Turning Charge Transfer On and Off in a Molecular Inte

Nano Letters

9, 1818-1823

DOI: 10.1021/nl8037695

Citation Report

#	Article	IF	CITATIONS
2	Energy transport via coordination bonds. Journal of Chemical Physics, 2009, 131, 154508.	1.2	41
3	Modulating Unimolecular Charge Transfer by Exciting Bridge Vibrations. Journal of the American Chemical Society, 2009, 131, 18060-18062.	6.6	97
4	Interfering pathways in benzene: An analytical treatment. Journal of Chemical Physics, 2009, 131, 194704.	1.2	121
5	Steering Electrons on Moving Pathways. Accounts of Chemical Research, 2009, 42, 1669-1678.	7.6	168
6	Circular Currents in Molecular Wires. Journal of Physical Chemistry C, 2010, 114, 20583-20594.	1.5	77
7	Chiral Control of Current Transfer in Molecules. Topics in Current Chemistry, 2010, 298, 259-278.	4.0	2
8	Fluctuations in Biological and Bioinspired Electron-Transfer Reactions. Annual Review of Physical Chemistry, 2010, 61, 461-485.	4.8	182
9	Charge Transfer Through Molecules with Multiple Pathways: Quantum Interference and Dephasing. Journal of Physical Chemistry C, 2010, 114, 7973-7979.	1.5	25
10	Steady-State Theory of Current Transfer. Journal of Physical Chemistry C, 2010, 114, 8005-8013.	1.5	20
11	First-Principles Study for Detection of Inelastic Electron Transport in Molecular Junctions by Internal Substitution. Journal of Physical Chemistry C, 2010, 114, 12280-12289.	1.5	20
12	Single molecule charge transport: from a quantum mechanical to a classical description. Physical Chemistry Chemical Physics, 2011, 13, 2096-2110.	1.3	21
13	Floquet Analysis for Vibronically Modulated Electron Tunneling. Journal of Physical Chemistry B, 2011, 115, 5510-5518.	1.2	17
14	Transmission Coefficients for Chemical Reactions with Multiple States: Role of Quantum Decoherence. Journal of the American Chemical Society, 2011, 133, 3883-3894.	6.6	22
15	Static and Dynamic Structural Memory in Polyaniline Thin Films. Journal of Physical Chemistry B, 2011, 115, 8686-8695.	1.2	6
16	Ground-State Structural Dynamics in Doped and Undoped Polyaniline Films Probed by Two-Dimensional Infrared Vibrational Echo Spectroscopy. Journal of Physical Chemistry B, 2011, 115, 4583-4591.	1.2	13
17	Quantum effects in biology. Procedia Chemistry, 2011, 3, 38-57.	0.7	76
18	Quantum effects in chemistry: seven sample situations. Procedia Chemistry, 2011, 3, 63-81.	0.7	3
19	Coherence in electron transfer pathways. Procedia Chemistry, 2011, 3, 99-104.	0.7	10

#	Article	IF	CITATIONS
20	Interference-induced electron- and hole-conduction asymmetry. Theoretical Chemistry Accounts, 2011, 130, 815-828.	0.5	5
21	Quantum effects in biological electron transfer. Physical Chemistry Chemical Physics, 2012, 14, 5902.	1.3	31
22	Quantum biology. Nature Physics, 2013, 9, 10-18.	6.5	692
23	Reviewprobing protein electron transfer mechanisms from the molecular to the cellular length scales. Biopolymers, 2013, 100, 82-92.	1.2	31
24	Coherence in charge and energy transfer in molecular junctions. Physical Review B, 2013, 88, .	1.1	26
25	Decoherence and Quantum Interference in a Four-Site Model System: Mechanisms and Turnovers. Journal of Physical Chemistry B, 2013, 117, 1010-1020.	1.2	21
27	Evolution of oligomeric state through allosteric pathways that mimic ligand binding. Science, 2014, 346, 1254346.	6.0	62
28	Detection of self-reactive CD8 ⁺ T cells with an anergic phenotype in healthy individuals. Science, 2014, 346, 1536-1540.	6.0	162
29	Toward control of electron transfer in donor-acceptor molecules by bond-specific infrared excitation. Science, 2014, 346, 1492-1495.	6.0	158
30	Molecular vibrations offer control over electron transfer. Physics Today, 2015, 68, 10-11.	0.3	0
31	Controlling electron transfer in condensed phase with bond-specific infrared excitation. , 2015, , .		0
32	Electron transfer rate modulation in a compact Re(<scp>i</scp>) donor–acceptor complex. Dalton Transactions, 2015, 44, 8609-8616.	1.6	25
33	Probing and Exploiting the Interplay between Nuclear and Electronic Motion in Charge Transfer Processes. Accounts of Chemical Research, 2015, 48, 1131-1139.	7.6	42
34	Vibrational control of electron-transfer reactions: a feasibility study for the fast coherent transfer regime. Physical Chemistry Chemical Physics, 2015, 17, 30854-30866.	1.3	15
35	Shake it off. Nature Chemistry, 2015, 7, 683-684.	6.6	11
36	On the mechanism of vibrational control of light-induced charge transfer in donor–bridge–acceptor assemblies. Nature Chemistry, 2015, 7, 689-695.	6.6	112
37	Coherent control of long-range photoinduced electron transfer by stimulated X-ray Raman processes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10001-10006.	3.3	8
38	Short-lived electron transfer in donor-bridge-acceptor systems. Chemical Physics Letters, 2016, 662, 201-207.	1.2	0

#	ARTICLE	IF	CITATIONS
39	Identifying electron transfer coordinates in donor-bridge-acceptor systems using mode projection analysis. Nature Communications, 2017, 8, 14554.	5.8	27
40	Directing the path of light-induced electron transfer at a molecular fork using vibrational excitation. Nature Chemistry, 2017, 9, 1099-1104.	6.6	58
41	Exploiting the interplay of quantum interference and backbone rigidity on electronic transport in peptides: a step towards bio-inspired quantum interferometers. Molecular Systems Design and Engineering, 2017, 2, 67-77.	1.7	11
42	How can infra-red excitation both accelerate and slow charge transfer in the same molecule?. Chemical Science, 2018, 9, 6395-6405.	3.7	15
43	A Nonequilibrium Molecular Dynamics Study of Infrared Perturbed Electron Transfer. Journal of Chemical Theory and Computation, 2018, 14, 4818-4832.	2.3	1
44	Quantum coherence in ultrafast photo-driven charge separation. Faraday Discussions, 2019, 216, 319-338.	1.6	7
45	Multispectral multidimensional spectrometer spanning the ultraviolet to the mid-infrared. Review of Scientific Instruments, 2019, 90, 013108.	0.6	33
46	Vibrational control of molecular electron transfer reactions. Molecular Physics, 2019, 117, 2618-2631.	0.8	3
47	Multifaceted aspects of charge transfer. Physical Chemistry Chemical Physics, 2020, 22, 21583-21629.	1.3	26
48	Tribute to David N. Beratan. Journal of Physical Chemistry B, 2020, 124, 3437-3440.	1.2	0
49	Symmetry controlled photo-selection and charge separation in butadiyne-bridged donor–bridge–acceptor compounds. Physical Chemistry Chemical Physics, 2020, 22, 9664-9676.	1.3	6
50	Interplay of vibrational wavepackets during an ultrafast electron transfer reaction. Nature Chemistry, 2021, 13, 70-76.	6.6	51
51	Control of quantum interference in single-molecule junctions via Jahn-Teller distortion. Cell Reports Physical Science, 2021, 2, 100329.	2.8	12
52	Quantum Circuit Rules for Molecular Electronic Systems: Where Are We Headed Based on the Current Understanding of Quantum Interference, Thermoelectric, and Molecular Spintronics Phenomena?. Nano Letters, 2021, 21, 8532-8544.	4.5	16