Observation of Single Colloidal Platinum Nanocrystal G

Science 324, 1309-1312 DOI: 10.1126/science.1172104

Citation Report

#	Article	IF	CITATIONS
11	Watching Nanocrystals Grow. Science, 2009, 324, 1276-1277.	6.0	43
12	Controlled Growth of Monodisperse Self-Supported Superparamagnetic Nanostructures of Spherical and Rod-Like CoFe ₂ O ₄ Nanocrystals. Journal of the American Chemical Society, 2009, 131, 12900-12901.	6.6	77
13	Phase Transitions, Melting Dynamics, and Solid-State Diffusion in a Nano Test Tube. Science, 2009, 326, 405-407.	6.0	66
15	Twinâ€Induced Growth of Palladium–Platinum Alloy Nanocrystals. Angewandte Chemie - International Edition, 2009, 48, 6304-6308.	7.2	119
16	Specific Peptide Regulated Synthesis of Ultrasmall Platinum Nanocrystals. Journal of the American Chemical Society, 2009, 131, 15998-15999.	6.6	81
17	Real-Time TEM and Kinetic Monte Carlo Studies of the Coalescence of Decahedral Gold Nanoparticles. ACS Nano, 2009, 3, 3809-3813.	7.3	113
18	Microfluidic System for Transmission Electron Microscopy. Microscopy and Microanalysis, 2010, 16, 622-629.	0.2	131
19	Microfabricated systems for electron microscopy of nanoscale processes: In-situ TEM creation of Si nanowire devices and in-situ SEM electrochemistry. Microscopy and Microanalysis, 2010, 16, 322-323.	0.2	1
20	Nanotechnology in Dental Sciences: Moving towards a Finer Way of Doing Dentistry. Materials, 2010, 3, 1674-1691.	1.3	49
21	Emerging strategies for the synthesis of highly monodisperse colloidal nanostructures. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4229-4248.	1.6	20
22	Photochemistry for the Synthesis of Noble Metal Nanoparticles. Bulletin of the Chemical Society of Japan, 2010, 83, 1133-1154.	2.0	29
23	From Artificial Atoms to Nanocrystal Molecules: Preparation and Properties of More Complex Nanostructures. Annual Review of Physical Chemistry, 2010, 61, 369-389.	4.8	166
24	The Merits of Static and Dynamic Highâ€Resolution Electron Microscopy (HREM) for the Study of Solid Catalysts. ChemCatChem, 2010, 2, 783-798.	1.8	43
25	One-Pot Protocol for Au-Based Hybrid Magnetic Nanostructures via a Noble-Metal-Induced Reduction Process. Journal of the American Chemical Society, 2010, 132, 6280-6281.	6.6	275
26	Nanocrystalline intermetallics and alloys. Nano Research, 2010, 3, 574-580.	5.8	190
27	New insights into the growth mechanism and surface structure of palladium nanocrystals. Nano Research, 2010, 3, 180-188.	5.8	98
28	Initial Growth of Single-Crystalline Nanowires: From 3D Nucleation to 2D Growth. Nanoscale Research Letters, 2010, 5, 1057-1062.	3.1	14
29	Observation of Coalescence Process of Silver Nanospheres During Shape Transformation to Nanoprisms. Nanoscale Research Letters, 2011, 6, 46.	3.1	20

#	Article	IF	CITATIONS
30	Morphology ontrolled Synthesis of Platinum Nanocrystals with Specific Peptides. Advanced Materials, 2010, 22, 1921-1925.	11.1	70
31	Electrochemically induced nanocluster migration. Electrochimica Acta, 2010, 56, 810-816.	2.6	59
32	Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy, 2010, 110, 1114-1119.	0.8	143
33	Seed-mediated synthesis of Pd–Rh bimetallic nanodendrites. Chemical Physics Letters, 2010, 494, 249-254.	1.2	30
34	In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: Challenges and opportunities. Journal of Materials Research, 2010, 25, 1541-1547.	1.2	112
35	Understanding Li-ion battery processes at the atomic- to nano-scale. , 2010, , .		4
36	Mesoscopic structure prediction of nanoparticle assembly and coassembly: Theoretical foundation. Journal of Chemical Physics, 2010, 133, 194108.	1.2	26
37	Self-assembly of (sub-)micron particles into supermaterials. Journal of Micromechanics and Microengineering, 2010, 20, 064001.	1.5	18
38	Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale, 2010, 2, 18-34.	2.8	486
39	Nucleation and Growth of Gold Nanoparticles Studied <i>via in situ</i> Small Angle X-ray Scattering at Millisecond Time Resolution. ACS Nano, 2010, 4, 1076-1082.	7.3	363
40	Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale, 2010, 2, 2045.	2.8	305
41	Synthesis of Platinum Cubes, Polypods, Cuboctahedrons, and Raspberries Assisted by Cobalt Nanocrystals. Nano Letters, 2010, 10, 964-973.	4.5	129
42	Nanophase Evolution at Semiconductor/Electrolyte Interface in Situ Probed by Time-Resolved High-Energy Synchrotron X-ray Diffraction. Nano Letters, 2010, 10, 3747-3753.	4.5	22
43	Potential Controlled Electrochemical Conversion of AgCN and Cu(OH)2 Nanofibers into Metal Nanoparticles, Nanoprisms, Nanofibers, and Porous Networks. ACS Applied Materials & Interfaces, 2010, 2, 3745-3758.	4.0	5
44	Reply to Comment on "Fitting and Interpreting Transition-Metal Nanocluster Formation and Other Sigmoidal-Appearing Kinetic Data: A More Thorough Testing of Dispersive Kinetic vs Chemical-Mechanism-Based Equations and Treatments for 4-Step Type Kinetic Data― Chemistry of Materials, 2010, 22, 2687-2688.	3.2	5
45	Epitaxial overgrowth of platinum on palladium nanocrystals. Nanoscale, 2010, 2, 2406.	2.8	70
46	Fabrication of Ordered Nanostructures of Sulfide Nanocrystal Assemblies over Self-Assembled Genetically Engineered P22 Coat Protein. Journal of the American Chemical Society, 2010, 132, 17354-17357.	6.6	36
47	CdSe Quantum Rod Formation Aided By In Situ TOPO Oxidation. Chemistry of Materials, 2010, 22, 2814-2821.	3.2	33

#	Article	IF	CITATIONS
48	Multiple Growth Stages and Their Kinetic Models of Anatase Nanoparticles under Hydrothermal Conditions. Journal of Physical Chemistry C, 2010, 114, 14461-14466.	1.5	36
49	Analytical ultracentrifugation of colloids. Nanoscale, 2010, 2, 1849.	2.8	145
50	Universality of cluster dynamics. Physical Review E, 2010, 82, 061125.	0.8	3
51	Development Plus Kinetic and Mechanistic Studies of a Prototype Supported-Nanoparticle Heterogeneous Catalyst Formation System in Contact with Solution: Ir(1,5-COD)Cl/γ-Al2O3and Its Reduction by H2to Ir(0)n/γ-Al2O3. Journal of the American Chemical Society, 2010, 132, 9701-9714.	6.6	54
52	Hexagonal spiral growth in the absence of a substrate. Physical Review E, 2010, 82, 031604.	0.8	2
53	Exploring the Limitations of the Use of Competing Reducers to Control the Morphology and Composition of Pt and PtCo Nanocrystals. Chemistry of Materials, 2010, 22, 4495-4504.	3.2	26
54	Self-Assembled Nanolayers of Conjugated Silane with Ï€â^'Ï€ Interlocking. ACS Nano, 2010, 4, 3773-3780.	7.3	18
55	Seeing is Believing: Electron Microscopy for Investigating Nanostructures. Journal of Physical Chemistry Letters, 2010, 1, 1212-1220.	2.1	12
56	Growth Mechanisms and Kinetics of Photoinduced Silver Nanoparticles in Mesostructured Hybrid Silica Films under UV and Visible Illumination. Journal of Physical Chemistry C, 2010, 114, 8679-8687.	1.5	23
57	A Little Chemistry Helps the Big Get Bigger. Science, 2010, 330, 599-600.	6.0	18
58	Nanoscale Advances in Catalysis and Energy Applications. Nano Letters, 2010, 10, 2289-2295.	4.5	374
59	Insights into Initial Kinetic Nucleation of Gold Nanocrystals. Journal of the American Chemical Society, 2010, 132, 7696-7701.	6.6	151
60	Nanoparticle Dissolution from the Particle Perspective: Insights from Particle Sizing Measurements. Langmuir, 2010, 26, 12505-12508.	1.6	31
61	A facile solid state reaction route towards nearly monodisperse hexagonal boron nitride nanoparticles. Journal of Materials Chemistry, 2010, 20, 3736.	6.7	40
62	Nucleation Control of Size and Dispersity in Aggregative Nanoparticle Growth. A Study of the Coarsening Kinetics of Thiolate-Capped Gold Nanocrystals. Chemistry of Materials, 2010, 22, 3212-3225.	3.2	136
63	Growth Mechanism of Cadmium Sulfide Nanocrystals. Journal of Physical Chemistry Letters, 2010, 1, 304-308.	2.1	14
64	Correlation between the Photoluminescence and Oriented Attachment Growth Mechanism of CdS Quantum Dots. Journal of the American Chemical Society, 2010, 132, 9528-9530.	6.6	54
65	Investigation of Noble Metal Nanoparticles (Ag, Au, Pd, Pt) Produced by Chemical Reduction. Materials Science Forum, 0, 659, 115-120.	0.3	2

#	ARTICLE	IF	CITATIONS
66	Pathway from a Molecular Precursor to Silver Nanoparticles: The Prominent Role of Aggregative Growth. Chemistry of Materials, 2010, 22, 3556-3567.	3.2	79
67	Composition-Dependent Formation of Platinum Silver Nanowires. ACS Nano, 2010, 4, 1501-1510.	7.3	141
68	Kinking-Induced Structural Evolution of Metal Oxide Nanowires into Single-Crystalline Nanorings. ACS Nano, 2010, 4, 5350-5356.	7.3	28
69	Growth and reductive transformation of a gold shell around pyramidal cadmium selenide nanocrystals. Journal of Materials Chemistry, 2010, 20, 10602.	6.7	22
70	Non-classical crystallization controlled by centrifugation. CrystEngComm, 2010, 12, 3391.	1.3	13
71	Impact of the colloidal state on the oriented attachment growth mechanism. Nanoscale, 2010, 2, 2336.	2.8	118
72	Controllable formation of defect-rich Pd and Pd–Ag bimetallic nanocrystals through coalescence mechanism. Chemical Communications, 2010, 46, 6518.	2.2	10
73	Influence of Monomer Feeding on a Fast Gold Nanoparticles Synthesis: Time-Resolved XANES and SAXS Experiments. Langmuir, 2010, 26, 13847-13854.	1.6	86
74	The Nanoaquarium: A Platform for <i>In Situ</i> Transmission Electron Microscopy in Liquid Media. Journal of Microelectromechanical Systems, 2010, 19, 885-894.	1.7	119
75	Controllable synthesis of Cu-based nanocrystals in ODA solvent. Chemical Communications, 2011, 47, 3604.	2.2	48
76	In situ studies of different growth modes of silver crystals induced by the concentration field in an aqueous solution. CrystEngComm, 2011, 13, 4491.	1.3	27
77	Synthesis of shield-like singly twinned high-index Au nanoparticles. Nanoscale, 2011, 3, 1497.	2.8	21
78	<i>In Situ</i> Transmission Electron Microscopy Observation of Nanostructural Changes in Phase-Change Memory. ACS Nano, 2011, 5, 2742-2748.	7.3	48
79	Effective Octadecylamine System for Nanocrystal Synthesis. Inorganic Chemistry, 2011, 50, 5196-5202.	1.9	65
80	Activation Energy Distributions Predicted by Dispersive Kinetic Models for Nucleation and Denucleation: Anomalous Diffusion Resulting from Quantization. Journal of Physical Chemistry A, 2011, 115, 6413-6425.	1.1	12
81	Self-assembly of superparamagnetic nanoparticles. Journal of Materials Research, 2011, 26, 111-121.	1.2	21
82	Kinetics and Thermodynamics of Efficient Chiral Symmetry Breaking in Nearly Racemic Mixtures of Conglomerate Crystals. Crystal Growth and Design, 2011, 11, 1957-1965.	1.4	30
83	Controlled Growth of Nanoparticles from Solution with In Situ Liquid Transmission Electron Microscopy. Nano Letters, 2011, 11, 2809-2813.	4.5	332

#	Article	IF	CITATIONS
84	Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology. ACS Nano, 2011, 5, 693-729.	7.3	95
85	Femtosecond electron diffraction: heralding the era of atomically resolved dynamics. Reports on Progress in Physics, 2011, 74, 096101.	8.1	402
86	Size of Elementary Clusters and Process Period in Silver Nanoparticle Formation. Journal of the American Chemical Society, 2011, 133, 14164-14167.	6.6	87
87	Effects of the Synthesis Parameters on the Size and Composition of Pt–Sn Nanoparticles Prepared by the Polyalcohol Reduction Method. Journal of Physical Chemistry C, 2011, 115, 19084-19090.	1.5	27
88	Monitoring of Galvanic Replacement Reaction between Silver Nanowires and HAuCl ₄ by In Situ Transmission X-ray Microscopy. Nano Letters, 2011, 11, 4386-4392.	4.5	95
89	Synthetically Directed Self-Assembly and Enhanced Surface-Enhanced Raman Scattering Property of Twinned Crystalline Ag/Ag Homojunction Nanoparticles. Langmuir, 2011, 27, 2204-2210.	1.6	52
90	Synthesis and properties of colloidal heteronanocrystals. Chemical Society Reviews, 2011, 40, 1512-1546.	18.7	611
91	Synthesis of Magnetic Noble Metal (Nano)Particles. Langmuir, 2011, 27, 7783-7787.	1.6	32
92	Nucleation and Growth of Metal Nanoparticles during Photoreduction Using In Situ Time-Resolved SAXS Analysis. Journal of Physical Chemistry C, 2011, 115, 14081-14092.	1.5	90
93	Electron microscopy of specimens in liquid. Nature Nanotechnology, 2011, 6, 695-704.	15.6	838
94	In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy and Environmental Science, 2011, 4, 3844.	15.6	420
95	Synthesis of Platinum Single-Twinned Right Bipyramid and {111}-Bipyramid through Targeted Control over Both Nucleation and Growth Using Specific Peptides. Nano Letters, 2011, 11, 3040-3046.	4.5	73
96	Direct HRTEM Observation of Ultrathin Freestanding Ionic Liquid Film on Carbon Nanotube Grid. ACS Nano, 2011, 5, 4902-4908.	7.3	40
97	Supported-Nanoparticle Heterogeneous Catalyst Formation in Contact with Solution: Kinetics and Proposed Mechanism for the Conversion of Ir(1,5-COD)Cl/Î ³ -Al ₂ O ₃ to Ir(0) _{â²¼900} /Î ³ -Al ₂ O ₃ . Journal of the American Chemical Society, 2011, 133, 7744-7756.	6.6	32
98	Plasmonic AuxAgybimetallic alloy nanoparticles enhanced photoluminescence upconversion of Er3+ions in antimony glass hybrid nanocomposites. Journal of Modern Optics, 2011, 58, 1012-1023.	0.6	10
99	Size Effect on Nanoparticle-Mediated Silver Crystal Growth. Crystal Growth and Design, 2011, 11, 5449-5456.	1.4	17
100	The Effects of Particle Concentration and Surface Charge on the Oriented Attachment Growth Kinetics of CdTe Nanocrystals in H ₂ O. Journal of Physical Chemistry C, 2011, 115, 10357-10364.	1.5	27
101	Additive controlled crystallization. CrystEngComm, 2011, 13, 1249.	1.3	204

#	Article	IF	CITATIONS
102	In Situ Studies of Chemistry and Structure of Materials in Reactive Environments. Science, 2011, 331, 171-174.	6.0	337
103	Destabilization of Ag nanoislands on Ag(100) by adsorbed sulfur. Journal of Chemical Physics, 2011, 135, 154701.	1.2	16
104	Spectroscopic and Microscopic Investigation of Gold Nanoparticle Formation: Ligand and Temperature Effects on Rate and Particle Size. Journal of the American Chemical Society, 2011, 133, 8179-8190.	6.6	87
105	Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study. ACS Nano, 2011, 5, 2004-2012.	7.3	446
106	Synthetic Chemistry of Nanomaterials. , 2011, , 479-506.		9
107	Recent Advances in Liquid-phase Electron-Beam Induced Deposition: Characterizing Growth Processes and Optical Properties. Microscopy and Microanalysis, 2011, 17, 438-439.	0.2	3
108	Transmission electron microscopy with a liquid flow cell. Journal of Microscopy, 2011, 242, 117-123.	0.8	133
109	The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas. Ultramicroscopy, 2011, 111, 1650-1658.	0.8	77
110	Structural Defects in Periodic and Quasicrystalline Binary Nanocrystal Superlattices. Journal of the American Chemical Society, 2011, 133, 20837-20849.	6.6	53
111	Crystallographic control of noble metal nanocrystals. Nano Today, 2011, 6, 265-285.	6.2	175
112	Probing real time gold nanostar formation process using two-photon scattering spectroscopy. Chemical Physics Letters, 2011, 504, 46-51.	1.2	18
113	Shaped gold and silver nanoparticles. Frontiers of Materials Science, 2011, 5, 1-24.	1.1	27
114	Bimetallic Nanocrystals: Liquidâ€Phase Synthesis and Catalytic Applications. Advanced Materials, 2011, 23, 1044-1060.	11.1	1,009
118	Metal Nanocrystals with Highly Branched Morphologies. Angewandte Chemie - International Edition, 2011, 50, 76-85.	7.2	543
119	Simultaneous Optical Monitoring of the Overgrowth Modes of Individual Asymmetric Hybrid Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 4633-4636.	7.2	12
120	Mixing an Aqueous Suspension of Pd or Au Nanocrystals with a Less Polar Solvent Can Cause Changes to Size, Morphology, or Both. Angewandte Chemie - International Edition, 2011, 50, 6052-6055.	7.2	20
121	Controlled Synthesis and Selfâ€Assembly of Highly Monodisperse Ag and Ag ₂ S Nanocrystals. Chemistry - A European Journal, 2011, 17, 941-946.	1.7	44
122	The modern electron microscope: A cornucopia of chemico-physical insights. Chemical Physics, 2011, 385, 1-10.	0.9	23

#	Article	IF	CITATIONS
123	Characterization of nanomaterials in food by electron microscopy. TrAC - Trends in Analytical Chemistry, 2011, 30, 28-43.	5.8	127
124	Controlled overgrowth of gold on gold/PS dimeric nanoparticle. , 2011, , .		Ο
125	Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles. Dalton Transactions, 2011, 40, 3305.	1.6	64
126	<i>In situ</i> liquid-cell electron microscopy of colloid aggregation and growth dynamics. Physical Review E, 2011, 83, 061405.	0.8	99
127	X-Ray-Assisted Formation of Gold Nanoparticles in Soda Lime Silicate Glass: Suppressed Ostwald Ripening. Physical Review Letters, 2011, 106, 085702.	2.9	26
128	Electron-beam induced electric-hydraulic expansion in a silica-shelled gallium microball-nanotube structure. Applied Physics Letters, 2011, 99, 083112.	1.5	4
129	Evolution of microstructure in a nickel-based superalloy as a function of ageing time. Philosophical Magazine Letters, 2011, 91, 483-490.	0.5	4
130	Imaging Nanobubbles in Water with Scanning Transmission Electron Microscopy. Applied Physics Express, 2011, 4, 055201.	1.1	79
131	Modelling thin film deposition processes based on real-time observation. , 2011, , 83-120.		3
132	Microscopic mechanism of nanocrystal formation from solution by cluster aggregation and coalescence. Journal of Chemical Physics, 2011, 134, 114508.	1.2	19
133	Direct Observation of Protein Microcrystals in Crystallization Buffer by Atmospheric Scanning Electron Microscopy. International Journal of Molecular Sciences, 2012, 13, 10553-10567.	1.8	24
134	Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7187-7190.	3.3	97
135	Electron beam induced deposition of silicon nanostructures from a liquid phase precursor. Nanotechnology, 2012, 23, 385302.	1.3	32
136	Fabrication and Characterization of Dielectric Nanocube Self-Assembled Structures. Japanese Journal of Applied Physics, 2012, 51, 09LC03.	0.8	8
137	Characterization of Plasma Synthesized Vertical Carbon Nanofibers for Nanoelectronics Applications. Materials Research Society Symposia Proceedings, 2012, 1451, 117-122.	0.1	5
138	Revealing Dynamic Processes of Materials in Liquids Using Liquid Cell Transmission Electron Microscopy. Journal of Visualized Experiments, 2012, , .	0.2	7
139	Atomic-Scale Imaging and Spectroscopy for <i>In Situ</i> Liquid Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2012, 18, 621-627.	0.2	125
140	Electron Beam Manipulation of Nanoparticles. Nano Letters, 2012, 12, 5644-5648.	4.5	80

#	Article	IF	CITATIONS
141	Use of Dispersive Kinetic Models for Nucleation and Denucleation to Predict Steady-State Nanoparticle Size Distributions and the Role of Ostwald Ripening. Journal of Physical Chemistry C, 2012, 116, 214-225.	1.5	30
142	Watching Solution Growth of Nanoparticles in Graphene Cells. Science, 2012, 336, 44-45.	6.0	18
143	Controllable synthesis of gold nanoparticles with ultrasmall size and high monodispersity via continuous supplement of precursor. Dalton Transactions, 2012, 41, 11725.	1.6	27
144	Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chemical Society Reviews, 2012, 41, 7977.	18.7	170
145	Editorial: Catalyst Synthesis by Design for the Understanding of Catalysis. ChemCatChem, 2012, 4, 1445-1447.	1.8	15
146	Nanodiagnostics in Microbiology and Dentistry. , 2012, , 365-390.		5
147	Kinetics of Gold Nanoparticle Formation Facilitated by Triblock Copolymers. Journal of Physical Chemistry C, 2012, 116, 4431-4441.	1.5	24
149	Manipulating Local Ligand Environments for the Controlled Nucleation of Metal Nanoparticles and their Assembly into Nanodendrites. Angewandte Chemie - International Edition, 2012, 51, 11757-11761.	7.2	83
150	A Study of Nano Materials and Their Reactions in Liquid Using <i>in situ</i> Wet Cell TEM Technology. Chinese Journal of Chemistry, 2012, 30, 2839-2843.	2.6	13
151	Charged Nanoparticle Dynamics in Water Induced by Scanning Transmission Electron Microscopy. Langmuir, 2012, 28, 3695-3698.	1.6	107
152	Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab on A Chip, 2012, 12, 340-347.	3.1	42
153	A simple two-dimensional model system to study electrostatic-self-assembly. Soft Matter, 2012, 8, 9771.	1.2	42
154	Direct observation of melting behaviors at the nanoscale under electron beam and heat to form hollow nanostructures. Nanoscale, 2012, 4, 4702.	2.8	26
155	One-pot synthesis of three-dimensional platinum nanochain networks as stable and active electrocatalysts for oxygen reduction reactions. Journal of Materials Chemistry, 2012, 22, 13585.	6.7	92
156	A direct observation of nanometer-size void dynamics in an ultra-thin water film. Soft Matter, 2012, 8, 7108.	1.2	32
157	Shape control synthesis of fluorapatite structures based on supersaturation: prismatic nanowires, ellipsoids, star, and aggregate formation. CrystEngComm, 2012, 14, 6384.	1.3	14
158	Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping. Journal of Physical Chemistry C, 2012, 116, 17540-17546.	1.5	40
159	Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases. Nanotechnology, 2012, 23, 505704.	1.3	49

#	Article	IF	CITATIONS
160	Multiple Nucleation and Crystal Growth of Barium Titanate. Crystal Growth and Design, 2012, 12, 1247-1253.	1.4	71
161	Probing Nucleation Pathways for Morphological Manipulation of Platinum Nanocrystals. Journal of the American Chemical Society, 2012, 134, 9410-9416.	6.6	71
162	Colloidal nanocrystal quantum dot assemblies as artificial solids. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 030802.	0.9	111
163	A Family of Carbon-Based Nanocomposite Tubular Structures Created by <i>in Situ</i> Electron Beam Irradiation. ACS Nano, 2012, 6, 4500-4507.	7.3	34
164	In situ Electrochemical Small-Angle Neutron Scattering (<i>e</i> SANS) for Quantitative Structure and Redox Properties of Nanoparticles. Journal of Physical Chemistry Letters, 2012, 3, 646-650.	2.1	6
165	Interface synthesis of gold mesocrystals with highly roughened surfaces for surface-enhanced Raman spectroscopy. Journal of Materials Chemistry, 2012, 22, 1998-2006.	6.7	81
166	Nanoreactors for Studying Single Nanoparticle Coarsening. Journal of the American Chemical Society, 2012, 134, 158-161.	6.6	38
167	Direct Observation of Nanoparticle Superlattice Formation by Using Liquid Cell Transmission Electron Microscopy. ACS Nano, 2012, 6, 2078-2085.	7.3	152
168	Critical Role of Two-Dimensional Island-Mediated Growth on the Formation of Semiconductor Heterointerfaces. Physical Review Letters, 2012, 109, 126101.	2.9	35
169	Structural evolution, formation pathways and energetic controls during template-directed nucleation of CaCO3. Faraday Discussions, 2012, 159, 105.	1.6	45
170	Ultrafine Structure of the Hydroxyapatite Amorphous Phase in Noninfectious Phosphate Renal Calculi. Urology, 2012, 79, 968.e1-968.e6.	0.5	9
171	Direct <i>in Situ</i> Observation of Nanoparticle Synthesis in a Liquid Crystal Surfactant Template. ACS Nano, 2012, 6, 3589-3596.	7.3	93
172	Stepwise Evolution of Spherical Seeds into 20-Fold Twinned Icosahedra. Science, 2012, 337, 954-957.	6.0	187
173	Applications of Colloidal Inorganic Nanoparticles: From MedicineÂtoÂEnergy. Journal of the American Chemical Society, 2012, 134, 15607-15620.	6.6	388
174	Exploiting nanoparticles as precursors for novel nanostructure designs and properties. CrystEngComm, 2012, 14, 7535.	1.3	28
175	Direct <i>in Situ</i> Determination of the Mechanisms Controlling Nanoparticle Nucleation and Growth. ACS Nano, 2012, 6, 8599-8610.	7.3	378
176	Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions. Chemical Society Reviews, 2012, 41, 7980.	18.7	149
177	Imaging the Homogeneous Nucleation During the Melting of Superheated Colloidal Crystals. Science, 2012, 338, 87-90.	6.0	145

#	Article	IF	CITATIONS
178	Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid. Micron, 2012, 43, 1078-1084.	1.1	62
179	Recent developments in dynamic transmission electron microscopy. Current Opinion in Solid State and Materials Science, 2012, 16, 23-30.	5.6	66
180	<i>In Situ</i> Formation of Metal Nanoparticle Composites via "Soft―Plasma Electrochemical Reduction of Metallosupramolecular Polymer Films. Macromolecules, 2012, 45, 8201-8210.	2.2	33
181	Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis. ChemCatChem, 2012, 4, 1512-1524.	1.8	467
182	In situ wet-cell TEM observation of gold nanoparticle motion in an aqueous solution. Nanoscale Research Letters, 2012, 7, 598.	3.1	34
183	Revealing Correlation of Valence State with Nanoporous Structure in Cobalt Catalyst Nanoparticles by <i>In Situ</i> Environmental TEM. ACS Nano, 2012, 6, 4241-4247.	7.3	84
184	Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nature Nanotechnology, 2012, 7, 237-241.	15.6	264
185	Real-Time Probing of the Synthesis of Colloidal Silver Nanocubes with Time-Resolved High-Energy Synchrotron X-ray Diffraction. Journal of Physical Chemistry C, 2012, 116, 11842-11847.	1.5	38
186	In Situ Observation of Oscillatory Growth of Bismuth Nanoparticles. Nano Letters, 2012, 12, 1470-1474.	4.5	114
187	Boric acid assisted electrosynthesis of hierarchical three-dimensional cobalt dendrites and microspheres. Materials Chemistry and Physics, 2012, 136, 448-454.	2.0	15
188	The influence of Ni nanoparticles and Ni (II) on the growth of Ag dendrites immobilized on the chelating copolymer membrane. Materials Chemistry and Physics, 2012, 137, 76-84.	2.0	8
189	Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today, 2012, 7, 448-466.	6.2	463
190	<i>In Situ</i> Transmission Electron Microscopy of Lead Dendrites and Lead Ions in Aqueous Solution. ACS Nano, 2012, 6, 6308-6317.	7.3	165
191	Crystallization of nanomaterials. Current Opinion in Chemical Engineering, 2012, 1, 108-116.	3.8	21
193	Insights into the Formation Mechanism of Rhodium Nanocubes. Journal of Physical Chemistry C, 2012, 116, 15076-15086.	1.5	46
194	Roles of Nucleation, Denucleation, Coarsening, and Aggregation Kinetics in Nanoparticle Preparations and Neurological Disease. Langmuir, 2012, 28, 4842-4857.	1.6	28
197	Characterization of Engineered Nanoparticles in Natural Waters. Comprehensive Analytical Chemistry, 2012, 59, 169-195.	0.7	1
198	From cluster assembly to ultrathin nanocrystals and complex nanostructures. Science China Chemistry, 2012, 55, 2257-2271.	4.2	12

#	Article	IF	CITATIONS
200	Metal and Alloy Nanoparticles by Amine-Borane Reduction of Metal Salts by Solid-Phase Synthesis: Atom Economy and Green Process. Inorganic Chemistry, 2012, 51, 13023-13033.	1.9	46
201	Colloidal calcium nanoparticles: digestive ripening in the presence of a capping agent and coalescence of particles under an electron beam. RSC Advances, 2012, 2, 259-263.	1.7	17
202	New Insights into the Early Stages of Nanoparticle Electrodeposition. Journal of Physical Chemistry C, 2012, 116, 2322-2329.	1.5	118
205	Recent developments and applications of electron microscopy to heterogeneous catalysis. Chemical Society Reviews, 2012, 41, 8179.	18.7	107
206	Electrochemical Studies of Capping Agent Adsorption Provide Insight into the Formation of Anisotropic Gold Nanocrystals. ACS Nano, 2012, 6, 11018-11026.	7.3	29
207	Nucleation and Aggregative Growth Process of Platinum Nanoparticles Studied by in Situ Quick XAFS Spectroscopy. Langmuir, 2012, 28, 2415-2428.	1.6	91
208	Detachment Induced by Rayleigh-Instability in Metal Oxide Nanorods: Insights from TiO ₂ . Crystal Growth and Design, 2012, 12, 3668-3674.	1.4	17
209	Direction-Specific Interactions Control Crystal Growth by Oriented Attachment. Science, 2012, 336, 1014-1018.	6.0	958
210	High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells. Science, 2012, 336, 61-64.	6.0	989
211	Real-Time Imaging of Pt ₃ Fe Nanorod Growth in Solution. Science, 2012, 336, 1011-1014.	6.0	649
211 212		6.0 1.6	649 178
	Real-Time Imaging of Pt ₃ Fe Nanorod Growth in Solution. Science, 2012, 336, 1011-1014.		
212	Real-Time Imaging of Pt ₃ Fe Nanorod Growth in Solution. Science, 2012, 336, 1011-1014. Recent progress in the synthesis of inorganic nanoparticles. Dalton Transactions, 2012, 41, 5089.	1.6	178
212 213	Real-Time Imaging of Pt ₃ Fe Nanorod Growth in Solution. Science, 2012, 336, 1011-1014. Recent progress in the synthesis of inorganic nanoparticles. Dalton Transactions, 2012, 41, 5089. Probing Liquid/Solid Interfaces at the Molecular Level. Chemical Reviews, 2012, 112, 2920-2986. Formation Mechanism of Colloidal Silver Nanoparticles: Analogies and Differences to the Growth of	1.6 23.0	178 373
212 213 214	Real-Time Imaging of Pt ₃ Fe Nanorod Growth in Solution. Science, 2012, 336, 1011-1014. Recent progress in the synthesis of inorganic nanoparticles. Dalton Transactions, 2012, 41, 5089. Probing Liquid/Solid Interfaces at the Molecular Level. Chemical Reviews, 2012, 112, 2920-2986. Formation Mechanism of Colloidal Silver Nanoparticles: Analogies and Differences to the Growth of Cold Nanoparticles. ACS Nano, 2012, 6, 5791-5802. Predicting Chiral Nanostructures, Lattices and Superlattices in Complex Multicomponent	1.6 23.0 7.3	178 373 204
212 213 214 215	Real-Time Imaging of Pt ₃ Fe Nanorod Growth in Solution. Science, 2012, 336, 1011-1014. Recent progress in the synthesis of inorganic nanoparticles. Dalton Transactions, 2012, 41, 5089. Probing Liquid/Solid Interfaces at the Molecular Level. Chemical Reviews, 2012, 112, 2920-2986. Formation Mechanism of Colloidal Silver Nanoparticles: Analogies and Differences to the Growth of Gold Nanoparticles. ACS Nano, 2012, 6, 5791-5802. Predicting Chiral Nanostructures, Lattices and Superlattices in Complex Multicomponent Nanoparticle Self-Assembly. Nano Letters, 2012, 12, 3218-3223. Imaging Protein Structure in Water at 2.7Ânm Resolution by Transmission Electron Microscopy.	1.6 23.0 7.3 4.5	178 373 204 24
212 213 214 215 216	Real-Time Imaging of Pt ₃ Fe Nanorod Growth in Solution. Science, 2012, 336, 1011-1014. Recent progress in the synthesis of inorganic nanoparticles. Dalton Transactions, 2012, 41, 5089. Probing Liquid/Solid Interfaces at the Molecular Level. Chemical Reviews, 2012, 112, 2920-2986. Formation Mechanism of Colloidal Silver Nanoparticles: Analogies and Differences to the Growth of Cold Nanoparticles. ACS Nano, 2012, 6, 5791-5802. Predicting Chiral Nanostructures, Lattices and Superlattices in Complex Multicomponent Nanoparticle Self-Assembly. Nano Letters, 2012, 12, 3218-3223. Imaging Protein Structure in Water at 2.7Ânm Resolution by Transmission Electron Microscopy. Biophysical Journal, 2012, 102, L15-L17. Crafting Semiconductor Organicâ ³ Inorganic Nanocomposites via Placing Conjugated Polymers in	 1.6 23.0 7.3 4.5 0.2 	 178 373 204 24 105

#	Article	IF	Citations
220	Watching nanoparticle kinetics in liquid. Materials Today, 2012, 15, 140-147.	8.3	35
221	A review of the kinetics and mechanisms of formation of supported-nanoparticle heterogeneous catalysts. Journal of Molecular Catalysis A, 2012, 355, 1-38.	4.8	144
222	Challenges associated with in-situ TEM in environmental systems: The case of silver in aqueous solutions. Ultramicroscopy, 2012, 116, 34-38.	0.8	76
223	Synthesis of rod and lath-shaped CuSe and tremella-shaped Cu2â°'x Se nanostructures at room temperature, and their optical properties. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	7
224	In-Situ and Correlative Electron Microscopy. Advances in Imaging and Electron Physics, 2013, 179, 137-202.	0.1	0
225	Scrolling graphene into nanofluidic channels. Lab on A Chip, 2013, 13, 2874.	3.1	60
226	A nanoscale-modified LaMer model for particle synthesis from inorganic tin–platinum complexes. Journal of Materials Chemistry A, 2013, 1, 8903.	5.2	17
227	Growth Kinetics and Morphological Evolution of ZnO Precipitated from Solution. Chemistry of Materials, 2013, 25, 2927-2933.	3.2	70
228	Liquid Cell Transmission Electron Microscopy Study of Platinum Iron Nanocrystal Growth and Shape Evolution. Journal of the American Chemical Society, 2013, 135, 5038-5043.	6.6	117
229	Cation Exchange: A Versatile Tool for Nanomaterials Synthesis. Journal of Physical Chemistry C, 2013, 117, 19759-19770.	1.5	402
230	In-situ SEM microchip setup for electrochemical experiments with water based solutions. Ultramicroscopy, 2013, 129, 63-69.	0.8	25
231	Surfactant induced colloidal growth and selective electrophoretic deposition of one-dimensional Te nanocrystals. Materials Letters, 2013, 110, 148-151.	1.3	7
232	Electrostatic self-assembly of platinum nanochains on carbon nanotubes: A highly active electrocatalyst for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2013, 140-141, 552-558.	10.8	20
233	Morphological changes in and around Sn electrodes during Li ion cycling characterized by in situ environmental TEM. Scripta Materialia, 2013, 69, 658-661.	2.6	27
234	Atomic resolution liquid-cell transmission electron microscopy investigations of the dynamics of nanoparticles in ultrathin liquids. Chemical Communications, 2013, 49, 10944.	2.2	50
235	Observation of growth of metal nanoparticles. Chemical Communications, 2013, 49, 11720.	2.2	128
236	Enabling direct nanoscale observations of biological reactions with dynamic TEM. Microscopy (Oxford, England), 2013, 62, 147-156.	0.7	29
237	Real-Time Dark-Field Scattering Microscopic Monitoring of the <i>in Situ</i> Growth of Single Ag@Hg Nanoalloys. ACS Nano, 2013, 7, 11026-11034.	7.3	121

#	Article	IF	CITATIONS
238	In Situ Synchrotron Xâ€Ray Techniques for Realâ€Time Probing of Colloidal Nanoparticle Synthesis. Particle and Particle Systems Characterization, 2013, 30, 399-419.	1.2	65
239	Nanowires and Nanostructures that Grow like Polymer Molecules. Advanced Materials, 2013, 25, 4829-4844.	11.1	23
240	A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications. Acta Biomaterialia, 2013, 9, 8422-8432.	4.1	64
241	Nanoparticle-based crystal growth via multistep self-assembly. CrystEngComm, 2013, 15, 5114.	1.3	25
242	New insights into the growth mechanism of hierarchical architectures of PbTe synthesized through a triethanolamine-assisted solvothermal method and their shape-dependent electrical transport properties. Journal of Materials Chemistry A, 2013, 1, 15355.	5.2	23
243	Exfoliated graphene-supported Pt and Pt-based alloys as electrocatalysts for direct methanol fuel cells. Carbon, 2013, 52, 595-604.	5.4	117
244	Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules. Chemical Society Reviews, 2013, 42, 2654-2678.	18.7	341
245	Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chemical Society Reviews, 2013, 42, 2880-2904.	18.7	499
246	Low-Dimensional Semiconductor Superlattices Formed by Geometric Control over Nanocrystal Attachment. Nano Letters, 2013, 13, 2317-2323.	4.5	218
247	Direct writing via electron-driven reactions. Materials Today, 2013, 16, 117-122.	8.3	19
248	Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy, 2013, 127, 53-63.	0.8	176
249	Characterization of LPCVD amorphous silicon carbide (a-SiC) as material for electron transparent windows. Materials Chemistry and Physics, 2013, 139, 654-662.	2.0	16
250	Simulating realistic imaging conditions for in situ liquid microscopy. Ultramicroscopy, 2013, 135, 36-42.	0.8	20
251	Sizing by Weighing: Characterizing Sizes of Ultrasmall-Sized Iron Oxide Nanocrystals Using MALDI-TOF Mass Spectrometry. Journal of the American Chemical Society, 2013, 135, 2407-2410.	6.6	57
252	Growth Mechanism of Highly Branched Titanium Dioxide Nanowires via Oriented Attachment. Crystal Growth and Design, 2013, 13, 422-428.	1.4	68
253	The Quest for Shape Control: A History of Gold Nanorod Synthesis. Chemistry of Materials, 2013, 25, 1250-1261.	3.2	578
254	Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering. Chemical Society Reviews, 2013, 42, 2497-2511.	18.7	183
255	In Situ Visualization of Self-Assembly of Charged Gold Nanoparticles. Journal of the American Chemical Society, 2013, 135, 3764-3767.	6.6	183

ARTICLE

IF CITATIONS

256 Growth mechanisms and size control of FePt nanoparticles synthesized using Fe(CO)x (x <) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 742

257	Imaging Impurities in Semiconductor Nanostructures. Chemistry of Materials, 2013, 25, 1332-1350.	3.2	24
258	Using molecular tweezers to move and image nanoparticles. Nanoscale, 2013, 5, 4070.	2.8	24
259	Anisotropic Seeded Growth of Cu–M (M = Au, Pt, or Pd) Bimetallic Nanorods with Tunable Optical and Catalytic Properties. Journal of Physical Chemistry C, 2013, 117, 8924-8932.	1.5	104
260	Single-Molecule Catalysis Mapping Quantifies Site-Specific Activity and Uncovers Radial Activity Gradient on Single 2D Nanocrystals. Journal of the American Chemical Society, 2013, 135, 1845-1852.	6.6	189
261	Calcite Crystal Growth by a Solidâ€6tate Transformation of Stabilized Amorphous Calcium Carbonate Nanospheres in a Hydrogel. Angewandte Chemie - International Edition, 2013, 52, 4867-4870.	7.2	88
262	Pt–Ni nanodendrites with high hydrogenation activity. Chemical Communications, 2013, 49, 2903.	2.2	95
263	Real-Time Observation of Crystal Evaporation in a Metal Phosphate at High Temperature. Journal of the American Chemical Society, 2013, 135, 7811-7814.	6.6	14
264	How to control the shape of metal nanostructures in organic solution phase synthesis for plasmonics and catalysis. Nano Today, 2013, 8, 198-215.	6.2	94
265	In Situ Liquid Cell Electron Microscopy of the Solution Growth of Au–Pd Core–Shell Nanostructures. Nano Letters, 2013, 13, 2964-2970.	4.5	164
266	Dendritic Gold Nanowire Growth Observed in Liquid with Transmission Electron Microscopy. Langmuir, 2013, 29, 8427-8432.	1.6	61
267	In situ observation of Cu segregation and phase nucleation at a solid–liquid interface in an Al alloy. Acta Materialia, 2013, 61, 4339-4346.	3.8	13
268	A Generalized Electrochemical Aggregative Growth Mechanism. Journal of the American Chemical Society, 2013, 135, 11550-11561.	6.6	140
269	Identifying champion nanostructures for solar water-splitting. Nature Materials, 2013, 12, 842-849.	13.3	527
270	Shape Control from Thermodynamic Growth Conditions: The Case of hcp Ruthenium Hourglass Nanocrystals. Journal of the American Chemical Society, 2013, 135, 606-609.	6.6	67
271	Imaging liquids using microfluidic cells. Microfluidics and Nanofluidics, 2013, 15, 725-744.	1.0	34
272	Visualizing nanoparticle mobility in liquid at atomic resolution. Chemical Communications, 2013, 49, 3007-3009.	2.2	23
273	Heterogeneous Catalysts Need Not Be so "Heterogeneous― Monodisperse Pt Nanocrystals by Combining Shape-Controlled Synthesis and Purification by Colloidal Recrystallization. Journal of the American Chemical Society, 2013, 135, 2741-2747.	6.6	105

#	Article	IF	CITATIONS
274	Revealing Bismuth Oxide Hollow Nanoparticle Formation by the Kirkendall Effect. Nano Letters, 2013, 13, 5715-5719.	4.5	157
275	Mechanistic Investigation of Seeded Growth in Triblock Copolymer Stabilized Gold Nanoparticles. Langmuir, 2013, 29, 3903-3911.	1.6	9
276	Design, Fabrication, and Applications of In Situ Fluid Cell TEM. Methods in Enzymology, 2013, 532, 147-164.	0.4	9
277	Studies of Corrosion of Al Thin Films using Liquid Cell Transmission Electron Microscopy. Materials Research Society Symposia Proceedings, 2013, 1525, 1.	0.1	4
278	<i>In Situ</i> Electron Energy-Loss Spectroscopy in Liquids. Microscopy and Microanalysis, 2013, 19, 1027-1035.	0.2	140
279	Pt–Pb hollow sphere networks: self-sacrifice-templating method and enhanced activity for formic acid electrooxidation. RSC Advances, 2013, 3, 1763.	1.7	15
280	Structural and Morphological Evolution of Lead Dendrites during Electrochemical Migration. Scientific Reports, 2013, 3, 3227.	1.6	83
281	Exploring the Energy Storage Mechanism of High Performance MnO ₂ Electrochemical Capacitor Electrodes: An In Situ Atomic Force Microscopy Study in Aqueous Electrolyte. Advanced Functional Materials, 2013, 23, 4745-4751.	7.8	39
282	Intermetallic PtPb Nanoparticles Prepared by Pulsed Laser Ablation in Liquid. Journal of the Electrochemical Society, 2013, 160, F106-F110.	1.3	9
284	Preservation of Lattice Orientation in Coalescing Imperfectly Aligned Gold Nanowires by a Zipper Mechanism. Angewandte Chemie - International Edition, 2013, 52, 6019-6023.	7.2	36
286	Analysis of Single Nanoparticle Growth Environments to Explain Abnormal Ostwald Ripening of Nanoparticle Ensembles. Microscopy and Microanalysis, 2013, 19, 500-501.	0.2	0
287	Tailoring the Structure of Hierarchically Porous Zeolite Beta through Modified Orientated Attachment Growth in a Dry Gel System. Chemistry - A European Journal, 2014, 20, 14744-14755.	1.7	21
288	Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russian Chemical Reviews, 2014, 83, 1204-1222.	2.5	170
289	Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with <i>In Situ</i> Electrochemical Transmission Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 1029-1037.	0.2	83
290	Monolithic Chip System with a Microfluidic Channel for <i>In Situ</i> Electron Microscopy of Liquids. Microscopy and Microanalysis, 2014, 20, 445-451.	0.2	26
291	Quantitative Electrochemical Measurements Using <i>In Situ</i> ec-S/TEM Devices. Microscopy and Microanalysis, 2014, 20, 452-461.	0.2	80
292	Visualization of Iron-Binding Micelles in Acidic Recombinant Biomineralization Protein, MamC. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	15
293	Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science, 2014, 346, 1502-1506.	6.0	277

ARTICLE IF CITATIONS Direct observation of closed magnetic flux trapped in the high-latitude magnetosphere. Science, 2014, 294 6.0 46 346, 1506-1510. Bonding Pathways of Gold Nanocrystals in Solution. Nano Letters, 2014, 14, 6639-6643. 4.5 296 Nucleation Dynamics of Water Nanodroplets. Microscopy and Microanalysis, 2014, 20, 407-415. 0.2 19 Quantitative evaluation of Coulombic interactions in the oriented-attachment growth of nanotubes. Analyst, The, 2014, 139, 371-374. The Challenge of Colloidal Nanoparticle Synthesis., 2014, , 145-189. 298 4 Synthesis of dendritic iridium nanostructures based on the oriented attachment mechanism and their 299 2.8 enhanced CO and ammonia catalytic activities. Nanoscale, 2014, 6, 15059-15065. Development of an electrochemical cell for<i>in situ</i>transmission electron microscopy 300 0.7 11 observation. Microscopy (Oxford, England), 2014, 63, 481-486. Estimating Multiple Pathways of Object Growth Using Nonlongitudinal Image Data. Technometrics, 1.3 2014, 56, 186-199. Determination of Redox Reaction Rates and Orders by In Situ Liquid Cell Electron Microscopy of Pd 302 6.6 49 and Au Solution Growth. Journal of the American Chemical Society, 2014, 136, 16865-16870. Nonclassical Crystallization in Low-Temperature Deposition of Crystalline Silicon by Hot-Wire 1.4 Chemical Vapor Deposition. Crystal Growth and Design, 2014, 14, 6239-6247. A Study of Electron Beam Induced Deposition and Nano Device Fabrication Using Liquid Cell TEM 304 2.6 6 Technology. Chinese Journal of Chemistry, 2014, 32, 399-404. In situ TEM study of the Li–Au reaction in an electrochemical liquid cell. Faraday Discussions, 2014, 1.6 176, 95-107. TEM Characterization of Metallic Nanocatalysts., 2014, , 577-618. 306 1 Liquid Scanning Transmission Electron Microscopy: Imaging Protein Complexes in their Native Environment in Whole Eukaryotic Cells. Microscopy and Microanalysis, 2014, 20, 346-365. 0.2 Critical review: Effects of complex interactions on structure and dynamics of supported metal 308 0.9 31 catalysts. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, . Kinetics and Mechanisms of Aggregative Nanocrystal Growth. Chemistry of Materials, 2014, 26, 5-21. 309 3.2 447 Effect of water content on the ethanol electro-oxidation activity of Pt-Sn/graphene catalysts 310 2.6 15 prepared by the polyalcohol method. Electrochimica Acta, 2014, 130, 135-140. Correlated Optical Spectroscopy and Electron Microscopy Studies of the Slow Ostwald-Ripening 1.8 Growth of Silver Nanoparticles under Controlled Reducing Conditions. Plasmonics, 2014, 9, 111-120.

#	Article	IF	CITATIONS
312	Direct observation of Pt nanocrystal coalescence induced by electron-excitation-enhanced van der Waals interactions. Nano Research, 2014, 7, 308-314.	5.8	22
313	Visualization of Electrode–Electrolyte Interfaces in LiPF ₆ /EC/DEC Electrolyte for Lithium Ion Batteries via in Situ TEM. Nano Letters, 2014, 14, 1745-1750.	4.5	304
314	Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials. Progress in Solid State Chemistry, 2014, 42, 1-21.	3.9	66
315	Synthesis of chestnut-bur-like palladium nanostructures and their enhanced electrocatalytic activities for ethanol oxidation. Nanoscale, 2014, 6, 4182-4187.	2.8	39
316	Controlling the Size and Composition of Nanosized Pt–Ni Octahedra to Optimize Their Catalytic Activities toward the Oxygen Reduction Reaction. ChemSusChem, 2014, 7, 1476-1483.	3.6	72
317	Characterizing crystal growth by oriented aggregation. CrystEngComm, 2014, 16, 1409.	1.3	104
318	Unveiling the mechanism of core–shell formation by counting the relative occurrence of microstates. Chemical Physics Letters, 2014, 595-596, 87-90.	1.2	9
319	High-resolution chemical analysis on cycled LiFePO4 battery electrodes using energy-filtered transmission electron microscopy. Journal of Power Sources, 2014, 246, 512-521.	4.0	35
320	Monitoring Galvanic Replacement Through Three-Dimensional Morphological and Chemical Mapping. Nano Letters, 2014, 14, 3220-3226.	4.5	136
321	In Situ Observation of Directed Nanoparticle Aggregation During the Synthesis of Ordered Nanoporous Metal in Soft Templates. Chemistry of Materials, 2014, 26, 1426-1433.	3.2	14
322	In Situ Imaging of Silicalite-1 Surface Growth Reveals the Mechanism of Crystallization. Science, 2014, 344, 729-732.	6.0	304
323	Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate. Nano Letters, 2014, 14, 373-378.	4.5	172
324	Nanocrystals from solutions: catalysts. Chemical Society Reviews, 2014, 43, 2112-2124.	18.7	185
325	Anisotropic Noble Metal Nanocrystal Growth: The Role of Halides. Chemistry of Materials, 2014, 26, 34-43.	3.2	340
326	Synthesis, Characterization, and Application of Ultrasmall Nanoparticles. Chemistry of Materials, 2014, 26, 59-71.	3.2	347
327	Dynamics of Soft Nanomaterials Captured by Transmission Electron Microscopy in Liquid Water. Journal of the American Chemical Society, 2014, 136, 1162-1165.	6.6	96
328	Transmission Electron Microscopy Characterization of Nanomaterials. , 2014, , .		52
329	TEM study of fivefold twined gold nanocrystal formation mechanism. Materials Letters, 2014, 116, 299-303.	1.3	19

#	Article	IF	Citations
" 330	Local Supersaturation Dictated Branching and Faceting of Submicrometer PbS Particles with Cubic Growth Habit. Inorganic Chemistry, 2014, 53, 11484-11491.	1.9	12
331	Practical Aspects of Transmission Electron Microscopy in Liquid. Advances in Imaging and Electron Physics, 2014, 186, 1-37.	0.1	12
332	Nanoparticles. , 2014, , .		38
333	Patterned electrochemical deposition of copper using an electron beam. APL Materials, 2014, 2, .	2.2	41
334	Zeolite growth by synergy between solution-mediated and solid-phase transformations. Journal of Materials Chemistry A, 2014, 2, 14360.	5.2	25
335	Electron–Water Interactions and Implications for Liquid Cell Electron Microscopy. Journal of Physical Chemistry C, 2014, 118, 22373-22382.	1.5	519
336	In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy. Chemical Communications, 2014, 50, 9447.	2.2	45
337	Monitoring the shape evolution of Pd nanocubes to octahedra by PdS frame markers. Nanoscale, 2014, 6, 3518-3521.	2.8	8
338	Structure of catalyst particles from in-situ electron microscopy: a web themed issue. Chemical Communications, 2014, 50, 12417-12419.	2.2	5
339	Observing Pt nanoparticle formation at the atomic level during polyol synthesis. Physical Chemistry Chemical Physics, 2014, 16, 17640.	1.3	30
340	Sulfate-ion-assisted galvanic replacement tuning of silver dendrites to highly branched chains for effective SERS. Physical Chemistry Chemical Physics, 2014, 16, 18918-18925.	1.3	19
341	Quantitative determination of fragmentation kinetics and thermodynamics of colloidal silver nanowires by in situ high-energy synchrotron X-ray diffraction. Nanoscale, 2014, 6, 365-370.	2.8	19
342	Nanoparticle Dynamics in a Nanodroplet. Nano Letters, 2014, 14, 2111-2115.	4.5	73
343	Zinc blende versus wurtzite ZnS nanoparticles: control of the phase and optical properties by tetrabutylammonium hydroxide. Physical Chemistry Chemical Physics, 2014, 16, 20127-20137.	1.3	100
344	Bubble and Pattern Formation in Liquid Induced by an Electron Beam. Nano Letters, 2014, 14, 359-364.	4.5	286
345	Metal Deposition at the Liquid-Liquid Interface. Chemical Record, 2014, 14, 1013-1023.	2.9	22
346	Real-time imaging and local elemental analysis of nanostructures in liquids. Chemical Communications, 2014, 50, 10019-10022.	2.2	56
347	Tailoring the physicochemical properties of zeolite catalysts. Catalysis Science and Technology, 2014, 4, 3762-3771.	2.1	62

CITATION REPORT IF CITATIONS Atmospheric scanning electron microscope system with an open sample chamber: Configuration and 0.8 34 applications. Ultramicroscopy, 2014, 147, 86-97. Facet development during platinum nanocube growth. Science, 2014, 345, 916-919. 6.0 429 In situ synthesis of ultra-small platinum nanoparticles using a water soluble polyphenolic polymer 1.7 13 with high catalytic activity. RSC Advances, 2014, 4, 51745-51753. Multimetallic Core/Interlayer/Shell Nanostructures as Advanced Electrocatalysts. Nano Letters, 2014, 146 Ligand-free Ni nanocluster formation at atmospheric pressure via rapid quenching in a microplasma 1.3 25 Atomic Resolution Imaging of Gold Nanoparticle Generation and Growth in Ionic Liquids. Journal of the American Chemical Society, 2014, 136, 13789-13797. 6.6

354 Colloidal nanoparticles as advanced biological sensors. Science, 2014, 346, 1247390. 6.0 842 Plasma-Induced Synthesis of CuO Nanofibers and ZnO Nanoflowers in Water. Plasma Chemistry and 1.1 47 Plasma Processing, 2014, 34, 1129-1139. Investigating Processes of Nanocrystal Formation and Transformation via Liquid Cell TEM. 356 0.2 94 Microscopy and Microanalysis, 2014, 20, 425-436. A Rational Biomimetic Approach to Structure Defect Generation in Colloidal Nanocrystals. ACS Nano, 2014, 8, 6934-6944. Nucleation and growth of fluoride crystals by agglomeration of the nanoparticles. Journal of 358 0.7 14 Crystal Growth, 2014, 401, 63-66. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chemical Reviews. 2014. 114

359	7610-7630.	23.0	2,201
360	In situ liquid-cell electron microscopy of silver–palladium galvanic replacement reactions on silver nanoparticles. Nature Communications, 2014, 5, 4946.	5.8	171
361	Solvent Influence on the Role of Thiols in Growth of Thiols-Capped Au Nanocrystals. Journal of Physical Chemistry C, 2014, 118, 714-719.	1.5	25
362	Structural evolution of NiAu nanoparticles under ambient conditions directly revealed by atom-resolved imaging combined with DFT simulation. Nanoscale, 2014, 6, 12898-12904.	2.8	9
363	The Role of Nanocluster Aggregation, Coalescence, and Recrystallization in the Electrochemical Deposition of Platinum Nanostructures. Chemistry of Materials, 2014, 26, 2396-2406.	3.2	58
364	Real-Time Visualization of Diffusion-Controlled Nanowire Growth in Solution. Nano Letters, 2014, 14, 4671-4676.	4.5	35
365	Nucleation of Iron Oxide Nanoparticles Mediated by Mms6 Protein <i>in Situ</i> . ACS Nano, 2014, 8, 9097-9106	7.3	90

ARTICLE

14, 6361-6367.

process. Nanotechnology, 2014, 25, 385601.

#

348

349

350

ARTICLE IF CITATIONS # Comparison of the Deposition Behavior of Charged Silicon Nanoparticles between Floating and 366 1.5 25 Grounded Substrates. Journal of Physical Chemistry C, 2014, 118, 11946-11953. Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquids. 367 0.3 Comptes Rendus Physique, 2014, 15, 214-223. Scanning electron microscopy of individual nanoparticle bio-markers in liquid. Ultramicroscopy, 368 0.8 17 2014, 143, 93-99. A Four-Step Mechanism for the Formation of Supported-Nanoparticle Heterogenous Catalysts in Contact with Solution: The Conversion of $Ir(1,5-COD)Cl/\hat{I}^3-Al₂0₃ to$ $Ir(0) < sub > \hat{a}^{1/4} 170 < /sub > \hat{l}^{3}-Al < sub > 2 < /sub > O < sub > 3 < /sub > . Journal of the American Chemical Society, 2014,$ 136, 1930-1941 Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and 370 4.5 238 Electrolyte. Nano Letters, 2014, 14, 1453-1459. Massively Parallel and Highly Quantitative Single-Particle Analysis on Interactions between 371 Nanoparticles on Supported Lipid Bilayer. Journal of the American Chemical Society, 2014, 136, 6.6 4081-4088. Solution-based synthesis of anisotropic metal chalcogenide nanocrystals and their applications. 372 2.7 66 Journal of Materials Chemistry C, 2014, 2, 6222-6248. Unraveling the Coupling between Demixing and Crystallization in Mixtures. Journal of the American Chemical Society, 2014, 136, 8145-8148. 373 6.6 26 A General Perspective of the Characterization and Quantification of Nanoparticles: Imaging, 374 Spectroscopic, and Separation Techniques. Critical Reviews in Solid State and Materials Sciences, 2014, 72 6.8 39, 423-458. In situ Study of Oxidative Etching of Palladium Nanocrystals by Liquid Cell Electron Microscopy. 4.5 Nano Letters, 2014, 14, 3761-3765. Growth of Pt–Pd Nanoparticles Studied In Situ by HRTEM in a Liquid Cell. Journal of Physical 376 2.1 59 Chemistry Letters, 2014, 5, 2126-2130. Visualization of the Coalescence of Bismuth Nanoparticles. Microscopy and Microanalysis, 2014, 20, 58 416-424. Multimode Geometric-Profile Monitoring with Correlated Image Data and Its Application to 378 1.8 19 Nanoparticle Self-Assembly Processes. Journal of Quality Technology, 2014, 46, 216-233. Radiolysis during Liquid Cell Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 1516-1517. 379 0.2 Environmental Electron Microscopy: Electron Beam Effects in Electrochemistry. Microscopy and 380 0.2 1 Microanalysis, 2014, 20, 1616-1617. Introduction to Special Issue on Electron Microscopy of Specimens in Liquid. Microscopy and Microanalysis, 2014, 20, 315-316. High-Resolution Imaging and Spectroscopy at High Pressure: A Novel Liquid Cell for the Transmission 382 0.2 31 Electron Microscope. Microscopy and Microanalysis, 2015, 21, 1629-1638. Atomic-Scale Observation of Migration and Coalescence of Au Nanoclusters on YSZ Surface by 1.6 Aberration-Corrected STEM. Scientific Reports, 2014, 4, 5521.

#	Article	IF	CITATIONS
384	Beam Effects During In Situ Potential Cycling and Imaging of Sulfuric Acid and Platinum Electrodes. Microscopy and Microanalysis, 2015, 21, 1935-1936.	0.2	2
385	Coalescence of silver clusters by immersion in diluted HF solution. Journal of Chemical Physics, 2015, 143, 024306.	1.2	4
386	The Two Dimensional Nanoplate Dynamics Revealed by in situ Liquid Cell TEM. Microscopy and Microanalysis, 2015, 21, 261-262.	0.2	0
387	A Combined Experimental and Theoretical Study on the Formation of Ag Filaments on βâ€Ag ₂ MoO ₄ Induced by Electron Irradiation. Particle and Particle Systems Characterization, 2015, 32, 646-651.	1.2	47
388	Nucleation and growth of Ge nanoclusters on the Si(111)-(7 × 7) surface studied by scanning tunnelin microscopy. Surface and Interface Analysis, 2015, 47, 222-226.	g _{0.8}	0
389	Inâ€Situ Microscopy and Spectroscopy Applied to Surfaces at Work. ChemCatChem, 2015, 7, 3625-3638.	1.8	28
390	Monitoring Ligandâ€Mediated Growth and Aggregation of Metal Nanoparticles and Nanodendrites by In Situ Synchrotron Scattering Techniques. ChemNanoMat, 2015, 1, 109-114.	1.5	13
391	Ex Situ and In Situ (S)TEM of Iron Oxide Nanoparticles Synthesized by Decomposition of an Organometallic Precursor. Microscopy and Microanalysis, 2015, 21, 965-966.	0.2	1
392	Role of Fluid-Mediated Interactions in Guiding Nanoparticle Assembly. Microscopy and Microanalysis, 2015, 21, 259-260.	0.2	0
393	In situ Liquid S/TEM: Practical Aspects, Challenges, and Opportunities. Microscopy and Microanalysis, 2015, 21, 2295-2296.	0.2	0
394	Atomic-scale observation of dynamical fluctuation and three-dimensional structure of gold clusters. Journal of Applied Physics, 2015, 117, .	1.1	22
395	Formation Mechanisms of Pt and Pt ₃ Gd Nanoparticles under Solvothermal Conditions: An <i>in Situ</i> Total X-ray Scattering Study. Journal of Physical Chemistry C, 2015, 119, 13357-13362.	1.5	37
396	Rational synthesis and the structure-property relationships of nanoheterostructures: a combinative study of experiments and theory. NPG Asia Materials, 2015, 7, e164-e164.	3.8	20
397	Real-time Observation on Coarsening of Second-Phase Droplets in Al–Bi Immiscible Alloy Using Synchrotron Radiation X-ray Imaging Technology. Acta Metallurgica Sinica (English Letters), 2015, 28, 940-945.	1.5	9
398	Observing the Growth of Metal–Organic Frameworks by <i>in Situ</i> Liquid Cell Transmission Electron Microscopy. Journal of the American Chemical Society, 2015, 137, 7322-7328.	6.6	207
399	Grain rotation and lattice deformation during photoinduced chemical reactions revealed by inÂsitu X-ray nanodiffraction. Nature Materials, 2015, 14, 691-695.	13.3	24
400	Overview of Nanomaterial Characterization and Metrology. Frontiers of Nanoscience, 2015, 8, 47-87.	0.3	17
401	Attachment-based growth: building architecturally defined metal nanocolloids particle by particle. RSC Advances, 2015, 5, 47718-47727.	1.7	24

#	Article	IF	Citations
402	Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products. Journal of the American Chemical Society, 2015, 137, 7947-7966.	6.6	758
403	Elucidating the real-time Ag nanoparticle growth on α-Ag ₂ WO ₄ during electron beam irradiation: experimental evidence and theoretical insights. Physical Chemistry Chemical Physics, 2015, 17, 5352-5359.	1.3	54
404	Grain-size effect on the electrical properties of nanocrystalline indium tin oxide thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 199, 37-41.	1.7	31
405	Synthesis of graphene oxide–silver nanocomposite with photochemically grown silver nanoparticles to use as a channel material in thin film field effect transistors. RSC Advances, 2015, 5, 107811-107821.	1.7	8
406	Opportunities and challenges in liquid cell electron microscopy. Science, 2015, 350, aaa9886.	6.0	452
407	Real-time imaging of lead nanoparticles in solution – determination of the growth mechanism. RSC Advances, 2015, 5, 104193-104197.	1.7	3
408	Controlling the lateral and vertical dimensions of Bi2Se3 nanoplates via seeded growth. Nano Research, 2015, 8, 246-256.	5.8	19
409	In Situ Observation of Divergent Phase Transformations in Individual Sulfide Nanocrystals. Nano Letters, 2015, 15, 1264-1271.	4.5	102
410	Following the Island Growth in Real Time: Ag Nanocluster Layer on Alq3 Thin Film. Journal of Physical Chemistry C, 2015, 119, 4406-4413.	1.5	16
411	Correlation between Multiple Growth Stages and Photocatalysis of SrTiO ₃ Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 3530-3537.	1.5	29
412	The Statistical Mechanics of Dynamic Pathways to Self-Assembly. Annual Review of Physical Chemistry, 2015, 66, 143-163.	4.8	166
413	Recent developments of the in situ wet cell technology for transmission electron microscopies. Nanoscale, 2015, 7, 4811-4819.	2.8	48
414	In Situ Transmission Electron Microscopy of Cadmium Selenide Nanorod Sublimation. Journal of Physical Chemistry Letters, 2015, 6, 605-611.	2.1	22
415	Ligand-Induced Fate of Embryonic Species in the Shape-Controlled Synthesis of Rhodium Nanoparticles. ACS Nano, 2015, 9, 1707-1720.	7.3	44
416	Writing Silica Structures in Liquid with Scanning Transmission Electron Microscopy. Small, 2015, 11, 585-590.	5.2	31
417	Nanoparticle plasmonics: going practical with transition metal nitrides. Materials Today, 2015, 18, 227-237.	8.3	318
418	Dynamic Inâ€ S itu Experimentation on Nanomaterials at the Atomic Scale. Small, 2015, 11, 3247-3262.	5.2	36
419	Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEM. Nano Letters, 2015, 15, 2168-2173.	4.5	264

		REPORT	
#	Article	IF	CITATIONS
420	Electrosynthesis of nanostructures and nanomaterials. Russian Chemical Reviews, 2015, 84, 159-193.	2.5	64
421	Microfabricated liquid chamber utilizing solvent-drying for in-situ TEM imaging of nanoparticle self-assembly. , 2015, , .		1
422	Time Recovery for a Complex Process Using Accelerated Dynamics. Journal of Chemical Theory and Computation, 2015, 11, 1725-1734.	2.3	9
423	Growth of Au on Pt Icosahedral Nanoparticles Revealed by Low-Dose In Situ TEM. Nano Letters, 2015, 15, 2711-2715.	4.5	106
424	Probing the nature of upconversion nanocrystals: instrumentation matters. Chemical Society Reviews, 2015, 44, 1479-1508.	18.7	176
425	Frontiers of <i>in situ</i> electron microscopy. MRS Bulletin, 2015, 40, 12-18.	1.7	109
426	Control of Electron Beam-Induced Au Nanocrystal Growth Kinetics through Solution Chemistry. Nano Letters, 2015, 15, 5314-5320.	4.5	122
427	Effects Associated with Nanostructure Fabrication Using In Situ Liquid Cell TEM Technology. Nano-Micro Letters, 2015, 7, 385-391.	14.4	4
428	Investigations of initial particle stages during spark discharge. Journal Physics D: Applied Physics, 2015, 48, 314012.	1.3	10
429	An aqueous platinum nanotube based fluorescent immuno-assay for porcine reproductive and respiratory syndrome virus detection. Talanta, 2015, 144, 324-328.	2.9	7
430	Nucleation and Aggregative Growth of Palladium Nanoparticles on Carbon Electrodes: Experiment and Kinetic Model. Journal of Physical Chemistry C, 2015, 119, 17389-17397.	1.5	43
431	In Situ Study of Lithiation and Delithiation of MoS ₂ Nanosheets Using Electrochemical Liquid Cell Transmission Electron Microscopy. Nano Letters, 2015, 15, 5214-5220.	4.5	135
432	Ionic Liquids (ILs) in Organometallic Catalysis. Topics in Organometallic Chemistry, 2015, , .	0.7	25
433	Gold Deposition at a Free-Standing Liquid/Liquid Interface: Evidence for the Formation of Au(I) by Microfocus X-ray Spectroscopy (14XRF and 14XAFS) and Cyclic Voltammetry. Journal of Physical Chemistry C, 2015, 119, 16785-16792.	1.5	32
434	Electron beam induced evolution in Au, Ag, and interfaced heterogeneous Au/Ag nanoparticles. Nanoscale, 2015, 7, 13687-13693.	2.8	41
435	3D structure of individual nanocrystals in solution by electron microscopy. Science, 2015, 349, 290-295.	6.0	238
436	Increasing the Collision Rate of Particle Impact Electroanalysis with Magnetically Guided Pt-Decorated Iron Oxide Nanoparticles. ACS Nano, 2015, 9, 7583-7595.	7.3	47
437	Mechanistic Principles of Barite Formation: From Nanoparticles to Micron-Sized Crystals. Crystal Growth and Design, 2015, 15, 3724-3733.	1.4	43

#	Article	IF	Citations
438	Phosphorus-Doped p–n Homojunction ZnO Nanowires: Growth Kinetics in Liquid and Their Optoelectronic Properties. Chemistry of Materials, 2015, 27, 4216-4221.	3.2	28
439	Direct observation of liquid nucleus growth in homogeneous melting of colloidal crystals. Nature Communications, 2015, 6, 6942.	5.8	49
440	Anisotropic Shaped Iron Oxide Nanostructures: Controlled Synthesis and Proton Relaxation Shortening Effects. Chemistry of Materials, 2015, 27, 3505-3515.	3.2	153
441	Observation of Surface Atoms during Platinum Nanocrystal Growth by Monomer Attachment. Chemistry of Materials, 2015, 27, 3200-3202.	3.2	31
442	Synthesis of high-purity CuO nanoleaves and analysis of their ethanol gas sensing properties. RSC Advances, 2015, 5, 34788-34794.	1.7	39
443	Size Control of Monodisperse Metal Nanocrystals in Ionic Liquids. Topics in Organometallic Chemistry, 2015, , 55-78.	0.7	1
444	Integration of an anti-tumor drug into nanocrystalline assemblies for sustained drug release. Chemical Science, 2015, 6, 1650-1654.	3.7	18
445	Many-Body Effects in Nanocrystal Superlattices: Departure from Sphere Packing Explains Stability of Binary Phases. Journal of the American Chemical Society, 2015, 137, 4494-4502.	6.6	158
446	Observation of materials processes in liquids by electron microscopy. MRS Bulletin, 2015, 40, 46-52.	1.7	40
447	Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed <i>in Situ via</i> Transmission Electron Microscopy. ACS Nano, 2015, 9, 4379-4389.	7.3	125
448	Synthesis, stabilization, growth behavior, and catalytic activity of highly concentrated silver nanoparticles using a multifunctional polymer in an aqueous-phase. RSC Advances, 2015, 5, 28652-28661.	1.7	35
449	Pushing the Envelope of <i>In Situ</i> Transmission Electron Microscopy. ACS Nano, 2015, 9, 4675-4685.	7.3	80
450	Real-Time in Situ Probing of High-Temperature Quantum Dots Solution Synthesis. Nano Letters, 2015, 15, 2620-2626.	4.5	84
451	NaYF ₄ :Yb,Er–MoS ₂ : from synthesis and surface ligand stripping to negative infrared photoresponse. Chemical Communications, 2015, 51, 9030-9033.	2.2	17
452	<i>In situ</i> liquid-cell transmission electron microscopy for direct observation of concentration-dependent growth and dissolution of silver nanoparticles. RSC Advances, 2015, 5, 82342-82345.	1.7	18
453	Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: old methods, new tricks. Physical Chemistry Chemical Physics, 2015, 17, 30229-30239.	1.3	83
454	Pursuing the Crystallization of Mono- and Polymetallic Nanosized Crystalline Inorganic Compounds by Low-Temperature Wet-Chemistry and Colloidal Routes. Chemical Reviews, 2015, 115, 11449-11502.	23.0	55
455	Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy. ACS Nano, 2015, 9, 11784-11791.	7.3	41

#	Article	IF	CITATIONS
456	Soft nanomaterials analysed by in situ liquid TEM: Towards high resolution characterisation of nanoparticles in motion. Perspectives in Science, 2015, 6, 106-112.	0.6	13
457	Initial Reaction Mechanism of Platinum Nanoparticle in Methanol–Water System and the Anomalous Catalytic Effect of Water. Nano Letters, 2015, 15, 5961-5968.	4.5	52
458	Bubble nucleation and migration in a lead–iron hydr(oxide) core–shell nanoparticle. Proceedings of the United States of America, 2015, 112, 12928-12932.	3.3	19
459	The Mechanisms for Nanoparticle Surface Diffusion and Chain Self-Assembly Determined from Real-Time Nanoscale Kinetics in Liquid. Journal of Physical Chemistry C, 2015, 119, 21261-21269.	1.5	86
460	Nanoscale size effects in crystallization of metallic glass nanorods. Nature Communications, 2015, 6, 8157.	5.8	65
461	Nanodroplet Depinning from Nanoparticles. ACS Nano, 2015, 9, 9020-9026.	7.3	20
462	Real-time monitoring of oxidative etching on single Ag nanocubes via light-scattering dark-field microscopy imaging. Nanoscale, 2015, 7, 15209-15213.	2.8	36
463	Real time imaging of the growth of silver ribbons by evanescent wave microscopy. RSC Advances, 2015, 5, 71830-71834.	1.7	4
464	Large-scale template-free synthesis of ordered mesoporous platinum nanocubes and their electrocatalytic properties. Nanoscale, 2015, 7, 19461-19467.	2.8	20
465	SSZ-13 Crystallization by Particle Attachment and Deterministic Pathways to Crystal Size Control. Journal of the American Chemical Society, 2015, 137, 13007-13017.	6.6	191
466	Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nature Communications, 2015, 6, 8191.	5.8	106
467	Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway. ACS Nano, 2015, 9, 10113-10124.	7.3	143
468	The formation mechanism of bimetallic PtRu alloy nanoparticles in solvothermal synthesis. Nanoscale, 2015, 7, 16170-16174.	2.8	22
469	In Situ Study of Spinel Ferrite Nanocrystal Growth Using Liquid Cell Transmission Electron Microscopy. Chemistry of Materials, 2015, 27, 8146-8152.	3.2	39
470	Toward Ending the Guessing Game: Study of the Formation of Nanostructures Using In Situ Liquid Transmission Electron Microscopy. Journal of Physical Chemistry Letters, 2015, 6, 5051-5061.	2.1	31
471	B12-P-14Direct observation of concentration-dependent growth and dissolution of silver nanoparticles using in-situ liquid transmission electron microscopy. Microscopy (Oxford, England), 2015, 64, i92.1-i92.	0.7	0
472	Correlative electron and X-ray microscopy: probing chemistry and bonding with high spatial resolution. Nanoscale, 2015, 7, 1534-1548.	2.8	19
473	Stimuli-Responsive Nanomaterials for Biomedical Applications. Journal of the American Chemical Society, 2015, 137, 2140-2154.	6.6	442

#	Article	IF	CITATIONS
474	Structural and electronic analysis of the atomic scale nucleation of Ag on α-Ag2WO4 induced by electron irradiation. Scientific Reports, 2014, 4, 5391.	1.6	99
475	In situ observation of facet-dependent oxidation of graphene on platinum in an environmental TEM. Chemical Communications, 2015, 51, 350-353.	2.2	11
476	Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion battery. Nano Energy, 2015, 11, 196-210.	8.2	75
477	In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view. Journal of Materials Research, 2015, 30, 326-339.	1.2	108
478	Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation. Scientific Reports, 2014, 4, 4288.	1.6	97
479	The New Youth of the In Situ Transmission Electron Microscopy. , 0, , .		2
480	In Situ Transmission Electron Microscopy Studies in Gas/Liquid Environment. , 2016, , .		0
481	Hydration Layer-mediated Pairwise Interaction of Nanoparticles resolved by in situ TEM. Microscopy and Microanalysis, 2016, 22, 756-757.	0.2	0
483	Non-Classical Crystallization of Thin Films and Nanostructures in CVD Process. , 0, , .		0
484	In Situ TEM Observation on the Growth and Agglomeration of Propylene Carbonate-based Electrolytes During Sodiation with Graphene Liquid Cell. Microscopy and Microanalysis, 2016, 22, 1362-1363.	0.2	1
485	Growth of block copolymer stabilized metal nanoparticles probed simultaneously by <i>in situ</i> XAS and UV–Vis spectroscopy. Journal of Synchrotron Radiation, 2016, 23, 293-303.	1.0	7
486	Real-Time Dynamics of Galvanic Replacement Reactions of Silver Nanocubes and Au Studied by Liquid-Cell Transmission Electron Microscopy. ACS Nano, 2016, 10, 7689-7695.	7.3	67
487	Nanoarchitectures for Mesoporous Metals. Advanced Materials, 2016, 28, 993-1010.	11.1	357
488	Observation of the formation of anisotropic silver microstructures by evanescent wave and electron microscopy. Nanotechnology, 2016, 27, 075708.	1.3	6
489	Assessing Photocatalytic Activity at the Nanoscale Using Integrated Optical and Electron Microscopy. Particle and Particle Systems Characterization, 2016, 33, 412-418.	1.2	14
490	Impact of Membraneâ€Induced Particle Immobilization on Seeded Growth Monitored by In Situ Liquid Scanning Transmission Electron Microscopy. Small, 2016, 12, 2701-2706.	5.2	18
491	Imaging the Hydrated Microbe-Metal Interface Using Nanoscale Spectrum Imaging. Particle and Particle Systems Characterization, 2016, 33, 833-841.	1.2	2
493	Visualizing Nanoscale Assembly in Solution Using In Situ TEM. Microscopy and Microanalysis, 2016, 22, 34-35.	0.2	Ο

#	Article	IF	CITATIONS
494	In Situ Time-Resolved Observation of the Development of Intracrystalline Mesoporosity in USY Zeolite. Chemistry of Materials, 2016, 28, 8971-8979.	3.2	35
495	Transmission electron microscopy of specimens and processes in liquids. MRS Bulletin, 2016, 41, 791-803.	1.7	12
496	A â€̃jump-to-coalescence' mechanism during nanoparticle growth revealed by <i>in situ</i> aberration-corrected transmission electron microscopy observations. Nanotechnology, 2016, 27, 205605.	1.3	24
497	Building with Ions: Development of In-situ Liquid Cell Microscopy for the Helium Ion Microscope Microscopy and Microanalysis, 2016, 22, 754-755.	0.2	0
498	Picoliter Drop-On-Demand Dispensing for Multiplex Liquid Cell Transmission Electron Microscopy. Microscopy and Microanalysis, 2016, 22, 507-514.	0.2	12
499	Whole-journey nanomaterial research in an electron microscope: from material synthesis, composition characterization, property measurements to device construction and tests. Nanotechnology, 2016, 27, 485710.	1.3	3
500	Strain-Mediated Interfacial Dynamics during Au–PbS Core–Shell Nanostructure Formation. ACS Nano, 2016, 10, 6235-6240.	7.3	21
502	Tuning the Growth Mode of 3D Silver Nanocrystal Superlattices by Triphenylphosphine. Chemistry of Materials, 2016, 28, 4380-4389.	3.2	21
503	Directing Matter: Toward Atomic-Scale 3D Nanofabrication. ACS Nano, 2016, 10, 5600-5618.	7.3	99
504	Efficient preparation of graphene liquid cell utilizing direct transfer with large-area well-stitched graphene. Chemical Physics Letters, 2016, 650, 107-112.	1.2	32
505	Liquid Cell Transmission Electron Microscopy. Annual Review of Physical Chemistry, 2016, 67, 719-747.	4.8	120
506	<i>In situ</i> growth of Ag nanoparticles on <i>α</i> -Ag ₂ WO ₄ under electron irradiation: probing the physical principles. Nanotechnology, 2016, 27, 225703.	1.3	30
507	Real-Time Imaging of the Formation of Au–Ag Core–Shell Nanoparticles. Journal of the American Chemical Society, 2016, 138, 5190-5193.	6.6	55
508	Small Angle X-ray Scattering for Nanoparticle Research. Chemical Reviews, 2016, 116, 11128-11180.	23.0	667
509	In Situ Quick X-ray Absorption Fine Structure and Small-Angle X-ray Scattering Study of Metal Nanoparticle Growth in Water-in-Oil Microemulsions during Photoreduction. Crystal Growth and Design, 2016, 16, 2860-2873.	1.4	16
510	Effect of Solid–Liquid Interface Morphology on Grain Boundary Segregation during Colloidal Polycrystallization. Crystal Growth and Design, 2016, 16, 2765-2770.	1.4	4
511	Particle-mediated nucleation and growth of solution-synthesized metal nanocrystals: A new story beyond the LaMer curve. Nano Today, 2016, 11, 145-167.	6.2	117
513	Investigation on material behavior in liquid by in situ TEM. Superlattices and Microstructures, 2016, 99, 24-34.	1.4	14

#	Article	IF	CITATIONS
514	Grapheneâ€sealed Si/SiN cavities for highâ€resolution <i>in situ</i> electron microscopy of nanoâ€confined solutions. Physica Status Solidi (B): Basic Research, 2016, 253, 2351-2354.	0.7	21
515	Emerging tools for studying single entity electrochemistry. Faraday Discussions, 2016, 193, 9-39.	1.6	86
516	Engineering high-energy surfaces of noble metal nanocrystals with enhanced catalytic performances. Nano Today, 2016, 11, 661-677.	6.2	76
517	Robust Nanoparticles Detection From Noisy Background by Fusing Complementary Image Information. IEEE Transactions on Image Processing, 2016, 25, 5713-5726.	6.0	17
518	One-Pot Synthesis of Superfine Core–Shell Cu@metal Nanowires for Highly Tenacious Transparent LED Dimmer. ACS Applied Materials & Interfaces, 2016, 8, 28709-28717.	4.0	30
519	Residual Silver Remarkably Enhances Electrocatalytic Activity and Durability of Dealloyed Gold Nanosponge Particles. Nano Letters, 2016, 16, 7248-7253.	4.5	45
520	<i>In Situ</i> Electron Microscopy Imaging and Quantitative Structural Modulation of Nanoparticle Superlattices. ACS Nano, 2016, 10, 9801-9808.	7.3	49
521	Anomalous Growth and Coalescence Dynamics of Hybrid Perovskite Nanoparticles Observed by Liquid-Cell Transmission Electron Microscopy. ACS Nano, 2016, 10, 9787-9793.	7.3	43
522	Direct-write liquid phase transformations with a scanning transmission electron microscope. Nanoscale, 2016, 8, 15581-15588.	2.8	29
523	Linker-Mediated Self-Assembly Dynamics of Charged Nanoparticles. ACS Nano, 2016, 10, 7443-7450.	7.3	59
524	A Robust Strategy for "Living―Growth of Lead Sulfide Quantum Dots. ChemNanoMat, 2016, 2, 49-53.	1.5	4
525	Low temperature deposition of polycrystalline silicon thin films on a flexible polymer substrate by hot wire chemical vapor deposition. Journal of Crystal Growth, 2016, 453, 151-157.	0.7	10
526	Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chemical Reviews, 2016, 116, 11220-11289.	23.0	1,485
527	Calixarene-Encapsulated Nanoparticles: Synthesis, Stabilization, and Self-Assembly. , 2016, , 921-939.		0
528	Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy, 2016, 170, 86-95.	0.8	181
529	Understanding of the major reactions in solution synthesis of functional nanomaterials. Science China Materials, 2016, 59, 938-996.	3.5	86
530	Effect of the Composition on the Free Energy of Crystal Nucleation for CuPd Nanoalloys. Journal of Physical Chemistry C, 2016, 120, 27657-27664.	1.5	8
531	In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research. Advanced Materials, 2016, 28, 9686-9712.	11.1	124

#	Article	IF	CITATIONS
532	Synthesis of Heterogeneous IrOâ^¼60O–900∫γ-Al2O3 in One Pot From the Precatalyst Ir(1,5-COD)Cl/γ-Al2O3: Discovery of Two Competing Trace "Ethyl Acetate Effects―on the Nucleation Step and Resultant Product. ACS Catalysis, 2016, 6, 5449-5461.	5.5	11
533	Probing the spontaneous reduction mechanism of platinum ions confined in the nanospace by X-ray absorption fine structure spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 19259-19266.	1.3	10
534	Lattice mold technique for the calculation of crystal nucleation rates. Faraday Discussions, 2016, 195, 569-582.	1.6	4
535	In situ Transmission Electron Microscopy observation of Ag nanocrystal evolution by surfactant free electron-driven synthesis. Scientific Reports, 2016, 6, 21498.	1.6	41
536	Single-particle mapping of nonequilibrium nanocrystal transformations. Science, 2016, 354, 874-877.	6.0	204
537	Triggered self-assembly of magnetic nanoparticles. Scientific Reports, 2016, 6, 23145.	1.6	17
538	The mechanisms of the formation of metal-containing nanoparticles. Review Journal of Chemistry, 2016, 6, 370-404.	1.0	13
539	Oxidative Corrosion Mechanism for Ag@C Coaxial Nanocables in Radiolytic Water. Journal of Physical Chemistry C, 2016, 120, 27033-27039.	1.5	6
540	Atomic-Scale Mechanism on Nucleation and Growth of Mo ₂ C Nanoparticles Revealed by in Situ Transmission Electron Microscopy. Nano Letters, 2016, 16, 7875-7881.	4.5	28
541	Nonclassical nucleation and growth of inorganic nanoparticles. Nature Reviews Materials, 2016, 1, .	23.3	343
542	Investigating materials formation with liquid-phase and cryogenic TEM. Nature Reviews Materials, 2016, 1, .	23.3	153
543	The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries. Scientific Reports, 2016, 6, 34267.	1.6	67
544	In situ microscopy of the self-assembly of branched nanocrystals in solution. Nature Communications, 2016, 7, 11213.	5.8	91
545	<i>In situ</i> Electron Microscope Observation of Surface Chemical Reactions Using Ionic Liquid. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2016, 67, 79-83.	0.1	0
546	Analysis of Particle Size Distributions of Quantum Dots: From Theory to Application. KONA Powder and Particle Journal, 2016, 33, 48-62.	0.9	19
547	Threeâ€Dimensional Self Assembly of Semiconducting Colloidal Nanocrystals: From Fundamental Forces to Collective Optical Properties. ChemPhysChem, 2016, 17, 618-631.	1.0	25
548	Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chemical Society Reviews, 2016, 45, 4747-4765.	18.7	568
549	In-situ liquid phase TEM observations of nucleation and growth processes. Progress in Crystal Growth and Characterization of Materials, 2016, 62, 69-88.	1.8	46

ARTICLE

IF CITATIONS

550	Magnetic Nanocolloids. , 2016, , 75-129.		3
551	Non-classical Crystallization. Springer Series in Surface Sciences, 2016, , 1-20.	0.3	0
552	Concerted Growth and Ordering of Cobalt Nanorod Arrays as Revealed by Tandem in Situ SAXS-XAS Studies. Journal of the American Chemical Society, 2016, 138, 8422-8431.	6.6	32
553	Recent advances and challenges of stretchable supercapacitors based on carbon materials. Science China Materials, 2016, 59, 475-494.	3.5	83
554	Role of Water During Crystallization of Amorphous Cobalt Phosphate Nanoparticles. Crystal Growth and Design, 2016, 16, 4232-4239.	1.4	15
555	Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications. Chemical Reviews, 2016, 116, 10473-10512.	23.0	492
556	A hot tip: imaging phenomena using in situ multi-stimulus probes at high temperatures. Nanoscale, 2016, 8, 3164-3180.	2.8	11
557	Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet. ACS Nano, 2016, 10, 2386-2391.	7.3	31
558	Hydration Layer-Mediated Pairwise Interaction of Nanoparticles. Nano Letters, 2016, 16, 786-790.	4.5	103
559	Understanding the Role of Solvation Forces on the Preferential Attachment of Nanoparticles in Liquid. ACS Nano, 2016, 10, 181-187.	7.3	51
560	Electron Microscopy of Living Cells During <i>in Situ</i> Fluorescence Microscopy. ACS Nano, 2016, 10, 265-273.	7.3	31
561	Real-Time Observation of Water-Soluble Mineral Precipitation in Aqueous Solution by In Situ High-Resolution Electron Microscopy. ACS Nano, 2016, 10, 88-92.	7.3	38
562	Perspectives in in situ transmission electron microscopy studies on lithium battery electrodes. Current Opinion in Chemical Engineering, 2016, 12, 37-43.	3.8	26
563	Study of capping agent effect on the structural, optical and photocatalytic properties of zinc sulfide quantum dots. Materials Science in Semiconductor Processing, 2016, 48, 14-22.	1.9	88
564	Recent advances in the organic solution phase synthesis of metal nanoparticles and their electrocatalysis for energy conversion reactions. Nano Energy, 2016, 29, 178-197.	8.2	63
565	In situ monitoring, separation, and characterization of gold nanorod transformation during seed-mediated synthesis. Analytical and Bioanalytical Chemistry, 2016, 408, 2195-2201.	1.9	6
566	Assembly and Evolution of Amorphous Precursors in Zeolite L Crystallization. Chemistry of Materials, 2016, 28, 1714-1727.	3.2	63
567	Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis. Chemical Reviews, 2016, 116, 3487-3539.	23.0	261

#	Article	IF	CITATIONS
568	One step synthesis of Au nanoparticle-cyclized polyacrylonitrile composite films and their use in organic nano-floating gate memory applications. Journal of Materials Chemistry C, 2016, 4, 1511-1516.	2.7	14
569	Oxidation of Carbon Nanotubes in an Ionizing Environment. Nano Letters, 2016, 16, 856-863.	4.5	34
570	Nanodroplet-Mediated Assembly of Platinum Nanoparticle Rings in Solution. Nano Letters, 2016, 16, 1092-1096.	4.5	38
571	Direct in situ observation of ZnO nucleation and growth via transmission X-ray microscopy. Nanoscale, 2016, 8, 1849-1853.	2.8	13
572	Atomistic Insights into the Oriented Attachment of Tunnel-Based Oxide Nanostructures. ACS Nano, 2016, 10, 539-548.	7.3	66
573	Controlled Atmosphere Transmission Electron Microscopy. , 2016, , .		34
574	Imaging rotational dynamics of nanoparticles in liquid by 4D electron microscopy. Science, 2017, 355, 494-498.	6.0	74
575	The formation of cerium(<scp>iii</scp>) hydroxide nanoparticles by a radiation mediated increase in local pH. RSC Advances, 2017, 7, 3831-3837.	1.7	55
576	Interactions and Attachment Pathways between Functionalized Gold Nanorods. ACS Nano, 2017, 11, 1633-1640.	7.3	60
577	Synthesis and chemistry of elemental 2D materials. Nature Reviews Chemistry, 2017, 1, .	13.8	671
578	Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy and Environment, 2017, 2, 70-83.	4.7	97
578 579		4.7	97 3
	Environment, 2017, 2, 70-83.	4.7	
579	Environment, 2017, 2, 70-83. Past, Present, and Future Electron Microscopy of Liquid Specimens. , 0, , 3-34.	4.7	3
579 580	Environment, 2017, 2, 70-83. Past, Present, and Future Electron Microscopy of Liquid Specimens. , 0, , 3-34. Resolution in Liquid Cell Experiments. , 0, , 164-188.		3
579 580 581	 Environment, 2017, 2, 70-83. Past, Present, and Future Electron Microscopy of Liquid Specimens. , 0, , 3-34. Resolution in Liquid Cell Experiments. , 0, , 164-188. Biomineralization: From Material Tactics to Biological Strategy. Advanced Materials, 2017, 29, 1605903. Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chemical Society Reviews, 	11.1	3 4 239
579 580 581 582	 Environment, 2017, 2, 70-83. Past, Present, and Future Electron Microscopy of Liquid Specimens. , 0, , 3-34. Resolution in Liquid Cell Experiments. , 0, , 164-188. Biomineralization: From Material Tactics to Biological Strategy. Advanced Materials, 2017, 29, 1605903. Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chemical Society Reviews, 2017, 46, 2091-2126. Identifying multi-stage nanocrystal growth using in situ TEM video data. IISE Transactions, 2017, 49, 	11.1 18.7	3 4 239 246

#	Article	IF	Citations
587	Nanostructure Growth, Interactions, and Assembly in the Liquid Phase. , 0, , 191-209.		1
588	Nanoscale Deposition and Etching of Materials Using Focused Electron Beams and Liquid Reactants. , 0, , 291-315.		1
589	Liquid Cell TEM for Studying Environmental and Biological Mineral Systems. , 0, , 316-333.		1
590	High Resolution Imaging in the Graphene Liquid Cell. , 0, , 393-407.		2
591	The Potential for Imaging Dynamic Processes in Liquids with High Temporal Resolution. , 0, , 456-475.		1
592	Dissolution Kinetics of Oxidative Etching of Cubic and Icosahedral Platinum Nanoparticles Revealed by <i>in Situ</i> Liquid Transmission Electron Microscopy. ACS Nano, 2017, 11, 1696-1703.	7.3	84
593	Determination of the Exact Particle Radius Distribution for Silica Nanoparticles via Capillary Electrophoresis and Modeling the Electrophoretic Mobility with a Modified Analytic Approximation. Langmuir, 2017, 33, 2325-2339.	1.6	18
594	Quantitative 3D evolution of colloidal nanoparticle oxidation in solution. Science, 2017, 356, 303-307.	6.0	125
595	Note on in situ (scanning) transmission electron microscopy study of liquid samples. Ultramicroscopy, 2017, 179, 81-83.	0.8	33
596	Alkylamine-mediated synthesis and optical properties of copper nanopolyhedrons. Research on Chemical Intermediates, 2017, 43, 2753-2764.	1.3	4
597	Transient Clustering of Reaction Intermediates during Wet Etching of Silicon Nanostructures. Nano Letters, 2017, 17, 2953-2958.	4.5	35
598	Chemical Synthesis, Doping, and Transformation of Magic-Sized Semiconductor Alloy Nanoclusters. Journal of the American Chemical Society, 2017, 139, 6761-6770.	6.6	84
599	Using soft x-ray absorption spectroscopy to characterize electrode/electrolyte interfaces in-situ and operando. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 2-9.	0.8	25
600	Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution. Accounts of Chemical Research, 2017, 50, 1303-1312.	7.6	97
601	Electron Beam Effects in Liquid Cell TEM and STEM. , 0, , 140-163.		12
602	Observing the Overgrowth of a Second Metal on Silver Cubic Seeds in Solution by Surface-Enhanced Raman Scattering. ACS Nano, 2017, 11, 5080-5086.	7.3	34
603	Characterization of Model Nanocatalysts by X-ray Absorption Spectroscopy. Studies in Surface Science and Catalysis, 2017, , 149-183.	1.5	3
604	Growth of organic crystals via attachment and transformation of nanoscopic precursors. Nature Communications, 2017, 8, 15933.	5.8	44

#	Article	IF	CITATIONS
605	Structural analysis of micrometer-long gold nanowires using a wormlike chain model and their rheological properties. Soft Matter, 2017, 13, 3927-3935.	1.2	7
606	Encapsulated Liquid Cells for Transmission Electron Microscopy. , 0, , 35-55.		9
607	Direct Observation of Growth and Selfâ€assembly of Pt Nanoclusters in Water with the Aid of a Triblock Polymer Using <i>in situ</i> Liquid Cell Transmission Electron Microscopy (<scp>TEM</scp>). Chinese Journal of Chemistry, 2017, 35, 1278-1283.	2.6	4
608	Direct Observation of Charge Collection at Nanometer-Scale Iodide-Rich Perovskites during Halide Exchange Reaction on CH ₃ NH ₃ PbBr ₃ . Journal of Physical Chemistry Letters, 2017, 8, 1724-1728.	2.1	26
609	Mechanistic Aspects in the Formation, Growth and Surface Functionalization of Metal Oxide Nanoparticles in Organic Solvents. Chemistry - A European Journal, 2017, 23, 8542-8570.	1.7	90
610	Perspectives on in situ electron microscopy. Ultramicroscopy, 2017, 180, 188-196.	0.8	26
611	Operando chemistry of catalyst surfaces during catalysis. Chemical Society Reviews, 2017, 46, 2001-2027.	18.7	143
612	Synthetic Chemistry of Nanomaterials. , 2017, , 613-640.		12
613	Eventual Chemical Transformation of Metals and Chalcogens into Metal Chalcogenide Nanoplates through a Surface Nucleation-Detachment-Reorganization Mechanism. Chemistry of Materials, 2017, 29, 3219-3227.	3.2	10
614	Optical Super-Resolution Imaging of Surface Reactions. Chemical Reviews, 2017, 117, 7510-7537.	23.0	140
615	Facile hydrothermal synthesis of ultrasmall W18O49 nanoparticles and studies of their photocatalytic activity towards degradation of methylene blue. Materials Chemistry and Physics, 2017, 188, 1-7.	2.0	39
616	In situ liquid cell electron microscopy of Ag–Au galvanic replacement reactions. Nanoscale, 2017, 9, 1271-1278.	2.8	26
617	Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Cobalt Foil Model Catalyst under CO, H ₂ , and Their Mixtures. ACS Catalysis, 2017, 7, 1150-1157.	5.5	50
618	Keimvermitteltes Wachstum kolloidaler Metallnanokristalle. Angewandte Chemie, 2017, 129, 60-98.	1.6	64
619	New Perspectives on Mineral Nucleation and Growth. , 2017, , .		50
620	Seedâ€Mediated Growth of Colloidal Metal Nanocrystals. Angewandte Chemie - International Edition, 2017, 56, 60-95.	7.2	581
621	Rapid and Controlled In Situ Growth of Noble Metal Nanostructures within Halloysite Clay Nanotubes. Langmuir, 2017, 33, 13051-13059.	1.6	54
622	Coarsening of carbon black supported Pt nanoparticles in hydrogen. Nanotechnology, 2017, 28, 475710.	1.3	8

#	Article	IF	CITATIONS
623	Noninvasive Cathodoluminescence-Activated Nanoimaging of Dynamic Processes in Liquids. ACS Nano, 2017, 11, 10583-10590.	7.3	6
624	Platinumâ€Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surfaceâ€Diffusionâ€Assisted, Solidâ€State Oriented Attachment. Advanced Materials, 2017, 29, 1703460.	11.1	102
625	Studying Dynamic Processes of Nano-sized Objects in Liquid using Scanning Transmission Electron Microscopy. Journal of Visualized Experiments, 2017, , .	0.2	6
626	Controlled growth of metallic copper nanoparticles. New Journal of Chemistry, 2017, 41, 14478-14485.	1.4	13
627	Ordered coalescence of nano-crystals in alkaline niobate ceramics with high remanent polarization. Journal of Materiomics, 2017, 3, 267-272.	2.8	8
628	Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy. Science Advances, 2017, 3, e1701160.	4.7	39
629	Building with ions: towards direct write of platinum nanostructures using in situ liquid cell helium ion microscopy. Nanoscale, 2017, 9, 12949-12956.	2.8	8
630	Competition between crystalline and icosahedral order during crystal growth in bimetallic systems. Journal of Crystal Growth, 2017, 478, 22-27.	0.7	4
631	Low-Temperature Synthesis of Near-Monodisperse Globular MoS2 Nanoparticles with Sulphur Powders. Nano, 2017, 12, 1750091.	0.5	4
632	Liquid ell Electron Microscopy of Adsorbed Polymers. Advanced Materials, 2017, 29, 1703555.	11.1	50
633	Growth and assembly of cobalt oxide nanoparticle rings at liquid nanodroplets with solid junction. Nanoscale, 2017, 9, 13915-13921.	2.8	10
634	Gold nanoparticles optical properties induced by water and an ionic liquid (bmimBF ₄) inside cationic reverse micelles. New Journal of Chemistry, 2017, 41, 13104-13113.	1.4	4
635	Easy Way To Create Stepped Surface: A Thought from Oriented Attachment. Chemistry of Materials, 2017, 29, 7653-7657.	3.2	7
636	Quantitative Analysis of Different Formation Modes of Platinum Nanocrystals Controlled by Ligand Chemistry. Nano Letters, 2017, 17, 6146-6150.	4.5	59
637	Dynamics of Templated Assembly of Nanoparticle Filaments within Nanochannels. Advanced Materials, 2017, 29, 1702682.	11.1	24
638	Electron ptychographic microscopy for three-dimensional imaging. Nature Communications, 2017, 8, 163.	5.8	89
639	Visualization of Colloidal Nanocrystal Formation and Electrode–Electrolyte Interfaces in Liquids Using TEM. Accounts of Chemical Research, 2017, 50, 1808-1817.	7.6	40
640	Reduction rate as a quantitative knob for achieving deterministic synthesis of colloidal metal nanocrystals. Chemical Science, 2017, 8, 6730-6749.	3.7	75

#	Article	IF	CITATIONS
641	Formation of Au Nanoparticles in Liquid Cell Transmission Electron Microscopy: From a Systematic Study to Engineered Nanostructures. Chemistry of Materials, 2017, 29, 10518-10525.	3.2	43
642	Transmission electron microscopy with atomic resolution under atmospheric pressures. MRS Communications, 2017, 7, 798-812.	0.8	24
643	Ionic Conductivity Measurements—A Powerful Tool for Monitoring Polyol Reduction Reactions. Langmuir, 2017, 33, 13615-13624.	1.6	6
644	Through a Window, Brightly: A Review of Selected Nanofabricated Thin-Film Platforms for Spectroscopy, Imaging, and Detection. Applied Spectroscopy, 2017, 71, 2051-2075.	1.2	36
645	Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments. Nano Letters, 2017, 17, 5171-5178.	4.5	88
646	Coalescence of Nanoclusters Analyzed by Well-Tempered Metadynamics. Comparison with Straightforward Molecular Dynamics. Journal of Chemical Theory and Computation, 2017, 13, 3874-3880.	2.3	11
647	A new route for the synthesis of a Ag nanopore–inlay–nanogap structure: integrated Ag-core@graphene-shell@Ag-jacket nanoparticles for high-efficiency SERS detection. Chemical Communications, 2017, 53, 8691-8694.	2.2	11
648	Self-Assembled Framework Formed During Lithiation of SnS ₂ Nanoplates Revealed by in Situ Electron Microscopy. Accounts of Chemical Research, 2017, 50, 1513-1520.	7.6	29
649	Insight into Nucleation and Growth of Bi _{2–<i>x</i>} Sb _{<i>x</i>} Te ₃ (<i>x</i> = 0–2) Nanoplatelets in Hydrothermal Synthesis. Chemistry of Materials, 2017, 29, 5070-5079.	3.2	8
650	Large Marks-decahedral Pd nanoparticles synthesized by a modified hydrothermal method using a homogeneous reactor. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	5
651	Applying shot boundary detection for automated crystal growth analysis during in situ transmission electron microscope experiments. Advanced Structural and Chemical Imaging, 2017, 3, 2.	4.0	4
652	Assembly and Electronic Applications of Colloidal Nanomaterials. Advanced Materials, 2017, 29, 1603895.	11.1	98
653	Tracking Nanoparticle Diffusion and Interaction during Self-Assembly in a Liquid Cell. Nano Letters, 2017, 17, 15-20.	4.5	82
654	Anisotropic Shape Changes of Silica Nanoparticles Induced in Liquid with Scanning Transmission Electron Microscopy. Small, 2017, 13, 1602466.	5.2	21
655	Polymorphism at 129 dictates metastable conformations of the human prion protein N-terminal β-sheet. Chemical Science, 2017, 8, 1225-1232.	3.7	12
656	Multistep nucleation of nanocrystals in aqueous solution. Nature Chemistry, 2017, 9, 77-82.	6.6	312
657	Anomalous Growth Rate of Ag Nanocrystals Revealed by in situ STEM. Scientific Reports, 2017, 7, 16420.	1.6	7
658	Building with lons in the Helium Ion Microscope. Microscopy and Microanalysis, 2017, 23, 260-261.	0.2	Ο

#	Article	IF	CITATIONS
659	Control of Radiation Chemistry during Liquid Cell TEM to Synthesize Transition Metal and Bimetallic Nanoparticles. Microscopy and Microanalysis, 2017, 23, 854-855.	0.2	0
660	Well-Defined Metal Nanoparticles for Electrocatalysis. Studies in Surface Science and Catalysis, 2017, , 123-148.	1.5	4
661	A Different View of Solvent Effects in Crystallization. Crystals, 2017, 7, 357.	1.0	12
662	Synthesis of Lithium Niobate Nanocrystals with Size Focusing through an Ostwald Ripening Process. Chemistry of Materials, 2018, 30, 2028-2035.	3.2	54
663	Nanoscale kinetics of asymmetrical corrosion in core-shell nanoparticles. Nature Communications, 2018, 9, 1011.	5.8	87
664	Dynamics and Removal Pathway of Edge Dislocations in Imperfectly Attached PbTe Nanocrystal Pairs: Toward Design Rules for Oriented Attachment. ACS Nano, 2018, 12, 3178-3189.	7.3	43
665	Spontaneous formation of gold nanostructures in aqueous microdroplets. Nature Communications, 2018, 9, 1562.	5.8	124
666	Liquid Cell Electron Microscopy for the Study of Growth Dynamics of Nanomaterials and Structure of Soft Matter. , 2018, , 1-31.		4
667	In Situ X-Ray Absorption Spectroscopy to Study Growth of Nanoparticles. , 2018, , 189-222.		3
668	Spatially dependent dose rate in liquid cell transmission electron microscopy. Nanoscale, 2018, 10, 7702-7710.	2.8	44
669	Oriented attachment growth of hundred-nanometer-size LaTaON ₂ single crystals in molten salts for enhanced photoelectrochemical water splitting. Journal of Materials Chemistry A, 2018, 6, 7706-7713.	5.2	26
670	A novel method for the detection of silver ions with carbon dots: Excellent selectivity, fast response, low detection limit and good applicability. Sensors and Actuators B: Chemical, 2018, 267, 627-635.	4.0	48
671	<i>In situ</i> fabrication of silver-based nanostructures using electron beam. CrystEngComm, 2018, 20, 2227-2232.	1.3	5
672	Quantitative Identification of Basic Growth Channels for Formation of Monodisperse Nanocrystals. Journal of the American Chemical Society, 2018, 140, 5474-5484.	6.6	39
673	Theory of the spatial resolution of (scanning) transmission electron microscopy in liquid water or ice layers. Ultramicroscopy, 2018, 187, 113-125.	0.8	76
674	In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. Nature Communications, 2018, 9, 421.	5.8	171
675	Ice Melting to Release Reactants in Solution Syntheses. Angewandte Chemie - International Edition, 2018, 57, 3354-3359.	7.2	36
676	Ice Melting to Release Reactants in Solution Syntheses. Angewandte Chemie, 2018, 130, 3412-3417.	1.6	15

#	Article	IF	CITATIONS
677	Dish-like higher-ordered palladium nanostructures through metal ion-ligand complexation. Nano Research, 2018, 11, 3442-3452.	5.8	18
678	Elucidating the Formation Mechanisms of Silver Nanoparticles from a Comprehensive Simulation Based on First-Principles Calculations. Journal of Physical Chemistry C, 2018, 122, 1333-1344.	1.5	3
679	Silver Nanocube and Nanobar Growth via Anisotropic Monomer Addition and Particle Attachment Processes. Langmuir, 2018, 34, 1466-1472.	1.6	13
680	In Situ Observation of the Growth of ZnO Nanostructures Using Liquid Cell Electron Microscopy. Journal of Physical Chemistry C, 2018, 122, 875-879.	1.5	8
681	Freeze the Moment: High Speed Capturing of Weakly Bonded Dynamic Nanoparticle Assemblies in Solution by Ag Ion Soldering. Small, 2018, 14, 1703303.	5.2	7
682	Tuning Precursor Reactivity toward Nanometer-Size Control in Palladium Nanoparticles Studied by in Situ Small Angle X-ray Scattering. Chemistry of Materials, 2018, 30, 1127-1135.	3.2	43
683	Pd–Pt nanoalloy transformation pathways at the atomic scale. Materials Today Nano, 2018, 1, 41-46.	2.3	21
684	Nucleation and phase transformation pathways in electrolyte solutions investigated by in situ microscopy techniques. Current Opinion in Colloid and Interface Science, 2018, 34, 74-88.	3.4	19
685	Nanoparticle Interactions Guided by Shapeâ€Đependent Hydrophobic Forces. Advanced Materials, 2018, 30, e1707077.	11.1	42
686	Unusual Crystallization Behavior Close to the Glass Transition. Physical Review Letters, 2018, 120, 115701.	2.9	32
687	Core-shell structured mZVI/Ca(OH)2 particle: Morphology, aggregation and corrosion. Journal of Colloid and Interface Science, 2018, 510, 199-206.	5.0	6
688	Influence of Cetyltrimethylammonium Bromide on Gold Nanocrystal Formation Studied by In Situ Liquid Cell Scanning Transmission Electron Microscopy. Journal of Physical Chemistry C, 2018, 122, 2350-2357.	1.5	14
689	Observation of luminescent gold nanoclusters using one-step syntheses from wool keratin and silk fibroin effect. European Polymer Journal, 2018, 99, 1-8.	2.6	10
690	In Situ Probing of the Particleâ€Mediated Mechanism of WO ₃ â€Networked Structures Grown inside Confined Mesoporous Channels. Small, 2018, 14, 1702565.	5.2	5
691	Quantitative Modeling of Kinetically Controlled Nanocrystal Synthesis with Liquid Cell Electron Microscopy. Microscopy and Microanalysis, 2018, 24, 280-281.	0.2	0
692	Liquid Cell TEM and Automated Image Analysis for Nanoparticle Growth Study. Microscopy and Microanalysis, 2018, 24, 1680-1681.	0.2	1
694	Antiphase boundaries in truncated octahedron-shaped Zn-doped magnetite nanocrystals. Journal of Materials Chemistry C, 2018, 6, 12800-12807.	2.7	9
695	Synthesis, Mass Spectrometry, and Atomic Structural Analysis of Au _{â^1⁄42000} (SR) _{â^1⁄4290} Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 26733-26738.	1.5	20

#	Article	IF	CITATIONS
696	Early Formation Pathways of Surfactant Micelle Directed Ultrasmall Silica Ring and Cage Structures. Journal of the American Chemical Society, 2018, 140, 17343-17348.	6.6	18
697	Reduced Radiation Damage in Transmission Electron Microscopy of Proteins in Graphene Liquid Cells. Nano Letters, 2018, 18, 7435-7440.	4.5	68
698	Unexpected Homogeneous Bubble Nucleation near a Solid–Liquid Interface. Journal of Physical Chemistry C, 2018, 122, 28712-28716.	1.5	7
699	Rational Design of an Amphiphilic Coordination Cage-Based Emulsifier. Journal of the American Chemical Society, 2018, 140, 17384-17388.	6.6	42
700	Spontaneous Reshaping and Splitting of AgCl Nanocrystals under Electron Beam Illumination. Small, 2018, 14, e1803231.	5.2	10
701	In Situ Transmission Electron Microscopy Explores a New Nanoscale Pathway for Direct Gypsum Formation in Aqueous Solution. ACS Applied Nano Materials, 2018, 1, 5430-5440.	2.4	22
702	Dynamics of Nanoscale Dendrite Formation in Solution Growth Revealed Through in Situ Liquid Cell Electron Microscopy. Nano Letters, 2018, 18, 6427-6433.	4.5	38
703	Co ²⁺ -Doping of Magic-Sized CdSe Clusters: Structural Insights via Ligand Field Transitions. Nano Letters, 2018, 18, 7350-7357.	4.5	21
704	Biocompatibility of Magnetic Resonance Imaging Nanoprobes Improved by Transformable Gadolinium Oxide Nanocoils. Journal of the American Chemical Society, 2018, 140, 14211-14216.	6.6	41
705	Direct in Situ Observation and Analysis of the Formation of Palladium Nanocrystals with High-Index Facets. Nano Letters, 2018, 18, 7004-7013.	4.5	42
706	Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations. Nature Communications, 2018, 9, 4485.	5.8	37
707	In situ Formation of Metal Nanoparticles through Electron Beam Irradiation: Modeling Real Materials from First-Principles Calculations. Journal of Material Science & Engineering, 2018, 07, .	0.2	8
708	Quantifying the Nucleation and Growth Kinetics of Electron Beam Nanochemistry with Liquid Cell Scanning Transmission Electron Microscopy. Chemistry of Materials, 2018, 30, 7727-7736.	3.2	61
709	Effects of Ionic Strength, Salt, and pH on Aggregation of Boehmite Nanocrystals: Tumbler Small-Angle Neutron and X-ray Scattering and Imaging Analysis. Langmuir, 2018, 34, 15839-15853.	1.6	25
710	Investigation on the Nucleation Stage of Palladium Nanoparticles Using a Microfluidic Droplet Generator Integrated with In Situ Solâ€Gel Quencher. Small, 2018, 14, e1802851.	5.2	7
711	Unravelling the Mechanisms of Gold–Silver Core–Shell Nanostructure Formation by in Situ TEM Using an Advanced Liquid Cell Design. Nano Letters, 2018, 18, 7222-7229.	4.5	57
712	In Situ Liquid Cell TEM Reveals Bridge-Induced Contact and Fusion of Au Nanocrystals in Aqueous Solution. Nano Letters, 2018, 18, 6551-6556.	4.5	68
713	Palladium nanoparticle formation processes in fluoropolymers by thermal decomposition of organometallic precursors. Physical Chemistry Chemical Physics, 2018, 20, 24389-24398.	1.3	10

#	Article	IF	CITATIONS
714	Precision at the nanoscale: on the structure and property evolution of gold nanoclusters. Pure and Applied Chemistry, 2018, 90, 1409-1427.	0.9	24
715	Studies of surface of metal nanoparticles in a flowing liquid with XPS. Chemical Communications, 2018, 54, 9981-9984.	2.2	9
716	Growth mechanism of core–shell PtNi–Ni nanoparticles using in situ transmission electron microscopy. Nanoscale, 2018, 10, 11281-11286.	2.8	15
717	All-optical multi-channel switching at telecommunication wavelengths based on tunable plasmon-induced transparency. Optics Communications, 2018, 425, 196-203.	1.0	43
718	Surface Chemistry Affects the Efficacy of the Hydration Force between Two ZnO(101Ì0) Surfaces. Journal of Physical Chemistry C, 2018, 122, 12259-12266.	1.5	16
719	X-ray Photoelectron Spectroscopy Studies of Nanoparticles Dispersed in Static Liquid. Langmuir, 2018, 34, 9606-9616.	1.6	11
720	Windowless Observation of Evaporation-Induced Coarsening of Au–Pt Nanoparticles in Polymer Nanoreactors. Journal of the American Chemical Society, 2018, 140, 7213-7221.	6.6	10
721	In Situ Time-Resolved X-ray Absorption Fine Structure and Small Angle X-ray Scattering Revealed an Unexpected Phase Structure Transformation during the Growth of Nickel Phosphide Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 16397-16405.	1.5	6
722	Effect of crystallization of settled aluminum hydroxide precipitate on "dissolved Al― Water Research, 2018, 143, 346-354.	5.3	29
723	Radiation damage during <i>in situ</i> electron microscopy of DNA-mediated nanoparticle assemblies in solution. Nanoscale, 2018, 10, 12674-12682.	2.8	14
724	Vibrational Spectroscopy of Water with High Spatial Resolution. Advanced Materials, 2018, 30, e1802702.	11.1	45
725	Experimental measurement of the diamond nucleation landscape reveals classical and nonclassical features. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8284-8289.	3.3	37
726	Real-Time Imaging of Au–Ag Core-Shell Nanoparticles Formation. Springer Theses, 2018, , 97-112.	0.0	0
727	Calcium hydroxide coating on highly reactive nanoscale zero-valent iron for in situ remediation application. Chemosphere, 2018, 207, 715-724.	4.2	5
728	Direct Visualization of Photomorphic Reaction Dynamics of Plasmonic Nanoparticles in Liquid by Four-Dimensional Electron Microscopy. Journal of Physical Chemistry Letters, 2018, 9, 4045-4052.	2.1	10
729	Influence of PEG Stoichiometry on Structure-Tuned Formation of Self-Assembled Submicron Nickel Particles. Materials, 2018, 11, 222.	1.3	1
730	Longer-Lasting Electron-Based Microscopy of Single Molecules in Aqueous Medium. ACS Nano, 2018, 12, 8572-8578.	7.3	24
731	<i>In situ</i> study of nucleation and growth dynamics of Au nanoparticles on MoS ₂ nanoflakes. Nanoscale, 2018, 10, 15809-15818.	2.8	38

#	Article	IF	Citations
732	Shape control in the synthesis of colloidal semiconductor nanocrystals. , 2018, , 37-54.		5
733	New Strategies for Probing Energy Systems with In Situ Liquid-Phase Transmission Electron Microscopy. ACS Energy Letters, 2018, 3, 1269-1278.	8.8	33
734	Double-tilt in situ TEM holder with ultra-high stability. Ultramicroscopy, 2018, 192, 1-6.	0.8	8
736	Hierarchically structured 2D silver sheets with fractal network. Journal of Materiomics, 2018, 4, 121-128.	2.8	6
737	Unraveling Kinetically-Driven Mechanisms of Gold Nanocrystal Shape Transformations Using Graphene Liquid Cell Electron Microscopy. Nano Letters, 2018, 18, 5731-5737.	4.5	64
738	Direct Visualization of Solution-based Nanofabrication Processes with In Situ TEM: Chemical Wet-etching and Solution-based Cleaning/Drying of High-Aspect-Ratio Nanostructures. Microscopy and Microanalysis, 2018, 24, 276-277.	0.2	0
739	In Situ Atomic‧cale Study of Particleâ€Mediated Nucleation and Growth in Amorphous Bismuth to Nanocrystal Phase Transformation. Advanced Science, 2018, 5, 1700992.	5.6	74
740	<i>In Situ</i> Kinetic and Thermodynamic Growth Control of Au–Pd Core–Shell Nanoparticles. Journal of the American Chemical Society, 2018, 140, 11680-11685.	6.6	66
741	Constant-rate dissolution of InAs nanowires in radiolytic water observed by <i>in situ</i> liquid cell TEM. Nanoscale, 2018, 10, 19733-19741.	2.8	28
742	Real-Time Atomic Scale Observation of Surface-Induced Crystallization of a Bismuth Nanodroplet by Stepwise Ordering Mechanism. Crystal Growth and Design, 2018, 18, 5808-5815.	1.4	6
743	Investigation of In Situ Radiation Effects in Liquid Cell Electron Microscopy. Microscopy and Microanalysis, 2018, 24, 1980-1981.	0.2	0
744	Nanodendrites of platinum-group metals for electrocatalytic applications. Nano Research, 2018, 11, 6111-6140.	5.8	54
745	In Situ Techniques for Probing Kinetics and Mechanism of Hollowing Nanostructures through Direct Chemical Transformations. Small Methods, 2018, 2, 1800165.	4.6	13
746	Stateâ€ofâ€ŧheâ€Art and Future Prospects for Atomically Thin Membranes from 2D Materials. Advanced Materials, 2018, 30, e1801179.	11.1	79
747	Nanoparticle Manufacturing – Heterogeneity through Processes to Products. ACS Applied Nano Materials, 2018, 1, 4358-4385.	2.4	68
748	Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10, 12871-12934.	2.8	1,115
749	Diverse Physical States of Amorphous Precursors in Zeolite Synthesis. Industrial & Engineering Chemistry Research, 2018, 57, 8460-8471.	1.8	45
750	Controlled synthesis of highly-branched plasmonic gold nanoparticles through peptoid engineering. Nature Communications, 2018, 9, 2327.	5.8	74

#	Article	IF	CITATIONS
751	Nanoparticle Immobilization for Controllable Experiments in Liquid-Cell Transmission Electron Microscopy. ACS Applied Materials & amp; Interfaces, 2018, 10, 22801-22808.	4.0	18
752	Non-monotonic variations of the nucleation free energy in a glass-forming ultra-soft particles fluid. Soft Matter, 2018, 14, 5977-5985.	1.2	1
753	Nanodiagnostics in microbiology and dentistry. , 2018, , 391-419.		10
754	Theories of nanoparticle and nanostructure formation in liquid phase. , 2018, , 597-619.		8
755	Nahinfrarotaktive Bleichalkogenidâ€Quantenpunkte: Herstellung, postsynthetischer Ligandenaustausch und Anwendungen in Solarzellen. Angewandte Chemie, 2019, 131, 5256-5279.	1.6	4
756	Nearâ€Infrared Active Lead Chalcogenide Quantum Dots: Preparation, Postâ€Synthesis Ligand Exchange, and Applications in Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 5202-5224.	7.2	86
757	Liquid Pockets Encapsulated in MoS2 Liquid Cells. Microscopy and Microanalysis, 2019, 25, 1406-1407.	0.2	3
758	Controlling the spatio-temporal dose distribution during STEM imaging by subsampled acquisition: In-situ observations of kinetic processes in liquids. Applied Physics Letters, 2019, 115, 063102.	1.5	27
759	Understanding the Ensemble of Growth Behaviors of Sub-10-nm Silver Nanorods Using in Situ Liquid Cell Transmission Electron Microscopy. Journal of Physical Chemistry C, 2019, 123, 21257-21264.	1.5	12
760	Trimetallic palladium–copper–cobalt alloy wavy nanowires improve ethanol electrooxidation in alkaline medium. Nanoscale, 2019, 11, 19448-19454.	2.8	29
761	Growth Kinetics of Individual Au Spiky Nanoparticles Using Liquid-Cell Transmission Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 12601-12609.	6.6	19
762	Infrared Nanospectroscopy at the Graphene–Electrolyte Interface. Nano Letters, 2019, 19, 5388-5393.	4.5	55
763	Atomic-scale dynamic observation reveals temperature-dependent multistep nucleation pathways in crystallization. Nanoscale Horizons, 2019, 4, 1302-1309.	4.1	17
764	Shaping well-defined noble-metal-based nanostructures for fabricating high-performance electrocatalysts: advances and perspectives. Inorganic Chemistry Frontiers, 2019, 6, 2582-2618.	3.0	51
765	Nanoscale Mapping of Nonuniform Heterogeneous Nucleation Kinetics Mediated by Surface Chemistry. Journal of the American Chemical Society, 2019, 141, 13516-13524.	6.6	29
766	Strong stress-composition coupling in lithium alloy nanoparticles. Nature Communications, 2019, 10, 3428.	5.8	13
767	Study of Crystallization and Coalescence of Nanocrystals in Amorphous Glass at High Temperature. Inorganic Chemistry, 2019, 58, 9500-9504.	1.9	8
768	Single-Particle Dynamic Light Scattering: Shapes of Individual Nanoparticles. Nano Letters, 2019, 19, 5530-5536.	4.5	21

#	Article	IF	CITATIONS
769	Measurement Challenges in Dynamic and Nonequilibrium Nanoscale Systems. Analytical Chemistry, 2019, 91, 13324-13336.	3.2	6
770	Effect of Size, Coverage, and Dispersity on the Potential-Controlled Ostwald Ripening of Metal Nanoparticles. Langmuir, 2019, 35, 16416-16426.	1.6	30
771	In Situ Transmission Electron Microscopy Study of Nanocrystal Formation for Electrocatalysis. ChemNanoMat, 2019, 5, 1439-1455.	1.5	14
772	High-Resolution Analysis of Small Silver Clusters by Analytical Ultracentrifugation. Journal of Physical Chemistry Letters, 2019, 10, 6558-6564.	2.1	12
773	In Situ Liquid Cell TEM Studies on Etching and Growth Mechanisms of Gold Nanoparticles at a Solid–Liquid–Gas Interface. Advanced Materials Interfaces, 2019, 6, 1901027.	1.9	23
774	Real time imaging of two-dimensional iron oxide spherulite nanostructure formation. Nano Research, 2019, 12, 2889-2893.	5.8	8
775	Ligand-Mediated Nanocluster Formation with Classical and Autocatalytic Growth. Journal of Physical Chemistry C, 2019, 123, 29954-29963.	1.5	6
776	Conductive Copper Niobate: Superior Li ⁺ â€Storage Capability and Novel Li ⁺ â€Transport Mechanism. Advanced Energy Materials, 2019, 9, 1902174.	10.2	99
777	Spatially Mapping Heterogeneous Nucleation Kinetics of Silver Nanocrystals with Liquid Cell Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2019, 25, 1422-1423.	0.2	1
778	Self-assembling peptides imaged by correlated liquid cell transmission electron microscopy and MALDI-imaging mass spectrometry. Nature Communications, 2019, 10, 4837.	5.8	56
779	Growth Dynamics of Gallium Nanodroplets Driven by Thermally Activated Surface Diffusion. Journal of Physical Chemistry Letters, 2019, 10, 5082-5089.	2.1	3
780	Translatable Research Group-Based Undergraduate Research Program for Lower-Division Students. Journal of Chemical Education, 2019, 96, 1881-1890.	1.1	14
781	Porosity controls the catalytic activity of platinum nanoparticles. Physical Chemistry Chemical Physics, 2019, 21, 20415-20421.	1.3	17
782	Shape-controlled synthesis and <i>in situ</i> characterisation of anisotropic Au nanomaterials using liquid cell transmission electron microscopy. Nanoscale, 2019, 11, 16801-16809.	2.8	9
783	Facile Universal Mass Production Strategy to Sub-3 nm Monodisperse Nanocrystals of Transition-Metal Oxides and Their Excellent Cyclability for Li-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 37867-37874.	4.0	23
784	<i>In situ</i> electron microscopy of the self-assembly of single-stranded DNA-functionalized Au nanoparticles in aqueous solution. Nanoscale, 2019, 11, 34-44.	2.8	14
785	Investigation of the magnetosome biomineralization in magnetotactic bacteria using graphene liquid cell – transmission electron microscopy. Nanoscale, 2019, 11, 698-705.	2.8	29
786	Dynamics of amphiphilic block copolymers in an aqueous solution: direct imaging of micelle formation and nanoparticle encapsulation. Nanoscale, 2019, 11, 2299-2305.	2.8	40

#	Article	IF	CITATIONS
787	Probing the dynamics of nanoparticle formation from a precursor at atomic resolution. Science Advances, 2019, 5, eaau9590.	4.7	40
788	Formation of nanosuspensions in bottom-up approach: theories and optimization. DARU, Journal of Pharmaceutical Sciences, 2019, 27, 451-473.	0.9	51
789	Cashew nut shell: a potential bio-resource for the production of bio-sourced chemicals, materials and fuels. Green Chemistry, 2019, 21, 1186-1201.	4.6	75
790	Ultralow-temperature photochemical synthesis of atomically dispersed Pt catalysts for the hydrogen evolution reaction. Chemical Science, 2019, 10, 2830-2836.	3.7	82
791	In Situ Transmission Electron Microscopy Studies of Electrochemical Reaction Mechanisms in Rechargeable Batteries. Electrochemical Energy Reviews, 2019, 2, 467-491.	13.1	30
792	Liquid-Cell Electron Tomography of Biological Systems. Nano Letters, 2019, 19, 6734-6741.	4.5	29
793	Observing the Growth of Pb ₃ O ₄ Nanocrystals by in Situ Liquid Cell Transmission Electron Microscopy. ACS Applied Materials & Interfaces, 2019, 11, 24478-24484.	4.0	18
794	A novel sample preparation method on CeO2 nanoparticles with TEM grid embedded liquid CO2 displacement and supercritical CO2 drying for microscopic analysis. Journal of Supercritical Fluids, 2019, 152, 104559.	1.6	3
795	High flow rate nanofluidics for <i>in-liquid</i> electron microscopy and diffraction. Nanotechnology, 2019, 30, 395703.	1.3	13
796	In Situ Analysis of Growth Behaviors of Cu ₂ O Nanocubes in Liquid Cell Transmission Electron Microscopy. Analytical Chemistry, 2019, 91, 9665-9672.	3.2	9
797	Observing the colloidal stability of iron oxide nanoparticles <i>in situ</i> . Nanoscale, 2019, 11, 13098-13107.	2.8	30
798	Direct transmission electron microscopy observation of the oriented edge-attachment processes between single-layer graphene flakes. CrystEngComm, 2019, 21, 4042-4047.	1.3	1
799	In Situ Transmission Electron Microscopy for Energy Materials and Devices. Advanced Materials, 2019, 31, e1900608.	11.1	95
800	Visualization of facet-dependent pseudo-photocatalytic behavior of TiO2 nanorods for water splitting using In situ liquid cell TEM. Nano Energy, 2019, 62, 507-512.	8.2	44
801	Nanoparticle Characterization: What to Measure?. Advanced Materials, 2019, 31, e1901556.	11.1	216
802	Reshaping, Intermixing, and Coarsening for Metallic Nanocrystals: Nonequilibrium Statistical Mechanical and Coarse-Grained Modeling. Chemical Reviews, 2019, 119, 6670-6768.	23.0	50
803	Synthesis of Metallic Nanocrystals: From Noble Metals to Base Metals. Materials, 2019, 12, 1497.	1.3	14
804	Real-time imaging of activation and degradation of carbon supported octahedral Pt–Ni alloy fuel cell catalysts at the nanoscale using <i>in situ</i> electrochemical liquid cell STEM. Energy and Environmental Science, 2019, 12, 2476-2485.	15.6	146

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
805	Automating material image analysis for material discovery. MRS Communications, 2019, 9, 545-555.	0.8	21
806	Discovery of and Insights into DNA "Codes―for Tunable Morphologies of Metal Nanoparticles. Small, 2019, 15, 1900975.	5.2	37
807	Metal-support interaction controlled migration and coalescence of supported particles. Science China Technological Sciences, 2019, 62, 762-772.	2.0	11
808	Oriented attachment growth of monocrystalline cuprous oxide nanowires in pure water. Nanoscale Advances, 2019, 1, 2174-2179.	2.2	3
809	In Situ Observations of Shell Growth and Oxidative Etching Behaviors of Pd Nanoparticles in Solutions by Liquid Cell Transmission Electron Microscopy. Small, 2019, 15, 1900050.	5.2	18
810	Probing the degradation of carbon nanotubes in aqueous solution by liquid cell transmission electron microscopy. Carbon, 2019, 148, 481-486.	5.4	8
811	Molecular-Level Understanding of Continuous Growth from Iron-Oxo Clusters to Iron Oxide Nanoparticles. Journal of the American Chemical Society, 2019, 141, 7037-7045.	6.6	58
812	Toward Phase and Catalysis Control: Tracking the Formation of Intermetallic Nanoparticles at Atomic Scale. CheM, 2019, 5, 1235-1247.	5.8	45
813	Gold Nanocrystal Etching as a Means of Probing the Dynamic Chemical Environment in Graphene Liquid Cell Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 4428-4437.	6.6	65
814	New approach to electron microscopy imaging of gel nanocomposites in situ. Micron, 2019, 120, 104-112.	1.1	2
815	An extreme-condition model for quantifying growth kinetics of colloidal metal nanoparticles. Nano Research, 2019, 12, 1339-1345.	5.8	10
816	MoS ₂ Liquid Cell Electron Microscopy Through Clean and Fast Polymer-Free MoS ₂ Transfer. Nano Letters, 2019, 19, 1788-1795.	4.5	45
817	Liquid electron microscopy: then, now and future. Applied Microscopy, 2019, 49, 9.	0.8	4
818	Refocusing <i>in Situ</i> Electron Microscopy: Moving beyond Visualization of Nanoparticle Self-Assembly To Gain Practical Insights into Advanced Material Fabrication. ACS Nano, 2019, 13, 12272-12279.	7.3	10
819	Monitoring chemical reactions in liquid media using electron microscopy. Nature Reviews Chemistry, 2019, 3, 624-637.	13.8	62
820	Cryogenic specimens for nanoscale characterization of solid–liquid interfaces. MRS Bulletin, 2019, 44, 949-955.	1.7	12
821	Characterising porosity in platinum nanoparticles. Nanoscale, 2019, 11, 17791-17799.	2.8	17
822	Tunable electronic properties by ligand coverage control in PbS nanocrystal assemblies. Nanoscale, 2019, 11, 20467-20474.	2.8	15

ARTICLE IF CITATIONS Controlled synthesis of cobalt nanocrystals on the carbon spheres for enhancing Fischerâ€"Tropsch 823 11 7.1 synthesis performance. Journal of Energy Chemistry, 2019, 33, 67-73. Dynamic behavior of nanoscale liquids in graphene liquid cells revealed by in situ transmission 824 1.1 electron microscopy. Micron, 2019, 116, 22-29. Dynamic Optimization and Nonâ€linear Model Predictive Control to Achieve Targeted Particle 825 0.4 11 Morphologies. Chemie-Ingenieur-Technik, 2019, 91, 323-335. Resolution and aberration correction in liquid cell transmission electron microscopy. Nature 826 Reviews Materials, 2019, 4, 61-78. Primary cultured neuronal networks and type 2 diabetes model mouse fatty liver tissues in aqueous liquid observed by atmospheric SEM (ASEM): Staining preferences of metal solutions. Micron, 2019, 118, 827 1.1 10 9-21 Amorphous-Phase-Mediated Crystallization of Ni Nanocrystals Revealed by High-Resolution 6.6 Liquid-Phase Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 763-768. 829 Synthesis and Assembly. SpringerBriefs in Materials, 2019, , 7-51. 0.1 0 Addressing some of the technical challenges associated with liquid phase S/TEM studies of particle 830 1.1 24 nucleation, growth and assembly. Micron, 2019, 118, 35-42. Formation of gold nanoparticles in a free-standing ionic liquid triggered by heat and electron 831 1.1 14 irradiation. Micron, 2019, 117, 16-21. Recent progress in the synthesis of inorganic particulate materials using microfluidics. Journal of 2.7 the Taiwan Institute of Chemical Engineers, 2019, 98, 2-19. A welding phenomenon of dissimilar nanoparticles in dispersion. Nature Communications, 2019, 10, 219. 833 5.818 Colloidal nanocrystals for heterogeneous catalysis. Nano Today, 2019, 24, 15-47. 834 6.2 98 Quantitative Measure of the Size Dispersity in Ultrasmall Fluorescent Organic–Inorganic Hybrid Coreâ€"Shell Silica Nanoparticles by Small-Angle X-ray Scattering. Chemistry of Materials, 2019, 31, 835 3.2 18 643-657. Colloidal Nanocrystals as Building Blocks for Well-Defined Heterogeneous Catalysts. Chemistry of Materials, 2019, 31, 576-596. 3.2 Ion sensitive field effect transistor based on graphene and ionophore hybrid membrane for phosphate 837 1.2 8 detection. Microsystem Technologies, 2019, 25, 3357-3364. In Situ TEM Study of the Degradation of PbSe Nanocrystals in Air. Chemistry of Materials, 2019, 31, 190-199. Imaging of soft materials using in situ liquid-cell transmission electron microscopy. Journal of 839 0.7 23 Physics Condensed Matter, 2019, 31, 103001. Recent Progress of In Situ Transmission Electron Microscopy for Energy Materials. Advanced 840 11.1 Materials, 2020, 32, e1904094.

#	Article	IF	CITATIONS
841	New opportunities in transmission electron microscopy of polymers. Materials Science and Engineering Reports, 2020, 139, 100516.	14.8	34
842	The Structure of Subâ€nm Platinum Clusters at Elevated Temperatures. Angewandte Chemie - International Edition, 2020, 59, 839-845.	7.2	29
843	Growth of Supported Gold Nanoparticles in Aqueous Phase Studied by in Situ Transmission Electron Microscopy. Journal of Physical Chemistry C, 2020, 124, 2202-2212.	1.5	19
844	A unique pathway of PtNi nanoparticle formation observed with liquid cell transmission electron microscopy. Nanoscale, 2020, 12, 1414-1418.	2.8	7
845	Synthesis and characterization of size controlled alloy nanoparticles. Physical Sciences Reviews, 2020, 5, .	0.8	1
846	The Structure of Subâ€nm Platinum Clusters at Elevated Temperatures. Angewandte Chemie, 2020, 132, 849-855.	1.6	7
847	Observation of the interactions of silver nanoparticles (AgNPs) mediated by acid in the aquatic matrices using in-situ liquid cell transmission electron microscopy. Analytica Chimica Acta, 2020, 1104, 47-52.	2.6	1
848	In Situ Transmission Electron Microscopy on Energyâ€Related Catalysis. Advanced Energy Materials, 2020, 10, 1902105.	10.2	78
849	Nonclassical Nucleation. ACS Symposium Series, 2020, , 19-46.	0.5	24
850	Nonclassical Crystallization Observed by Liquid-Phase Transmission Electron Microscopy. ACS Symposium Series, 2020, , 115-146.	0.5	4
851	Revealing Nonclassical Nucleation Pathways Using Cryogenic Electron Microscopy. ACS Symposium Series, 2020, , 147-200.	0.5	3
852	Exploring Particle Aggregation Using Small Angle Scattering Techniques. ACS Symposium Series, 2020, , 201-257.	0.5	2
853	Insights into the Nonclassical Crystallization of M(II) in the Biomineralization Process. ACS Symposium Series, 2020, , 259-293.	0.5	1
854	Surfactant Assisted Crystallization of Porphyrin Molecules for Well-Defined Nanocrystals. ACS Symposium Series, 2020, , 311-329.	0.5	2
855	Crystallization of Ionically Bonded Organic Metal Halide Hybrids. ACS Symposium Series, 2020, , 331-346.	0.5	3
856	Atomic mechanisms of gold nanoparticle growth in ionic liquids studied by <i>in situ</i> scanning transmission electron microscopy. Nanoscale, 2020, 12, 22511-22517.	2.8	17
857	Nanoscale Cinematography of Soft Matter System under Liquid-Phase TEM. Accounts of Materials Research, 2020, 1, 41-52.	5.9	20
858	Morphological variations in Bi2S3 nanoparticles synthesized by using a single source precursor. Heliyon, 2020, 6, e04505.	1.4	28

#	Article	IF	CITATIONS
859	Progress in Mesocrystal Formation. ACS Symposium Series, 2020, , 73-96.	0.5	6
860	Intraparticle Construction of Fundamental Building Blocks for Multilevel Metal Nanoclusters Protected by Ligands. ACS Symposium Series, 2020, , 47-71.	0.5	1
861	A Perspective on Multistep Pathways of Nucleation. ACS Symposium Series, 2020, , 1-17.	0.5	17
862	Theoretical Insight into Thermodynamics of Particle-Based Crystallization. ACS Symposium Series, 2020, , 97-114.	0.5	3
863	Nucleation and Growth of Crystal on a Substrate Surface: Structure Matching at the Atomistic Level. ACS Symposium Series, 2020, , 295-310.	0.5	2
865	Nanocluster Growth and Coalescence Modulated by Ligands. Journal of Physical Chemistry C, 2020, 124, 17340-17346.	1.5	3
866	Unhindered Brownian Motion of Individual Nanoparticles in Liquid-Phase Scanning Transmission Electron Microscopy. Nano Letters, 2020, 20, 7108-7115.	4.5	40
867	Imaging electrochemically synthesized Cu2O cubes and their morphological evolution under conditions relevant to CO2 electroreduction. Nature Communications, 2020, 11, 3489.	5.8	133
868	In Situ Liquid Cell Transmission Electron Microscopy Observation of Dynamic Process of Oleic Acid Emulsion with Gold Nanorods. Journal of Physical Chemistry C, 2020, 124, 26018-26025.	1.5	5
869	Revealing nanoscale mineralization pathways of hydroxyapatite using in situ liquid cell transmission electron microscopy. Science Advances, 2020, 6, .	4.7	61
870	Nanocrystals of platinum-group metals as peroxidase mimics forin vitrodiagnostics. Chemical Communications, 2020, 56, 14962-14975.	2.2	17
871	Determining the radial distribution function of water using electron scattering: A key to solution phase chemistry. Journal of Chemical Physics, 2020, 153, 194504.	1.2	12
872	Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy. Nano Letters, 2020, 20, 8704-8710.	4.5	15
873	Enabling Narrow Emission Line Widths in Colloidal Nanocrystals through Coalescence Growth. Chemistry of Materials, 2020, 32, 7524-7534.	3.2	9
874	Advent of Plasmonic Behavior: Dynamically Tracking the Formation of Gold Nanoparticles through Nonlinear Spectroscopy. Chemistry of Materials, 2020, 32, 7327-7337.	3.2	5
875	Opportunities for Cryogenic Electron Microscopy in Materials Science and Nanoscience. ACS Nano, 2020, 14, 9263-9276.	7.3	55
876	Metal Nanocrystal Formation during Liquid Phase Transmission Electron Microscopy: Thermodynamics and Kinetics of Precursor Conversion, Nucleation, and Growth. Chemistry of Materials, 2020, 32, 7569-7581.	3.2	22
877	Tracking the Effects of Ligands on Oxidative Etching of Gold Nanorods in Graphene Liquid Cell Electron Microscopy. ACS Nano, 2020, 14, 10239-10250.	7.3	35

#	Article	IF	CITATIONS
878	From platinum atoms in molecules to colloidal nanoparticles: A review on reduction, nucleation and growth mechanisms. Advances in Colloid and Interface Science, 2020, 286, 102300.	7.0	57
879	Role of the Solvent–Surfactant Duality of Ionic Liquids in Directing Two-Dimensional Particle Assembly. Journal of Physical Chemistry C, 2020, 124, 24215-24222.	1.5	8
880	Recent advances in green synthesis and modification of inorganic nanomaterials by ionizing and non-ionizing radiation. Journal of Materials Chemistry A, 2020, 8, 23029-23058.	5.2	17
881	A Largeâ€Scale Array of Ordered Grapheneâ€Sandwiched Chambers for Quantitative Liquidâ€Phase Transmission Electron Microscopy. Advanced Materials, 2020, 32, e2002889.	11.1	19
882	Atomic mechanism of metal crystal nucleus formation in a single-walled carbon nanotube. Nature Chemistry, 2020, 12, 921-928.	6.6	58
883	Investigation of the Nucleation and Initial Growth of Nanosilica Using In Situ Small-Angle X-ray Scattering and Reactive Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2020, 124, 21853-21866.	1.5	3
884	Chemical and physical transformations of carbon-based nanomaterials observed by liquid phase transmission electron microscopy. MRS Bulletin, 2020, 45, 727-737.	1.7	8
885	Electron-beam-driven chemical processes during liquid phase transmission electron microscopy. MRS Bulletin, 2020, 45, 746-753.	1.7	38
886	Chemical and bonding analysis of liquids using liquid cell electron microscopy. MRS Bulletin, 2020, 45, 761-768.	1.7	5
887	Liquid phase transmission electron microscopy for imaging of nanoscale processes in solution. MRS Bulletin, 2020, 45, 704-712.	1.7	26
888	Nucleation, growth, and superlattice formation of nanocrystals observed in liquid cell transmission electron microscopy. MRS Bulletin, 2020, 45, 713-726.	1.7	19
889	Luminescent Colloidal InSb Quantum Dots from <i>In Situ</i> Generated Single-Source Precursor. ACS Nano, 2020, 14, 13146-13160.	7.3	28
890	In Situ Topotactic Transformation of an Interstitial Alloy for CO Electroreduction. Advanced Materials, 2020, 32, e2002382.	11.1	56
891	Quo Vadis Micro-Electro-Mechanical Systems for the Study of Heterogeneous Catalysts Inside the Electron Microscope?. Topics in Catalysis, 2020, 63, 1623-1643.	1.3	14
892	Establishing Flask-Relevant Reaction Conditions for Imaging Bimetallic Nanocrystal Formation with Liquid Phase Transmission Electron Microscopy. Microscopy and Microanalysis, 2020, 26, 2568-2570.	0.2	0
893	In Liquid Infrared Scattering Scanning Near-Field Optical Microscopy for Chemical and Biological Nanoimaging. Nano Letters, 2020, 20, 4497-4504.	4.5	31
894	Liquidâ€Phase Electron Microscopy for Soft Matter Science and Biology. Advanced Materials, 2020, 32, e2001582.	11.1	75
895	A novel method for in situ visualization of the growth kinetics, structures and behaviours of gas-phase fabricated metallic alloy nanoparticles. RSC Advances, 2020, 10, 13037-13042.	1.7	3

#	Article	IF	Citations
896	Pt–Co truncated octahedral nanocrystals: a class of highly active and durable catalysts toward oxygen reduction. Nanoscale, 2020, 12, 11718-11727.	2.8	13
897	Solventâ€Dependent Growth and Stabilization Mechanisms of Surfactantâ€Free Colloidal Pt Nanoparticles. Chemistry - A European Journal, 2020, 26, 9012-9023.	1.7	26
898	Sublimation and related thermal stability of PbSe nanocrystals with effective size control evidenced by in situ transmission electron microscopy. Nano Energy, 2020, 75, 104816.	8.2	13
899	Imaging the kinetics of anisotropic dissolution of bimetallic core–shell nanocubes using graphene liquid cells. Nature Communications, 2020, 11, 3041.	5.8	36
900	In Situ Monitoring of Particle Formation with Spectroscopic and Analytical Techniques Under Solvothermal Conditions. Chemical Engineering and Technology, 2020, 43, 879-886.	0.9	3
901	Endâ€ŧoâ€end image analysis pipeline for liquidâ€phase electron microscopy. Journal of Microscopy, 2020, 279, 242-248.	0.8	9
902	Structure and orientation effects in the coalescence of Au clusters. Nanoscale, 2020, 12, 7688-7699.	2.8	28
903	Tracking Zeolite Crystallization by Elemental Mapping. Chemistry of Materials, 2020, 32, 3278-3287.	3.2	18
904	Radially Microstructural Design of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Material toward Long-Term Cyclability and High Rate Capability at High Voltage. ACS Applied Energy Materials, 2020, 3, 6657-6669.	2.5	26
905	<i>In Situ</i> Observation of Nucleation and Crystallization of a Single Nanoparticle in Transparent Media. Journal of Physical Chemistry C, 2020, 124, 15533-15540.	1.5	9
906	Machine Learning to Reveal Nanoparticle Dynamics from Liquid-Phase TEM Videos. ACS Central Science, 2020, 6, 1421-1430.	5.3	103
907	<i>In Situ</i> Transmission Electron Microscopy Measurements of Ge Nanowire Synthesis with Liquid Metal Nanodroplets in Water. ACS Nano, 2020, 14, 2869-2879.	7.3	23
908	Direct solvent free synthesis of bare α-NiS, β-NiS and α-β-NiS composite as excellent electrocatalysts: Effect of self-capping on supercapacitance and overall water splitting activity. Scientific Reports, 2020, 10, 3260.	1.6	73
909	Tracking the atomic pathways of Pt3Ni-Ni(OH)2 core-shell structures at the gas-liquid interface by in-situ liquid cell TEM. Science China Chemistry, 2020, 63, 513-518.	4.2	12
910	Direct Atomic Simulations of Facet Formation and Equilibrium Shapes of SiC Nanoparticles. Crystal Growth and Design, 2020, 20, 2147-2152.	1.4	7
911	Visualising early-stage liquid phase organic crystal growth <i>via</i> liquid cell electron microscopy. Nanoscale, 2020, 12, 4636-4644.	2.8	29
912	Dealloying Kinetics of AgAu Nanoparticles by <i>In Situ</i> Liquid-Cell Scanning Transmission Electron Microscopy. Nano Letters, 2020, 20, 1944-1951.	4.5	47
913	Coalescence of Au Nanoparticles without Ligand Detachment. Physical Review Letters, 2020, 124, 066101.	2.9	24

#	Article	IF	CITATIONS
915	Shape-preserving amorphous-to-crystalline transformation of CaCO ₃ revealed by in situ TEM. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3397-3404.	3.3	97
916	Real-Time Visualization of Solid-Phase Ion Migration Kinetics on Nanowire Monolayer. Journal of the American Chemical Society, 2020, 142, 7968-7975.	6.6	10
917	Liquid cell transmission electron microscopy and its applications. Royal Society Open Science, 2020, 7, 191204.	1.1	78
918	Connecting particle interactions to agglomerate morphology and rheology of boehmite nanocrystal suspensions. Journal of Colloid and Interface Science, 2020, 572, 328-339.	5.0	16
919	Nanoâ€spaced Gold on Glassy Carbon Substrate for Controlling Cell Behavior. Advanced Materials Interfaces, 2020, 7, 2000238.	1.9	10
920	Enhancement of phosphate adsorption during mineral transformation of natural siderite induced by humic acid: Mechanism and application. Chemical Engineering Journal, 2020, 393, 124730.	6.6	43
921	Characterising and evidencing the effects of porosity in nano-electrochemistry. Current Opinion in Electrochemistry, 2020, 22, 35-43.	2.5	4
922	Accelerated Development of Colloidal Nanomaterials Enabled by Modular Microfluidic Reactors: Toward Autonomous Robotic Experimentation. Advanced Materials, 2021, 33, e2004495.	11.1	64
923	Liquidâ€Flowing Graphene Chipâ€Based Highâ€Resolution Electron Microscopy. Advanced Materials, 2021, 33, e2005468.	11.1	18
924	Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chemical Society Reviews, 2021, 50, 569-588.	18.7	220
925			
	A Simple Route to the Synthesis of Pt Nanobars and the Mechanistic Understanding of Symmetry Reduction. Chemistry - A European Journal, 2021, 27, 2760-2766.	1.7	5
926		1.7 5.0	5 3
926 927	Reduction. Chemistry - Á European Journal, 2021, 27, 2760-2766. Single-strand DNA-nanorod conjugates – tunable anisotropic colloids for on-demand self-assembly.		
	 Reduction. Chemistry - Á European Journal, 2021, 27, 2760-2766. Single-strand DNA-nanorod conjugates – tunable anisotropic colloids for on-demand self-assembly. Journal of Colloid and Interface Science, 2021, 586, 847-854. Growth of Colloidal Nanocrystals by Liquidâ€Like Coalescence**. Angewandte Chemie - International 	5.0	3
927	Reduction. Chemistry - Á European Journal, 2021, 27, 2760-2766. Single-strand DNA-nanorod conjugates – tunable anisotropic colloids for on-demand self-assembly. Journal of Colloid and Interface Science, 2021, 586, 847-854. Growth of Colloidal Nanocrystals by Liquidâ€Like Coalescence**. Angewandte Chemie - International Edition, 2021, 60, 6667-6672. Growth of Colloidal Nanocrystals by Liquidâ€Like Coalescence**. Angewandte Chemie, 2021, 133,	5.0 7.2	3 2
927 928	Reduction. Chemistry - Á European Journal, 2021, 27, 2760-2766. Single-strand DNA-nanorod conjugates – tunable anisotropic colloids for on-demand self-assembly. Journal of Colloid and Interface Science, 2021, 586, 847-854. Growth of Colloidal Nanocrystals by Liquidâ€Like Coalescence**. Angewandte Chemie - International Edition, 2021, 60, 6667-6672. Growth of Colloidal Nanocrystals by Liquidâ€Like Coalescence**. Angewandte Chemie, 2021, 133, 6741-6746. Investigation of triple-coalescence behaviors for comprehensively understanding the structural evolution of coalesced TiAl droplets from an atomic-level view. Journal of Alloys and Compounds,	5.0 7.2 1.6	3 2 0
927 928 929	Reduction. Chemistry - Á European Journal, 2021, 27, 2760-2766. Single-strand DNA-nanorod conjugates – tunable anisotropic colloids for on-demand self-assembly. Journal of Colloid and Interface Science, 2021, 586, 847-854. Growth of Colloidal Nanocrystals by Liquidâ€Like Coalescence**. Angewandte Chemie - International Edition, 2021, 60, 6667-6672. Growth of Colloidal Nanocrystals by Liquidâ€Like Coalescence**. Angewandte Chemie, 2021, 133, 6741-6746. Investigation of triple-coalescence behaviors for comprehensively understanding the structural evolution of coalesced TiAl droplets from an atomic-level view. Journal of Alloys and Compounds, 2021, 859, 157791. Recent Progress in Using Graphene as an Ultrathin Transparent Support for Transmission Electron	5.07.21.62.8	3 2 0 7

#	Article	IF	CITATIONS
933	Capturing the Moment of Emergence of Crystal Nucleus from Disorder. Journal of the American Chemical Society, 2021, 143, 1763-1767.	6.6	85
934	Structure Matters – Direct Inâ€situ Observation of Cluster Nucleation at Atomic Scale in a Liquid Phase. ChemNanoMat, 2021, 7, 110-116.	1.5	10
935	Recent advances of high performance magnetic iron oxide nanoparticles: Controlled synthesis, properties tuning and cancer theranostics. Nano Select, 2021, 2, 216-250.	1.9	15
936	Probing Kinetics and Mechanism of Formation of Mixed Metallic Nanoparticles in a Polymer Membrane by Galvanic Replacement between Two Immiscible Metals: Case Study of Nickel/Silver Nanoparticle Synthesis. Langmuir, 2021, 37, 1637-1650.	1.6	4
937	Generation of Nanodroplet Reactors and Their Applications in In Situ Controllable Synthesis and Transportation of Ag Nanoparticles. Advanced Science, 2021, 8, 2002672.	5.6	4
938	Developments and advances in <i>in situ</i> transmission electron microscopy for catalysis research. Catalysis Science and Technology, 2021, 11, 3634-3658.	2.1	19
939	Simulated annealing fitting: a global optimization method for quantitatively analyzing growth kinetics of colloidal Ag nanoparticles. Nanoscale Horizons, 2021, 6, 568-573.	4.1	0
940	Three-dimensional tracking of nanoparticles by dual-color position retrieval in a double-core microstructured optical fiber. Lab on A Chip, 2021, 21, 4437-4444.	3.1	2
941	Shapes and Shape Transformations of Solution-Phase Metal Particles in the Sub-nanometer to Nanometer Size Range: Progress and Challenges. Journal of Physical Chemistry C, 2021, 125, 3668-3679.	1.5	14
942	Atomic scale characterization of three-dimensional structure, magnetic properties and dynamic evolutions of materials by transmission electron microscopy. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 066801.	0.2	0
944	Metallic Nanoparticles in Heterogeneous Catalysis. Catalysis Letters, 2021, 151, 2153.	1.4	50
945	Dynamic Shape Modeling for Shape Changes. Profiles in Operations Research, 2021, , 215-239.	0.3	0
946	3D Bacterial flagella as both synthetic biotemplates and ultrathin spacers for enhanced inter-particle coupling and solar energy harvesting. Materials Horizons, 2021, 8, 2097-2105.	6.4	9
947	Graphene Liquid Cell Electron Microscopy: Progress, Applications, and Perspectives. ACS Nano, 2021, 15, 288-308.	7.3	45
948	Two-dimensional multimetallic alloy nanocrystals: recent progress and challenges. CrystEngComm, 2021, 23, 6454-6469.	1.3	8
949	The in-situ XAS study on the formation of Pd nanoparticles via thermal decomposition of palladium (II) acetate in hydroxyl functionalized ionic liquids. Journal Physics D: Applied Physics, 2021, 54, 144001.	1.3	2
950	In Situ Transmission Electron Microscopy for Studying Lithium-Ion Batteries. , 2021, , 545-569.		0
951	In-situ liquid phase transmission electron microscope and its application in nanoparticle characterization. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	1

#	Article	IF	Citations
952	Change Point Detection. Profiles in Operations Research, 2021, , 241-275.	0.3	0
953	Controlling radiolysis chemistry on the nanoscale in liquid cell scanning transmission electron microscopy. Physical Chemistry Chemical Physics, 2021, 23, 17766-17773.	1.3	15
954	Shape Transformation Mechanism of Gallium–Indium Alloyed Liquid Metal Nanoparticles. Advanced Materials Interfaces, 2021, 8, 2001874.	1.9	27
955	Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with <i>in Situ</i> Liquid-Phase Transmission Electron Microscopy Synthesis. ACS Nano, 2021, 15, 2578-2588.	7.3	25
956	In situ NMR reveals real-time nanocrystal growth evolution via monomer-attachment or particle-coalescence. Nature Communications, 2021, 12, 229.	5.8	17
957	Evolution of Anisotropic Arrow Nanostructures during Controlled Overgrowth. Advanced Functional Materials, 2021, 31, 2008639.	7.8	5
958	Observation and Control of Unidirectional Ballistic Dynamics of Nanoparticles at a Liquid–Gas Interface by 4D Electron Microscopy. ACS Nano, 2021, 15, 6801-6810.	7.3	3
959	In-situ high-resolution scanning electron microscopy observation of electrodeposition and stripping of lead in an electrochemical cell. Japanese Journal of Applied Physics, 2021, 60, 035509.	0.8	2
960	In Situ Constructing the Kinetic Roadmap of Octahedral Nanocrystal Assembly Toward Controlled Superlattice Fabrication. Journal of the American Chemical Society, 2021, 143, 4234-4243.	6.6	23
961	Observation of New Dynamics of Transitions among Intermediate Species in Crystal Evolution and Its Role in a Generic Model of Crystallization. Journal of Physical Chemistry C, 2021, 125, 7343-7349.	1.5	1
963	<i>In Situ</i> TEM of Electrochemical Incidents: Effects of Biasing and Electron Beam on Electrochemistry. ACS Omega, 2021, 6, 6537-6546.	1.6	15
964	In situ atomic-scale TEM observation of Ag nanoparticle-mediated coalescence in liquids. Applied Surface Science, 2021, 546, 149057.	3.1	4
965	In-situ FE-SEM observation of the growth behaviors of Fe particles at magmatic temperatures. Journal of Crystal Growth, 2021, 560-561, 126043.	0.7	2
967	Direct Observation of Heterogeneous Surface Reactivity and Reconstruction on Terminations of Grain Boundaries of Platinum. , 2021, 3, 622-629.		14
968	Designing Sequence-Defined Peptoids for Biomimetic Control over Inorganic Crystallization. Chemistry of Materials, 2021, 33, 3047-3065.	3.2	11
969	A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystals. Nature Communications, 2021, 12, 2023.	5.8	69
970	Atomic Mechanisms of Nanocrystallization via Cluster-Clouds in Solution Studied by Liquid-Phase Scanning Transmission Electron Microscopy. Nano Letters, 2021, 21, 2861-2869.	4.5	20
971	The studies on wet chemical etching via in situ liquid cell TEM. Ultramicroscopy, 2021, 231, 113271.	0.8	6

	Сітатіо	n Report	
#	Article	IF	CITATIONS
972	Understanding Substrate-Guided Assembly in van der Waals Epitaxy by <i>in Situ</i> Laser Crystallization within a Transmission Electron Microscope. ACS Nano, 2021, 15, 8638-8652.	7.3	7
973	Mapping and Controlling Liquid Layer Thickness in Liquidâ€Phase (Scanning) Transmission Electron Microscopy. Small Methods, 2021, 5, e2001287.	4.6	21
974	Nanoscale Chemical and Structural Analysis during <i>In Situ</i> Scanning/Transmission Electron Microscopy in Liquids. ACS Nano, 2021, 15, 10228-10240.	7.3	29
975	Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chemical Reviews, 2021, 121, 14281-14347.	23.0	34
976	Imaging, understanding, and control of nanoscale materials transformations. MRS Bulletin, 2021, 46, 443-450.	1.7	13
977	Surfactant-free synthesis of size controlled platinum nanoparticles: Insights from in situ studies. Applied Surface Science, 2021, 549, 149263.	3.1	18
978	Atomic Scale Tracking of Single Layer Oxide Formation: Selfâ€Peeling and Phase Transition in Solution. Small Methods, 2021, 5, e2001234.	4.6	8
979	Nucleation and growth in solution synthesis of nanostructures – From fundamentals to advanced applications. Progress in Materials Science, 2022, 123, 100821.	16.0	55
980	Microscopic techniques for characterisation of nanomaterials: A minireview. Materials Today: Proceedings, 2021, , .	0.9	6
981	Self-Anchored Platinum-Decorated Antimony-Doped-Tin Oxide as a Durable Oxygen Reduction Electrocatalyst. ACS Catalysis, 2021, 11, 7006-7017.	5.5	17
982	Elucidating the Role of Halides and Iron during Radiolysis-Driven Oxidative Etching of Gold Nanocrystals Using Liquid Cell Transmission Electron Microscopy and Pulse Radiolysis. Journal of the American Chemical Society, 2021, 143, 11703-11713.	6.6	11
983	Formation of Pt-Based Alloy Nanoparticles Assisted by Molybdenum Hexacarbonyl. Nanomaterials, 2021, 11, 1825.	1.9	2
984	Atomically Conformal Metal Laminations on Plasmonic Nanocrystals for Efficient Catalysis. Journal of the American Chemical Society, 2021, 143, 10582-10589.	6.6	12
985	Development of liquid cells for high resolution imaging and chemical analysis in situ with Transmission Electron Microscopy. Microscopy and Microanalysis, 2021, 27, 804-806.	0.2	0
986	Visualizing non-classical formation pathways of alloyed nanocrystals with liquid phase transmission electron microscopy. Microscopy and Microanalysis, 2021, 27, 2634-2635.	0.2	0
987	Redox Mediated Control of Electrochemical Potential in Liquid Cell Electron Microscopy. Journal of the American Chemical Society, 2021, 143, 12082-12089.	6.6	13
988	Observation of Surface Ligands-Controlled Etching of Palladium Nanocrystals. Nano Letters, 2021, 21, 6640-6647.	4.5	10
989	Nanostructured CdS Buffer Layer Fabricated with a Simple Spin oating Method for Sb ₂ S ₃ Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100337.	0.8	5

#	Article	IF	CITATIONS
991	Versatile Printing of Substantial Liquid Cells for Efficiently Imaging In Situ Liquid-Phase Dynamics. Nano Letters, 2021, 21, 6882-6890.	4.5	2
992	In-situ transmission electron microscopy for probing the dynamic processes in materials. Journal Physics D: Applied Physics, 2021, 54, 443002.	1.3	13
993	To inorganic nanoparticles via nanoclusters: Nonclassical nucleation and growth pathway. Bulletin of the Korean Chemical Society, 2021, 42, 1386-1399.	1.0	5
994	Dynamics of thin precursor film in wetting of nanopatterned surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
995	Coarsening behavior of bulk nanobubbles in water. Scientific Reports, 2021, 11, 19173.	1.6	9
996	PbS nanocrystals decorated Reduced Graphene Oxide for NIR responsive capacitive cathodes. Carbon, 2021, 182, 57-69.	5.4	8
997	Magnetic nanoparticles. , 2021, , 197-236.		6
998	The five shades of oleylamine in a morphological transition of spherical cobalt nanospheres to nanorods. Nanoscale, 2021, 13, 11289-11297.	2.8	1
999	Ar/H ₂ /O ₂ â€Controlled Growth Thermodynamics and Kinetics to Create Zeroâ€, Oneâ€, and Twoâ€Dimensional Ruthenium Nanocrystals towards Acidic Overall Water Splitting. Advanced Functional Materials, 2021, 31, 2007344.	7.8	16
1000	Detection of Pb ²⁺ traces in dispersion of Cs ₄ PbBr ₆ nanocrystals by <i>in situ</i> liquid cell transmission electron microscopy. Nanoscale, 2021, 13, 2317-2323.	2.8	2
1002	In Situ Liquid Cell Transmission Electron Microscopy Investigation on the Dissolution-Regrowth Mechanism Dominating the Shape Evolution of Silver Nanoplates. Crystal Growth and Design, 2021, 21, 1314-1322.	1.4	9
1004	Liquidâ€Phase Transmission Electron Microscopy for Studying Colloidal Inorganic Nanoparticles. Advanced Materials, 2018, 30, 1703316.	11.1	77
1005	Transmission Electron Microscopy: A Multifunctional Tool for the Atomic-scale Characterization of Nanoalloys. Engineering Materials, 2012, , 113-157.	0.3	2
1006	In Situ Transmission Electron Microscopy. Springer Handbooks, 2019, , 101-187.	0.3	17
1007	Plasma Electrochemistry: A Novel Chemical Process for the Synthesis and Assembly of Nanomaterials. Springer Series on Atomic, Optical, and Plasma Physics, 2014, , 399-425.	0.1	1
1008	New Insights in Nanoelectrodeposition: An Electrochemical Aggregative Growth Mechanism. , 2016, , 1349-1377.		4
1009	A Perspective on the Particle-Based Crystal Growth of Ferric Oxides, Oxyhydroxides, and Hydrous Oxides. , 2017, , 257-273.		10
1010	Liquid Phase TEM Investigations of Crystal Nucleation, Growth, and Transformation. , 2017, , 353-374.		9

щ		IF	CITATIONS
#	Article	IF	CITATIONS
1011	Classical and Nonclassical Theories of Crystal Growth. , 2017, , 137-154.		17
1012	In-situ Transmission Electron Microscopy. Springer Series in Materials Science, 2014, , 59-109.	0.4	1
1013	Reduction of Metal Ions in Polymer Matrices as a Condensation Method of Nanocomposite Synthesis. , 2014, , 13-89.		8
1014	Nucleation and Crystal Growth in Continuous Crystallization. , 2020, , 1-50.		24
1015	Silicon Nitride Thin Films for Nanofluidic Device Fabrication. RSC Nanoscience and Nanotechnology, 2016, , 190-236.	0.2	6
1016	Aggregation dynamics of nanoparticles at solid–liquid interfaces. Nanoscale, 2017, 9, 10044-10050.	2.8	24
1017	Direct observation of atomic-level nucleation and growth processes from an ultrathin metallic glass films. Journal of Applied Physics, 2016, 119, .	1.1	7
1018	â€~Beneficial impurities' in colloidal synthesis of surfactant coated inorganic nanoparticles. Nanotechnology, 2021, 32, 102001.	1.3	12
1019	The pure and representative types of disordered platinum nanoparticles from machine learning. Nanotechnology, 2021, 32, 095404.	1.3	8
1020	Thermally induced transformations of Au@Cu ₂ O core–shell nanoparticles into Au–Cu nanoparticles from temperature-programmed <i>in situ</i> powder X-ray diffraction. Journal of Applied Crystallography, 2019, 52, 579-586.	1.9	7
1021	Lipid-coated ZnO nanoparticles synthesis, characterization and cytotoxicity studies in cancer cell. Nano Convergence, 2020, 7, 14.	6.3	58
1022	Uncovering the Physical and Chemical Properties of Nanominerals and Mineral Nanoparticles. , 2012, , 45-74.		1
1023	Fast dynamic nonparametric distribution tracking in electron microscopic data. Annals of Applied Statistics, 2019, 13, .	0.5	6
1024	Shape- and size-controlled synthesis of noble metal nanoparticles. Advances in Materials Research (South Korea), 2014, 3, 199-216.	0.6	7
1025	Bio-reduction of Graphene Oxide: Catalytic Applications of (Reduced) GO in Organic Synthesis. Current Organic Synthesis, 2020, 17, 164-191.	0.7	9
1026	Interfacial water and catalysis. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 016803.	0.2	1
1027	Fabrication and Characterization of Dielectric Nanocube Self-Assembled Structures. Japanese Journal of Applied Physics, 2012, 51, 09LC03.	0.8	12
1028	Observations of Dense Liquid Phase-Assisted Nanocrystal Growth and Coalescence. Crystal Growth and Design, 2021, 21, 6025-6030.	1.4	3

#	Article	IF	CITATIONS
1029	In situ observation of electrochemical Ostwald ripening during sodium deposition. Nano Research, 2022, 15, 2650-2654.	5.8	16
1030	Facetâ€Dependent Surface Charge and Hydration of Semiconducting Nanoparticles at Variable pH. Advanced Materials, 2021, 33, e2106229.	11.1	33
1031	Dipeptide Nanostructure Assembly and Dynamics <i>via in Situ</i> Liquid-Phase Electron Microscopy. ACS Nano, 2021, 15, 16542-16551.	7.3	21
1032	Oriented Attachment (OA) with Solid–Solid Interface. SpringerBriefs in Materials, 2012, , 69-81.	0.1	0
1033	Electron-beam induced abnormal expansion in a silica-shelled gallium microball-nanotube structure (Retracted Article). Wuli Xuebao/Acta Physica Sinica, 2012, 61, 186102.	0.2	0
1034	TEM for Characterization of Nanowires and Nanorods. , 2014, , 195-241.		0
1035	Recent Progress and Future Directions in Studies on Localized Corrosion. Zairyo To Kankyo/ Corrosion Engineering, 2014, 63, 132-137.	0.0	0
1036	New Insights in Nano-electrodeposition: An Electrochemical Aggregative Growth Mechanism. , 2015, , 1-25.		0
1037	Liquid Phase Experiments: Describing Experiments in Liquids and the Special Requirements and Considerations for Such Experiments. , 2016, , 259-279.		0
1038	Progress in Characterization Technique of In-Situ Growth of Nanomaterials. Hans Journal of Nanotechnology, 2017, 07, 47-58.	0.1	0
1039	Electron-Beam-Induced Nanowire Assemblies. Springer Theses, 2017, , 57-65.	0.0	0
1040	Molecular Electronic Control Over Tunneling Charge Transfer Plasmons Modes. Springer Theses, 2018, , .	0.0	0
1041	Plasmonic Properties, Stability and Chemical Reactivity of Metal Nanoparticles—A Literature Review. Springer Theses, 2018, , 5-34.	0.0	0
1042	Recent Developments in Synthesis of Colloidal Quantum Dots. Journal of Korean Powder Metallurgy Institute, 2018, 25, 346-354.	0.2	0
1043	<i>In situ</i> observation of lithiation mechanism of SnO ₂ nanoparticles. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158201.	0.2	1
1044	Current Status of Liquid-cell Transmission Electron Microscopy. Ceramist, 2019, 22, 417-428.	0.0	0
1048	Bijels the Easy Way. RSC Soft Matter, 2020, , 211-245.	0.2	0
1050	Nanoparticles formed during mineral-fluid interactions. Chemical Geology, 2021, 586, 120614.	1.4	13

#	Article	IF	CITATIONS
1051	A New Pathway for the Formation of Co-aligned Hierarchical Mesocrystals. Microscopy and Microanalysis, 2020, 26, 1438-1439.	0.2	0
1052	Dynamics of the nanocrystal structure and composition in growth solutions monitored by <i>in situ</i> lab-scale X-ray diffraction. Nanoscale, 2021, 13, 19076-19084.	2.8	3
1053	Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chemical Reviews, 2022, 122, 1273-1348.	23.0	104
1054	Inâ€Situ Transmission Electron Microscopy Observation of Germanium Growth on Freestanding Graphene: Unfolding Mechanism of 3D Crystal Growth During Van der Waals Epitaxy. Small, 2022, 18, e2101890.	5.2	5
1055	In Situ Transmission Electron Microscopy Investigation of Melting/Evaporation Kinetics in Anisotropic Gold Nanoparticles. Materials, 2021, 14, 7332.	1.3	2
1056	Direct Observation of Three-Dimensional Atomic Structure of Twinned Metallic Nanoparticles and Their Catalytic Properties. Nano Letters, 2022, 22, 665-672.	4.5	17
1057	In situ transmission electron microscopy and artificial intelligence enabled data analytics for energy materials. Journal of Energy Chemistry, 2022, 68, 454-493.	7.1	33
1058	Characterization of nanomaterials dynamics with transmission electron microscope. , 2022, , .		0
1059	Oriented Attachment: A Unique Mechanism for the Colloidal Synthesis of Metal Nanostructures. ChemNanoMat, 2022, 8, .	1.5	9
1060	Automated Tools to Advance High-Resolution Imaging in Liquid. Microscopy and Microanalysis, 2022, , 1-10.	0.2	1
1061	Understanding Alkali Contamination in Colloidal Nanomaterials to Unlock Grain Boundary Impurity Engineering. Journal of the American Chemical Society, 2022, 144, 987-994.	6.6	12
1062	Fundamental study of nonclassical nucleation mechanisms in iron. Acta Materialia, 2022, 226, 117655.	3.8	6
1063	A microfluidic approach for synthesis and kinetic profiling of branched gold nanostructures. Nanoscale Horizons, 2022, 7, 288-298.	4.1	12
1064	Graphitic-like Hexagonal Phase of Alkali Halides in Quasi-Two-Dimensional Confined Space under Ambient Conditions. ACS Nano, 2022, 16, 2046-2053.	7.3	3
1065	Framing Silver Nanocrystals with a Second Metal to Enhance Shape Stability and Expand Functionality. Accounts of Materials Research, 2022, 3, 391-402.	5.9	5
1066	Real-space imaging of nanoparticle transport and interaction dynamics by graphene liquid cell TEM. Science Advances, 2021, 7, eabi5419.	4.7	13
1067	Shape Control of Colloidal Semiconductor Nanocrystals through Thermodynamically Driven Aggregative Growth. Chemistry of Materials, 2022, 34, 2484-2494.	3.2	8
1068	High-resolution STEM observation of the dynamics of Pt nanoparticles in a liquid. Japanese Journal of Applied Physics, 2022, 61, SD1021.	0.8	3

#	Article	IF	CITATIONS
1069	Mechanism of Nucleation of Gold(I) Thiolate Oligomers into Gold–Thiolate Nanoclusters. Journal of Physical Chemistry C, 2022, 126, 5980-5990.	1.5	3
1070	Identification of plasmon-driven nanoparticle-coalescence-dominated growth of gold nanoplates through nanopore sensing. Nature Communications, 2022, 13, 1402.	5.8	12
1071	Moistureâ€Induced Nonâ€Equilibrium Phase Segregation in Triple Cation Mixed Halide Perovskite Monitored by <i>In Situ</i> Characterization Techniques and Solidâ€State NMR. Energy and Environmental Materials, 2023, 6, .	7.3	7
1072	Reduction Rate as a Quantitative Identification Toward Growth Pathway and Size Control in Low-Polydisperse Colloidal Metal Nanocrystals. Journal of Physical Chemistry C, 2022, 126, 6619-6627.	1.5	0
1073	In situ visualization of hierarchical agglomeration growth during electrochemical deposition of Cu nanocrystals in an open ionic liquid cell. Materials Today Nano, 2022, 18, 100189.	2.3	3
1074	A general strategy for overcoming the trade-off between ultrasmall size and high loading of MOF-derived metal nanoparticles by millisecond pyrolysis. Nano Energy, 2022, 97, 107125.	8.2	17
1075	In Operando Closed-cell Transmission Electron Microscopy for Rechargeable Battery Characterization: Scientific Breakthroughs and Practical Limitations. Nano Energy, 2022, 96, 107083.	8.2	7
1076	Core–Shell Structured Upconversion/Leadâ€Free Perovskite Nanoparticles for Anticounterfeiting Applications. Angewandte Chemie, 2022, 134, .	1.6	3
1077	Core–Shell Structured Upconversion/Leadâ€Free Perovskite Nanoparticles for Anticounterfeiting Applications. Angewandte Chemie - International Edition, 2022, 61, e202115136.	7.2	31
1078	Multi-step atomic mechanism of platinum nanocrystals nucleation and growth revealed by in-situ liquid cell STEM. Scientific Reports, 2021, 11, 23965.	1.6	13
1079	Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects. Nano Research, 2022, 15, 3675-3694.	5.8	22
1080	Understanding the growth mechanisms of metal-based core–shell nanostructures revealed by in situ liquid cell transmission electron microscopy. Journal of Energy Chemistry, 2022, 71, 370-383.	7.1	16
1082	Metal cation substitution of halide perovskite nanocrystals. Nano Research, 2022, 15, 6522-6550.	5.8	15
1083	Graphene Membranes for Multiâ€Dimensional Electron Microscopy Imaging: Preparation, Application, and Prospect. Advanced Functional Materials, 2022, 32, .	7.8	4
1084	Tunable ultraviolet to deep blue light emission from sulfur nanodots fabricated by a controllable fission-aggregation strategy. Science China Materials, 0, , .	3.5	3
1085	Solid–liquid–gas reaction accelerated by gas molecule tunnelling-like effect. Nature Materials, 2022, 21, 859-863.	13.3	19
1086	Floating synthesis with enhanced catalytic performance via acoustic levitation processing. Ultrasonics Sonochemistry, 2022, 87, 106051.	3.8	6
1087	Particle-Based Crystallization. ACS Symposium Series, 0, , 37-73.	0.5	1

#	Article	IF	CITATIONS
1088	Recent advances in the study of colloidal nanocrystals enabled by in situ liquid-phase transmission electron microscopy. MRS Bulletin, 2022, 47, 305-313.	1.7	3
1089	Identification of a quasi-liquid phase at solid–liquid interface. Nature Communications, 2022, 13, .	5.8	15
1090	Liquid-Phase Transmission Electron Microscopy for Reliable In Situ Imaging of Nanomaterials. Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 167-191.	3.3	6
1091	Importance of Monitoring the Synthesis of Lightâ€Interacting Nanoparticles – A Review on In Situ, Ex Situ, and Online Timeâ€Resolved Studies. Advanced Optical Materials, 2022, 10, .	3.6	4
1092	In situ liquid transmission electron microscopy reveals self-assembly-driven nucleation in radiolytic synthesis of iron oxide nanoparticles in organic media. Nanoscale, 0, , .	2.8	0
1093	Coalescence dynamics of platinum group metal nanoparticles revealed by liquid-phase transmission electron microscopy. IScience, 2022, 25, 104699.	1.9	1
1094	Unveiling the Dynamic Oxidative Etching Mechanisms of Nanostructured Metals/Metallic Oxides in Liquid Media Through In Situ Transmission Electron Microscopy. Advanced Functional Materials, 2022, 32, .	7.8	7
1095	Probing Reaction Intermediates, Kinetics, and Surface Chemistry during Nanoparticle Synthesis and Assembly with Liquid Phase TEM. Microscopy and Microanalysis, 2022, 28, 1822-1823.	0.2	0
1096	Liquid-EM goes viral – visualizing structure and dynamics. Current Opinion in Structural Biology, 2022, 75, 102426.	2.6	6
1097	Atomic-Scale Tracking of Dynamic Nucleation and Growth of an Interfacial Lead Nanodroplet. Molecules, 2022, 27, 4877.	1.7	0
1098	Nearâ€Infrared Lightâ€Driven Photoredox Catalysis by Transitionâ€Metalâ€Complex Nanodots. Angewandte Chemie, 0, , .	1.6	0
1099	Nanobubbles Nucleation and Mechanistic Analysis of Ionic Liquids Aqueous Solutions by In-Situ Liquid Cell Transmission Electron Microscopy. Journal of Molecular Liquids, 2022, , 120130.	2.3	0
1100	Facile and General Method to Synthesize Pt-Based High-Entropy-Alloy Nanoparticles. ACS Nano, 2022, 16, 14017-14028.	7.3	26
1101	Insights into Heterogeneous Catalysts under Reaction Conditions by In Situ/Operando Electron Microscopy. Advanced Energy Materials, 2022, 12, .	10.2	13
1102	Nanoscale visualization of metallic electrodeposition in a well-controlled chemical environment. Nanotechnology, 2022, 33, 445702.	1.3	6
1103	Real-time evolution of up-conversion nanocrystals from tailored metastable intermediates. Nano Research, 2023, 16, 1552-1557.	5.8	1
1104	Nearâ€Infrared Lightâ€Driven Photoredox Catalysis by Transitionâ€Metalâ€Complex Nanodots. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
1105	In Situ Characterization of Carbonate/Oil/Water Interfacial Layers Using Advanced EM Techniques for Enhanced Oil Recovery. Energy & Fuels, 0, , .	2.5	0

#	Article	IF	CITATIONS
1106	Selective generation of gold nanostructures mediated by flavo-enzymes to develop optical biosensors. Biosensors and Bioelectronics, 2022, 215, 114579.	5.3	5
1107	Automated calculations for computing the sample-limited spatial resolution in (scanning) transmission electron microscopy. Ultramicroscopy, 2022, 242, 113611.	0.8	2
1108	Direct Imaging of the Atomic Mechanisms Governing the Growth and Shape of Bimetallic Pt–Pd Nanocrystals by In Situ Liquid Cell STEM. ACS Nano, 2022, 16, 14198-14209.	7.3	9
1109	Rapid thermal vapor condensation towards crystalline carbon nitride film with improved photoelectrochemical activity. Journal Physics D: Applied Physics, 2022, 55, 444001.	1.3	1
1110	Roles of TOPO Coordinating Solvent on Prepared Nano-Flower/Star and Nano-Rods Nickel Sulphides for Solar Cells Applications. Nanomaterials, 2022, 12, 3409.	1.9	2
1111	Substrate effect on phonon in graphene layers. Carbon Letters, 0, , .	3.3	1
1112	Defect generation and morphology transformation mechanism of CeO2 particles prepared by molten salt method. Ceramics International, 2023, 49, 4929-4943.	2.3	10
1113	Observation of reactions in single molecules/nanoparticles using light microscopy. Bulletin of the Korean Chemical Society, 2023, 44, 35-44.	1.0	4
1114	In-situ imaging of nucleation and growth of superlattices from nanoscale colloidal nanoparticles. Journal of Crystal Growth, 2023, 601, 126955.	0.7	4
1115	Bioinspired metal/metal oxide nanoparticles: A road map to potential applications. Materials Today Advances, 2022, 16, 100314.	2.5	39
1116	<i>In Situ</i> Kinetic Observations on Crystal Nucleation and Growth. Chemical Reviews, 2022, 122, 16911-16982.	23.0	82
1117	Fabrication of liquid cell for in situ transmission electron microscopy of electrochemical processes. Nature Protocols, 0, , .	5.5	10
1118	A thermodynamic tool for designing efficient syntheses of monodisperse and size-tuned nanocrystals. Computational Materials Science, 2023, 217, 111887.	1.4	0
1119	Metal Nanocatalyst Sintering Interrogated at Complementary Length Scales. Small, 2023, 19, .	5.2	3
1120	Colloidal Synthesis of Metal Nanocrystals: From Asymmetrical Growth to Symmetry Breaking. Chemical Reviews, 2023, 123, 3693-3760.	23.0	28
1121	Liquid cell electrochemical TEM: Unveiling the real-time interfacial reactions of advanced Li-metal batteries. Journal of Chemical Physics, 2022, 157, .	1.2	1
1122	Noble metal nanodendrites: growth mechanisms, synthesis strategies and applications. Materials Horizons, 2023, 10, 1234-1263.	6.4	9
1123	Nonclassical Nucleation and Growth of Pd Nanocrystals from Aqueous Solution Studied by In Situ Liquid Transmission Electron Microscopy. Chemistry of Materials, 2023, 35, 1201-1208.	3.2	4

	CITATION R	EPORT	
#	Article	IF	CITATIONS
1124	Electron Microscopy Studies of Soft Nanomaterials. Chemical Reviews, 2023, 123, 4051-4145.	23.0	16
1125	3D plasmonic coral nanoarchitecture paper for label-free human urine sensing and deep learning-assisted cancer screening. Biosensors and Bioelectronics, 2023, 224, 115076.	5.3	12
1126	How Do Colloidal Nanoparticles Move in a Solution under an Electric Field?: <i>In Situ</i> Light Scattering Analysis. Journal of Physical Chemistry Letters, 2023, 14, 1230-1238.	2.1	0
1127	In-Situ Liquid Cell TEM. , 2023, , 221-250.		2
1128	Introduction to In-Situ Transmission Electron Microscopy. , 2023, , 1-15.		1
1129	A contemporary look at the accuracy of the †double pulse technique' for measuring rates of crystal nucleation; molecular-kinetic and non-classical mechanisms of initial growth of the just-born crystals. Journal of Crystal Growth, 2023, 607, 127101.	0.7	2
1130	In-Situ Biasing TEM. , 2023, , 105-149.		0
1131	Effects of Size and Shape on the Tolerances for Misalignment and Probabilities for Successful Oriented Attachment of Nanoparticles. Langmuir, 2023, 39, 2985-2994.	1.6	1
1132	Direct Observation of Transient Structural Dynamics of Atomically Thin Halide Perovskite Nanowires. Journal of the American Chemical Society, 2023, 145, 4800-4807.	6.6	11
1133	Temperature Dependent Nanochemistry and Growth Kinetics Using Liquid Cell Transmission Electron Microscopy. ACS Nano, 2023, 17, 5609-5619.	7.3	5
1134	Functionalized nanoparticles: Tailoring properties through surface energetics and coordination chemistry for advanced biomedical applications. Nanoscale, 2023, 15, 6075-6104.	2.8	15
1135	EELS Studies of Cerium Electrolyte Reveal Substantial Solute Concentration Effects in Graphene Liquid Cells. Journal of the American Chemical Society, 2023, 145, 6648-6657.	6.6	5
1136	Plate-Like Colloidal Metal Nanoparticles. Chemical Reviews, 2023, 123, 3493-3542.	23.0	24
1137	Advances in the Synthesis of Halide Perovskite Single Crystals for Optoelectronic Applications. Chemistry of Materials, 2023, 35, 2683-2712.	3.2	13
1138	Oriented attachment interfaces of zeolitic imidazolate framework nanocrystals. Nanoscale, 2023, 15, 7703-7709.	2.8	5
1139	Shape-Controlled Synthesis of Platinum-Based Nanocrystals and Their Electrocatalytic Applications in Fuel Cells. Nano-Micro Letters, 2023, 15, .	14.4	19
1140	Synthesis of Large-Area GeS Thin Films with the Assistance of Pre-deposited Amorphous Nanostructured GeS Films: Implications for Electronic and Optoelectronic Applications. ACS Applied Nano Materials, 2023, 6, 6920-6928.	2.4	2
1141	Fabrication of noble metalâ ϵ "based antimicrobial nanosystems. , 2023, , 353-375.		0

#	Article	IF	CITATIONS
1142	Quantifying the Morphology Evolution of Lithium Battery Materials Using Operando Electron Microscopy. , 2023, 5, 1506-1526.		10
1152	Analytical Techniques for Characterization of Nanomaterials. Advances in Digital Crime, Forensics, and Cyber Terrorism, 2023, , 28-51.	0.4	0
1154	<i>In Situ</i> and Emerging Transmission Electron Microscopy for Catalysis Research. Chemical Reviews, 2023, 123, 8347-8394.	23.0	11
1161	2D layered materials: structures, synthesis, and electrocatalytic applications. Green Chemistry, 2023, 25, 6149-6169.	4.6	2
1162	On-chip gas reaction nanolab for <i>in situ</i> TEM observation. Lab on A Chip, 0, , .	3.1	0
1175	Dynamic Data-Driven Monitoring of Nanoparticle Self-Assembly Processes. , 2023, , 169-191.		Ο
1194	Emerging transmission electron microscopy solutions for electrocatalysts: from synthesis to deactivation. Materials Chemistry Frontiers, 2024, 8, 2078-2108.	3.2	0