Rift Valley fever virus

Journal of the American Veterinary Medical Association 234, 883-893

DOI: 10.2460/javma.234.7.883

Citation Report

#	ARTICLE	IF	CITATIONS
1	Rift Valley Fever Virus L Protein Forms a Biologically Active Oligomer. Journal of Virology, 2009, 83, 12779-12789.	1.5	32
2	Rift Valley fever vaccines. Vaccine, 2009, 27, D69-D72.	1.7	116
3	Bunyaviruses and the Type I Interferon System. Viruses, 2009, 1, 1003-1021.	1.5	51
4	Arboviral Encephalitides: Transmission, Emergence, and Pathogenesis. Journal of NeuroImmune Pharmacology, 2010, 5, 428-442.	2.1	101
5	Novel suspension cell-based vaccine production systems for Rift Valley fever virus-like particles. Journal of Virological Methods, 2010, 169, 259-268.	1.0	19
6	Immunohistochemical diagnosis of infectious diseases of sheep. Small Ruminant Research, 2010, 92, 19-35.	0.6	26
7	Present and future arboviral threats. Antiviral Research, 2010, 85, 328-345.	1.9	1,162
8	The pathogenesis of Rift Valley fever virus in the mouse model. Virology, 2010, 407, 256-267.	1.1	122
10	Agricultural Diseases on the Move Early in the Third Millennium. Veterinary Pathology, 2010, 47, 15-27.	0.8	97
11	Potential for North American Mosquitoes (Diptera: Culicidae) to Transmit Rift Valley Fever Virus. Journal of Medical Entomology, 2010, 47, 884-889.	0.9	99
12	Development and characterization of monoclonal antibodies against Rift Valley fever virus nucleocapsid protein generated by DNA immunization. MAbs, 2010, 2, 275-284.	2.6	37
13	Rift Valley fever virus: An unrecognized emerging threat?. Hum Vaccin, 2010, 6, 597-601.	2.4	34
14	Rift Valley fever virus (<i>Bunyaviridae: Phlebovirus</i>): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Veterinary Research, 2010, 41, 61.	1.1	502
15	Emergence of zoonotic arboviruses by animal trade and migration. Parasites and Vectors, 2010, 3, 35.	1.0	191
16	Virus-Like Particles Expressing the Nucleocapsid Gene as an Efficient Vaccine Against Rift Valley Fever Virus. Vector-Borne and Zoonotic Diseases, 2010, 10, 701-703.	0.6	27
17	Intramuscular inoculation of calves with an experimental Newcastle disease virus-based vector vaccine elicits neutralizing antibodies against Rift Valley fever virus. Vaccine, 2010, 28, 2271-2276.	1.7	57
18	Protection against lethal Rift Valley fever virus (RVFV) infection in transgenic IFNARâ^'/â^' mice induced by different DNA vaccination regimens. Vaccine, 2010, 28, 2937-2944.	1.7	66
19	Rift Valley fever virus immunity provided by a paramyxovirus vaccine vector. Vaccine, 2010, 28, 4394-4401.	1.7	69

ATION REDO

#	Article	IF	CITATIONS
20	Teratogeneses in livestock. , 2011, , 1127-1137.		2
21	A DNA vaccine encoding ubiquitinated Rift Valley fever virus nucleoprotein provides consistent immunity and protects IFNARâ^'/â^' mice upon lethal virus challenge. Vaccine, 2011, 29, 4469-4475.	1.7	52
22	Host genetic variation in susceptibility to Punta Toro virus. Virus Research, 2011, 157, 71-75.	1.1	6
23	The Pathogenesis of Rift Valley Fever. Viruses, 2011, 3, 493-519.	1.5	282
24	The Perfect Storm. , 2011, , 8-10.		0
25	Unexpected Rift Valley Fever Outbreak, Northern Mauritania. Emerging Infectious Diseases, 2011, 17, 1894-1896.	2.0	107
26	Outbreak of Rift Valley fever affecting veterinarians and farmers in South Africa, 2008. South African Medical Journal, 2011, 101, 263.	0.2	67
27	Using Reverse Genetics to Manipulate the NSs Gene of the Rift Valley Fever Virus MP-12 Strain to Improve Vaccine Safety and Efficacy. Journal of Visualized Experiments, 2011, , e3400.	0.2	25
28	Wicking Assay for the Rapid Detection of Rift Valley Fever Viral Antigens in Mosquitoes (Diptera:) Tj ETQq0 0 0	rgBT./Over	lock 10 Tf 50
29	Arbovirus Prevalence in Mosquitoes, Kenya. Emerging Infectious Diseases, 2011, 17, 233-241.	2.0	48
30	Prevalence of Rift Valley Fever Infection in Ruminants in Madagascar After the 2008 Outbreak. Vector-Borne and Zoonotic Diseases, 2011, 11, 395-402.	0.6	64
31	NSs Protein of Rift Valley Fever Virus Promotes Posttranslational Downregulation of the TFIIH Subunit p62. Journal of Virology, 2011, 85, 6234-6243.	1.5	106
32	Genomic evolution and phenotypic distinctions of Chikungunya viruses causing the Indian Ocean outbreak. Experimental Biology and Medicine, 2011, 236, 909-914.	1.1	26
33	Rift Valley Fever: Recent Insights into Pathogenesis and Prevention. Journal of Virology, 2011, 85, 6098-6105.	1.5	101
34	Mechanism of tripartite RNA genome packaging in Rift Valley fever virus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 804-809.	3.3	44
35	A Family Cluster of Infections by a Newly Recognized Bunyavirus in Eastern China, 2007: Further Evidence of Person-to-Person Transmission. Clinical Infectious Diseases, 2011, 53, 1208-1214.	2.9	235
36	Rift Valley Fever Virus Vaccine Lacking the NSs and NSm Genes Is Safe, Nonteratogenic, and Confers Protection from Viremia, Pyrexia, and Abortion following Challenge in Adult and Pregnant Sheep. Journal of Virology, 2011, 85, 12901-12909.	1.5	106

TION REC

37	Creation of a Nonspreading Rift Valley Fever Virus. Journal of Virology, 2011, 85, 12622-12630.	1.5	79

#	Article	IF	CITATIONS
38	Recombinant Rift Valley fever vaccines induce protective levels of antibody in baboons and resistance to lethal challenge in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14926-14931.	3.3	47
39	Rift Valley Fever Epidemiology, Surveillance, and Control: What Have Models Contributed?. Vector-Borne and Zoonotic Diseases, 2011, 11, 761-771.	0.6	45
40	Exploratory Space-Time Analyses of Rift Valley Fever in South Africa in 2008–2011. PLoS Neglected Tropical Diseases, 2012, 6, e1808.	1.3	41
41	Infection and Transmission of Rift Valley Fever Viruses Lacking the NSs and/or NSm Genes in Mosquitoes: Potential Role for NSm in Mosquito Infection. PLoS Neglected Tropical Diseases, 2012, 6, e1639.	1.3	76
42	Innate Immune Response to Rift Valley Fever Virus in Goats. PLoS Neglected Tropical Diseases, 2012, 6, e1623.	1.3	54
43	Single-Dose Immunization with Virus Replicon Particles Confers Rapid Robust Protection against Rift Valley Fever Virus Challenge. Journal of Virology, 2012, 86, 4204-4212.	1.5	47
44	Rapid Molecular Detection Methods for Arboviruses of Livestock of Importance to Northern Europe. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-18.	3.0	23
45	Development of a Novel Nonhuman Primate Model for Rift Valley Fever. Journal of Virology, 2012, 86, 2109-2120.	1.5	57
46	The Nonstructural Protein NSs Induces a Variable Antibody Response in Domestic Ruminants Naturally Infected with Rift Valley Fever Virus. Vaccine Journal, 2012, 19, 5-10.	3.2	18
47	The Dominant-Negative Inhibition of Double-Stranded RNA-Dependent Protein Kinase PKR Increases the Efficacy of Rift Valley Fever Virus MP-12 Vaccine. Journal of Virology, 2012, 86, 7650-7661.	1.5	23
48	THE ROLE OF WILD MAMMALS IN THE MAINTENANCE OF RIFT VALLEY FEVER VIRUS. Journal of Wildlife Diseases, 2012, 48, 241-266.	0.3	107
49	Theriogenology of Sheep and Goats. , 2012, , 150-230.		19
50	An investigation into an outbreak of Rift Valley fever on a cattle farm in Bela-Bela, South Africa, in 2008. Journal of the South African Veterinary Association, 2012, 83, 132.	0.2	12
51	Advances in Arbovirus Surveillance, Detection and Diagnosis. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-2.	3.0	14
52	Virusâ€Like Particleâ€Based Countermeasures Against Rift Valley Fever Virus. Zoonoses and Public Health, 2012, 59, 142-150.	0.9	6
53	Rift Valley Fever Virus Strain MP-12 Enters Mammalian Host Cells via Caveola-Mediated Endocytosis. Journal of Virology, 2012, 86, 12954-12970.	1.5	77
54	Genetic Subpopulations of Rift Valley Fever Virus Strains ZH548 and MP-12 and Recombinant MP-12 Strains. Journal of Virology, 2012, 86, 13566-13575.	1.5	23
55	Identification of Rift Valley Fever Virus Nucleocapsid Protein-RNA Binding Inhibitors Using a High-Throughput Screening Assay. Journal of Biomolecular Screening, 2012, 17, 1062-1070.	2.6	13

ARTICLE IF CITATIONS # Enhanced detection of Rift Valley fever virus using molecular assays on whole blood samples. Journal 1.6 11 56 of Clinical Virology, 2012, 54, 313-317. A New Phlebovirus Associated with Severe Febrile Illness in Missouri. New England Journal of Medicine, 2012, 367, 834-841. 58 Molecular biology and genetic diversity of Rift Valley fever virus. Antiviral Research, 2012, 95, 293-310. 1.9 116 Breaking the chain: Rift Valley fever virus control via livestock vaccination. Current Opinion in 59 Virology, 2012, 2, 315-323. Functional Analysis of Rift Valley Fever Virus NSs Encoding a Partial Truncation. PLoS ONE, 2012, 7, 60 1.1 14 e45730. Extended Protection against Phlebovirus Infection Conferred by Recombinant Adenovirus Expressing 1.4 Consensus Interferon (DEF201). Antimicrobial Agents and Chemotherapy, 2012, 56, 4168-4174. Bead-based suspension array for simultaneous detection of antibodies against the Rift Valley fever 62 1.0 22 virus nucleocapsid and Gn glycoprotein. Journal of Virological Methods, 2012, 183, 99-105. Rift Valley fever virus inhibits a pro-inflammatory response in experimentally infected human monocyte derived macrophages and a pro-inflammatory cytokine response may be associated with 1.1 67 patient survival during natural infection. Virology, 2012, 422, 6-12. 64 Ultrastructural study of Rift Valley fever virus in the mouse model. Virology, 2012, 431, 58-70. 28 1.1 Post-exposure vaccination with MP-12 lacking NSs protects mice against lethal Rift Valley fever virus challenge. Antiviral Research, 2013, 98, 135-143. Rift Valley fever virus NSs inhibits host transcription independently of the degradation of 66 1.1 35 dsRNA-dépendent protein kinase PKR. Virology, 2013, 435, 415-424. Towards a better understanding of Rift Valley fever epidemiology in the south-west of the Indian 1.1 54 Ocean. Veterinary Research, 2013, 44, 78. Vertical Transmission of Rift Valley Fever Virus Without Detectable Maternal Viremia. Vector-Borne 68 0.6 41 and Zoonotic Diseases, 2013, 13, 601-606. Safety and immunogenicity of recombinant Rift Valley fever MP-12 vaccine candidates in sheep. Vaccine, 2013, 31, 559-565. 1.7 The C-Terminal Region of Rift Valley Fever Virus NSm Protein Targets the Protein to the Mitochondrial 70 1.5 49 Outer Membrane and Exerts Antiapoptotic Function. Journal of Virology, 2013, 87, 676-682. Immunogenicity of a recombinant Rift Valley fever MP-12-NSm deletion vaccine candidate in calves. Vaccine, 2013, 31, 4988-4994. 34 European ring trial to evaluate ELISAs for the diagnosis of infection with Rift Valley fever virus. 72 1.0 57 Journal of Virological Methods, 2013, 187, 177-181. Viral Hemorrhagic Fevers., 2013, , 323-343.

#	Article	IF	CITATIONS
74	Identification of suitable areas for the occurrence of Rift Valley fever outbreaks in Spain using a multiple criteria decision framework. Veterinary Microbiology, 2013, 165, 71-78.	0.8	27
75	Potential for Mosquitoes (Diptera: Culicidae) From Florida to Transmit Rift Valley Fever Virus. Journal of Medical Entomology, 2013, 50, 1111-1117.	0.9	55
76	Transmission Potential of Rift Valley Fever Virus over the Course of the 2010 Epidemic in South Africa. Emerging Infectious Diseases, 2013, 19, 916-924.	2.0	21
77	Characterization of Rift Valley Fever Virus MP-12 Strain Encoding NSs of Punta Toro Virus or Sandfly Fever Sicilian Virus. PLoS Neglected Tropical Diseases, 2013, 7, e2181.	1.3	30
78	Aerosol Exposure to Rift Valley Fever Virus Causes Earlier and More Severe Neuropathology in the Murine Model, which Has Important Implications for Therapeutic Development. PLoS Neglected Tropical Diseases, 2013, 7, e2156.	1.3	55
79	Aedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity. PLoS Neglected Tropical Diseases, 2013, 7, e2237.	1.3	70
80	Data-Driven Modeling to Assess Receptivity for Rift Valley Fever Virus. PLoS Neglected Tropical Diseases, 2013, 7, e2515.	1.3	39
81	Rift Valley Fever Virus Clearance and Protection from Neurologic Disease Are Dependent on CD4 ⁺ T Cell and Virus-Specific Antibody Responses. Journal of Virology, 2013, 87, 6161-6171.	1.5	46
82	Molecular and Serological Studies on the Rift Valley Fever Outbreak in Mauritania in 2010. Transboundary and Emerging Diseases, 2013, 60, 31-39.	1.3	43
83	Severe fever with thrombocytopenia syndrome virus expands its borders. Emerging Microbes and Infections, 2013, 2, 1-6.	3.0	11
84	The risk of Rift Valley fever virus introduction and establishment in the United States and European Union. Emerging Microbes and Infections, 2013, 2, 1-8.	3.0	109
85	Modelling vertical transmission in vector-borne diseases with applications to Rift Valley fever. Journal of Biological Dynamics, 2013, 7, 11-40.	0.8	67
87	Rift Valley Fever Risk Map Model and Seroprevalence in Selected Wild Ungulates and Camels from Kenya. PLoS ONE, 2013, 8, e66626.	1.1	77
88	Stability, Bifurcation and Chaos Analysis of Vector-Borne Disease Model with Application to Rift Valley Fever. PLoS ONE, 2014, 9, e108172.	1.1	21
89	Recent Outbreaks of Rift Valley Fever in East Africa and the Middle East. Frontiers in Public Health, 2014, 2, 169.	1.3	83
90	Countermeasure development for Rift Valley fever: deletion, modification or targeting of major virulence factorNSs. Future Virology, 2014, 9, 27-39.	0.9	10
91	The Rift Valley fever accessory proteins NSm and P78/NSm-G _N are distinct determinants of virus propagation in vertebrate and invertebrate hosts. Emerging Microbes and Infections, 2014, 3, 1-12.	3.0	54
92	A Spatially Explicit Metapopulation Model and Cattle Trade Analysis Suggests Key Determinants for the Recurrent Circulation of Rift Valley Fever Virus in a Pilot Area of Madagascar Highlands. PLoS Neglected Tropical Diseases, 2014, 8, e3346.	1.3	32

#	Article	IF	CITATIONS
93	Predicting the Mosquito Species and Vertebrate Species Involved in the Theoretical Transmission of Rift Valley Fever Virus in the United States. PLoS Neglected Tropical Diseases, 2014, 8, e3163.	1.3	51
94	Evidence for Circulation of the Rift Valley Fever Virus among Livestock in the Union of Comoros. PLoS Neglected Tropical Diseases, 2014, 8, e3045.	1.3	27
95	Deletion of the NSm Virulence Gene of Rift Valley Fever Virus Inhibits Virus Replication in and Dissemination from the Midgut of Aedes aegypti Mosquitoes. PLoS Neglected Tropical Diseases, 2014, 8, e2670.	1.3	51
96	Development of a Novel, Single-Cycle Replicable Rift Valley Fever Vaccine. PLoS Neglected Tropical Diseases, 2014, 8, e2746.	1.3	19
97	Rift Valley Fever Virus Encephalitis Is Associated with an Ineffective Systemic Immune Response and Activated T Cell Infiltration into the CNS in an Immunocompetent Mouse Model. PLoS Neglected Tropical Diseases, 2014, 8, e2874.	1.3	41
98	Single-Dose Intranasal Treatment with DEF201 (Adenovirus Vectored Consensus Interferon) Prevents Lethal Disease Due to Rift Valley Fever Virus Challenge. Viruses, 2014, 6, 1410-1423.	1.5	9
99	Comprehensive Phylogenetic Reconstructions of Rift Valley Fever Virus: The 2010 Northern Mauritania Outbreak in the <i>Camelus dromedarius</i> Species. Vector-Borne and Zoonotic Diseases, 2014, 14, 856-861.	0.6	20
100	A Glycoprotein Subunit Vaccine Elicits a Strong Rift Valley Fever Virus Neutralizing Antibody Response in Sheep. Vector-Borne and Zoonotic Diseases, 2014, 14, 746-756.	0.6	47
101	Virulence Factor NSs of Rift Valley Fever Virus Recruits the F-Box Protein FBXO3 To Degrade Subunit p62 of General Transcription Factor TFIIH. Journal of Virology, 2014, 88, 3464-3473.	1.5	65
102	Coupling Vector-host Dynamics with Weather Geography and Mitigation Measures to Model Rift Valley Fever in Africa. Mathematical Modelling of Natural Phenomena, 2014, 9, 161-177.	0.9	11
103	Seroprevalence of Rift Valley fever and lumpy skin disease in African buffalo (<i>Syncerus) Tj ETQq0 0 0 rgBT South African Veterinary Association, 2014, 85, e1-e7.</i>	Overlock 0.2	x 10 Tf 50 34 49
104	Inhibition of Rift Valley Fever Virus Replication and Perturbation of Nucleocapsid-RNA Interactions by Suramin. Antimicrobial Agents and Chemotherapy, 2014, 58, 7405-7415.	1.4	22
105	Generation and application of monoclonal antibodies against Rift Valley fever virus nucleocapsid protein NP and glycoproteins Gn and Gc. Archives of Virology, 2014, 159, 535-546.	0.9	14
106	Arboviruses Pathogenic for Domestic and Wild Animals. Advances in Virus Research, 2014, 89, 201-275.	0.9	146
107	Evaluation of lamb and calf responses to Rift Valley fever MP-12 vaccination. Veterinary Microbiology, 2014, 172, 44-50.	0.8	28
108	Role of the cytosolic tails of Rift Valley fever virus envelope glycoproteins in viral morphogenesis. Virology, 2014, 448, 1-14.	1.1	20
109	Animal models of viral hemorrhagic fever. Antiviral Research, 2014, 112, 59-79.	1.9	42
110	Sensitivity and specificity of real-time reverse transcription polymerase chain reaction, histopathology, and immunohistochemical labeling for the detection of <i>Rift Valley fever virus</i> in naturally infected cattle and sheep, Journal of Veterinary Diagnostic Investigation, 2014, 26, 49-60	0.5	18

#	Article	IF	CITATIONS
111	A Modeling Approach to Investigate Epizootic Outbreaks and Enzootic Maintenance of Rift Valley Fever Virus. Bulletin of Mathematical Biology, 2014, 76, 2052-2072.	0.9	24
112	Efficacy of a recombinant Rift Valley fever virus MP-12 with NSm deletion as a vaccine candidate in sheep. Vaccine, 2014, 32, 2345-2349.	1.7	28
113	The Bunyaviridae. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 123, 449-463.	1.0	8
116	A systematic review of Rift Valley Fever epidemiology 1931–2014. Infection Ecology and Epidemiology, 2015, 5, 28024.	0.5	152
117	Risk factors associated with Rift Valley fever epidemics in South Africa in 2008–11. Scientific Reports, 2015, 5, 9492.	1.6	25
118	A study of Rift Valley fever virus in Morogoro and Arusha regions of Tanzania – serology and farmers' perceptions. Infection Ecology and Epidemiology, 2015, 5, 30025.	0.5	24
119	Reassortment and distinct evolutionary dynamics of Rift Valley Fever virus genomic segments. Scientific Reports, 2015, 5, 11353.	1.6	18
120	Lay perceptions of risk factors for Rift Valley fever in a pastoral community in northeastern Kenya. BMC Public Health, 2015, 16, 32.	1.2	25
121	MP-12 virus containing the clone 13 deletion in the NSs gene prevents lethal disease when administered after Rift Valley fever virus infection in hamsters. Frontiers in Microbiology, 2015, 6, 651.	1.5	11
122	Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: implications from other RNA viruses. Frontiers in Microbiology, 2015, 6, 787.	1.5	4
123	A Stochastic Model to Study Rift Valley Fever Persistence with Different Seasonal Patterns of Vector Abundance: New Insights on the Endemicity in the Tropical Island of Mayotte. PLoS ONE, 2015, 10, e0130838.	1.1	21
124	Seroprevalence of Sheep and Goat Pox, Peste Des Petits Ruminants and Rift Valley Fever in Saudi Arabia. PLoS ONE, 2015, 10, e0140328.	1.1	25
125	Serological Evidence of Rift Valley Fever Virus Circulation in Domestic Cattle and African Buffalo in Northern Botswana (2010–2011). Frontiers in Veterinary Science, 2015, 2, 63.	0.9	20
126	Viral haemorrhagic fevers in South Africa. South African Medical Journal, 2015, 105, 748.	0.2	3
127	The genetic basis for susceptibility to Rift Valley fever disease in MBT/Pas mice. Genes and Immunity, 2015, 16, 206-212.	2.2	14
128	Modelling the Effects of Seasonality and Socioeconomic Impact on the Transmission of Rift Valley Fever Virus. PLoS Neglected Tropical Diseases, 2015, 9, e3388.	1.3	26
129	Potential forPsorophora columbiaeandPsorophora ciliataMosquitoes (Diptera: Culicidae) to Transmit Rift Valley Fever Virus. Journal of Medical Entomology, 2015, 52, 1111-1116.	0.9	17
130	A ΩX <i>a</i> V motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6021-6026.	3.3	31

#	Article	IF	CITATIONS
131	Inter-epidemic Acquisition of Rift Valley Fever Virus in Humans in Tanzania. PLoS Neglected Tropical Diseases, 2015, 9, e0003536.	1.3	26
132	Epidemiologic and Environmental Risk Factors of Rift Valley Fever in Southern Africa from 2008 to 2011. Vector-Borne and Zoonotic Diseases, 2015, 15, 502-511.	0.6	26
133	Bunyaviruses: from transmission by arthropods to virus entry into the mammalian host first-target cells. Future Virology, 2015, 10, 859-881.	0.9	20
134	Seroepidemiological Study of Interepidemic Rift Valley Fever Virus Infection Among Persons with Intense Ruminant Exposure in Madagascar and Kenya. American Journal of Tropical Medicine and Hygiene, 2015, 93, 1364-1370.	0.6	20
135	Interplay between the Virus and Host in Rift Valley Fever Pathogenesis. Journal of Innate Immunity, 2015, 7, 450-458.	1.8	27
136	Rift Valley fever virus: A review of diagnosis and vaccination, and implications for emergence in Europe. Vaccine, 2015, 33, 5520-5531.	1.7	128
137	A Systematic Scoping Study of the Socioâ€Economic Impact of Rift Valley Fever: Research Gaps and Needs. Zoonoses and Public Health, 2015, 62, 309-325.	0.9	68
138	Arboviruses. , 0, , 493-514.		1
139	Environmental change and Rift Valley fever in eastern Africa: projecting beyond HEALTHY FUTURES. Geospatial Health, 2016, 11, 387.	0.3	19
140	Mutational Analysis of the Rift Valley Fever Virus Glycoprotein Precursor Proteins for Gn Protein Expression. Viruses, 2016, 8, 151.	1.5	9
141	A dynamic, climate-driven model of Rift Valley fever. Geospatial Health, 2016, 11, 394.	0.3	18
142	N-Glycans on the Rift Valley Fever Virus Envelope Glycoproteins Gn and Gc Redundantly Support Viral Infection via DC-SIGN. Viruses, 2016, 8, 149.	1.5	29
143	Phleboviruses and the Type I Interferon Response. Viruses, 2016, 8, 174.	1.5	76
144	RNA Encapsidation and Packaging in the Phleboviruses. Viruses, 2016, 8, 194.	1.5	32
145	Co-housing of Rift Valley Fever Virus Infected Lambs with Immunocompetent or Immunosuppressed Lambs Does Not Result in Virus Transmission. Frontiers in Microbiology, 2016, 7, 287.	1.5	18
146	Rift Valley fever virus NSs protein functions and the similarity to other bunyavirus NSs proteins. Virology Journal, 2016, 13, 118.	1.4	73
147	Rift Valley fever vector diversity and impact of meteorological and environmental factors on Culex pipiens dynamics in the Okavango Delta, Botswana. Parasites and Vectors, 2016, 9, 434.	1.0	25
148	The Epidemiology of Rift Valley Fever in Mayotte: Insights and Perspectives from 11 Years of Data. PLoS Neglected Tropical Diseases, 2016, 10, e0004783.	1.3	37

#	Article	IF	CITATIONS
149	Correlative Gene Expression to Protective Seroconversion in Rift Valley Fever Vaccinates. PLoS ONE, 2016, 11, e0147027.	1.1	8
150	Phylogeographic Reconstructions of a Rift Valley Fever Virus Strain Reveals Transboundary Animal Movements from Eastern Continental Africa to the Union of the Comoros. Transboundary and Emerging Diseases, 2016, 63, e281-e285.	1.3	13
151	Identifying Areas Suitable for the Occurrence of Rift Valley Fever in North Africa: Implications for Surveillance. Transboundary and Emerging Diseases, 2016, 63, 658-674.	1.3	25
152	Rift Valley Fever: An Emerging Mosquito-Borne Disease. Annual Review of Entomology, 2016, 61, 395-415.	5.7	224
153	Development of a sheep challenge model for Rift Valley fever. Virology, 2016, 489, 128-140.	1.1	38
154	A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes and Development, 2016, 30, 1658-1670.	2.7	49
155	Structural and Practical Identifiability Issues of Immuno-Epidemiological Vector–Host Models with Application to Rift Valley Fever. Bulletin of Mathematical Biology, 2016, 78, 1796-1827.	0.9	51
156	Rift Valley fever virus: Unanswered questions. Antiviral Research, 2016, 132, 274-280.	1.9	46
157	The two faces of Rift Valley fever virus virulence factor NSs: The development of a vaccine and the elucidation of pathogenesis. Virulence, 2016, 7, 856-859.	1.8	0
158	Single-cycle replicable Rift Valley fever virus mutants as safe vaccine candidates. Virus Research, 2016, 216, 55-65.	1.1	11
159	Surveillance of Rift Valley Fever Virus in Mosquito Vectors of the Republic of Korea. Vector-Borne and Zoonotic Diseases, 2016, 16, 131-135.	0.6	3
160	A Haploid Genetic Screen Identifies Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus Infection. Journal of Virology, 2016, 90, 1414-1423.	1.5	103
161	Uncertainty and sensitivity analysis of a Rift Valley fever model. Applied Mathematics and Computation, 2016, 279, 170-186.	1.4	13
162	Land Use Influences Mosquito Communities and Disease Risk on Remote Tropical Islands: A Case Study Using a Novel Sampling Technique. American Journal of Tropical Medicine and Hygiene, 2016, 94, 314-321.	0.6	21
163	Vaccination of alpacas against Rift Valley fever virus: Safety, immunogenicity and pathogenicity of MP-12 vaccine. Vaccine, 2017, 35, 655-662.	1.7	13
164	Rift Valley fever virus infections in Egyptian cattle and their prevention. Transboundary and Emerging Diseases, 2017, 64, 2049-2058.	1.3	11
165	Hemorrhagic fever of bunyavirus etiology: disease models and progress towards new therapies. Journal of Microbiology, 2017, 55, 183-195.	1.3	15
166	Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160165.	1.8	46

#	Article	IF	CITATIONS
167	Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System. Bulletin of Mathematical Biology, 2017, 79, 325-355.	0.9	20
168	The first serological evidence for Rift Valley fever infection in the camel, goitered gazelle and Anatolian water buffaloes in Turkey. Tropical Animal Health and Production, 2017, 49, 1531-1535.	0.5	29
169	Evidence for enzootic circulation of Rift Valley fever virus among livestock in Cameroon. Acta Tropica, 2017, 172, 7-13.	0.9	21
170	Sorafenib Impedes Rift Valley Fever Virus Egress by Inhibiting Valosin-Containing Protein Function in the Cellular Secretory Pathway. Journal of Virology, 2017, 91, .	1.5	24
171	Comparison of two zoonotic viruses from the order Bunyavirales. Current Opinion in Virology, 2017, 27, 36-41.	2.6	10
172	Recent advances in the development of antiviral therapeutics for Rift Valley fever virus infection. Future Virology, 2017, 12, 651-665.	0.9	21
173	Seroprevalence of Rift Valley fever virus in livestock during inter-epidemic period in Egypt, 2014/15. BMC Veterinary Research, 2017, 13, 87.	0.7	25
174	The Role of Hyalomma Truncatum on the Dynamics of Rift Valley Fever: Insights from a Mathematical Epidemic Model. Acta Biotheoretica, 2017, 65, 1-36.	0.7	4
175	Current Status of Rift Valley Fever Vaccine Development. Vaccines, 2017, 5, 29.	2.1	102
176	Teratogenesis in Livestock. , 2017, , 1391-1408.		1
176 177	Teratogenesis in Livestock. , 2017, , 1391-1408. Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach. PLoS Neglected Tropical Diseases, 2017, 11, e0005767.	1.3	1 21
	Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach. PLoS Neglected	1.3	
177	Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach. PLoS Neglected Tropical Diseases, 2017, 11, e0005767. Wolbachia effects on Rift Valley fever virus infection in Culex tarsalis mosquitoes. PLoS Neglected		21
177 178	Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach. PLoS Neglected Tropical Diseases, 2017, 11, e0005767. Wolbachia effects on Rift Valley fever virus infection in Culex tarsalis mosquitoes. PLoS Neglected Tropical Diseases, 2017, 11, e0006050. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes. PLoS	1.3	21 18
177 178 179	Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach. PLoS Neglected Tropical Diseases, 2017, 11, e0005767. Wolbachia effects on Rift Valley fever virus infection in Culex tarsalis mosquitoes. PLoS Neglected Tropical Diseases, 2017, 11, e0006050. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes. PLoS Neglected Tropical Diseases, 2017, 11, e0006145. Seroprevalence of Rift Valley fever in cattle along the Akagera-Nyabarongo rivers, Rwanda. Journal of	1.3 1.3	21 18 42
177 178 179 180	Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach. PLoS Neglected Tropical Diseases, 2017, 11, e0005767. Wolbachia effects on Rift Valley fever virus infection in Culex tarsalis mosquitoes. PLoS Neglected Tropical Diseases, 2017, 11, e0006050. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes. PLoS Neglected Tropical Diseases, 2017, 11, e0006145. Seroprevalence of Rift Valley fever in cattle along the Akagera-Nyabarongo rivers, Rwanda. Journal of the South African Veterinary Association, 2017, 88, e1-e5. Neutralizing antibodies against flaviviruses, Babanki virus, and Rift Valley fever virus in Ugandan bats.	1.3 1.3 0.2	21 18 42 25
1777 1778 1779 1800 1811	Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach. PLoS Neglected Tropical Diseases, 2017, 11, e0005767. Wolbachia effects on Rift Valley fever virus infection in Culex tarsalis mosquitoes. PLoS Neglected Tropical Diseases, 2017, 11, e0006050. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes. PLoS Neglected Tropical Diseases, 2017, 11, e0006145. Seroprevalence of Rift Valley fever in cattle along the Akagera-Nyabarongo rivers, Rwanda. Journal of the South African Veterinary Association, 2017, 88, e1-e5. Neutralizing antibodies against flaviviruses, Babanki virus, and Rift Valley fever virus in Ugandan bats. Infection Ecology and Epidemiology, 2018, 8, 1439215. Rift Valley Fever in Egypt and other African countries: Historical review, recent outbreaks and	1.3 1.3 0.2 0.5	21 18 42 25 28

ARTICLE IF CITATIONS # Detection of Emerging Zoonotic Pathogens: An Integrated One Health Approach. Annual Review of 185 3.6 76 Animal Biosciences, 2018, 6, 121-139. Productive Propagation of Rift Valley Fever Phlebovirus Vaccine Strain MP-12 in Rousettus aegyptiacus 1.5 Fruit Bats. Viruses, 2018, 10, 681. 187 Emerging and Re-emerging Arboviral Diseases as a Global Health Problem., 0,,. 16 Vector competence of biting midges and mosquitoes for Shuni virus. PLoS Neglected Tropical Diseases, 188 2018, 12, e0006993. A single-cycle replicable Rift Valley fever phlebovirus vaccine carrying a mutated NSs confers full 189 1.6 8 protection from lethal challenge in mice. Scientific Reports, 2018, 8, 17097. Arboviruses in South Africa, known and unknown. Future Virology, 2018, 13, 787-802. Preliminary evaluation of diagnostic accuracy and precision of a competitive ELISA for detection of 191 antibodies to Rift Valley fever virus in cattle and sheep sera. Journal of Virological Methods, 2018, 1.0 5 262, 6-11. Seroprevalence and Virus Activity of Rift Valley Fever in Cattle in Eastern Region of Democratic 1.6 14 Republic of the Congo. Journal of Veterinary Medicine, 2018, 2018, 1-8. Rift Valley Fever in Chronic Carrier and Liver Manifestations. Journal of Bioterrorism & Biodefense, 193 0.1 0 2018,09,. Identification of Dengue and Chikungunya Cases Among Suspected Cases of Yellow Fever in the 194 29 Democratic Republic of the Congo. Vector-Borne and Zoonotic Diseases, 2018, 18, 364-370. Competence of mosquitoes native to the United Kingdom to support replication and transmission of 195 1.0 29 Rift Valley fever virus. Parasites and Vectors, 2018, 11, 308. Applications of gold nanoparticles in virus detection. Theranostics, 2018, 8, 1985-2017. 4.6 256 197 Mosquito-Borne Diseases., 2018, , 27-45. 4 Prevalence and risk factors of Rift Valley fever in humans and animals from Kabale district in Southwestern Uganda, 2016. PLoS Neglected Tropical Diseases, 2018, 12, e0006412. 198 1.3 59 Attenuation and efficacy of live-attenuated Rift Valley fever virus vaccine candidates in non-human 199 1.3 24 primates. PLoS Neglected Tropical Diseases, 2018, 12, e0006474. Galidesivir limits Rift Valley fever virus infection and disease in Syrian golden hamsters. Antiviral 1.9 Research, 2018, 156, 38-45. Development of monoclonal antibodies to Rift Valley Fever Virus and their application in antigen 201 0.6 6 detection and indirect immunofluorescence. Journal of Immunological Methods, 2018, 460, 36-44. Evaluation of an Indirect Enzyme-Linked Immunosorbent Assay Based on Recombinant Baculovirus-Expressed Rift Valley Fever Virus Nucleoprotein as the Diagnostic Antigen. Journal of 1.8 Clinical Microbiology, 2019, 57, .

#	Article	IF	CITATIONS
203	Seroprevalence of Rift Valley fever in cattle of smallholder farmers in Kwilu Province in the Democratic Republic of Congo. Tropical Animal Health and Production, 2019, 51, 2619-2627.	0.5	10
204	Comparison of Two Rift Valley Fever Serological Tests in Cameroonian Cattle Populations Using a Bayesian Latent Class Approach. Frontiers in Veterinary Science, 2019, 6, 258.	0.9	7
205	The Role of Reference Materials in the Research and Development of Diagnostic Tools and Treatments for Haemorrhagic Fever Viruses. Viruses, 2019, 11, 781.	1.5	7
206	Viral infections of the central nervous system in Africa. Brain Research Bulletin, 2019, 145, 2-17.	1.4	15
207	Risk factors associated with sustained circulation of six zoonotic arboviruses: a systematic review for selection of surveillance sites in non-endemic areas. Parasites and Vectors, 2019, 12, 265.	1.0	54
208	Transcriptome profiling in Rift Valley fever virus infected cells reveals modified transcriptional and alternative splicing programs. PLoS ONE, 2019, 14, e0217497.	1.1	18
209	Entomological risk factors for potential transmission of Rift Valley fever virus around concentrations of livestock in Colorado. Transboundary and Emerging Diseases, 2019, 66, 1709-1717.	1.3	11
210	Vector competence of biting midges and mosquitoes for Shuni virus. PLoS Neglected Tropical Diseases, 2019, 13, e0006609.	1.3	7
211	Safety and immunogenicity of a live attenuated Rift Valley Fever recombinant arMP-12ΔNSm21/384 vaccine candidate for sheep, goats and calves. Vaccine, 2019, 37, 1642-1650.	1.7	13
212	The One Health Approach is Necessary for the Control of Rift Valley Fever Infections in Egypt: A Comprehensive Review. Viruses, 2019, 11, 139.	1.5	34
213	Safety and immunogenicity of Rift Valley fever MP-12 and arMP-12ΔNSm21/384 vaccine candidates in goats (Capra aegagrus hircus) from Tanzania. Onderstepoort Journal of Veterinary Research, 2019, 86, e1-e8.	0.6	11
214	Potential of Using Capripoxvirus Vectored Vaccines Against Arboviruses in Sheep, Goats, and Cattle. Frontiers in Veterinary Science, 2019, 6, 450.	0.9	18
215	Rift Valley fever: An open-source transmission dynamics simulation model. PLoS ONE, 2019, 14, e0209929.	1.1	6
216	Association between Rift Valley fever virus seroprevalences in livestock and humans and their respective intra-cluster correlation coefficients, Tana River County, Kenya. Epidemiology and Infection, 2019, 147, e67.	1.0	14
217	Viral Hemorrhagic Fevers. , 2020, , 351-381.		0
218	Mechanisms of inter-epidemic maintenance of Rift Valley fever phlebovirus. Antiviral Research, 2020, 174, 104692.	1.9	15
219	Mosquito-borne diseases. , 2020, , 57-83.		2
220	Estimation of Rift Valley fever virus spillover to humans during the Mayotte 2018–2019 epidemic. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24567-24574.	3.3	22

#	Article	IF	CITATIONS
221	Seropositivity and associated intrinsic and extrinsic factors for Rift Valley fever virus occurrence in pastoral herds of Nigeria: a cross sectional survey. BMC Veterinary Research, 2020, 16, 243.	0.7	7
222	Rift Valley Fever – assessment of effectiveness of surveillance and control measures in the EU. EFSA Journal, 2020, 18, e06292.	0.9	7
223	Animal-Origin Viral Zoonoses. Livestock Diseases and Management, 2020, , .	0.5	9
224	Sexual Transmission of Arboviruses: A Systematic Review. Viruses, 2020, 12, 933.	1.5	21
225	Spatial risk analysis for the introduction and circulation of six arboviruses in the Netherlands. Parasites and Vectors, 2020, 13, 464.	1.0	11
226	In vitro shared transcriptomic responses of Aedes aegypti to arboviral infections: example of dengue and Rift Valley fever viruses. Parasites and Vectors, 2020, 13, 395.	1.0	8
227	It's risky to wander in September: Modelling the epidemic potential of Rift Valley fever in a Sahelian setting. Epidemics, 2020, 33, 100409.	1.5	5
228	Competency of Amphibians and Reptiles and Their Potential Role as Reservoir Hosts for Rift Valley Fever Virus. Viruses, 2020, 12, 1206.	1.5	7
229	Two monoclonal antibodies against glycoprotein Gn protect mice from Rift Valley Fever challenge by cooperative effects. PLoS Neglected Tropical Diseases, 2020, 14, e0008143.	1.3	12
230	Rift Valley fever virus vaccination induces long-lived, antigen-specific human T cell responses. Npj Vaccines, 2020, 5, 17.	2.9	17
231	Rift Valley Fever: Important Considerations for Risk Mitigation and Future Outbreaks. Tropical Medicine and Infectious Disease, 2020, 5, 89.	0.9	11
232	Effect of Environmental Temperature on the Ability of <i>Culex tarsalis</i> and <i>Aedes taeniorhynchus</i> (Diptera: Culicidae) to Transmit Rift Valley Fever Virus. Vector-Borne and Zoonotic Diseases, 2020, 20, 454-460.	0.6	8
233	Patterns of Rift Valley fever virus seropositivity in domestic ruminants in central South Africa four years after a large outbreak. Scientific Reports, 2020, 10, 5489.	1.6	21
234	Theriogenology of sheep, goats, and cervids. , 2021, , 141-208.		3
237	Myeloid-like γδT cell subset in the immune response to an experimental Rift Valley fever vaccine in sheep. Veterinary Immunology and Immunopathology, 2021, 233, 110184.	0.5	3
238	Development of a Simian RNA Polymerase I Promoter-Driven Reverse Genetics System for the Rescue of Recombinant Rift Valley Fever Virus from Vero Cells. Journal of Virology, 2021, 95, .	1.5	7
240	Insights into the Pathogenesis of Viral Haemorrhagic Fever Based on Virus Tropism and Tissue Lesions of Natural Rift Valley Fever. Viruses, 2021, 13, 709.	1.5	20
241	Replication of Rift Valley Fever Virus in Amphibian and Reptile-Derived Cell Lines. Pathogens, 2021, 10, 681.	1.2	4

#	Article	IF	CITATIONS
242	Rift Valley fever virus detection in susceptible hosts with special emphasis in insects. Scientific Reports, 2021, 11, 9822.	1.6	13
243	Monitoring Symptoms of Infectious Diseases: Perspectives for Printed Wearable Sensors. Micromachines, 2021, 12, 620.	1.4	12
244	Black rats (Rattus rattus) as potential reservoir hosts for Rift Valley fever phlebovirus: Experimental infection results in viral replication and shedding without clinical manifestation. Transboundary and Emerging Diseases, 2021, , .	1.3	4
245	External quality assessment of Rift Valley fever diagnosis in countries at risk of the disease: African, Indian Ocean and Middle-East regions. PLoS ONE, 2021, 16, e0251263.	1.1	4
246	Over 100 Years of Rift Valley Fever: A Patchwork of Data on Pathogen Spread and Spillover. Pathogens, 2021, 10, 708.	1.2	26
247	Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals, 2021, 11, 2039.	1.0	20
248	Aptamers isolated against mosquito-borne pathogens. World Journal of Microbiology and Biotechnology, 2021, 37, 131.	1.7	2
249	Large-Scale International Validation of an Indirect ELISA Based on Recombinant Nucleocapsid Protein of Rift Valley Fever Virus for the Detection of IgG Antibody in Domestic Ruminants. Viruses, 2021, 13, 1651.	1.5	1
250	Modelling the persistence and control of Rift Valley fever virus in a spatially heterogeneous landscape. Nature Communications, 2021, 12, 5593.	5.8	6
251	Investigations on Vector-Borne and Aerosol Transmission Potential of Kaeng Khoi Virus in Cave-Dwelling Wrinkle-Lipped Free-Tailed Bats (Chaerephon plicatus) in Thailand. Microorganisms, 2021, 9, 2022.	1.6	1
252	Serological evidence of Rift Valley fever in domestic ruminants in Tunisia underlines the need for effective surveillance. Open Veterinary Journal, 2021, 11, 337.	0.3	4
253	Rift Valley fever virus: strategies for maintenance, survival and vertical transmission in mosquitoes. Journal of General Virology, 2017, 98, 875-887.	1.3	69
254	Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus. Journal of General Virology, 2015, 96, 1651-1663.	1.3	13
256	Discovery of potential immune epitopes and peptide vaccine design - a prophylactic strategy against Rift Valley fever virus. F1000Research, 0, 9, 999.	0.8	17
257	Postepidemic Analysis of Rift Valley Fever Virus Transmission in Northeastern Kenya: A Village Cohort Study. PLoS Neglected Tropical Diseases, 2011, 5, e1265.	1.3	58
258	Modelling Vaccination Strategies against Rift Valley Fever in Livestock in Kenya. PLoS Neglected Tropical Diseases, 2016, 10, e0005049.	1.3	27
259	Predicting Rift Valley Fever Inter-epidemic Activities and Outbreak Patterns: Insights from a Stochastic Host-Vector Model. PLoS Neglected Tropical Diseases, 2016, 10, e0005167.	1.3	20
260	Rift Valley Fever: A survey of knowledge, attitudes, and practice of slaughterhouse workers and community members in Kabale District, Uganda. PLoS Neglected Tropical Diseases, 2018, 12, e0006175.	1.3	18

#	Article	IF	CITATIONS
261	Recombinant Rift Valley fever viruses encoding bluetongue virus (BTV) antigens: Immunity and efficacy studies upon a BTV-4 challenge. PLoS Neglected Tropical Diseases, 2020, 14, e0008942.	1.3	10
262	Alteration in Superoxide Dismutase 1 Causes Oxidative Stress and p38 MAPK Activation Following RVFV Infection. PLoS ONE, 2011, 6, e20354.	1.1	30
263	p53 Activation following Rift Valley Fever Virus Infection Contributes to Cell Death and Viral Production. PLoS ONE, 2012, 7, e36327.	1.1	44
264	Rift Valley Fever in Humans and Animals in Mayotte, an Endemic Situation?. PLoS ONE, 2013, 8, e74192.	1.1	40
265	Comparative analysis of codon usage patterns in Rift Valley fever virus. Genetics and Molecular Biology, 2020, 43, e20190240.	0.6	5
266	Potential for North American Mosquitoes (Diptera: Culicidae) to Transmit Rift Valley Fever Virus. Journal of Medical Entomology, 2010, 47, 884-889.	0.9	78
267	Bioterrorim and invasive species. OIE Revue Scientifique Et Technique, 2010, 29, 193-199.	0.5	5
268	The 2006–2007 Rift Valley fever outbreak in Kenya: sources of early warning messages and response measures implemented by the Department of Veterinary Services. OIE Revue Scientifique Et Technique, 2012, 31, 877-887.	0.5	6
269	Seroepidemiological survey on Rift Valley fever among small ruminants and their close human contacts in Makkah, Saudi Arabia, in 2011. OIE Revue Scientifique Et Technique, 2014, 33, 903-915.	0.5	16
270	Geographic range of vector-borne infections and their vectors: the role of African wildlife. OIE Revue Scientifique Et Technique, 2015, 34, 139-149.	0.5	21
271	Molecular Biology of Rift Valley Fever Virus. The Open Virology Journal, 2010, 4, 8-14.	1.8	54
272	Molecular Biology of Rift Valley Fever Virus~!2009-11-04~!2009-11-25~!2010-04-22~!. The Open Virology Journal, 2010, 4, 8-14.	1.8	87
273	Tracking Rift Valley fever: From Mali to Europe and other countries, 2016. Eurosurveillance, 2019, 24, .	3.9	21
274	Human DDX17 Unwinds Rift Valley Fever Virus Non-Coding RNAs. International Journal of Molecular Sciences, 2021, 22, 54.	1.8	20
275	Global Environmental Change and Emerging Infectious Diseases. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2017, , 24-67.	0.1	3
276	Global Environmental Change and Emerging Infectious Diseases. , 2019, , 38-71.		1
277	Seroprevalence of Rift Valley fever in cattle along the Akagera–Nyabarongo rivers, Rwanda. Journal of the South African Veterinary Association, 0, 88, .	0.2	4
278	First Laboratory-Confirmed Outbreak of Human and Animal Rift Valley Fever Virus in Uganda in 48 Years. American Journal of Tropical Medicine and Hygiene, 2019, 100, 659-671.	0.6	34

#	Article	IF	Citations
279	Circulation of Rift Valley Fever Virus Antibody in Cattle during Inter-Epizootic/Epidemic Periods in Selected Regions of Tanzania. American Journal of Tropical Medicine and Hygiene, 2019, 101, 459-466.	0.6	11
280	Epidemiological Investigation of a Rift Valley Fever Outbreak in Humans and Livestock in Kenya, 2018. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1649-1655.	0.6	25
281	Immunogenicity of Rift Valley Fever Virus ZH 501 used for Vaccine Production in Egypt. Journal of Animal Science Advances, 2015, 5, 1310.	0.1	1
282	Susceptibility and barriers to infection of Colorado mosquitoes with Rift Valley fever virus. PLoS Neglected Tropical Diseases, 2021, 15, e0009837.	1.3	6
283	Survey of antibodies to Rift Valley fever virus and associated risk factors in one-humped camels (Camelus dromedarius) slaughtered in Maiduguri abattoir, Borno State, Nigeria. Tropical Animal Health and Production, 2021, 53, 500.	0.5	2
285	Risques d'introduction et d'implantation en Europe de maladies infectieuses exotiques. Bulletin De L'Academie Nationale De Medecine, 2009, 193, 1805-1819.	0.0	3
286	The Investigation of Pestivirus and Rift Valley Fever Virus Infections in Aborted Ruminant Foetuses in the Blacksea Region in Turkey. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2012, , .	0.0	2
287	Bunyaviruses. , 2012, , 1102-1104.e2.		0
288	Animal Models for Viral Hemorrhagic Fevers. , 2012, , 271-310.		0
290	Immunization with DNA Vaccine Expressing Gn Coupled to C3d Prevents Clinical Symptoms of Infection and Protects Mice against an Aerosol Rift Valley Fever Virus Infection Journal of Bioterrorism & Biodefense, 2013, 01, .	0.1	0
291	Rift Valley Fever. , 2013, , 340-343.		0
293	Viral Hemorrhagic Fevers of Animals Caused by Negative-Strand RNA Viruses. , 2015, , 247-317.		0
295	Rift-Valley-Fieber-Viren. , 2018, , 1-2.		0
296	8. Mosquito-borne diseases in the livestock industry. Ecology and Control of Vector-Borne Diseases, 2018, , 195-219.	0.3	3
297	Hepatitis in slaughterhouse workers. World Journal of Hepatology, 2019, 11, 37-49.	0.8	1
299	Ð•ĐŸÐ†Ð"Ð•ĐœĐ†ĐžÐ›ĐžĐ"Đ†Ð§ĐІ Đ¢Đ•ĐšĐ›Đ†ĐІЧĐІ ĐžĐ¡ĐžĐʻĐ›Đ~Đ'ĐžĐ¡Đ¢Đ† Đ"ĐĐĐ~ЧКĐ~ ĐĐ~	Ð Ð ¢.ВЀ	≫Đ⊕†.,202
300	Microbial Infections and Virulence Factors. , 2020, , 1-18.		0
301	Viral Zoonoses: Wildlife Perspectives. Livestock Diseases and Management, 2020, , 339-378.	0.5	0

#	Article	IF	CITATIONS
305	Global Environmental Change and Emerging Infectious Diseases. , 0, , 393-426.		0
306	An Overview of Animal Models for Arthropod-Borne Viruses. Comparative Medicine, 2017, 67, 232-241.	0.4	20
307	Rift Valley Fever Virus Propagates in Human Villous Trophoblast Cell Lines and Induces Cytokine mRNA Responses Known to Provoke Miscarriage. Viruses, 2021, 13, 2265.	1.5	9
309	Tra2beta-Dependent Regulation of RIO Kinase 3 Splicing During Rift Valley Fever Virus Infection Underscores the Links Between Alternative Splicing and Innate Antiviral Immunity. Frontiers in Cellular and Infection Microbiology, 2021, 11, 799024.	1.8	7
310	Detection of Rift Valley Fever Virus in Aedes (Aedimorphus) durbanensis, South Africa. Pathogens, 2022, 11, 125.	1.2	4
311	Diverse Roles of F-BoxProtein3 in Regulation of Various Cellular Functions. Frontiers in Cell and Developmental Biology, 2021, 9, 802204.	1.8	4
312	Safety study of Rift Valley Fever human vaccine candidate (DDVax) in mosquitoes. Transboundary and Emerging Diseases, 2022, 69, 2621-2633.	1.3	11
313	Assessment of the control measures of the category A diseases of Animal Health Law: Rift Valley Fever. EFSA Journal, 2022, 20, e07070.	0.9	1
314	Identification of drivers of Rift Valley fever after the 2013–14 outbreak in Senegal using serological data in small ruminants. PLoS Neglected Tropical Diseases, 2022, 16, e0010024.	1.3	2
316	Teratogenesis in livestock. , 2022, , 1443-1460.		0
318	Crossing the Line: Seroprevalence and Risk Factors for Transboundary Animal Diseases Along the Tanzania-Zambia Border. Frontiers in Veterinary Science, 2022, 9, 809128.	0.9	2
319	Clinical manifestations of Rift Valley fever in humans: Systematic review and meta-analysis. PLoS Neglected Tropical Diseases, 2022, 16, e0010233.	1.3	23
320	Mosquito survey in Mauritania: Detection of Rift Valley fever virus and dengue virus and the determination of feeding patterns. PLoS Neglected Tropical Diseases, 2022, 16, e0010203.	1.3	10
322	Rift Valley Fever, Mauritania, 2020: Lessons of a One Health Approach. SSRN Electronic Journal, 0, , .	0.4	0
323	Vector Competence of Mediterranean Mosquitoes for Rift Valley Fever Virus: A Meta-Analysis. Pathogens, 2022, 11, 503.	1.2	6
324	Structural Elucidation of Rift Valley Fever Virus L Protein towards the Discovery of Its Potential Inhibitors. Pharmaceuticals, 2022, 15, 659.	1.7	13
325	An unusually long Rift valley fever inter-epizootic period in Zambia: Evidence for enzootic virus circulation and risk for disease outbreak. PLoS Neglected Tropical Diseases, 2022, 16, e0010420.	1.3	7
326	Serological evidence of the circulation of the Rift Valley fever virus in sheep and goats slaughtered in Yaoundé, Cameroon. Veterinary Medicine and Science, 2022, 8, 2114-2118.	0.6	4

#	Article	IF	CITATIONS
327	A Cross-Sectional, Population-Based, Seroepidemiological Study of Rift Valley Fever in Cameroonian Cattle Populations. Frontiers in Veterinary Science, 0, 9, .	0.9	3
328	Projecting vaccine demand and impact for emerging zoonotic pathogens. BMC Medicine, 2022, 20, .	2.3	3
330	7. Consequences of deforestation and habitat degradation on wildlife mosquito-borne diseases. Ecology and Control of Vector-Borne Diseases, 2022, , 127-142.	0.3	0
331	Seroepidemiology of selected transboundary animal diseases in goats in Zambia. Preventive Veterinary Medicine, 2022, 206, 105708.	0.7	3
332	Rift Valley fever, Mauritania, 2020: Lessons from a one health approach. One Health, 2022, 15, 100413.	1.5	7
333	Heterogeneity of Rift Valley fever virus transmission potential across livestock hosts, quantified through a model-based analysis of host viral load and vector infection. PLoS Computational Biology, 2022, 18, e1010314.	1.5	10
334	Adaptation to a Multiplex Bead Assay and Seroprevalence to Rift Valley Fever N Protein: Nampula Province, Mozambique, 2013-2014. Journal of Virology, 2022, 96, .	1.5	1
335	Rift Valley fever virus: Movement of infected humans threatens global public health and agriculture. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	3
336	No evidence of Rift Valley fever antibodies in veterinarians and sheep in Northern Palestine. Veterinary World, 0, , 1990-1995.	0.7	0
337	Evaluations of rationally designed rift valley fever vaccine candidate RVax-1 in mosquito and rodent models. Npj Vaccines, 2022, 7, .	2.9	3
339	Immune correlates of protection following Rift Valley fever virus vaccination. Npj Vaccines, 2022, 7, .	2.9	8
340	A Review of Omics Studies on Arboviruses: Alphavirus, Orthobunyavirus and Phlebovirus. Viruses, 2022, 14, 2194.	1.5	3
341	Rift Valley Fever Outbreak during COVID-19 Surge, Uganda, 2021. Emerging Infectious Diseases, 2022, 28, 2290-2293.	2.0	6
342	Seroprevalence and Associated Risk Factors of Rift Valley Fever in Livestock from Three Ecological Zones of Malawi. Pathogens, 2022, 11, 1349.	1.2	1
343	Mechanistic models of Rift Valley fever virus transmission: A systematic review. PLoS Neglected Tropical Diseases, 2022, 16, e0010339.	1.3	6
344	Bunyaviruses. , 2023, , 1152-1155.e3.		0
345	Reconstructing Mayotte 2018–19 Rift Valley Fever outbreak in humans by combining serological and surveillance data. Communications Medicine, 2022, 2, .	1.9	1
346	Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles. Insects, 2023, 14, 221.	1.0	10