Water-soluble nanorods self-assembled via pristine C60

Chemical Communications , 4209

DOI: 10.1039/b908050c

Citation Report

#	Article	IF	CITATIONS
1	Configurational Isomers of a Stilbeneâ€Linked Bis(porphyrin) Tweezer: Synthesis and Fullereneâ€Binding Studies. European Journal of Organic Chemistry, 2009, 2009, 6095-6099.	1,2	15
2	Self-assembled porphyrin nanostructures. Chemical Communications, 2009, , 7261.	2.2	252
3	New Concepts and Applications in the Macromolecular Chemistry of Fullerenes. Advanced Materials, 2010, 22, 4220-4248.	11.1	119
4	Faceâ€toâ€Face Alignment of Porphyrin/Fullerene Nanowires Linked by Axial Metal Coordination. Macromolecular Chemistry and Physics, 2010, 211, 2125-2131.	1.1	15
5	Straightforward Self-Assembly of Porphyrin Nanowires in Water: Harnessing Adamantane/l²-Cyclodextrin Interactions. Journal of the American Chemical Society, 2010, 132, 9966-9967.	6.6	83
6	Efficient Photoinduced Electron Transfer in a Porphyrin Tripodâ^'Fullerene Supramolecular Complex via Ï€â^'Ï€ Interactions in Nonpolar Media. Journal of the American Chemical Society, 2010, 132, 4477-4489.	6.6	152
7	Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chemical Society Reviews, 2010, 39, 4021.	18.7	290
8	Nanoparticle PEGylation for imaging and therapy. Nanomedicine, 2011, 6, 715-728.	1.7	1,690
10	Fluorescent Nanowires Selfâ€Assembled through Host–Guest Interactions in Modified Calcein. Angewandte Chemie - International Edition, 2011, 50, 7407-7409.	7.2	17
11	Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems. Science and Technology of Advanced Materials, 2012, 13, 053001.	2.8	63
12	Molecular Assemblies of Porphyrins and Macrocyclic Receptors: Recent Developments in Their Synthesis and Applications. Molecules, 2012, 17, 11763-11799.	1.7	54
13	Photonic DNA-Chromophore Nanowire Networks: Harnessing Multiple Supramolecular Assembly Modes. Langmuir, 2013, 29, 10796-10806.	1.6	20
14	Fullerenes in Liquid Media: An Unsettling Intrusion into the Solution Chemistry. Chemical Reviews, 2013, 113, 5149-5193.	23.0	172
15	Synthesis of porphyrinic polystyrenes and their self-assembly with pristine fullerene (C60). Materials Letters, 2013, 91, 71-74.	1.3	14
16	Conductive porphyrin helix from ternary self-assembly systems. Chemical Communications, 2014, 50, 13537-13539.	2.2	14
17	Regioselective and Stoichiometrically Controlled Conjugation of Photodynamic Sensitizers to a HER2 Targeting Antibody Fragment. Bioconjugate Chemistry, 2014, 25, 611-617.	1.8	65
18	Polysaccharide–porphyrin–fullerene supramolecular conjugates as photo-driven DNA cleavage reagents. Chemical Communications, 2015, 51, 12266-12269.	2.2	28
19	PET/PDT theranostics: synthesis and biological evaluation of a peptide-targeted gallium porphyrin. Dalton Transactions, 2015, 44, 4925-4932.	1.6	32

#	Article	IF	CITATIONS
20	Synthesis and characterization of new porphyrin/ \hat{l}^2 -cyclodextrin derivatives covalently connected by aliphatic chains of different length. Journal of Porphyrins and Phthalocyanines, 2016, 20, 700-707.	0.4	0
21	Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chemical Reviews, 2016, 116, 3086-3240.	23.0	642
22	"Click―reaction: An alternative tool for new architectures of porphyrin based derivatives. Coordination Chemistry Reviews, 2016, 306, 1-42.	9.5	76
23	Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chemical Reviews, 2017, 117, 2910-3043.	23.0	360
24	Porous Porphyrinâ€Based Organosilica Nanoparticles for NIR Twoâ€Photon Photodynamic Therapy and Gene Delivery in Zebrafish. Advanced Functional Materials, 2018, 28, 1800235.	7.8	50
25	Design of two-photon absorbing fluorophores for FRET antenna-core oxygen probes. New Journal of Chemistry, 2018, 42, 7914-7930.	1.4	7
26	Supramolecular assemblies of a nitrogen-embedded buckybowl dimer with C ₆₀ . Chemical Science, 2018, 9, 819-824.	3.7	46
27	Enhanced Electrocatalytic Activity of a Zinc Porphyrin for CO ₂ Reduction: Cooperative Effects of Triazole Units in the Second Coordination Sphere. Chemistry - A European Journal, 2020, 26, 16774-16781.	1.7	16
28	Synthesis and characterization of a porphyrin-crown ether conjugate as a potential intermediate for drug delivery application. Journal of Porphyrins and Phthalocyanines, 2021, 25, 95-101.	0.4	5
29	Helically Organized Fullerene Array in a Supramolecular Polymer Main Chain. Journal of the American Chemical Society, 2021, 143, 4339-4345.	6.6	28
30	The recent advances in C60 micro/nanostructures and their optoelectronic applications. Organic Electronics, 2021, 93, 106142.	1.4	16
31	Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chemical Reviews, 2021, 121, 7638-7956.	23.0	197
32	Macrocyclic Receptors for Identification and Selective Binding of Substrates of Different Nature. Molecules, 2021, 26, 5292.	1.7	7
33	Self-Assembled Materials Incorporating Functional Porphyrins and Carbon Nanoplatforms as Building Blocks for Photovoltaic Energy Applications. Frontiers in Chemistry, 2021, 9, 727574.	1.8	3
34	Porphyrin building blocks bearing two or four divergent ethynes. Journal of Porphyrins and Phthalocyanines, 2023, 27, 1049-1058.	0.4	0
35	CuAAC-inspired synthesis of 1,2,3-triazole-bridged porphyrin conjugates: an overview. Beilstein Journal of Organic Chemistry, 0, 19, 349-379.	1.3	1