atomic structures and optoelectronic properties. Physical Chemistry Chemical Physics, 2018, 20, 23106-23111.	1.3	6
1948	The main sources of graphene damage at transfer from copper to PET/EVA polymer. Materials Chemistry and Physics, 2018, 219, 67-73.	2.0	20
1949	Molecular Beam Epitaxy of Graphene and Hexagonal Boron Nitride. , 2018, , 487-513.		2
1950	Fabricating Quasi-Free-Standing Graphene on a SiC(0001) Surface by Steerable Intercalation of Iron. Journal of Physical Chemistry C, 2018, 122, 21484-21492.	1.5	23
1951	Broadband optical response of graphene measured by terahertz time-domain spectroscopy and FTIR spectroscopy. Journal of Applied Physics, 2018, 124, .	1.1	10

#	ARTICLE	IF	Citations
1952	Oxidation limited thermal boundary conductance at metal-graphene interface. Carbon, 2018, 139, 913-921.	5.4	13
1953	Photoresponsivity of an all-semimetal heterostructure based on graphene and WTe2. Scientific Reports, 2018, 8, 12840.	1.6	14
1954	Applications of Plasma in Energy Conversion and Storage Materials. Advanced Energy Materials, 2018, 8, 1801804.	10.2	77
1955	Superior adhesion of graphene nanoscrolls. Communications Physics, 2018, 1, .	2.0	24
1956	3D Graphene Films Enable Simultaneously High Sensitivity and Large Stretchability for Strain Sensors. Advanced Functional Materials, 2018, 28, 1803221.	7.8	89
1957	Magnetically and electrically polarization-tunable THz emitter with integrated ferromagnetic heterostructure and large-birefringence liquid crystal. Applied Physics Express, 2018, 11, 092101.	1.1	47
1958	Graphene and Graphene-Based Nanomaterials for DNA Detection: A Review. Molecules, 2018, 23, 2050.	1.7	70
1959	A brief review of corrosion protective films and coatings based on graphene and graphene oxide. Journal of Alloys and Compounds, 2018, 764, 1039-1055.	2.8	259
1960	Graphene-Based Materials for Clean Energy Applications. , 2018, , 351-383.		6
1961	Single-layer graphene modulates neuronal communication and augments membrane ion currents. Nature Nanotechnology, 2018, 13, 755-764.	15.6	120
1962	Formation, geometric properties, and surface activities of nSi clusters (n = 1 â^' 4) doped graph metal-free catalyst. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	ene as	0
1963	Performance of single layer graphene obtain by chemical vapor deposition on gold electrodes. Diamond and Related Materials, 2019, 98, 107510.	1.8	12
1964	Modeling and optimization of surface roughness in end milling of graphene/epoxy nanocomposite. Materials Today: Proceedings, 2019, 19, 302-306.	0.9	13
1965	High-quality graphene transfer <i>via</i> directional etching of metal substrates. Nanoscale, 2019, 11, 16001-16006.	2.8	11
1966	Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains. Science Advances, 2019, 5, eaaw8337.	4.7	77
1967	Synthesis of Graphene-based Materials for Surface-Enhanced Raman Scattering Applications. E-Journal of Surface Science and Nanotechnology, 2019, 17, 71-82.	0.1	2
1968	Atomistic simulation study on the crack growth stability of graphene under uniaxial tension and indentation. Meccanica, 2019, 54, 1915-1926.	1.2	4
1969	Label-Free Optical Nanoscopy of Single-Layer Graphene. ACS Nano, 2019, 13, 9673-9681.	7.3	13

#	Article	IF	CITATIONS
1970	Synthesis, Characterization and Fabrication of Graphene/Boron Nitride Nanosheets Heterostructure Tunneling Devices. Nanomaterials, 2019, 9, 925.	1.9	7
1971	Large deformation and rapid response of spatial light modulators fabricated with suspended polymer. Japanese Journal of Applied Physics, 2019, 58, SDDL04.	0.8	0
1972	Effect of E-beam irradiation on graphene sandwiched between h-BN layers. Microelectronic Engineering, 2019, 216, 111044.	1.1	1
1973	High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition. ACS Nano, 2019, 13, 8926-8935.	7.3	132
1974	Adhesive boundary effect on free-standing indentation characterization of chemical vapor deposition graphene. Carbon, 2019, 153, 438-446.	5 . 4	5
1975	Chemomechanics of transfer printing of thin films in a liquid environment. International Journal of Solids and Structures, 2019, 180-181, 30-44.	1.3	12
1976	Reduction of interlayer friction between bilayer hexagonal boron nitride nanosheets induced by electron redistribution. Journal of Applied Physics, 2019, 126, 035104.	1.1	6
1977	Mapping the conductivity of graphene with Electrical Resistance Tomography. Scientific Reports, 2019, 9, 10655.	1.6	38
1978	One-step synthesis of tunable nitrogen-doped graphene from graphene oxide and its high performance field emission properties. Vacuum, 2019, 168, 108817.	1.6	7
1979	Exploring Surface and Tunneling Properties of Defect-Oriented Quasi-Graphene/Poly(vinylidene) Tj ETQq1 1 0.78-4, 12696-12701.	4314 rgBT 1.6	/Overlock 1 5
1980	Nitrogen as a Suitable Replacement for Argon within Methaneâ€Based Hotâ€Wall Graphene Chemical Vapor Deposition. Physica Status Solidi (B): Basic Research, 2019, 256, 1900240.	0.7	2
1981	Effect of Carbon Nanofillers on the Mechanical and Interfacial Properties of Epoxy Based Nanocomposites: A Review. Polymer Science - Series A, 2019, 61, 439-460.	0.4	95
1982	Growth of plasma-enhanced chemical vapour deposition and hot filament plasma-enhanced chemical vapour deposition transfer-free graphene using a nickel catalyst. Thin Solid Films, 2019, 685, 335-342.	0.8	7
1983	Fabrication, characterization and micromechanics modeling of the electrical conductivity of reduced graphene oxide/aramid nanofiber nanocomposites. Smart Materials and Structures, 2019, 28, 094001.	1.8	9
1984	Quality Improvement of Few-Layers Defective Graphene from Biomass and Application for H2 Generation. Nanomaterials, 2019, 9, 895.	1.9	26
1985	Adlayerâ€Free Largeâ€Area Single Crystal Graphene Grown on a Cu(111) Foil. Advanced Materials, 2019, 31, e1903615.	11.1	89
1986	A two-dimensional cross-linked polythiophene network. Journal of Materials Chemistry C, 2019, 7, 9362-9368.	2.7	8
1987	The evolution of surface cleanness and electronic properties of graphene field-effect transistors during mechanical cleaning with atomic force microscopy. Nanotechnology, 2019, 30, 394003.	1.3	6

#	Article	IF	CITATIONS
1988	Wax-assisted crack-free transfer of monolayer CVD graphene: Extending from standalone to supported copper substrates. Applied Surface Science, 2019, 493, 81-86.	3.1	14
1989	Photosensing System Using Photosystem I and Gold Nanoparticle on Graphene Field-Effect Transistor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42773-42779.	4.0	24
1990	Synthesis and characterization of graphene from waste cooking palm oil at different deposition temperatures. AIP Conference Proceedings, 2019, , .	0.3	6
1991	The total ionizing dose effects of X-ray irradiation on graphene/Si Schottky diodes with a HfO2 insertion layer. Microelectronics Reliability, 2019, 100-101, 113355.	0.9	3
1992	Top-down bottom-up graphene synthesis. Nano Futures, 2019, 3, 042003.	1.0	39
1995	Etching- and intermediate-free graphene dry transfer onto polymeric thin films with high piezoresistive gauge factors. Journal of Materials Chemistry C, 2019, 7, 13032-13039.	2.7	16
1997	Investigating the Integrity of Graphene towards the Electrochemical Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 5446-5453.	1.7	11
1998	Purification of single-photon emission from hBN using post-processing treatments. Nanophotonics, 2019, 8, 2049-2055.	2.9	35
1999	Investigating the Integrity of Graphene towards the Electrochemical Hydrogen Evolution Reaction (HER). Scientific Reports, 2019, 9, 15961.	1.6	36
2000	Asymmetric Strainâ€Introduced Interface Effect on the Electronic and Optical Properties of the CsPbI 3 /SnS van der Waals Heterostructure. Advanced Materials Interfaces, 2019, 6, 1901330.	1.9	20
2001	Effects of Long-Time Current Annealing to the Hysteresis in CVD Graphene on SiO2. MRS Advances, 2019, 4, 3319-3326.	0.5	4
2002	Multifunctional electro-chemically exfoliated graphene with γ-alumina composite by spray-coating for energy efficient glass. Solar Energy Materials and Solar Cells, 2019, 203, 110199.	3.0	2
2003	UV Rewritable Hybrid Graphene/Phosphor p–n Junction Photodiode. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43351-43358.	4.0	5
2004	Graphene Nano Sheet Fabrication Using Light. IEEE Journal of the Electron Devices Society, 2019, 7, 1094-1099.	1.2	2
2005	Seedâ€Induced Vertical Growth of 2D Bi ₂ O ₂ Se Nanoplates by Chemical Vapor Transport. Advanced Functional Materials, 2019, 29, 1906639.	7.8	39
2006	Electrodeposition of graphene by cyclic voltammetry on nickel electrodes for microbial fuel cells applications. International Journal of Energy Research, 2019, 43, 2795-2805.	2.2	20
2007	Two-Dimensional Covalent Organic Framework–Graphene Photodetectors: Insight into the Relationship between the Microscopic Interfacial Structure and Performance. ACS Omega, 2019, 4, 18780-18786.	1.6	18
2008	Electrodeposition Cu and roll transfer of graphene for large scale fabrication of Cu-graphene nanolayered composite. 2D Materials, 2019, 6, 045051.	2.0	5

#	ARTICLE	IF	Citations
2009	The Effects of Hydrogen Flowrate during Pre-Annealing on Graphene Growth by Chemical Vapor Deposition Using Methanol as a Liquid Carbon Precursor. Solid State Phenomena, 2019, 290, 107-112.	0.3	0
2010	Ultrathin PEDOT:PSS/rGO Aerogel Providing Tapeâ€Like Selfâ€Healable Electrode for Sensing Space Electric Field with Electrochemical Mechanism. Advanced Electronic Materials, 2019, 5, 1900637.	2.6	19
2011	Performance Enhancement of Solar Cell by Incorporating Bilayer RGOâ€ITO Smart Conducting Antireflection Coating. Global Challenges, 2019, 3, 1800109.	1.8	3
2012	High-Performance All-Optical Terahertz Modulator Based on Graphene/TiO2/Si Trilayer Heterojunctions. Nanoscale Research Letters, 2019, 14, 159.	3.1	9
2013	Mass measurement of graphene using quartz crystal microbalances. Applied Physics Letters, 2019, 115, .	1.5	10
2014	Inspired by Grape Seed and Wine: Tannic Acid as a Modified Coating for Fabricating Highly Flexible, Transparent and Conductive Film. Chemical Research in Chinese Universities, 2019, 35, 945-950.	1.3	2
2015	Reduced Graphene Oxide-NiO Photocathodes for p-Type Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2019, 2, 7345-7353.	2.5	15
2016	Recent progress of solution-processed Cu nanowires transparent electrodes and their applications. RSC Advances, 2019, 9, 26961-26980.	1.7	16
2017	Interface Defect Engineering for Improved Graphene-Oxide-Semiconductor Junction Photodetectors. ACS Applied Nano Materials, 2019, 2, 6162-6168.	2.4	13
2018	Exploring 1-butanol as a potential liquid precursor for graphene synthesis via chemical vapour deposition and enhanced catalyzed growth methodology. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	3
2019	X-Band MMIC Balanced Frequency Doubler based on Graphene Diodes. , 2019, , .		7
2020	Floating magnetic microrobots for fiber functionalization. Science Robotics, 2019, 4, .	9.9	48
2021	Synthesis of Silane Functionalized Graphene Oxide and Its Application in Anti-Corrosion Waterborne Polyurethane Composite Coatings. Coatings, 2019, 9, 587.	1.2	44
2022	Characterization of nitrogen doped graphene bilayers synthesized by fast, low temperature microwave plasma-enhanced chemical vapour deposition. Scientific Reports, 2019, 9, 13715.	1.6	33
2023	Charge Storage Mechanisms of Single-Layer Graphene in Ionic Liquid. Journal of the American Chemical Society, 2019, 141, 16559-16563.	6.6	67
2024	Bio-interfactants as double-sided tapes for graphene oxide. Nanoscale, 2019, 11, 4236-4247.	2.8	5
2025	Graphene/Si Schottky solar cells: a review of recent advances and prospects. RSC Advances, 2019, 9, 863-877.	1.7	63
2026	Progress in the Field of Micro-Electrocorticography. Micromachines, 2019, 10, 62.	1.4	34

#	Article	IF	CITATIONS
2027	Growth of glassy carbon thin films and its pH sensor applications. SN Applied Sciences, 2019, 1, 1.	1.5	4
2028	Influence of surfactants on the electronic properties of liquid-phase exfoliated graphene. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 240, 62-68.	1.7	6
2029	Pulsed-grown graphene for flexible transparent conductors. Nanoscale Advances, 2019, 1, 1215-1223.	2.2	12
2030	Determination of the graphene–graphite ratio of graphene powder by Raman 2D band symmetry analysis. Analytical Methods, 2019, 11, 1224-1228.	1.3	101
2031	Long lifecycle MEMS double-clamped beam based on low stress graphene compound film. Sensors and Actuators A: Physical, 2019, 288, 39-46.	2.0	10
2032	Surface energies, adhesion energies, and exfoliation energies relevant to copper-graphene and copper-graphite systems. Surface Science, 2019, 685, 48-58.	0.8	74
2033	Boosted thermal conductance of polycrystalline graphene by spin-coated silver nanowires. International Journal of Heat and Mass Transfer, 2019, 134, 547-553.	2.5	10
2034	Quantum Capacitance Model for Graphene FET-Based Gas Sensor. IEEE Sensors Journal, 2019, 19, 3726-3732.	2.4	17
2035	High Photoresponsivity in Ultrathin 2D Lateral Graphene:WS ₂ :Graphene Photodetectors Using Direct CVD Growth. ACS Applied Materials & English Samp; Interfaces, 2019, 11, 6421-6430.	4.0	78
2036	Imaging of local structures affecting electrical transport properties of large graphene sheets by lock-in thermography. Science Advances, 2019, 5, eaau3407.	4.7	21
2037	Electrically-doped CVD-graphene transparent electrodes: application in 365 nm light-emitting diodes. Nanoscale Horizons, 2019, 4, 610-618.	4.1	16
2038	Surface-Enhanced Raman Spectroscopy of Graphene Integrated in Plasmonic Silicon Platforms with Three-Dimensional Nanotopography. Journal of Physical Chemistry C, 2019, 123, 3076-3087.	1.5	16
2039	Metal support effects in electrocatalysis at hexagonal boron nitride. Chemical Communications, 2019, 55, 628-631.	2.2	34
2040	Synthesis and characterization of rGO decorated cubic ZnTiO ₃ rods for solar light-induced photodegradation of rhodamine B. New Journal of Chemistry, 2019, 43, 3374-3382.	1.4	24
2041	A tunable positive and negative photoconductive photodetector based on a gold/graphene/p-type silicon heterojunction. Journal of Materials Chemistry C, 2019, 7, 887-896.	2.7	32
2042	Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector. Nano Research, 2019, 12, 1888-1893.	5.8	16
2043	Amine-terminated ionic liquid modified graphene oxide/copper nanocomposite toward efficient lubrication. Applied Surface Science, 2019, 491, 105-115.	3.1	91
2044	Graphene as a Transparent and Conductive Electrode for Organic Optoelectronic Devices. Advanced Electronic Materials, 2019, 5, 1900247.	2.6	40

#	ARTICLE	IF	CITATIONS
2045	Electronic Transport and Thermopower in 2D and 3D Heterostructuresâ€"A Theory Perspective. Annalen Der Physik, 2019, 531, 1800510.	0.9	9
2046	Kaolin alleviates the toxicity of graphene oxide for mammalian cells. MedChemComm, 2019, 10, 1457-1464.	3.5	19
2047	Self-assembled graphene oxide-graphene hybrids for enhancing the corrosion resistance of waterborne epoxy coating. Applied Surface Science, 2019, 488, 801-812.	3.1	67
2048	Ultrastiff, Strong, and Highly Thermally Conductive Crystalline Graphitic Films with Mixed Stacking Order. Advanced Materials, 2019, 31, e1903039.	11.1	49
2049	Creation of 3D Textured Graphene/Si Schottky Junction Photocathode for Enhanced Photoâ€Electrochemical Efficiency and Stability. Advanced Energy Materials, 2019, 9, 1901022.	10.2	21
2050	High-detectivity and -stability multilayer-graphene/Si-quantum-dot photodetectors with TiOx back-surface passivation layer. Dyes and Pigments, 2019, 170, 107587.	2.0	7
2051	Adhesion properties of 2D materials. Journal Physics D: Applied Physics, 2019, 52, 364002.	1.3	39
2052	Tristate Resistive Switching in Heterogenous Van Der Waals Dielectric Structures. , 2019, , .		1
2053	Stable hydroxyl functionalization and p-type doping of graphene by a non-destructive photo-chemical method. Carbon, 2019, 152, 267-273.	5.4	9
2054	Devices and Circuits Using Novel 2-D Materials: A Perspective for Future VLSI Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 1486-1503.	2.1	30
2055	Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nature Materials, 2019, 18, 550-560.	13.3	211
2056	Fully solution processed Ag NWs/ZnO TF/ZnO NR composite electrodes with tunable light scattering properties for thin-film solar cells. Journal of Alloys and Compounds, 2019, 791, 1231-1240.	2.8	9
2057	A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting. Applied Catalysis B: Environmental, 2019, 254, 471-478.	10.8	132
2058	Review on advances in photocatalytic water disinfection utilizing graphene and graphene derivatives-based nanocomposites. Journal of Environmental Chemical Engineering, 2019, 7, 103132.	3.3	103
2059	Light-assisted recovery of reacted MoS ₂ for reversible NO ₂ sensing at room temperature. Nanotechnology, 2019, 30, 355504.	1.3	48
2060	Out-of-plane piezoresponse of monolayer MoS2 on plastic substrates enabled by highly uniform and layer-controllable CVD. Applied Surface Science, 2019, 487, 1356-1361.	3.1	36
2061	A spectroscopic study to assess the photogeneration of singlet oxygen by graphene oxide. Materials Letters, 2019, 251, 45-51.	1.3	18
2062	A Double Support Layer for Facile Clean Transfer of Two-Dimensional Materials for High-Performance Electronic and Optoelectronic Devices. ACS Nano, 2019, 13, 5513-5522.	7.3	29

#	ARTICLE	IF	CITATIONS
2063	<p>The effects of graphene and mesenchymal stem cells in cutaneous wound healing and their putative action mechanism</p> . International Journal of Nanomedicine, 2019, Volume 14, 2281-2299.	3.3	39
2064	Thermal conductivity reduction of multilayer graphene with fine grain sizes. JMST Advances, 2019, 1, 191-195.	0.6	7
2065	Transfer Methods of Graphene from Metal Substrates: A Review. Small Methods, 2019, 3, 1900049.	4.6	67
2066	Facile and precise fabrication of 10-nm nanostructures on soft and hard substrates. Applied Surface Science, 2019, 484, 317-325.	3.1	11
2067	Preparation of controlled lotus like structured ZnO decorated reduced graphene oxide nanocomposites to obtain enhanced photocatalytic properties. Ceramics International, 2019, 45, 24999-25009.	2.3	14
2068	High responsivity and high-speed 1.55 $\hat{l}\frac{1}{4}$ m infrared photodetector from self-powered graphene/Si heterojunction. Sensors and Actuators A: Physical, 2019, 291, 87-92.	2.0	28
2069	Ethanol Assisted Transfer for Clean Assembly of 2D Building Blocks and Suspended Structures. Advanced Functional Materials, 2019, 29, 1902427.	7.8	14
2070	Copper-Containing Carbon Feedstock for Growing Superclean Graphene. Journal of the American Chemical Society, 2019, 141, 7670-7674.	6.6	47
2071	Copper complex of polyglycerol anchored to graphene oxide as a recyclable nanocatalyst for sonochemical green synthesis of naphthoquinones. Canadian Journal of Chemistry, 2019, 97, 728-736.	0.6	2
2072	Using Si textured structure to build vertical graphene sharp edges for electron field emission. Materials Research Express, 2019, 6, 086301.	0.8	1
2073	Graphene transparent conductive films directly grown on quartz substrates by assisted catalysis of Cu nanoparticles. Journal of Materials Science, 2019, 54, 10312-10324.	1.7	8
2074	An Ecoâ€Friendly, CMOSâ€Compatible Transfer Process for Largeâ€Scale CVDâ€Graphene. Advanced Materials Interfaces, 2019, 6, 1900084.	1.9	15
2075	Polymeric Surface Modification of Graphene. , 2019, , 305-320.		0
2076	Junction-free copper wires with submicron linewidth for large-area high-performance transparent electrodes. Journal of Materials Chemistry C, 2019, 7, 6144-6151.	2.7	4
2077	Evaporable Glass-State Molecule-Assisted Transfer of Clean and Intact Graphene onto Arbitrary Substrates. ACS Applied Materials & Substrat	4.0	20
2078	Single GaAs Nanowire/Graphene Hybrid Devices Fabricated by a Position-Controlled Microtransfer and an Imprinting Technique for an Embedded Structure. ACS Applied Materials & Emp; Interfaces, 2019, 11, 13514-13522.	4.0	7
2079	Surface-Synthesized Graphene Nanoribbons for Room Temperature Switching Devices: Substrate Transfer and <i>ex Situ</i> Characterization. ACS Applied Nano Materials, 2019, 2, 2184-2192.	2.4	75
2080	Giant surfactants for the construction of automatic liquid crystal alignment layers. Journal of Materials Chemistry C, 2019, 7, 8500-8514.	2.7	16

#	ARTICLE	IF	CITATIONS
2081	CVD-graphene/graphene flakes dual-films as advanced DSSC counter electrodes. 2D Materials, 2019, 6, 035007.	2.0	23
2082	Miniature Fiber Optic Acoustic Pressure Sensors With Air-Backed Graphene Diaphragms. Journal of Vibration and Acoustics, Transactions of the ASME, 2019, 141, .	1.0	15
2083	Macro-Tribological Behaviors of Four Common Graphenes. Industrial & Engineering Chemistry Research, 2019, 58, 5464-5471.	1.8	10
2084	Composite multilayer films based on polyelectrolytes and in situ â€formed carbon nanostructures with enhanced photoluminescence and conductivity properties. Journal of Applied Polymer Science, 2019, 136, 47718.	1.3	9
2085	Do-lt-Yourself Transfer of Large-Area Graphene Using an Office Laminator and Water. Chemistry of Materials, 2019, 31, 2328-2336.	3.2	71
2086	Graphene/silicon and 2D-MoS2/silicon solar cells: a review. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	22
2087	Water-assisted rapid growth of monolayer graphene films on SiO2/Si substrates. Carbon, 2019, 148, 241-248.	5.4	35
2088	One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chemical Reviews, 2019, 119, 8972-9073.	23.0	240
2089	Growth of Large-Area High-Quality Graphene on Different Types of Copper Foil Preannealed under Positive Pressure H ₂ Ambience. ACS Omega, 2019, 4, 5165-5171.	1.6	10
2090	AgNWs-graphene transparent conductor for heat and sensing applications. Materials Research Express, 2019, 6, 066312.	0.8	8
2091	1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions. Chemical Engineering Science, 2019, 201, 319-324.	1.9	10
2092	A Universal Stamping Method of Graphene Transfer for Conducting Flexible and Transparent Polymers. Scientific Reports, 2019, 9, 3999.	1.6	31
2093	Role of Crack Deflection on Rate Dependent Mechanical Transfer of Multilayer Graphene and Its Application to Transparent Electrodes. ACS Applied Nano Materials, 2019, 2, 1980-1985.	2.4	13
2094	High-quality-factor flexible and transparent capacitors with Cr–Au nanomeshes as bottom electrodes. Nanotechnology, 2019, 30, 284001.	1.3	3
2095	Chemical vapor deposition-grown carbon nanotubes/graphene hybrids for electrochemical energy storage and conversion. FlatChem, 2019, 15, 100091.	2.8	35
2096	Transparent, Flexible Heater Based on Hybrid 2D Platform of Graphene and Dry-Spun Carbon Nanotubes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16223-16232.	4.0	43
2097	Complementary Dual-Channel Gas Sensor Devices Based on a Role-Allocated ZnO/Graphene Hybrid Heterostructure. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16830-16837.	4.0	41
2098	In Operando Probing of Lithiumâ€lon Storage on Singleâ€Layer Graphene. Advanced Materials, 2019, 31, e1808091.	11.1	56

#	Article	IF	CITATIONS
2099	Review of Micro–Nanoscale Surface Coatings Application for Sustaining Dropwise Condensation. Coatings, 2019, 9, 117.	1.2	33
2100	Solution-gated graphene field effect transistor for TP53 DNA sensor with coplanar electrode array. Sensors and Actuators B: Chemical, 2019, 291, 96-101.	4.0	31
2101	Graphene and Carbon Nanotube Heterojunction Transistors with Individual Gate Control. ACS Nano, 2019, 13, 4771-4777.	7.3	9
2102	Potassium-doped n-type stacked graphene layers. Materials Research Express, 2019, 6, 055009.	0.8	9
2103	Buckled Structures: Fabrication and Applications in Wearable Electronics. Small, 2019, 15, e1804805.	5.2	83
2104	Significant thermal conductivity reduction of CVD graphene with relatively low hole densities fabricated by focused ion beam processing. Applied Physics Letters, 2019, 114, .	1.5	9
2105	Maskless production of neural-recording graphene microelectrode arrays. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 022202.	0.6	0
2106	Improving Radio Frequency Transmission Properties of Graphene via Carrier Concentration Control toward High Frequency Transmission Line Applications. Advanced Functional Materials, 2019, 29, 1808057.	7.8	6
2107	Sandwiching h-BN Monolayer Films between Sulfonated Poly(ether ether ketone) and Nafion for Proton Exchange Membranes with Improved Ion Selectivity. ACS Nano, 2019, 13, 2094-2102.	7.3	52
2108	High conductive ITO-free flexible electrode based on Gr-grafted-CNT/Au NPs for optoelectronic applications. Optical Materials, 2019, 89, 441-451.	1.7	5
2109	Modeling of plasma-enhanced chemical vapor deposition growth of graphene on cobalt substrates. Diamond and Related Materials, 2019, 93, 84-95.	1.8	7
2110	Performance evaluation and analyses of novel parabolic trough evacuated collector tubes with spectrum-selective glass envelope. Renewable Energy, 2019, 138, 793-804.	4.3	33
2111	An Eco-Friendly, Nanocellulose/RGO/in Situ Formed Polyaniline for Flexible and Free-Standing Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 4766-4776.	3.2	66
2112	Graphene on Groupâ€N Elementary Semiconductors: The Direct Growth Approach and Its Applications. Advanced Materials, 2019, 31, e1803469.	11.1	21
2113	Three-dimensional AgNPs-graphene-AgNPs sandwiched hybrid nanostructures with sub-nanometer gaps for ultrasensitive surface-enhanced Raman spectroscopy. Carbon, 2019, 147, 105-111.	5.4	36
2114	Infrared study of carrier scattering mechanism in ion-gated graphene. Applied Physics Letters, 2019, 114, 083503.	1.5	6
2115	Terahertz electric field modulated mode coupling in graphene-metal hybrid metamaterials. Optics Express, 2019, 27, 2317.	1.7	22
2116	From 2D to 3D: Graphene molding for transparent and flexible probes. Applied Physics Letters, 2019, 114,	1.5	3

#	Article	IF	CITATIONS
2117	Sculpturing graphene wrinkle patterns into compliant substrates. Carbon, 2019, 146, 772-778.	5.4	18
2118	A review of studies using graphenes in energy conversion, energy storage and heat transfer development. Energy Conversion and Management, 2019, 184, 581-599.	4.4	115
2119	Strategies towards Carbon Nanomaterials-Based Transparent Electrodes. World Scientific Series in Current Energy Issues, 2019, , 223-249.	0.1	0
2120	Modelling graphene/n-Si Schottky junction solar cells by artificial neural networks. , 2019, , .		0
2121	Detection of single-stranded DNA using the Dirac voltage change of graphene-based FETs. , 2019, , .		0
2122	High-responsivity turbostratic stacked graphene photodetectors using enhanced photogating. Applied Physics Express, 2019, 12, 122010.	1.1	18
2123	Nonlinear optical properties of graphene and pyrolytic carbon: A comparative study. Journal of Nonlinear Optical Physics and Materials, 2019, 28, 1950016.	1.1	0
2124	Grafting Methyl Groups on the Si(111) Surface as a Buffer Layer for van der Waals Epitaxial Growth of ZnO Nanorods in Chemical Bath Deposition. Journal of Physical Chemistry C, 2019, 123, 30981-30985.	1.5	2
2125	Graphene-Diode-Based Frequency Conversion Mixers for High-Frequency Applications. , 2019, , .		1
2126	Fabrication of Stretchable Transparent Electrode by Utilizing Self-Induced Vacuum Force. Applied Sciences (Switzerland), 2019, 9, 4986.	1.3	0
2127	Gate-tunable ion–electron hybrid phototransistor based on a graphene/RbAg4I5 composite. Journal of Materials Chemistry C, 2019, 7, 13253-13260.	2.7	1
2128	The influence of the crystallographic orientation of the copper catalytic substrate crystallites on the mechanical transfer of graphene. Materials Research Express, 2019, 6, 125628.	0.8	6
2129	Efficient Large-Scale Removal of Poly(methyl methacrylate) Layers by Using a Methyl Isobutyl Ketone Solution. Journal of the Korean Physical Society, 2019, 75, 817-820.	0.3	4
2130	Nanostructured Materials for Treating Aquatic Pollution. Engineering Materials, 2019, , .	0.3	4
2131	Nanostructured Carbon-Based Materials for Adsorption of Organic Contaminants from Water. Engineering Materials, 2019, , 35-64.	0.3	0
2132	Influence of the Interactions at the Graphene–Substrate Boundary on Graphene Sensitivity to UV Irradiation. Materials, 2019, 12, 3949.	1.3	4
2133	Toward Mass Production of CVD Graphene Films. Advanced Materials, 2019, 31, e1800996.	11.1	218
2134	Electrically controllable directional coupler based on tunable hybrid graphene nanoplasmonic waveguide. Optics Communications, 2019, 430, 450-455.	1.0	14

#	Article	IF	CITATIONS
2135	Tractable Synthesis of Graphene Oxide by Electrochemical Exfoliation Method. Lecture Notes in Mechanical Engineering, 2019, , 239-248.	0.3	4
2136	Tuning the sub-processes in laser reduction of graphene oxide by adjusting the power and scanning speed of laser. Carbon, 2019, 141, 83-91.	5.4	68
2137	The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Advanced Materials, 2019, 31, e1802722.	11.1	268
2138	Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chemical Society Reviews, 2019, 48, 488-516.	18.7	564
2139	Highly Sensitive, Low Voltage Operation, and Low Power Consumption Resistive Strain Sensors Based on Vertically Oriented Graphene Nanosheets. Advanced Materials Technologies, 2019, 4, 1800572.	3.0	15
2140	Wafer-Scale van der Waals Heterostructures with Ultraclean Interfaces via the Aid of Viscoelastic Polymer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1579-1586.	4.0	17
2141	Construction of Schottky junction solar cell using silicon nanowires and multi-layered graphene. Superlattices and Microstructures, 2019, 126, 42-48.	1.4	11
2142	Two-step synthesis of reduced graphene oxide with columnar-shaped ZnO composites and their photocatalytic performance with natural dye. Journal of the Australian Ceramic Society, 2019, 55, 837-848.	1.1	2
2143	Ultrasensitive LPFG corrosion sensor with Fe-C coating electroplated on a Gr/AgNW film. Sensors and Actuators B: Chemical, 2019, 283, 334-342.	4.0	29
2144	Perovskite/Graphene Solar Cells without a Hole-Transport Layer. ACS Applied Energy Materials, 2019, 2, 171-175.	2.5	50
2145	Direct Growth of Graphene on Fused Quartz by Atmospheric Pressure Chemical Vapor Deposition with Acetylene. Journal of Physical Chemistry C, 2019, 123, 2370-2377.	1.5	9
2146	Nanowire-Based Transparent Conductive Electrodes. Nanostructure Science and Technology, 2019, , 159-200.	0.1	2
2147	Modifying the electrical properties of graphene by reversible point-ripple formation. Carbon, 2019, 143, 762-768.	5.4	19
2148	Flexible Electronics: Stretchable Electrodes and Their Future. Advanced Functional Materials, 2019, 29, 1805924.	7.8	510
2149	Barrier Height Inhomogeneity in Mixed-Dimensional Graphene/Single CdSe Nanobelt Schottky Junctions. IEEE Electron Device Letters, 2019, 40, 119-122.	2.2	12
2150	Synthesis of high-quality monolayer graphene by low-power plasma. Current Applied Physics, 2019, 19, 44-49.	1.1	4
2151	A Facile Synthesis of Graphene Oxide (GO) and Reduced Graphene Oxide (RGO) by Electrochemical Exfoliation of Battery Electrode. Lecture Notes in Electrical Engineering, 2019, , 537-547.	0.3	2
2152	Nanowire Electronics. Nanostructure Science and Technology, 2019, , .	0.1	4

#	Article	IF	CITATIONS
2153	Monolayer MoS $<$ sub $>$ 2 $<$ /sub $>$ Strained to 1.3% With a Microelectromechanical System. Journal of Microelectromechanical Systems, 2019, 28, 254-263.	1.7	45
2154	Two-dimensional heterostructures based on graphene and transition metal dichalcogenides: Synthesis, transfer and applications. Carbon, 2019, 145, 240-250.	5.4	53
2155	Highly-flexible and -stable deep-ultraviolet photodiodes made of graphene quantum dots sandwiched between graphene layers. Dyes and Pigments, 2019, 163, 238-242.	2.0	21
2156	Carbon Dots Dispersed on Graphene/SiO 2 /Si: A Morphological Study. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800559.	0.8	6
2157	Single-step growth of graphene and graphene-based nanostructures by plasma-enhanced chemical vapor deposition. Nanotechnology, 2019, 30, 162001.	1.3	37
2158	Effect of Cu surface treatment in graphene growth by chemical vapor deposition. Materials Letters, 2019, 236, 403-407.	1.3	7
2159	Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomaterialia, 2019, 83, 37-54.	4.1	683
2160	Synthesis of few-layer WS2 by jet cavitation as anode material for lithium ion batteries. Journal of Alloys and Compounds, 2019, 775, 1251-1258.	2.8	23
2161	Coupled Ag nanocrystal-based transparent mesh electrodes for transparent and flexible electro-magnetic interference shielding films. Current Applied Physics, 2019, 19, 8-13.	1.1	11
2162	Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion. Journal of Alloys and Compounds, 2019, 776, 123-132.	2.8	56
2163	Graphene and Its Applications in Microbial Electrochemical Technology., 2019,, 75-97.		5
2164	Improved performance of graphene/n-GaAs heterojunction solarcells by introducing an electron-blocking/hole-transporting layer. Materials Research Express, 2019, 6, 016202.	0.8	6
2165	Grapheneâ€Based Transparent Conductive Films: Material Systems, Preparation and Applications. Small Methods, 2019, 3, 1800199.	4.6	135
2166	CVD growth of zinc oxide thin films on graphene on insulator using a high-temperature platinum-catalyzed water beam. Journal of Materials Science, 2019, 54, 228-237.	1.7	3
2167	Robust micropatterns on graphene oxide films based on the modification of fluorescence lifetime for multimode optical recording. Carbon, 2019, 142, 224-229.	5.4	4
2168	Quantitative Principles for Precise Engineering of Sensitivity in Graphene Electrochemical Sensors. Advanced Materials, 2019, 31, e1805752.	11.1	20
2169	Impact of Postâ€Lithography Polymer Residue on the Electrical Characteristics of MoS ₂ and WSe ₂ Field Effect Transistors. Advanced Materials Interfaces, 2019, 6, 1801321.	1.9	56
2170	Scalable Grapheneâ€onâ€Organometal Halide Perovskite Heterostructure Fabricated by Dry Transfer. Advanced Materials Interfaces, 2019, 6, 1801419.	1.9	11

#	Article	IF	CITATIONS
2171	Ultrathin Yttria‧tabilized Zirconia as a Flexible and Stable Substrate for Infrared Nanoâ€Optics. Advanced Optical Materials, 2019, 7, 1800966.	3.6	15
2172	Integrating Graphene/MoS ₂ Heterostructure with SiN _x Waveguide for Visible Light Detection at 532 nm Wavelength. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800338.	1.2	13
2173	Improvement of conductivity of graphene-silver nanowire hybrid through nitrogen doping using low power plasma treatment. Journal of Alloys and Compounds, 2019, 773, 1009-1017.	2.8	19
2174	Electrochemical reduction of graphene oxide on biomedical grade CoCr alloy. Applied Surface Science, 2019, 465, 1028-1036.	3.1	31
2175	Study on the surface energy characteristics of polydimethylsiloxane (PDMS) films modified by C4F8/O2/Ar plasma treatment. Applied Surface Science, 2019, 477, 198-203.	3.1	29
2176	Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Materials, 2019, 16, 102-125.	9.5	313
2177	Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arabian Journal of Chemistry, 2020, 13, 3498-3520.	2.3	282
2178	Modern Age Waste Water Problems. , 2020, , .		4
2179	Numerical study of a high negative refractive index based tunable metamaterial structure by graphene split ring resonator for far infrared frequency. Optics Communications, 2020, 456, 124581.	1.0	25
2180	Transparent and flexible electrode composed of a graphene multilayer interlayer-doped with MoO3. Organic Electronics, 2020, 77, 105437.	1.4	7
2181	Current Scenario of Poly (2,5-Benzimidazole) (ABPBI) as Prospective PEM for Application in HT-PEMFC. Polymer Reviews, 2020, 60, 267-317.	5. 3	38
2182	Hybridization of MOFs and graphene: A new strategy for the synthesis of porous 3D carbon composites for high performing supercapacitors. Electrochimica Acta, 2020, 329, 135104.	2.6	58
2183	Stretchability of PMMA-supported CVD graphene and of its electrical contacts. 2D Materials, 2020, 7, 014003.	2.0	17
2184	Fabrication of vertical van der Waals gap array using single-and multi-layer graphene. Nanotechnology, 2020, 31, 035304.	1.3	2
2185	Ultrasensitive Fieldâ€Effect Biosensors Enabled by the Unique Electronic Properties of Graphene. Small, 2020, 16, e1902820.	5 . 2	75
2186	A molecular dynamics study on the interfacial properties of carbene-functionalized graphene/polymer nanocomposites. International Journal of Mechanics and Materials in Design, 2020, 16, 387-400.	1.7	14
2187	Low-energy electron microscopy of graphene outside UHV: electron-induced removal of PMMA residues used for graphene transfer. Journal of Electron Spectroscopy and Related Phenomena, 2020, 241, 146873.	0.8	7
2188	Enhanced fatigue and durability of carbon black/natural rubber composites reinforced with graphene oxide and carbon nanotubes. Engineering Fracture Mechanics, 2020, 223, 106764.	2.0	47

#	Article	IF	CITATIONS
2189	Effects of fluorination of carbon film and annealing conditions on side leakage current and current breakdown time of SiO2/graphene/Cu/Ti/SiO2/Si specimens. Vacuum, 2020, 172, 109037.	1.6	0
2190	Wetting translucency of graphene on plasmonic nanohole arrays. 2D Materials, 2020, 7, 011004.	2.0	2
2191	Flexible and stretchable inorganic electronics: Conductive materials, fabrication strategy, and applicable devices., 2020,, 199-252.		2
2192	CVD grown nitrogen doped graphene is an exceptional visible-light driven photocatalyst for surface catalytic reactions. 2D Materials, 2020, 7, 015002.	2.0	12
2193	Recent advances in twoâ€dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction. Journal of Chemical Technology and Biotechnology, 2020, 95, 2597-2607.	1.6	52
2194	Environmental friendly approach for facile synthesis of graphene-like nanosheets for photocatalytic activity. Journal of Alloys and Compounds, 2020, 823, 153696.	2.8	9
2195	Fabrication and Electrochemical Properties of Three-Dimensional (3D) Porous Graphitic and Graphenelike Electrodes Obtained by Low-Cost Direct Laser Writing Methods. ACS Omega, 2020, 5, 1540-1548.	1.6	35
2196	High-quality nitrogen-doped graphene films synthesized from pyridine via two-step chemical vapor deposition. Carbon, 2020, 159, 579-585.	5.4	40
2197	Tailoring the electrochemical properties of 2D-hBN <i>via</i> physical linear defects: physicochemical, computational and electrochemical characterisation. Nanoscale Advances, 2020, 2, 264-273.	2.2	11
2198	Piezoresistive and chemiresistive gas sensing by metal-free graphene layers. Physical Chemistry Chemical Physics, 2020, 22, 3089-3096.	1.3	7
2199	Photovoltaic Properties of an rGO/Pt Counter Electrode With AZO Photoanode for Dye-Sensitized Solar Cells Under Low Light Intensity. IEEE Transactions on Semiconductor Manufacturing, 2020, 33, 121-127.	1.4	3
2200	Ultrasensitive amyloid βâ€protein quantification with high dynamic range using a hybrid graphene–gold surfaceâ€enhanced Raman spectroscopy platform. Journal of Raman Spectroscopy, 2020, 51, 432-441.	1.2	8
2201	Thin film encapsulation for the organic light-emitting diodes display via atomic layer deposition. Journal of Materials Research, 2020, 35, 681-700.	1.2	44
2202	Nonpolar Resistive Switching of Multilayerâ€hBNâ€Based Memories. Advanced Electronic Materials, 2020, 6, 1900979.	2.6	42
2203	Green, fast, and scalable production of reduced graphene oxide via Taylor vortex flow. Chemical Engineering Journal, 2020, 391, 123482.	6.6	16
2204	Graphene-dendritic polymer hybrids: synthesis, properties, and applications. Journal of the Iranian Chemical Society, 2020, 17, 735-764.	1.2	9
2205	Low-friction, wear-resistant, and electrically homogeneous multilayer graphene grown by chemical vapor deposition on molybdenum. Applied Surface Science, 2020, 509, 144792.	3.1	14
2206	Characteristics of pn junction diode made of multi-layer graphene. Japanese Journal of Applied Physics, 2020, 59, 015003.	0.8	3

#	Article	IF	CITATIONS
2207	A flexible CVD graphene platform electrode modified with l-aspartic acid for the simultaneous determination of acetaminophen, epinephrine and tyrosine. Journal of Electroanalytical Chemistry, 2020, 856, 113737.	1.9	17
2208	A Strategy To Prepare High-Quality Monocrystalline Graphene: Inducing Graphene Growth with Seeding Chemical Vapor Deposition and Its Mechanism. ACS Applied Materials & Samp; Interfaces, 2020, 12, 1306-1314.	4.0	7
2209	Bilayer Graphene: From Stacking Order to Growth Mechanisms. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900605.	1.2	4
2210	Fast growth of single-crystal graphene on Cu Ni substrate by surface oxygen supply. Diamond and Related Materials, 2020, 101, 107634.	1.8	5
2211	Electrical properties of graphene/In ₂ O ₃ bilayer with remarkable uniformity as transparent conducting electrode. Nanotechnology, 2020, 31, 095708.	1.3	7
2212	Flexible Integrated Circuits Based on Carbon Nanotubes. Accounts of Materials Research, 2020, 1, 88-99.	5.9	18
2213	Recognition of Spatial Distribution of CNT and Graphene in Hybrid Structure by Mapping with Coherent Anti-Stokes Raman Microscopy. Nanoscale Research Letters, 2020, 15, 37.	3.1	7
2214	The Transmittance Modulation of ZnO/Cu/ZnO Transparent Conductive Electrodes Prepared on Glass Substrates. Materials, 2020, 13, 3916.	1.3	5
2215	Graphene/InP Schottky junction near-infrared photodetectors. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	11
2216	Preparation and thermo-physical properties of stable graphene/water nanofluids for thermal management. Journal of Molecular Liquids, 2020, 319, 114165.	2.3	16
2217	Chemical Patterning of Graphene <i>via</i> Metal-Assisted Highly Energetic Electron Irradiation for Graphene Homojunction-Based Gas Sensors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 47802-47810.	4.0	11
2218	Photoreduced nanocomposites of graphene oxide/N-doped carbon dots toward all-carbon memristive synapses. NPG Asia Materials, 2020, 12, .	3.8	47
2219	Sodium hydroxide mediated alumina nanoparticles from waste aluminum foil sheets – Biological impact and photo-catalytic efficacy on commercial dyes. Materials Today: Proceedings, 2020, 33, 2366-2374.	0.9	2
2220	Graphene-Based Gas Sensors with High Sensitivity and Minimal Sensor-to-Sensor Variation. ACS Applied Nano Materials, 2020, 3, 2257-2265.	2.4	97
2221	Review of fabrication methods of large-area transparent graphene electrodes for industry. Frontiers of Optoelectronics, 2020, 13, 91-113.	1.9	31
2222	Screening effect of monolayer van der Waals crystals on surface deicing: a molecular simulation study. Physical Chemistry Chemical Physics, 2020, 22, 27873-27881.	1.3	3
2223	The synthesis of silver nanowires with tunable diameters using halide ions for flexible transparent conductive films. CrystEngComm, 2020, 22, 8421-8429.	1.3	10
2224	Monolayer Graphene Transfer onto Hydrophilic Substrates: A New Protocol Using Electrostatic Charging. Membranes, 2020, 10, 358.	1.4	3

#	Article	IF	CITATIONS
2225	Synthesis, transfer and application of graphene as a transparent conductive film: a review. Bulletin of Materials Science, 2020, 43, 1.	0.8	18
2226	An Effort Towards Full Graphene Photodetectors. Photonic Sensors, 2022, 12, 31-67.	2.5	16
2227	Influence of thermal annealing of Ag NWs/AZO composite films on behavior of Ag NWs/AZO-P3HT photodetectors. Journal of Alloys and Compounds, 2020, 848, 156569.	2.8	9
2228	A scalable polymer-free method for transferring graphene onto arbitrary surfaces. Carbon, 2020, 161, 479-485.	5.4	21
2229	Recent progress of graphene based nanomaterials in bioelectrochemical systems. Science of the Total Environment, 2020, 749, 141225.	3.9	105
2230	A combination of hydrothermal, intercalation and electrochemical methods for the preparation of high-quality graphene: Characterization and using to prepare graphene-polyurethane nanocomposite. Journal of Alloys and Compounds, 2020, 848, 156495.	2.8	12
2231	Effect of Al2O3/Alucone nanolayered composite overcoating on reliability of Ag nanowire electrodes under bending fatigue. Journal of Alloys and Compounds, 2020, 846, 156420.	2.8	4
2232	Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping. Carbon, 2020, 170, 75-84.	5. 4	32
2233	Comparison of the Goos–Hächen Shift Induced by Surface Plasmon Resonance in Metal–MoSe2–Graphene Structure. Plasmonics, 2020, 15, 2195-2203.	1.8	4
2234	Electrochemical Behavior of Graphene in a Deep Eutectic Solvent. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40937-40948.	4.0	29
2235	Studies of the Dirac Point in a GO/P3HT Nanocomposite Thin-Film Phototransistor. Journal of Electronic Materials, 2020, 49, 5808-5815.	1.0	0
2236	High-Responsivity Photodetector Based on a Suspended Monolayer Graphene/RbAg ₄ 1 ₅ Composite Nanostructure. ACS Applied Materials & Suspended Interfaces, 2020, 12, 50763-50771.	4.0	6
2237	Vertical-Type Organic Light-Emitting Transistors with High Effective Aperture Ratios. , 0, , .		0
2238	Understanding of the Mechanism for Laser Ablation-Assisted Patterning of Graphene/ITO Double Layers: Role of Effective Thermal Energy Transfer. Micromachines, 2020, 11, 821.	1.4	5
2239	Graphitic Nanocup Architectures for Advanced Nanotechnology Applications. Nanomaterials, 2020, 10, 1862.	1.9	2
2240	Efficiency Improvement of a Capacitive Deionization (CDI) System by Modifying 3D SWCNT/RVC Electrodes Using Microwave-Irradiated Graphene Oxide (mwGO) for Effective Desalination. Journal of Nanomaterials, 2020, 2020, 1-14.	1.5	7
2241	High-content graphene-reinforced polymer with bioinspired multilayer structure. Journal of Materials Science, 2020, 55, 16836-16845.	1.7	7
2242	Plasticized Polystyrene by Addition of -Diene Based Molecules for Defect-Less CVD Graphene Transfer. Polymers, 2020, 12, 1839.	2.0	4

#	ARTICLE	IF	CITATIONS
2243	A Review on Graphene-Based Light Emitting Functional Devices. Molecules, 2020, 25, 4217.	1.7	18
2244	Highly Deformable Transparent Au Film Electrodes and Their Uses in Deformable Displays. ACS Applied Materials & Interfaces, 2020, 12, 41969-41980.	4.0	23
2245	ZnO Nanoparticle/Graphene Hybrid Photodetectors via Laser Fragmentation in Liquid. Nanomaterials, 2020, 10, 1648.	1.9	18
2246	Optical and electrical characterization of microwave power system chemical vapour deposited (MPS-CVD) graphene on Ni electroplated Cu foil at varying temperatures. Vacuum, 2020, 182, 109767.	1.6	2
2247	Multilayered salt water with high optical transparency for EMI shielding applications. Scientific Reports, 2020, 10, 21549.	1.6	10
2248	Origin of weak Fermi level pinning at the graphene/silicon interface. Physical Review B, 2020, 102, .	1.1	6
2249	Carbon Allotropes as ITO Electrode Replacement Materials in Liquid Crystal Devices. Journal of Carbon Research, 2020, 6, 80.	1.4	5
2250	Imaging Conductivity Changes in Monolayer Graphene Using Electrical Impedance Tomography. Micromachines, 2020, 11, 1074.	1.4	8
2251	Investigation of Thermal Annealing Effect on Bilayer Graphene by Isotope‣abelingâ€Assisted Raman Spectroscopy. Physica Status Solidi (B): Basic Research, 2020, 257, 2000250.	0.7	0
2252	Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells. Energy and Environmental Science, 2020, 13, 1997-2023.	15.6	102
2253	Layer-by-layer-stacked graphene/graphene-island supercapacitor. AIP Advances, 2020, 10, 055202.	0.6	6
2254	A swift technique to hydrophobize graphene and increase its mechanical stability and charge carrier density. Npj 2D Materials and Applications, 2020, 4, .	3.9	3
2255	UV Photodetector Based on Vertical (Al, Ga)N Nanowires with Graphene Electrode and Si Substrate. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000061.	0.8	21
2256	Oligonucleotide Detection and Optical Measurement with Graphene Oxide in the Presence of Bovine Serum Albumin Enabled by Use of Surfactants and Salts. Coatings, 2020, 10, 420.	1.2	7
2257	BEOL-compatible synthesis of multi-layer graphene by carbon ion implantation on cobalt thin films. Applied Surface Science, 2020, 524, 146537.	3.1	0
2258	Nanomaterial-based immunosensors for ultrasensitive detection of pesticides/herbicides: Current status and perspectives. Biosensors and Bioelectronics, 2020, 165, 112382.	5.3	81
2259	A novel electrochemical sensor based on double-walled carbon nanotubes and graphene hybrid thin film for arsenic(V) detection. Journal of Hazardous Materials, 2020, 400, 123185.	6.5	51
2260	Molecular dynamics simulation of the effects of swift heavy ion irradiation on multilayer graphene and diamond-like carbon. Applied Surface Science, 2020, 527, 146495.	3.1	8

#	Article	IF	CITATIONS
2261	A suspended graphene-based optical interferometric surface stress sensor for selective biomolecular detection. Nanoscale Advances, 2020, 2, 1431-1436.	2.2	7
2262	Flexible transparent graphene laminates <i>via</i> direct lamination of graphene onto polyethylene naphthalate substrates. Nanoscale Advances, 2020, 2, 3156-3163.	2.2	15
2263	Mechanism and Optimization of a Graphene/Silicon Hybrid Diode Terahertz Modulator. ACS Applied Electronic Materials, 2020, 2, 1953-1959.	2.0	11
2264	Transfer-Free Growth of Bi ₂ O ₂ Se on Silicon Dioxide via Chemical Vapor Deposition. ACS Applied Electronic Materials, 2020, 2, 2123-2131.	2.0	18
2265	Metallurgical graphene under different gas atmospheres and UV radiation for gas-sensing applications. Sensors and Actuators A: Physical, 2020, 312, 112152.	2.0	11
2266	Anionic Electrochemical Exfoliation of Few-Layer Graphene Nano-Sheets: An Emphasis on Characterization. Materials Science Forum, 0, 978, 399-406.	0.3	0
2267	A Novel Fabrication Method of Graphene Wrinkle-Induced Superhydrophobic Surface for Flexible Micro/Nano Sensors., 2020,,.		0
2268	Vacuum-Ultraviolet Photon Detections. IScience, 2020, 23, 101145.	1.9	98
2269	Sugar transfer of nanomaterials and flexible electrodes. International Journal of Smart and Nano Materials, 2020, 11, 1-10.	2.0	8
2270	Sustained and Controlled Release of Volatile Precursors for Chemical Vapor Deposition of Graphene at Atmospheric Pressure. Chemistry - A European Journal, 2020, 26, 7463-7469.	1.7	4
2271	Preparation of graphene., 2020,, 39-171.		1
2272	Ultrasensitive Fe ³⁺ ion detection based on carbon quantum dot-functionalized solution-gated graphene transistors. Journal of Materials Chemistry C, 2020, 8, 4685-4689.	2.7	20
2273	Fundamental limitations in transferred CVD graphene caused by Cu catalyst surface morphology. Carbon, 2020, 163, 95-104.	5.4	40
2274	Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Progress in Materials Science, 2020, 113, 100665.	16.0	61
2275	Two-Dimensional Nanomaterials., 0,,.		18
2276	Photoluminescence Emission during Photoreduction of Graphene Oxide Sheets as Investigated with Single-Molecule Microscopy. Journal of Physical Chemistry C, 2020, 124, 7914-7921.	1.5	15
2277	Fermi velocity renormalization in graphene probed by terahertz time-domain spectroscopy. 2D Materials, 2020, 7, 035009.	2.0	23
2278	Suppressed Interdiffusion and Degradation in Flexible and Transparent Metal Electrode-Based Perovskite Solar Cells with a Graphene Interlayer. Nano Letters, 2020, 20, 3718-3727.	4.5	65

#	Article	IF	CITATIONS
2279	Plasmonic enhancement of photocurrent generation in a photosystem I-based hybrid electrode. Journal of Materials Chemistry C, 2020, 8, 5807-5814.	2.7	12
2280	Tuning of Fiber Optic Surface Reflectivity through Graphene Oxide-Based Layer-by-Layer Film Coatings. Photonics, 2020, 7, 11.	0.9	4
2281	Structural Optimization of Alkylbenzenes as Graphene Dispersants. Processes, 2020, 8, 238.	1.3	2
2282	Direct Growth of Graphene over Insulators by Gaseousâ€Promotorâ€Assisted CVD: Progress and Prospects. ChemNanoMat, 2020, 6, 483-492.	1.5	6
2283	Enhanced Spin Seebeck Effect in Monolayer Tungsten Diselenide Due to Strong Spin Current Injection at Interface. Advanced Functional Materials, 2020, 30, 2003192.	7.8	22
2284	Role of Cu/graphene interface in suppressing fatigue damage of submicron Cu films for flexible electronics. Materials Science & Degraphic Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139786.	2.6	7
2285	Delaminationâ€Free Functional Graphene Surface by Multiscale, Conformal Wrinkling. Advanced Functional Materials, 2020, 30, 2003273.	7.8	29
2286	Assessment of Performance Enhancement Potential of a High-Temperature Parabolic Trough Collector System Combining the Optimized IR-Reflectors. Applied Sciences (Switzerland), 2020, 10, 3744.	1.3	3
2287	Chemical and Temperature Sensors Based on Functionalized Reduced Graphene Oxide. Chemosensors, 2020, 8, 43.	1.8	5
2288	Proposal of CIGS dual-junction solar cell and investigation of different metal grids effect. Optical and Quantum Electronics, 2020, 52, 1.	1.5	5
2289	Osteogenic potential of graphene coated titanium is independent of transfer technique. Materialia, 2020, 9, 100604.	1.3	12
2290	Surface Coverage Dependence of Spin-to-Charge Current across Pt/MoS ₂ /Y ₃ Fe ₅ O ₁₂ Layers via Longitudinal Spin Seebeck Effect. Journal of Physical Chemistry Letters, 2020, 11, 5338-5344.	2.1	12
2291	Variable angle spectroscopic ellipsometry characterization of turbostratic CVD-grown bilayer and trilayer graphene. Optical Materials, 2020, 107, 110165.	1.7	14
2292	Infrared Spectroscopic Probe of Charge Distribution in Gated Multilayer Graphene: Evidence of Nonlinear Screening. Physical Review Applied, 2020, 13, .	1.5	1
2293	Manufacturing strategies for wafer-scale two-dimensional transition metal dichalcogenide heterolayers. Journal of Materials Research, 2020, 35, 1350-1368.	1.2	12
2294	Wafer-scale fabrication of high-purity reduced graphene oxide films as ultrahigh-frequency capacitors with minimal self-discharge. Chemical Engineering Journal, 2020, 390, 124560.	6.6	19
2295	Performance improvements and parametric design strategies of an updated thermionic-photovoltaic converter. Physica Scripta, 2020, 95, 035208.	1.2	8
2296	Transfer assembly for two-dimensional van der Waals heterostructures. 2D Materials, 2020, 7, 022005.	2.0	87

#	Article	IF	CITATIONS
2297	Macroscale and Nanoscale Photoelectrochemical Behavior of p-Type Si(111) Covered by a Single Layer of Graphene or Hexagonal Boron Nitride. ACS Applied Materials & Samp; Interfaces, 2020, 12, 11551-11561.	4.0	10
2298	Corrosion behavior of Al2O3-reinforced graphene encapsulated Al composite coating fabricated by low pressure cold spraying. Surface and Coatings Technology, 2020, 386, 125486.	2.2	26
2299	High-Resolution Laser-Induced Graphene. Flexible Electronics beyond the Visible Limit. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10902-10907.	4.0	129
2300	Direct growth of a porous substrate on high-quality graphene <i>via in situ</i> phase inversion of a polymeric solution. Nanoscale, 2020, 12, 4953-4958.	2.8	1
2301	Highly sensitive, selective and stable NO ₂ gas sensors with a ppb-level detection limit on 2D-platinum diselenide films. Journal of Materials Chemistry C, 2020, 8, 4851-4858.	2.7	33
2302	Removing contaminants from transferred CVD graphene. Nano Research, 2020, 13, 599-610.	5.8	43
2303	Nanopumping of water via rotation of graphene nanoribbons. Nanotechnology, 2020, 31, 175704.	1.3	1
2304	Functionalised graphene as flexible electrodes for polymer photovoltaics. Journal of Alloys and Compounds, 2020, 825, 153954.	2.8	45
2305	Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews, 2020, 120, 2049-2122.	23.0	152
2306	Switchable Ionic Rectifiers Based on Ferroelectric Nanopores. ACS Applied Nano Materials, 2020, 3, 1104-1110.	2.4	4
2307	Recent progress and future prospects in development of advanced materials for nanofiltration. Materials Today Communications, 2020, 23, 100888.	0.9	51
2308	Current Trends in the Optical Characterization of Two-Dimensional Carbon Nanomaterials. Frontiers in Chemistry, 2019, 7, 927.	1.8	10
2309	Transfer of Epitaxial SrTiO ₃ Nanothick Layers Using Water-Soluble Sacrificial Perovskite Oxides. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8466-8474.	4.0	22
2310	Direct writing of lateral fluorographene nanopatterns with tunable bandgaps and its application in new generation of moir \tilde{A} superlattice. Applied Physics Reviews, 2020, 7, .	5.5	18
2311	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
2312	Raman intensity oscillation of graphene over SiO2/Si micro-cavity. Japanese Journal of Applied Physics, 2020, 59, 028001.	0.8	1
2313	Creation of a two-dimensional polymer and graphene heterostructure. Nanoscale, 2020, 12, 5170-5174.	2.8	16
2314	Scratching of Graphene-Coated Cu Substrates Leads to Hardened Cu Interfaces with Enhanced Lubricity. ACS Applied Nano Materials, 2020, 3, 1992-1998.	2.4	6

#	Article	IF	CITATIONS
2315	Carbon quantum dots interfacial modified graphene/silicon Schottky barrier solar cell. Journal of Alloys and Compounds, 2020, 835, 155268.	2.8	21
2316	Electrochemical Characterization of CVD-Grown Graphene for Designing Electrode/Biomolecule Interfaces. Crystals, 2020, 10, 241.	1.0	4
2317	Distinctive Features of Graphene Synthesized in a Plasma Jet Created by a DC Plasma Torch. Materials, 2020, 13, 1728.	1.3	13
2318	Preparation of graphene electrode. , 2020, , 27-57.		1
2319	Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties. Carbon, 2020, 165, 9-17.	5.4	76
2320	Flexible Organic Solar Cells Over 15% Efficiency with Polyimide-Integrated Graphene Electrodes. Joule, 2020, 4, 1021-1034.	11.7	148
2321	Non-centrosymmetric zinc silicate-graphene based transparent flexible piezoelectric nanogenerator. Nano Energy, 2020, 73, 104821.	8.2	44
2322	Studying the effect of low doses of gamma and beta irradiations on graphene oxide samples. Radiation Physics and Chemistry, 2020, 173, 108941.	1.4	1
2323	Atomic Carbon Spraying: Direct Growth of Graphene on Customized 3D Surfaces of Ultrafast Optical Devices. Advanced Optical Materials, 2020, 8, 1902091.	3.6	6
2324	Recent progress on the enhancement of photocatalytic properties of BiPO4 using π–conjugated materials. Advances in Colloid and Interface Science, 2020, 280, 102160.	7.0	87
2325	Manufacture and characterization of graphene membranes with suspended silicon proof masses for MEMS and NEMS applications. Microsystems and Nanoengineering, 2020, 6, 17.	3.4	46
2326	Towards large-scale graphene transfer. Nanoscale, 2020, 12, 10890-10911.	2.8	59
2327	Direct growth of graphene on GaN via plasma-enhanced chemical vapor deposition under N ₂ atmosphere. 2D Materials, 2020, 7, 035019.	2.0	7
2328	Carbon Nanomaterials Based Saturable Absorbers for Ultrafast Passive Mode-Locking of Fiber Lasers. Current Nanoscience, 2020, 16, 441-457.	0.7	17
2329	Electrochemical delamination assisted transfer of molecular nanosheets. Nanoscale, 2020, 12, 8656-8663.	2.8	11
2330	Synthesis of highly oxidized graphene (HOG) by using HNO3 and KMnO4 as oxidizing agents. Materials Today: Proceedings, 2021, 46, 6270-6274.	0.9	7
2331	Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Progress in Materials Science, 2021, 115, 100708.	16.0	150
2332	Periodic nanopatterning and reduction of graphene oxide by femtosecond laser to construct high-performance micro-supercapacitors. Carbon, 2021, 172, 144-153.	5.4	20

#	Article	IF	CITATIONS
2333	Advanced functionalized nanographene oxide as a biomedical agent for drug delivery and anti-cancerous therapy: A review. European Polymer Journal, 2021, 142, 110124.	2.6	26
2334	Centimeter-Scale Ge-Assisted Grown Graphene Directly on SiO2/Si for NO2 Gas Sensors. IEEE Sensors Journal, 2021, 21, 5164-5172.	2.4	2
2335	Flexible and Stretchable Microwave Electronics: Past, Present, and Future Perspective. Advanced Materials Technologies, 2021, 6, 2000759.	3.0	39
2336	Recent advance in electromagnetic shielding of MXenes. Chinese Chemical Letters, 2021, 32, 620-634.	4.8	16
2337	Influence of the Polymer Interphase Structure on the Interaction between Metal and Semicrystalline Thermoplastics. Advanced Engineering Materials, 2021, 23, 2000518.	1.6	7
2338	Effect of layer number on the properties of stable and flexible perovskite solar cells using two dimensional material. Journal of Alloys and Compounds, 2021, 850, 156752.	2.8	16
2339	Stacking of 2D Materials. Advanced Functional Materials, 2021, 31, 2007810.	7.8	123
2340	Electronic properties of multilayer armchair phosphorene nanoribbons under strain. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114495.	1.3	3
2341	A facile ex situ strategy of \hat{l}_{\pm} -MnS nanoparticles anchored on holey graphene as high-performance anode for lithium-ion batteries. Applied Surface Science, 2021, 542, 148496.	3.1	19
2342	A fresh-bias photoresponse of graphene field-effect transistor: An electrical tunable fast dipole moment generation. Carbon, 2021, 173, 322-328.	5.4	5
2343	Emerging Lightâ€Emitting Materials for Photonic Integration. Advanced Materials, 2021, 33, e2003733.	11.1	25
2344	Ways to eliminate PMMA residues on graphene —— superclean graphene. Carbon, 2021, 173, 609-636.	5.4	53
2345	Interface engineered germanium for infrared THz modulation. Optical Materials, 2021, 111, 110659.	1.7	6
2346	Direct Growth of Germanene at Interfaces between Van der Waals Materials and $Ag(111)$. Advanced Functional Materials, 2021, 31, 2007038.	7.8	27
2347	Electric resistance as a sensitive measure for detecting graphene wear during macroscale tribological tests. Science China Technological Sciences, 2021, 64, 179-186.	2.0	1
2348	Growth of high-quality wafer-scale graphene on dielectric substrate for high-response ultraviolet photodetector. Carbon, 2021, 175, 155-163.	5.4	10
2349	Enhancement of efficiency and stability in organic solar cells by employing MoS2 transport layer, graphene electrode, and graphene quantum dots-added active layer. Applied Surface Science, 2021, 538, 148155.	3.1	26
2350	Indirect interactions of metal nanoparticles through graphene. Carbon, 2021, 174, 132-137.	5.4	11

#	Article	IF	CITATIONS
2351	High strength and conductivity copper matrix composites reinforced by in-situ graphene through severe plastic deformation processes. Journal of Alloys and Compounds, 2021, 851, 156703.	2.8	19
2352	Birefringent and Complex Optical Properties of Monolayer Graphene Investigated by Ellipsometry and Waveguide Integration. Journal of Physical Chemistry C, 2021, 125, 2124-2131.	1.5	2
2353	Graphene Nanofiber-Based Composites for Fuel Cell Application. Carbon Nanostructures, 2021, , 149-177.	0.1	1
2354	Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews, 2021, 50, 11870-11965.	18.7	96
2355	Two-dimensional materials as solid-state nanopores for chemical sensing. Dalton Transactions, 2021, 50, 13608-13619.	1.6	12
2356	Hydrogenated Graphene Improves Neuronal Network Maturation and Excitatory Transmission. Advanced Biology, 2021, 5, e2000177.	1.4	12
2357	Current limitations to high-resolution structure determination by single-particle cryoEM. Quarterly Reviews of Biophysics, 2021, 54, e4.	2.4	21
2358	Deep subwavelength control of valley polarized cathodoluminescence in h-BN/WSe2/h-BN heterostructure. Nature Communications, 2021, 12, 291.	5.8	25
2359	Review and comparison of layer transfer methods for two-dimensional materials for emerging applications. Chemical Society Reviews, 2021, 50, 11032-11054.	18.7	61
2360	Design Strategy for Transformative Electronic System toward Rapid, Bidirectional Stiffness Tuning using Graphene and Flexible Thermoelectric Device Interfaces. Advanced Materials, 2021, 33, e2007239.	11.1	18
2361	Oxidized eutectic gallium–indium (EGaln) nanoparticles for broadband light response in a graphene-based photodetector. Materials Advances, 2021, 2, 4414-4422.	2.6	3
2362	Graphene-based nanocomposite for hydrogen storage application. , 2021, , 57-78.		5
2363	Ağır Metal Gideriminde Grafen Uygulamaları Adsorpsiyon Teknolojisi. Fırat Üniversitesi MÃ⅓hendislik Bilimleri Dergisi, 2021, 33, 151-159.	0.2	2
2364	Graphene as an alignment agent, an electrode, and a source of surface chirality in a smectic- <i>A</i> liquid crystal. Physical Review E, 2021, 103, 022710.	0.8	7
2365	Improved particle swarm optimization algorithm for high performance SPR sensor design. Applied Optics, 2021, 60, 1753.	0.9	17
2366	Electric properties of new composite materials based on RGO, nanosized ZnO and Cu nanoparticles. Journal of Physics: Conference Series, 2021, 1762, 012029.	0.3	1
2367	Graphene-anode thermionic converter demonstrating total photon reflection. Applied Physics Letters, 2021, 118, .	1.5	9
2368	Large-area integration of two-dimensional materials and their heterostructures by wafer bonding. Nature Communications, 2021, 12, 917.	5.8	99

#	Article	IF	CITATIONS
2369	FTO-free and low-Pt-loading counter electrodes for dye-sensitized solar cells based on chemical bath deposited microstructured nickel layer. Electrochimica Acta, 2021, 369, 137641.	2.6	0
2370	Micro-photoluminescence of Carbon Dots Deposited on Twisted Double-Layer Graphene Grown by Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2021, 13, 7324-7333.	4.0	3
2371	Carbon Nanocomposites: The Potential Heterogeneous Catalysts for Organic Transformations. Current Organic Chemistry, 2021, 25, 332-350.	0.9	7
2372	The performance conductivity of Mg/Graphene nanosheet as anode of battery. IOP Conference Series: Materials Science and Engineering, 2021, 1122, 012090.	0.3	0
2373	Two-dimensional carbon nitride C ₆ N nanosheet with egg-comb-like structure and electronic properties of a semimetal. Nanotechnology, 2021, 32, 215702.	1.3	50
2374	Directly Synthesized Graphene-Based Photonics and Optoelectronics Devices. Applied Sciences (Switzerland), 2021, 11, 2768.	1.3	4
2375	Paraffin wax assisted chemical vapor deposited graphene transfer method. Thin Solid Films, 2021, 721, 138556.	0.8	7
2376	2D Materials Enabled Nextâ€Generation Integrated Optoelectronics: from Fabrication to Applications. Advanced Science, 2021, 8, e2003834.	5. 6	70
2377	A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 309-355.	6.8	45
2378	Optimization and simulation of a carbon nanotube arrangement for transparent conductive electrodes with record-high direct current to optical conductive ratios. Optical Materials Express, 2021, 11, 1205.	1.6	2
2379	Rapid fabrication of high-performance transparent electrodes by electrospinning of reactive silver ink containing nanofibers. Journal of Industrial and Engineering Chemistry, 2021, 95, 109-119.	2.9	16
2380	Phosphomolybdic Acid-Modified Monolayer Graphene Anode for Efficient Organic and Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 12268-12277.	4.0	10
2381	Nucleation and growth dynamics of graphene grown by radio frequency plasma-enhanced chemical vapor deposition. Scientific Reports, 2021, 11, 6007.	1.6	22
2382	Effect of the External Velocity on the Exfoliation Properties of Graphene from Amorphous SiO2 Surface. Crystals, 2021, 11, 454.	1.0	4
2383	Chemical Vapor Deposition Synthesis of Graphene over Sapphire Substrates. ChemNanoMat, 2021, 7, 515-525.	1.5	16
2384	Graphene on a hexagonal lattice substrate with on-site Hubbard interaction. Solid State Communications, 2021, 328, 114250.	0.9	1
2385	Production and characterization of graphene from carbonaceous rice straw by cost-effect extraction. 3 Biotech, 2021, 11, 205.	1,1	15
2386	Effects of Surface Engineering of Copper Catalyst on the CVD Growth of Boron-Doped Graphene with a Solid Carbon and Boron Source. Coatings, 2021, 11, 523.	1.2	1

#	Article	IF	CITATIONS
2387	Enhancement of the electro-activated persulfate process in dye removal using graphene oxide nanoparticle. Water Science and Technology, 2021, 83, 2169-2182.	1.2	10
2388	Graphene-on-Glass Preparation and Cleaning Methods Characterized by Single-Molecule DNA Origami Fluorescent Probes and Raman Spectroscopy. ACS Nano, 2021, 15, 6430-6438.	7.3	20
2389	Practical Route for the Low-Temperature Growth of Large-Area Bilayer Graphene on Polycrystalline Nickel by Cold-Wall Chemical Vapor Deposition. ACS Omega, 2021, 6, 12143-12154.	1.6	8
2390	Enhancing the QOS of far field networking and communication using the optical properties of graphene. Materials Today: Proceedings, 2021, , .	0.9	1
2391	Thermo Gravimetric Analysis and FTIR Analysis of Electrochemically Synthesized Graphene Oxide (GO)/Reduced Graphene Oxide (rGO). IOP Conference Series: Materials Science and Engineering, 2021, 1116, 012003.	0.3	4
2392	Impact of Polymer Residue Level on the In-Plane Thermal Conductivity of Suspended Large-Area Graphene Sheets. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17910-17919.	4.0	7
2393	Direct transfer of thermochromic tungsten-doped vanadium dioxide thin-films onto flexible polymeric substrates. Applied Surface Science, 2021, 545, 148937.	3.1	15
2394	Modulation of the Reaction Mechanism via S/Mo: A Rational Strategy for Large-Area MoS ₂ Growth. Chemistry of Materials, 2021, 33, 3249-3257.	3.2	12
2395	Large-Area Bernal-Stacked Bilayer Graphene Film on a Uniformly Rough Cu Surface via Chemical Vapor Deposition. ACS Applied Electronic Materials, 2021, 3, 2497-2503.	2.0	4
2396	Graphene/Silver Nanowires/Graphene Sandwich Composite for Stretchable Transparent Electrodes and Its Fracture Mechanism. Micromachines, 2021, 12, 512.	1.4	4
2397	An efficient strategy for transferring carbon nanowalls film to flexible substrate for supercapacitor application. Journal of Power Sources, 2021, 493, 229684.	4.0	6
2398	Determination of the elastic moduli of CVD graphene by probing graphene/polymer Bragg stacks. 2D Materials, 2021, 8, 035040.	2.0	12
2399	Review of Sorted Metallic Singleâ€Walled Carbon Nanotubes. Advanced Materials Interfaces, 2021, 8, 2002106.	1.9	9
2400	Silicon-assisted growth of hexagonal boron nitride to improve oxidation resistance of germanium. 2D Materials, 2021, 8, 035041.	2.0	5
2401	Green reduction of graphene oxide using phytochemicals extracted from Pomelo Grandis and Tamarindus indica and its supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 15265-15278.	1.1	15
2402	New perspectives on Graphene/Graphene oxide based polymer nanocomposites for corrosion applications: The relevance of the Graphene/Polymer barrier coatings. Progress in Organic Coatings, 2021, 154, 106215.	1.9	65
2403	Low Surface Roughness Graphene Oxide Film Reduced with Aluminum Film Deposited by Magnetron Sputtering. Nanomaterials, 2021, 11, 1428.	1.9	4
2404	Thermally Strain-Induced Band Gap Opening on Platinum Diselenide-Layered Films: A Promising Two-Dimensional Material with Excellent Thermoelectric Performance. Chemistry of Materials, 2021, 33, 3490-3498.	3.2	18

#	Article	IF	Citations
2405	Transfer of large-scale two-dimensional semiconductors: challenges and developments. 2D Materials, 2021, 8, 032001.	2.0	81
2407	Effect of copper pretreatment on optical and electrical properties of camphor-based graphene by chemical vapour deposition. Journal of Materials Science: Materials in Electronics, 2022, 33, 8397-8408.	1.1	2
2408	Recent Advances in Two-Dimensional Quantum Dots and Their Applications. Nanomaterials, 2021, 11, 1549.	1.9	39
2409	Development of Highly Sensitive Strain Sensor Using Area-Arrayed Graphene Nanoribbons. Nanomaterials, 2021, 11, 1701.	1.9	12
2410	Review of performance improvement strategies for doped graphene quantum dots for fluorescence-based sensing. Synthetic Metals, 2021, 276, 116758.	2.1	24
2411	N, P-Codoped Carbon Film Derived from Phosphazenes and Its Printing Integration with a Polymer Carpet <i>Via</i> "Molecular Welding―for Flexible Electronics. ACS Applied Materials & Discrete Samp; Interfaces, 2021, 13, 29894-29905.	4.0	7
2413	Macroscopic properties of single-crystalline and polycrystalline graphene on soft substrate for transparent electrode applications. Carbon, 2021, 178, 181-189.	5 . 4	7
2414	Liquid-assisted adhesion control of graphene–copper interface for damage-free mechanical transfer. Applied Surface Science, 2021, 551, 149229.	3.1	9
2415	Singleâ€Phase Covalent Organic Framework Staggered Stacking Nanosheet Membrane for CO ₂ â€Selective Separation. Angewandte Chemie - International Edition, 2021, 60, 19047-19052.	7.2	109
2416	Facile Graphene Transfer Using Commercially Available Liquid Bandage. ACS Applied Nano Materials, 2021, 4, 7272-7279.	2.4	6
2417	Uniform Deposition of Silver Nanowires and Graphene Oxide by Superhydrophilicity for Transparent Conductive Films. ACS Applied Nano Materials, 2021, 4, 7628-7639.	2.4	14
2418	Bandwidth Enhancement of Graphene–Organic Hybrid Photoconductors by Accelerating Electron Transfer Processes at Graphene Interface. Advanced Materials Interfaces, 2021, 8, 2100478.	1.9	2
2419	Recent progress for silver nanowires conducting film for flexible electronics. Journal of Nanostructure in Chemistry, 2021, 11, 323-341.	5. 3	88
2420	Defect-Oriented 2D Nanocomposites as Flexible Piezoelectric Nanogenerators: Encapsulation Effect. ECS Journal of Solid State Science and Technology, 2021, 10, 071005.	0.9	1
2421	Fluorination of graphene leads to susceptibility for nanopore formation by highly charged ion impact. Physical Review Materials, 2021, 5, .	0.9	7
2422	Singleâ€Phase Covalent Organic Framework Staggered Stacking Nanosheet Membrane for CO 2 â€Selective Separation. Angewandte Chemie, 2021, 133, 19195-19200.	1.6	16
2423	Optical properties for flexible and transparent silver nanowires electrodes with different diameters. Optical Materials, 2021, 117, 111123.	1.7	8
2425	High-Performance Multifunctional Photodetector and THz Modulator Based on Graphene/TiO2/p-Si Heterojunction. Nanoscale Research Letters, 2021, 16, 134.	3.1	9

#	Article	IF	CITATIONS
2426	Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nature Communications, 2021, 12, 4880.	5.8	116
2427	Fabrication of extreme ultraviolet lithography pellicle with nanometer-thick graphite film by sublimation of camphor supporting layer. Nanotechnology, 2021, 32, 465301.	1.3	7
2428	Impact of reducing agents on the ammonia sensing performance of silver decorated reduced graphene oxide: Experiment and first principles calculations. Applied Surface Science, 2021, 558, 149886.	3.1	12
2429	In Silico Study of the Influence of Various Substrates on the Electronic Properties and Electrical Conductivity of Mono- and Bilayer Films of Armchair Single-Walled Carbon Nanotubes. ChemEngineering, 2021, 5, 48.	1.0	1
2430	User-friendly methodology for chemical vapor deposition –grown graphene-layersÂtransfer: Design and implementation. Materials Today Chemistry, 2021, 21, 100546.	1.7	2
2431	Multiplexed neurotransmission emulated for emotion control. Nano Energy, 2021, 86, 106038.	8.2	19
2432	Performance enhancement of amorphous WO3 assisted graphene-based electronic devices: Aspect of surface engineering. Applied Surface Science, 2021, 556, 149763.	3.1	2
2433	Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nature Communications, 2021, 12, 4655.	5.8	84
2434	Unveiling the origin of anomalous low-frequency Raman mode in CVD-grown monolayer WS2. Nano Research, 2021, 14, 4314-4320.	5.8	9
2435	Interfacial assembly of two-dimensional MXenes. Journal of Energy Chemistry, 2021, 60, 417-434.	7.1	104
2436	Dirac-point Shift of Graphene-FET in the Presence of Ionic Molecules or Surfactants. Chemistry Letters, 2021, 50, 1639-1642.	0.7	0
2437	Cathode Materials for Li-Ion Batteries. , 2021, , 47-70.		0
2439	Waferâ€6cale 2D Hafnium Diselenide Based Memristor Crossbar Array for Energyâ€Efficient Neural Network Hardware. Advanced Materials, 2022, 34, e2103376.	11.1	88
2440	A Review of Graphene: Material Synthesis from Biomass Sources. Waste and Biomass Valorization, 2022, 13, 1385-1429.	1.8	34
2441	Residence time effect on single-walled carbon nanotube synthesis in an aerosol CVD reactor. Chemical Engineering Journal, 2021, 420, 129869.	6.6	21
2442	Direct Observation of Induced Graphene and SiC Strengthening in Al–Ni Alloy via the Hot Pressing Technique. Crystals, 2021, 11, 1142.	1.0	12
2443	Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials*. Chinese Physics B, 2021, 30, 096103.	0.7	6
2444	Thermal strain engineering of mechanical properties in Si-based hybrid sheets via molecular dynamics simulations. Journal of Molecular Modeling, 2021, 27, 290.	0.8	1

#	ARTICLE	IF	CITATIONS
2445	Layer exchange synthesis of multilayer graphene. Nanotechnology, 2021, 32, 472005.	1.3	8
2446	Effects of morphology and charge transport of PDIF-CN2 /graphene TFT. Journal of Molecular Structure, 2021, 1240, 130604.	1.8	O
2447	Chemical vapor deposition of graphene by ethanol decomposition and its smooth transfer. Journal of Materials Research, 2021, 36, 3258.	1,2	0
2448	Enhancement of Mobility and Modulation of Carrier Concentration in Graphene Fieldâ€Effect Transistors via Molecular Doping. Advanced Materials Interfaces, 2021, 8, 2100748.	1.9	4
2449	Stable flexible photodetector based on FePS ₃ /reduced graphene oxide heterostructure with significant enhancement in photoelectrochemical performance. Nanotechnology, 2021, 32, 485203.	1.3	7
2450	Two-dimensional materials for electrochromic applications. EnergyChem, 2021, 3, 100060.	10.1	21
2451	Gas and humidity sensing with quartz crystal microbalance (QCM) coated with graphene-based materials – A mini review. Sensors and Actuators A: Physical, 2021, 330, 112837.	2.0	89
2452	Development of poly (methyl methacrylate)-supported transfer technique of single-wall carbon nanotube conductive films for flexible devices. Thin Solid Films, 2021, 736, 138904.	0.8	4
2453	Graphene for Biosensing Applications in Point-of-Care Testing. Trends in Biotechnology, 2021, 39, 1065-1077.	4.9	54
2454	In situ kinetic studies of CVD graphene growth by reflection spectroscopy. Chemical Engineering Journal, 2021, 421, 129434.	6.6	10
2455	Enhanced photocatalytic activity of Zn3(PO4)2/ZnO composite semiconductor prepared by different methods. Chemical Physics Letters, 2021, 783, 139046.	1,2	32
2456	Inch-scale graphene-based LC tunable phase retarders: Experimental study of surface interaction between liquid crystal-polyimide-graphene layers. Applied Surface Science, 2021, 566, 150646.	3.1	1
2457	Hydrophobic-to-hydrophilic affinity change of sub-monolayer water molecules at water–graphene interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127393.	2.3	13
2458	Work Function Modulation of Few-Layer Graphene by Swift Heavy Ion Irradiation. Journal of Nanoscience and Nanotechnology, 2021, 21, 5603-5610.	0.9	0
2459	Enhancement of the adhesion energy between monolayer graphene and SiO2 by thermal annealing. Applied Surface Science, 2021, 570, 151243.	3.1	4
2460	Behavior of graphene under glow discharge plasma. Sensors and Actuators A: Physical, 2021, 332, 113069.	2.0	3
2461	Hybrid transparent conductive electrode structure for solar cell application. Renewable Energy, 2021, 180, 178-185.	4.3	11
2462	Polymer-graphene composites as anticorrosive materials. , 2022, , 589-614.		1

#	ARTICLE	IF	CITATIONS
2463	Packaging applications of polymer-graphene composites., 2022,, 713-741.		1
2464	Electrical conductivity of polymer-graphene composites. , 2022, , 107-139.		5
2465	Measurement and characterization of interfacial mechanical properties of graphene/MoS2 heterostructure by Raman and photoluminescence (PL) spectroscopy. Optics and Lasers in Engineering, 2022, 149, 106825.	2.0	7
2466	Electrochemical exfoliation of a graphite electrode in 1-ethyl-3-methylimidazolium chloride-[EMIM]+Clâ^–AlCl3 ionic liquid and its electrocatalytic application. Materials Advances, 2021, 2, 1993-1999.	2.6	0
2467	Sensing Materials: Graphene., 2023,, 367-388.		2
2469	A theoretical study of wrinkle propagation in graphene with flower-like grain boundaries. Physical Chemistry Chemical Physics, 2021, 23, 11917-11930.	1.3	2
2470	Capillaryâ€Forceâ€Driven Switchable Delamination of Nanofilms and Its Application to Green Selective Transfer. Advanced Materials Technologies, 2021, 6, 2001082.	3.0	4
2471	Carbon-based nanostructures and nanomaterials. , 2021, , 103-130.		1
2472	Multifunctional Batteries: Flexible, Transient, and Transparent. ACS Central Science, 2021, 7, 231-244.	5.3	45
2473	Graphene-On-Polymer Flexible Vaporizable Sensor., 2021,,.		0
2474	Quantum Dot/Graphene Heterostructure Nanohybrid Photodetectors. Lecture Notes in Nanoscale Science and Technology, 2021, , 215-248.	0.4	4
2477	Silverâ€Nanowireâ€Embedded Photopolymer Films for Transparent Film Heaters with Ultraâ€Flexibility, Quick Thermal Response, and Mechanical Reliability. Advanced Electronic Materials, 2021, 7, 2000698.	2.6	15
2478	3D Vertically Aligned CNT/Graphene Hybrids from Layerâ€byâ€Layer Transfer for Supercapacitors. Particle and Particle Systems Characterization, 2017, 34, 1700131.	1.2	15
2479	Chloride Corrosion Resistant Nitrogen doped Reduced Graphene Oxide/Platinum Electrocatalyst for Hydrogen Evolution Reaction in an Acidic Medium. ChemistrySelect, 2020, 5, 1739-1750.	0.7	3
2480	Characteristics of Graphene/Reduced Graphene Oxide. Springer Series in Materials Science, 2020, , 155-177.	0.4	28
2481	Laser Interactions for the Synthesis and In Situ Diagnostics of Nanomaterials. Springer Series in Materials Science, 2014, , 143-173.	0.4	4
2482	Methods and Concepts. Springer Theses, 2015, , 9-25.	0.0	1
2483	Graphene Oxide: Synthesis and Characterization. Advanced Structured Materials, 2017, , 1-28.	0.3	3

#	Article	IF	CITATIONS
2484	Graphene/Metal Nanowire Hybrid Transparent Conductive Films. Advanced Structured Materials, 2017, , 121-142.	0.3	2
2485	Graphene-dispersed polymer waveguide for efficient formation of mode-locked lasers at extremely low graphene concentration. Carbon, 2020, 166, 123-130.	5.4	10
2486	Graphene-covered FePc as a model of the encapsulated type of catalyst for the oxygen reduction reaction. Electrochemistry Communications, 2020, 112, 106670.	2.3	7
2487	Ultra-high Photovoltage (2.45 V) Forming in Graphene Heterojunction via Quasi-Fermi Level Splitting Enhanced Effect. IScience, 2020, 23, 100818.	1.9	33
2488	Graphene nanoplatelets as an anticorrosion additive for solar absorber coatings. Solar Energy Materials and Solar Cells, 2018, 176, 19-29.	3.0	68
2489	Spatial Confinement Approach Using Ni to Modulate Local Carbon Supply for the Growth of Uniform Transfer-Free Graphene Monolayers. Journal of Physical Chemistry C, 2020, 124, 23094-23105.	1.5	7
2490	Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nature Electronics, 2020, 3, 630-637.	13.1	61
2491	Fabrication Techniques of Graphene Nanostructures. RSC Nanoscience and Nanotechnology, 2014, , 1-30.	0.2	17
2492	Photovoltage responses of graphene-Au heterojunctions. AIP Advances, 2017, 7, .	0.6	4
2493	Transfer-Free Graphene Growth on Dielectric Substrates: A Review of the Growth Mechanism. Critical Reviews in Solid State and Materials Sciences, 2019, 44, 157-209.	6.8	17
2494	Graphene oxide/graphene hybrid film with ultrahigh ammonia sensing performance. Nanotechnology, 2021, 32, 115501.	1.3	11
2495	Ambient-pressure CVD of graphene on low-index Ni surfaces using methane: A combined experimental and first-principles study. Physical Review Materials, 2018, 2, .	0.9	12
2496	Large graphene-induced shift of surface-plasmon resonances of gold films: Effective-medium theory for atomically thin materials. Physical Review Research, 2020, 2, .	1.3	4
2497	A fixed-target platform for serial femtosecond crystallography in a hydrated environment. IUCrJ, 2020, 7, 30-41.	1.0	21
2498	Photogating for small high-responsivity graphene middle-wavelength infrared photodetectors. Optical Engineering, 2020, 59, 1.	0.5	11
2499	Wafer scale FeCl3 intercalated graphene electrodes for photovoltaic applications. , 2018, , .		3
2500	Tunable Etching of CVD Graphene for Transfer Printing of Nanoparticles Driven by Desorption of Contaminants with Low Temperature Annealing. ECS Journal of Solid State Science and Technology, 2020, 9, 093006.	0.9	2
2503	Enhancement of effective polar anchoring strength and accelerated electro-optic switching in a two-dimensional hexagonal boron nitride/polyimide hybrid liquid crystal device. Applied Optics, 2019, 58, 6678.	0.9	8

#	Article	IF	CITATIONS
2504	Tm/Ho co-doped mode-locked fiber laser based on graphene transferred on side-polished fiber. , 2015, , .		1
2505	Graphene Enhanced Surface Plasmon Resonance Fiber-Optic Biosensor. , 2016, , .		8
2506	Two-dimensional hexagonal boron nitride nanosheet as the planar-alignment agent in a liquid crystal-based electro-optic device. Optics Express, 2019, 27, 282.	1.7	19
2507	Responsivity and detectivity enhancements by graphene overlay on normal-incident multicolor quantum grid infrared photodetectors. Optics Express, 2020, 28, 2456.	1.7	3
2508	Low dark current and high-responsivity graphene mid-infrared photodetectors using amplification of injected photo-carriers by photo-gating. Optics Letters, 2019, 44, 2598.	1.7	24
2509	Electro-optic liquid crystal device employing two-dimensional WSe ₂ as the planar-alignment layers. Optical Materials Express, 2020, 10, 1405.	1.6	8
2510	Graphene-based adaptive liquid-crystal microlens array for a wide infrared spectral region. Optical Materials Express, 2019, 9, 183.	1.6	12
2511	Reduced ionic effect and accelerated electro-optic response in a 2D hexagonal boron nitride planar-alignment agent based liquid crystal device. Optical Materials Express, 2019, 9, 1441.	1.6	18
2512	Highly reproducible and stable surface-enhanced Raman scattering substrates of graphene-Ag nanohole arrays fabricated by sub-diffraction plasmonic lithography. OSA Continuum, 2019, 2, 582.	1.8	13
2513	Low Temperature Growth of Carbon Nanomaterials on the Polymer Substrates by Microwave Plasma Technique. Transactions of the Materials Research Society of Japan, 2012, 37, 157-160.	0.2	2
2514	Hybrid silicon photonic devices with two-dimensional materials. Nanophotonics, 2020, 9, 2295-2314.	2.9	20
2515	Investigation of Mechanical Properties of Graphene and Reduced Graphene Oxide Reinforced Epoxy Matrix Composites. Journal of Testing and Evaluation, 2017, 45, 1182-1191.	0.4	8
2516	Graphene-based Flexible and Stretchable Bioelectronics in Health Care Systems. Journal of Analytical $\&$ Pharmaceutical Research, 2016, 3, .	0.3	4
2517	Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electronic Advances, 2018, 1, 17000201-17000208.	6.4	39
2519	Effects of Graphene Nanosheets with Different Lateral Sizes as Conductive Additives on the Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials for Li Ion Batteries. Polymers, 2020, 12, 1162.	2.0	7
2520	The Prospective Two-Dimensional Graphene Nanosheets: Preparation, Functionalization and Applications. , 2012, 4, 1.		12
2521	Direct Growth of Graphene at Low Temperature for Future Device Applications. Journal of the Korean Ceramic Society, 2018, 55, 203-223.	1.1	8
2522	A Review Paper on Graphene Coated Fibres. Graphene, 2019, 08, 53-74.	0.3	9

#	Article	IF	Citations
2523	Synthesis and Fabrication of Graphene and Graphene Oxide: A Review. Open Journal of Composite Materials, 2019, 09, 207-229.	0.4	106
2524	Multilayer Graphene Synthesized by CVD Using Liquid Hexane as the Carbon Precursor. World Journal of Condensed Matter Physics, 2011, 01, 157-160.	1.1	14
2525	Synthesis and applications of graphene electrodes. Carbon Letters, 2012, 13, 1-16.	3.3	33
2526	Parametric Study of Methanol Chemical Vapor Deposition Growth for Graphene. Carbon Letters, 2012, 13, 205-211.	3.3	15
2527	Transparent and Electrically Conductive Films from Chemically Derived Graphene., 0,,.		1
2528	Review of Theoretical and Applied Research of Graphene in Anti-corrosion Film and Organic Anti-corrosion Coatings. Acta Chimica Sinica, 2019, 77, 1140.	0.5	6
2529	High-Yield Etching-Free Transfer of Graphene: A Fracture Mechanics Approach. Journal of the Microelectronics and Packaging Society, 2014, 21, 59-64.	0.1	4
2530	Graphene-based field effect transistor with ion-gel film gate. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 097301.	0.2	3
2531	Process Optimization for Synthesis of High-Quality Graphene Films by Low-Pressure Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 06FD21.	0.8	5
2532	<i>In-situ</i> Observation of Surface Graphitization of Gallium Droplet and Concentration of Carbon in Liquid Gallium. Japanese Journal of Applied Physics, 2012, 51, 06FD28.	0.8	12
2533	Layer-by-Layer Assembled Transparent Conductive Graphene Films for Silicon Thin-Film Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 11PF01.	0.8	8
2534	Roll-to-roll Continuous Manufacturing System for Carbon-Nanotube- / Silver-Nanowire-Based Large-Area Transparent Conductive Film. Journal of the Korean Society for Precision Engineering, 2015, 32, 673-680.	0.1	2
2535	Understanding the Growth Kinetics of Graphene on Cu and Fe ₂ O ₃ Using Inductively-Coupled Plasma Chemical Vapor Deposition. Applied Microscopy, 2017, 47, 13-18.	0.8	4
2536	Synthesis Methods for Carbon-Based Materials. Indian Institute of Metals Series, 2021, , 367-420.	0.2	0
2537	Addressable Graphene Encapsulation of Wet Specimens on a Chip for Optical, Electron, Infrared, and X-ray based Spectromicroscopy Studies. Lab on A Chip, 2021, 21, 4618-4628.	3.1	5
2538	Ambipolar Gate Modulation Technique for the Reduction of Offset and Flicker Noise in Graphene Hall-Effect Sensors. IEEE Sensors Journal, 2021, 21, 25675-25686.	2.4	2
2539	Measurements of the Electrical Conductivity of Monolayer Graphene Flakes Using Conductive Atomic Force Microscopy. Nanomaterials, 2021, 11, 2575.	1.9	23
2540	Current effect on suspended graphene nanoribbon studied using in–situ transmission electron microscopy. Applied Surface Science, 2022, 573, 151563.	3.1	1

#	Article	IF	CITATIONS
2541	Effect of different types of substrate surface treatments on the graphene device performance. Surface and Interface Analysis, 2022, 54, 92-98.	0.8	4
2542	Graphene Transfer: A Physical Perspective. Nanomaterials, 2021, 11, 2837.	1.9	7
2543	Resonant Light Emission from Graphene/Hexagonal Boron Nitride/Graphene Tunnel Junctions. Nano Letters, 2021, 21, 8332-8339.	4.5	20
2544	Low-temperature synthesis of high-quality graphene by controlling the carbon-hydrogen ratio of the precursor. Nano Express, 2022, 3, 015003.	1.2	3
2545	Optimal asymmetry of transistor-based terahertz detectors. Applied Physics Letters, 2021, 119, .	1.5	6
2546	Direct fabrication and characterization of vertically stacked Graphene/h-BN/Graphene tunnel junctions. Nano Express, 2021, 2, 040010.	1.2	3
2547	Niobium pentoxide nanoparticles decorated graphene as electrode material in aqueous-based supercapacitors: Accurate determination of the working voltage window and the analysis of the distributed capacitance in the time domain. Journal of Energy Storage, 2021, 44, 103371.	3.9	16
2548	Toward clean and crackless polymer-assisted transfer of CVD-grown graphene and its recent advances in GFET-based biosensors. Materials Today Chemistry, 2021, 22, 100578.	1.7	9
2549	Dreams placed in graphene. Tanso, 2011, 2011, 3-5.	0.1	0
2550	Density functional study on the adsorption of C atoms on Ni (111) surface. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 087301.	0.2	2
2551	Synthesis of Graphene Using 3C-SiC Thin Films with Thermal Annealing Conditions. Journal of Sensor Science and Technology, 2012, 21, 385-388.	0.1	1
2552	Process in preparation of metal-catalyzed graphene. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 028201.	0.2	6
2554	Alternative Electrodes for OSC. , 2014, , 177-213.		0
2556	Transferred Graphene. , 2014, , 1-10.		0
2557	Carbon at the Nanoscale. , 2014, , 1-35.		2
2560	Influence of Temperature and Pressure on Graphene Synthesis by Chemical Vapor Deposition. Journal of the Korean Society for Heat Treatment, 2015, 28, 7-16.	0.1	0
2562	Synthesis, Modification and Characterization of Nanocarbon Electrodes for Determination of Nucleic Acids. , 2015 , , $1-35$.		0
2564	Electron Transfer and Charge Storage in Thin Films of Nanoparticles. , 2016, , 869-939.		0

#	Article	IF	CITATIONS
2565	Synthesis, Modification, and Characterization of Nanocarbon Electrodes for Determination of Nucleic Acids., 2016,, 241-281.		0
2566	Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 080701.	0.2	1
2568	Silver Nanowires. , 2016, , 1187-1203.		0
2570	Synthesis of Three-Dimensional Graphene Using Porous Nickel Nanostructure. Composites Research, 2016, 29, 151-155.	0.1	0
2571	Two-Dimensional Dye Self-Assemblies on Graphene: Optical Signature. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 531-532.	0.2	0
2572	Controllable Coupling of an Ultra-High-Q Microtoroid Cavity with Monolayer Graphene. , 2017, , .		0
2573	Graphene as a Protective Overcoat for Hard Disk Media. Springer Theses, 2017, , 135-144.	0.0	0
2574	Research progress of direct synthesis of graphene on dielectric layer. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 216804.	0.2	1
2575	Facile Synthesis of Large Surface Area Graphene and Its Applications. Advanced Structured Materials, 2017, , 159-175.	0.3	0
2576	New Structures and Materials. , 2017, , 281-312.		0
2579	Coverage measurement of graphene film on metallic substrate using scanning electron microscopy. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 076802.	0.2	0
2580	Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of Two-Dimensional Films Filled by Needle-Like Particles. Ukrainian Journal of Physics, 2019, 64, 354.	0.1	1
2581	Graphene Based Composites of Metals/Metal Oxides as Photocatalysts. , 2020, , 329-337.		1
2582	Graphene Growth and Characterization: Advances, Present Challenges and Prospects. Journal of Materials Science Research, 2020, 8, 37.	0.1	4
2583	Reduction of graphene oxide by nanofocused ultrafast surface plasmon pulses. OSA Continuum, 2020, 3, 2441.	1.8	0
2584	Resistance of Hall Sensors Based on Graphene to Neutron Radiation. Springer Proceedings in Physics, 2020, , 199-209.	0.1	5
2585	Advanced functional materials and devices for energy conversion and storage applications. , 2022, , 43-96.		2
2586	Functional nanomaterial in energy and environmental science. , 2020, , 1-23.		2

#	Article	IF	CITATIONS
2587	Oxygen-etchant-promoted synthesis of vertically aligned graphene arrays in a Joule heater and defogger. Diamond and Related Materials, 2021, 120, 108697.	1.8	4
2588	Roles of CuO and Cu2O in graphene growth on a copper substrate. Applied Surface Science, 2022, 576, 151812.	3.1	12
2589	Scalably Nanomanufactured Atomically Thin Materialsâ€Based Wearable Health Sensors. Small Structures, 2022, 3, 2100120.	6.9	16
2590	Controlling the surface-enhanced Raman scattering performance of graphene oxide by laser irradiation. Diamond and Related Materials, 2022, 121, 108698.	1.8	2
2591	Recent Progress in the Transfer of Graphene Films and Nanostructures. Small Methods, 2021, 5, e2100771.	4.6	17
2592	Computer-aided design of graphene and 2D materials synthesis via magnetic inductive heating of eleven transition metals. Journal Physics D: Applied Physics, 0, , .	1.3	1
2593	Selective Pick-and-Place of Thin Film by Robotic Micromanipulation., 0,, 1362-1374.		0
2594	Nanoscale structural and electrical properties of graphene grown on AlGaN by catalyst-free chemical vapor deposition. Nanotechnology, 2021, 32, 015705.	1.3	6
2595	Graphene growth with no intended carbon precursor feeding into the LPCVD process: causes, solutions, and effects. Nanotechnology, 2021, 32, 025604.	1.3	2
2596	In-situ electrical conductance measurement of suspended ultra-narrow graphene nanoribbons observed via transmission electron microscopy. Nanotechnology, 2021, 32, 025710.	1.3	2
2597	In situ functionalization of graphene. 2D Materials, 2021, 8, 015022.	2.0	5
2598	Solution combustion synthesis of rGO-Fe2O3 hybrid nanofiller for linseed oil based eco-friendly anticorrosion coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127863.	2.3	6
2599	Ultra‣ow Cost, Facile Fabrication of Transparent Neural Electrode Array for Electrocorticography with Photoelectric Artifactâ€Free Optogenetics. Advanced Functional Materials, 2022, 32, .	7.8	34
2600	Insights into the Role of Graphene/Grapheneâ€hybrid Nanocomposites in Antiviral Therapy. ChemBioEng Reviews, 2021, 8, 549.	2.6	1
2601	Electro-optic hybrid aligned nematic device utilizing carbon nanotube arrays and two-dimensional hexagonal boron nitride nanosheet as alignment substrates. Physical Review E, 2021, 104, 054702.	0.8	3
2602	Role of carbon-based nanomaterials in improving the performance of microbial fuel cells. Energy, 2022, 240, 122478.	4.5	40
2603	CVD Graphene on Textured Silicon: An Emerging Technologically Versatile Heterostructure for Energy and Detection Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	19
2604	Layer dependence of out-of-plane electrical conductivity and Seebeck coefficient in continuous monoto multilayer MoS ₂ films. Journal of Materials Chemistry A, 2021, 9, 26896-26903.	5.2	9

#	Article	IF	CITATIONS
2605	Turbostratic stacked graphene-based high-responsivity mid-wavelength infrared detector using an enhanced photogating effect. Optical Materials Express, 2022, 12, 458.	1.6	4
2606	ZnO–Sn@Graphene nanopowders: Integrative impact of tin and graphene on the microstructure, surface morphology, and optical properties. Physica B: Condensed Matter, 2022, 628, 413621.	1.3	3
2607	Charge distribution in turbostratic few-layer graphene studied by carbon isotope labeling. Carbon, 2022, 189, 21-26.	5.4	6
2608	Graphene for Flexible Photovoltaic Devices. Journal of Solar Energy Research Updates, 0, 6, .	0.0	0
2609	Graphene : An Out Standing Material. Journal of Solar Energy Research Updates, 0, 6, .	0.0	0
2610	The Comparison of Experimental and Theoretical Study on Graphene Peeling off from SiO2. , 2020, , .		0
2611	Thermoelectrical properties of graphene knife-coated cellulosic fabrics for defect monitoring in Joule-heated textiles. Journal of Industrial Textiles, 2022, 51, 8884S-8905S.	1,1	6
2612	Synthesis, Characterization and Activation energy of Nano-(GO) x /(Cu,Tl)-1234 Superconducting Composites. Journal of Low Temperature Physics, 2022, 206, 210-231.	0.6	3
2613	Wetting Stability of Supported Graphene in Ambient Environment. Advanced Engineering Materials, 0, , 2101283.	1.6	0
2614	Residue-free suspended graphene transferred by perforated template. Nanotechnology, 2022, 33, 165301.	1.3	2
2615	DesignÂand fabrication of a large-range graphene/hexagonal boron nitride heterostructure based pressure sensor with poly(methyl methacrylate) substrate. Review of Scientific Instruments, 2022, 93, 015009.	0.6	1
2616	Applications of Graphene-Based Materials in Sensors: A Review. Micromachines, 2022, 13, 184.	1.4	50
2617	Design and synthesis of ultrathin graphene: Fundamental applications in transparent electrodes and supercapacitors., 2022,, 115-140.		0
2618	Graphene as a Piezoresistive Material in Strain Sensing Applications. Micromachines, 2022, 13, 119.	1.4	22
2619	Gently does it!: <i>in situ</i> preparation of alkali metalâ€"solid electrolyte interfaces for photoelectron spectroscopy. Faraday Discussions, 2022, 236, 267-287.	1.6	11
2620	Graphene-based semiconductor nanocrystals for optoelectronics devices. , 2022, , 383-406.		0
2621	High Mobility Graphene on EVA/PET. Nanomaterials, 2022, 12, 331.	1.9	7
2622	The fabrication and physical properties of two-dimensional van der Waals heterostructures. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 048502.	0.2	2

#	Article	IF	CITATIONS
2623	Defects Produced during Wet Transfer Affect the Electrical Properties of Graphene. Micromachines, 2022, 13, 227.	1.4	4
2624	Large-Area and Crack-free Helium-Sieving Graphene Membranes. ACS Applied Nano Materials, 0, , .	2.4	2
2625	Nanostructured Graphene Thin Films: A Brief Review of Their Fabrication Techniques and Corrosion Protective Performance. Minerals, Metals and Materials Series, 2022, , 366-377.	0.3	20
2626	Nonlinear Difference Imaging to Image Local Conductivity of Single-Layer Graphene Using Electrical Impedance Tomography. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	2.4	4
2627	Plasmonic imaging the catalysis of single graphene sheets – The edge effect. Carbon, 2022, 191, 333-339.	5 . 4	1
2628	Research progress of electromechanical graphene resonant sensors. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 126801.	0.2	1
2629	In-Plane Seebeck Coefficients of Thickness-Modulated 2D PtSe ₂ Thin Films. Journal of Physical Chemistry C, 2022, 126, 4150-4156.	1.5	13
2630	Real-Time Modulation of Hydrogen Evolution Activity of Graphene Electrodes Using Mechanical Strain. ACS Applied Materials & Strain. ACS Applied Materials & Strain. ACS Applied Materials & Strain.	4.0	2
2631	Phase and Composition Tunable Out-of-Plane Seebeck Coefficients for MoS ₂ -Based Films. ACS Applied Electronic Materials, 2022, 4, 1576-1582.	2.0	5
2632	A Dynamic System Model for Roll-to-Roll Dry Transfer of Two-Dimensional Materials and Printed Electronics. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2022, 144, .	0.9	6
2633	Chemical Interactions of Nano Islandic Graphene Grown on Titanium Dioxide Substrates by Chemical Vapor Deposition. Arabian Journal for Science and Engineering, 0 , 1 .	1.7	0
2634	Science of 2.5 dimensional materials: paradigm shift of materials science toward future social innovation. Science and Technology of Advanced Materials, 2022, 23, 275-299.	2.8	32
2635	Facile method to synthesize of magnesium-graphene nano sheets for candidate of primary battery electrode. Colloids and Interface Science Communications, 2022, 48, 100612.	2.0	3
2636	A study on surface plasmon resonance biosensor for the detection of CEA biomarker using 2D materials graphene, Mxene and MoS2. Optik, 2022, 258, 168885.	1.4	20
2637	Microfabrication of sealable microcell array with ultrathin metal-graphene membrane. Micro and Nano Engineering, 2022, 15, 100120.	1.4	0
2638	A low cost, bulk synthesis of the thermally reduced graphene oxide in an aqueous solution of sulphuric acid & Department of the sulphuric o	1.8	20
2639	Fracture mechanism and temperature/size-dependent thermal conductivity in gallium selenide monolayer. Vacuum, 2022, 201, 111037.	1.6	5
2640	Eliminating the Galvanic Corrosion Effect of Graphene Coating by an Accurate and Rapid Selfâ€Assembling Defect Healing Approach. Advanced Functional Materials, 2022, 32, .	7.8	12

#	ARTICLE	IF	CITATIONS
2642	Plasmon–Exciton Coupling Effect on Plasmon Damping. Advanced Photonics Research, 0, , 2100281.	1.7	2
2643	High-performance graphene/n-Si hybrid photodetector toward self-driven optical communications. Applied Physics Letters, 2021, 119, .	1.5	4
2644	2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications. Nano Research, 2022, 15, 3737-3752.	5.8	36
2645	Room-temperature emitters in wafer-scale few-layer hBN by atmospheric pressure CVD. FlatChem, 2022, 33, 100366.	2.8	5
2651	Polyacrylamide/Graphene Oxide/Clove Essential Oil Composite Synthesized Via Physical Adsorption Method for Potential Antibacterial Packaging Applications. SSRN Electronic Journal, 0, , .	0.4	0
2652	Improvement from Discrete to Uniform Wetting of Organic Perovskite on Ferromagnetic Metals Through a Heterointerface. SSRN Electronic Journal, 0, , .	0.4	0
2653	Room-Temperature Emitters in Wafer-Scale Few-Layer Hbn by Atmospheric Pressure Cvd. SSRN Electronic Journal, 0, , .	0.4	0
2654	Enhancing the electronic properties of the graphene-based field-effect transistor via chemical doping of KBr. Journal of Materials Science: Materials in Electronics, 2022, 33, 12416-12425.	1.1	3
2655	First principles study of hafnium intercalation between graphene and Ir(111) substrate. Chinese Physics B, 2022, 31, 106801.	0.7	1
2656	A graphene pH sensor fabrication process for a nanotechnology laboratory course. Journal of the Society for Information Display, 0, , .	0.8	0
2657	Carbon Nanocomposite-Based SCs as Wearable Energy Storage. Advances in Material Research and Technology, 2022, , 451-483.	0.3	2
2658	Remote epitaxy. Nature Reviews Methods Primers, 2022, 2, .	11.8	47
2659	Highly Sensitive Pressure Sensor Based on h-BN/Graphene/h-BN Heterojunction and Cu–Sn Solid–Liquid Interdiffusion Bonding. IEEE Transactions on Electron Devices, 2022, 69, 4521-4526.	1.6	4
2660	Advances in Flexible Optoelectronics Based on Chemical Vapor Depositionâ€Grown Graphene. Advanced Functional Materials, 2022, 32, .	7.8	19
2661	High Thermal Conductivity 2D Materials: From Theory and Engineering to Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	13
2662	Recent progress in two-dimensional nanomaterials for cancer theranostics. Coordination Chemistry Reviews, 2022, 469, 214654.	9.5	15
2663	High Hydrogen Isotope Separation Efficiency: Graphene or Catalyst?. ACS Applied Materials & Samp; Interfaces, 2022, 14, 32360-32368.	4.0	7
2664	Highly Efficient Self-Encapsulated Flexible Semitransparent Perovskite Solar Cells via Bifacial Cation Exchange. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33297-33305.	4.0	11

#	Article	IF	CITATIONS
2665	Electronic, transport, magnetic, and optical properties of graphene nanoribbons and their optical sensing applications: A comprehensive review. Luminescence, 2023, 38, 909-953.	1.5	9
2666	Using an Atomically Thin Layer of Hexagonal Boron Nitride to Separate Bound Charge-Transfer Excitons at Organic Interfaces. Physical Review Applied, 2022, 18, .	1.5	3
2667	Morphological Changes in Cu Film Patterns Used in the Catalytic Chemical Vapor Deposition of Graphene. E-Journal of Surface Science and Nanotechnology, 2022, , .	0.1	0
2668	Electrochemical synthesis and characterization of thermally reduced graphene oxide: Influence of thermal annealing on microstructural features. Materials Today Communications, 2022, 32, 103950.	0.9	14
2669	An electrochemical route to exfoliate vein graphite into graphene with black tea. Materials Chemistry and Physics, 2022, 289, 126450.	2.0	6
2670	Improvement from discrete to uniform wetting of organic perovskite on ferromagnetic metals through a heterointerface. Applied Surface Science, 2022, 601, 154180.	3.1	1
2671	Towards RF graphene devices: A review. FlatChem, 2022, 35, 100409.	2.8	11
2672	Graphene Fibers with Silver Nanoparticles Prepared by Chemical Reduction-induced Self-assembly. High Energy Chemistry, 2022, 56, 247-250.	0.2	0
2673	Polymer functional group impact on the thermo-mechanical properties of polyacrylic acid, polyacrylic amide-poly (vinyl alcohol) nanocomposites reinforced by graphene oxide nanosheets. Journal of Polymer Research, 2022, 29, .	1.2	13
2674	2D materials and van der Waals heterojunctions for neuromorphic computing. Neuromorphic Computing and Engineering, 2022, 2, 032004.	2.8	14
2675	Stacking and Twisting of Freestanding Complex Oxide Thin Films. Advanced Materials, 2022, 34, .	11.1	20
2676	Simple ultrasonic-assisted clean graphene transfer. Journal of Electronic Science and Technology, 2022, 20, 100168.	2.0	0
2677	Architecting Nanostructured Co-BTC@GO Composites for Supercapacitor Electrode Application. Nanomaterials, 2022, 12, 3234.	1.9	6
2678	Spectroscopic Analysis of the Dielectric Properties in Reduced Graphene Oxide Loaded Epoxy Polymer Composites., 2022,, 221-230.		0
2679	Application of a microwave synthesized ultra-smooth a-C thin film for the reduction of dielectric/semiconductor interface trap states of an oxide thin film transistor. Journal of Materials Chemistry C, 2022, 10, 14905-14914.	2.7	4
2680	A chemiresistive biosensor for detection of cancer biomarker in biological fluids using CVD-grown bilayer graphene. Mikrochimica Acta, 2022, 189, .	2.5	11
2681	Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation. Nature Communications, 2022, 13, .	5.8	24
2682	Advances in Anode Materials for Microbial Fuel Cells. Energy Technology, 2022, 10, .	1.8	5

#	Article	IF	CITATIONS
2683	Molecular dynamic analysis of pristine single layered graphene for mass sensor. Materials Today: Proceedings, 2023, 72, 729-735.	0.9	2
2684	Carbon Nanodots Assisted Surface Engineering of GaN Photoanodes for Efficient and Stable Photoelectrochemical Water Oxidation. Advanced Sustainable Systems, 0, , 2200198.	2.7	0
2685	Exploring the effect of varying regimes of ion fluence on the optical and surface electronic properties of graphene. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	0
2686	Photon-Induced Electron Transfer in Ligand-Stabilized Monoclinic CsPbBr ₃ and Alanine-Functionalized Graphene Heterostructures. Journal of Physical Chemistry C, 2022, 126, 15298-15308.	1.5	3
2687	Transparent UHF RFID tags based on CVD-grown graphene films. Nanotechnology, 2022, 33, 505501.	1.3	1
2688	Influence of the Substrate on the Electrophysical Properties of Films from Thin Single-layer Carbon Nanotubes: in silico Research. Journal of Communications Technology and Electronics, 2022, 67, 1255-1263.	0.2	0
2689	Recycling Nanoarchitectonics of Graphene Oxide from Carbon Fiber Reinforced Polymer by the Electrochemical Method. Nanomaterials, 2022, 12, 3657.	1.9	4
2690	Surface Analysis of Graphene and Graphite., 0,,.		O
2691	Enhanced self-powered ion-modulated photodetector based on an asymmetric composite structure of superionic conductor RbAg ₄ 1 ₅ and graphene. Optics Express, 2022, 30, 41644.	1.7	0
2692	Orb-Web-Inspired Polymer-Carbon Nanocomposite Mesh Film for Acoustic Sensing. ACS Applied Nano Materials, 2022, 5, 14654-14662.	2.4	2
2693	Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications. Coordination Chemistry Reviews, 2023, 475, 214910.	9.5	41
2694	Graphene oxide-based random access memory: from mechanism, optimization to application. Journal Physics D: Applied Physics, 2023, 56, 033001.	1.3	1
2695	Green Removal of DUV-Polarity-Modified PMMA for Wet Transfer of CVD Graphene. Nanomaterials, 2022, 12, 4017.	1.9	2
2696	A silicene-based plasmonic electro-optical switch in THz range. Physica Scripta, 2023, 98, 015803.	1.2	2
2697	Tunable broadband superradiance near a graphene/hyperbolic metamaterial/graphene sandwich structure. European Physical Journal B, 2022, 95, .	0.6	2
2698	Conductive Textiles for Signal Sensing and Technical Applications. Signals, 2023, 4, 1-39.	1.2	6
2699	Influence of Defects in Graphene-Like Network of Diamond-Like Carbon on Silica Scale Adhesion. Tribology Letters, 2023, 71, .	1.2	3
2701	Surface tension traction transfer method for wafer-scale device grade graphene film. Carbon, 2023, 204, 427-433.	5.4	1

#	Article	IF	CITATIONS
2702	Dynamical mechanical properties of polyvinylbutyral nanocomposites - A comparison between different nano-carbon reinforcements. Revista Materia, 2022, 27, .	0.1	0
2703	Controlled Adhesion of Ice—Toward Ultraclean 2D Materials. Advanced Materials, 2023, 35, .	11.1	8
2704	Graphene-Based Materials: Synthesis and Applications. , 2023, , 59-84.		2
2705	Thickness-Dependent In-Plane Thermoelectric Properties of PtTe ₂ with n-Type Conduction. Journal of Physical Chemistry C, 2023, 127, 1673-1679.	1.5	1
2706	Large-scale transfer of Ag nanowires from PET to PC film using a roll-to-roll UV lamination process for a capacitive touch sensor. RSC Advances, 2023, 13, 1551-1557.	1.7	2
2707	High-performance hybrid graphene-perovskite photodetector based on organic nano carbon source-induced graphene interdigital electrode film on quartz substrate. Carbon, 2023, 204, 547-554.	5.4	4
2709	Vibroacoustic Characteristics of a Specific Patterned Polymer with Graphene for an Electrostatic Speaker. ACS Applied Materials & Specific Patterned Polymer with Graphene for an Electrostatic Speaker. ACS Applied Materials & Specific Patterned Polymer with Graphene for an Electrostatic Speaker. ACS Applied Materials & Specific Patterned Polymer with Graphene for an Electrostatic Speaker. ACS Applied Materials & Specific Patterned Polymer with Graphene for an Electrostatic Speaker. ACS Applied Materials & Speaker. ACS Appli	4.0	2
2710	Graphene: Preparation, tailoring, and modification. Exploration, 2023, 3, .	5.4	19
2711	Unified graph neural network force-field for the periodic table: solid state applications. , 2023, 2, 346-355.		11
2712	Wearable chemical sensors based on 2D materials for healthcare applications. Nanoscale, 2023, 15, 3079-3105.	2.8	7
2713	Highly Stretchable Graphene Scrolls Transistors for Self-Powered Tribotronic Non-Mechanosensation Application. Nanomaterials, 2023, 13, 528.	1.9	1
2714	Synthesis and applications of carbon-polymer composites and nanocomposite functional materials. , $2023, 71-105.$		0
2715	Stability and Elasticity of Quasi-Hexagonal Fullerene Monolayer from First-Principles Study. Crystals, 2023, 13, 224.	1.0	7
2716	Engineered kirigami design of PVDF-Pt core–shell nanofiber network for flexible transparent electrode. Scientific Reports, 2023, 13, .	1.6	4
2717	Liquid transfer of graphene to the cylindrical gold nanostructures for sensitivity enhancements of SPR glucose sensor. Sensors and Actuators A: Physical, 2023, 353, 114227.	2.0	3
2718	High-performance lithium-ion batteries packs at low temperatures based on organic nano carbon source induced graphene film electric heater on quartz substrate. Journal of Energy Storage, 2023, 65, 107275.	3.9	2
2719	Top-Down Fabrication of Luminescent Graphene Quantum Dots Using Self-Assembled Au Nanoparticles. ACS Omega, 2023, 8, 5885-5892.	1.6	15
2720	Graphene Oxide/Gelatin Nanofibrous Scaffolds Loaded with N-Acetyl Cysteine for Promoting Wound Healing. International Journal of Nanomedicine, 0, Volume 18, 563-578.	3.3	4

#	Article	IF	CITATIONS
2721	Adsorption and decomposition steps on Cu(111) of liquid aromatic hydrocarbon precursors for low-temperature CVD of graphene: A DFT study. Carbon, 2023, 206, 142-149.	5.4	2
2722	A facile method to pattern silver nanowires on sandpaper and its application in pressure sensors. Flexible and Printed Electronics, 2023, 8, 015012.	1.5	0
2723	Graphene assisted III-V layer epitaxy for transferable solar cells. , 2023, , .		1
2724	Strategies to break the trade-off between infrared transparency and conductivity. Progress in Materials Science, 2023, 136, 101112.	16.0	8
2725	MXene-Based Materials for Multivalent Metal-Ion Batteries. Batteries, 2023, 9, 174.	2.1	10
2726	Electronic Properties of FLG/InP Schottky Contacts. European Journal of Science and Technology, 0, , .	0.5	0
2727	The Efficiency Study of Graphene Synthesis on Copper Substrate via Chemical Vapor Deposition Method with Methanol Precursor. Nanomaterials, 2023, 13, 1136.	1.9	2
2728	A review on recent advances in fabricating freestanding single-crystalline complex-oxide membranes and its applications. Physica Scripta, 2023, 98, 052002.	1.2	7
2729	Investigation of Oxygen Functional Group Movement in Graphene Oxide Devices. Journal of Sensor Science and Technology, 2023, 32, 100-104.	0.1	0
2730	Printable Fused Silica Based Microchamber Integrated With Graphene Chemi-Resistive Sensors For Direct On-Chip Soil Testing. , 2023, , .		0
2731	Comparison of Thermal and Laser-Reduced Graphene Oxide Production for Energy Storage Applications. Nanomaterials, 2023, 13, 1391.	1.9	4
2732	Nanoscale electronic transport at graphene/pentacene van der Waals interfaces. Nanoscale, 2023, 15, 9203-9213.	2.8	2
2783	Advances in solar energy harvesting integrated by van der Waals graphene heterojunctions. RSC Advances, 2023, 13, 31273-31291.	1.7	1
2798	Multi-Layer Reduced Graphene Oxide Encapsulates High-Entropy Alloy for Rechargeable Zinc-Air Batteries. Chemical Communications, 0, , .	2.2	0
2801	Machine Learning-Assisted Optical Detection of Multilayer Hexagonal Boron Nitride for Enhanced Characterization and Analysis. , 2023, , .		0
2806	Nanomaterials in solar cells. , 2024, , 121-148.		0
2807	A Mini-Review on Graphene: Exploration of Synthesis Methods and Multifaceted Properties. , 0, , .		1
2810	Photodetectors integrating waveguides and semiconductor materials. Nanoscale, 2024, 16, 5504-5520.	2.8	0

ARTICLE IF CITATIONS

2812 Graphene-Based Metamaterial Absorbers. , 2024, , 151-195.