Exenatide Reduces Infarct Size and Improves Cardiac F Ischemia and Reperfusion Injury

Journal of the American College of Cardiology 53, 501-510 DOI: 10.1016/j.jacc.2008.10.033

Citation Report

#	Article	IF	CITATIONS
1	The Ets-1 transcription factor is involved in the development and invasion of malignant melanoma. Cellular and Molecular Life Sciences, 2004, 61, 118-128.	5.4	118
2	Present and Prospective Pharmacotherapy for the Management of Patients with Type 2 Diabetes. Clinical Medicine Therapeutics, 2009, 1, CMT.S2109.	0.1	2
3	Urinary Trypsin Inhibition: Cardioprotection via the Reperfusion Injury Salvage Kinase Pathway. Cardiology, 2009, 114, 261-263.	1.4	0
4	Lethal reperfusion injury in acute myocardial infarction: facts and unresolved issues. Cardiovascular Research, 2009, 83, 165-168.	3.8	64
5	Lack of cardioprotection from subcutaneously and preischemic administered Liraglutide in a closed chest porcine ischemia reperfusion model. BMC Cardiovascular Disorders, 2009, 9, 31.	1.7	65
6	Emerging cardiovascular actions of the incretin hormone glucagonâ€like peptideâ€1: potential therapeutic benefits beyond glycaemic control?. British Journal of Pharmacology, 2009, 157, 1340-1351.	5.4	112
7	Glucagon-like peptide-1 protects mesenteric endothelium from injury during inflammation. Peptides, 2009, 30, 1735-1741.	2.4	50
8	Lizard Spit and Reperfusion InjuryâŽâŽEditorials published in the Journal of the American College of Cardiology reflect the views of the authors and do not necessarily represent the views of JACC or the American College of Cardiology Journal of the American College of Cardiology, 2009, 53, 511-513.	2.8	6
9	Treatment of Type 1 Diabetic Patients with Glucagon-Like Peptide-1 (GLP-1) and GLP-1R Agonists. Current Diabetes Reviews, 2009, 5, 266-275.	1.3	49
10	Antidiabetic Drug Voglibose Is Protective Against Ischemia—Reperfusion Injury Through Glucagon-Like Peptide 1 Receptors and the Phosphoinositide 3-Kinase-Akt-Endothelial Nitric Oxide Synthase Pathway in Rabbits. Journal of Cardiovascular Pharmacology, 2010, 55, 625-634.	1.9	24
11	Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: new advances. Current Opinion in Endocrinology, Diabetes and Obesity, 2010, 17, 57-62.	2.3	49
13	Ischemic postconditioning: a clinical perspective. Interventional Cardiology, 2010, 2, 579-589.	0.0	2
16	Blood Glucose Control and Coronary Heart Disease. Herz, 2010, 35, 148-159.	1.1	7
17	Is the ADA/EASD algorithm for the management of type 2 diabetes (January 2009) based on evidence or opinion? A critical analysis. Diabetologia, 2010, 53, 1258-1269.	6.3	85
18	Consensus guidelines, algorithms and care of the individual patient with type 2 diabetes. Diabetologia, 2010, 53, 1247-1249.	6.3	18
19	Neonatal Exendin-4 Leads to Protection from Reperfusion Injury and Reduced Rates of Oxidative Phosphorylation in the Adult Rat Heart. Cardiovascular Drugs and Therapy, 2010, 24, 197-205.	2.6	18
20	Glucagon-Like Peptide 1—A Cardiologic Dimension. Trends in Cardiovascular Medicine, 2010, 20, 8-12.	4.9	25
21	Glucagon-like peptide-1 (GLP-1) attenuates post-resuscitation myocardial microcirculatory dysfunction. Resuscitation, 2010, 81, 755-760.	3.0	40

2

#	Article	IF	CITATIONS
22	Prevention and Treatment of Microvascular Obstruction-Related Myocardial Injury and Coronary No-Reflow Following Percutaneous Coronary Intervention. JACC: Cardiovascular Interventions, 2010, 3, 695-704.	2.9	148
23	The exenatide analogue AC3174 attenuates hypertension, insulin resistance, and renal dysfunction in Dahl salt-sensitive rats. Cardiovascular Diabetology, 2010, 9, 32.	6.8	60
24	Effect of exenatide on heart rate and blood pressure in subjects with type 2 diabetes mellitus: a double-blind, placebo-controlled, randomized pilot study. Cardiovascular Diabetology, 2010, 9, 6.	6.8	120
25	Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure. Cardiovascular Diabetology, 2010, 9, 76.	6.8	107
26	Ĵ² ₂ â€adrenoceptor agonist clenbuterol reduces infarct size and myocardial apoptosis after myocardial ischaemia/reperfusion in anaesthetized rats. British Journal of Pharmacology, 2010, 160, 1561-1572.	5.4	37
27	Effects of Post-Resuscitation Treatment with N-acetylcysteine on Cardiac Recovery in Hypoxic Newborn Piglets. PLoS ONE, 2010, 5, e15322.	2.5	10
28	Mechanism of Ischemia and Reperfusion Injury to the Heart: From the Viewpoint of Nitric Oxide and Mitochondria. Chonnam Medical Journal, 2010, 46, 129.	0.1	8
30	A Novel Antihypertensive Effect of Exenatide, a GLP-1 Agonist. American Journal of Hypertension, 2010, 23, 228-228.	2.0	3
31	The synthetic GLP-I receptor agonist, exenatide, reduces intimal hyperplasia in insulin resistant rats. Diabetes and Vascular Disease Research, 2010, 7, 138-144.	2.0	30
32	The Cytoprotective Effects of Tumor Necrosis Factor Are Conveyed Through Tumor Necrosis Factor Receptor–Associated Factor 2 in the Heart. Circulation: Heart Failure, 2010, 3, 157-164.	3.9	58
33	Exenatide protects renal ischemia reperfusion injury in type 2 diabetes mellitus. International Journal of Diabetes in Developing Countries, 2010, 30, 217.	0.8	3
34	The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1454-H1465.	3.2	131
35	Glycaemic control in acute coronary syndromes: prognostic value and therapeutic options. European Heart Journal, 2010, 31, 1557-1564.	2.2	54
36	Endocrine Therapies and QTc Prolongation. Current Drug Safety, 2010, 5, 79-84.	0.6	8
37	DPP-4 Inhibition by Sitagliptin Improves the Myocardial Response to Dobutamine Stress and Mitigates Stunning in a Pilot Study of Patients With Coronary Artery Disease. Circulation: Cardiovascular Imaging, 2010, 3, 195-201.	2.6	200
39	Treatment of type 2 diabetes: New clinical studies and effects of GLP-1 on macrovascular complications. Annales D'Endocrinologie, 2010, 71, 505-510.	1.4	2
40	Highlights of the Year in JACC2009. Journal of the American College of Cardiology, 2010, 55, 380-407.	2.8	1
41	In search of the holy grail? The quest to reduce macrovascular disease in type 2 diabetes mellitus.	0.2	0

#	Article	IF	CITATIONS
42	Incretin-Based Therapies for the Treatment of Type 2 Diabetes: Evaluation of the Risks and Benefits. Diabetes Care, 2010, 33, 428-433.	8.6	281
43	Myocardial AKT: The Omnipresent Nexus. Physiological Reviews, 2011, 91, 1023-1070.	28.8	196
44	Multifactorial intervention in Type 2 diabetes: The promise of incretin-based therapies. Journal of Endocrinological Investigation, 2011, 34, 69-77.	3.3	18
45	Cardiovascular Comorbidities of Type 2 Diabetes Mellitus: Defining the Potential of Glucagonlike peptide–1-Based Therapies. American Journal of Medicine, 2011, 124, S35-S53.	1.5	59
46	Beyond glucose lowering: Glucagon-like peptide-1 receptor agonists, body weight and the cardiovascular system. Diabetes and Metabolism, 2011, 37, 477-488.	2.9	48
47	Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury. Biochemical and Biophysical Research Communications, 2011, 405, 79-84.	2.1	97
48	Understanding the Cardiovascular Effects of Incretin. Diabetes and Metabolism Journal, 2011, 35, 437.	4.7	18
49	Emerging Strategies in the Treatment of Heart Failure. , 2011, , 728-741.		0
50	Albiglutide, a Long Lasting Glucagon-Like Peptide-1 Analog, Protects the Rat Heart against Ischemia/Reperfusion Injury: Evidence for Improving Cardiac Metabolic Efficiency. PLoS ONE, 2011, 6, e23570.	2.5	79
51	Advances in the Treatment of Type 2 Diabetes Mellitus. American Journal of Therapeutics, 2011, 18, 117-152.	0.9	134
52	Glucagon-like peptide-1-based therapies and cardiovascular disease: looking beyond glycaemic control. Diabetes, Obesity and Metabolism, 2011, 13, 302-312.	4.4	123
53	Both stimulation of GLP-1 receptors and inhibition of glycogenolysis additively contribute to a protective effect of oral miglitol against ischaemia-reperfusion injury in rabbits. British Journal of Pharmacology, 2011, 164, 119-131.	5.4	19
54	Exendin-4, a Glucagon-Like Peptide-1 Receptor Agonist, Provides Neuroprotection in Mice Transient Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1696-1705.	4.3	170
55	Management of type 2 diabetes: evolving strategies for the treatment of patients with type 2 diabetes. Metabolism: Clinical and Experimental, 2011, 60, 1-23.	3.4	253
56	Sitagliptin protects renal ischemia reperfusion induced renal damage in diabetes. Regulatory Peptides, 2011, 166, 48-54.	1.9	85
57	Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Research, 2011, 6, 206-214.	0.7	379
58	Effect of additional treatment with EXenatide in patients with an Acute Myocardial Infarction (EXAMI): study protocol for a randomized controlled trial. Trials, 2011, 12, 240.	1.6	18
59	The potential effects of anti-diabetic medications on myocardial ischemia–reperfusion injury. Basic Research in Cardiology, 2011, 106, 925-952.	5.9	89

ARTICLE IF CITATIONS # The Incretin System and Cardiovascular Risk: Effects of Incretin-Targeted Therapies. Current 60 2.0 1 Cardiovascular Risk Reports, 2011, 5, 62-69. Incretin-based therapy: a powerful and promising weapon in the treatment of type 2 diabetes mellitus. Diabetes Therapy, 2011, 2, 101-121. 2.5 98 Diabetes and Cardiovascular Disease: The Potential Benefit of Incretin-Based Therapies. Current 62 4.8 28 Atherosclerosis Reports, 2011, 13, 115-122. Glucagon-like Peptide-1 (GLP-1), Immediately Prior to Reperfusion, Decreases Neutrophil Activation and Reduces Myocardial Infarct Size in Rodents. Hormone and Metabolic Research, 2011, 43, 300-305. Cardiovascular Effects of Glucagon-Like Peptide 1. Mini-Reviews in Medicinal Chemistry, 2011, 11, 97-105. 2.4 64 4 Therapy in the Early Stage: Incretins. Diabetes Care, 2011, 34, S264-S271. 8.6 89 Antiapoptotic effects of GLP-1 in murine HL-1 cardiomyocytes. American Journal of Physiology - Heart 66 3.2 70 and Circulatory Physiology, 2011, 300, H1361-H1372. Exenatide Reduces Final Infarct Size in Patients With ST-Segment–Elevation Myocardial Infarction and 186 Short-Duration of Ischemia. Circulation: Cardiovascular Interventions, 2012, 5, 288-295. Preventive Effects of Exenatide on Endothelial Dysfunction Induced by Ischemia-Reperfusion Injury via 68 2.4 46 K ATP Channels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 474-480. Diabetes and cardiovascular disease: focus on glucagon-like peptide-1 based therapies. Therapeutic 2.4 Advances in Drug Safety, 2012, 3, 185-201. Cardioprotective effects of incretin during ischaemia-reperfusion. Diabetes and Vascular Disease 70 2.0 28 Research, 2012, 9, 256-269. Encapsulated Glucagon-Like Peptide-1-Producing Mesenchymal Stem Cells Have a Beneficial Effect on 3.3 29 Failing Pig Hearts. Stem Cells Translational Medicine, 2012, 1, 759-769. Glucagon-Like Peptide-1 Counteracts Oxidative Stress-Dependent Apoptosis of Human Cardiac Progenitor Cells by Inhibiting the Activation of the c-Jun N-terminal Protein Kinase Signaling Pathway. 72 2.8 31 Endocrinology, 2012, 153, 5770-5781. Exenatide Exerts a Potent Antiinflammatory Effect. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 198-207. 3.6 Non-Insulin Injectable Treatments (Glucagon-Like Peptide-1 and Its Analogs) and Cardiovascular 74 12 4.4 Disease. Diabetes Technology and Therapeutics, 2012, 14, S-43-S-50. Myocardial Protection Against Ischemia-Reperfusion Injury by GLP-1: Molecular Mechanisms. Metabolic 14 Syndrome and Related Disorders, 2012, 10, 387-390. Safety and tolerability of glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes. 76 0.6 1 British Journal of Diabetes and Vascular Disease, 2012, 12, 6-16. Beyond glucose: cardiovascular effects of incretins and dipeptidyl peptidase-4 substrates. European 77 0.1 Heart Journal Supplements, 2012, 14, B14-B21.

#	Article	IF	CITATIONS
78	Taking lizard saliva to heart. European Heart Journal, 2012, 33, 1426-1430.	2.2	11
79	Glycemic Management in Diabetes and the Associated Cardiovascular Risk. Circulation Journal, 2012, 76, 1572-1580.	1.6	9
80	Potential cardiovascular effects of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes: current evidence and ongoing trials. European Heart Journal Supplements, 2012, 14, B22-B29.	0.1	5
81	Pharmacological approaches to reperfusion therapy. Cardiovascular Research, 2012, 94, 246-252.	3.8	22
82	The Cardiovascular Effects of GLPâ€1 Receptor Agonists. Cardiovascular Therapeutics, 2012, 30, e146-55.	2.5	102
83	Phosphodiesterase III Inhibition Increases cAMP Levels and Augments the Infarct Size Limiting Effect of a DPP-4 Inhibitor in Mice with Type-2 Diabetes Mellitus. Cardiovascular Drugs and Therapy, 2012, 26, 445-456.	2.6	25
84	Metformin in non-Diabetic Patients Presenting with ST Elevation Myocardial Infarction: Rationale and Design of the Glycometabolic Intervention as Adjunct to Primary Percutaneous Intervention in ST Elevation Myocardial Infarction (GIPS)-III Trial. Cardiovascular Drugs and Therapy, 2012, 26, 417-426.	2.6	41
85	Cardiovascular effects of antidiabetic agents: focus on blood pressure effects of incretin-based therapies. Journal of the American Society of Hypertension, 2012, 6, 163-168.	2.3	31
86	Postconditioning with curaglutide, a novel GLP-1 analog, protects against heart ischemia-reperfusion injury in an isolated rat heart. Regulatory Peptides, 2012, 178, 51-55.	1.9	9
87	Péptido similar al glucagón tipo 1 y supervivencia de la célula cardiaca. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2012, 59, 561-569.	0.8	8
88	Exendin-4 restores glucolipotoxicity-induced gene expression in human coronary artery endothelial cells. Biochemical and Biophysical Research Communications, 2012, 419, 790-795.	2.1	14
89	Cardiovascular Biology of the Incretin System. Endocrine Reviews, 2012, 33, 187-215.	20.1	468
90	Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. European Heart Journal, 2012, 33, 1491-1499.	2.2	456
91	Transendocardial cell injection is not superior to intracoronary infusion in a porcine model of ischaemic cardiomyopathy: a study on delivery efficiency. Journal of Cellular and Molecular Medicine, 2012, 16, 2768-2776.	3.6	50
92	Harnessing the incretin system beyond glucose control: Potential cardiovascular benefits of GLP-1 receptor agonists in type 2 diabetes. Diabetes and Metabolism, 2012, 38, 298-308.	2.9	12
93	Glucagon-like peptide 1 and cardiac cell survival. EndocrinologÃa Y Nutrición (English Edition), 2012, 59, 561-569.	0.5	6
94	Dipeptidyl peptidase 4 as a therapeutic target in ischemia/reperfusion injury. , 2012, 136, 267-282.		53
95	The impact of current and novel anti-diabetic therapies on cardiovascular risk. Future Cardiology, 2012 8 895-912	1.2	18

#	ARTICLE	IF	CITATIONS
97	Coronary Microvascular Dysfunction in CAD: Consequences and Potential Therapeutic Applications. , $0,,.$		0
98	GLP-1 and cardioprotection: from bench to bedside. Cardiovascular Research, 2012, 94, 316-323.	3.8	93
99	Incretin-based therapies and cardiovascular risk. Current Medical Research and Opinion, 2012, 28, 715-721.	1.9	32
100	Potential cardiovascular effects of incretin-based therapies. Expert Review of Cardiovascular Therapy, 2012, 10, 337-351.	1.5	17
101	The effect of glucagon-like peptide 1 on cardiovascular risk. Nature Reviews Cardiology, 2012, 9, 209-222.	13.7	131
103	Incretinâ€based therapies. Journal of Diabetes, 2012, 4, 55-67.	1.8	39
104	Predictive Value of Plasma Glucose Level on Admission for Short and Long Term Mortality in Patients With ST-Elevation Myocardial Infarction Treated With Primary Percutaneous Coronary Intervention. American Journal of Cardiology, 2012, 109, 53-59.	1.6	53
105	Nonâ€glycaemic effects mediated via GLPâ€1 receptor agonists and the potential for exploiting these for therapeutic benefit: focus on liraglutide. Diabetes, Obesity and Metabolism, 2012, 14, 41-49.	4.4	24
106	Cardioprotective effects of lixisenatide in rat myocardial ischemia-reperfusion injury studies. Journal of Translational Medicine, 2013, 11, 84.	4.4	60
107	Diabetes, perioperative ischaemia and volatile anaesthetics: consequences of derangements in myocardial substrate metabolism. Cardiovascular Diabetology, 2013, 12, 42.	6.8	17
108	Dipeptidyl Peptidase-4 Inhibitors and Their Effects on the Cardiovascular System. Current Cardiology Reports, 2013, 15, 382.	2.9	8
110	A retrospective observational study to model the progression curve of aortic stenosis. International Journal of Cardiology, 2013, 168, 3120-3122.	1.7	0
111	Cardiovascular Effects of Incretins in Diabetes. Canadian Journal of Diabetes, 2013, 37, 309-314.	0.8	20
112	Glucagon-like peptide-1 and related agents: Novel anti-arrhythmic agents during myocardial ischemia and reperfusion. International Journal of Cardiology, 2013, 168, 3119-3120.	1.7	2
113	Protein Engineering for Cardiovascular Therapeutics. Circulation Research, 2013, 113, 933-943.	4.5	42
114	Myocardial reperfusion injury: looking beyond primary PCI. European Heart Journal, 2013, 34, 1714-1722.	2.2	318
115	Novel fusion of GLP-1 with a domain antibody to serum albumin prolongs protection against myocardial ischemia/reperfusion injury in the rat. Cardiovascular Diabetology, 2013, 12, 148.	6.8	45
116	The cardiovascular safety of incretin-based therapies: a review of the evidence. Cardiovascular Diabetology, 2013, 12, 130.	6.8	36

#	ARTICLE	IF	CITATIONS
117	Direct cardiovascular effects of glucagon like peptide-1. Diabetology and Metabolic Syndrome, 2013, 5, 47.	2.7	32
118	Dipeptidyl peptidase-4 inhibitors and GLP-1 reduce myocardial infarct size in a glucose-dependent manner. Cardiovascular Diabetology, 2013, 12, 154.	6.8	81
119	Cardiovascular disease and glycemic control in type 2 diabetes: now that the dust is settling from large clinical trials. Annals of the New York Academy of Sciences, 2013, 1281, 36-50.	3.8	85
120	<scp>GLP</scp> â€1 Receptor Agonists: Effects on Cardiovascular Risk Reduction. Cardiovascular Therapeutics, 2013, 31, 238-249.	2.5	63
121	Admittanceâ€based pressure–volume loop measurements in a porcine model of chronic myocardial infarction. Experimental Physiology, 2013, 98, 1565-1575.	2.0	10
122	2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction. Journal of the American College of Cardiology, 2013, 61, e78-e140.	2.8	2,612
123	Extraglycemic effects of glp-1-based therapeutics: Addressing metabolic and cardiovascular risks associated with type 2 diabetes. Diabetes Research and Clinical Practice, 2013, 100, 1-10.	2.8	40
124	Cardioprotective effect of dipeptidyl peptidase-4 inhibitor during ischemia–reperfusion injury. International Journal of Cardiology, 2013, 167, 451-457.	1.7	83
125	Rationale and Design of a Randomized, Double-Blind, Placebo-Controlled Clinical Trial to Evaluate the Efficacy of B-Type Natriuretic Peptide for the Preservation of Left Ventricular Function After Anterior Myocardial Infarction. Journal of Cardiac Failure, 2013, 19, 533-539.	1.7	10
126	Do exenatide truly improve the myocardial infarction size?. International Journal of Cardiology, 2013, 168, 2993.	1.7	1
127	Targeting cell death in the reperfused heart: Pharmacological approaches for cardioprotection. International Journal of Cardiology, 2013, 165, 410-422.	1.7	103
128	Albiglutide: clinical overview of a long-acting GLP-1 receptor agonist in the treatment of Type 2 diabetes. Expert Review of Endocrinology and Metabolism, 2013, 8, 229-238.	2.4	4
129	The novel DPP-4 inhibitors linagliptin and BI 14361 reduce infarct size after myocardial ischemia/reperfusion in rats. International Journal of Cardiology, 2013, 167, 87-93.	1.7	72
130	Reshaping Diabetes Care: The Fundamental Role of Dipeptidyl Peptidase-4 Inhibitors and Glucagon-Like Peptide-1 Receptor Agonists in Clinical Practice. Endocrine Practice, 2013, 19, 718-728.	2.1	9
131	Glucoseâ€dependent insulinotropic polypeptide and glucagonâ€like peptideâ€1: Incretin actions beyond the pancreas. Journal of Diabetes Investigation, 2013, 4, 108-130.	2.4	207
132	The effects of liraglutide on glucose, inflammatorymarkersandlipoprotein metabolism: current knowledge and future perspective. Clinical Lipidology, 2013, 8, 173-181.	0.4	24
133	Elevated plasma GLP-1 levels and enhanced expression of cardiac GLP-1 receptors as markers of left ventricular systolic dysfunction: a cross-sectional study. BMJ Open, 2013, 3, e003201.	1.9	21
134	Phosphodiesterase-3 inhibition augments the myocardial infarct size-limiting effects of exenatide in mice with type 2 diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H131-H141.	3.2	21

#	Article	IF	CITATIONS
135	Glucagon-like peptide-1 preserves coronary microvascular endothelial function after cardiac arrest and resuscitation: potential antioxidant effects. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H538-H546.	3.2	23
136	Role of GLP-1 and DPP-4 in diabetic nephropathy and cardiovascular disease. Clinical Science, 2013, 124, 17-26.	4.3	52
137	Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. American Journal of Physiology - Cell Physiology, 2013, 304, C508-C518.	4.6	106
138	Incretin hormone glucagon-like peptide-1 is increased in patients with acute-phase ST-elevation myocardial infarction treated with a primary percutaneous coronary intervention. Cardiovascular Endocrinology, 2013, 2, 98-102.	0.8	3
139	Dipeptidyl peptidase IV and Mortality After an Acute Heart Failure Episode. Journal of Cardiovascular Pharmacology, 2013, 62, 138-142.	1.9	14
140	2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction. Circulation, 2013, 127, e362-425.	1.6	2,639
141	Sitagliptin improves betaâ€cell function in patients with acute coronary syndromes and newly diagnosed glucose abnormalities–the <scp>BEGAMI</scp> study. Journal of Internal Medicine, 2013, 273, 410-421.	6.0	18
142	Discovery and development of exenatide: the first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1. Expert Opinion on Drug Discovery, 2013, 8, 219-244.	5.0	74
143	Influence of Feeding and Intracoronary Dose on Insulinâ€Mediated Relative Akt Phosphorylation in the Porcine Myocardium. Cardiovascular Therapeutics, 2013, 31, e125-32.	2.5	2
144	Val ⁸ â€CLPâ€1 remodels synaptic activity and intracellular calcium homeostasis impaired by amyloid β peptide in rats. Journal of Neuroscience Research, 2013, 91, 568-577.	2.9	24
145	Cardioprotective Effects of Exenatide in Patients With ST-Segment–Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2252-2260.	2.4	185
146	Cardioprotective effects of exenatide against oxidative stress-induced injury. International Journal of Molecular Medicine, 2013, 32, 1011-1020.	4.0	66
147	Feasibility of Intracoronary GLP-1 Eluting CellBeadâ,,¢ Infusion in Acute Myocardial Infarction. Cell Transplantation, 2013, 22, 535-543.	2.5	19
148	Exendin-4 attenuates myocardial ischemia and reperfusion injury by inhibiting high mobility group box 1 protein expression. Cardiology Journal, 2013, 20, 600-604.	1.2	24
149	Protective Role of Deoxyschizandrin and Schisantherin A against Myocardial Ischemia–Reperfusion Injury in Rats. PLoS ONE, 2013, 8, e61590.	2.5	48
151	ESC Working Group Cellular Biology of the Heart: Position Paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovascular Research, 2014, 104, 399-411.	3.8	143
152	Exenatide can inhibit calcification of human VSMCs through the NF-kappaB/RANKL signaling pathway. Cardiovascular Diabetology, 2014, 13, 153.	6.8	33
153	Stress hyperglycemia in acute myocardial infarction. Vojnosanitetski Pregled, 2014, 71, 858-869.	0.2	11

#	Article	IF	CITATIONS
154	The GLP-1 Analogue Liraglutide Protects Cardiomyocytes from High Glucose-induced Apoptosis by Activating the Epac-1/Akt Pathway. Experimental and Clinical Endocrinology and Diabetes, 2014, 122, 608-614.	1.2	15
156	Reperfusion Therapy with Lowâ€Dose Insulin or Insulin‣ike Growth Factor 2; Myocardial Function and Infarct Size in a Porcine Model of Ischaemia and Reperfusion. Basic and Clinical Pharmacology and Toxicology, 2014, 115, 438-447.	2.5	7
157	The extraâ€pancreatic effects of <scp>GLPâ€1</scp> receptor agonists: a focus on the cardiovascular, gastrointestinal and central nervous systems. Diabetes, Obesity and Metabolism, 2014, 16, 673-688.	4.4	103
158	PO353 EFFECT OF GLP-1 ANALOGUE LIRAGLUTIDE ON PREVENTION OF CARDIOMYOCYTES APOPTOSIS INDUCED BY ANOXIA/REOXYGENATION. Diabetes Research and Clinical Practice, 2014, 106, S227-S228.	2.8	0
159	PO293 A PULMONARY ASPERGILLUS NIGER INFECTION IN A DIABETIC KETOACIDOSIS PATIENT: A CASE REPORT. Diabetes Research and Clinical Practice, 2014, 106, S197-S198.	2.8	0
160	PO292 THE EFFECTS OF LIRAGLUTIDE ON ENOS AND IRS-1 IN HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS. Diabetes Research and Clinical Practice, 2014, 106, S196-S197.	2.8	0
161	Exendin-4 ameliorates cardiac ischemia/reperfusion injury via caveolae and caveolins-3. Cardiovascular Diabetology, 2014, 13, 132.	6.8	25
162	Dipeptidyl peptidase-4 inhibitor reduces infarct size and preserves cardiac function via mitochondrial protection in ischaemia–reperfusion rat heart. Diabetes and Vascular Disease Research, 2014, 11, 75-83.	2.0	62
163	Exendin-4 inhibits endothelial protein C receptor shedding in vitro and in vivo. Pharmacological Research, 2014, 84, 18-25.	7.1	5
165	Chronic Metformin Treatment is Associated with Reduced Myocardial Infarct Size in Diabetic Patients with ST-segment Elevation Myocardial Infarction. Cardiovascular Drugs and Therapy, 2014, 28, 163-171.	2.6	49
166	Anti-inflammatory effect of exendin-4 postconditioning during myocardial ischemia and reperfusion. Molecular Biology Reports, 2014, 41, 3853-3857.	2.3	22
167	The cardiovascular effects of glucagon-like peptide-1 receptor agonists: a trial sequential analysis of randomized controlled trials. Journal of Clinical Pharmacy and Therapeutics, 2014, 39, 7-13.	1.5	12
168	Progression in attenuating myocardial reperfusion injury: An overview. International Journal of Cardiology, 2014, 170, 261-269.	1.7	43
169	Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. , 2014, 142, 375-415.		437
170	Intracoronary Infusion of Encapsulated Glucagon-Like Peptide-1–Eluting Mesenchymal Stem Cells Preserves Left Ventricular Function in a Porcine Model of Acute Myocardial Infarction. Circulation: Cardiovascular Interventions, 2014, 7, 673-683.	3.9	30
171	Protective effects of crocetin pretreatment on myocardial injury in an ischemia/reperfusion rat model. European Journal of Pharmacology, 2014, 741, 290-296.	3.5	58
172	Incretin-based therapies: can we achieve glycemic control and cardioprotection?. Journal of Endocrinology, 2014, 221, T17-T30.	2.6	23
173	Interaction of Risk Factors, Comorbidities, and Comedications with Ischemia/Reperfusion Injury and Cardioprotection by Preconditioning, Postconditioning, and Remote Conditioning. Pharmacological Reviews, 2014, 66, 1142-1174.	16.0	521

#	Article	IF	CITATIONS
174	Glucagon-like peptide-1 (7–36) but not (9–36) augments cardiac output during myocardial ischemia via a Frank–Starling mechanism. Basic Research in Cardiology, 2014, 109, 426.	5.9	13
175	Post-Genomic Analysis of Fatty Acid and Glucose Metabolism in Cardiovascular Disease. , 2014, , 533-559.		1
176	Effect of exenatide on the cardiac expression of adiponectin receptor 1 and NADPH oxidase subunits and heart function in streptozotocin-induced diabetic rats. Diabetology and Metabolic Syndrome, 2014, 6, 29.	2.7	14
177	Impact of glucagon-like peptide-1 on myocardial glucose metabolism revisited. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 219-231.	5.7	10
178	Cardiovascular and hemodynamic effects of glucagon-like peptide-1. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 209-217.	5.7	12
179	Extra-pancreatic effects of incretin-based therapies. Endocrine, 2014, 47, 360-371.	2.3	28
180	Cardiovascular Actions of Incretin-Based Therapies. Circulation Research, 2014, 114, 1788-1803.	4.5	301
181	Lixisenatide rescues spatial memory and synaptic plasticity from amyloid β protein-induced impairments in rats. Neuroscience, 2014, 277, 6-13.	2.3	83
182	Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotection. Molecular Metabolism, 2014, 3, 507-517.	6.5	102
183	Protection Against Myocardial Ischemia-reperfusion Injury in Clinical Practice. Revista Espanola De Cardiologia (English Ed), 2014, 67, 394-404.	0.6	34
184	Layer-Specific Radiofrequency Ultrasound-Based Strain Analysis in a Porcine Model of Ischemic Cardiomyopathy Validated by a Geometric Model. Ultrasound in Medicine and Biology, 2014, 40, 378-388.	1.5	6
185	Nonantithrombotic Medical Options in Acute Coronary Syndromes. Circulation Research, 2014, 114, 1944-1958.	4.5	15
186	Exenatide protects against hypoxia/reoxygenation-induced apoptosis by improving mitochondrial function in H9c2 cells. Experimental Biology and Medicine, 2014, 239, 414-422.	2.4	42
187	Glucagon-Like Peptide-1 Receptor Agonists for Diabetes Mellitus. Circulation, 2014, 129, 2305-2312.	1.6	36
188	Incretin Therapy and Heart Failure. Circulation Journal, 2014, 78, 819-824.	1.6	13
189	Antiâ€inflammatory compounds to reduce infarct size in largeâ€animal models of myocardial infarction: A metaâ€analysis. Evidence-based Preclinical Medicine, 2014, 1, 4-10.	0.9	1
190	Exenatide Reduces Tumor Necrosis Factor-α-induced Apoptosis in Cardiomyocytes by Alleviating Mitochondrial Dysfunction. Chinese Medical Journal, 2015, 128, 3211-3218.	2.3	27
191	Potential Cardiovascular Effects of the Glucagon-like Peptide-1 Receptor Agonists. Journal of Diabetes & Metabolism, 2015, 06, .	0.2	2

#	ARTICLE Matformin and Muscardial Injuny in Dationts With Disbates and STRESogmant Elevation Muscardial	IF	CITATIONS
192	Infarction: A Propensity Score Matched Analysis. Journal of the American Heart Association, 2015, 4, e002314.	3.7	21
193	PEGylated Exendin-4, a Modified GLP-1 Analog Exhibits More Potent Cardioprotection than Its Unmodified Parent Molecule on a Dose to Dose Basis in a Murine Model of Myocardial Infarction. Theranostics, 2015, 5, 240-250.	10.0	20
194	Impact of Either GLP-1 Agonists or DPP-4 Inhibitors on Pathophysiology of Heart Failure. International Heart Journal, 2015, 56, 372-376.	1.0	10
195	Cardiac Function in a Long-Term Follow-Up Study of Moderate and Severe Porcine Model of Chronic Myocardial Infarction. BioMed Research International, 2015, 2015, 1-11.	1.9	7
196	Selective targeting of glucagonâ€like peptideâ€1 signalling as a novel therapeutic approach for cardiovascular disease in diabetes. British Journal of Pharmacology, 2015, 172, 721-736.	5.4	21
197	Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes. European Heart Journal, 2015, 36, 2288-2296.	2.2	210
198	New Antianginal Drugs Still Not Available for Clinical Use. , 2015, , 189-234.		0
199	Rationale, design, and baseline characteristics in Evaluation of LIXisenatide in Acute Coronary Syndrome, a long-term cardiovascular end point trial of lixisenatide versus placebo. American Heart Journal, 2015, 169, 631-638.e7.	2.7	88
200	Diabetes and Heart Disease. Cardiovascular Medicine, 2015, , 145-165.	0.0	0
202	Myocardial regeneration in adriamycin cardiomyopathy by nuclear expression of GLP1 using ultrasound targeted microbubble destruction. Biochemical and Biophysical Research Communications, 2015, 458, 823-829.	2.1	13
204	Association of low GLP-1 with oxidative stress is related to cardiac disease and outcome in patients with type 2 diabetes mellitus: A pilot study. Free Radical Biology and Medicine, 2015, 81, 1-12.	2.9	27
205	The protective effect of GLP-1 analogue in arterial calcification through attenuating osteoblastic differentiation of human VSMCs. International Journal of Cardiology, 2015, 189, 188-193.	1.7	34
206	Epac is Required for GLP-1R-Mediated Inhibition of Oxidative Stress and Apoptosis in Cardiomyocytes. Molecular Endocrinology, 2015, 29, 583-596.	3.7	48
207	Potential Role of Dipeptidyl Peptidase IV in the Pathophysiology of Heart Failure. International Journal of Molecular Sciences, 2015, 16, 4226-4249.	4.1	18
208	Exendin-4 protects against post-myocardial infarction remodelling via specific actions on inflammation and the extracellular matrix. Basic Research in Cardiology, 2015, 110, 20.	5.9	57
209	Design and rationale for the randomised, double-blinded, placebo-controlled Liraglutide to Improve corONary haemodynamics during Exercise streSS (LIONESS) crossover study. Cardiovascular Diabetology, 2015, 14, 27.	6.8	2
210	Exendin-4 enhances the migration of adipose-derived stem cells to neonatal rat ventricular cardiomyocyte-derived conditioned medium via the phosphoinositide 3-kinase/Akt-stromal cell-derived factor-11±/CXC chemokine receptor 4 pathway. Molecular Medicine Reports, 2015, 11, 4063-4072.	2.4	49
211	The non-glycemic effects of incretin therapies on cardiovascular outcomes, cognitive function and bone health. Expert Review of Endocrinology and Metabolism, 2015, 10, 101-114.	2.4	6

#	Article	IF	CITATIONS
212	Metabolic Syndrome Abolishes Glucagon-Like Peptide 1 Receptor Agonist Stimulation of SERCA in Coronary Smooth Muscle. Diabetes, 2015, 64, 3321-3327.	0.6	17
213	Exenatide exerts a PKA-dependent positive inotropic effect in human atrial myocardium. Journal of Molecular and Cellular Cardiology, 2015, 89, 365-375.	1.9	40
215	GLP1 protects cardiomyocytes from palmitate-induced apoptosis via Akt/GSK3b/b-catenin pathway. Journal of Molecular Endocrinology, 2015, 55, 245-262.	2.5	56
216	Effects of liraglutide on left ventricular function in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. American Heart Journal, 2015, 170, 845-854.	2.7	93
217	Extracellular signalling molecules in the ischaemic/reperfused heart – druggable and translatable for cardioprotection?. British Journal of Pharmacology, 2015, 172, 2010-2025.	5.4	63
218	Cardiovascular, renal and gastrointestinal effects of incretin-based therapies: an acute and 12-week randomised, double-blind, placebo-controlled, mechanistic intervention trial in type 2 diabetes. BMJ Open, 2015, 5, e009579.	1.9	30
219	Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. New England Journal of Medicine, 2015, 373, 2247-2257.	27.0	1,856
220	Autologous Mesenchymal Stem Cells Show More Benefit on Systolic Function Compared to Bone Marrow Mononuclear Cells in a Porcine Model of Chronic Myocardial Infarction. Journal of Cardiovascular Translational Research, 2015, 8, 393-403.	2.4	18
221	Necrostatinâ€1 alleviates reperfusion injury following acute myocardial infarction in pigs. European Journal of Clinical Investigation, 2015, 45, 150-159.	3.4	70
222	The <scp>cGMP/PKG</scp> pathway as a common mediator of cardioprotection: translatability and mechanism. British Journal of Pharmacology, 2015, 172, 1996-2009.	5.4	86
223	Incretin-Related Drug Therapy in Heart Failure. Current Heart Failure Reports, 2015, 12, 24-32.	3.3	9
224	Pharmacologic Therapy for Reducing Myocardial Infarct Size in Clinical Trials. Journal of Cardiovascular Pharmacology and Therapeutics, 2015, 20, 21-35.	2.0	8
225	Does Glucagon-like Peptide-1 Ameliorate Oxidative Stress in Diabetes? Evidence Based on Experimental and Clinical Studies. Current Diabetes Reviews, 2016, 12, 331-358.	1.3	27
226	Incretin-Based Therapy for Prevention of Diabetic Vascular Complications. Journal of Diabetes Research, 2016, 2016, 1-12.	2.3	26
227	Combined MSC and GLP-1 Therapy Modulates Collagen Remodeling and Apoptosis following Myocardial Infarction. Stem Cells International, 2016, 2016, 1-12.	2.5	13
228	Cardioprotective Effects of Astragalin against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	4.0	54
229	GLP-1 analogues for neuroprotection after out-of-hospital cardiac arrest: study protocol for a randomized controlled trial. Trials, 2016, 17, 304.	1.6	10
230	Dipeptidyl Peptidase IV Inhibition Exerts Renoprotective Effects in Rats with Established Heart Failure. Frontiers in Physiology, 2016, 7, 293.	2.8	15

#	Article	IF	CITATIONS
231	Mechanisms of Cardiovascular Injury in Type 2 Diabetes and Potential Effects of Dipeptidyl Peptidase-4 Inhibition. Journal of Cardiovascular Nursing, 2016, 31, 274-283.	1.1	6
232	Increased myocardial vulnerability to ischemia–reperfusion injury in the presence of left ventricular hypertrophy. Journal of Hypertension, 2016, 34, 513-523.	0.5	17
233	Circulating Extracellular Vesicles Contain miRNAs and are Released as Early Biomarkers for Cardiac Injury. Journal of Cardiovascular Translational Research, 2016, 9, 291-301.	2.4	59
234	Exendin-4 induces myocardial protection through MKK3 and Akt-1 in infarcted hearts. American Journal of Physiology - Cell Physiology, 2016, 310, C270-C283.	4.6	36
235	A critical review on the translational journey of cardioprotective therapies!. International Journal of Cardiology, 2016, 220, 176-184.	1.7	33
236	Protective approaches against myocardial ischemia reperfusion injury. Experimental and Therapeutic Medicine, 2016, 12, 3823-3829.	1.8	40
237	Effects of Liraglutide on Reperfusion Injury in Patients With ST-Segment–Elevation Myocardial Infarction. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	73
238	Exendin-4 protects HUVECs from t-BHP-induced apoptosis via PI3K/Akt-Bcl-2-caspase-3 signaling. Endocrine Research, 2016, 41, 229-235.	1.2	15
239	Cardiovascular side-effects and insulin secretion after intravenous administration of radiolabeled Exendin-4 in pigs. Nuclear Medicine and Biology, 2016, 43, 397-402.	0.6	12
240	Effects of the Novel Long-Acting GLP-1 Agonist, Albiglutide, on Cardiac Function, Cardiac Metabolism, and Exercise Capacity in Patients With Chronic Heart Failure and Reduced Ejection Fraction. JACC: Heart Failure, 2016, 4, 559-566.	4.1	102
241	Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. European Heart Journal, 2017, 38, ehw145.	2.2	220
242	Glucagon-Like Peptide-1. JACC Basic To Translational Science, 2016, 1, 267-276.	4.1	25
243	No benefit of additional treatment with exenatide in patients with an acute myocardial infarction. International Journal of Cardiology, 2016, 220, 809-814.	1.7	35
244	Time to Give Up on Cardioprotection?. Circulation Research, 2016, 119, 676-695.	4.5	169
245	Neuroprotective Effects of the Glucagon-Like Peptide-1 Analog Exenatide After Out-of-Hospital Cardiac Arrest. Circulation, 2016, 134, 2115-2124.	1.6	42
246	Ischaemic conditioning and targeting reperfusion injury: a 30Âyear voyage of discovery. Basic Research in Cardiology, 2016, 111, 70.	5.9	257
247	Novel cardioprotective and regenerative therapies in acute myocardial infarction: a review of recent and ongoing clinical trials. Future Cardiology, 2016, 12, 655-672.	1.2	38
248	Primary Outcome Assessment in a Pig Model of Acute Myocardial Infarction. Journal of Visualized Experiments, 2016, , .	0.3	12

#	Article	IF	CITATIONS
249	Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway. Molecular Medicine Reports, 2016, 13, 1593-1601.	2.4	37
250	Glucagon-like peptide-1 regulates calcium homeostasis and electrophysiological activities of HL-1 cardiomyocytes. Peptides, 2016, 78, 91-98.	2.4	23
252	Low‣evel Vagus Nerve Stimulation Attenuates Myocardial Ischemic Reperfusion Injury by Antioxidative Stress and Antiapoptosis Reactions in Canines. Journal of Cardiovascular Electrophysiology, 2016, 27, 224-231.	1.7	52
253	Dipeptidyl peptidaseâ€4 inhibition improves cardiac function in experimental myocardial infarction: Role of stromal cellâ€derived factorâ€1 <i>î± </i> . Journal of Diabetes, 2016, 8, 63-75.	1.8	28
254	Reducing myocardial infarct size: challenges and future opportunities. Heart, 2016, 102, 341-348.	2.9	185
255	Cardiovascular Effects of Incretin-Based Therapies. Annual Review of Medicine, 2016, 67, 245-260.	12.2	22
256	Cardiometabolic Effects of Glucagon-Like Peptide-1 Agonists. Current Atherosclerosis Reports, 2016, 18, 7.	4.8	2
257	Effects of liraglutide on no-reflow in patients with acute ST-segment elevation myocardial infarction. International Journal of Cardiology, 2016, 208, 109-114.	1.7	33
258	Translational failure of anti-inflammatory compounds for myocardial infarction: a meta-analysis of large animal models. Cardiovascular Research, 2016, 109, 240-248.	3.8	31
259	The Prospective Cardioprotective Effects of DPP-4 inhibition in the ischemic myocardium. Journal of Molecular and Cellular Cardiology, 2016, 93, 44-46.	1.9	1
260	Dipeptidyl Peptidase 4 Inhibition Alleviates Shortage of Circulating Glucagon-Like Peptide-1 in Heart Failure and Mitigates Myocardial Remodeling and Apoptosis via the Exchange Protein Directly Activated by Cyclic AMP 1/Ras-Related Protein 1 Axis. Circulation: Heart Failure, 2016, 9, e002081.	3.9	39
262	Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages. Basic Research in Cardiology, 2016, 111, 1.	5.9	57
263	Coronary Microembolization Induces Cardiomyocyte Apoptosis in Swine by Activating the LOX-1-Dependent Mitochondrial Pathway and Caspase-8-Dependent Pathway. Journal of Cardiovascular Pharmacology and Therapeutics, 2016, 21, 209-218.	2.0	17
264	Insulin Postconditioning Reduces Infarct Size in the Porcine Heart in a Dose-Dependent Manner. Journal of Cardiovascular Pharmacology and Therapeutics, 2017, 22, 179-188.	2.0	3
265	Effects of liraglutide and ischemic postconditioning on myocardial salvage after I/R injury in pigs*. Scandinavian Cardiovascular Journal, 2017, 51, 8-14.	1.2	9
266	5â€fluorouracil causes endothelial cell senescence: potential protective role of glucagonâ€like peptide 1. British Journal of Pharmacology, 2017, 174, 3713-3726.	5.4	37
267	Enhanced-autophagy by exenatide mitigates doxorubicin-induced cardiotoxicity. International Journal of Cardiology, 2017, 232, 40-47.	1.7	36
268	After the LEADER trial and SUSTAIN-6, how do we explain the cardiovascular benefits of some GLP-1 receptor agonists?. Diabetes and Metabolism, 2017, 43, 2S3-2S12.	2.9	26

#	Article	IF	CITATIONS
269	Glucagon-Like Peptide 1 Receptor Activation Augments Cardiac Output and Improves Cardiac Efficiency in Obese Swine After Myocardial Infarction. Diabetes, 2017, 66, 2230-2240.	0.6	24
270	Lack of effect of prolonged treatment with liraglutide on cardiac remodeling in rats after acute myocardial infarction. Peptides, 2017, 93, 1-12.	2.4	16
271	Are targeted therapies for diabetic cardiomyopathy on the horizon?. Clinical Science, 2017, 131, 897-915.	4.3	83
272	A review of glucagonâ€like peptideâ€1 receptor agonists and their effects on lowering postprandial plasma glucose and cardiovascular outcomes in the treatment of type 2 diabetes mellitus. Diabetes, Obesity and Metabolism, 2017, 19, 1645-1654.	4.4	24
273	Safety and efficacy of liraglutide treatment in Japanese type 2 diabetes patients after acute myocardial infarction: A non-randomized interventional pilot trial. Journal of Cardiology, 2017, 69, 511-517.	1.9	8
274	Pathophysiologic role of ischemia reperfusion injury: A review. Journal of Indian College of Cardiology, 2017, 7, 97-104.	0.1	10
275	Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 564-585.	3.8	278
276	Antidiabetic Drug Alogliptin Protects the Heart Against Ischemia-reperfusion Injury Through GLP-1 Receptor-dependent and Receptor-independent Pathways Involving Nitric Oxide Production in Rabbits. Journal of Cardiovascular Pharmacology, 2017, 70, 382-389.	1.9	6
277	Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Circulation, 2017, 136, 849-870.	1.6	415
278	HypothÃ ^{··} ses mécanistiques pouvant expliquer les effets cardiovasculaires observés avec les inhibiteurs de SGLT2 et les agonistes des récepteurs du GLP-1. Medecine Des Maladies Metaboliques, 2017, 11, 2S37-2S42.	0.1	0
279	Exenatide mitigated diet-induced vascular aging and atherosclerotic plaque growth in ApoE-deficient mice under chronic stress. Atherosclerosis, 2017, 264, 1-10.	0.8	55
280	Gliptin therapy reduces hepatic and myocardial fat in type 2 diabetic patients. European Journal of Clinical Investigation, 2017, 47, 829-838.	3.4	11
281	A Review of the Long-Term Efficacy, Tolerability, and Safety of Exenatide Once Weekly for Type 2 Diabetes. Advances in Therapy, 2017, 34, 1791-1814.	2.9	21
282	Combined Treatment With Exenatide and Cyclosporine A or Parstatin 1-26 Results in Enhanced Reduction of Infarct Size in a Rabbit Model. Journal of Cardiovascular Pharmacology, 2017, 70, 34-41.	1.9	5
283	Combination SGLT2 inhibitor and GLP-1 receptor agonist therapy: a complementary approach to the treatment of type 2 diabetes. Postgraduate Medicine, 2017, 129, 686-697.	2.0	39
284	Exenatide Prevents Morphological and Structural Changes of Mitochondria Following Ischaemia-Reperfusion Injury. Heart Lung and Circulation, 2017, 26, 519-523.	0.4	12
285	Exenatide improves diastolic function and attenuates arterial stiffness but does not alter exercise capacity in individuals with type 2 diabetes. Journal of Diabetes and Its Complications, 2017, 31, 449-455.	2.3	56
286	Phosphorylated eEF2 is SUMOylated and induces cardiomyocyte apoptosis during myocardial ischemia reperfusion. Journal of Cardiology, 2017, 69, 689-698.	1.9	13

#	Article	IF	CITATIONS
287	Pharmacokinetics of intravenous and oral metformin and r,s-verapamil in Sinclair, Hanford, Yucatan and Göttingen minipigs. International Journal of Pharmacokinetics, 2017, 2, 81-91.	0.5	2
288	Exenatide Regulates Substrate Preferences Through the p38Î ³ MAPK Pathway After Ischaemia/Reperfusion Injury in a Rat Heart. Heart Lung and Circulation, 2017, 26, 404-412.	0.4	11
289	Anti-inflammatory Effect of Glucagon Like Peptide-1 Receptor Agonist, Exendin-4, through Modulation of IB1/JIP1 Expression and JNK Signaling in Stroke. Experimental Neurobiology, 2017, 26, 227-239.	1.6	38
290	Gut-Derived Hormones—Cardiac Effects of Ghrelin and Glucagon-Like Peptide-1. , 2017, , 139-166.		1
291	Cardioprotection by exenatide: A novel mechanism via improving mitochondrial function involving the GLP-1 receptor/cAMP/PKA pathway. International Journal of Molecular Medicine, 2018, 41, 1693-1703.	4.0	32
292	GLP-1 Improves Diastolic Function and Survival in Heart Failure with Preserved Ejection Fraction. Journal of Cardiovascular Translational Research, 2018, 11, 259-267.	2.4	29
293	Drug repurposing in kidney disease. Kidney International, 2018, 94, 40-48.	5.2	41
294	Glucagon-like Peptide-1 Receptor Agonists and Cardiovascular Events: Class Effects versus Individual Patterns. Trends in Endocrinology and Metabolism, 2018, 29, 238-248.	7.1	55
295	Glucagon-like peptide-1 receptor mediated control of cardiac energy metabolism. Peptides, 2018, 100, 94-100.	2.4	17
296	Cardiovascular outcomes in diabetic kidney disease: insights from recent clinical trials. Kidney International Supplements, 2018, 8, 8-17.	14.2	7
297	The Glucagon-Like Peptide-1 Analog Exenatide Increases Blood Glucose Clearance, Lactate Clearance, and Heart Rate in Comatose Patients After Out-of-Hospital Cardiac Arrest. Critical Care Medicine, 2018, 46, e118-e125.	0.9	7
298	MYBL2 protects against H9c2 injury induced by hypoxia via AKT and NFâ€ÎºB pathways. Molecular Medicine Reports, 2018, 17, 4832-4838.	2.4	6
299	Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Frontiers in Endocrinology, 2018, 9, 672.	3.5	170
300	The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 1287-1302.	3.3	78
301	Diabetic Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control. Frontiers in Physiology, 2018, 9, 1514.	2.8	154
302	Impact of intravenous exenatide infusion for perioperative blood glucose control on myocardial ischemia-reperfusion injuries after coronary artery bypass graft surgery: sub study of the phase II/III ExSTRESS randomized trial. Cardiovascular Diabetology, 2018, 17, 140.	6.8	21
303	Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association–European Society of Cardiology. European Heart Journal, 2018, 39, 4243-4254.	2.2	171
304	The Changing Landscape of Diabetes Therapy for Cardiovascular Risk Reduction. Journal of the American College of Cardiology, 2018, 72, 1856-1869.	2.8	68

#	Article	IF	CITATIONS
305	Polymorphisms in the Glucagon-Like Peptide 1 Receptor (<i>GLP-1R</i>) Gene Are Associated with the Risk of Coronary Artery Disease in Chinese Han Patients with Type 2 Diabetes Mellitus: A Case-Control Study. Journal of Diabetes Research, 2018, 2018, 1-6.	2.3	9
306	Cardiovascular outcomes in patients who experienced a myocardial infarction while treated with liraglutide versus placebo in the LEADER trial. Diabetes and Vascular Disease Research, 2018, 15, 465-468.	2.0	22
307	Glucagonâ€like peptideâ€1 ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via the <scp>PPAR</scp> α pathway. Aging Cell, 2018, 17, e12763.	6.7	64
308	Genetically Engineered Pig Models for Human Diseases using ZFNs, TALENs and CRISPR/Cas9. , 0, , 110-131.		0
309	Prevention of Microvascular Obstruction by Addressing Ischemia Reperfusion Injury—Part B. , 2018, , 277-293.		0
310	Anti-Obesity Therapy: from Rainbow Pills to Polyagonists. Pharmacological Reviews, 2018, 70, 712-746.	16.0	137
311	Preliminary evaluation of 18F‑AlF‑NOTA‑MAL‑Cys40‑Exendin‑4 in rodent heart after myocardial ische and reperfusion. Molecular Medicine Reports, 2019, 20, 2276-2284.	emia 2.4	1
312	Exenatide Reduces Graft Injury in a Rat Transplantation Model Using Kidneys Donated after Cardiac Death. Transplantation Proceedings, 2019, 51, 2116-2123.	0.6	0
313	Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-26.	4.0	388
314	GLP-1 Relaxes Rat Coronary Arteries by Enhancing ATP-Sensitive Potassium Channel Currents. Cardiology Research and Practice, 2019, 2019, 1-8.	1.1	4
315	Sitagliptin does not reduce the risk of cardiovascular death or hospitalization for heart failure following myocardial infarction in patients with diabetes: observations from TECOS. Cardiovascular Diabetology, 2019, 18, 116.	6.8	14
316	Gut microbiota regulates cardiac ischemic tolerance and aortic stiffness in obesity. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1210-H1220.	3.2	29
317	Effect of Once-Weekly Exenatide in Patients With Type 2 Diabetes Mellitus With and Without Heart Failure and Heart Failure–Related Outcomes. Circulation, 2019, 140, 1613-1622.	1.6	58
318	The Glp-1 Analog Liraglutide Protects Against Angiotensin II and Pressure Overload-Induced Cardiac Hypertrophy via PI3K/Akt1 and AMPKa Signaling. Frontiers in Pharmacology, 2019, 10, 537.	3.5	22
319	The use of GLPâ€1 receptor agonists in hospitalised patients: An untapped potential. Diabetes/Metabolism Research and Reviews, 2019, 35, e3191.	4.0	18
320	Glucose-lowering therapy and cardiovascular outcomes in patients with type 2 diabetes mellitus and acute coronary syndrome. Diabetes and Vascular Disease Research, 2019, 16, 399-414.	2.0	26
321	Exenatide alleviates adriamycin-induced heart dysfunction in mice: Modulation of oxidative stress, apoptosis and inflammation. Chemico-Biological Interactions, 2019, 304, 186-193.	4.0	13
322	Cardiac innervation in acute myocardial ischaemia/reperfusion injury and cardioprotection. Cardiovascular Research, 2019, 115, 1167-1177.	3.8	37

#	Article	IF	CITATIONS
323	Exenatide once-weekly improves metabolic parameters, endothelial dysfunction and carotid intima-media thickness in patients with type-2 diabetes: An 8-month prospective study. Diabetes Research and Clinical Practice, 2019, 149, 163-169.	2.8	30
324	Liraglutide suppresses atrial electrophysiological changes. Heart and Vessels, 2019, 34, 1389-1393.	1.2	18
325	Exendin-4 Protects against Hyperglycemia-Induced Cardiomyocyte Pyroptosis via the AMPK-TXNIP Pathway. Journal of Diabetes Research, 2019, 2019, 1-13.	2.3	52
326	Endocrine Mechanisms in Obesity. , 2019, , 79-85.		0
327	A dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin, attenuates cardiac dysfunction after myocardial infarction independently of DPP-4. Journal of Pharmacological Sciences, 2019, 139, 112-119.	2.5	14
328	Efficacy of liraglutide intervention in myocardial infarction. Herz, 2020, 45, 461-467.	1.1	3
329	Glucagon-like peptide-1 receptor expression after myocardial infarction: Imaging study using 68Ga-NODAGA-exendin-4 positron emission tomography. Journal of Nuclear Cardiology, 2020, 27, 2386-2397.	2.1	12
330	Mechanisms by Which Glucagon-Like-Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter-2 Inhibitors Reduce CardiovascularÂRisk in Adults With Type 2 Diabetes Mellitus. Canadian Journal of Diabetes, 2020, 44, 93-102.	0.8	35
331	Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction. Cardiovascular Research, 2020, 116, 787-805.	3.8	119
332	Glucagonâ€like peptideâ€1 receptor agonists and cardiovascular outcomes in patients with and without prior cardiovascular events: An updated metaâ€analysis and subgroup analysis of randomized controlled trials. Diabetes, Obesity and Metabolism, 2020, 22, 203-211.	4.4	34
333	A novel oral glucagon-like peptide 1 receptor agonist protects against diabetic cardiomyopathy via alleviating cardiac lipotoxicity induced mitochondria dysfunction. Biochemical Pharmacology, 2020, 182, 114209.	4.4	21
334	Exendin-4 Attenuates Remodeling in the Remote Myocardium of Rats After an Acute Myocardial Infarction by Activating β-Arrestin-2, Protein Phosphatase 2A, and Glycogen Synthase Kinase-3 and Inhibiting β-Catenin. Cardiovascular Drugs and Therapy, 2021, 35, 1095-1110.	2.6	18
335	Exendinâ€4 protects the hearts of rats from ischaemia/reperfusion injury by boosting antioxidant levels and inhibition of JNK/p ⁶⁶ Shc/NADPH axis. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 1240-1253.	1.9	6
336	Exendin-4 Ameliorates Cardiac Remodeling in Experimentally Induced Myocardial Infarction in Rats by Inhibiting PARP1/NF-ήB Axis in A SIRT1-Dependent Mechanism. Cardiovascular Toxicology, 2020, 20, 401-418.	2.7	16
337	Exendin-4 Protects Against Myocardial Ischemia-Reperfusion Injury by Upregulation of SIRT1 and SIRT3 and Activation of AMPK. Journal of Cardiovascular Translational Research, 2021, 14, 619-635.	2.4	44
338	Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies. Free Radical Biology and Medicine, 2020, 157, 15-37.	2.9	97
339	Myocardial ischaemia–reperfusion injury and cardioprotection in perspective. Nature Reviews Cardiology, 2020, 17, 773-789.	13.7	569
340	The Vicious Circle of Left Ventricular Dysfunction and Diabetes: From Pathophysiology to Emerging Treatments. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e3075-e3089.	3.6	11

#	Article	IF	CITATIONS
341	Exendinâ€4 exhibits a tumour suppressor effect in SKOVRâ€3 and OVACRâ€3 ovarian cancer cells lines by the activation of SIRT1 and inhibition of NFâ€₽̂B. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 1092-1102.	1.9	4
342	Effect of hyperglycaemia and diabetes on acute myocardial ischaemia–reperfusion injury and cardioprotection by ischaemic conditioning protocols. British Journal of Pharmacology, 2020, 177, 5312-5335.	5.4	68
343	Diabetes Mellitus and Acute Myocardial Infarction: Impact on Short and Long-Term Mortality. Advances in Experimental Medicine and Biology, 2020, 1307, 153-169.	1.6	33
344	Heat shock protein 90 inhibition and multiâ€ŧarget approach to maximize cardioprotection in ischaemic injury. British Journal of Pharmacology, 2020, 177, 3378-3388.	5.4	10
345	A review of myocardial ischaemia/reperfusion injury: Pathophysiology, experimental models, biomarkers, genetics and pharmacological treatment. Cell Biochemistry and Function, 2021, 39, 190-217.	2.9	62
346	Effect of COMBinAtion therapy with remote ischemic conditioning and exenatide on the Myocardial Infarct size: a two-by-two factorial randomized trial (COMBAT-MI). Basic Research in Cardiology, 2021, 116, 4.	5.9	25
347	Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure. Free Radical Biology and Medicine, 2021, 163, 325-343.	2.9	48
348	Polymer Conjugation of Docosahexaenoic Acid Potentiates Cardioprotective Therapy in Preclinical Models of Myocardial Ischemia/Reperfusion Injury. Advanced Healthcare Materials, 2021, 10, 2002121.	7.6	3
349	Diabetes and Its Complications: Therapies Available, Anticipated and Aspired. Current Diabetes Reviews, 2021, 17, 397-420.	1.3	6
350	Glucagonâ€like peptideâ€1 (GLPâ€1) receptor agonists and their cardiovascular benefits—The role of the GLPâ€ receptor. British Journal of Pharmacology, 2022, 179, 659-676.	5.4	28
351	Exendin-4 inhibits high glucose-induced oxidative stress in retinal pigment epithelial cells by modulating the expression and activation of p ⁶⁶ Shc. Cutaneous and Ocular Toxicology, 2021, 40, 175-186.	1.3	12
352	Molecular Imaging Using Cardiac PET/CT: Opportunities to Harmonize Diagnosis and Therapy. Current Cardiology Reports, 2021, 23, 96.	2.9	3
353	Myocardial preservation during primary percutaneous intervention: It's time to rethink?. Indian Heart Journal, 2021, 73, 395-403.	0.5	0
354	CD14 Involvement in Third-degree Skin Burn-induced Myocardial Injury via the MAPK Signaling Pathway. Cell Biochemistry and Biophysics, 2021, , 1.	1.8	1
355	Neutral Effects of Combined Treatment With GLP-1R Agonist Exenatide and MR Antagonist Potassium Canrenoate on Cardiac Function in Porcine and Murine Chronic Heart Failure Models. Frontiers in Pharmacology, 2021, 12, 702326.	3.5	5
356	Effects of three types of bariatric interventions on myocardial infarct size and vascular function in rats with type 2 diabetes mellitus. Life Sciences, 2021, 279, 119676.	4.3	1
357	Electrocardiographic, hemodynamic, and biochemical evidence on the protective effects of exenatide against phosphine-induced cardiotoxicity in rat model. Human and Experimental Toxicology, 2021, 40, S381-S396.	2.2	6
358	Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Current Vascular Pharmacology, 2021, 19, 499-524.	1.7	14

#	Article	IF	CITATIONS
359	Stress-Induced Hyperglycaemia in Non-Diabetic Patients with Acute Coronary Syndrome: From Molecular Mechanisms to New Therapeutic Perspectives. International Journal of Molecular Sciences, 2021, 22, 775.	4.1	25
360	Molecules and Mechanisms to Overcome Oxidative Stress Inducing Cardiovascular Disease in Cancer Patients. Life, 2021, 11, 105.	2.4	22
361	Inhibition of autophagy by geniposide protects against myocardial ischemia/reperfusion injury. International Immunopharmacology, 2020, 85, 106609.	3.8	17
362	Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. New England Journal of Medicine, 2015, 373, 2247-2257.	27.0	3
363	Cardioprotective GLP-1 metabolite prevents ischemic cardiac injury by inhibiting mitochondrial trifunctional protein-α. Journal of Clinical Investigation, 2020, 130, 1392-1404.	8.2	37
364	Exenatide can inhibit calcification of human VSMCs through the NF-kappaB/RANKL signaling pathway. Cardiovascular Diabetology, 2014, 13, 153.	6.8	1
365	Improved Glucose Control and Reduced Body Weight in Rodents with Dual Mechanism of Action Peptide Hybrids. PLoS ONE, 2013, 8, e78154.	2.5	32
366	A DPP-4 Inhibitor Suppresses Fibrosis and Inflammation on Experimental Autoimmune Myocarditis in Mice. PLoS ONE, 2015, 10, e0119360.	2.5	52
367	Effects of liraglutide on hemodynamic parameters in patients with heart failure. Oncotarget, 2017, 8, 62693-62702.	1.8	18
368	Preclinical and Clinical Data on Extraglycemic Effects of GLP-1 Receptor Agonists. Review of Diabetic Studies, 2009, 6, 247-259.	1.3	16
369	Cardiovascular Effects of Incretin-Based Therapies. Review of Diabetic Studies, 2011, 8, 382-391.	1.3	19
370	Novel Findings and Therapeutic Targets on Cardioprotection of Ischemia/ Reperfusion Injury in STEMI. Current Pharmaceutical Design, 2019, 25, 3726-3739.	1.9	10
371	GLP-1(28-36)amide, a Long Ignored Peptide Revisited. The Open Biochemistry Journal, 2014, 8, 107-111.	0.5	7
372	Liraglutide Preserves Intracellular Calcium Handling in Isolated Murine Myocytes Exposed to Oxidative Stress. Physiological Research, 2017, 66, 889-895.	0.9	7
373	Pleiotropic Effects of GLP-1. Cardiovascular Evidence of Effectiveness. Pharmacology & Pharmacy, 2013, 04, 647-650.	0.7	2
374	A post hoc analysis of long-term prognosis after exenatide treatment in patients with ST-segment elevation myocardial infarction. EuroIntervention, 2016, 12, 449-455.	3.2	15
375	Novel adjunctive treatments of myocardial infarction. World Journal of Cardiology, 2014, 6, 434.	1.5	19
376	Exendin-4 attenuates ischemia-induced ventricular arrhythmias in rats. Cardiology Journal, 2013, 20, 29-33.	1.2	10

#	ARTICLE Role of glucagon-like peptide-1 agonist in patients undergoing percutaneous coronary intervention or	IF 0.6	Citations
378	coronary artery bypass grafting: A meta-analysis. American Heart Journal Plus, 2021, 11, 100063. HSP90-Mediates Liraglutide Preconditioning-Induced Cardioprotection byÂlnhibiting C5a and NF-κB. Journal of Investigative Surgery, 2022, 35, 1012-1020.	1.3	3
379	Diabetes type-II exaggerates renal ischemia reperfusion injury by elevation of oxidative stress and inflammatory response. Journal of Young Pharmacists, 2009, 1, 151.	0.2	0
380	Liraglutide: A Review of its Use in the Treatment of Diabetes Mellitus. Clinical Medicine Reviews in Vascular Health, 0, 2, 11-20.	3.0	0
381	The Gut, Brain, and Peripheral Tissue Connection: Metabolic Disease in the Incretin Era. Endocrine Practice, 2010, 16, 33-38.	2.1	0
382	Novel Treatment Strategies. , 2012, , 261-291.		0
383	GLP-1 Receptor Agonists for the Treatment of Type 2 Diabetes. , 2014, , 385-394.		0
384	Mechanisms of cardiovascular protection of non-insulin antidiabetic medications. Diabetes Mellitus, 2018, 21, 376-385.	1.9	0
385	The role of GLP-1 receptor agonists and their fixed combination with insulin in the treatment of type 2 diabetes mellitus. Vnitrni Lekarstvi, 2019, 65, 284-288.	0.2	0
386	Natriuretic Peptides as the Basis of Peptide Drug Discovery for Cardiovascular Diseases. Current Topics in Medicinal Chemistry, 2020, 20, 2904-2921.	2.1	5
387	A fluid-powered refillable origami heart pouch for minimally invasive delivery of cell therapies in rats and pigs. Med, 2021, 2, 1253-1268.e4.	4.4	11
388	Efficacy of a glucagon-like peptide-1 agonist and restrictive versus liberal oxygen supply in patients undergoing coronary artery bypass grafting or aortic valve replacement: study protocol for a 2-by-2 factorial designed, randomised clinical trial. BMJ Open, 2021, 11, e052340.	1.9	0
390	Incretins in type 2 diabetes mellitus: cardiovascular and anti-atherogenic effects beyond glucose lowering. Hippokratia, 2012, 16, 100-5.	0.3	3
391	Human recombinant-B-type natriuretic peptide protect ventricular function and structure in ST-elevation myocardial infarction. International Journal of Clinical and Experimental Pathology, 2015, 8, 11622-8.	0.5	6
392	Emerging therapies: The potential roles SGLT2 inhibitors, GLP1 agonists, and ARNI therapy for ARNI pulmonary hypertension. Pulmonary Circulation, 2022, 12, e12028.	1.7	8
394	Promising Therapeutic Candidate for Myocardial Ischemia/Reperfusion Injury: What Are the Possible Mechanisms and Roles of Phytochemicals?. Frontiers in Cardiovascular Medicine, 2021, 8, 792592.	2.4	15
395	Gastrointestinal Incretins—Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) beyond Pleiotropic Physiological Effects Are Involved in Pathophysiology of Atherosclerosis and Coronary Artery Disease—State of the Art. Biology, 2022, 11, 288.	2.8	9
398	Exendin-4 ameliorates cardiac ischemia/reperfusion injury via caveolae and caveolins-3. Cardiovascular Diabetology, 2014, 13, 132.	6.8	0

#	Article	IF	CITATIONS
399	Discrepancy between the Actions of Glucagon-like Peptide-1 Receptor Ligands in the Protection of the Heart against Ischemia Reperfusion Injury. Pharmaceuticals, 2022, 15, 720.	3.8	2
400	Glycaemic Control in Patients Undergoing Percutaneous Coronary Intervention: What Is the Role for the Novel Antidiabetic Agents? A Comprehensive Review of Basic Science and Clinical Data. International Journal of Molecular Sciences, 2022, 23, 7261.	4.1	4
401	New Therapeutic Options for Type 2 Diabetes Mellitus and Their Impact Against Ischemic Heart Disease. Frontiers in Physiology, 0, 13, .	2.8	0
402	Effects of Glucagon-Like Peptide-1 Receptor Agonist (GLP-1RA) on Cardiac Structure and Function: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials. Cardiovascular Drugs and Therapy, 0, , .	2.6	3
403	Drug therapy for obesity in the Russian Federation: pharmacoepidemiological study. Farmakoekonomika, 2022, 15, 320-331.	1.2	2
404	Emerging roles of Clucagon like peptide-1 in the management of autoimmune diseases and diabetes-associated comorbidities. , 2022, 239, 108270.		9
405	Effect of glucagon-like peptide-1 on differentiation of adipose derived mesenchymal stem cells into cardiomyocytes. Ege Tıp Dergisi, 2022, 61, 507-517.	0.2	0
406	Glucagon Like Peptide-1: More than Glucose Control and Weight Reduction. SSRN Electronic Journal, 0, , .	0.4	0
407	Protective or inhibitory effect of pharmacological therapy on cardiac ischemic preconditioning: a literature review. Current Vascular Pharmacology, 2022, 20, .	1.7	2
408	Role of caveolin-eNOS platform and mitochondrial ATP-sensitive potassium channel in abrogated cardioprotective effect of ischemic preconditioning in postmenopausal women. Brazilian Journal of Pharmaceutical Sciences, 0, 58, .	1.2	0
409	Interaction of Cardiovascular Nonmodifiable Risk Factors, Comorbidities and Comedications With Ischemia/Reperfusion Injury and Cardioprotection by Pharmacological Treatments and Ischemic Conditioning. Pharmacological Reviews, 2023, 75, 159-216.	16.0	29
410	Cardioprotective Actions of a Glucagonâ€like Peptideâ€1 Receptor Agonist on Hearts Donated After Circulatory Death. Journal of the American Heart Association, 2023, 12, .	3.7	3
411	Impact of chronic GLP-1 RA and SGLT-2I therapy on in-hospital outcome of diabetic patients with acute myocardial infarction. Cardiovascular Diabetology, 2023, 22, .	6.8	3
412	Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. International Journal of Molecular Sciences, 2023, 24, 3385.	4.1	2
413	Glucagon-Like Peptide-1 Receptor Agonist Protects Against Diabetic Cardiomyopathy by Modulating microRNA-29b-3p/SLMAP. Drug Design, Development and Therapy, 0, Volume 17, 791-806.	4.3	1
414	Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nature Reviews Cardiology, 2023, 20, 463-474.	13.7	46
415	Clucagon-like peptide-1: a multi-faceted anti-inflammatory agent. Frontiers in Immunology, 0, 14, .	4.8	17
416	Multifaceted Roles of GLP-1 and Its Analogs: A Review on Molecular Mechanisms with a Cardiotherapeutic Perspective. Pharmaceuticals, 2023, 16, 836.	3.8	2

#	Article	IF	CITATIONS
417	Blocking RIPK2 Function Alleviates Myocardial Ischemia/Reperfusion Injury by Regulating the AKT and NF-κB Pathways. Immunological Investigations, 2023, 52, 529-545.	2.0	0
418	Incretins-Based Therapies and Their Cardiovascular Effects: New Game-Changers for the Management of Patients with Diabetes and Cardiovascular Disease. Pharmaceutics, 2023, 15, 1858.	4.5	2
419	Circulating Soluble EPCR Levels Are Reduced in Patients with Ischemic Peripheral Artery Disease and Associated with Markers of Endothelial and Vascular Function. Biomedicines, 2023, 11, 2459.	3.2	0
420	Thalidomide and a Dipeptidyl Peptidase 4 Inhibitor in a Rat Model of Experimental Autoimmune Myocarditis. Korean Circulation Journal, 0, 53, .	1.9	1
421	Development of the cardioprotective drugs class based on pathophysiology of myocardial infarction: A comprehensive review. Current Problems in Cardiology, 2024, 49, 102480.	2.4	0
422	Underlying mechanisms and cardioprotective effects of SGLT2i and GLP-1Ra: insights from cardiovascular magnetic resonance. Cardiovascular Diabetology, 2024, 23, .	6.8	0