Methods for Pretreatment of Lignocellulosic Biomass for Production

Industrial & amp; Engineering Chemistry Research 48, 3713-3729 DOI: 10.1021/ie801542g

Citation Report

#	Article		CITATIONS
1	Acid Hydrolysis of Cellulose as the Entry Point into Biorefinery Schemes. ChemSusChem, 2009, 2, 1096-1107.		604
2	Production of biohydrogen from hydrolyzed bagasse with thermally preheated sludge. International Journal of Hydrogen Energy, 2009, 34, 7612-7617.	3.8	52
3	Treatment of Micropollutants in Water and Wastewater. Water Intelligence Online, 0, 9, .	0.3	27
4	Cellulolytic Systems in Insects. Annual Review of Entomology, 2010, 55, 609-632.	5.7	464
5	Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Applied Microbiology and Biotechnology, 2010, 87, 847-857.	1.7	279
6	Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis. Bioresource Technology, 2010, 101, 8273-8279.	4.8	89
7	Ball Milling Pretreatment of Corn Stover for Enhancing the Efficiency of Enzymatic Hydrolysis. Applied Biochemistry and Biotechnology, 2010, 162, 1872-1880.	1.4	129
8	A High-Throughput Platform for Screening Milligram Quantities of Plant Biomass for Lignocellulose Digestibility. Bioenergy Research, 2010, 3, 93-102.	2.2	103
9	Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: Characterization of the cellulose rich fraction. Industrial Crops and Products, 2010, 32, 551-559.	2.5	132
10	Which Controls the Depolymerization of Cellulose in Ionic Liquids: The Solid Acid Catalyst or Cellulose?. ChemSusChem, 2010, 3, 266-276.	3.6	190
11	Nextâ€Generation Biofuels: Survey of Emerging Technologies and Sustainability Issues. ChemSusChem, 2010, 3, 1106-1133.	3.6	270
12	Liberation of Cellulose from the Lignin Cage: A Catalytic Pretreatment Method for the Production of Cellulosic Ethanol. ChemSusChem, 2010, 3, 1142-1145.	3.6	19
14	Labelâ€Free, Realâ€Time Monitoring of Biomass Processing with Stimulated Raman Scattering Microscopy. Angewandte Chemie - International Edition, 2010, 49, 5476-5479.	7.2	87
15	Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen. Applied Catalysis B: Environmental, 2010, 100, 184-189.	10.8	254
16	Detoxification of biomass hydrolysates by reactive membrane extraction. Journal of Membrane Science, 2010, 348, 6-12.	4.1	41
17	Periodic mesoporous organic–inorganic hybrid materials: Applications in membrane separations and adsorption. Microporous and Mesoporous Materials, 2010, 132, 1-14.	2.2	201
18	Bioconversion of corn stover hydrolysate to ethanol by a recombinant yeast strain. Fuel Processing Technology, 2010, 91, 1807-1811.	3.7	36
19	Lignocellulose pretreatment severity – relating pH to biomatrix opening. New Biotechnology, 2010, 27, 739-750.	2.4	299

#	Article	IF	CITATIONS
20	Impact of corn stover composition on hemicellulose conversion during dilute acid pretreatment and enzymatic cellulose digestibility of the pretreated solids. Bioresource Technology, 2010, 101, 674-678.	4.8	102
21	Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresource Technology, 2010, 101, 4446-4455.	4.8	187
22	Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresource Technology, 2010, 101, 9600-9604.	4.8	157
23	Rapid determination of furfural in biomass hydrolysate by full evaporation headspace gas chromatography. Journal of Chromatography A, 2010, 1217, 7616-7619.	1.8	18
24	Extrusion as a thermo-mechanical pre-treatment for lignocellulosic ethanol. Biomass and Bioenergy, 2010, 34, 1703-1710.	2.9	119
25	Enhanced ethanol production from deacetylated yellow poplar acid hydrolysate by Pichia stipitis. Bioresource Technology, 2010, 101, 4947-4951.	4.8	41
26	Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 2010, 101, 4744-4753.	4.8	860
27	Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 2010, 101, 4851-4861.	4.8	3,203
28	Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass. Bioresource Technology, 2010, 101, 5426-5430.	4.8	83
29	Effect of harvesting date on the composition and saccharification of Miscanthus x giganteus. Bioresource Technology, 2010, 101, 8224-8231.	4.8	95
31	Effect of Microwave Pretreatment on Densification of Wheat Straw. , 2010, , .		3
32	Effect of Field Harvest Method, Timing, and Storage on Enzymatic Hydrolysis of Liquid AFEX Pretreated Switchgrass. , 2010, , .		2
33	Specific energy consumption of biomass particle production and particle physical property. , 2010, , .		1
34	Enhancing Enzymatic Digestibility of Sweet Sorghum by Microwave-assisted Dilute Ammonia Pretreatment. , 2010, , .		1
35	Engineering bacterial processes for cellulosic ethanol production. Biofuels, 2010, 1, 729-743.	1.4	9
36	A Microscale Platform for Integrated Cell-Free Expression and Activity Screening of Cellulases. Journal of Proteome Research, 2010, 9, 5677-5683.	1.8	10
37	The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chemistry, 2010, 12, 672.	4.6	294
38	Quality Pulp from Mixed Softwoods as an Added Value Coproduct of a Biorefinery. Industrial & Engineering Chemistry Research, 2010, 49, 2503-2509.	1.8	12

#	Article		CITATIONS
39	Surface Characterization of Dilute Acid Pretreated Populus deltoides by ToF-SIMS. Energy & Fuels, 2010, 24, 1347-1357.	2.5	60
40	Peroxideâ^'Acetic Acid Pretreatment To Remove Bagasse Lignin Prior to Enzymatic Hydrolysis. Industrial & Engineering Chemistry Research, 2010, 49, 1473-1479.	1.8	57
41	Suitability of Canola Residue for Cellulosic Ethanol Production. Energy & Fuels, 2010, 24, 4454-4458.	2.5	10
42	Spatial Correlation of Confocal Raman Scattering and Secondary Ion Mass Spectrometric Molecular Images of Lignocellulosic Materials. Analytical Chemistry, 2010, 82, 2608-2611.	3.2	41
43	Factors Affecting Wood Dissolution and Regeneration of Ionic Liquids. Industrial & Engineering Chemistry Research, 2010, 49, 2477-2484.	1.8	155
44	Catalytic Conversion of Renewable Biomass Resources to Fuels and Chemicals. Annual Review of Chemical and Biomolecular Engineering, 2010, 1, 79-100.	3.3	318
45	Catalytic conversion of biomass to biofuels. Green Chemistry, 2010, 12, 1493.	4.6	2,017
46	Pretreatment and Fractionation of Wheat Straw by an Acetone-Based Organosolv Process. Industrial & Engineering Chemistry Research, 2010, 49, 10132-10140.	1.8	120
47	Chromatographic Recovery of Monosaccharides for the Production of Bioethanol from Wood. Industrial & Engineering Chemistry Research, 2010, 49, 2907-2915.	1.8	40
49	Optimization of a Fed-Batch Simultaneous Saccharification and Cofermentation Process from Lignocellulose to Ethanol. Industrial & Engineering Chemistry Research, 2010, 49, 5775-5785.	1.8	18
50	Chemical Transformations of Buddleja davidii Lignin during Ethanol Organosolv Pretreatment. Energy & Fuels, 2010, 24, 2723-2732.	2.5	116
51	Pseudo-lignin and pretreatment chemistry. Energy and Environmental Science, 2011, 4, 1306-1310.	15.6	423
52	Energy Resources and Systems. , 2011, , .		46
53	Molecular-Level Consequences of Biomass Pretreatment by Dilute Sulfuric Acid at Various Temperatures. Energy & Fuels, 2011, 25, 1790-1797.	2.5	37
54	In situ Study of Dilute H ₂ SO ₄ Pretreatment of ¹³ C-Enriched Poplar Wood, Using ¹³ C NMR. Energy & Fuels, 2011, 25, 2301-2313.	2.5	9
56	Pulsed Electric Field Pretreatment of Switchgrass and Wood Chip Species for Biofuel Production. Industrial & Engineering Chemistry Research, 2011, 50, 10996-11001.	1.8	66
57	Pretreatment Technologies for Lignocellulose-to-Bioethanol Conversion. , 2011, , 149-176.		61
58	Ethanol 2011 419-493		1 -

4

#	Article		CITATIONS
59	Advances on biomass pretreatment using ionic liquids: An overview. Energy and Environmental Science, 2011, 4, 3913.	15.6	378
60	Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nature Communications, 2011, 2, 375.	5.8	163
61	Bioethanol from Lignocellulosic Biomass. Advances in Biochemical Engineering/Biotechnology, 2011, 128, 25-51.	0.6	38
62	Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chemistry, 2011, 13, 3273.	4.6	622
63	Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops. Biotechnology for Biofuels, 2011, 4, 20.	6.2	69
64	The Influence of PH and Dissolved Oxygen Tension (DOT) on Mycelium Growth and Cellulase Production by Trichoderma Reesei. Advanced Materials Research, 2011, 236-238, 1005-1013.	0.3	0
65	Thermochemical Conversion of Biomass to Biofuels. , 2011, , 51-77.		47
66	Comparative Studies on Thermochemical Characterization of Corn Stover Pretreated by White-Rot and Brown-Rot Fungi. Journal of Agricultural and Food Chemistry, 2011, 59, 9965-9971.	2.4	37
67	Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy and Environmental Science, 2011, 4, 83-99.	15.6	747
68	Transition of Cellulose Crystalline Structure and Surface Morphology of Biomass as a Function of Ionic Liquid Pretreatment and Its Relation to Enzymatic Hydrolysis. Biomacromolecules, 2011, 12, 933-941.	2.6	373
69	Catalytic Hydrogenation of Corn Stalk to Ethylene Glycol and 1,2-Propylene Glycol. Industrial & Engineering Chemistry Research, 2011, 50, 6601-6608.	1.8	119
70	Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. Journal of Biotechnology, 2011, 156, 286-301.	1.9	447
71	Effects of biopretreatment of corn stover with white-rot fungus on low-temperature pyrolysis products. Bioresource Technology, 2011, 102, 3498-3503.	4.8	42
72	Solid State Fermentation of Soybean Hulls for Cellulolytic Enzymes Production. , 0, , .		4
73	A comparative study on the production of ethanol from lignocellulosic biomass by chemical and biological method. Nature Precedings, 2011, , .	0.1	0
74	Latest Frontiers in the Biotechnologies for Ethanol Production from Lignocellulosic Biomass. , 0, , .		3
76	Corn Harvest Strategies for Combined Starch and Cellulosic Bioprocessing to Ethanol. Agronomy Journal, 2011, 103, 844-850.	0.9	13
77	Agroindustrial Wastes as Substrates for Microbial Enzymes Production and Source of Sugar for Bioethanol Production. , 0, , .		6

#	Article		CITATIONS
78	Direct Saccharification of Rice Straw Using a Solid Acid Catalyst. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2011, 90, 1065-1071.	0.2	11
79	Biomass Feedstock Pre-Processing $\hat{a} \in $ Part 1: Pre-Treatment. , 0, , .		16
80	Delignification Process of Agro-Industrial Wastes an Alternative to Obtain Fermentable Carbohydrates for Producing Fuel. , 0, , .		21
81	Detoxification of Lignocellulosic Hydrolysates for Improved Bioethanol Production. , 0, , .		16
82	Produção de celulases por Aspergillus niger e cinética da desativação celulásica. Acta Scientiarum - Technology, 2011, 33, .	0.4	3
83	Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes. PLoS ONE, 2011, 6, e20237.	1.1	72
84	â€~Omics' technologies and systems biology for engineeringSaccharomyces cerevisiaestrains for lignocellulosic bioethanol production. Biofuels, 2011, 2, 659-675.	1.4	2
85	Rapid Characterization of Woody Biomass Digestibility and Chemical Composition Using Near-infrared SpectroscopyFree Access. Journal of Integrative Plant Biology, 2011, 53, 166-175.	4.1	57
86	Influence of the co-fungal treatment with two white rot fungi on the lignocellulosic degradation and thermogravimetry of corn stover. Process Biochemistry, 2011, 46, 1767-1773.	1.8	30
87	Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels, 2011, 4, 54.	6.2	382
88	Evaluation of grape stalks as a bioresource. Industrial Crops and Products, 2011, 33, 200-204.	2.5	92
89	Energy requirement for comminution of biomass in relation to particle physical properties. Industrial Crops and Products, 2011, 33, 504-513.	2.5	233
90	Utilization of pretreated bagasse for the sustainable bioproduction of cellulase by Aspergillus nidulans MTCC344 using response surface methodology. Industrial Crops and Products, 2011, 34, 1564-1571.	2.5	52
91	Biowastes-to-biofuels. Energy Conversion and Management, 2011, 52, 1815-1828.	4.4	263
92	Suitability of Sorghum bicolor L. stalks and grains for bioproduction of ethanol. Annals of Agricultural Sciences, 2011, 56, 83-87.	1.1	24
93	Solubility and rate of dissolution for Miscanthus in hydrophilic ionic liquids. Fluid Phase Equilibria, 2011, 309, 89-96.	1.4	48
94	Utilization of pretreated coir pith for the optimized bioproduction of cellulase by Aspergillus nidulans. International Biodeterioration and Biodegradation, 2011, 65, 1150-1160.	1.9	20
95	Biohydrogen production from pure and natural lignocellulosic feedstock with chemical pretreatment and bacterial hydrolysis. International Journal of Hydrogen Energy, 2011, 36, 13955-13963.	3.8	32

#	Article	IF	Citations
96	Hydrothermal decomposition of xylan as a model substance for plant biomass waste – Hydrothermolysis in subcritical water. Biomass and Bioenergy, 2011, 35, 3902-3912.	2.9	84
97	Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass and Bioenergy, 2011, 35, 4025-4033.	2.9	82
98	Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid. Bioresource Technology, 2011, 102, 8992-8999.	4.8	108
99	Biomass pretreatment strategies via control of rheological behavior of biomass suspensions and reactive twin screw extrusion processing. Bioresource Technology, 2011, 102, 9068-9075.	4.8	47
100	Improved ethanol production from various carbohydrates through anaerobic thermophilic co-culture. Bioresource Technology, 2011, 102, 10065-10071.	4.8	39
101	Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition. Bioresource Technology, 2011, 102, 10529-10534.	4.8	30
102	A preliminary study of simultaneous lime treatment and dry digestion of smooth cordgrass for biogas production. Chemical Engineering Journal, 2011, 174, 175-181.	6.6	21
103	Biorefining of perennial grasses: A potential sustainable option for Northern Ireland grassland production. Chemical Engineering Research and Design, 2011, 89, 2309-2321.	2.7	26
104	The Influence of Lignin on the Enzymatic Hydrolysis of Pretreated Biomass Substrates. ACS Symposium Series, 2011, , 145-167.	0.5	41
105	Chemistry and Reactions of Forest Biomass in Biorefining. ACS Symposium Series, 2011, , 109-144.	0.5	11
106	Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass?. Chemical Communications, 2011, 47, 1405-1421.	2.2	391
107	Biomass deconstruction to sugars. Biotechnology Journal, 2011, 6, 1086-1102.	1.8	140
108	Mass spectrometry of the products of the mechanochemical degradation of amylose macromolecules. Russian Journal of Physical Chemistry A, 2011, 85, 1187-1189.	0.1	3
109	Biohydrogen Production from Anaerobic Fermentation. Advances in Biochemical Engineering/Biotechnology, 2011, 128, 143-163.	0.6	4
110	Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation, 2011, 22, 797-804.	1.5	93
111	New Process for the Acid-Catalyzed Conversion of Cellulosic Biomass (AC3B) into Alkyl Levulinates and Other Esters Using a Unique One-Pot System of Reaction and Product Extraction. Catalysis Letters, 2011, 141, 271-276.	1.4	89
112	Enhancement of cellulose dissolution in water-based solvent via ethanol–hydrochloric acid pretreatment. Cellulose, 2011, 18, 987-994.	2.4	51
113	Optimization of fibrolytic enzyme production by Aspergillus japonicus CO3 with potential application in ruminant feed and their effects on tropical forages hydrolysis. Bioprocess and Biosystems	1.7	17

#	Article	IF	CITATIONS
114	Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles, 2011, 15, 611-618.	0.9	50
115	Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia occidentalis CCTCC M 206097 yeast. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 199-207.	1.4	53
116	Bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment and simultaneous saccharification and fermentation. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1861-1866.	1.4	35
117	Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of â€~Biofuel'. Applied Microbiology and Biotechnology, 2011, 89, 1289-1303.	1.7	145
118	Anthrahydroquinone-2,6,-disulfonate (AH2QDS) increases hydrogen molar yield and xylose utilization in growing cultures of Clostridium beijerinckii. Applied Microbiology and Biotechnology, 2011, 92, 855-864.	1.7	27
119	Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Applied Microbiology and Biotechnology, 2011, 92, 1095-1105.	1.7	150
120	Injection of air into the headspace improves fermentation of phosphoric acid pretreated sugarcane bagasse by Escherichia coli MM170. Bioresource Technology, 2011, 102, 6959-6965.	4.8	49
121	Fungal pretreatment: An alternative in second-generation ethanol from wheat straw. Bioresource Technology, 2011, 102, 7500-7506.	4.8	282
122	Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor. Frontiers of Chemical Science and Engineering, 2011, 5, 252-257.	2.3	3
123	Detoxification of Rapeseed Meals by Steam Explosion. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1831-1838.	0.8	15
124	Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnology for Biofuels, 2011, 4, 11.	6.2	63
125	Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnology for Biofuels, 2011, 4, 27.	6.2	264
126	How recombinant swollenin from Kluyveromyces lactisaffects cellulosicsubstrates and accelerates their hydrolysis. Biotechnology for Biofuels, 2011, 4, 33.	6.2	92
127	Evaluation of a hydrothermal process for pretreatment of wheat straw—effect of particle size and process conditions. Journal of Chemical Technology and Biotechnology, 2011, 86, 88-94.	1.6	43
128	Modeling and optimization of dilute nitric acid hydrolysis on corn stover. Journal of Chemical Technology and Biotechnology, 2011, 86, 306-314.	1.6	58
129	Effects of dilute acid pretreatment on enzyme saccharification of wheat stubble. Journal of Chemical Technology and Biotechnology, 2011, 86, 818-825.	1.6	18
130	Catalytic organosolv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis. Journal of Chemical Technology and Biotechnology, 2011, 86, 1428-1438.	1.6	105
131	Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium <i>Caldicellulosiruptor saccharolyticus</i> Biotechnology and Bioengineering, 2011, 108, 1559-1569.	1.7	61

#	Article		CITATIONS
132	Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels, Bioproducts and Biorefining, 2011, 5, 93-114.	1.9	201
133	The conversion of lignocellulosics to levulinic acid. Biofuels, Bioproducts and Biorefining, 2011, 5, 198-214.	1.9	538
134	Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2011, 5, 215-225.	1.9	224
135	Utilisation of biomass for sustainable fuels and chemicals: Molecules, methods and metrics. Catalysis Today, 2011, 167, 3-13.	2.2	157
136	Green processing of tropical banagrass into biofuel and biobased products: An innovative biorefinery approach. Bioresource Technology, 2011, 102, 1587-1592.	4.8	36
137	Dioxin-like polychlorinated biphenyl adsorbent obtained from enzymatic saccharification residue of lignocellulose. Bioresource Technology, 2011, 102, 4682-4687.	4.8	2
138	Effect of microwave–chemical pre-treatment on compression characteristics of biomass grinds. Biosystems Engineering, 2011, 108, 36-45.	1.9	59
139	Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass and Bioenergy, 2011, 35, 90-95.	2.9	74
140	Waste biomass to liquids: Low temperature conversion of sugarcane bagasse to bio-oil. The effect of combined hydrolysis treatments. Biomass and Bioenergy, 2011, 35, 2106-2116.		36
141	Enzymatic depolymerization of Ricinus communis, a potential lignocellulosic for improved saccharification. Biomass and Bioenergy, 2011, 35, 3584-3591.	2.9	56
142	Phosphoric acid activation of recalcitrant biomass originated in ethanol production from banana plants. Biomass and Bioenergy, 2011, 35, 1196-1204.	2.9	21
143	Comparison of pretreatment protocols for cellulase-mediated saccharification of wood derived from transgenic low-xylan lines of cottonwood (P. trichocarpa). Biomass and Bioenergy, 2011, 35, 3514-3521.	2.9	26
144	Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydrate Polymers, 2011, 84, 1103-1109.	5.1	134
145	Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 2011, 52, 858-875.	4.4	1,054
146	Evaluation of triticale bran as raw material for bioethanol production. Fuel, 2011, 90, 1638-1644.	3.4	14
147	HSQC (heteronuclear single quantum coherence) 13C–1H correlation spectra of whole biomass in perdeuterated pyridinium chloride–DMSO system: An effective tool for evaluating pretreatment. Fuel, 2011, 90, 2836-2842.	3.4	91
148	Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Applied Catalysis A: General, 2011, 402, 1-10.	2.2	82
149	Biological control of wood decay against fungal infection. Journal of Environmental Management, 2011, 92, 1681-1689.	3.8	40

#	Article		CITATIONS
150	Mechanical Behaviour of Polyurethane from Castor oil Reinforced Sugarcane Straw Cellulose Composites. Procedia Engineering, 2011, 10, 2068-2073.	1.2	46
151	Challenges in biobutanol production: How to improve the efficiency?. Renewable and Sustainable Energy Reviews, 2011, 15, 964-980.	8.2	391
152	Enzymatic saccharification of lignocellulosic materials after treatment with supercritical carbon dioxide. Journal of Supercritical Fluids, 2011, 56, 277-282.	1.6	53
153	Impact of Hemicellulose on Cellulose Simultaneous Saccharification and Fermentation. Advanced Materials Research, 2011, 365, 403-408.	0.3	0
154	Determination on Crystallinity of Ionic Liquids Pretreated Biomass. Advanced Materials Research, 0, 393-395, 668-671.	0.3	1
155	Optimization of steam pretreatment conditions for enzymatic hydrolysis of poplar wood. Holzforschung, 2011, 65, .	0.9	33
156	Cellulolytic Enzymes Production <i>via</i> Solid-State Fermentation: Effect of Pretreatment Methods on Physicochemical Characteristics of Substrate. Enzyme Research, 2011, 2011, 1-10.	1.8	57
157	Effect of Low Concentration Alkali and Ultrasound Combination Pretreatment on Biogas Production by Stalk. Advanced Materials Research, 0, 383-390, 3434-3437.	0.3	5
158	Organosolv pretreatment of olive tree biomass for fermentable sugars. Holzforschung, 2011, 65, .	0.9	41
159	Response surface approach for the biodegradation of pretreated coir pith using Aspergillus nidulans SUO4 for cellulase production. , 2011, , .		3
160	Potential for ethanol production from conservation reserve program lands in Oregon. Journal of Renewable and Sustainable Energy, 2011, 3, .	0.8	9
161	Cellulose Isolation Methodology for NMR Analysis of Cellulose Ultrastructure. Materials, 2011, 4, 1985-2002.	1.3	65
162	Enzymes in Biofuels Production. Enzyme Research, 2011, 2011, 1-2.	1.8	11
163	Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review. Enzyme Research, 2011, 2011, 1-17.	1.8	634
164	Fermentative Production of Value-Added Products from Lignocellulosic Biomass. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-2.	3.0	9
165	Biofuels Production from Biomass by Thermochemical Conversion Technologies. International Journal of Chemical Engineering, 2012, 2012, 1-18.	1.4	135
166	Comparison of Ultrasonic and CO2 Laser Pretreatment Methods on Enzyme Digestibility of Corn Stover. International Journal of Molecular Sciences, 2012, 13, 4141-4152.	1.8	15
167	Evaluation of Maximum Percentage Glucose Conversion for Dilute Acid Hydrolysis of Kenaf Biomass Using Statistical Analysis. Advanced Materials Research, 0, 576, 244-247.	0.3	1

#	Article	IF	CITATIONS
168	Biofuel Manufacturing from Woody Biomass: Effects of Sieve Size Used in Biomass Size Reduction. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-9.	3.0	12
169	Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-15.	3.0	372
170	The Potential of Cellulosic Ethanol Production from Grasses in Thailand. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-10.	3.0	50
171	5 Biomass pretreatment: separation of cellulose , hemicellulose, and lignin – existing technologies and perspectives. , 2012, , 101-122.		7
172	6 Conversion of cellulose and hemicellulose into platform molecules: chemical routes. , 2012, , 123-140.		5
173	Catalytic Production of Liquid Hydrocarbon Transportation Fuels. , 2012, , 29-56.		32
174	Chemical composition and bioethanol potential of different plant species found in Pacific Northwest conservation buffers. Journal of Renewable and Sustainable Energy, 2012, 4, 063114.	0.8	8
175	Biogas production from switchgrass under experimental conditions simulating U.S. digester operations. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 470-478.	0.9	8
176	2.1 Biofuels Derived from Renewable Feedstocks. , 2012, , 59-86.		2
177	Biobutanol Production from Agricultural Waste: A Simple Approach for Pre-Treatment and Hydrolysis. Latvian Journal of Chemistry, 2012, 51, 407-414.	0.1	1
178	Biofuel production: Prospects, challenges and feedstock in Australia. Renewable and Sustainable Energy Reviews, 2012, 16, 6022-6031.	8.2	105
179	Validation of a Direct Analysis in Real Time Mass Spectrometry (DART-MS) method for the quantitation of six carbon sugars in a saccharification matrix. Analytical Methods, 2012, 4, 3460.	1.3	18
180	Production of Bioethanol from Food Industry Waste: Microbiology, Biochemistry and Technology. , 2012, , 251-311.		5
181	Constitutive expression of a fungal glucuronoyl esterase in Arabidopsis reveals altered cell wall composition and structure. Plant Biotechnology Journal, 2012, 10, 1077-1087.	4.1	32
182	A review on bio-oil production from biomass by using pyrolysis method. Renewable and Sustainable Energy Reviews, 2012, 16, 5910-5923.	8.2	468
183	Comparison of gamma irradiation and steam explosion pretreatment for ethanol production from agricultural residues. Biomass and Bioenergy, 2012, 46, 301-308.	2.9	37
184	Anthrahydroquinone-2,6-disulfonate increases the rate of hydrogen production during Clostridium beijerinckii fermentation with glucose, xylose, and cellobiose. International Journal of Hydrogen Energy, 2012, 37, 11701-11709.	3.8	21
185	Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance. Industrial Biotechnology, 2012, 8, 191-208.	0.5	90

		CITATION REI	PORT	
#	Article		IF	CITATIONS
187	3D Chemical Image using TOFâ€SIMS Revealing the Biopolymer Component Spatial and Late Distributions in Biomass. Angewandte Chemie - International Edition, 2012, 51, 12005-1200	ral 8.	7.2	36
188	Utilization of whole sweet sorghum containing juice, leaves, and bagasse for bio-ethanol pro Food Science and Biotechnology, 2012, 21, 1075-1080.	duction.	1.2	31
189	Novel endophytic yeast <i>Rhodotorula mucilaginosa</i> strain PTD3 II: production of xylitol ethanol in the presence of inhibitors. Journal of Industrial Microbiology and Biotechnology, 2 1453-1463.	and 012, 39,	1.4	15
190	Hemicellulose hydrolysis using solid acid catalysts generated from biochar. Catalysis Today, 2 89-97.	.012, 190,	2.2	140
191	Development and testing of a novel lab-scale direct steam-injection apparatus to hydrolyse n saline crop slurries. Journal of Biotechnology, 2012, 157, 590-597.	10del and	1.9	5
192	Hydrolysis of bamboo cellulose and cellulase characteristics by Streptomyces griseoaurantiae ZQBC691. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 220-225.	tus	2.7	9
193	Biodiesel from lignocellulosic biomass $\hat{a} \in \mathcal{C}$ Prospects and challenges. Waste Management, 20201-2067.)12, 32,	3.7	121
194	Pretreatment of pressed pericarp fibers (PPF) using alcohols as solvent to increase the access cellulose for cellulase production. Journal of the Korean Society for Applied Biological Chemis 2012, 55, 507-514.	sibility of try,	0.9	5
195	Biofuels and CO ₂ neutrality: an opportunity. Biofuels, 2012, 3, 413-426.		1.4	24
196	Enzymatic hydrolysates of corn stover pretreated by a N-methylpyrrolidone–ionic liquid so microbial lipid production. Green Chemistry, 2012, 14, 1202.	ution for	4.6	65
197	Susceptibility of pretreated wood sections of Norway spruce (Picea abies) clones to enzymat hydrolysis. Canadian Journal of Forest Research, 2012, 42, 38-46.	ic	0.8	3
198	Fractionating Pentosans and Hexosans in Hybrid Poplar. Industrial & Engineering Chemi Research, 2012, 51, 133-139.	stry	1.8	16
199	Spruce Pretreatment for Thermal Application: Water, Alkaline, and Diluted Acid Hydrolysis. E & Fuels, 2012, 26, 6426-6431.	ıergy	2.5	20
200	Biobutanol Recovery Using Nonfluorinated Task-Specific Ionic Liquids. Industrial & Engir Chemistry Research, 2012, 51, 8293-8301.	eering	1.8	79
201	A re-appraisal on intensification of biogas production. Renewable and Sustainable Energy Rev 2012, 16, 4908-4916.	/iews,	8.2	44
202	Low-Temperature Carbonization and More Effective Degradation of Carbohydrates Induced b Trichloride. Journal of Physical Chemistry B, 2012, 116, 7635-7643.	y Ferric	1.2	12
203	Butanol production from lignocellulosics. Biotechnology Letters, 2012, 34, 1415-1434.		1.1	98
204	Chemical and enzymatic sequential pretreatment of oat straw for methane production. Biore Technology, 2012, 116, 372-378.	source	4.8	52

#	Article	IF	CITATIONS
205	Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresource Technology, 2012, 118, 584-588.	4.8	113
206	Influence of pretreatment with Fenton's reagent on biogas production and methane yield from lignocellulosic biomass. Bioresource Technology, 2012, 119, 72-78.	4.8	89
207	Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Bioresource Technology, 2012, 119, 114-122.	4.8	130
208	Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation. Carbohydrate Polymers, 2012, 90, 1038-1045.	5.1	59
209	Validating empirical force fields for molecular-level simulation of cellulose dissolution. Computational and Theoretical Chemistry, 2012, 984, 119-127.	1.1	24
210	Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy, 2012, 43, 273-282.	4.5	258
211	The realm of cellulases in biorefinery development. Critical Reviews in Biotechnology, 2012, 32, 187-202.	5.1	176
212	The scientometric evaluation of the research on the production of bioenergy from biomass. Biomass and Bioenergy, 2012, 47, 504-515.	2.9	84
213	The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth. Microbial Cell Factories, 2012, 11, 159.	1.9	29
214	Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality. Biotechnology for Biofuels, 2012, 5, 5.	6.2	28
215	Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics. Biotechnology for Biofuels, 2012, 5, 62.	6.2	67
216	An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express, 2012, 2, 65.	1.4	115
217	Biofuels from Waste Materials. , 2012, , 217-261.		28
218	Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy and Environmental Science, 2012, 5, 6796.	15.6	758
219	Hydrothermal Carbons. , 2012, , 351-399.		13
220	Solid-State Selective ¹³ C Excitation and Spin Diffusion NMR To Resolve Spatial Dimensions in Plant Cell Walls. Journal of Agricultural and Food Chemistry, 2012, 60, 1419-1427.	2.4	30
221	Liquid hydrocarbonfuels from cellulosic feedstocks via thermal deoxygenation of levulinic acid and formic acid salt mixtures. Green Chemistry, 2012, 14, 85-89.	4.6	51
222	Enhanced cellulosic hydrogen production from lime-treated cornstalk wastes using thermophilic anaerobic microflora. International Journal of Hydrogen Energy, 2012, 37, 13161-13166.	3.8	61

#	Article	IF	CITATIONS
223	Characterization of changes of lignin structure in the processes of cooking with solid alkali and different active oxygen. Bioresource Technology, 2012, 123, 49-54.	4.8	25
224	Pretreatment of wheat straw using SO2 dissolved in hot water. Bioresource Technology, 2012, 124, 306-310.	4.8	11
225	Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw. Bioresource Technology, 2012, 124, 283-291.	4.8	84
226	Combined pretreatment using ozonolysis and wet-disk milling to improve enzymatic saccharification of Japanese cedar. Bioresource Technology, 2012, 126, 182-186.	4.8	47
227	Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy, 2012, 47, 225-229.	4.5	191
231	Solubility of xylitol and sorbitol in ionic liquids – Experimental data and modeling. Journal of Chemical Thermodynamics, 2012, 55, 184-192.	1.0	47
232	Complete conversion of cellulose to water soluble substances by pretreatment with ionic liquids. Korean Journal of Chemical Engineering, 2012, 29, 1403-1408.	1.2	16
233	An Evaluation of Chemical Pretreatment Methods for Improving Enzymatic Saccharification of Chili Postharvest Residue. Applied Biochemistry and Biotechnology, 2012, 167, 1489-1500.	1.4	23
234	Mathematical Tool from Corn Stover TGA to Determine Its Composition. Applied Biochemistry and Biotechnology, 2012, 167, 2283-2294.	1.4	10
235	The Cellulase-Mediated Saccharification on Wood Derived from Transgenic Low-Lignin Lines of Black Cottonwood (Populus trichocarpa). Applied Biochemistry and Biotechnology, 2012, 168, 947-955.	1.4	31
236	Stabilization of the Cellulase Enzyme Complex as Enzyme Nanoparticle. Applied Biochemistry and Biotechnology, 2012, 168, 1372-1383.	1.4	16
237	Effects of External Enzymes on the Fermentation of Soybean Hulls to Generate Lipids by Mortierella isabellina. Applied Biochemistry and Biotechnology, 2012, 168, 1896-1906.	1.4	2
238	Pretreatment and Lignocellulosic Chemistry. Bioenergy Research, 2012, 5, 1043-1066.	2.2	366
239	Recent Advances in Entomological Research. , 2011, , .		10
240	Delignification of Miscanthus by Extraction. Separation Science and Technology, 2012, 47, 370-376.	1.3	9
241	Homogeneous Degradation of Cotton Cellulose into Furan Derivatives in ZnCl2Solution by Integration Technology of Reaction and Extraction. Industrial & Engineering Chemistry Research, 2012, , 121227134733005.	1.8	4
242	Ultrasonic and high-temperature pretreatment, enzymatic hydrolysis and fermentation of lignocellulosic sweet sorghum to bio-ethanol. International Journal of Ambient Energy, 2012, 33, 152-160.	1.4	10
244	Novel Method for Production of Phenolics by Combining Lignin Extraction with Lignin Depolymerization in Aqueous Ethanol. Industrial & Engineering Chemistry Research, 2012, 51, 103-110.	1.8	116

#	Article	IF	CITATIONS
245	PHYSICOCHEMICAL PROPERTY CHANGES OF OIL PALM MESOCARP FIBERS TREATED WITH HIGH-PRESSURE STEAM. BioResources, 2012, 7, .	0.5	16
246	Determining the Potential of Inedible Weed Biomass for Bio-Energy and Ethanol Production. BioResources, 2012, 8, .	0.5	8
247	Production and Characterisation of Cellulose and Nano-Crystalline Cellulose from Kenaf Core Wood. BioResources, 2012, 8, .	0.5	38
248	Oil Palm as Bioenergy Feedstock. , 2012, , 653-692.		4
249	Hydrolysis of Lignocellulosic Biomass: Current Status of Processes and Technologies and Future Perspectives. , 0, , .		53
250	Biotechnological Production of Xylitol from Agro-Industrial Wastes. , 0, , .		0
251	EFFECT OF LIGNIN ON ENZYMATIC SACCHARIFICATION OF HARDWOOD AFTER GREEN LIQUOR AND SULFURIC ACID PRETREATMENTS. BioResources, 2012, 7, .	0.5	4
252	Optimization of the Pretreatment of Prosopis nigra Sawdust for the Production of Fermentable Sugars. BioResources, 2012, 8, .	0.5	2
253	ETHANOL ORGANOSOLV PRETREATMENT OF TYPHA CAPENSIS FOR BIOETHANOL PRODUCTION AND CO-PRODUCTS. BioResources, 2012, 7, .	0.5	9
254	COMPARISON OF PRETREATMENT STRATEGIES FOR CONVERSION OF COCONUT HUSK FIBER TO FERMENTABLE SUGARS. BioResources, 2012, 7, .	0.5	39
255	Optimization of direct analysis in real time (DART) linear ion trap parameters for the detection and quantitation of glucose. Rapid Communications in Mass Spectrometry, 2012, 26, 385-391.	0.7	30
256	Effect of lime treatment and subsequent carbonation on gelatinization and saccharification of starch granules. Starch/Staerke, 2012, 64, 452-460.	1.1	4
257	Pectin-rich biomass as feedstock for fuel ethanol production. Applied Microbiology and Biotechnology, 2012, 95, 565-575.	1.7	124
258	Utilization of oil palm decanter cake for cellulase and polyoses production. Biotechnology and Bioprocess Engineering, 2012, 17, 547-555.	1.4	40
259	Recent Trends in Valorization of Lignocellulose to Biofuel. , 2012, , 381-409.		8
260	Energy optimization of bioethanol production via hydrolysis of switchgrass. AICHE Journal, 2012, 58, 1538-1549.	1.8	70
261	Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining, 2012, 6, 465-482.	1.9	707
262	Biomass recalcitrance. Part <scp>II</scp> : Fundamentals of different preâ€treatments to increase the enzymatic digestibility of lignocellulose. Biofuels, Bioproducts and Biorefining, 2012, 6, 561-579.	1.9	228

#	Article	IF	CITATIONS
263	<i>Miscanthus</i> : a fastâ€growing crop for biofuels and chemicals production. Biofuels, Bioproducts and Biorefining, 2012, 6, 580-598.	1.9	360
264	Impact and prospective of fungal preâ€ŧreatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels, Bioproducts and Biorefining, 2012, 6, 335-350.	1.9	89
265	Biocatalytic conversion of lignocellulose to platform chemicals. Biotechnology Journal, 2012, 7, 1122-1136.	1.8	66
266	Efficient Fractionation of Spruce by SO ₂ â€Ethanolâ€Water Treatment: Closed Mass Balances for Carbohydrates and Sulfur. ChemSusChem, 2012, 5, 1625-1637.	3.6	56
267	Solventâ€Free Catalytic Depolymerization of Cellulose to Waterâ€Soluble Oligosaccharides. ChemSusChem, 2012, 5, 1449-1454.	3.6	214
268	Dialkylimidazolium Ionic Liquids Hydrolyze Cellulose Under Mild Conditions. ChemSusChem, 2012, 5, 1542-1548.	3.6	40
269	Green Chemistry, Biofuels, and Biorefinery. Annual Review of Chemical and Biomolecular Engineering, 2012, 3, 183-207.	3.3	202
270	AC3B Technology for Direct Liquefaction of Lignocellulosic Biomass: New Concepts of Coupling and Decoupling of Catalytic/Chemical Reactions for Obtaining a Very High Overall Performance. Catalysis Letters, 2012, 142, 667-675.	1.4	5
271	Life cycle assessment of energy and GHG emissions during ethanol production from grass straws using various pretreatment processes. International Journal of Life Cycle Assessment, 2012, 17, 388-401.	2.2	58
272	Preparation of hemicellulolic oligosaccharides from Chamaecyparis obtuse (Hinoki) slurry using commercial enzymes. Frontiers of Chemical Science and Engineering, 2012, 6, 224-231.	2.3	4
273	Advances and Developments in Strategies to Improve Strains of Saccharomyces cerevisiae and Processes to Obtain the Lignocellulosic Ethanolâ^A Review. Applied Biochemistry and Biotechnology, 2012, 166, 1908-1926.	1.4	97
274	Low Temperature and Long Residence Time AFEX Pretreatment of Corn Stover. Bioenergy Research, 2012, 5, 372-379.	2.2	31
275	Improvement of tolerance of Saccharomyces cerevisiae to hot-compressed water-treated cellulose by expression of ADH1. Applied Microbiology and Biotechnology, 2012, 94, 273-283.	1.7	16
276	Reducing acid in dilute acid pretreatment and the impact on enzymatic saccharification. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 691-700.	1.4	31
277	Multiscale modeling of biomass pretreatment for optimization of steam explosion conditions. Chemical Engineering Science, 2012, 75, 177-182.	1.9	36
278	Changes in polyphenol and polysaccharide content of grape seed extract and grape pomace after enzymatic treatment. Food Chemistry, 2012, 133, 308-314.	4.2	147
279	Microalgal cell disruption for biofuel development. Applied Energy, 2012, 91, 116-121.	5.1	278
280	Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production. Applied Energy, 2012, 94, 129-140.	5.1	242

"		15	Circiania
#	ARTICLE Structural characteristics of nanoparticles produced by hydrothermal pretreatment of cellulose	IF	CITATIONS
281	and their applications for electrochemical hydrogen génération. International Journal of Hydrogen Energy, 2012, 37, 9514-9523.	3.8	17
282	Microwave-enhanced alkali treatment of Pinus yunnanensis: Physiochemical characterization of the dissolved lignins. Industrial Crops and Products, 2012, 36, 209-216.	2.5	8
283	Evaluation of the yield potential and physicochemical properties of the biomass of Salix viminalis×Populus tremula hybrids. Industrial Crops and Products, 2012, 36, 549-554.	2.5	6
284	Solid–liquid separation of hydrolysates obtained from enzymatic hydrolysis of cardboard waste. Industrial Crops and Products, 2012, 38, 72-80.	2.5	9
285	Purification of ferulic acid solubilized from agroindustrial wastes and further conversion into 4-vinyl guaiacol by Streptomyces setonii using solid state fermentation. Industrial Crops and Products, 2012, 39, 52-61.	2.5	23
286	Solubilization of hemicellulose and lignin from wheat straw through microwave-assisted alkali treatment. Industrial Crops and Products, 2012, 39, 198-203.	2.5	83
287	Pyrolysis of wheat straw-derived organosolv lignin. Journal of Analytical and Applied Pyrolysis, 2012, 93, 95-103.	2.6	166
288	Use of different alkaline pretreatments and enzyme models to improve low-cost cellulosic biomass conversion. Biomass and Bioenergy, 2012, 39, 182-191.	2.9	43
289	Release of monomeric sugars from Miscanthus sinensis by microwave-assisted ammonia and phosphoric acid treatments. Bioresource Technology, 2012, 103, 425-431.	4.8	59
290	Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification. Bioresource Technology, 2012, 104, 459-465.	4.8	73
291	Application of ultrafiltration and nanofiltration for recycling cellulase and concentrating glucose from enzymatic hydrolyzate of steam exploded wheat straw. Bioresource Technology, 2012, 104, 466-472.	4.8	76
292	Activation of lignocellulosic biomass by ionic liquid for biorefinery fractionation. Bioresource Technology, 2012, 104, 701-707.	4.8	64
293	Rational approach to optimize cellulase mixtures for hydrolysis of regenerated cellulose containing residual ionic liquid. Bioresource Technology, 2012, 115, 27-34.	4.8	26
294	Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresource Technology, 2012, 104, 380-387.	4.8	230
295	The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresource Technology, 2012, 107, 301-306.	4.8	72
296	Autothermal, single-stage, performic acid pretreatment of Miscanthus x giganteus for the rapid fractionation of its biomass components into a lignin/hemicellulose-rich liquor and a cellulase-digestible pulp. Bioresource Technology, 2012, 109, 173-177.	4.8	36
297	Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment. Bioresource Technology, 2012, 110, 190-197.	4.8	91
298	Combined biomimetic and inorganic acids hydrolysis of hemicellulose in Miscanthus for bioethanol production. Bioresource Technology, 2012, 110, 278-287.	4.8	30

#	Article	IF	CITATIONS
299	Acetone, butanol, and ethanol production from wastewater algae. Bioresource Technology, 2012, 111, 491-495.	4.8	205
300	Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresource Technology, 2012, 111, 215-221.	4.8	183
301	Energy requirement for alkali assisted microwave and high pressure reactor pretreatments of cotton plant residue and its hydrolysis for fermentable sugar production for biofuel application. Bioresource Technology, 2012, 112, 300-307.	4.8	55
302	Production of vinyl derivatives from alkaline hydrolysates of corn cobs by recombinant Escherichia coli containing the phenolic acid decarboxylase from Lactobacillus plantarum CECT 748T. Bioresource Technology, 2012, 117, 274-285.	4.8	21
303	Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants. Bioresource Technology, 2012, 117, 352-359.	4.8	89
304	Optimisation of dilute-acid pretreatment conditions forÂenhancement sugar recovery and enzymatic hydrolysis ofÂwheat straw. Biosystems Engineering, 2012, 111, 166-174.	1.9	56
305	Advancements and future directions in enzyme technology for biomass conversion. Biotechnology Advances, 2012, 30, 913-919.	6.0	96
306	Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy, 2012, 37, 109-116.	4.3	318
307	High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst. Renewable Energy, 2012, 37, 192-196.	4.3	64
308	Use of ionic liquids in converting lignocellulosic material to biofuels. Renewable Energy, 2012, 45, 1-6.	4.3	154
309	Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 2012, 16, 1462-1476.	8.2	650
310	Recovery of renewable phenolic fraction from pyrolysis oil. Separation and Purification Technology, 2012, 86, 157-170.	3.9	86
311	Trends in bioconversion of lignocellulose: Biofuels, platform chemicals &Âbiorefinery concept. Progress in Energy and Combustion Science, 2012, 38, 522-550.	15.8	1,258
312	A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Chemical Engineering Research and Design, 2012, 90, 189-202.	2.7	154
313	A new process developed for separation of lignin from ammonium hydroxide pretreatment solutions. Environmental Progress and Sustainable Energy, 2012, 31, 130-138.	1.3	9
314	Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bioâ€products. Journal of Chemical Technology and Biotechnology, 2012, 87, 11-20.	1.6	301
315	Pretreatment of corn stover by combining ionic liquid dissolution with alkali extraction. Biotechnology and Bioengineering, 2012, 109, 84-91.	1.7	45
316	Additional Paper Waste in Pulping Sludge for Biohydrogen Production by Heat-Shocked Sludge. Applied Biochemistry and Biotechnology, 2012, 166, 389-401.	1.4	20

#	Article	IF	Citations
317	Soybean Hulls Pretreated Using Thermo-Mechanical Extrusion—Hydrolysis Efficiency, Fermentation Inhibitors, and Ethanol Yield. Applied Biochemistry and Biotechnology, 2012, 166, 576-589.	1.4	35
318	Solid-State Fermentation of Mortierella isabellina for Lipid Production from Soybean Hull. Applied Biochemistry and Biotechnology, 2012, 166, 1034-1046.	1.4	29
319	Characterization of Cellulolytic Extract from Pycnoporus sanguineus PF-2 and Its Application in Biomass Saccharification. Applied Biochemistry and Biotechnology, 2012, 166, 1586-1603.	1.4	45
320	Statistical Optimization of Sugarcane Leaves Hydrolysis into Simple Sugars by Dilute Sulfuric Acid Catalyzed Process. Sugar Tech, 2012, 14, 53-60.	0.9	44
321	Pretreatment of rapeseed straw by soaking in aqueous ammonia. Bioprocess and Biosystems Engineering, 2012, 35, 77-84.	1.7	49
322	Influence of organic liquids on the nanostructure of precipitated cellulose. Journal of Applied Polymer Science, 2013, 127, 2620-2627.	1.3	6
323	Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Industrial Crops and Products, 2013, 42, 363-368.	2.5	141
324	Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Biotechnology for Biofuels, 2013, 6, 63.	6.2	83
325	Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and fluorescence lifetime imaging microscopy. Biotechnology for Biofuels, 2013, 6, 43.	6.2	61
326	Structural evaluation and bioethanol production by simultaneous saccharification and fermentation with biodegraded triploid poplar. Biotechnology for Biofuels, 2013, 6, 42.	6.2	14
327	Simulated Moving Bed Chromatography: Separation and Recovery of Sugars and Ionic Liquid from Biomass Hydrolysates. ChemSusChem, 2013, 6, 2083-2089.	3.6	27
328	Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Reviews in Environmental Science and Biotechnology, 2013, 12, 257-284.	3.9	294
329	Superhydrophilic mesoporous sulfonated melamine–formaldehyde resin supported palladium nanoparticles as an efficient catalyst for biofuel upgrade. Journal of Materials Chemistry A, 2013, 1, 8630.	5.2	63
330	Fermentative Biohydrogen Production from Solid Wastes. , 2013, , 259-283.		14
331	Pretreatment Techniques for Biofuels and Biorefineries. Green Energy and Technology, 2013, , .	0.4	32
332	Cellulose loading and water sorption value as important parameters for the enzymatic hydrolysis of cellulose. Cellulose, 2013, 20, 1109-1119.	2.4	15
333	Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 2013, 27, 77-93.	8.2	999
334	Manipulation of ultrasonic effects on lignocellulose by varying the frequency, particle size, loading and stirring. Bioresource Technology, 2013, 148, 15-23.	4.8	56

#	Article	IF	CITATIONS
335	Atmospheric Pressure Plasma Pretreatment of Sugarcane Bagasse: The Influence of Moisture in the Ozonation Process. Applied Biochemistry and Biotechnology, 2013, 171, 104-116.	1.4	29
336	Chestnut Shell as Unexploited Source of Fermentable Sugars: Effect of Different Pretreatment Methods on Enzymatic Saccharification. Applied Biochemistry and Biotechnology, 2013, 170, 1104-1118.	1.4	39
337	Enhancement of Enzymatic Hydrolysis and Klason Lignin Removal of Corn Stover Using Photocatalyst-Assisted Ammonia Pretreatment. Applied Biochemistry and Biotechnology, 2013, 169, 1648-1658.	1.4	12
338	Two-Stage Acidic–Alkaline Hydrothermal Pretreatment of Lignocellulose for the High Recovery of Cellulose and Hemicellulose Sugars. Applied Biochemistry and Biotechnology, 2013, 169, 1069-1087.	1.4	31
339	Changes in Phenolics Distribution After Chemical Pretreatment and Enzymatic Conversion of Miscanthus × giganteus Internode. Bioenergy Research, 2013, 6, 506-518.	2.2	20
340	Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels. Bioenergy Research, 2013, 6, 663-677.	2.2	295
341	Conversion of Sweet Sorghum Straw to Sugars by Dilute Acid Saccharification. Sugar Tech, 2013, 15, 322-327.	0.9	7
342	Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment. Bioresource Technology, 2013, 130, 248-255.	4.8	60
343	Effect of temperature on continuous fermentative hydrogen production from Laminaria japonica by anaerobic mixed cultures. Bioresource Technology, 2013, 144, 225-231.	4.8	37
344	Effects of hydrothermal pre-treatments on Giant reed (Arundo donax) methane yield. Bioresource Technology, 2013, 147, 152-159.	4.8	72
345	Parametric analysis of total costs and energy efficiency of 2G enzymatic ethanol production. Fuel, 2013, 113, 165-179.	3.4	37
346	Design and optimization of ethanol production from bagasse pith hydrolysate by a thermotolerant yeast Kluyveromyces sp. IIPE453 using response surface methodology. SpringerPlus, 2013, 2, 159.	1.2	46
347	Dynamic Modeling and Parameter Estimation for Unit Operations in Lignocellulosic Bioethanol Production. Industrial & Engineering Chemistry Research, 2013, 52, 4146-4160.	1.8	13
348	Metalloprotein Design. , 2013, , 565-593.		11
349	Direct hydrodeoxygenation of cellulose and xylan to lower alkanes on ruthenium catalysts in subcritical water. Biomass and Bioenergy, 2013, 56, 1-7.	2.9	26
350	Efficient Dilute-Acid Hydrolysis of Cellulose Using Solvent Pretreatment. Industrial & Engineering Chemistry Research, 2013, 52, 11494-11501.	1.8	27
351	Alkali pre-treatment of Sorghum Moench for biogas production. Chemical Papers, 2013, 67, .	1.0	19
352	Effects of solvents and catalysts in liquefaction of pinewood sawdust for the production of bio-oils. Biomass and Bioenergy, 2013, 59, 158-167.	2.9	123

ARTICLE IF CITATIONS # Effect of alkaline pretreatment on chemical composition of lignocellulosic biomass using radio 353 1.9 29 frequency heating. Biosystems Engineering, 2013, 116, 385-398. Effect of Dilute Sulfuric Acid Hydrolysis of Coconut Dregs on Chemical and Thermal Properties. 354 1.2 Procedia Engineering, 2013, 68, 372-378. Effect of furans and linoleic acid on hydrogen production. International Journal of Hydrogen Energy, 356 3.8 30 2013, 38, 12283-12293. Ethanol and biogas production from birch by NMMO pretreatment. Biomass and Bioenergy, 2013, 49, 2.9 54 95-101. Promising Unconventional Pretreatments for Lignocellulosic Biomass. Critical Reviews in 358 6.6 25 Environmental Science and Technology, 2013, 43, 2140-2211. Effects of green liquor pretreatment on the chemical composition and enzymatic digestibility of rice straw. Bioresource Technology, 2013, 149, 375-382. 359 4.8 56 360 Microbial Glycoside Hydrolases for Biomass Utilization in Biofuels Applications., 2013, , 171-188. 11 Production of xylooligosaccharides (XOS) from delignified sugarcane bagasse by peroxide-HAc process using recombinant xylanase from Bacillus subtilis. Industrial Crops and Products, 2013, 51, 2.5 361 67 123-129 Energy-Saving Recovery of Acetone, Butanol, and Ethanol from a Prefractionator by the Salting-Out 362 1.0 39 Method. Journal of Chemical & amp; Engineering Data, 2013, 58, 3297-3303. Converting forage sorghum and sunn hemp into biofuels through dilute acid pretreatment. Industrial 2.5 Crops and Products, 2013, 49, 598-609. Butanol production from wood pulping hydrolysate in an integrated fermentation–gas stripping 364 4.8 126 process. Bioresource Technology, 2013, 143, 467-475. Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresource 4.8 138 Technology, 2013, 135, 464-468. Photo-biohydrogen production potential of Rhodobacter capsulatus-PK from wheat straw. 367 6.2 36 Biotechnology for Biofuels, 2013, 6, 144. Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress. 368 6.2 Biotechnology for Biofuels, 2013, 6, 131. Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low 369 6.2 26 oxidant loadings. Biotechnology for Biofuels, 2013, 6, 119. Techno-economic potential of bioethanol from bamboo in China. Biotechnology for Biofuels, 2013, 6, 370 83 173. Effects of tea saponin on glucan conversion and bonding behaviour of cellulolytic enzymes during 371 enzymatic hydrolysis of corncob residue with high lignin content. Biotechnology for Biofuels, 2013, 6.2 33 6, 161. Fractionation of <i>Eucalyptus globulus </i>Wood by Glycerolâ€"Water Pretreatment: Optimization and 372 1.8 Modeling. Industrial & amp; Engineering Chemistry Research, 2013, 52, 14342-14352.

#	Article	IF	CITATIONS
373	A novel non-hydrolytic protein from Pseudomonas oryzihabitans enhances the enzymatic hydrolysis of cellulose. Journal of Biotechnology, 2013, 168, 24-31.	1.9	20
374	Hydrogen production from acid and enzymatic oat straw hydrolysates in an anaerobic sequencing batch reactor: Performance and microbial population analysis. International Journal of Hydrogen Energy, 2013, 38, 13884-13894.	3.8	47
375	Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresource Technology, 2013, 135, 58-66.	4.8	251
376	Comparing oxidative and dilute acid wet explosion pretreatment of C ocksfoot grass at high dry matter concentration for cellulosic ethanol production. Energy Science and Engineering, 2013, 1, 89-98.	1.9	12
377	Evaluation of hardboard manufacturing process wastewater as a feedstream for ethanol production. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 671-677.	1.4	4
378	Ethanol production by Saccharomyces cerevisiae using lignocellulosic hydrolysate from Chrysanthemum waste degradation. World Journal of Microbiology and Biotechnology, 2013, 29, 459-466.	1.7	16
379	Effect of methanol and sulfuric acid on hydrolysis of coconut dregs for glucose recovery. , 2013, , .		1
380	Sodium carbonate–sodium sulfite pretreatment for improving the enzymatic hydrolysis of rice straw. Industrial Crops and Products, 2013, 43, 711-717.	2.5	64
381	Enzymatic conversion of newspaper and office paper to fermentable sugars. Chemical Engineering Research and Design, 2013, 91, 123-130.	2.7	34
382	Factors affecting hydrogen production from rice straw wastes in a mesophillic up-flow anaerobic staged reactor. Renewable Energy, 2013, 50, 402-407.	4.3	26
383	SO3H-functionalized acidic ionic liquids as catalysts for the hydrolysis of cellulose. Carbohydrate Polymers, 2013, 92, 218-222.	5.1	79
384	Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresource Technology, 2013, 128, 448-453.	4.8	110
385	Biogas Production from Algae and Cyanobacteria Through Anaerobic Digestion: A Review, Analysis, and Research Needs. , 2013, , 873-975.		57
386	Dry fractionation process as an important step in current and future lignocellulose biorefineries: A review. Bioresource Technology, 2013, 134, 362-373.	4.8	264
387	Extraction of Lignocellulose and Synthesis of Porous Silica Nanoparticles from Rice Husks: A Comprehensive Utilization of Rice Husk Biomass. ACS Sustainable Chemistry and Engineering, 2013, 1, 254-259.	3.2	135
388	Bioethanol production from bamboo (Dendrocalamus sp.) process waste. Biomass and Bioenergy, 2013, 59, 142-150.	2.9	61
389	Characterization of Lignins Isolated from Alkali Treated Prehydrolysate of Corn Stover. Chinese Journal of Chemical Engineering, 2013, 21, 427-433.	1.7	20
390	Use of artificial neural network (ANN) for the development of bioprocess using Pinus roxburghii fallen foliages for the release of polyphenols and reducing sugars. Bioresource Technology, 2013, 140, 392-398	4.8	28

#	Article	IF	CITATIONS
391	Hydrolysis of acid and alkali presoaked lignocellulosic biomass exposed to electron beam irradiation. Bioresource Technology, 2013, 129, 646-649.	4.8	35
392	Processes for the Production of Xylitol—A Review. Food Reviews International, 2013, 29, 127-156.	4.3	134
393	Effect of thermochemical pretreatment on the solubilization and anaerobic biodegradability of the red macroalga Palmaria palmata. Biochemical Engineering Journal, 2013, 79, 253-258.	1.8	65
394	Exogenous anthrahydroquinone-2,6-disulfonate specifically increases xylose utilization during mixed sugar fermentation by Clostridium beijerinckii NCIMB 8052. International Journal of Hydrogen Energy, 2013, 38, 2719-2727.	3.8	8
395	Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresource Technology, 2013, 150, 220-227.	4.8	77
396	High efficiency bioethanol production from barley straw using a continuous pretreatment reactor. Process Biochemistry, 2013, 48, 488-495.	1.8	64
397	Pretreatment of yellow pine in an acidic ionic liquid: Extraction of hemicellulose and lignin to facilitate enzymatic digestion. Bioresource Technology, 2013, 134, 59-65.	4.8	69
398	Interaction of cellulase with three phenolic acids. Food Chemistry, 2013, 138, 1022-1027.	4.2	32
399	Evaluation of properties of fast pyrolysis products obtained, from Canadian waste biomass. Journal of Analytical and Applied Pyrolysis, 2013, 104, 330-340.	2.6	96
400	Anaerobic treatment of lignocellulosic material to co-produce methane and digested fiber for ethanol biorefining. Bioresource Technology, 2013, 130, 418-423.	4.8	61
401	Need for improvements in physical pretreatment of source-separated household food waste. Waste Management, 2013, 33, 746-754.	3.7	87
402	Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors. Bioresource Technology, 2013, 142, 570-578.	4.8	2
403	Formation Kinetics of Potential Fermentation Inhibitors in a Steam Explosion Process of Corn Straw. Applied Biochemistry and Biotechnology, 2013, 169, 359-367.	1.4	18
404	Hydrothermal Carbonization of Carbohydrates: A Kinetic and Mechanistic Study. Chemie-Ingenieur-Technik, 2013, 85, 516-522.	0.4	7
405	Straw use and availability for second generation biofuels inÂEngland. Biomass and Bioenergy, 2013, 55, 311-321.	2.9	73
406	Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Bioresource Technology, 2013, 129, 553-560.	4.8	100
407	Hemicellulose polysaccharide recovery from flax shive using alkaline solutions with sodium ethoxide pretreatment. Industrial Crops and Products, 2013, 44, 165-170.	2.5	7
409	X-ray scattering studies of lignocellulosic biomass: A review. Carbohydrate Polymers, 2013, 94, 904-917.	5.1	81

#	Article	IF	CITATIONS
410	Microwave-assisted dissolution and delignification of wood in 1-ethyl-3-methylimidazolium acetate. Bioresource Technology, 2013, 136, 739-742.	4.8	49
411	Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 2013, 78, 1-10.	1.8	563
412	Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy and Environmental Science, 2013, 6, 92-96.	15.6	146
413	Bioethanol production from the macroalgae Sargassum spp Bioresource Technology, 2013, 138, 22-29.	4.8	199
414	Pretreatment of Sugarcane Bagasse and Leaves: Unlocking the Treasury of "Green Currency― Green Energy and Technology, 2013, , 369-391.	0.4	2
415	Microwave-Based Pretreatment for Efficient Biomass-to-Biofuel Conversion. Green Energy and Technology, 2013, , 117-130.	0.4	9
416	Characterization of cell wall components of wheat straw following hydrothermal pretreatment and fractionation. Bioresource Technology, 2013, 131, 226-234.	4.8	55
417	Unexplored possibilities of all-polysaccharide composites. Carbohydrate Polymers, 2013, 95, 697-715.	5.1	87
418	Single cell oil production from low-cost substrates: The possibility and potential of its industrialization. Biotechnology Advances, 2013, 31, 129-139.	6.0	253
419	Selective hydrolysis of lignocelluloses from corn stalk in an ionic liquid. Journal of Applied Polymer Science, 2013, 129, 472-479.	1.3	5
420	Organosolv Pretreatment of Pine Sawdust for Bio-ethanol Production. Green Energy and Technology, 2013, , 435-457.	0.4	9
421	Biofuels: The Environment-Friendly Energy Carriers. , 2013, , 125-148.		Ο
422	Mechanocatalytic Depolymerization of Dry (Ligno)cellulose As an Entry Process for High-Yield Production of Furfurals. ACS Catalysis, 2013, 3, 993-997.	5.5	126
423	Effect of Ultrasound on Lignocellulosic Biomass as a Pretreatment for Biorefinery and Biofuel Applications. Industrial & Engineering Chemistry Research, 2013, 52, 3563-3580.	1.8	261
424	Alkaline Pre-treatment of Hardwood Chips Prior to Delignification. Journal of Wood Chemistry and Technology, 2013, 33, 77-91.	0.9	36
425	Evaluation of free and immobilized Aspergillus niger NRC1ami pectinase applicable in industrial processes. Carbohydrate Polymers, 2013, 92, 1463-1469.	5.1	60
427	Solid- and Nano-Catalysts Pretreatment and Hydrolysis Techniques. Green Energy and Technology, 2013, , 339-366.	0.4	4
428	Lignocellulosic Materials Into Biohydrogen and Biomethane: Impact of Structural Features and Pretreatment. Critical Reviews in Environmental Science and Technology, 2013, 43, 260-322.	6.6	318

ARTICLE IF CITATIONS # Biobutanol Production from Biomass., 2013, , 443-470. 429 8 The Role of Catalytic Pretreatment in Biomass Valorization Toward Fuels and Chemicals. , 2013, , 217-260. 433 Catalytic Hydrotreatment of Bio-Oils for High-Quality Fuel Production., 2013,, 351-396. 7 Chrysoporthe cubensis: A new source of cellulases and hemicellulases to application in biomass 434 4.8 saccharification processes. Bioresource Technology, 2013, 130, 296-305. Detoxification of Lignocellulose Hydrolysates: Biochemical and Metabolic Engineering Toward White 435 2.2 174 Biotechnology. Bioenergy Research, 2013, 6, 388-401. Hydrothermal Carbons from Hemicelluloseâ€Derived Aqueous Hydrolysis Products as Electrode Materials for Supercapacitors. ChemSusChem, 2013, 6, 374-382. 3.6 169 Investigation of the fate of poplar lignin during autohydrolysis pretreatment to understand the 437 1.7 72 biomass recalcitrance. RSC Advances, 2013, 3, 5305. Globe artichoke leaves and floral stems as a source of bioactive compounds. Industrial Crops and 2.5 Products, 2013, 44, 44-49. Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle 440 4.5 83 manure in batch assay. Energy, 2013, 57, 359-367. Production of green biocellulose nanofibers by Gluconacetobacter xylinus through utilizing the 441 renewable resources of agriculture residues. Bioprocess and Biosystems Engineering, 2013, 36, 1.7 24 1735-1743. Progress on Enzymatic Saccharification Technologies for Biofuels Production., 2013, , 145-169. 442 11 Effects of Kraft lignin on hydrolysis/dehydration of sugars, cellulosic and lignocellulosic biomass 444 4.8 under hot compressed water. Bioresource Technology, 2013, 144, 504-512. Switchable butadiene sulfone pretreatment of Miscanthus in the presence of water. Green Chemistry, 445 4.6 17 2013, 15, 1067. Decomposition of Lignin from Sugar Cane Bagasse during Ozonation Process Monitored by Optical and Mass Spectrometries. Journal of Physical Chemistry B, 2013, 117, 3110-3119. 446 1.2 Interconnected Carbon Nanosheets Derived from Hemp for Ultrafast Supercapacitors with High 447 7.3 869 Energy. ACS Nano, 2013, 7, 5131-5141. Biological Pretreatment of Lignocellulosic Biomass for Enzymatic Saccharification. Green Energy and 448 29 Technology, 2013, , 3-34. The effect of assorted pretreatments on cellulose of selected vegetable waste and enzymatic 449 2.9 19 hydrolysis. Biomass and Bioenergy, 2013, 49, 205-213. Lignocellulosic Biomassâ€"Thermal Pre-treatment with Steam. Green Energy and Technology, 2013, , 59-75.

#	Article	IF	CITATIONS
451	Response Surface Optimization of Hot-Water Pretreatment for Enzymatic Hydrolysis of Hybrid Poplar: First Step of Bioconversion of Woody-Biomass to Value-Added Bioproducts. Green Energy and Technology, 2013, , 183-194.	0.4	2
452	A facile and efficient pretreatment of corncob for bioproduction of butanol. Bioresource Technology, 2013, 140, 86-89.	4.8	37
453	Sugarcane and Woody Biomass Pretreatments for Ethanol Production. , 0, , .		12
454	Biomass to biodegradable polymer (PLA). RSC Advances, 2013, 3, 13558.	1.7	156
455	SO ₂ atalyzed steam explosion: The effects of different severity on digestibility, accessibility, and crystallinity of lignocellulosic biomass. Biotechnology Progress, 2013, 29, 909-916.	1.3	40
456	Copper Biosorption by Spent Coffee Ground: Equilibrium, Kinetics, and Mechanism. Clean - Soil, Air, Water, 2013, 41, 557-564.	0.7	44
457	Feasibility of simultaneous saccharification and juice co-fermentation on hydrothermal pretreated sweet sorghum bagasse for ethanol production. Applied Energy, 2013, 102, 211-219.	5.1	64
458	Hydrolysis of concentrated suspensions of steam pretreated Arundo donax. Applied Energy, 2013, 102, 179-189.	5.1	62
459	Improved enzyme efficiency of rapeseed straw through the two-stage fractionation process using sodium hydroxide and sulfuric acid. Applied Energy, 2013, 102, 640-646.	5.1	30
460	Comparison of the impact of ionic liquid pretreatment on recalcitrance of agave bagasse and switchgrass. Bioresource Technology, 2013, 127, 18-24.	4.8	82
461	Impact-based pulverisation of dried and screened Norway spruce (Picea abies) sawdust in an oscillatory ball mill. Powder Technology, 2013, 233, 286-294.	2.1	10
462	Importance of policy support and feedstock prices on economic feasibility of bioethanol production from wheat straw in the UK. Renewable and Sustainable Energy Reviews, 2013, 17, 291-300.	8.2	57
463	Removal of Acidic Impurities from Corn Stover Hydrolysate Liquor by Resin Wafer Based Electrodeionization. Industrial & Engineering Chemistry Research, 2013, 52, 13777-13784.	1.8	24
464	Incorporation of Mass and Energy Integration in the Optimal Bioethanol Separation Process. Chemical Engineering and Technology, 2013, 36, 1865-1873.	0.9	16
465	Enzymatic hydrolysis of wood with alkaline treatment. Journal of Wood Science, 2013, 59, 484-488.	0.9	17
466	Dissolution of Pinus radiata and Eucalyptus Globulus Woods in 1-Allyl-3-methylimidazolium Chloride for Cellulose or Lignin Regeneration. Industrial & Engineering Chemistry Research, 2013, 52, 3628-3636.	1.8	14
467	Investigation of the Effects of Ionic Liquid 1-Butyl-3-methylimidazolium Acetate Pretreatment and Enzymatic Hydrolysis of Typha capensis. Energy & Fuels, 2013, 27, 189-196.	2.5	15
468	Ultrasonic Pretreatment of Wheat Straw in Oxidative and Nonoxidative Conditions Aided with Microwave Heating. Industrial & Amp; Engineering Chemistry Research, 2013, 52, 12 <u>514-12522.</u>	1.8	33

#	Article	IF	CITATIONS
469	Alkali Pretreatment for Improvement of Biogas and Ethanol Production from Different Waste Parts of Pine Tree. Industrial & Engineering Chemistry Research, 2013, 52, 972-978.	1.8	70
470	Lignocellulosic Fermentation of Wild Grass Employing Recombinant Hydrolytic Enzymes and Fermentative Microbes with Effective Bioethanol Recovery. BioMed Research International, 2013, 2013, 1-14.	0.9	19
471	Optimization of dilute acid and alkaline peroxide pretreatment to enhance bioethanol production from wheat straw by co-fermentation. Turkish Journal of Biochemistry, 2013, 38, 457-467.	0.3	2
472	Size Reduction of Cellulosic Biomass in Biofuel Manufacturing: Separating the Confounding Effects of Particle Size and Biomass Crystallinity. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2013, 135, .	1.3	0
473	Reconstitution of a Thermostable Xylan-Degrading Enzyme Mixture from the Bacterium Caldicellulosiruptor bescii. Applied and Environmental Microbiology, 2013, 79, 1481-1490.	1.4	44
474	Chemical Pretreatment Techniques for Biofuels and Biorefineries from Softwood. Green Energy and Technology, 2013, , 151-179.	0.4	9
475	Pretreatment of Lignocellulosic Biomass Using Microorganisms: Approaches, Advantages, and Limitations. , 0, , .		6
476	Short-time ultrasonication treatment in enzymatic hydrolysis of biomass. Holzforschung, 2013, 67, 891-897.	0.9	6
477	Comparative Metagenomic and Metatranscriptomic Analysis of Hindgut Paunch Microbiota in Wood- and Dung-Feeding Higher Termites. PLoS ONE, 2013, 8, e61126.	1.1	149
478	Effect of Ball Milling on Structure of Microcrystalline Cellulose. Applied Mechanics and Materials, 2013, 394, 201-204.	0.2	3
479	Optimization of Sulfide/Sulfite Pretreatment of Lignocellulosic Biomass for Lactic Acid Production. BioMed Research International, 2013, 2013, 1-11.	0.9	22
480	Advances in the genetic dissection of plant cell walls: tools and resources available in Miscanthus. Frontiers in Plant Science, 2013, 4, 217.	1.7	27
481	Current Developments in Cellulase Engineering. Chemie-Ingenieur-Technik, 2013, 85, 818-825.	0.4	5
482	Microalgae fermentation of acetic acidâ€rich pyrolytic bioâ€oil: Reducing bioâ€oil toxicity by alkali treatment. Environmental Progress and Sustainable Energy, 2013, 32, 955-961.	1.3	21
483	Extreme thermophilic ethanol production from rapeseed straw: Using the newly isolated <i>Thermoanaerobacter pentosaceus</i> and combining it with <i>Saccharomyces cerevisiae</i> in a twoâ€step process. Biotechnology and Bioengineering, 2013, 110, 1574-1582.	1.7	28
484	Optimization of Sugarcane Bagasse Hydrolysis by Microwaveâ€Assisted Pretreatment for Bioethanol Production. Chemical Engineering and Technology, 2013, 36, 1997-2005.	0.9	10
485	Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnology and Bioengineering, 2013, 110, 1605-1615.	1.7	184
486	Cellulases from Insects. Advances in Biochemical Engineering/Biotechnology, 2013, 136, 51-64.	0.6	28

# 487	ARTICLE Influence of twin-screw extrusion on soluble arabinoxylans and corn fiber gum from corn fiber. Journal of the Science of Food and Agriculture, 2013, 93, 3046-3054.	IF 1.7	CITATIONS
488	Effects of a Steam Explosion Pretreatment on Sugar Production by Enzymatic Hydrolysis and Structural Properties of Reed Straw. Bioscience, Biotechnology and Biochemistry, 2013, 77, 2181-2187.	0.6	18
489	Technical review on biomass conversion processes into required energy form. , 2013, , .		5
491	Pretreatments of Lignocellulosic Biomass. , 2013, , 299-350.		Ο
492	Near Infrared Calibration Models for Pretreated Corn Stover Slurry Solids, Isolated and in situ. Journal of Near Infrared Spectroscopy, 2013, 21, 249-257.	0.8	14
493	Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatusZ5 in the presence of different carbon sources. Biotechnology for Biofuels, 2013, 6, 149.	6.2	92
494	Synthesis and Performance Evaluation of Date Pit Based Surfactant-Polymer Formulation for Enhanced Chemical Flooding. , 2013, , .		3
495	Application of Lignocelulosic Residues in the Production of Cellulase and Hemicellulases from Fungi. , 2013, , .		3
496	Bioconversion of Hemicellulose from Sugarcane Biomass Into Sustainable Products. , 2013, , .		19
497	Characteristics of Moso Bamboo with Chemical Pretreatment. , 0, , .		10
498	Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial Considerations. Oil and Gas Science and Technology, 2013, 68, 841-860.	1.4	41
499	Extraction of Lignin from a Coproduct of the Cellulosic Ethanol Industry and Its Thermal Characterization. BioResources, 2013, 8, .	0.5	27
500	Forward Genetic Screening for the Improved Production of Fermentable Sugars from Plant Biomass. PLoS ONE, 2013, 8, e55616.	1.1	7
501	Advances in the Valorization of Lignocellulosic Materials by Biotechnology: An Overview. BioResources, 2013, 8, .	0.5	161
502	Valorization of agroindustrial solid residues and residues from biofuel production chains by thermochemical conversion: a review, citing Brazil as a case study. Brazilian Journal of Chemical Engineering, 2013, 30, 197-230.	0.7	59
503	Lignin: Characterization of a Multifaceted Crop Component. Scientific World Journal, The, 2013, 2013, 1-25.	0.8	122
504	Effect of Alkali Pretreatment of Rice Straw on Cellulase and Xylanase Production by Local Trichoderma harzianum SNRS3 under Solid State Fermentation. BioResources, 2013, 8, .	0.5	69
505	Lignocelluloses Feedstock Biorefinery as Petrorefinery Substitutes. , 0, , .		30

#	Article	IF	CITATIONS
506	Liquid AFEX Pretreatment and Enzymatic Hydrolysis of Switchgrass from Different Harvest and Storage Conditions. Transactions of the ASABE, 2013, , 1511-1520.	1.1	3
507	lonic Liquids and Organic Solvents for Recovering Lignin from Lignocellulosic Biomass. BioResources, 2014, 9, .	0.5	69
508	Characteristics of Corn Stover Pretreated with Liquid Hot Water and Fed-Batch Semi-Simultaneous Saccharification and Fermentation for Bioethanol Production. PLoS ONE, 2014, 9, e95455.	1.1	47
509	Statistical Optimization of Fermentation Process Parameters by Taguchi Orthogonal Array Design for Improved Bioethanol Production. Journal of Fuels, 2014, 2014, 1-11.	0.2	16
510	Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. Scientific World Journal, The, 2014, 2014, 1-20.	0.8	361
511	Bioethanol Production from Sugarcane Bagasse using Fermentation Process. Oriental Journal of Chemistry, 2014, 30, 507-513.	0.1	29
512	Colloidal catalysts on the base of iron(3+) oxides for oxidative treatment of biomass. Catalysis for Sustainable Energy, 2014, 2, .	0.7	1
513	Enhancement of Enzymatic Saccharification of Poplar by Green Liquor Pretreatment. BioResources, 2014, 9, .	0.5	8
514	Utilization of Agro Residue Corncob for Production of Acetone-Butanol Using Clostridium acetobutylicum and Process Optimization through RSM. Journal of Microbial & Biochemical Technology, 2014, s8, .	0.2	5
515	Effect of Mn2+Addition on Delignification of Water Hyacinth using Phanerochaete Chrysosporium. Modern Applied Science, 2014, 9, .	0.4	2
516	Partial Simultaneous Saccharification and Fermentation at High Solids Loadings of Alkaline-pretreated Miscanthus for Bioethanol Production. BioResources, 2014, 9, .	0.5	4
517	Optimization of Alkaline Pretreatment for Enzymatic Saccharification of Poppy Stalks. BioResources, 2014, 9, .	0.5	13
520	Evaluating the Effects of Electroporation Pre-treatment on the Biogas Yield from Ley Crop Silage. Applied Biochemistry and Biotechnology, 2014, 174, 2616-2625.	1.4	18
521	Agricultural Residues as Feedstocks for Lactic Acid Fermentation. ACS Symposium Series, 2014, , 247-263.	0.5	10
522	Screening of Bacillus coagulans strains in lignin supplemented minimal medium with high throughput turbidity measurements. Biotechnology Reports (Amsterdam, Netherlands), 2014, 4, 60-65.	2.1	7
523	Cellulose from Lignocellulosic Waste. , 2014, , 1-33.		6
524	Redoxâ€Initiated Hydrogel System for Detection and Realâ€Time Imaging of Cellulolytic Enzyme Activity. ChemSusChem, 2014, 7, 2825-2831.	3.6	13
525	Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw. Biotechnology for Biofuels, 2014, 7, 495.	6.2	40

		CITATION REPOR	RT	
#	ARTICLE	IF	С	ITATIONS
526	Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production. BMC Biotechnology, 2014, 14, 103.	1.7	' 48	5
527	Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnology Journal, 2014, 1174-1192.	12, 4.1	1 90	6
528	Lignocellulose-Based Chemical Products. , 2014, , 277-313.		44	4
529	Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks. Biotechnology Journal, 2014, 12, 1163-1173.	Plant 4.1	1 90	6
530	Biofuels from Biomass. , 2014, , 25-44.		2	
531	Optimizing the biofuel production by hydrotreating Jojoba oil. International Journal of Academ Research, 2014, 6, 194-201.	ic o	1 6	
533	Mixed Enzyme Systems for Delignification of Lignocellulosic Biomass. Catalysts, 2014, 4, 1-35	. 1.6	5 52	2
534	Biogrowth of <i>Escherichia coli</i> in Bio-Ionic Media. Advanced Materials Researc 314-321.	h, 0, 911, o.:	3 0	
535	An Overview of Existing Individual Unit Operations. , 2014, , 3-36.		23	3
536	Influence of Chemical, Mechanical, and Thermal Pretreatment on the Release of Macromolecu Two Irish Seaweed Species. Separation Science and Technology, 2014, 49, 30-38.	les from 1.3	3 9	
537	High temperature pyrolysis of solid products obtained from rapid hydrothermal pre-processing pinewood sawdust. RSC Advances, 2014, 4, 34784-34792.	; of 1.7	, 7	
538	Valorization of an invasive woody species, <i>Acacia dealbata</i> , by means of Ionic liquid pretreatment and enzymatic hydrolysis. Journal of Chemical Technology and Biotechnology, 2 1337-1343.	014, 89, 1.6	5 18	8
539	Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anoc for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9684-9690.	le 5.2	2 2:	16
540	Production of fermentable sugars and polyhydroxybutyrate from hybrid poplar: Response surf model optimization of a hot-water pretreatment and subsequent enzymatic hydrolysis. Bioma Bioenergy, 2014, 71, 275-284.	ace ss and 2.9) 2:	2
541	Preliminary exploration on pretreatment with metal chlorides and enzymatic hydrolysis of bag Biomass and Bioenergy, 2014, 71, 311-317.	asse. 2.9) 3(0
542	Using confocal Raman microscopy to realâ€time monitor poplar cell wall swelling and dissolut during ionic liquid pretreatment. Microscopy Research and Technique, 2014, 77, 609-618.	ion 1.2	2 34	4
543	Effect of Saccharomyces cerevisiae and Zymomonas mobilis on the co-fermentation of sweet bagasse hydrolysates pretreated under varying conditions. Biomass and Bioenergy, 2014, 71,	sorghum 2.9 350-356. 2.9) 19	9
544	Determination of Factors Affecting the Enzymatic Hydrolysis of Low Severity Acidâ€steam Pre Agroâ€residue. Journal of the Chinese Chemical Society, 2014, 61, 809-813.	treated o.	84	

~			<u>_</u>
	ΙΤΔΤΙ	ON	REDUBL
\sim			KLI OKI

#	Article	IF	CITATIONS
545	Comparison of Chemical Pretreatment Methods for Cellulosic Biomass. APCBEE Procedia, 2014, 9, 170-174.	0.5	105
546	Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels. Applied Energy, 2014, 129, 195-206.	5.1	67
547	Biofuels and Bioproducts Produced through Microbial Conversion of Biomass. , 2014, , 71-93.		16
548	The Autohydrolysis ofAlbies AlbaWood Using Adaptive Neural Fuzzy Interference System Mathematical Modeling. International Journal of Green Energy, 2014, 11, 611-624.	2.1	5
549	Biomass pretreatment: a critical choice for biomass utilization via biotechnological routes. BMC Proceedings, 2014, 8, .	1.8	19
550	Co-production of ethanol and squalene using a Saccharomyces cerevisiae ERG1 (squalene epoxidase) mutant and agro-industrial feedstock. Biotechnology for Biofuels, 2014, 7, 133.	6.2	21
551	Butanol Production from Soybean Hull and Soy Molasses by Acetone-Butanol-Ethanol Fermentation. ACS Symposium Series, 2014, , 25-41.	0.5	13
552	Advances in lignocellulosic biotechnology: A brief review on lignocellulosic biomass and cellulases. Advances in Bioscience and Biotechnology (Print), 2014, 05, 246-251.	0.3	79
553	Mechanical Pretreatment of Lignocellulosic Biomass for Biofuel Production. Applied Mechanics and Materials, 0, 625, 838-841.	0.2	25
554	Effect of mild torrefaction on pulverization of Norway spruce (<i>Picea abies</i>) by oscillatory ball milling: particle morphology and cellulose crystallinity. Holzforschung, 2014, 68, 337-343.	0.9	5
555	Recent advances on biobutanol production. Sustainable Chemical Processes, 2014, 2, .	2.3	67
556	Low-heat alkaline pretreatment of biomass for dairy anaerobic codigestion. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49, 786-796.	0.7	4
557	Phanerochaete chrysosporium pretreatment of biomass to enhance solvent production in subsequent bacterial solid-substrate cultivation. Biomass and Bioenergy, 2014, 62, 100-107.	2.9	28
558	Optimal simultaneous production of i-butene and ethanol from switchgrass. Biomass and Bioenergy, 2014, 61, 93-103.	2.9	31
559	Ultrasound assisted ammonia pretreatment of sugarcane bagasse for fermentable sugar production. Biochemical Engineering Journal, 2014, 83, 33-41.	1.8	55
560	Enhanced mass transfer upon switchable ionic liquid mediated wood fractionation. Industrial Crops and Products, 2014, 55, 109-115.	2.5	19
561	Mineralogical characterization of chemically isolated ingredients from biomass. Energy Conversion and Management, 2014, 77, 221-226.	4.4	13
562	Synergism between ultrasonic pretreatment and white rot fungal enzymes on biodegradation of wheat chaff. Ultrasonics Sonochemistry, 2014, 21, 2084-2091.	3.8	18

#	Article	IF	CITATIONS
563	Characteristic Studies on the Pyrolysis Products from Hydrolyzed Canadian Lignocellulosic Feedstocks. Bioenergy Research, 2014, 7, 174-191.	2.2	64
564	Enhanced enzymatic hydrolysis of pretreated almond-tree prunings for sugar production. Carbohydrate Polymers, 2014, 99, 791-799.	5.1	21
565	Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis. Applied Energy, 2014, 113, 97-105.	5.1	141
566	Comparative efficiency of different pretreatment methods on enzymatic digestibility of Parthenium sp World Journal of Microbiology and Biotechnology, 2014, 30, 55-64.	1.7	59
567	Improved cellobiose utilization in E. coli by including both hydrolysis and phosphorolysis mechanisms. Biotechnology Letters, 2014, 36, 301-307.	1.1	11
568	Impact of pretreatment on solid state anaerobic digestion of yard waste for biogas production. World Journal of Microbiology and Biotechnology, 2014, 30, 547-554.	1.7	23
569	Nanoscale interactions of polyethylene glycol with thermoâ€mechanically preâ€treated <i>Pinus radiata</i> biofuel substrate. Biotechnology and Bioengineering, 2014, 111, 719-725.	1.7	21
570	Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresource Technology, 2014, 153, 47-54.	4.8	205
571	Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment. Bioresource Technology, 2014, 159, 41-47.	4.8	92
572	Atmospheric Pressure Plasma Pretreatment of Sugarcane Bagasse: the Influence of Biomass Particle Size in the Ozonation Process. Applied Biochemistry and Biotechnology, 2014, 172, 1663-1672.	1.4	35
573	Utilization of rice husks for the production of oil sorbent materials. Cellulose, 2014, 21, 1679-1688.	2.4	56
574	Acetone–butanol–ethanol fermentation of corn stover by Clostridium species: present status and future perspectives. World Journal of Microbiology and Biotechnology, 2014, 30, 1145-1157.	1.7	34
575	Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process. Bioresource Technology, 2014, 156, 275-282.	4.8	131
576	Pretreatment and enzymatic saccharification of new phytoresource for bioethanol production from halophyte species. Renewable Energy, 2014, 63, 544-549.	4.3	11
579	Supercritical water gasification of biomass for hydrogen production. International Journal of Hydrogen Energy, 2014, 39, 6912-6926.	3.8	399
580	Optimization of hydrogen production from pretreated rice straw waste in a mesophilic up-flow anaerobic staged reactor. International Journal of Energy Research, 2014, 38, 1155-1161.	2.2	9
581	Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery, 2014, 4, 157-191.	2.9	290
582	Pretreatment of lignocellulosic biomass using Fenton chemistry. Bioresource Technology, 2014, 162, 273-278.	4.8	89

#	Article	IF	CITATIONS
583	Techno-Economic Analysis of Second-Generation Ethanol in Brazil: Competitive, Complementary Aspects with First-Generation Ethanol. , 2014, , 1-29.		3
584	Engineering and Science of Biomass Feedstock Production and Provision. , 2014, , .		12
585	Optimization of dilute-phosphoric-acid steam pretreatment of Eucalyptus benthamii for biofuel production. Applied Energy, 2014, 125, 76-83.	5.1	76
586	Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences, 2014, 7, 163-173.	0.7	599
587	Bioethanol production from alkaline-pretreated sugarcane bagasse by consolidated bioprocessing using Phlebia sp. MG-60. International Biodeterioration and Biodegradation, 2014, 88, 62-68.	1.9	65
588	Lignin pyrolysis for profitable lignocellulosic biorefineries. Biofuels, Bioproducts and Biorefining, 2014, 8, 645-657.	1.9	113
589	The use of thermochemical pretreatments to improve the anaerobic biodegradability and biochemical methane potential of the sugarcane bagasse. Chemical Engineering Journal, 2014, 248, 363-372.	6.6	56
590	Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions. Carbohydrate Polymers, 2014, 111, 116-124.	5.1	48
591	Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 2014, 36, 91-106.	8.2	700
592	An overview of algae bioethanol production. International Journal of Energy Research, 2014, 38, 965-977.	2.2	103
593	Utilizing lipid-extracted microalgae biomass residues for maltodextrin production. Chemical Engineering Journal, 2014, 235, 224-230.	6.6	31
594	Lignin extraction from biomass with protic ionic liquids. Green Chemistry, 2014, 16, 1114-1119.	4.6	205
595	Production of Biofuels and Chemicals with Ionic Liquids. Biofuels and Biorefineries, 2014, , .	0.5	30
596	Thermophilic lignocellulose deconstruction. FEMS Microbiology Reviews, 2014, 38, 393-448.	3.9	145
597	Promises in direct conversion of cellulose and lignocellulosic biomass to chemicals and fuels: Combined solvent–nanocatalysis approach for biorefinary. Biomass and Bioenergy, 2014, 62, 182-197.	2.9	73
598	Niobium oxide catalyst for delignification of switchgrass for fermentable sugar production. Industrial Crops and Products, 2014, 52, 790-795.	2.5	12
599	Lignin extraction from Mediterranean agro-wastes: Impact of pretreatment conditions on lignin chemical structure and thermal degradation behavior. Catalysis Today, 2014, 223, 25-34.	2.2	78
600	Tight control of cellulose depolymerization towards glucose in organic electrolyte solutions. Biomass and Bioenergy, 2014, 62, 158-165.	2.9	4

ARTICLE IF CITATIONS # Enzymatic hydrolysis of pre-treated lignocellulose with Penicillium verruculosum cellulases. Journal 601 1.8 20 of Molecular Catalysis B: Enzymatic, 2014, 103, 29-35. Evaluation of dilute acid pretreatment on cashew apple bagasse for ethanol and xylitol production. 6.6 Chemical Engineering Journal, 2014, 243, 234-243. Fuels and plastics from lignocellulosic biomass via the furan pathway; a technical analysis. RSC 603 1.7 61 Advances, 2014, 4, 3536-3549. Bioenergy from Wood. Managing Forest Ecosystems, 2014, , . 604 Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chemistry, 2014, 605 4.6 1,323 16,950-963. One-pot pretreatment, saccharification and ethanol fermentation of lignocellulose based on 1.7 acid–base mixture pretreatment. RSC Advances, 2014, 4, 55318-55327. Effects of acid and alkali promoters on compressed liquid hot water pretreatment of rice straw. 607 4.8 51 Bioresource Technology, 2014, 171, 29-36. Characterization of biomass and its derived char using¹³C-solid state nuclear magnetic 4.6 resonance. Green Chemistry, 2014, 16, 4839-4869. 609 Recent Advancements in Pretreatment Technologies of Biomass to Produce Bioenergy., 2014, , 57-69. 4 Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and 1.9 94 bioconversion. Energy Science and Engineering, 2014, 2, 138-148. Mechanical Pretreatment in a Screw Press Affecting Chemical Pulping of Lignocellulosic Biomass. 611 2.5 16 Energy & amp; Fuels, 2014, 28, 6981-6987. Substrate-Specific Development of Thermophilic Bacterial Consortia by Using Chemically Pretreated 1.4 Switchgrass. Applied and Environmental Microbiology, 2014, 80, 7423-7432 Enhanced delignification of cornstalk by employing superbase TBD in ionic liquids. RSC Advances, 2014, 613 1.7 8 4, 27430-27438. An economic and environmental evaluation for bamboo-derived bioethanol. RSC Advances, 2014, 4, 614 1.7 29604-29611. Pretreatment of furfural residues with switchable butadiene sulfone in the sugarcane bagasse 615 10 4.6 biorefinery. Green Chemistry, 2014, 16, 2779. Switchable Ionic Liquids as Delignification Solvents for Lignocellulosic Materials. ChemSusChem, 2014, 7, 1170-1176. Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of 617 1.7 123 lignocellulosic biomass. Applied Microbiology and Biotechnology, 2014, 98, 9151-9172. Biological co-production of ethanol and biodiesel from wheat straw: a case of dilute acid pretreatment. RSC Advances, 2014, 4, 37878-37888.

#	Article	IF	CITATIONS
619	Compositional Analysis of Defatted Syrup from a Corn Ethanol Dry-Grind Process as a Feedstock for Biobased Products. ACS Sustainable Chemistry and Engineering, 2014, 2, 1139-1146.	3.2	7
620	Experimental trials to make wheat straw pellets with wood residue and binders. Biomass and Bioenergy, 2014, 69, 287-296.	2.9	116
621	Biological pretreatment of Eucalyptus grandis sawdust with white-rot fungi: Study of degradation patterns and saccharification kinetics. Chemical Engineering Journal, 2014, 258, 240-246.	6.6	121
623	Mesophilic biohydrogen production from calcium hydroxide treated wheat straw. International Journal of Hydrogen Energy, 2014, 39, 16891-16901.	3.8	46
624	Can Lignin Wastes Originating From Cellulosic Ethanol Biorefineries Act as Radical Scavenging Agents?. Australian Journal of Chemistry, 2014, 67, 1693.	0.5	3
625	Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 565-574.	0.9	15
626	Elucidating and alleviating impacts of lignocellulose-derived microbial inhibitors on <i>Clostridium beijerinckii</i> during fermentation of <i>Miscanthus giganteus</i> to butanol. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1505-1516.	1.4	30
627	Valorization of olive stones for xylitol and ethanol production from dilute acid pretreatment via enzymatic hydrolysis and fermentation by Pachysolen tannophilus. Biochemical Engineering Journal, 2014, 90, 286-293.	1.8	41
628	Pulp properties resulting from different pretreatments of wheat straw and their influence on enzymatic hydrolysis rate. Bioresource Technology, 2014, 169, 206-212.	4.8	17
629	Catalytic Conversion of Empty Fruit Bunch of Palm Oil for Producing Lactic Acid. Procedia Chemistry, 2014, 9, 88-93.	0.7	13
630	Ultrasound irradiation in the production of ethanol from biomass. Renewable and Sustainable Energy Reviews, 2014, 40, 400-421.	8.2	66
631	Chemical and Thermogravimetric Analyses of Raw and Saturated Agave Bagasse Main Fractions with Cd(II), Pb(II), and Zn(II) Ions: Adsorption Mechanisms. Industrial & Engineering Chemistry Research, 2014, 53, 8332-8338.	1.8	10
632	New Headspace Gas Chromatographic Method for Analyzing Five-Carbon Sugars in Biomass Hydrolysate. Energy & Fuels, 2014, 28, 4247-4250.	2.5	4
633	Acid-Catalyzed Chitin Liquefaction in Ethylene Glycol. ACS Sustainable Chemistry and Engineering, 2014, 2, 2081-2089.	3.2	93
634	Salting-Out Effect of Dipotassium Hydrogen Phosphate on the Recovery of Acetone, Butanol, and Ethanol from a Prefractionator. Journal of Chemical & Engineering Data, 2014, 59, 1507-1514.	1.0	57
635	Plant derived porous graphene nanosheets for efficient CO ₂ capture. RSC Advances, 2014, 4, 44634-44643.	1.7	39
636	Current Developments in Cellulase Engineering. ChemBioEng Reviews, 2014, 1, 6-13.	2.6	6
637	Production of Xylose from Meranti Wood Sawdust by Dilute Acid Hydrolysis. Applied Biochemistry and Biotechnology, 2014, 174, 542-555.	1.4	26

#	Article	IF	Citations
638	Production and characterization of in planta transiently produced polygalacturanase from Aspergillus nigerand its fusions with hydrophobin or ELP tags. BMC Biotechnology, 2014, 14, 59.	1.7	24
639	Complete Chemical Hydrolysis of Cellulose into Fermentable Sugars through Ionic Liquids and Antisolvent Pretreatments. ChemSusChem, 2014, 7, 3467-3475.	3.6	26
640	First proof of concept of sustainable metabolite production from high solids fermentation of lignocellulosic biomass using a bacterial co-culture and cycling flush system. Bioresource Technology, 2014, 173, 216-223.	4.8	8
641	Agricultural Biomass Raw Materials: The Current State and Future Potentialities. , 2014, , 77-100.		5
642	Liquid Biofuels: Emergence, Development and Prospects. Lecture Notes in Energy, 2014, , .	0.2	1
643	The optimized CO2-added ammonia explosion pretreatment for bioethanol production from rice straw. Bioprocess and Biosystems Engineering, 2014, 37, 1907-1915.	1.7	39
644	Pretreatment solution recycling and high-concentration output for economical production of bioethanol. Bioprocess and Biosystems Engineering, 2014, 37, 2205-2213.	1.7	15
645	Combined sodium hydroxide and ammonium hydroxide pretreatment of post-biogas digestion dairy manure fiber for cost effective cellulosic bioethanol production. Sustainable Chemical Processes, 2014, 2, .	2.3	19
646	Recombinant hyperthermophilic enzyme expression in plants: a novel approach for lignocellulose digestion. Trends in Biotechnology, 2014, 32, 281-289.	4.9	21
647	A multi-objective superstructure optimization approach to biofeedstocks-to-biofuels systems design. Biomass and Bioenergy, 2014, 63, 64-75.	2.9	17
648	Enhanced saccharification of lignocellulosic biomass with 1-allyl-3-methylimidazolium chloride (AmimCl) pretreatment. Chinese Chemical Letters, 2014, 25, 1485-1488.	4.8	10
649	Effect of Natural and Pretreated Soybean Hulls on Enzyme Production by <i>Trichoderma reesei</i> . JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1331-1338.	0.8	24
650	Optimization of Dilute Sulfuric Acid Pretreatment to Maximize Combined Sugar Yield from Sugarcane Bagasse for Ethanol Production. Applied Biochemistry and Biotechnology, 2014, 172, 610-630.	1.4	29
651	Ball Milling Pretreatment of Oil Palm Biomass for Enhancing Enzymatic Hydrolysis. Applied Biochemistry and Biotechnology, 2014, 173, 1778-1789.	1.4	91
652	Microwave-assisted thermochemical and primary hydrolytic conversions of lignocellulosic resources: a review. Biomass Conversion and Biorefinery, 2015, 5, 115.	2.9	3
653	Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 2014, 38, 383-392.	8.2	953
654	Pretreatment Methods for Bioethanol Production. Applied Biochemistry and Biotechnology, 2014, 174, 43-62.	1.4	100
655	Examination of changes in the morphology of lignocellulosic fibers treated with e-beam irradiation. Radiation Physics and Chemistry, 2014, 94, 226-230.	1.4	15
#	Article	IF	CITATIONS
-----	---	-----	-----------
656	Tailoring Biomassâ€Derived Carbon Nanoarchitectures for Highâ€Performance Supercapacitors. ChemElectroChem, 2014, 1, 332-337.	1.7	80
657	A novel kinetic model for polysaccharide dissolution during atmospheric acetic acid pretreatment of sugarcane bagasse. Bioresource Technology, 2014, 151, 128-136.	4.8	45
658	Application of a magnetically induced membrane vibration (MMV) system for lignocelluloses hydrolysate filtration. Journal of Membrane Science, 2014, 452, 165-170.	4.1	16
659	Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst. Bioresource Technology, 2014, 158, 313-320.	4.8	101
660	Grinding energy and physical properties of chopped and hammer-milled barley, wheat, oat, and canola straws. Biomass and Bioenergy, 2014, 60, 58-67.	2.9	83
661	Bioconversion of lignocellulosic palm byproducts into enzymes and lipid by newly isolated oleaginous fungi. Biochemical Engineering Journal, 2014, 88, 95-100.	1.8	29
662	Two-step acid and alkaline ethanolysis/alkaline peroxide fractionation of sugarcane bagasse and rice straw for production of polylactic acid precursor. Biochemical Engineering Journal, 2014, 85, 49-62.	1.8	23
663	Optimization of furfural production by acid hydrolysis of Eucalyptus globulus in two stages. Chemical Engineering Journal, 2014, 240, 195-201.	6.6	49
664	Physical–chemical characteristics of lignins separated from biomasses for second-generation ethanol. Biomass and Bioenergy, 2014, 62, 58-67.	2.9	54
665	Laccase-assisted surface functionalization of lignocellulosics. Journal of Molecular Catalysis B: Enzymatic, 2014, 102, 48-58.	1.8	43
666	Cell dispersion culture for the effective growth of Humicola insolens and efficient enzyme production. Journal of Bioscience and Bioengineering, 2014, 117, 257-262.	1.1	10
667	Thermal behavior and kinetics of the pyrolysis of the raw/steam exploded poplar wood sawdust. Journal of Analytical and Applied Pyrolysis, 2014, 106, 177-186.	2.6	56
668	Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels, Bioproducts and Biorefining, 2014, 8, 836-856.	1.9	343
669	Perspective and Prospective of Pretreatment of Corn Straw for Butanol Production. Applied Biochemistry and Biotechnology, 2014, 172, 840-853.	1.4	32
670	Lignocellulosic biobutanol production: Gridlocks and potential remedies. Renewable and Sustainable Energy Reviews, 2014, 37, 21-35.	8.2	79
671	Pervaporative removal of acetone, butanol and ethanol from binary and multicomponent aqueous mixtures. Separation and Purification Technology, 2014, 132, 422-429.	3.9	59
672	Exergy analysis of pretreatment processes of bioethanol production based on sugarcane bagasse. Energy, 2014, 76, 130-138.	4.5	51
673	Using a statistical approach to model hydrogen production from a steam exploded corn stalk hydrolysate fed to mixed anaerobic cultures in an ASBR. International Journal of Hydrogen Energy, 2014, 39, 10003-10015.	3.8	16

#	Article	IF	CITATIONS
674	Cascade processing of wheat bran through a biorefinery approach. Energy Conversion and Management, 2014, 84, 633-639.	4.4	31
675	Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp. MG-60. Bioresource Technology, 2014, 167, 33-40.	4.8	32
676	One-pot catalytic conversion of carbohydrate biomass to lactic acid using an ErCl3 catalyst. Applied Catalysis A: General, 2014, 482, 78-83.	2.2	79
677	Model compound approach to design process and select catalysts for in-situ bio-oil upgrading. Renewable and Sustainable Energy Reviews, 2014, 36, 286-303.	8.2	32
678	Optimization of glucose formation in karanja biomass hydrolysis using Taguchi robust method. Bioresource Technology, 2014, 166, 534-540.	4.8	24
679	Zr/P/O catalyst for the direct acid chemo-hydrolysis of non-pretreated microcrystalline cellulose and softwood sawdust. Applied Catalysis B: Environmental, 2014, 145, 24-33.	10.8	57
680	Steam pretreatment of spruce forest residues: Optimal conditions for biogas production and enzymatic hydrolysis. Carbohydrate Polymers, 2014, 100, 202-210.	5.1	29
681	Utilization of palm pressed pericarp fiber: Pretreatment, optimization and characterization. Environmental Progress and Sustainable Energy, 2014, 33, 238-249.	1.3	7
682	Combustion of Biomass. , 2014, , 53-80.		1
683	Optimisation of pressed pericarp fibre delignification for glucose recovery using response surface methodology. International Journal of Environmental Engineering, 2014, 6, 220.	0.1	1
684	Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnology for Biofuels, 2014, 7, 6.	6.2	161
685	Whole-Crop Biorenery. , 2014, , 515-548.		1
686	CHAPTER 12: INTEGRATED POSSIBILITIES OF PRODUCING BIOFUELS IN CHEMICAL PULPING. Materials and Energy, 2014, , 317-338.	2.5	1
686 687	CHAPTER 12: INTEGRATED POSSIBILITIES OF PRODUCING BIOFUELS IN CHEMICAL PULPING. Materials and Energy, 2014, , 317-338.	2.5	1 0
686 687 688	CHAPTER 12: INTEGRATED POSSIBILITIES OF PRODUCING BIOFUELS IN CHEMICAL PULPING. Materials and Energy, 2014, , 317-338. HIGH THROUGHPUT EVALUATION OF GENE EXPRESSION FROM FORMALIN-FIXED PARAFFIN-EMBEDDED TISSUES., 2014, , 150-169. Process intensification in methane generation during anaerobic digestion of Napier grass using supercritical carbon dioxide combined with acid hydrolysis preâ€treatment. Canadian Journal of Chemical Engineering, 2014, 92, 2176-2184.	2.5	1 0 8
686 687 688 688	CHAPTER 12: INTEGRATED POSSIBILITIES OF PRODUCING BIOFUELS IN CHEMICAL PULPING. Materials and Energy, 2014, , 317-338. -HIGH THROUGHPUT EVALUATION OF GENE EXPRESSION FROM FORMALIN-FIXED PARAFFIN-EMBEDDED ISSUES., 2014, , 150-169. Process intensification in methane generation during anaerobic digestion of Napier grass using supercritical carbon dioxide combined with acid hydrolysis preâ€treatment. Canadian Journal of Chemical Engineering, 2014, 92, 2176-2184. Hydrophilic compounds in liquids of enzymatic hydrolyzed spruce and pine biomass. Data in Brief, 2015, 5, 194-202.	2.5 0.9 0.5	1 0 8 5
686 687 688 689 691	CHAPTER 12: INTEGRATED POSSIBILITIES OF PRODUCING BIOFUELS IN CHEMICAL PULPING. Materials and Energy, 2014, , 317-338HIGH THROUGHPUT EVALUATION OF GENE EXPRESSION FROM FORMALIN-FIXED PARAFFIN-EMBEDDED TISSUES. , 2014, , 150-169.Process intensification in methane generation during anaerobic digestion of Napier grass using supercritical carbon dioxide combined with acid hydrolysis preâ€treatment. Canadian Journal of Chemical Engineering, 2014, 92, 2176-2184.Hydrophilic compounds in liquids of enzymatic hydrolyzed spruce and pine biomass. Data in Brief, 2015, 5, 194-202.Ozone pretreatment of humid wheat straw for biofuel production. Energy Science and Engineering, 2015, 3, 541-548.	2.5 0.9 0.5 1.9	1 0 8 5 13

#	Article	IF	CITATIONS
695	Technology assessment of waste disposal technologies for Tillamook county. , 2015, , .		0
696	Effect of Brassica napus cultivar on cellulosic ethanol yield. Biotechnology for Biofuels, 2015, 8, 99.	6.2	10
697	Microalgal lipid production using the hydrolysates of rice straw pretreated with gamma irradiation and alkali solution. Biotechnology for Biofuels, 2015, 8, 125.	6.2	33
698	Evaluation of lime and hydrothermal pretreatments for efficient enzymatic hydrolysis of raw sugarcane bagasse. Biotechnology for Biofuels, 2015, 8, 205.	6.2	41
699	Novel Ozonation Technique to Delignify Wheat Straw for Biofuel Production. Energy and Environment, 2015, 26, 303-318.	2.7	8
700	Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries. ChemSusChem, 2015, 8, 3366-3390.	3.6	321
701	Software for Simulation of Second-Generation Ethanol Production byÂaÂSimultaneous Saccharification andÂFermentation Process. Chemical Engineering and Technology, 2015, 38, 1654-1658.	0.9	1
702	Separation of a Biofuel: Recovery of Biobutanol by Saltingâ€Out and Distillation. Chemical Engineering and Technology, 2015, 38, 2181-2188.	0.9	26
703	Gasâ€Phase Partial Oxidation of Lignin to Carboxylic Acids over Vanadium Pyrophosphate and Aluminum–Vanadium–Molybdenum. ChemSusChem, 2015, 8, 3424-3432.	3.6	31
704	Pretreatment of lignocellulosic biomass from animal manure as a means of enhancing biogas production. Engineering in Life Sciences, 2015, 15, 733-742.	2.0	29
705	Novel natural supplement for the production of fungal cellulases and application for enzymatic saccharification of wheat straw. Environmental Progress and Sustainable Energy, 2015, 34, 1243-1248.	1.3	8
706	Fourier transformed near infrared (<scp>FTâ€NIR</scp>) spectroscopy for the estimation of parameters in pretreated lignocellulosic materials for bioethanol production. Journal of Chemical Technology and Biotechnology, 2015, 90, 1281-1289.	1.6	8
707	Bioethanol: Feedstock Alternatives, Pretreatments, Lignin Chemistry, and the Potential for Green Value-Added Lignin Co-Products. Journal of Environmental Analytical Chemistry, 2015, 02, .	0.3	6
708	Solubility of Bioactive, Inorganic and Polymeric Solids in Ionic Liquids — Experimental and Prediction Perspectives. , 0, , .		2
709	Three Fiber Crops Show Distinctive Biomass Saccharification under Physical and Chemical Pretreatments by Altered Wall Polymer Features. BioResources, 2015, 11, .	0.5	8
710	Microstructural, Mechanical, and Physicochemical Behaviours of Alkali Pre-treated Oil Palm Stalk Fibres. BioResources, 2015, 10, .	0.5	10
711	Reaction Kinetics of Concentrated-Acid Hydrolysis for Cellulose and Hemicellulose and Effect of Crystallinity. BioResources, 2015, 11, .	0.5	18
712	Sustainable Ethanol Production from Common Reed (Phragmites australis) through Simultaneuos Saccharification and Fermentation. Sustainability, 2015, 7, 12149-12163.	1.6	36

#	Article	IF	CITATIONS
713	Oyster mushrooms (Pleurotus) are useful for utilizing lignocellulosic biomass. African Journal of Biotechnology, 2015, 14, 52-67.	0.3	40
714	Fermentable sugars and microbial inhibitors formation from two-stage pretreatment of corn stalk with variation in particle size and severity factor. African Journal of Biotechnology, 2015, 14, 2800-2811.	0.3	0
715	Optimization of Alkaline and Dilute Acid Pretreatment of Agave Bagasse by Response Surface Methodology. Frontiers in Bioengineering and Biotechnology, 2015, 3, 146.	2.0	45
716	Improved Anaerobic Fermentation of Wheat Straw by Alkaline Pre-Treatment and Addition of Alkali-Tolerant Microorganisms. Bioengineering, 2015, 2, 66-93.	1.6	40
717	Metabolic Engineering and Comparative Performance Studies of Synechocystis sp. PCC 6803 Strains for Effective Utilization of Xylose. Frontiers in Microbiology, 2015, 6, 1484.	1.5	8
718	Lignocellulosic Biomass: A Review of Conversion Technologies and Fuel Products. Current Biochemical Engineering, 2015, 3, 24-36.	1.3	53
719	Chemical Pretreatments of Wood Chips Prior to Alkaline Pulping - A Review of Pretreatment Alternatives, Chemical Aspects of the Resulting Liquors, and Pulping Outcomes. BioResources, 2015, 10,	0.5	24
720	A Review on Fermentative Production of Biobutanol From Biomass. Current Biochemical Engineering, 2015, 3, 37-46.	1.3	15
721	Prospects for Irradiation in Cellulosic Ethanol Production. Biotechnology Research International, 2015, 2015, 1-13.	1.4	43
722	Effects of Screen Size on Biochemical Conversion of Big Bluestem Biomass for Biofuel Production. Advances in Materials Science and Engineering, 2015, 2015, 1-9.	1.0	3
723	Production of 5-Hydroxymethylfurfural and Furfural from Lignocellulosic Biomass in Water-Tetrahydrofuran Media with Sodium Bisulfate. Chinese Journal of Chemical Physics, 2015, 28, 650-656.	0.6	7
724	Alkali Pretreatment and Acid Hydrolysis of Coconut Pulp and Empty Fruit Bunch to Produce Glucose. Jurnal Teknologi (Sciences and Engineering), 2015, 74, .	0.3	2
725	Growing Uses of 2A in Plant Biotechnology. , 0, , .		5
726	Photoacoustic Spectroscopy in the Assessment of the Quantitative Composition of the Biomass $\hat{a} \in$ " Barley Straw. , 0, , .		3
727	Manipulating micro <scp>RNA</scp> s for improved biomass and biofuels from plant feedstocks. Plant Biotechnology Journal, 2015, 13, 337-354.	4.1	37
728	Agricultural residues for cellulolytic enzyme production by Aspergillus niger: effects of pretreatment. 3 Biotech, 2015, 5, 1101-1106.	1.1	40
729	Anaerobic Digestion-Based Biorefinery for Bioenergy and Biobased Products. Industrial Biotechnology, 2015, 11, 103-112.	0.5	52
730	Impact of surfactant assisted acid and alkali pretreatment on lignocellulosic structure of pine foliage and optimization of its saccharification parameters using response surface methodology. Bioresource Technology, 2015, 192, 115-125.	4.8	60

		CITATION REPORT		
#	Article		IF	CITATIONS
731	Microbial Research in High-Value Biofuels. Microbiology Monographs, 2015, , 105-156.		0.3	3
732	Remarkable effect of extremely dilute H2SO4 on the cellulose conversion to ethylene g Catalysis A: General, 2015, 502, 65-70.	lycol. Applied	2.2	20
733	Agricultural Biomass Based Potential Materials. , 2015, , .			32
734	Improving the perspective of raw eucalyptus kraft pulp for industrial applications throu autochthonous bacterial mediated delignification. Industrial Crops and Products, 2015	gh , 74, 293-303.	2.5	16
735	Microwave Pretreatment. , 2015, , 157-172.			31
736	Modelling and optimization of xylose and glucoseÂproduction from napier grass using pre-treatment techniques. Biomass and Bioenergy, 2015, 77, 200-208.	hybrid	2.9	26
737	Hydrogen production from marine biomass by hydrothermal gasification. Energy Conv Management, 2015, 96, 124-130.	ersion and	4.4	66
738	Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Biore Technology, 2015, 192, 31-36.	source	4.8	273
739	Optimization of Sub-Critical Water Pretreatment for Enzymatic Hydrolysis of Sugarcan Energy Procedia, 2015, 79, 937-942.	e Bagasse.	1.8	9
740	High moisture corn stover pelleting in a flat die pellet mill fitted with a 6Âmm die: phys and specific energy consumption. Energy Science and Engineering, 2015, 3, 327-341.	ical properties	1.9	37
741	Metatranscriptomic profiles of Eastern subterranean termites, Reticulitermes flavipes (second generation feedstocks. BMC Genomics, 2015, 16, 332.	Kollar) fed on	1.2	15
742	Production of xylooligosaccharides from corncobs using ultrasound-assisted enzymatic Food Science and Biotechnology, 2015, 24, 2077-2081.	r hydrolysis.	1.2	19
743	Bed Agglomeration during the Steam Gasification of a High-Lignin Corn Stover Simulta Saccharification and Fermentation (SSF) Digester Residue. Energy & 2015, 2015	neous 29, 8035-8046.	2.5	6
744	Bioenergy: Biofuels Process Technology. , 2015, , 165-207.			1
745	Production of biofuels and biomolecules in the framework of circular economy: A regio study. Waste Management and Research, 2015, 33, 1121-1126.	nal case	2.2	16
746	Ethanol Production from Lignocellulosic Biomass Using Xylotrophic Basidiomycetes. Cl Technology of Fuels and Oils, 2015, 51, 516-525.	nemistry and	0.2	3
747	Development of an estimation model for the evaluation of the energy requirement of c pretreatments of biomass. Biomass and Bioenergy, 2015, 72, 28-38.	lilute acid	2.9	49
748	Production of Industrially Relevant Isoprenoid Compounds in Engineered Microbes. Mic Monographs, 2015, , 303-334.	crobiology	0.3	20

#	Article	IF	CITATIONS
749	Optimization and evaluation of alkaline potassium permanganate pretreatment of corncob. Bioresource Technology, 2015, 180, 1-6.	4.8	64
750	The effect of power-ultrasound on the pretreatment of acidified aqueous solutions of banana flower-stalk: Structural, chemical and statistical analysis. Industrial Crops and Products, 2015, 66, 52-61.	2.5	26
751	The effects of screw elements on enzymatic digestibility of corncobs after pretreatment in a twin-screw extruder. Biomass and Bioenergy, 2015, 74, 224-232.	2.9	23
752	Continuous alkaline pretreatment of Miscanthus sacchariflorus using a bench-scale single screw reactor. Bioresource Technology, 2015, 181, 338-344.	4.8	22
753	Methane production from acid hydrolysates of Agave tequilana bagasse: Evaluation of hydrolysis conditions and methane yield. Bioresource Technology, 2015, 181, 191-199.	4.8	52
754	Lignocellulose biohydrogen: Practical challenges and recent progress. Renewable and Sustainable Energy Reviews, 2015, 44, 728-737.	8.2	244
756	Multiphysics modeling and simulation of high-solids dilute-acid pretreatment of corn stover in a steam-explosion reactor. Chemical Engineering Journal, 2015, 268, 47-59.	6.6	11
757	Prediction of sugar yields during hydrolysis of lignocellulosic biomass using artificial neural network modeling. Bioresource Technology, 2015, 188, 128-135.	4.8	78
758	A synergistic effect of pretreatment on cell wall structural changes in barley straw (<i>Hordeum) Tj ETQq0 0 0 rgE 2015, 95, 843-850.</i>	3T /Overlo 1.7	ck 10 Tf 50 4 22
759	Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives. Renewable and Sustainable Energy Reviews, 2015, 44, 888-903.	8.2	319
760	Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum. Bioresource Technology, 2015, 181, 224-230.	4.8	100
761	Topochemical characterization of sugar cane pretreated with alkaline sulfite. Industrial Crops and Products, 2015, 69, 60-67.	2.5	24
762	Synthesis of 2-methyl tetrahydrofuran from various lignocellulosic feedstocks: Sustainability assessment via LCA. Resources, Conservation and Recycling, 2015, 95, 174-182.	5.3	59
763	The Study of Cellulose Structure and Depolymerization Through Single-Molecule Methods. Industrial Biotechnology, 2015, 11, 16-24.	0.5	9
764	Optimal Simultaneous Production of Biodiesel (FAEE) and Bioethanol from Switchgrass. Industrial & Engineering Chemistry Research, 2015, 54, 4337-4346.	1.8	7
765	Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. Journal of Bioscience and Bioengineering, 2015, 119, 694-699.	1.1	98
766	Combined mechanical and enzymatic treatments for improving the Fock reactivity of hardwood kraft-based dissolving pulp. Cellulose, 2015, 22, 803-809.	2.4	39
767	Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source. Biomass and Bioenergy, 2015, 72, 95-103.	2.9	61

IF

ARTICLE

CITATIONS

768	Acidic Pretreatment. , 2015, , 27-50.		44
769	Assessing the potential of wild yeasts for bioethanol production. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 39-48.	1.4	57
770	Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment. Bioresource Technology, 2015, 181, 114-123.	4.8	54
771	Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining. Bioresource Technology, 2015, 180, 97-105.	4.8	96
772	Enzymatic and organic acid pretreatment of seaweed: effect on reducing sugars production and on biogas inhibition. International Journal of Ambient Energy, 2015, 36, 2-7.	1.4	48
773	Bioethanol Production From Aquatic Weed Water Hyacinth (Eichhornia crassipes) by Yeast Fermentation. Waste and Biomass Valorization, 2015, 6, 209-216.	1.8	21
774	Steam Explosion. , 2015, , 75-104.		21
775	Bioethanol production from Miscanthus using thermotolerant Saccharomyces cerevisiae mbc 2 isolated from the respiration-deficient mutants. Renewable Energy, 2015, 80, 259-265.	4.3	24
776	Assessment of avocado seeds (<i>Persea americana</i>) to produce bioâ€oil through supercritical liquefaction. Biofuels, Bioproducts and Biorefining, 2015, 9, 231-257.	1.9	23
777	Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresource Technology, 2015, 185, 316-323.	4.8	130
778	Field Evaluation of Transgenic Switchgrass Plants Overexpressing PvMYB4 for Reduced Biomass Recalcitrance. Bioenergy Research, 2015, 8, 910-921.	2.2	57
779	Acid Pretreatment of Two Phase Olive Mill Waste to Improve Bioavailable Sugars: Conditions Optimization Using Response Surface Methodology. Waste and Biomass Valorization, 2015, 6, 37-44.	1.8	9
780	Comparison of Î ³ -irradiation with other pretreatments followed with simultaneous saccharification and fermentation on bioconversion of microcrystalline cellulose for bioethanol production. Bioresource Technology, 2015, 182, 289-295.	4.8	44
781	Wet Explosion: a Universal and Efficient Pretreatment Process for Lignocellulosic Biorefineries. Bioenergy Research, 2015, 8, 1101-1116.	2.2	87
782	Concurrent calcium peroxide pretreatment and wet storage of water hyacinth for fermentable sugar production. Bioresource Technology, 2015, 176, 267-272.	4.8	21
783	Acidic Ionic Liquids as Sustainable Approach of Cellulose and Lignocellulosic Biomass Conversion without Additional Catalysts. ChemSusChem, 2015, 8, 947-965.	3.6	189
784	Thermodynamic Insights in the Separation of Cellulose/Hemicellulose Components from Lignocellulosic Biomass Using Ionic Liquids. Journal of Solution Chemistry, 2015, 44, 538-557.	0.6	30
785	Enhanced Biological Straw Saccharification Through Coculturing of Lignocellulose-Degrading Microorganisms. Applied Biochemistry and Biotechnology, 2015, 175, 3709-3728.	1.4	84

#	Article	IF	CITATIONS
786	New Insights into the Role of Chemical Components on Metal Ions Sorption by Grape Stalks Waste. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	2
787	Effects of genetic variation and growing condition of prairie cordgrass on feedstock composition and ethanol yield. Bioresource Technology, 2015, 183, 70-77.	4.8	9
788	Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis. Carbohydrate Polymers, 2015, 124, 265-273.	5.1	100
789	Microbial lipid production from renewable and waste materials for second-generation biodiesel feedstock. Environmental Technology Reviews, 2015, 4, 1-16.	2.1	51
790	Nitrogen and Tillage Management Affect Corn Cellulosic Yield, Composition, and Ethanol Potential. Bioenergy Research, 2015, 8, 1284-1291.	2.2	1
791	Process intensification effect of ball milling on the hydrothermal pretreatment for corn straw enzymolysis. Energy Conversion and Management, 2015, 101, 481-488.	4.4	66
792	Sequential hydrolysis of oat straw and hydrogen production from hydrolysates: Role of hydrolysates constituents. International Journal of Hydrogen Energy, 2015, 40, 10756-10765.	3.8	36
793	Enhanced hydrogen production from cornstalk by dark- and photo-fermentation with diluted alkali-cellulase two-step hydrolysis. International Journal of Hydrogen Energy, 2015, 40, 12193-12200.	3.8	48
794	Mechanism of improved cellulosic bio-ethanol production from alfalfa stems via ambient-temperature acid pretreatment. Bioresource Technology, 2015, 193, 288-296.	4.8	17
795	Continuous in-house acidification affecting animal slurry composition. Biosystems Engineering, 2015, 132, 56-60.	1.9	30
796	Extrusion as Pretreatment for Boosting Methane Production: Effect of Screw Configurations. Energy & Fuels, 2015, 29, 4030-4037.	2.5	40
797	Intensification of Enzymatic Hydrolysis of Cellulose Using High-Frequency Ultrasound: An Investigation of the Effects of Process Parameters on Glucose Yield. Energy & Fuels, 2015, 29, 4998-5006.	2.5	29
798	Integrated Bio- and Chemocatalytic Processing for Biorenewable Chemicals and Fuels. , 2015, , 157-177.		11
799	Comparative study on the performance of various pretreatment and hydrolysis methods for the production of biohydrogen using Enterobacter aerogenes RM 08 from rice mill wastewater. International Journal of Hydrogen Energy, 2015, 40, 9106-9112.	3.8	54
800	Pre-treatment techniques used for anaerobic digestion of algae. Fuel Processing Technology, 2015, 138, 765-779.	3.7	151
801	Pretreatment of energy crops with sodium hydroxide and cellulolytic enzymes to increase biogas production. Biomass and Bioenergy, 2015, 80, 213-221.	2.9	69
802	Mini review: hydrogen and ethanol co-production from waste materials via microbial fermentation. World Journal of Microbiology and Biotechnology, 2015, 31, 1475-1488.	1.7	12
803	Environmental Microbial Biotechnology. Soil Biology, 2015, , .	0.6	5

#	Article	IF	CITATIONS
804	The influence of pretreatment methods on saccharification of sugarcane bagasse by an enzyme extract from Chrysoporthe cubensis and commercial cocktails: A comparative study. Bioresource Technology, 2015, 192, 670-676.	4.8	49
805	Presence and Role of Anaerobic Hydrolytic Microbes in Conversion of Lignocellulosic Biomass for Biogas Production. Critical Reviews in Environmental Science and Technology, 2015, 45, 2523-2564.	6.6	156
806	Dissolution of Wood Pulp in Aqueous NaOH/Urea Solution via Dilute Acid Pretreatment. Journal of Agricultural and Food Chemistry, 2015, 63, 6113-6119.	2.4	35
807	Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose. Applied Microbiology and Biotechnology, 2015, 99, 4201-4212.	1.7	106
808	Characterization of Different Biomasses Based on Their Sugar Profile with Focus on Their Utilization for Microbial Biodiesel Production. International Journal of Green Energy, 2015, 12, 930-938.	2.1	6
809	Potential for energy production from reed biomass in the Vojvodina region (north Serbia). Renewable and Sustainable Energy Reviews, 2015, 48, 670-680.	8.2	16
810	Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresource Technology, 2015, 186, 309-315.	4.8	78
811	Kraft delignification of energy crops in view of pulp production and lignin valorization. Industrial Crops and Products, 2015, 71, 153-162.	2.5	43
812	Ambient-temperature sulfuric acid pretreatment to alter structure and improve enzymatic digestibility of alfalfa stems. Industrial Crops and Products, 2015, 70, 410-416.	2.5	19
813	Effect of enzymatic pretreatment on anaerobic co-digestion of sugar beet pulp silage and vinasse. Bioresource Technology, 2015, 180, 274-280.	4.8	58
814	SUMO expression shortens the lag phase of Saccharomyces cerevisiae yeast growth caused by complex interactive effects of major mixed fermentation inhibitors found in hot-compressed water-treated lignocellulosic hydrolysate. Applied Microbiology and Biotechnology, 2015, 99, 501-515.	1.7	21
815	Computational studies of water and carbon dioxide interactions with cellobiose. Journal of Molecular Modeling, 2015, 21, 16.	0.8	8
816	Wood characteristics and enzymatic saccharification efficiency of field-grown transgenic black cottonwood with altered lignin content and structure. Cellulose, 2015, 22, 683-693.	2.4	10
817	Enhancing the Enzymatic Saccharification of Agricultural and Processing Residues of Cassava through Pretreatment Techniques. Waste and Biomass Valorization, 2015, 6, 303-315.	1.8	32
818	Saccharification of pretreated sawdust by Aspergillus niger cellulase. 3 Biotech, 2015, 5, 883-892.	1.1	19
819	An effective microplate method (Biolog MT2) for screening native lignocellulosic-straw-degrading bacteria. Annals of Microbiology, 2015, 65, 2053-2064.	1.1	13
820	Hydrogen and syngas production from gasification of lignocellulosic biomass in supercritical water media. International Journal of Recycling of Organic Waste in Agriculture, 2015, 4, 121-125.	2.0	32
821	Enhanced biomethane potential from wheat straw by low temperature alkaline calcium hydroxide pre-treatment. Bioresource Technology, 2015, 189, 258-265.	4.8	38

#	Article	IF	CITATIONS
822	Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation. Biotechnology for Biofuels, 2015, 8, 23.	6.2	68
823	A synergetic pretreatment technology for woody biomass conversion. Applied Energy, 2015, 144, 114-128.	5.1	43
824	Impact of lignin removal on the enzymatic hydrolysis of fermented sweet sorghum bagasse. Applied Energy, 2015, 160, 641-647.	5.1	33
825	Combined production of bioethanol and biogas from peels of wild cassava Manihot glaziovii. Chemical Engineering Journal, 2015, 279, 297-306.	6.6	42
826	Bioethanol production from steam explosion pretreated and alkali extracted Cistus ladanifer (rockrose). Biochemical Engineering Journal, 2015, 104, 98-105.	1.8	32
827	Reactors for High Solid Loading Pretreatment of Lignocellulosic Biomass. Advances in Biochemical Engineering/Biotechnology, 2015, 152, 75-90.	0.6	10
828	Destructuring plant biomass: Focus on fungal and extremophilic cell wall hydrolases. Plant Science, 2015, 234, 180-193.	1.7	71
829	Oligosaccharides and sugars production from olive stones by autohydrolysis and enzymatic hydrolysis. Industrial Crops and Products, 2015, 70, 100-106.	2.5	33
830	Evaluation of various fungal pretreatment of switchgrass for enhanced saccharification and simultaneous enzyme production. Journal of Cleaner Production, 2015, 104, 480-488.	4.6	31
831	Influence of alkaline catalyst addition on compressed liquid hot water pretreatment of rice straw. Chemical Engineering Journal, 2015, 278, 85-91.	6.6	47
832	Solid Adsorbents for Low-Temperature CO2 Capture with Low-Energy Penalties Leading to More Effective Integrated Solutions for Power Generation and Industrial Processes. Frontiers in Energy Research, 2015, 3, .	1.2	36
833	A biorefining process: Sequential, combinational lignocellulose pretreatment procedure for improving biobutanol production from sugarcane bagasse. Bioresource Technology, 2015, 187, 149-160.	4.8	55
834	Lignocellulose biorefinery product engineering. , 2015, , 125-165.		20
835	Enhanced direct production of sorbitol by cellulose ball-milling. Green Chemistry, 2015, 17, 2973-2980.	4.6	90
836	Pretreatment of garden biomass using Fenton's reagent: influence of Fe2+ and H2O2 concentrations on lignocellulose degradation. Journal of Environmental Health Science & Engineering, 2015, 13, 12.	1.4	33
837	Effect of steam explosion on waste copier paper alone and in a mixed lignocellulosic substrate on saccharification and fermentation. Bioresource Technology, 2015, 187, 136-143.	4.8	35
838	Bioconversion of Cotton Gin Waste to Bioethanol. Soil Biology, 2015, , 267-288.	0.6	6
839	Bioethanol production from oxalic acid-pretreated biomass and hemicellulose-rich hydrolysates via a combined detoxification process. Fuel, 2015, 161, 129-136.	3.4	27

ARTICLE IF CITATIONS # Enhancing fuel qualities of cassava crop residues by washing. Fuel Processing Technology, 2015, 139, 840 3.7 10 127-134. The Role of Exhausted Coffee Compounds on Metal Ions Sorption. Water, Air, and Soil Pollution, 2015, 841 1.1 226, 1. n-Butanol derived from biochemical and chemical routes: A review. Biotechnology Reports 842 2.1 217 (Amsterdam, Netherlands), 2015, 8, 1-9. Comparative biochemical analysis after steam pretreatment of lignocellulosic agricultural waste biomass from Williams Cavendish banana plant (Triploid <i>Musa </i>AAA group). Waste Management 843 and Research, 2015, 33, 1022-1032. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments. Science of the 844 3.9 85 Total Environment, 2015, 537, 323-334. Cellulolytic and electrogenic activity of Enterobacter cloacae in mediatorless microbial fuel cell. Applied Energy, 2015, 160, 88-93. 845 5.1 Does size matter? Separations on guard columns for fast sample analysis applied to bioenergy 846 1.7 0 research. BMC Biotechnology, 2015, 15, 38. Laccases for biorefinery applications: a critical review on challenges and perspectives. Bioprocess and 847 1.7 Biosystems Engineering, 2015, 38, 2285-2313. Rethinking sustainable biofuel marketing to titivate commercial interests. Renewable and Sustainable 848 8.2 9 Energy Reviews, 2015, 52, 781-792. 849 Advances in Bioprocess Technology., 2015, , . Yellow Laccase-Mediated Lignin Degradation of Ricinus communis: A Future Agricultural Biomass for 850 0.9 10 Biofuel Production. Agricultural Research, 2015, 4, 309-318. Structural changes in lignin during integrated process of steam explosion followed by alkaline hydrogen peroxide of Eucommia ulmoides Oliver and its effect on enzymatic hydrolysis. Applied 5.1 44 Energy, 2015, 158, 233-242. Ethanol production from rice straw by sodium carbonate pretreatment and Mucor hiemalis 852 2.5 53 fermentation. Industrial Crops and Products, 2015, 76, 1079-1085. Structural changes in lignins isolated using an acidic ionic liquid water mixture. Green Chemistry, 4.6 159 2015, 17, 5019-5034. Influence of bio-based solvents on the catalytic reductive fractionation of birch wood. Green 854 4.6 214 Chemistry, 2015, 17, 5035-5045. Past, current and future of biomass energy research: A bibliometric analysis. Renewable and 136 Sustainable Energy Reviews, 2015, 52, 1823-1833. Value added liquid products from waste biomass pyrolysis using pretreatments. Science of the Total 856 3.9 37 Environment, 2015, 538, 145-151. Phenolic Amides Are Potent Inhibitors of <i>De Novo</i> Nucleotide Biosynthesis. Applied and 1.4 Environmental Microbiology, 2015, 81, 5761-5772.

ARTICLE IF CITATIONS # Enzyme-based lignocellulose hydrolyzationâ€"Sauter mean diameter of raw materials as a basis for 858 1.9 8 cellulase performance characterization and yield prediction. Journal of Biotechnology, 2015, 214, 9-16. Modification of acid hydrolysis lignin for value-added applications by micronization followed by hydrothermal alkaline treatment. Holzforschung, 2015, 69, 761-768. Hydrophilic compounds in liquids of enzymatic hydrolyzed spruce and pine biomass. Analytical 860 1.1 6 Biochemistry, 2015, 485, 86-96. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of 861 2.9 124 lignocellulosic crops. Biomass and Bioenergy, 2015, 83, 322-327. Two-step sequential optimization for production of ionic liquid stable cellulase from <i>Bacillus 862 1.1 7 subtilis </i>l-2. Biocatalysis and Biotransformation, 2015, 33, 224-233. Improving alkaline pretreatment method for preparation of whole rice waste biomass feedstock and bioethanol production. RSC Advances, 2015, 5, 97171-97179. 1.7 Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresource 864 4.8 541 Technology, 2015, 178, 178-186. Statistical optimization of fermentable sugar extraction from the Malaysian brown alga Sargassum 1.5 binderi. Journal of Applied Phycology, 2015, 27, 2089-2098. Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renewable and 866 8.2 338 Sustainable Energy Reviews, 2015, 43, 1427-1445. High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob. Journal 5.2 of Materials Chemistry A, 2015, 3, 2903-2913. Alkaline extraction of xylan from wood using microwave and conventional heating. Journal of 868 1.3 16 Applied Polymer Science, 2015, 132, . Microorganism for Bioconversion of Sugar Hydrolysates into Lipids. Microbiology Monographs, 2015, 0.3 . 51-78. Lignocellulosic Hydrolysates for the Production of Polyhydroxyalkanoates. Microbiology 870 0.3 7 Monographs, 2015, , 79-104. King Grass: A promising material for the production of second-generation butanol. Fuel, 2015, 143, 871 3.4 399-403. Recent advances in the catalytic production of glucose from lignocellulosic biomass. Green 872 128 4.6 Chemistry, 2015, 17, 737-751. Microorganisms in Biorefineries. Microbiology Monographs, 2015, , . 873 Biomethane and ethanol production potential of Spirulina platensis algae and enzymatically 874 1.8 39 saccharified switchgrass. Biochemical Engineering Journal, 2015, 93, 119-127. Efficient Pretreatment of Vietnamese Rice Straw by Soda and Sulfate Cooking Methods for Enzymatic 1.4 Saccharification. Applied Biochemistry and Biotechnology, 2015, 175, 1536-1547.

#	Article	IF	CITATIONS
876	The Effect of Alkaline Pretreatment Methods on Cellulose Structure and Accessibility. ChemSusChem, 2015, 8, 275-279.	3.6	139
877	Nutrient media optimization for simultaneous enhancement of the laccase and peroxidases production by coculture of <i><scp>D</scp>ichomitus squalens</i> and <i><scp>C</scp>eriporiopsis subvermispora</i> . Biotechnology and Applied Biochemistry, 2015, 62, 173-185.	1.4	20
878	Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews, 2015, 42, 712-725.	8.2	661
879	High Polymorphism in Est-SSR Loci for Cellulose Synthase and β-Amylase of Sugarcane Varieties (Saccharum spp.) Used by the Industrial Sector for Ethanol Production. Applied Biochemistry and Biotechnology, 2015, 175, 965-973.	1.4	3
880	Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: A review. Carbohydrate Polymers, 2015, 117, 624-631.	5.1	369
881	A Review on Fuel Ethanol Production From Lignocellulosic Biomass. International Journal of Green Energy, 2015, 12, 949-960.	2.1	87
882	Agavebiotechnology: an overview. Critical Reviews in Biotechnology, 2015, 35, 546-559.	5.1	56
883	Multifunctional cellulolytic auxiliary activity protein HcAA10-2 from Hahella chejuensis enhances enzymatic hydrolysis of crystalline cellulose. Applied Microbiology and Biotechnology, 2015, 99, 3041-3055.	1.7	29
884	Effects of Temperature on Steam Explosion Pretreatment of Poplar Hybrids with Different Lignin Contents in Bioethanol Production. International Journal of Green Energy, 2015, 12, 832-842.	2.1	13
885	Spent coffee ground mass solubilisation by steam explosion and enzymatic hydrolysis. Journal of Chemical Technology and Biotechnology, 2015, 90, 449-458.	1.6	20
886	High-yield selective conversion of carbohydrates to methyl levulinate using mesoporous sulfated titania-based catalysts. Microporous and Mesoporous Materials, 2015, 202, 68-72.	2.2	39
887	Innovative combined dry fractionation technologies for rice straw valorization to biofuels. Green Chemistry, 2015, 17, 926-936.	4.6	40
888	Opportunities, recent trends and challenges of integrated biorefinery: Part II. Renewable and Sustainable Energy Reviews, 2015, 43, 1446-1466.	8.2	134
889	Effect of Ionic Liquids on Oil Palm Biomass Fiber Dissolution. BioResources, 2016, 11, .	0.5	5
890	Biobutanol Production from Lignocellulosic Biomass: Prospective and Challenges. Journal of Bioremediation & Biodegradation, 2016, 7, .	0.5	32
891	Assessment of biofuel potential of dead neem leaves (Azadirachta indica) biomass in Maroua town, Cameroon. African Journal of Biotechnology, 2016, 15, 1835-1840.	0.3	3
892	Dilute Acid Induced Changes on Microscopic and Tomographic Structure of Water Hyacinth [Eichhornia Crassipes (Mart.) Solms] Biomass during Bioconversion Process to Xylitol. Indian Journal of Science and Technology, 2016, 9, .	0.5	6
893	Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls. Frontiers in Plant Science, 2016, 7, 1854.	1.7	55

#	Article	IF	Citations
894	Fermentation Routes to Biomaterials. , 2016, , .		0
895	Enzymatic Saccharification of Acid/Alkali Pre-treated, Mill-run, and Depithed Sugarcane Bagasse. BioResources, 2016, 11, .	0.5	9
896	Irradiation Pretreatment of Tropical Biomass and Biofiber for Biofuel Production. , 0, , .		11
897	Applications of Pulsed Electric Energy forÂBiomass Pretreatment in Biorefinery. , 2016, , 151-168.		4
898	Production of Furan Compounds from Rice Straw with Ionic Liquid Treatment. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2016, 95, 902-908.	0.2	7
899	Mechanical Pretreatment. , 2016, , 23-55.		13
900	Preparation of Cellulose Nanocrystals Bio-Polymer from Agro-Industrial Wastes: Separation and Characterization. Polymers and Polymer Composites, 2016, 24, 719-728.	1.0	41
901	Enhancement of Bioethanol Production Using a Blend of Furfural Production Residue and Tea-seed Cake. BioResources, 2016, 11, .	0.5	7
902	Comparative Evaluation of Neglected Biomass for Efficient and Economically Viable Production of Lignocellulolytic Enzymes from Selected White and Soft Rot Fungi. Current Biotechnology, 2016, 5, 71-80.	0.2	4
903	A KINETIC STUDY OF ENZYMATIC HYDROLYSIS OF OIL PALM BIOMASS FOR FERMENTABLE SUGAR USING POLYETHYLENE GLYCOL (PEG) IMMOBILIZED CELLULASE. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	1
904	Physical and Biophysical Pretreatment of Water Hyacinth Biomass for Cellulase Enzyme Production. Chemical and Biochemical Engineering Quarterly, 2016, 30, 237-244.	0.5	17
905	Schizophyllum communeLipase Production on Pretreated Sugarcane Bagasse and Its Effectiveness. International Journal of Polymer Science, 2016, 2016, 1-6.	1.2	4
906	Biomass Pretreatment With Acids. , 2016, , 169-185.		10
907	EFFECTIVE ALKALINE PEROXIDE OXIDATION PRETREATMENT OF SHEA TREE SAWDUST FOR THE PRODUCTION OF BIOFUELS: KINETICS OF DELIGNIFICATION AND ENZYMATIC CONVERSION TO SUGAR AND SUBSEQUENT PRODUCTION OF ETHANOL BY FERMENTATION USING Saccharomyces cerevisiae. Brazilian Journal of Chamical Engineering, 2016, 33, 33.45	0.7	14
908	Biomass Utilization., 2016,, 291-324.		27
909	In situ Autohydrolysis for the Glucose Production from Sago Pith Waste with DIC Technology. BioResources, 2016, 11, .	0.5	15
910	Biomass Pretreatment Strategies (Technologies, Environmental Performance, Economic) Tj ETQq0 0 0 rgBT /Over	lock 10 Tf	50 ₁ 02 Td (
912	Development of Thermophilic Tailor-Made Enzyme Mixtures for the Bioconversion of Agricultural and Forest Residues. Frontiers in Microbiology, 2016, 7, 177.	1.5	29

#	Article	IF	CITATIONS
913	Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment. Frontiers in Microbiology, 2016, 7, 583.	1.5	23
914	Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery. International Journal of Molecular Sciences, 2016, 17, 1157.	1.8	162
915	Immobilization of Trypsin in Lignocellulosic Waste Material to Produce Peptides with Bioactive Potential from Whey Protein. Materials, 2016, 9, 357.	1.3	32
916	Physico-Chemical Alternatives in Lignocellulosic Materials in Relation to the Kind of Component for Fermenting Purposes. Materials, 2016, 9, 574.	1.3	25
917	Bioprocesses for Enzyme Production Using Agro-Industrial Wastes. , 2016, , 61-93.		49
918	Applications of Cellulase in Biofuel Industry. , 2016, , 177-184.		1
919	Cellulase in Waste Management Applications. , 2016, , 237-256.		14
920	Use of Ultrasound for Pretreatment of Biomass and Subsequent Hydrolysis and Fermentation. , 2016, , 127-149.		19
921	Fractionation of Lignocellulosic Biomass Materials With Wet Explosion Pretreatment. , 2016, , 369-384.		3
922	Extraction of Lignocellulosic Materials From Waste Products. , 2016, , 1-38.		10
923	Sulfur-free pulping of hot-water-extracted spruce sawdust. Nordic Pulp and Paper Research Journal, 2016, 31, 41-48.	0.3	7
924	Microorganisms as Direct and Indirect Sources of Alternative Fuels. , 0, , .		3
925	Comparison of the Effects of Thermal Pretreatment, Steam Explosion and Ultrasonic Disintegration on Digestibility of Corn Stover. Journal of Sustainable Development of Energy, Water and Environment Systems, 2016, 4, 107-126.	0.9	5
926	Design of an enzyme cocktail consisting of different fungal platforms for efficient hydrolysis of sugarcane bagasse: Optimization and synergism studies. Biotechnology Progress, 2016, 32, 1222-1229.	1.3	24
927	Ultrasound-assisted bioalcohol synthesis: review and analysis. RSC Advances, 2016, 6, 65541-65562.	1.7	30
928	Detergent assisted lipid extraction from wet yeast biomass for biodiesel: A response surface methodology approach. Bioresource Technology, 2016, 218, 667-673.	4.8	38
929	Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production. Bioresource Technology, 2016, 218, 561-570.	4.8	93
930	The ACEII recombinant Trichoderma reesei QM9414 strains with enhanced xylanase production and its applications in production of xylitol from tree barks. Microbial Cell Factories, 2016, 15, 215.	1.9	13

#	Article	IF	CITATIONS
931	Catalytic Microwave Pyrolysis of Lignocellulosic Biomass for Fuels and Chemicals. Advances in Bioenergy, 2016, 1, 69-123.	0.5	20
932	Hydrothermal pre-treatment of oil palm empty fruit bunch into fermentable sugars. IOP Conference Series: Earth and Environmental Science, 2016, 36, 012042.	0.2	2
933	Time Course Field Analysis of COMT-Downregulated Switchgrass: Lignification, Recalcitrance, and Rust Susceptibility. Bioenergy Research, 2016, 9, 1087-1100.	2.2	15
934	Lipid production through simultaneous utilization of glucose, xylose, and l-arabinose by Pseudozyma hubeiensis: a comparative screening study. AMB Express, 2016, 6, 58.	1.4	32
935	In vitro gas production kinetics and degradability of a diet for growing lambs: effect of fibrolytic enzyme products at different dose levels. Italian Journal of Animal Science, 2016, 15, 453-460.	0.8	7
936	Sugarcane Straw Reinforced Castor Oil Polyurethane Composites: Fiber Characterization and Analysis of Composite Properties. Journal of Natural Fibers, 0, , 1-12.	1.7	8
937	Enhanced pretreatment, characterization and utilization of <i>Prosopis juliflora</i> stem for bioethanol production. Management of Environmental Quality, 2016, 27, 598-605.	2.2	0
938	Solvation behavior of monosaccharides in aqueous protic ionic liquid solutions: Volumetric, calorimetric and NMR spectroscopic studies. Fluid Phase Equilibria, 2016, 421, 24-32.	1.4	13
939	Direct production of levulinic acid in high yield from cellulose: joint effect of high ion strength and microwave field. RSC Advances, 2016, 6, 39131-39136.	1.7	24
940	Multi response optimization of oil palm frond pretreatment by ozonolysis. Industrial Crops and Products, 2016, 85, 389-402.	2.5	30
941	Innovative Deconstruction of Biomass Induced by Dry Chemo-Mechanical Activation: Impact on Enzymatic Hydrolysis and Energy Efficiency. ACS Sustainable Chemistry and Engineering, 2016, 4, 2689-2697.	3.2	21
942	Effects of Thermo-chemical Pre-treatment on Bamboo for Biogas Production. Indian Chemical Engineer, 2016, 58, 79-88.	0.9	7
943	Statistical Optimization of Saccharification of Alkali Pretreated Wheat Straw for Bioethanol Production. Waste and Biomass Valorization, 2016, 7, 1389-1396.	1.8	42
944	Fuelling the future: microbial engineering for the production of sustainable biofuels. Nature Reviews Microbiology, 2016, 14, 288-304.	13.6	476
945	Deconstruction of lignin linked p -coumarates, ferulates and xylan by NaOH enhances the enzymatic conversion of glucan. Bioresource Technology, 2016, 216, 44-51.	4.8	34
946	Impact of lignocellulosic-waste intermediates on hydrolysis and methanogenesis under thermophilic and mesophilic conditions. Chemical Engineering Journal, 2016, 295, 181-191.	6.6	77
947	Biomass & Bio-waste Supply Chain Sustainability for Bio-energy and Bio-fuel Production. Procedia Environmental Sciences, 2016, 31, 31-39.	1.3	66
948	Hydrolysis of pretreated rice straw by an enzyme cocktail comprising acidic xylanase from Aspergillus sp. for bioethanol production. Renewable Energy, 2016, 98, 9-15.	4.3	58

	Citation R	EPORT	
Article		IF	CITATIONS
Sequential Thermochemical Hydrolysis of Corncobs and Enzymatic Saccharification of Slurry Followed by Fermentation of Solubilized Sugars to Ethanol with the Ethanologe Escherichia coli MSO4. Bioenergy Research, 2016, 9, 1046-1052.	the Whole nic Strain	2.2	23
Optimal design of an efficient, profitable and sustainable biorefinery producing aceton ethanol: Influence of the in-situ separation on the purification structure. Biochemical E Journal, 2016, 116, 195-209.	e, butanol and ngineering	1.8	20
Anaerobic digestion as a pretreatment to enhance ethanol yield from lignocelluloses. F Biochemistry, 2016, 51, 1256-1263.	Process	1.8	43
Cellulosic ethanol production from green solvent-pretreated rice straw. Biocatalysis an Agricultural Biotechnology, 2016, 7, 14-23.	d	1.5	66
Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of vario lignocellulosic biomasses. Renewable and Sustainable Energy Reviews, 2016, 62, 836-6	uus non-edible 855.	8.2	180
Radical Nature of C-Lignin. ACS Sustainable Chemistry and Engineering, 2016, 4, 5327	-5335.	3.2	52
Development of a Highly Efficient Pretreatment Sequence for the Enzymatic Saccharifi Loblolly Pine Wood. ACS Sustainable Chemistry and Engineering, 2016, 4, 3669-3678.	ication of	3.2	13
Non-productive adsorption of bacterial β-glucosidases on lignins is electrostatically mo depends on the presence of fibronection type III-like domain. Enzyme and Microbial Te 87-88, 1-8.	odulated and chnology, 2016,	1.6	11

956	87-88, 1-8.	1.6	
957	Bioethanol production from extracted olive pomace: dilute acid hydrolysis. Bioethanol, 2016, 2, .	1.2	22
958	Molecular strategies for enhancing microbial production of xylitol. Process Biochemistry, 2016, 51, 809-819.	1.8	29
959	Understanding bioenergy production and optimisation at the nanoscale – a review. Journal of Experimental Nanoscience, 2016, 11, 762-775.	1.3	29
960	Effect of phosphoric acid as a catalyst on the hydrothermal pretreatment and acidogenic fermentation of food waste. Waste Management, 2016, 51, 65-71.	3.7	20
961	Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview. European Polymer Journal, 2016, 80, 295-316.	2.6	80
962	Cellulosic bioethanol production from Jerusalem artichoke (Helianthus tuberosus L.) using hydrogen peroxide-acetic acid (HPAC) pretreatment. Bioresource Technology, 2016, 214, 30-36.	4.8	50
963	Hydrothermal liquefaction of wood: a critical review. Reviews in Chemical Engineering, 2016, 32, .	2.3	50
964	Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose, 2016, 23, 1491-1520.	2.4	236
965	Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production. Renewable Energy, 2016, 98, 23-28.	4.3	48

966	A review on the production of fermentable sugars from lignocellulosic biomass through conventional and enzymatic route—a comparison. International Journal of Green Energy, 2016, 13, 1232-1253.	2.1	54	
-----	--	-----	----	--

#

949

951

953

954

955

		CITATION REPORT		
#	Article		IF	Citations
967	Nanofibrillated cellulose from tobacco industry wastes. Carbohydrate Polymers, 2016,	148, 69-77.	5.1	55
968	Optimization of pineapple pulp residue hydrolysis for lipid production by Rhodotorula TISTR5159 using as biodiesel feedstock. Bioscience, Biotechnology and Biochemistry,	glutinis 2016, 80, 1641-1649.	0.6	5
969	Renewable Energy and Sustainable Technologies for Building and Environmental Applic	cations. , 2016, , .		6
970	Lactic acid production from rice straw in alkaline hydrothermal conditions in presence nanoplates. Catalysis Today, 2016, 274, 40-48.	of NiO	2.2	32
971	Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sus development. Biotechnology for Biofuels, 2016, 9, 94.	tainable	6.2	179
972	Bioconversion of lignocellulosic biomass to xylitol: An overview. Bioresource Technolog 299-310.	gy, 2016, 213,	4.8	188
973	High selective delignification using oxidative ionic liquid pretreatment at mild conditio efficient enzymatic hydrolysis of lignocellulose. Bioresource Technology, 2016, 214, 9	ns for 6-101.	4.8	23
974	Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatme Microbiology and Biotechnology, 2016, 100, 5231-5246.	ent. Applied	1.7	83
975	Characterisation of microcrystalline cellulose from oil palm fibres for food applications Carbohydrate Polymers, 2016, 148, 11-20.		5.1	69
976	Fractional pretreatment of raw and calcium oxalate-extracted agave bagasse using ion alkaline hydrogen peroxide. Biomass and Bioenergy, 2016, 91, 48-55.	ic liquid and	2.9	29
977	Glucose and 5-hydroxymethylfurfural production from cellulosic waste by sequential a acid hydrolysis. Renewable Energy, 2016, 96, 442-449.	kaline and	4.3	8
978	Steam explosion pretreatment of softwood: the effect of the explosive decompression digestibility. Biotechnology for Biofuels, 2016, 9, 152.	on enzymatic	6.2	183
979	Biogas and bioethanol production from pinewood pre-treated with steam explosion an N-methylmorpholine-N-oxide (NMMO): A comparative life cycle assessment approach. 935-950.	ıd Energy, 2016, 114,	4.5	44
980	Reductive Catalytic Fractionation of Corn Stover Lignin. ACS Sustainable Chemistry an 2016, 4, 6940-6950.	d Engineering,	3.2	235
981	Ozonization to Upgrade Wasteâ€Derived Soluble Lignin‣ike Substances to Higher \ ChemistrySelect, 2016, 1, 1613-1629.	/alue Products.	0.7	4
982	Advanced Expanded Microbial Kinetics (EMK) Model for Ethanol Production from Mixe Fruit Wastes. Procedia Engineering, 2016, 148, 417-425.	d Cassava and	1.2	0
984	Carbohydrate Free Lignin: A Dissolution–Recovery Cycle of Sodium Lignosulfonate ir Ionic Liquid System. ACS Sustainable Chemistry and Engineering, 2016, 4, 7032-7040.	n a Switchable	3.2	23
985	Lignin Biodegradation with Fungi, Bacteria and Enzymes for Producing Chemicals and Process Efficiency. Biofuels and Biorefineries, 2016, , 147-179.	Increasing	0.5	12

#	Article	IF	CITATIONS
986	Anaerobic digestion of straw and corn stover: The effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnology Advances, 2016, 34, 1289-1304.	6.0	144
987	Activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions. Biotechnology for Biofuels, 2016, 9, 160.	6.2	44
988	Two-stage dilute-acid and organic-solvent lignocellulosic pretreatment for enhanced bioprocessing. Bioresource Technology, 2016, 220, 621-628.	4.8	18
989	Modification of lignin in sugarcane bagasse by a monocopper hydrogen peroxide-generating oxidase from Thermobifida fusca. Process Biochemistry, 2016, 51, 1486-1495.	1.8	16
990	N-Doped hierarchical porous carbon prepared by simultaneous-activation of KOH and NH ₃ for high performance supercapacitors. RSC Advances, 2016, 6, 101372-101379.	1.7	43
991	Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter. Applied Microbiology and Biotechnology, 2016, 100, 10215-10223.	1.7	65
992	Regional Renewable Energy India: Bioethanol From Rice Straw. Current Sustainable/Renewable Energy Reports, 2016, 3, 53-57.	1.2	2
993	Biogas production from reed biomass: Effect of pretreatment using different steam explosion conditions. Biomass and Bioenergy, 2016, 95, 84-91.	2.9	82
994	Optimization of olive pomace enzymatic hydrolysis for fermentable sugar production. Nutrition and Food Science, 2016, 46, 778-790.	0.4	3
995	Microwave assisted alkaline pretreatment to enhance enzymatic saccharification of catalpa sawdust. Bioresource Technology, 2016, 221, 26-30.	4.8	67
996	A re-look at the biochemical strategies to enhance butanol production. Biomass and Bioenergy, 2016, 94, 187-200.	2.9	53
997	Altering the relative abundance of hydroxycinnamic acids enhances the cell wall digestibility of high-lignin sugarcane. Biomass and Bioenergy, 2016, 91, 278-287.	2.9	8
998	Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass and Bioenergy, 2016, 93, 269-278.	2.9	115
999	Exploiting microbubble-microbe synergy for biomass processing: Application in lignocellulosic biomass pretreatment. Biomass and Bioenergy, 2016, 93, 187-193.	2.9	13
1000	Optimization of Hydrothermal Pretreatment of Hardwood and Softwood Lignocellulosic Residues for Selective Hemicellulose Recovery and Improved Cellulose Enzymatic Hydrolysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 4529-4544.	3.2	151
1001	A new pretreatment using ammonia gas absorption fiber expansion for saccharification of cassava pulp. Biomass Conversion and Biorefinery, 2016, 6, 181-188.	2.9	4
1002	Effect of Mixed Acid Catalysis on Pretreatment and Enzymatic Digestibility of Sugar Cane Bagasse. Energy & Fuels, 2016, 30, 7310-7318.	2.5	21
1003	Promising bioethanol processes for developing a biorefinery in the Moroccan sugar industry. International Journal of Hydrogen Energy, 2016, 41, 20880-20896.	3.8	41

#	Article	IF	CITATIONS
1004	Biorefinery approach towards greener succinic acid production from oil palm frond bagasse. Process Biochemistry, 2016, 51, 1527-1537.	1.8	44
1006	The effects of both insoluble lignin and the macromolecular traits of cellulose on the content of saccharides within solids during hydrothermal pretreatment of hybrid poplar wood. Industrial Crops and Products, 2016, 91, 22-31.	2.5	20
1007	Comparing the influence of acetate and chloride anions on the structure of ionic liquid pretreated lignocellulosic biomass. Biomass and Bioenergy, 2016, 93, 243-253.	2.9	49
1008	Insights into <i>exo</i> -Cellulase Inhibition by the Hot Water Hydrolyzates of Rice Straw. ACS Sustainable Chemistry and Engineering, 2016, 4, 3627-3633.	3.2	29
1009	Synthesis of polypropylene/cellulosic fiber composites using Zieglerâ€Natta catalyst by <i>in situ</i> polymerization. Polymer Engineering and Science, 2016, 56, 71-78.	1.5	5
1010	Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeasts and bacteria. Process Biochemistry, 2016, 51, 1747-1756.	1.8	46
1011	Enhanced Xylitol and Ethanol Yields by Fermentation Inhibitors in Steam-Pretreated Lignocellulosic Biomass. Industrial Biotechnology, 2016, 12, 187-194.	0.5	11
1012	Production of Bioethanol from Waste Newspaper. Procedia Environmental Sciences, 2016, 35, 555-562.	1.3	84
1013	A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnology for Biofuels, 2016, 9, 173.	6.2	109
1014	Bioremediation for Fueling the Biobased Economy. Trends in Biotechnology, 2016, 34, 775-777.	4.9	15
1015	A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions. Industrial Crops and Products, 2016, 92, 165-173.	2.5	49
1016	Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates. Bioresource Technology, 2016, 219, 710-715.	4.8	95
1017	Second-generation ethanol from sugarcane and sweet sorghum bagasses using the yeast Dekkera bruxellensis. Industrial Crops and Products, 2016, 92, 255-262.	2.5	30
1018	Pyrolysis of Biomass for Biofuel Production. Green Energy and Technology, 2016, , 467-483.	0.4	1
1019	A decision support system using multi-source scientific data, an ontological approach and soft computing - application to eco-efficient biorefinery. , 2016, , .		0
1020	Advances in Eco-Friendly Pre-Treatment Methods and Utilization of Agro-Based Lignocelluloses. , 2016, , 371-420.		2
1021	Production of Renewable C5 Platform Chemicals and Potential Applications. , 2016, , 201-216.		10
1022	The structure of different cellulosic fibres characterized by Raman spectroscopy. Vibrational Spectroscopy, 2016, 86, 324-330.	1.2	54

#	Article	IF	Citations
1023	Isolation of lignin by organosolv process from different varieties of rice husk: Understanding their physical and chemical properties. Bioresource Technology, 2016, 221, 310-317.	4.8	86
1024	<i>Zymomonas mobilis</i> as a model system for production of biofuels and biochemicals. Microbial Biotechnology, 2016, 9, 699-717.	2.0	169
1025	Artificial neural network modelling of xylose yield from water hyacinth by dilute sulphuric acid hydrolysis for ethanol production. International Journal of Environmental Technology and Management, 2016, 19, 150.	0.1	2
1026	Bioethanol production from algae. International Journal of Global Energy Issues, 2016, 39, 204.	0.2	1
1027	Applications of Ionic Liquids. , 2016, , 1-58.		13
1028	Novel pretreatment pathways for dissolution of lignocellulosic biomass based on ionic liquid and low temperature alkaline treatment. Biomass and Bioenergy, 2016, 93, 194-200.	2.9	48
1029	Enzymatic in situ saccharification of lignocellulosic biomass in ionic liquids using an ionic liquids using an ionic liquid-tolerant cellulases. Biomass and Bioenergy, 2016, 93, 180-186.	2.9	27
1030	A decision support system for eco-efficient biorefinery process comparison using a semantic approach. Computers and Electronics in Agriculture, 2016, 127, 351-367.	3.7	21
1031	Life cycle assessment of pilot-scale wood fibre production using mechanical disc refining at different pressures. International Wood Products Journal, 2016, 7, 149-155.	0.6	5
1032	Lactose. , 2016, , 1-33.		13
1033	Biocatalysis and Biomass Conversion in Alternative Reaction Media. Chemistry - A European Journal, 2016, 22, 12984-12999.	1.7	149
1034	Minute-made activated porous carbon from agro-waste for Li-ion battery anode using a low power microwave oven. Electrochimica Acta, 2016, 212, 535-544.	2.6	30
1035	Multistep Process to Produce Fermentable Sugars and Lignosulfonates from Softwood Enzymolysis Residues. ACS Sustainable Chemistry and Engineering, 2016, 4, 7225-7230.	3.2	10
1036	High lithium and sodium anodic performance of nitrogen-rich ordered mesoporous carbon derived from alfalfa leaves by a ball-milling assisted template method. Journal of Materials Chemistry A, 2016, 4, 17491-17502.	5.2	27
1037	Hydrogenâ€free catalytic fractionation of woody biomass. ChemSusChem, 2016, 9, 3280-3287.	3.6	149
1038	Efficient Biogas and Ethanol Production from Safflower Straw Using Sodium Carbonate Pretreatment. Energy & Fuels, 2016, 30, 10592-10601.	2.5	30
1039	Acido-thermotolerant fungi from Boiling Springs Lake, LVNP: Potential for lignocellulosic biofuels. American Mineralogist, 2016, 101, 2484-2497.	0.9	2
1040	Conversion of Biomass to Chemicals. , 2016, , 371-431.		7

# 1041	ARTICLE Application of Pulsed Electric Energy for Lignocellulosic Biorefinery. , 2016, , 1-19.	IF	Citations
1042	Porous carbon derived from sorghum stalk for symmetric supercapacitors. RSC Advances, 2016, 6, 103508-103516.	1.7	44
1043	Microbial Enzymes in Bioconversions of Biomass. Biofuel and Biorefinery Technologies, 2016, , .	0.1	8
1044	Efficient evaluation of cellulose digestibility by Trichoderma reesei Rut-C30 cultures in online monitored shake flasks. Microbial Cell Factories, 2016, 15, 164.	1.9	18
1045	Bioethanol production by the utilisation of Moringa oleifera stem with sono-assisted acid/alkali hydrolysis approach. International Journal of Environment and Sustainable Development, 2016, 15, 392.	0.2	2
1046	The Role and Applications of Xyloglucan Hydrolase in Biomass Degradation/Bioconversion. Biofuel and Biorefinery Technologies, 2016, , 231-248.	0.1	2
1047	Pretreatment of Lignocellulosic Biomass with Low-cost Ionic Liquids. Journal of Visualized Experiments, 2016, , .	0.2	45
1048	Development and characterization of a high-solids deacetylation process. Sustainable Chemical Processes, 2016, 4, .	2.3	9
1049	Assessment of bacterial and fungal (hemi)cellulose-degrading enzymes in saccharification of ammonia fibre expansion-pretreated Arundo donax. Applied Microbiology and Biotechnology, 2016, 100, 2213-2224.	1.7	13
1050	Improvement of radio frequency (RF) heating-assisted alkaline pretreatment on four categories of lignocellulosic biomass. Bioprocess and Biosystems Engineering, 2016, 39, 1539-1551.	1.7	9
1051	Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnology for Biofuels, 2016, 9, 22.	6.2	237
1052	Experimental investigation of mechanical and microstructural properties of cemented paste backfill containing maple-wood filler. Construction and Building Materials, 2016, 121, 222-228.	3.2	81
1053	Acidogenesis of cellulosic hydrolysates for new generation biofuels. Biomass and Bioenergy, 2016, 91, 210-216.	2.9	33
1054	Water-energy nexus: Anaerobic co-digestion with elephant grass hydrolyzate. Journal of Environmental Management, 2016, 181, 48-53.	3.8	11
1055	Effects of Dilute Acid Pretreatment Parameters on Sugar Production during Biochemical Conversion of Switchgrass Using a Full Factorial Design. ACS Sustainable Chemistry and Engineering, 2016, 4, 4124-4130.	3.2	24
1056	Pretreatment of rye straw with aqueous ammonia for conversion to fermentable sugars as a potential substrates in biotechnological processes. Biomass and Bioenergy, 2016, 91, 91-97.	2.9	22
1057	Effect of thermochemical pretreatment on lignin alteration and cell wall microstructural degradation in Eucalyptus globulus: comparison of acid, alkali, and water pretreatments. Journal of Wood Science, 2016, 62, 276-284.	0.9	23
1058	Effects of ball milling on structural changes and hydrolysis of lignocellulosic biomass in liquid hot-water compressed carbon dioxide. Korean Journal of Chemical Engineering, 2016, 33, 2134-2141.	1.2	34

# 1059	ARTICLE Combining infrared and mode synthesizing atomic force microscopy: Application to the study of lipid vesicles inside Streptomyces bacteria. Nano Research, 2016, 9, 1674-1681.	IF 5.8	CITATIONS
1060	Feasibility and performance of high-rate psychrophilic dry anaerobic digestion of high solids content dairy manure. International Journal of Recycling of Organic Waste in Agriculture, 2016, 5, 33-42.	2.0	2
1061	Enhanced production and physicochemical properties of thermostable crude cellulase from Sporothrix carnis grown on corn cob. Biocatalysis and Agricultural Biotechnology, 2016, 7, 110-117.	1.5	33
1062	Green coconut mesocarp pretreated by an alkaline process as raw material for bioethanol production. Bioresource Technology, 2016, 216, 744-753.	4.8	24
1063	Enhanced biomethane production from Miscanthus lutarioriparius using steam explosion pretreatment. Fuel, 2016, 179, 267-273.	3.4	38
1064	Exploring biomass deconstruction by phase-contrast tomography. Industrial Crops and Products, 2016, 86, 289-294.	2.5	4
1065	Assessment of morphological and phytochemical attributes in triploid and hexaploid plants of the bioenergy crop Miscanthus×giganteus. Industrial Crops and Products, 2016, 89, 231-243.	2.5	13
1066	Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose. Microbial Cell Factories, 2016, 15, 6.	1.9	91
1067	Biological lignocellulose solubilization: comparative evaluation of biocatalysts and enhancement via cotreatment. Biotechnology for Biofuels, 2016, 9, 8.	6.2	78
1068	Integrated biorefinery concept for grass silage using a combination of adapted pulping methods for advanced saccharification and extraction of lignin. Bioresource Technology, 2016, 216, 462-470.	4.8	17
1069	Optimization of concomitant production of cellulase and xylanase from Rhizopus oryzae SN5 through EVOP-factorial design technique and application in Sorghum Stover based bioethanol production. Renewable Energy, 2016, 98, 51-56.	4.3	53
1070	Specific tracking of xylan using fluorescent-tagged carbohydrate-binding module 15 as molecular probe. Biotechnology for Biofuels, 2016, 9, 74.	6.2	19
1071	Conversion of Prairie Cordgrass to Hydrocarbon Biofuel over Coâ€Mo/HZSMâ€5 Using a Twoâ€Stage Reactor System. Energy Technology, 2016, 4, 706-713.	1.8	33
1072	Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environmental Progress and Sustainable Energy, 2016, 35, 489-511.	1.3	200
1073	Improved pretreatments applied to the sugarcane bagasse and release of lignin and hemicellulose from the celluloseâ€enriched fractions by sulfuric acid hydrolysis. Journal of Chemical Technology and Biotechnology, 2016, 91, 476-482.	1.6	11
1074	Numeric simulation can be used to predict heat transfer during the blanching of leaves and intact plants. Biochemical Engineering Journal, 2016, 109, 118-126.	1.8	12
1075	Production of biorenewable styrene: utilization of biomass-derived sugars and insights into toxicity. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 595-604.	1.4	50
1076	Delignification of miscanthus using ethylenediamine (EDA) with or without ammonia and subsequent enzymatic hydrolysis to sugars. 3 Biotech, 2016, 6, 23.	1.1	11

#	Article	IF	CITATIONS
1077	A perspective on bioethanol production from biomass as alternative fuel for spark ignition engine. RSC Advances, 2016, 6, 14964-14992.	1.7	70
1078	Pretreatment of sweet sorghum bagasse by alkaline hydrogen peroxide for enhancing ethanol production. Korean Journal of Chemical Engineering, 2016, 33, 873-879.	1.2	26
1079	Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor. Bioresource Technology, 2016, 205, 15-23.	4.8	36
1080	Inhibitory effect ofEucalyptus globuluspretreated liquors on bioethanol production fromZymomonas mobilisNRRL B-806. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 8-14.	1.2	0
1081	Pretreatment combining ultrasound and sodium percarbonate under mild conditions for efficient degradation of corn stover. Ultrasonics Sonochemistry, 2016, 29, 455-460.	3.8	61
1082	Reutilization of green liquor chemicals for pretreatment of whole rice waste biomass and its application to 2,3-butanediol production. Bioresource Technology, 2016, 205, 90-96.	4.8	63
1083	Enhanced oxalic acid production from corncob by a methanol-resistant strain of Aspergillus niger using semi solid-sate fermentation. Process Biochemistry, 2016, 51, 9-15.	1.8	31
1084	Investigation of organosolv and hot-compressed water pretreatments of rice straw. Biomass Conversion and Biorefinery, 2016, 6, 355-364.	2.9	15
1085	Recent progress in bioethanol production from lignocellulosic materials: A review. International Journal of Green Energy, 2016, 13, 1413-1441.	2.1	30
1086	A new insert sample approach to paper spray mass spectrometry: a paper substrate with paraffin barriers. Analyst, The, 2016, 141, 1707-1713.	1.7	57
1087	Green chemistry, catalysis and valorization of waste biomass. Journal of Molecular Catalysis A, 2016, 422, 3-12.	4.8	150
1088	Selection of suitable mineral acid and its concentration for biphasic dilute acid hydrolysis of the sodium dithionite delignified Prosopis juliflora to hydrolyze maximum holocellulose. Bioresource Technology, 2016, 202, 231-237.	4.8	9
1089	Pretreatment conditions of rice straw for simultaneous hydrogen and ethanol fermentation by mixed culture. International Journal of Hydrogen Energy, 2016, 41, 4421-4428.	3.8	66
1090	Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity. Biochemical Engineering Journal, 2016, 109, 162-169.	1.8	60
1091	Comparison of different types of pretreatment and enzymatic saccharification of Macrocystis pyrifera for the production of biofuel. Algal Research, 2016, 13, 141-147.	2.4	59
1092	Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective. Chemical Reviews, 2016, 116, 2275-2306.	23.0	1,100
1093	The hemicellulose extract from Cynara cardunculus: a source of value-added biomolecules produced by xylanolytic thermozymes. Green Chemistry, 2016, 18, 2460-2472.	4.6	32
1094	Effectiveness of low-concentration acid and solar drying as pre-treatment features for producing pozzolanic sugarcane bagasse ash. Journal of Cleaner Production, 2016, 112, 953-962.	4.6	55

#	Article	IF	CITATIONS
1095	Alkaline twin-screw extrusion pretreatment of Miscanthus with recycled black liquor at the pilot scale. Fuel, 2016, 164, 322-328.	3.4	42
1096	The effect of solvent and input material pretreatment on product yield and composition of bio-oils from lignin solvolysis. Journal of Analytical and Applied Pyrolysis, 2016, 119, 208-216.	2.6	33
1097	Application of plant carbon source for denitrification by constructed wetland and bioreactor: review of recent development. Environmental Science and Pollution Research, 2016, 23, 8260-8274.	2.7	98
1098	Sono-assisted alkaline pretreatment of sugarcane bagasse for cellulosic ethanol production. Catalysis Today, 2016, 269, 21-28.	2.2	18
1099	Second-Generation Ethanol: The Need is Becoming a Reality. Industrial Biotechnology, 2016, 12, 40-57.	0.5	85
1100	Removal of hexavalent chromium from aqueous solution: a comparative study of cone biomass of $\hat{a} \in \infty < i$ >Picea smithiana $\hat{a} \in \cdots$ and activated charcoal. Desalination and Water Treatment, 2016, 57, 11081-11095.	1.0	10
1101	The Virtual Sugarcane Biorefinery—A Simulation Tool to Support Public Policies Formulation in Bioenergy. Industrial Biotechnology, 2016, 12, 62-67.	0.5	38
1102	Acetone-butanol-ethanol fermentation of corn stover: current production methods, economic viability and commercial use. FEMS Microbiology Letters, 2016, 363, fnw033.	0.7	31
1103	Innovative physically-assisted soda fractionation of rapeseed hulls for better recovery of biopolymers. RSC Advances, 2016, 6, 19833-19842.	1.7	10
1104	An integrated process for continuous cellulosic bioethanol production. Korean Journal of Chemical Engineering, 2016, 33, 223-229.	1.2	4
1105	Influence of reaction parameters on the depolymerization of H 2 SO 4 -impregnated cellulose in planetary ball mills. Powder Technology, 2016, 288, 123-131.	2.1	21
1106	Influence of Acidic (H ₃ PO ₄) and Alkaline (NaOH) Additives on the Catalytic Reductive Fractionation of Lignocellulose. ACS Catalysis, 2016, 6, 2055-2066.	5.5	191
1107	Preparation and Hydrolysis of Water-Stable Amorphous Cellulose. ACS Sustainable Chemistry and Engineering, 2016, 4, 1180-1186.	3.2	28
1108	Combining steam explosion with 1-ethyl-3-methylimidazlium acetate treatment of wood yields lignin-coated cellulose nanocrystals of high aspect ratio. Cellulose, 2016, 23, 1813-1823.	2.4	18
1109	Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Brazilian Journal of Microbiology, 2016, 47, 110-119.	0.8	92
1110	Facile synthesis of few-layer graphene from biomass waste and its application in lithium ion batteries. Journal of Electroanalytical Chemistry, 2016, 768, 18-26.	1.9	143
1111	Analysis of degradation products and structural characterization of giant reed and Chinese silvergrass pretreated by 60Co-Î ³ irradiation. Industrial Crops and Products, 2016, 83, 307-315.	2.5	18
1112	Upgrading pine sawdust pyrolysis oil to green biofuels by HDO over zinc-assisted Pd/C catalyst. Energy Conversion and Management, 2016, 115, 8-16.	4.4	62

#	Article	IF	CITATIONS
1113	Rational Design of Ionic Liquids for Lipid Processing. , 2016, , 153-203.		1
1114	Integrating multimodal transport into forest-delivered biofuel supply chain design. Renewable Energy, 2016, 93, 58-67.	4.3	49
1115	Effects of Impurities in Alkali-Extracted Xylan on Its Enzymatic Hydrolysis to Produce Xylo-Oligosaccharides. Applied Biochemistry and Biotechnology, 2016, 179, 740-752.	1.4	21
1116	Structural Features of Formiline Pretreated Sugar Cane Bagasse and Their Impact on the Enzymatic Hydrolysis of Cellulose. ACS Sustainable Chemistry and Engineering, 2016, 4, 1255-1261.	3.2	25
1117	Evaluation of oil palm front hydrolysate as a novel substrate for 2,3-butanediol production using a novel isolate Enterobacter cloacae SG1. Renewable Energy, 2016, 98, 216-220.	4.3	23
1118	Non-catalytic conversion of wheat straw, walnut shell and almond shell into hydrogen rich gas in supercritical water media. Chinese Journal of Chemical Engineering, 2016, 24, 1097-1103.	1.7	37
1119	Pretreatment of Lignocellulosic Biomass. Springer Briefs in Molecular Science, 2016, , 17-70.	0.1	45
1120	Pervaporation membrane reactors. , 2016, , 331-381.		8
1121	Downstream processing of microalgal feedstock for lipid and carbohydrate in a biorefinery concept: a holistic approach for biofuel applications. RSC Advances, 2016, 6, 29486-29496.	1.7	45
1122	Comparison of various milling modes combined to the enzymatic hydrolysis of lignocellulosic biomass for bioenergy production: Glucose yield and energy efficiency. Energy, 2016, 102, 335-342.	4.5	67
1123	Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 2016, 42, 40-53.	3.3	517
1124	Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 37-44.	1.4	25
1125	The effects of physical and chemical preprocessing on the flowability of corn stover. Biomass and Bioenergy, 2016, 85, 126-134.	2.9	37
1126	Screening Pathways for the Production of Next Generation Biofuels. Energy & Fuels, 2016, 30, 445-456.	2.5	42
1127	Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Folia Microbiologica, 2016, 61, 179-189.	1.1	52
1128	Sugarcane bagasse delignification with potassium hydroxide for enhanced enzymatic hydrolysis. RSC Advances, 2016, 6, 1042-1052.	1.7	21
1129	Subcritical hydrothermal pretreatment of olive mill solid waste for biofuel production. Bioresource Technology, 2016, 199, 164-172.	4.8	25
1130	Microbial Production of Value-Added Chemicals from Pyrolysis Oil and Syngas. , 2016, , 69-105.		2

#	Article	IF	CITATIONS
1131	Advances on the processing of Jatropha curcas towards a whole-crop biorefinery. Renewable and Sustainable Energy Reviews, 2016, 54, 247-269.	8.2	41
1132	Single and two-stage anaerobic digestion for hydrogen and methane production from acid and enzymatic hydrolysates of Agave tequilana bagasse. International Journal of Hydrogen Energy, 2016, 41, 897-904.	3.8	95
1133	Bioreactor Engineering Research and Industrial Applications II. Advances in Biochemical Engineering/Biotechnology, 2016, , .	0.6	1
1134	Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review. Renewable and Sustainable Energy Reviews, 2016, 54, 217-234.	8.2	255
1135	Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries. Green Chemistry, 2016, 18, 2078-2088.	4.6	193
1136	Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochimica Acta, 2016, 188, 103-110.	2.6	207
1137	Deconstruction of Nordic hardwood in switchable ionic liquids and acylation of the dissolved cellulose. Carbohydrate Polymers, 2016, 136, 459-465.	5.1	20
1138	Reinforced alkali-pretreatment for enhancing enzymatic hydrolysis of sugarcane bagasse. Fuel Processing Technology, 2016, 143, 1-6.	3.7	37
1139	Environmental sustainability of bioethanol production from rice straw in India: A review. Renewable and Sustainable Energy Reviews, 2016, 54, 202-216.	8.2	170
1140	Decision support system integrating GIS with simulation and optimisation for a biofuel supply chain. Renewable Energy, 2016, 85, 740-748.	4.3	83
1141	Catalytic conversion of sugarcane bagasse to cellulosic ethanol: TiO2 coupled nanocellulose as an effective hydrolysis enhancer. Carbohydrate Polymers, 2016, 136, 700-709.	5.1	25
1142	Biological Hydrogen Production from Lignocellulosic Biomass. Green Energy and Technology, 2016, , 111-127.	0.4	1
1143	Enriched Methane. Green Energy and Technology, 2016, , .	0.4	1
1144	Evaluation of technology structure based on energy yield from wheat straw for combined bioethanol and biomethane facility. Renewable Energy, 2016, 87, 193-202.	4.3	21
1145	Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chemistry, 2016, 18, 342-359.	4.6	254
1146	Brown seaweed processing: enzymatic saccharification of Laminaria digitata requires no pre-treatment. Journal of Applied Phycology, 2016, 28, 1287-1294.	1.5	40
1147	Scaleâ€up of abatement of fermentation inhibitors from acid hydrolysates for efficient conversion to ethanol as biofuel. Journal of Chemical Technology and Biotechnology, 2016, 91, 1826-1834.	1.6	4
1148	Various pretreatments of lignocellulosics. Bioresource Technology, 2016, 199, 83-91.	4.8	341

#	Article	IF	CITATIONS
1149	Microwave and microwave-chemical pretreatment application for agricultural waste. Desalination and Water Treatment, 2016, 57, 2590-2596.	1.0	2
1150	Bioethanol production from tuber crops using fermentation technology: a review. International Journal of Sustainable Energy, 2016, 35, 443-468.	1.3	42
1151	Pretreatment techniques used in biogas production from grass. Renewable and Sustainable Energy Reviews, 2017, 68, 1193-1204.	8.2	191
1152	Identification and detoxification of glycolaldehyde, an unattended bioethanol fermentation inhibitor. Critical Reviews in Biotechnology, 2017, 37, 177-189.	5.1	24
1153	Optimization of Hydrolysis Process to Obtain Fermentable Sugars from Sweet Sorghum Bagasse Using a Box–Behnken Design. Sugar Tech, 2017, 19, 317-325.	0.9	21
1154	Current Pretreatments of Lignocellulosic Residues in the Production of Bioethanol. Waste and Biomass Valorization, 2017, 8, 161-181.	1.8	53
1155	Mixed morphology nanocrystalline cellulose from sugarcane bagasse fibers/poly(lactic acid) nanocomposite films: synthesis, fabrication and characterization. Iranian Polymer Journal (English) Tj ETQq0 0 0 r	g₿∏3¦Overl	oalo 10 Tf 50
1156	Techno-economic analysis for the biochemical conversion of Miscanthus x giganteus into bioethanol. Biomass and Bioenergy, 2017, 98, 85-94.	2.9	45
1157	Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. Renewable and Sustainable Energy Reviews, 2017, 72, 673-722.	8.2	168
1158	Recirculating calcium hydroxide solution: A practical choice for on-farm high solids lignocellulose pretreatment. Industrial Crops and Products, 2017, 97, 492-497.	2.5	4
1159	High energy supercapacitors based on interconnected porous carbon nanosheets with ionic liquid electrolyte. Microporous and Mesoporous Materials, 2017, 241, 202-209.	2.2	62
1160	Insight into progress in pre-treatment of lignocellulosic biomass. Energy, 2017, 122, 724-745.	4.5	252
1161	Challenges and prospects of xylitol production with whole cell bio-catalysis: A review. Microbiological Research, 2017, 197, 9-21.	2.5	132
1162	Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 2017, 4, 7.	2.0	877
1164	Conversion of ammoniaâ€pretreated switchgrass to biofuel precursors by bacterial–fungal consortia under solidâ€state and submergedâ€state cultivation. Journal of Applied Microbiology, 2017, 122, 953-963.	1.4	3
1165	Olive mill solid waste biorefinery: High-temperature thermal pre-treatment for phenol recovery and biomethanization. Journal of Cleaner Production, 2017, 148, 314-323.	4.6	58
1166	Expression of thermostable β-xylosidase in <i>Escherichia coli</i> for use in saccharification of plant biomass. Bioengineered, 2017, 8, 665-669.	1.4	9
1167	Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel. Renewable and Sustainable Energy Reviews, 2017, 73, 654-671.	8.2	102

#	Article	IF	CITATIONS
1168	Optimization of the Reaction Conditions for Catalytic Fast Pyrolysis of Pretreated Lignin over Zeolite for the Production of Phenol. ChemCatChem, 2017, 9, 954-961.	1.8	35
1169	Elementary steps in acetone condensation reactions catalyzed by aluminosilicates with diverse void structures. Journal of Catalysis, 2017, 346, 134-153.	3.1	73
1170	Status of Canada's lignocellulosic ethanol: Part I: Pretreatment technologies. Renewable and Sustainable Energy Reviews, 2017, 72, 178-190.	8.2	46
1171	Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover. Bioresource Technology, 2017, 232, 331-343.	4.8	146
1172	An overview: Recycling of solid barley waste generated as a by-product in distillery and brewery. Waste Management, 2017, 62, 255-261.	3.7	72
1173	Field-Grown Transgenic Hybrid Poplar with Modified Lignin Biosynthesis to Improve Enzymatic Saccharification Efficiency. ACS Sustainable Chemistry and Engineering, 2017, 5, 2407-2414.	3.2	16
1174	Cellulose based grafted biosorbents - Journey from lignocellulose biomass to toxic metal ions sorption applications - A review. Journal of Molecular Liquids, 2017, 232, 62-93.	2.3	162
1175	Sustainable sources need reliable standards. Faraday Discussions, 2017, 202, 281-301.	1.6	8
1176	Enzymatic hydrolysis of thermochemically pretreated biomass using a mixture of cellulolytic enzymes produced from different fungal sources. Clean Technologies and Environmental Policy, 2017, 19, 1577-1584.	2.1	11
1177	Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources. Applied Microbiology and Biotechnology, 2017, 101, 3055-3075.	1.7	22
1178	Characterisation of lignins from different sources by appropriate analytical methods: Introducing thermogravimetric analysis-thermal desorption-gas chromatography–mass spectroscopy. Industrial Crops and Products, 2017, 101, 61-74.	2.5	48
1179	Improvement of biogas potential of anaerobic digesters using rumen fungi. Renewable Energy, 2017, 109, 346-353.	4.3	57
1180	Visualising recalcitrance by colocalisation of cellulase, lignin and cellulose in pretreated pine biomass using fluorescence microscopy. Scientific Reports, 2017, 7, 44386.	1.6	56
1181	Biofuel production from birch wood by combining high solid loading simultaneous saccharification and anaerobic digestion. Applied Energy, 2017, 193, 210-219.	5.1	45
1182	Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production- A review. Biomass Conversion and Biorefinery, 2017, 7, 247-274.	2.9	136
1183	Lignocellulose: A sustainable material to produce value-added products with a zero waste approach—A review. International Journal of Biological Macromolecules, 2017, 99, 308-318.	3.6	294
1184	Integrating GIS with optimization method for a biofuel feedstock supply chain. Biomass and Bioenergy, 2017, 98, 194-205.	2.9	56
1185	Status of availability of lignocellulosic feed stocks in India: Biotechnological strategies involved in the production of Bioethanol. Renewable and Sustainable Energy Reviews, 2017, 73, 798-820.	8.2	47

#	Article	IF	CITATIONS
1186	Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. Angewandte Chemie - International Edition, 2017, 56, 5412-5452.	7.2	224
1188	Sustainable Production of Chemicals and Energy Fuel Precursors from Lignocellulosic Fractions. Green Energy and Technology, 2017, , 7-33.	0.4	13
1190	Ethanol production from hazelnut shells through enzymatic saccharification and fermentation by low-temperature alkali pretreatment. Fuel, 2017, 196, 280-287.	3.4	55
1191	Application of Electroporation Technique in Biofuel Processing. MATEC Web of Conferences, 2017, 97, 01085.	0.1	4
1192	Synthese, motorische Verbrennung, Emissionen: Chemische Aspekte des Kraftstoffdesigns. Angewandte Chemie, 2017, 129, 5500-5544.	1.6	43
1193	A cleaner and eco-friendly bioprocess for enhancing reducing sugar production from pineapple leaf waste. Journal of Cleaner Production, 2017, 149, 387-395.	4.6	50
1194	Enzymatic hydrolysis of mercerized and unmercerized sisal pulp. Cellulose, 2017, 24, 2437-2453.	2.4	17
1195	Electrohydrolysis pretreatment of water hyacinth for enhanced hydrolysis. Bioresource Technology, 2017, 238, 733-737.	4.8	18
1196	Novel method for the preparation of lignin-rich nanoparticles from lignocellulosic fibers. Industrial Crops and Products, 2017, 103, 152-160.	2.5	57
1197	Strategy to design zeolite catalysts in the presence of biomass. Microporous and Mesoporous Materials, 2017, 254, 28-36.	2.2	17
1198	Lignocellulose fermentation and residual solids characterization for senescent switchgrass fermentation by <i>Clostridium thermocellum</i> in the presence and absence of continuous <i>in situ</i> ball-milling. Energy and Environmental Science, 2017, 10, 1252-1261.	15.6	65
1199	Enhancement of microalgae anaerobic digestion by thermo-alkaline pretreatment with lime (CaO). Algal Research, 2017, 24, 199-206.	2.4	63
1200	Potential use of cowpea (<i>Vigna unguiculata</i> (L.) Walp.) stover treated with whiteâ€rot fungi as rabbit feed. Journal of the Science of Food and Agriculture, 2017, 97, 4386-4390.	1.7	5
1201	Synthesis of hard carbon from argan shells for Na-ion batteries. Journal of Materials Chemistry A, 2017, 5, 9917-9928.	5.2	224
1202	Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – A review. Renewable and Sustainable Energy Reviews, 2017, 78, 1007-1032.	8.2	121
1203	Characterization of cellulolytic enzyme system of Schizophyllum commune mutant and evaluation of its efficiency on biomass hydrolysis. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1289-1299.	0.6	12
1204	Bioethanol production from sugarcane bagasse by simultaneous sacarification and fermentation using Saccharomyces cerevisiae. AlP Conference Proceedings, 2017, , .	0.3	11
1205	Ethanol production from diluteâ€acid steam exploded lignocellulosic feedstocks using an isolated multistressâ€tolerant <i>Pichia kudriavzevii</i> strain. Microbial Biotechnology, 2017, 10, 1581-1590. 	2.0	35

#	Article	IF	CITATIONS
1206	Enrichment of Biogas from Biodegradable Solid Waste—A Review. Springer Proceedings in Energy, 2017, , 93-106.	0.2	2
1208	Biofuels and Bioenergy (BICE2016). Springer Proceedings in Energy, 2017, , .	0.2	3
1209	Assessment of hydrothermal pretreatment of various lignocellulosic biomass with CO 2 catalyst for enhanced methane and hydrogen production. Water Research, 2017, 120, 32-42.	5.3	79
1210	Steam-exploded biomass saccharification is predominately affected by lignocellulose porosity and largely enhanced by Tween-80 in Miscanthus. Bioresource Technology, 2017, 239, 74-81.	4.8	55
1211	Biomass valorization by using a sequence of acid hydrolysis and pyrolysis processes. Application to Leucaena leucocephala. Fuel, 2017, 203, 393-402.	3.4	20
1213	Enhanced Delignification of Wheat Straw by the Combined Effect of Hydrothermal and Fungal Treatments. Chemical Engineering Communications, 2017, 204, 803-812.	1.5	7
1214	Enhanced saccharification of lignocellulosic agricultural biomass and increased bioethanol titre using acclimated Clostridium thermocellum DSM1313. 3 Biotech, 2017, 7, 35.	1.1	12
1215	Enzymatic saccharification of pretreated rice straw by cellulases from Aspergillus niger BK01. 3 Biotech, 2017, 7, 158.	1.1	40
1216	A review on the potential of citrus waste for <scp>D</scp> -Limonene, pectin, and bioethanol production. International Journal of Green Energy, 2017, 14, 599-612.	2.1	98
1217	Treatment of supermarket vegetable wastes to be used as alternative substrates in bioprocesses. Waste Management, 2017, 67, 59-66.	3.7	39
1218	Hydrothermal Processing in Biorefineries. , 2017, , .		41
1219	Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by <i>Spathaspora passalidarum</i> and <i>Scheffersomyces stipitis</i> . Biotechnology and Bioengineering, 2017, 114, 2211-2221.	1.7	80
1220	Biodegradable alternative for removing toxic compounds from sugarcane bagasse hemicellulosic hydrolysates for valorization in biorefineries. Bioresource Technology, 2017, 243, 384-392.	4.8	35
1221	Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresource Technology, 2017, 243, 273-283.	4.8	91
1222	Enzymatic Activity of Some Industrially-Applied Cellulolytic Enzyme Preparations. Ecological Chemistry and Engineering S, 2017, 24, 9-18.	0.3	4
1223	Production of Ethanol from Lignocellulosic Biomass. Biofuels and Biorefineries, 2017, , 375-410.	0.5	20
1224	Enzymatic modification of ramie fibers and its influence on the performance of ramie-poly(butylene) Tj ETQq0 0 (0 rgBT /Ov 2.9	erlock 10 Tf

#	Article	IF	Citations
1226	Utilization of Lignocellulosic Biomass for Biobutanol Production. , 2017, , 247-263.		2
1228	In-situ injection of potassium hydroxide into briquetted wheat straw and meadow grass – Effect on biomethane production. Bioresource Technology, 2017, 239, 258-265.	4.8	7
1229	Green and chemical-free process of enzymatic xylooligosaccharide production from corncob: Enhancement of the yields using a strategy of lignocellulosic destructuration by ultra-high pressure pretreatment. Bioresource Technology, 2017, 241, 537-544.	4.8	43
1230	Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli. Bioresource Technology, 2017, 245, 1430-1435.	4.8	40
1231	Lignocellulosics as sustainable resources for production of bioplastics – A review. Journal of Cleaner Production, 2017, 162, 646-664.	4.6	312
1232	Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 2017, 62, 33-86.	15.8	1,748
1233	Enzymatic hydrolysis of pretreated Alfa fibers (Stipa tenacissima) using β- d -glucosidase and xylanase of Talaromyces thermophilus from solid-state fermentation. International Journal of Biological Macromolecules, 2017, 103, 543-553.	3.6	16
1234	Size Effects on Acid Bisulfite Pretreatment Efficiency: Multiple Product Yields in Spent Liquor and Enzymatic Digestibility of Pretreated Solids. ACS Sustainable Chemistry and Engineering, 2017, 5, 5418-5423.	3.2	4
1235	Hydrolysis of corncob catalyzed by self-derived carbonaceous solid acid. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 1079-1085.	1.2	6
1236	Cellulosic biobutanol by Clostridia: Challenges and improvements. Renewable and Sustainable Energy Reviews, 2017, 79, 1241-1254.	8.2	87
1237	Parametric study for the optimization of ionic liquid pretreatment of corn stover. Bioresource Technology, 2017, 241, 627-637.	4.8	35
1238	Evaluation of composite fiber-plastics biomass clinkering under the gasification conditions. Journal of Cleaner Production, 2017, 164, 137-145.	4.6	21
1239	Production of Platform Chemicals from Sustainable Resources. Biofuels and Biorefineries, 2017, , .	0.5	30
1240	Hydrothermal and microwave assisted alkali pretreatment for fractionation of arecanut husk. Industrial Crops and Products, 2017, 102, 65-74.	2.5	40
1241	Pure enzyme cocktails tailored for the saccharification of sugarcane bagasse pretreated by using different methods. Process Biochemistry, 2017, 57, 167-174.	1.8	18
1242	Using Pretreatment and Enzymatic Saccharification Technologies to Produce Fermentable Sugars from Agricultural Wastes. , 2017, , 15-38.		3
1243	Ternary ionic liquid–water pretreatment systems of an agave bagasse and municipal solid waste blend. Biotechnology for Biofuels, 2017, 10, 72.	6.2	22
1244	Optimizing storage of a catch crop before biogas production: Impact of ensiling and wilting under unsuitable weather conditions. Biomass and Bioenergy, 2017, 100, 84-91.	2.9	27

#	Article	IF	CITATIONS
1245	Lignocellulosic biomass waste beneficiation: Evaluation of oxidative and non-oxidative pretreatment methodologies of South African corn cob. Journal of Environmental Chemical Engineering, 2017, 5, 1771-1779.	3.3	30
1246	The middle lamella—more than a glue. Physical Biology, 2017, 14, 015004.	0.8	85
1247	A biorefinery-based approach for the production of ethanol from enzymatically hydrolysed cotton stalks. Bioresource Technology, 2017, 242, 178-183.	4.8	30
1248	Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express, 2017, 7, 72.	1.4	314
1249	Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst. Nature Energy, 2017, 2, .	19.8	451
1250	Enzymes Involved in the Biodegradation of Sugarcane Biomass: Challenges and Perspectives. , 2017, , 55-79.		7
1251	Bioethanol production from sodium hydroxide – dilute sulfuric acid pretreatment of rice husk via simultaneous saccharification and fermentation. MATEC Web of Conferences, 2017, 101, 02013.	0.1	2
1252	Waste Biomass Management – A Holistic Approach. , 2017, , .		16
1253	Ecofriendly lignocellulose pretreatment to enhance the carboxylate production of a rumen-derived microbial consortium. Bioresource Technology, 2017, 236, 225-233.	4.8	9
1254	Intensified Synthesis of Bioethanol from Sustainable Biomass. , 2017, , 251-287.		2
1255	Sustainable Biofuels Development in India. , 2017, , .		16
1256	Hydrolysis of Lignocellulosic Biomass for Recovering Hemicellulose: State of the Art. , 2017, , 73-106.		1
1257	Technological Advancements in Sustainable Production of Second Generation Ethanol Development: An Appraisal and Future Directions. , 2017, , 299-336.		5
1258	Pretreatment of radiata pine using two white rot fungal strains Stereum hirsutum and Trametes versicolor. Energy Conversion and Management, 2017, 142, 13-19.	4.4	55
1259	Unconventional Pretreatment of Lignocellulose with Lowâ€Temperature Plasma. ChemSusChem, 2017, 10, 14-31.	3.6	63
1260	Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. Physical Chemistry Chemical Physics, 2017, 19, 2636-2665.	1.3	217
1261	An Overview of the Recent Advances in the Application of Metal Oxide Nanocatalysts for Biofuel Production. Green Chemistry and Sustainable Technology, 2017, , 255-299.	0.4	2
1262	Role of Nanoparticles in Enzymatic Hydrolysis of Lignocellulose in Ethanol. Green Chemistry and Sustainable Technology, 2017, , 153-171.	0.4	5

#	Article	IF	CITATIONS
1263	Assessment of preâ€treatment technologies for bioethanol production from sugarcane bagasse considering economics and environmental impact. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 212-229.	0.8	3
1264	Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. Journal of Physical Chemistry A, 2017, 121, 623-630.	1.1	57
1265	Microwave assisted alkali treated wheat straw as a substrate for co-production of (hemi)cellulolytic enzymes and development of balanced enzyme cocktail for its enhanced saccharification. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 298-306.	2.7	17
1266	Techno-economic analysis and environmental impact assessment of lignocellulosic lactic acid production. Chemical Engineering Science, 2017, 162, 53-65.	1.9	70
1267	Potential effect of chemical and thermal treatment on the Kinetics, equilibrium, and thermodynamic studies for atrazine biosorption by the <i>Moringa oleifera</i> pods. Canadian Journal of Chemical Engineering, 2017, 95, 961-973.	0.9	32
1268	Photocatalytic reforming of pinewood (Pinus ponderosa) acid hydrolysate for hydrogen generation. International Journal of Hydrogen Energy, 2017, 42, 2839-2848.	3.8	33
1269	Importance of cellulase cocktails favoring hydrolysis of cellulose. Preparative Biochemistry and Biotechnology, 2017, 47, 547-553.	1.0	18
1270	Research and development perspectives of lignocellulose-based biohydrogen production. International Biodeterioration and Biodegradation, 2017, 119, 225-238.	1.9	35
1271	Simultaneous delignification and saccharification of rice straw as a lignocellulosic biomass by immobilized Thrichoderma viride sp. to enhance enzymatic sugar production. Renewable Energy, 2017, 104, 88-95.	4.3	19
1272	Use of membrane separation in enzymatic hydrolysis of waste paper. Korean Journal of Chemical Engineering, 2017, 34, 768-772.	1.2	2
1273	Effect of various types of thermal pretreatment techniques on the hydrolysis, compositional analysis and characterization of water hyacinth. Bioresource Technology, 2017, 227, 147-154.	4.8	68
1274	Nanotechnology for Bioenergy and Biofuel Production. Green Chemistry and Sustainable Technology, 2017, , .	0.4	23
1276	Low-temperature microbial and direct conversion of lignocellulosic biomass to electricity: Advances and challenges. Renewable and Sustainable Energy Reviews, 2017, 71, 268-282.	8.2	59
1277	High-pressure carbon dioxide/water pre-treatment of sugarcane bagasse and elephant grass: Assessment of the effect of biomass composition on process efficiency. Bioresource Technology, 2017, 224, 639-647.	4.8	66
1278	Optimization of hydrothermal pretreatment for co-utilization C-5 and C-6 sugars of cassava alcohol residue. Energy Conversion and Management, 2017, 132, 251-260.	4.4	22
1279	Microwave-Assisted Hydrolysis of Chitosan from Shrimp Shell Waste for Glucosammine Hydrochlorid Production. Journal of Physics: Conference Series, 2017, 846, 012011.	0.3	8
1280	Experimental study and thermodynamic modeling of xylitol and sorbitol solubility in mixtures of methanol and ethanol at different temperatures. Journal of Molecular Liquids, 2017, 248, 509-514.	2.3	10
1281	Synergistic action of an Aspergillus (hemi-)cellulolytic consortium on sugarcane bagasse saccharification. Industrial Crops and Products, 2017, 109, 173-181.	2.5	26

#	Article	IF	Citations
1282	Recent advances on the utilization of layered double hydroxides (LDHs) and related heterogeneous catalysts in a lignocellulosic-feedstock biorefinery scheme. Green Chemistry, 2017, 19, 5269-5302.	4.6	87
1283	Ferric iron and extracellular electron shuttling increase xylose utilization and butanol production during fermentation with multiple solventogenic bacteria. Applied Microbiology and Biotechnology, 2017, 101, 8053-8061.	1.7	9
1284	Biotransformation of water lettuce (Pistia stratiotes) to biohydrogen by Rhodopseudomonas palustris. Journal of Applied Microbiology, 2017, 123, 1438-1446.	1.4	9
1285	Studies on the effect of hydrothermal pretreatment of sugarcane bagasse for biobutanol production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 1771-1777.	1.2	4
1286	An electrogenerated base for the alkaline oxidative pretreatment of lignocellulosic biomass to produce bioethanol. RSC Advances, 2017, 7, 47456-47463.	1.7	3
1287	Fungal pre-treatment of forestry biomass with a focus on biorefining: A comparison of biomass degradation and enzyme activities by wood rot fungi across three tree species. Biomass and Bioenergy, 2017, 107, 20-28.	2.9	10
1288	The effects of cathodic micro-voltage combined with hydrothermal pretreatment on methane fermentation of lignocellulose substrate. IOP Conference Series: Earth and Environmental Science, 2017, 64, 012083.	0.2	5
1289	Characterization of Briquette from the Corncob Charcoal and Sago Stem Alloys. Journal of Physics: Conference Series, 2017, 846, 012012.	0.3	4
1290	Dissolution of Lignocelluloses with a High Lignin Content in a <i>N</i> -Methylmorpholine- <i>N</i> -oxide Monohydrate Solvent System via Simple Glycerol-Swelling and Mechanical Pretreatments. Journal of Agricultural and Food Chemistry, 2017, 65, 9587-9594.	2.4	42
1291	Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes. Bioresource Technology, 2017, 245, 145-151.	4.8	32
1293	Enhanced ethanol production from Glycyrrhiza glabra residue by fungus Mucor hiemalis. Industrial Crops and Products, 2017, 108, 767-774.	2.5	5
1294	Investigation of accessibility and reactivity of cellulose pretreated by ionic liquid at high loading. Carbohydrate Polymers, 2017, 176, 365-373.	5.1	27
1295	Ozonolysis of straw from Secale cereale L. for anaerobic digestion. Bioresource Technology, 2017, 245, 394-400.	4.8	12
1296	In planta expression of hyperthermophilic enzymes as a strategy for accelerated lignocellulosic digestion. Scientific Reports, 2017, 7, 11462.	1.6	16
1297	A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnology for Biofuels, 2017, 10, 218.	6.2	70
1298	Process development and technoâ€economic analysis of bioâ€based succinic acid derived from pentoses integrated to a sugarcane biorefinery. Biofuels, Bioproducts and Biorefining, 2017, 11, 1051-1064.	1.9	57
1299	Hydrolysis of cellulose to glucose over carbon catalysts sulfonated via a plasma process in dilute acids. Green Chemistry, 2017, 19, 4774-4777.	4.6	41
1300	Effect of organosolv pretreatment on mechanically pretreated biomass by use of concentrated ethanol as the solvent. Biotechnology and Bioprocess Engineering, 2017, 22, 431-439.	1.4	19

#	Article	IF	CITATIONS
1302	Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresource Technology, 2017, 245, 1194-1205.	4.8	261
1303	Steam explosion pretreatment improved the biomethanization of coffee husks. Bioresource Technology, 2017, 245, 66-72.	4.8	45
1304	Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes. Applied and Environmental Microbiology, 2017, 83, .	1.4	20
1305	Review on fermentative biohydrogen production from water hyacinth, wheat straw and rice straw with focus on recent perspectives. International Journal of Hydrogen Energy, 2017, 42, 20955-20969.	3.8	79
1306	CO ₂ -looping in biomass pyrolysis or gasification. Sustainable Energy and Fuels, 2017, 1, 1700-1729.	2.5	98
1307	Process engineering of cellulosic n-butanol production from corn-based biomass using Clostridium cellulovorans. Process Biochemistry, 2017, 62, 144-150.	1.8	28
1308	Coupling the pretreatment and hydrolysis of lignocellulosic biomass by the expression of betaâ€xylosidases. Biotechnology and Bioengineering, 2017, 114, 2497-2506.	1.7	8
1309	Exploiting ozonolysis-microbe synergy for biomass processing: Application in lignocellulosic biomass pretreatment. Biomass and Bioenergy, 2017, 105, 147-154.	2.9	26
1310	Production of Chemicals by Klebsiella pneumoniae Using Bamboo Hydrolysate as Feedstock. Journal of Visualized Experiments, 2017, , .	0.2	1
1311	A Technological Overview of Biogas Production from Biowaste. Engineering, 2017, 3, 299-307.	3.2	382
1312	Study the effect of gamma radiation pretreatment of sugarcane bagasse on its physcio-chemical morphological and structural properties. Radiation Physics and Chemistry, 2017, 141, 190-195.	1.4	22
1313	Ultrasound assisted alkaline pretreatment to enhance enzymatic saccharification of grass clipping. Energy Conversion and Management, 2017, 149, 409-415.	4.4	78
1314	Adsorptive detoxification of fermentation inhibitors in acid pretreated liquor using functionalized polymer designed by molecular simulation. Bioprocess and Biosystems Engineering, 2017, 40, 1657-1667.	1.7	2
1315	General Considerations on the Use of Lignocellulosic Residues. Springer Briefs in Molecular Science, 2017, , 11-16.	0.1	2
1316	Synergistic effects of enzymatic decomposition and mechanical stress in wood degradation. Wood Science and Technology, 2017, 51, 1067-1080.	1.4	8
1317	Damage to the microbial cell membrane during pyrolytic sugar utilization and strategies for increasing resistance. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1279-1292.	1.4	16
1318	Energy and exergy optimization of food waste pretreatment and incineration. Environmental Science and Pollution Research, 2017, 24, 18434-18443.	2.7	16
1319	Ball Milling for Biomass Fractionation and Pretreatment with Aqueous Hydroxide Solutions. ACS Sustainable Chemistry and Engineering, 2017, 5, 7733-7742.	3.2	91
#	Δρτιςι ε	IF	CITATIONS
-----------	--	-----	-----------
" 1320	Selective hydrodeoxygenation of guaiacol to phenolics over activated carbon supported molybdenum catalysts. Molecular Catalysis, 2017, 441, 28-34	1.0	64
1321	Isolation, identification and characterization of ligninâ€degrading bacteria from Qinling, China. Journal of Applied Microbiology, 2017, 123, 1447-1460.	1.4	50
1322	Biomass Conversion. , 2017, , 285-419.		7
1323	Supply chain optimization of forest biomass electricity and bioethanol coproduction. Energy, 2017, 139, 630-645.	4.5	18
1324	Effects of torrefaction on lignin-rich biomass (hazelnut shell): Structural variations. Journal of Renewable and Sustainable Energy, 2017, 9, .	0.8	10
1325	Transparent Woody Film Made by Dissolution of Finely Divided Japanese Beech in Formic Acid at Room Temperature. ACS Sustainable Chemistry and Engineering, 2017, 5, 11536-11542.	3.2	19
1326	Biorefinery-Based Lactic Acid Fermentation: Microbial Production of Pure Monomer Product. Advances in Polymer Science, 2017, , 27-66.	0.4	21
1327	Efficient Using Durian Shell Hydrolysate as Low-Cost Substrate for Bacterial Cellulose Production by Gluconacetobacter xylinus. Indian Journal of Microbiology, 2017, 57, 393-399.	1.5	26
1328	Efficient hydrolysis and ethanol production from rice straw by pretreatment with organic acids and effluent of biogas plant. RSC Advances, 2017, 7, 50537-50545.	1.7	59
1330	Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases. Biotechnology and Biotechnological Equipment, 0, , 1-16.	0.5	32
1331	Metal-exchanged magnetic β-zeolites: valorization of lignocellulosic biomass-derived compounds to platform chemicals. Green Chemistry, 2017, 19, 3856-3868.	4.6	35
1332	Effects of size and thermophilic pre-hydrolysis of banana peel during anaerobic digestion, and biomethanation potential of key tropical fruit wastes. Waste Management, 2017, 68, 128-138.	3.7	35
1333	High gravity enzymatic hydrolysis of hydrothermal and ultrasonic pretreated big bluestem with recycling prehydrolysate water. Renewable Energy, 2017, 114, 351-356.	4.3	9
1334	The influence of the explosive decompression in steam-explosion pretreatment on the enzymatic digestibility of different biomasses. Faraday Discussions, 2017, 202, 269-280.	1.6	12
1335	Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose, 2017, 24, 3591-3618.	2.4	225
1336	The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH) ₂ . Catalysis Science and Technology, 2017, 7, 5284-5293.	2.1	87
1337	Enzyme-based processing of soybean carbohydrate: Recent developments and future prospects. Enzyme and Microbial Technology, 2017, 106, 35-47.	1.6	34
1338	Mechanical pretreatment of waste paper for biogas production. Waste Management, 2017, 68, 157-164.	3.7	75

#	Article	IF	CITATIONS
1339	A Simple Approach to Prepare Carboxycellulose Nanofibers from Untreated Biomass. Biomacromolecules, 2017, 18, 2333-2342.	2.6	124
1340	Enhanced electrochemical performance of straw-based porous carbon fibers for supercapacitor. Journal of Solid State Electrochemistry, 2017, 21, 3449-3458.	1.2	18
1341	Beechwood carbohydrates for enzymatic synthesis of sustainable glycolipids. Bioresources and Bioprocessing, 2017, 4, 25.	2.0	34
1342	System-level cost evaluation for economic viability of cellulosic biofuel manufacturing. Applied Energy, 2017, 203, 711-722.	5.1	14
1343	Current status and strategies for second generation biofuel production using microbial systems. Energy Conversion and Management, 2017, 148, 1142-1156.	4.4	213
1344	Membrane potential independent transport of NH3 in the absence of ammonium permeases in Saccharomyces cerevisiae. BMC Systems Biology, 2017, 11, 49.	3.0	17
1345	Characterisation of non-degraded oligosaccharides in enzymatically hydrolysed and fermented, dilute ammonia-pretreated corn stover for ethanol production. Biotechnology for Biofuels, 2017, 10, 112.	6.2	21
1346	Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production. Bioresource Technology, 2017, 243, 464-473.	4.8	78
1347	Compositional and Structural Changes of Corn Cob Pretreated by Electron Beam Irradiation. ACS Sustainable Chemistry and Engineering, 2017, 5, 420-425.	3.2	32
1348	Bioconversion of hemicelluloses of lignocellulosic biomass to ethanol: an attempt to utilize pentose sugars. Biofuels, 2017, 8, 431-444.	1.4	41
1349	Degradation of Lignin in Agricultural Residues by locally Isolated Fungus Neurospora discreta. Applied Biochemistry and Biotechnology, 2017, 181, 1561-1572.	1.4	26
1350	TiO2/UV based photocatalytic pretreatment of wheat straw for biogas production. Anaerobe, 2017, 46, 155-161.	1.0	36
1351	Sequential enzymatic saccharification and fermentation of ionic liquid and organosolv pretreated agave bagasse for ethanol production. Bioresource Technology, 2017, 225, 191-198.	4.8	44
1352	Pilot-scale pretreatments of sugarcane bagasse with steam explosion and mineral acid, organic acid, and mixed acids: synergies, enzymatic hydrolysis efficiencies, and structure-morphology correlations. Biomass Conversion and Biorefinery, 2017, 7, 179-189.	2.9	10
1353	Combined De-Algination Process as a Fractionation Strategy for Valorization of Brown Macroalga Saccharina japonica. Applied Biochemistry and Biotechnology, 2017, 182, 238-249.	1.4	5
1355	Optimizing dilute phosphoric acid pretreatment of wheat straw in the laboratory and in a demonstration plant for ethanol and edible fungal biomass production using <i>Neurospora intermedia</i> . Journal of Chemical Technology and Biotechnology, 2017, 92, 1256-1265.	1.6	31
1356	Microwave-assisted chemical pre-treatment of waste sorghum leaves: Process optimization and development of an intelligent model for determination of volatile compound fractions. Bioresource Technology, 2017, 224, 590-600.	4.8	24
1357	Alkaline-assisted screw press pretreatment affecting enzymatic hydrolysis of wheat straw. Bioprocess and Biosystems Engineering, 2017, 40, 221-229.	1.7	10

#	Article	IF	CITATIONS
1358	Renewable feedstocks for biobutanol production by fermentation. New Biotechnology, 2017, 39, 135-140.	2.4	44
1359	A Perspective on Catalytic Strategies for Deoxygenation in Biomass Pyrolysis. Energy Technology, 2017, 5, 7-18.	1.8	94
1360	Improvement and Characterization in Enzymatic Hydrolysis of Regenerated Wheat Straw Dissolved by LiCl/DMAc Solvent System. Applied Biochemistry and Biotechnology, 2017, 181, 177-191.	1.4	10
1361	Purification and characterization of xylitol dehydrogenase with l-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2. Journal of Bioscience and Bioengineering, 2017, 123, 20-27.	1.1	24
1362	Qualitative and Quantitative Methods for Isolation and Characterization of Lignin-Modifying Enzymes Secreted by Microorganisms. Bioenergy Research, 2017, 10, 248-266.	2.2	36
1363	Recent Advances in Sugarcane Industry Solid By-Products Valorization. Waste and Biomass Valorization, 2017, 8, 241-266.	1.8	45
1364	Improved production and quality of biocrude oil from low-lipid high-ash macroalgae Enteromorpha prolifera via addition of crude glycerol. Journal of Cleaner Production, 2017, 142, 749-757.	4.6	61
1365	Optimizing GHG emission and energy-saving performance of miscanthus-based value chains. Biomass Conversion and Biorefinery, 2017, 7, 139-152.	2.9	17
1366	An overview of the enzyme potential in bioenergy-producing biorefineries. Journal of Chemical Technology and Biotechnology, 2017, 92, 906-924.	1.6	48
1367	Enhancement of methane production from various microalgae cultures via novel ozonation pretreatment. Chemical Engineering Journal, 2017, 307, 948-954.	6.6	51
1368	Environmental impact and sustainability study on biofuels for transportation applications. Renewable and Sustainable Energy Reviews, 2017, 67, 277-288.	8.2	115
1369	Pyrolysis of wastes generated through saccharification of oak tree by using CO2 as reaction medium. Applied Thermal Engineering, 2017, 110, 335-345.	3.0	45
1370	Microwave-Assisted Pretreatment of Sago Palm Bark. Journal of Wood Chemistry and Technology, 2017, 37, 26-42.	0.9	22
1371	Co-solvent system of [EMIM]Ac and DMF to improve the enzymatic saccharification of pussy willow (<i>Salix gracilistyla</i> Miq.). Holzforschung, 2017, 71, 43-50.	0.9	7
1372	A review of the potential of pretreated solids to improve gas biofuels production in the context of an OFMSW biorefinery. Journal of Chemical Technology and Biotechnology, 2017, 92, 937-958.	1.6	20
1373	Bench scale steam explosion pretreatment of acid impregnated elephant grass biomass and its impacts on biomass composition, structure and hydrolysis. Industrial Crops and Products, 2017, 106, 48-58.	2.5	49
1374	Efficient magnetic recoverable acid-functionalized-carbon catalysts for starch valorization to multiple bio-chemicals. Catalysis Today, 2017, 279, 45-55.	2.2	14
1375	Status of Canada's lignocellulosic ethanol: Part II: Hydrolysis and fermentation technologies. Renewable and Sustainable Energy Reviews, 2017, 79, 1535-1555.	8.2	34

#	Article	IF	CITATIONS
1376	Expanding sustenance in Ethiopia based on renewable energy resources – A comprehensive review. Renewable and Sustainable Energy Reviews, 2017, 75, 1035-1045.	8.2	49
1377	Combining Solar Steam Processing and Solar Distillation for Fully Off-Grid Production of Cellulosic Bioethanol. ACS Energy Letters, 2017, 2, 8-13.	8.8	61
1378	Effects of Low Moisture Anhydrous Ammonia (LMAA) Pretreatment at Controlled Ammoniation Temperatures on Enzymatic Hydrolysis of Corn Stover. Applied Biochemistry and Biotechnology, 2017, 181, 1257-1269.	1.4	13
1379	Efficient oleaginous yeasts for lipid production from lignocellulosic sugars and effects of lignocellulose degradation compounds on growth and lipid production. Process Biochemistry, 2017, 53, 44-60.	1.8	90
1380	Volumetric oxygen transfer coefficient as a means of improving volumetric ethanol productivity and a criterion for scaling up ethanol production with <i>Escherichia coli</i> . Journal of Chemical Technology and Biotechnology, 2017, 92, 981-989.	1.6	13
1381	Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renewable and Sustainable Energy Reviews, 2017, 67, 295-314.	8.2	177
1382	Technoâ€economic assessment of biorefinery technologies for aviation biofuels supply chains in Brazil. Biofuels, Bioproducts and Biorefining, 2017, 11, 67-91.	1.9	68
1383	Novel Nanoscaled Materials from Lignocellulosic Sources: Potential Applications in the Agricultural Sector. , 2017, , 1-24.		3
1384	Using sodium hydroxide with microwave to enhance the saccharification efficiency of water hyacinth to improve the optimal pre-treatment for producing into biomass butanol. , 2017, , .		0
1385	Biocatalytic Valorization of Furans: Opportunities for Inherently Unstable Substrates. ChemSusChem, 2017, 10, 4123-4134.	3.6	85
1386	Data driven decision support for reliable biomass feedstock preprocessing. , 2017, , .		5
1388	Design and optimisation of enzymatic saccharification for bioethanol production from <i>Parthenium hysterophorus</i> biomass using response surface methodology. International Journal of Renewable Energy Technology, 2017, 8, 154.	0.2	1
1389	Soybean Straw, Corn Stover and Sunflower Stalk as Possible Substrates for Biogas Production in Croatia: A Review. Chemical and Biochemical Engineering Quarterly, 2017, 31, 187-198.	0.5	30
1390	Bioethanol Production and Technologies. , 2017, , 273-284.		5
1391	Design of green laminated composites from agricultural biomass. , 2017, , 291-311.		2
1392	Characterization of the Micromorphology and Topochemistry of Poplar Wood during Mild Ionic Liquid Pretreatment for Improving Enzymatic Saccharification. Molecules, 2017, 22, 115.	1.7	13
1393	Preparation and Characterization of Cellulose Nanocrystals from the Bio-ethanol Residuals. Nanomaterials, 2017, 7, 51.	1.9	50
1394	Processes and Equipment. , 2017, , 443-467.		0

ARTICLE IF CITATIONS Application of nanocrystalline cellulose., 2017, , 215-240. 1395 22 Comparison of Dilute Acid, Alkali, and Biological Pretreatments for Reducing Sugar Production from 1396 Eucalyptus. BioResources, 2017, 12, . Microwave-Assisted Alkali Pre-Treatment, Densification and Enzymatic Saccharification of Canola 1397 1.6 35 Straw and Oat Hull. Bioengineering, 2017, 4, 25. High-Titer Methane from Organosolv-Pretreated Spruce and Birch. Energies, 2017, 10, 263. 1398 Effects of Pretreatments on Yields, Selectivity and Properties of Products from Pyrolysis of 1399 1.512 Phragmites australis (Common Reeds). Environments - MDPI, 2017, 4, 96. Classification of Biorefineries Taking into Account Sustainability Potentials and Flexibility., 2017,, 1-39. Future Microbial Applications for Bioenergy Production: A Perspective. Frontiers in Microbiology, 1401 1.5 60 2017, 8, 450. Fast Microwave-assisted Pretreatment for Bioconversion of Sawdust Lignocellulose to Glucose. 1402 0.3 Journal of Physics: Conference Series, 2017, 846, 012013. Study of Chemical and Enzymatic Hydrolysis of Cellulosic Material to Obtain Fermentable Sugars. 1403 0.9 31 Journal of Chemistry, 2017, 2017, 1-9. Pretreatment of Organic Solid Substrates for Bioenergy and Biofuel Recovery., 2017, , 135-156. 1404 Principles and Development of Lignocellulosic Biomass Pretreatment for Biofuels. Advances in 1405 0.5 44 Bioenergy, 2017, , 1-68. Expressing accessory proteins in cellulolytic Yarrowia lipolytica to improve the conversion yield of 6.2 recalcitrant cellulosé. Biotechnology for Biofuels, 2017, 1Ó, 298. Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of 1407 6.2 48 lactic acid from lignocellulosic hydrolysate. Biotechnology for Biofuels, 2017, 10, 210. Enhancing biogas plant production using pig manure and corn silage by adding wheat straw processed with liquid hot water and steam explosion. Biotechnology for Biofuels, 2017, 10, 259. 1408 6.2 Predicting the most appropriate wood biomass for selected industrial applications: comparison of 1409 wood, pulping, and enzymatic treatments using fluorescent-tagged carbohydrate-binding modules. 6.2 20 Biotechnology for Biofuels, 2017, 10, 293. Utilization of simultaneous saccharification and fermentation residues as feedstock for lipid 1410 1.4 accumulation in Rhodococcus opacus. AMB Express, 2017, 7, 185. Microwave pyrolysis of lignocellulosic biomassâ€"â€"a contribution to power Africa. Energy, 1411 1.7 36 Sustainability and Society, 2017, 7, . Pre-treatment of biomasses using magnetised sulfonic acid catalysts. Journal of Agricultural 1412 Engineering, 2017, 48, 117.

ARTICLE IF CITATIONS Biomass as Raw Material for Production of Highâ€Value Products. , 0, , . 26 1413 Co-Production of Ethanol and 1,2-Propanediol via Glycerol Hydrogenolysis Using Ni/Ce–Mg Catalysts: 1414 1.6 Effects of Catalyst Preparation and Reaction Conditions. Catalysts, 2017, 7, 290 Biofuels: Greenhouse Gas Mitigation and Global Warming., 2018, , . 1415 22 Eco-friendly process combining acid-catalyst and thermomechanical pretreatment for improving 4.8 enzymatic hydrolysis of hemp hurds. Biorésource Technology, 2018, 257, 192-200. Catalytic upgrading of pyrolysis vapours: Effect of catalyst support and metal type on phenolic 1417 4.6 68 content of bio-oil. Journal of Cleaner Production, 2018, 185, 52-61. Extraction and isolation methods for lignin separation from sugarcane bagasse: A review. Industrial 2.5 Crops and Products, 2018, 115, 330-339. Relationship between anaerobic digestion characteristics and biogas production under composting 1419 4.3 10 pretreatment. Renewable Energy, 2018, 125, 485-494. The Road to Biorenewables: Carbohydrates to Commodity Chemicals. ACS Sustainable Chemistry and 1420 3.2 120 Engineering, 2018, 6, 4464-4480. Microwave irradiation with dilute acid hydrolysis applied to enhance the saccharification rate of 1421 4.3 15 water hyacinth (Eichhornia crassipes). Renewable Energy, 2018, 125, 511-517. Constructing graphene-like nanosheets on porous carbon framework for promoted rate performance 1422 2.6 39 of Li-ion and Na-ion storage. Electrochimica Acta, 2018, 271, 92-102. Enhanced lignin extraction from different species of oil palm biomass: Kinetics and optimization of 1423 2.5 60 extraction conditions. Industrial Crops and Products, 2018, 116, 122-136. Physicochemical Characterization of Wheat Straw during a Continuous Pretreatment Process. 0.9 Chemical Engineering and Technology, 2018, 41, 1350-1350. From agro-industrial wastes to single cell oils: a step towards prospective biorefinery. Folia 1425 1.1 53 Microbiologica, 2018, 63, 547-568. De-construction of major Indian cereal crop residues through chemical pretreatment for improved 1426 8.2 biogas production: An overview. Renewable and Sustainable Energy Reviews, 2018, 90, 160-170. 1427 Cellulosic Biofuel: Technologies, Prospects, and Challenges., 2018, , 1-12. 0 Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chemical 1428 145 Engineering Journal, 2018, 347, 119-136. "Pickles Method―Inspired Tomato Derived Hierarchical Porous Carbon for High-Performance and 1429 1.312 Safer Capacitive Output. Journal of the Electrochemical Society, 2018, 165, A1054-A1063. Wet torrefaction of biomass for high quality solid fuel production: A review. Renewable and 1430 8.2 163

CITATION REPORT

Sustainable Energy Reviews, 2018, 91, 259-271.

#	Article	IF	CITATIONS
1431	Comparative study of two different alkali-mechanical pretreatments of corn stover for bioethanol production. Fuel, 2018, 221, 21-27.	3.4	61
1432	Cellulose nanofibers produced from various agricultural residues and their reinforcement effects in polymer nanocomposites. Journal of Applied Polymer Science, 2018, 135, 46304.	1.3	28
1433	Sea Water as a Reaction Medium for Bioethanol Production. , 2018, , 171-192.		3
1434	Potential of biohydrogen generation using the delignified lignocellulosic biomass by a newly identified thermostable laccase from Trichoderma asperellum strain BPLMBT1. International Journal of Hydrogen Energy, 2018, 43, 3618-3628.	3.8	59
1435	Instrumental analyses of nanostructures and interactions with bound water of superheated steam treated plant materials. Industrial Crops and Products, 2018, 114, 1-13.	2.5	9
1436	Two-stage thermophilic bio-hydrogen and methane production from lime-pretreated oil palm trunk by simultaneous saccharification and fermentation. International Journal of Hydrogen Energy, 2018, 43, 4284-4293.	3.8	29
1437	Bioconversion of cassava stem to ethanol: oxalic acid pretreatment and co-culture fermentation. Biofuels, 2018, 9, 559-566.	1.4	17
1438	Production and Characteristics of Cellulose from Different Sources. Springer Series on Polymer and Composite Materials, 2018, , 1-38.	0.5	24
1439	Sustainable Supply Chain: Feedstock Logistics Issues of Palm Oil Biomass Industry in Malaysia. Innovative Renewable Energy, 2018, , 467-479.	0.2	3
1440	Statistical Approach for the Identification of Cellulolytic Enzyme Inhibitors Using Switchgrass Dilute Acid Prehydrolyzates as a Model System. ACS Sustainable Chemistry and Engineering, 2018, 6, 3443-3452.	3.2	10
1441	Lignocellulosic Feedstock Improvement for Biofuel Production Through Conventional Breeding and Biotechnology. , 2018, , 107-140.		3
1442	Unravelling the effect of pretreatment severity on the balance of cellulose accessibility and substrate composition on enzymatic digestibility of steam-pretreated softwood. Biomass and Bioenergy, 2018, 109, 284-290.	2.9	22
1443	Ethanol production from mixtures of sugarcane bagasse and Dioscorea composita extracted residue with high solid loading. Bioresource Technology, 2018, 257, 23-29.	4.8	42
1444	Lignocellulosic Composite Materials. Springer Series on Polymer and Composite Materials, 2018, , .	0.5	9
1445	Municipal solid waste as a suitable substrate for butanol production as an advanced biofuel. Energy Conversion and Management, 2018, 157, 396-408.	4.4	90
1446	The novel thermostable cellulose-degrading enzyme DtCel5H from <i>Dictyoglomus thermophilum</i> : crystallization and X-ray crystallographic analysis. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 1-5.	0.4	1
1447	Delignification from Geodae-Uksae1 using soda-pulping followed by evaluation on recycling of liquid-liquid extraction solvent. Biomass and Bioenergy, 2018, 109, 23-30.	2.9	4
1448	Maximization of hydrogen fermentative process from delignified water hyacinth using sodium chlorite. Energy Conversion and Management, 2018, 157, 257-265.	4.4	39

#	Article	IF	CITATIONS
1449	Enzymatic saccharification of lignocellulosic biorefinery: Research focuses. Bioresource Technology, 2018, 252, 198-215.	4.8	109
1450	Continuous enzymatic hydrolysis of lignocellulosic biomass in a membraneâ€reactor system. Journal of Chemical Technology and Biotechnology, 2018, 93, 2181-2190.	1.6	18
1451	Pretreatments of Natural Fibers for Polymer Composite Materials. Springer Series on Polymer and Composite Materials, 2018, , 137-175.	0.5	5
1452	Cellulose Crystal Dissolution in Imidazolium-Based Ionic Liquids: A Theoretical Study. Journal of Physical Chemistry B, 2018, 122, 258-266.	1.2	55
1453	Structural and compositional changes in sugarcane bagasse subjected to hydrothermal and organosolv pretreatments and their impacts on enzymatic hydrolysis. Industrial Crops and Products, 2018, 113, 64-74.	2.5	84
1458	Development of tailor-made synergistic cellulolytic enzyme system for saccharification of steam exploded sugarcane bagasse. Journal of Bioscience and Bioengineering, 2018, 125, 390-396.	1.1	12
1459	Improved levulinic acid production from agri-residue biomass in biphasic solvent system through synergistic catalytic effect of acid and products. Bioresource Technology, 2018, 251, 143-150.	4.8	41
1460	Deep Eutectic Solvents pretreatment of agro-industrial food waste. Biotechnology for Biofuels, 2018, 11, 37.	6.2	94
1461	Optimising conditions for bioethanol production from rice husk and rice straw: effects of pre-treatment on liquor composition and fermentation inhibitors. Biotechnology for Biofuels, 2018, 11, 62.	6.2	53
1462	Efficient pretreatment of bagasse at high loading in an ionic liquid. Industrial Crops and Products, 2018, 119, 243-248.	2.5	22
1463	Facile and eco-friendly extraction of cellulose nanocrystals <i>via</i> electron beam irradiation followed by high-pressure homogenization. Green Chemistry, 2018, 20, 2596-2610.	4.6	50
1464	Lipomyces starkeyi: Its current status as a potential oil producer. Fuel Processing Technology, 2018, 177, 39-55.	3.7	49
1465	Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 2018, 90, 877-891.	8.2	530
1466	Conversion of Carbohydrates to Chemicals. Series on Chemistry, Energy and the Environment, 2018, , 19-76.	0.3	0
1467	Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type. Renewable and Sustainable Energy Reviews, 2018, 90, 700-709.	8.2	85
1468	Debottlenecking of sustainability performance for integrated biomass supply chain: P-graph approach. Journal of Cleaner Production, 2018, 193, 720-733.	4.6	39
1469	Production of Lactic Acid from Empty Fruit Bunch of Palm Oil Using Catalyst of Barium Hydroxide. MATEC Web of Conferences, 2018, 156, 06004.	0.1	3
1470	Technical assessment of natural deep eutectic solvent (NADES) mediated biorefinery process: A case study. Journal of Molecular Liquids, 2018, 260, 313-322.	2.3	38

#	Article	IF	CITATIONS
1471	Mechanochemical Treatment Facilitates Two-Step Oxidative Depolymerization of Kraft Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 5990-5998.	3.2	47
1472	Efficient pretreatment of sugarcane bagasse via dilute mixed alkali salts (K2CO3/K2SO3) soaking for enhancing its enzymatic saccharification. Process Biochemistry, 2018, 68, 121-130.	1.8	7
1473	A solid-state microwave method to disrupt biomass microstructure for natural product extraction. Food and Bioproducts Processing, 2018, 109, 98-106.	1.8	4
1474	Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS Sustainable Chemistry and Engineering, 2018, 6, 7181-7192.	3.2	378
1475	Co-fermentation of the main sugar types from a beechwood organosolv hydrolysate by several strains of Bacillus coagulans results in effective lactic acid production. Biotechnology Reports (Amsterdam,) Tj ETQq0 0 (Эrஜ₿Т/О∨	erløck 10 Tf
1476	Fine grinding of wood – Overview from wood breakage to applications. Biomass and Bioenergy, 2018, 113, 31-44.	2.9	69
1477	Facile dissolution of wood pulp in aqueous NaOH/urea solution by ball milling pretreatment. Industrial Crops and Products, 2018, 118, 48-52.	2.5	28
1478	A comparable study on the hot-water treatment of wheat straw and okra stalk prior to delignification. Biomass Conversion and Biorefinery, 2018, 8, 413-421.	2.9	11
1479	Controllable synthesis of monoacrylateâ€modified adsorption resins and enhancing adsorption toward fermentation inhibitors from rice straw hydrolysate. Journal of Chemical Technology and Biotechnology, 2018, 93, 2652-2658.	1.6	12
1480	Techno-economic analysis of butanol production from lignocellulosic biomass by concentrated acid pretreatment and hydrolysis plus continuous fermentation. Biochemical Engineering Journal, 2018, 134, 30-43.	1.8	59
1481	Application of electro-membrane separation for recovery of acetic acid in lignocellulosic bioethanol production. Food and Bioproducts Processing, 2018, 109, 41-51.	1.8	15
1482	DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chemical Reviews, 2018, 118, 4-72.	23.0	141
1483	The Effect of the Addition of Acetic Acid to Aqueous Ionic Liquid Mixture Using Microwave-assisted Pretreatment in the Saccharification of Napier Grass. Waste and Biomass Valorization, 2018, 9, 1795-1804.	1.8	9
1484	Comparison of Different Pretreatments of Rice Straw Substrate to Improve Biogas Production. Waste and Biomass Valorization, 2018, 9, 1503-1512.	1.8	46
1485	Ethanol Production from Water Hyacinth (Eichhornia crassipes) Using Various Types of Enhancers Based on the Consumable Sugars. Waste and Biomass Valorization, 2018, 9, 939-946.	1.8	29
1486	Pentose rich acid pretreated liquor as co-substrate for 1,3-propanediol production. Renewable Energy, 2018, 129, 794-799.	4.3	27
1487	Economic, Environmental and Moral Acceptance of Renewable Energy: A Case Study—The Agricultural Biogas Plant at PÄ>ÄÄn. Science and Engineering Ethics, 2018, 24, 299-305.	1.7	15

1488An optimisation study on biomass delignification process using alkaline wash. Biomass Conversion2.910and Biorefinery, 2018, 8, 59-68.

ARTICLE IF CITATIONS # Effect of Steam Explosion Pretreatment Catalysed by Organic Acid and Alkali on Chemical and Structural Properties and Enzymatic Hydrolysis of Sugarcane Bagasse. Waste and Biomass 1489 50 1.8 Valorization, 2018, 9, 2191-2201. Dark Fermentative Hydrogen Gas Production from Lime Treated Waste Paper Towel Hydrolysate. Waste 1.8 and Biomass Valorization, 2018, 9, 801-810. Integral valorization of tagasaste (Chamaecytisus proliferus) under thermochemical processes. 1491 2.9 5 Biomass Conversion and Biorefinery, 2018, 8, 265-274. Enzymatic Hydrolysis of Fruit Peels and Other Lignocellulosic Biomass as a Source of Sugar. Waste 1492 1.8 44 and Biomass Valorization, 2018, 9, 929-937. Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives. Biomass 1493 2.9 94 Conversion and Biorefinery, 2018, 8, 225-234. Techno-economic analysis of organosolv pretreatment process from lignocellulosic biomass. Clean Technologies and Environmental Policy, 2018, 20, 1401-1412. 1494 2.1 Unravelling biocomplexity of electroactive biofilms for producing hydrogen from biomass. Microbial 1495 2.0 26 Biotechnology, 2018, 11, 84-97. The effect of hot water pretreatment on the heavy metal adsorption capacity of acid insoluble lignin from <i>Paulownia elongata </i>. Journal of Chemical Technology and Biotechnology, 2018, 93, 1496 1.6 1105-1112. Solvo-thermal in situ transesterification of wet spent coffee grounds for the production of 1497 4.8 32 biodiesel. Bioresource Technology, 2018, 249, 494-500. Combined low thermal alkali addition and mechanical pre-treatment to improve biogas yield from 1498 4.6 44 wheat straw. Journal of Cleaner Production, 2018, 172, 1391-1398. Bio-based products from xylan: A review. Carbohydrate Polymers, 2018, 179, 28-41. 1499 5.1239 Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added 4.8 346 products. Bioresource Technology, 2018, 247, 1144-1154. Recent Trends in Catalytic Hydrolysis of Waste Lignocellulosic Biomass for Production of 1501 0 Fermentable Sugars., 2018, , 13-24. Prospects for pretreatment methods of lignocellulosic waste biomass for biogas enhancement: 1.4 opportunities and challenges. Biofuels, 2018, 9, 575-594. Kinetic Study of Biogas Recovery from Thermo-chemically Pre-treated Rice Husk. Indian Chemical 1503 0.9 4 Engineer, 2018, 60, 297-313. Performance evaluation of fungal cellulases with dilute acid pretreated sugarcane bagasse: A robust 1504 bioprospecting strategy for biofuel enzymes. Renewable Energy, 2018, 115, 978-988. Chemical pretreatment of Arundo donax L. for second-generation ethanol production. Electronic 1505 1.2 28 Journal of Biotechnology, 2018, 31, 67-74. Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent 4.8 pretreatment. Bioresource Technology, 2018, 250, 532-537.

#	Article	IF	CITATIONS
1507	Fast automated online xylanase activity assay using HPAEC-PAD. Analytical and Bioanalytical Chemistry, 2018, 410, 57-69.	1.9	14
1508	Waste to Wealth. Energy, Environment, and Sustainability, 2018, , .	0.6	15
1509	Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Research, 2018, 29, 71-79.	2.4	58
1510	Determination of the Acetyl Group in Biomass and Its Products by Headspace Gas Chromatography. Energy & Fuels, 2018, 32, 450-454.	2.5	4
1511	Optimal use of condensed parameters of ultimate analysis to predict the calorific value of biomass. Fuel, 2018, 214, 640-646.	3.4	84
1512	The Pretreatment Technologies for Deconstruction of Lignocellulosic Biomass. Energy, Environment, and Sustainability, 2018, , 395-421.	0.6	9
1513	Bioeconomy and Biorefinery: Valorization of Hemicellulose from Lignocellulosic Biomass and Potential Use of Avocado Residues as a Promising Resource of Bioproducts. Energy, Environment, and Sustainability, 2018, , 141-170.	0.6	14
1514	Improvement of methane production from P.Âcanaliculata through mechanical pretreatment. Renewable Energy, 2018, 119, 73-78.	4.3	40
1515	Influence of pluronic addition on polyethersulfone membrane for xylitol recovery from biomass fermentation solution. Journal of Cleaner Production, 2018, 171, 995-1005.	4.6	12
1516	Biorefining of Lignocelluloses: An Opportunity for Sustainable Biofuel Production. Biofuel and Biorefinery Technologies, 2018, , 1-23.	0.1	3
1517	Pretreatment of Lignocellulosic Biomass Toward Biofuel Production. Biofuel and Biorefinery Technologies, 2018, , 203-221.	0.1	21
1518	Biological wheat straw valorization: Multicriteria optimization of <i>Polyporus brumalis</i> pretreatment in packed bed bioreactor. MicrobiologyOpen, 2018, 7, e00530.	1.2	4
1519	The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production. Brazilian Journal of Microbiology, 2018, 49, 378-391.	0.8	58
1520	Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(II) sorption. Carbohydrate Polymers, 2018, 182, 21-28.	5.1	64
1521	Effects of temperature and particle size on the biochemical methane potential of municipal solid waste components. Waste Management, 2018, 71, 25-30.	3.7	28
1522	Effect of three pretreatment techniques on the chemical composition and on the methane yields of <i>Opuntia ficus-indica</i> (prickly pear) biomass. Waste Management and Research, 2018, 36, 17-29.	2.2	39
1523	Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 2018, 111, 317-328.	2.5	73
1524	Advances in Transformation of Lignocellulosic Biomass to Carbohydrate-Derived Fuel Precursors. Biofuel and Biorefinery Technologies, 2018, , 87-116.	0.1	14

#	Article	IF	CITATIONS
1525	Platform Study on the Development of a Nondetoxified Rice Straw Hydrolysate to Its Application in Lipid Production from <i>Mortierella alpina</i> . ACS Sustainable Chemistry and Engineering, 2018, 6, 1225-1234.	3.2	28
1526	Fed-batch production of vanillin by Bacillus aryabhattai BA03. New Biotechnology, 2018, 40, 186-191.	2.4	24
1527	Bioethanol Production from Renewable Raw Materials and its Separation and Purification: a Review. Food Technology and Biotechnology, 2018, 56, 289-311.	0.9	297
1528	Lignocellulose Pretreatment Using Acid as Catalyst. , 2018, , 1-14.		5
1530	Sugarcane bagasse as a source of carbon for enzyme production by filamentous fungi1. Hoehnea (revista), 2018, 45, 134-142.	0.2	19
1531	Molecular characterization and overexpression of <i>mnp6</i> and <i>vp3</i> from <i>Pleurotus ostreatus</i> revealed their involvement in biodegradation of cotton stalk lignin. Biology Open, 2019, 8, .	0.6	5
1532	The Effect of Fiberboard Modification on Adhesion Strength to Polyvinyl Chloride (PVC) Sheets or Eastern Beech (Fagus orientalis L.) Veneers. BioResources, 2018, 13, .	0.5	1
1533	Sugar Versatility—Chemical and Bioprocessing of Many Phytobiomass Polysaccharides Using a Milder Hydrolytic Catalyst: Diluted Thermopressurized Phosphoric Acid. , 0, , .		0
1534	Structural Analysis on the Effect of Base-Catalysed Delignification Process Parameters on Palm Oil Empty Fruit Bunches Fibres using Glycome Profiling. IOP Conference Series: Materials Science and Engineering, 2018, 458, 012070.	0.3	1
1535	Diauxic growth of Clostridium acetobutylicum ATCC 824 when grown on mixtures of glucose and cellobiose. AMB Express, 2018, 8, 85.	1.4	12
1536	Physical, Chemical and Mechanical Characterization of a Prototype Insulating Material Based on Eucalyptus Bark Fiber. IEEE Latin America Transactions, 2018, 16, 2441-2446.	1.2	3
1537	Synergistic Treatment Strategy for Efficient Release of Reducing Sugar from Orange Peel during Acid and Enzymatic Treatment Process. , 2018, , .		0
1538	Extraction of Glucose by Using Alkaline Hydrolysis from Musa Sapientum Peels, Ananas Comosus and Mangifera Indica Linn. Materials Today: Proceedings, 2018, 5, 22148-22153.	0.9	7
1539	Application of Natural Deep Eutectic Solvents in Biomass Pretreatment, Enzymatic Saccharification and Cellulosic Ethanol Production. Materials Today: Proceedings, 2018, 5, 23057-23063.	0.9	14
1540	To Study the Effect of Mechanical Comminution on Lignin Percentage and Calorific Value of Dry Sugar Cane Leaves. Materials Today: Proceedings, 2018, 5, 18135-18141.	0.9	1
1541	Benign-by-Design Orange Peel-Templated Nanocatalysts for Continuous Flow Conversion of Levulinic Acid to N-Heterocycles. ACS Sustainable Chemistry and Engineering, 2018, 6, 16637-16644.	3.2	38
1542	Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes. Molecules, 2018, 23, 2937.	1.7	345
1543	Lipid Production by Yeast Trichosporon oleaginosus on the Enzymatic Hydrolysate of Alkaline Pretreated Corn Cobs for Biodiesel Production. Energy & Fuels, 2018, 32, 12501-12513.	2.5	16

#	Article	IF	CITATIONS
1544	Combined Ball Milling and Ethanol Organosolv Pretreatment to Improve the Enzymatic Digestibility of Three Types of Herbaceous Biomass. Energies, 2018, 11, 2457.	1.6	22
1545	Relationship between Torrefaction Parameters and Physicochemical Properties of Torrefied Products Obtained from Selected Plant Biomass. Energies, 2018, 11, 2919.	1.6	22
1546	Molecular Simulation of Reaction Mechanism for Hemicellulose Model Compound during Chlorine Dioxide Bleaching. BioResources, 2018, 13, .	0.5	0
1547	Pretreatment Chemometrics in Holistic Biogas Life Cycle Assessment: Framing Case Study with Carica papaya. Waste and Biomass Valorization, 2018, 11, 7029.	1.8	0
1548	Integrating sugarcane molasses into sequential cellulosic biofuel production based on SSF process of high solid loading. Biotechnology for Biofuels, 2018, 11, 329.	6.2	22
1549	Selection of filler particle size for maximizing the critical properties of cellulosic paper by filler pre-flocculation. Nordic Pulp and Paper Research Journal, 2018, 33, 603-609.	0.3	6
1550	Identification of Ethanologenic Yeast Strains from Wild Habitats. Journal of Applied Microbiology and Biochemistry, 2018, 02, .	0.2	0
1551	Ketonization of Propionic Acid to 3-Pentanone over Ce _{<i>x</i>} Zr _{1–<i>x</i>} O ₂ Catalysts: The Importance of Acid–Base Balance. Industrial & Engineering Chemistry Research, 2018, 57, 17086-17096.	1.8	33
1552	Elucidating the Energetics and Effects of Solvents on Cellulose Hydrolysis Using a Polymeric Acid Catalyst. Applied Sciences (Switzerland), 2018, 8, 1767.	1.3	1
1553	Effect of pH and temperature on microbial community structure and carboxylic acid yield during the acidogenic digestion of duckweed. Biotechnology for Biofuels, 2018, 11, 275.	6.2	26
1554	Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Applied Microbiology and Biotechnology, 2018, 102, 9893-9910.	1.7	66
1555	Improving enzymatic digestibility of wheat straw pretreated by a cellulase-free xylanase-secreting Pseudomonas boreopolis G22 with simultaneous production of bioflocculants. Biotechnology for Biofuels, 2018, 11, 250.	6.2	21
1556	Production and characterization of hybrid coal using sugar impurities extracted from pitch pine. Applied Thermal Engineering, 2018, 145, 174-183.	3.0	4
1557	Role of Natural Deep Eutectic Solvents (NADES) in the Pretreatment of Lignocellulosic Biomass for an Integrated Biorefinery and Bioprocessing Concept. , 2018, , 73-109.		3
1558	Effect of chemical pretreatment on pulp and paper characteristics of bamboo gigantochloa scorthechinii kraft fibers. IOP Conference Series: Materials Science and Engineering, 2018, 368, 012044.	0.3	5
1559	Structural changes in lignocellulosic biomass during activation with ionic liquids comprising 3-methylimidazolium cations and carboxylate anions. Biotechnology for Biofuels, 2018, 11, 265.	6.2	19
1560	Ethanol from Biomass Hydrolysates by Efficient Fermentation of Glucose and Xylose – A Review. ChemBioEng Reviews, 2018, 5, 294-311.	2.6	15
1561	Recent Developments and Challenges of Acetone-Butanol-Ethanol Fermentation. , 2018, , 111-123.		12

#	Article	IF	CITATIONS
1562	Densification of Agricultural Wastes and Forest Residues: A Review on Influential Parameters and Treatments. , 2018, , 27-51.		11
1563	Review of Second-Generation Bioethanol Production from Residual Biomass. Food Technology and Biotechnology, 2018, 56, 174-187.	0.9	396
1564	Pretreatment of Oil Palm Frond (OPF) with Ionic Liquid. IOP Conference Series: Materials Science and Engineering, 2018, 358, 012071.	0.3	9
1565	Biodelignification and hydrolysis of rice straw by novel bacteria isolated from wood feeding termite. 3 Biotech, 2018, 8, 447.	1.1	32
1566	Organic Sonochemistry. Springer Briefs in Molecular Science, 2018, , .	0.1	16
1567	Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus). Energies, 2018, 11, 2535.	1.6	43
1568	Comparison of co–gasification efficiencies of coal, lignocellulosic biomass and biomass hydrolysate for high yield hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 21269-21278.	3.8	43
1569	Solvent Recycling Operation of the Degradative Solvent Extraction of Biomass to Minimize the Amount of Solvent Required. Energy & amp; Fuels, 2018, 32, 11555-11563.	2.5	7
1572	Microbial Bioprospecting for Sustainable Development. , 2018, , .		13
1573	Microbial Cellulases: Role in Second-Generation Ethanol Production. , 2018, , 167-187.		3
1574	Fast pyrolysis of hot-water-extracted and soda-AQ-delignified okra (Abelmoschus esculentus) and miscanthus (miscanthus x giganteus) stalks by Py-GC/MS. Biomass and Bioenergy, 2018, 118, 172-179.	2.9	4
1575	How does phosphoric acid interact with cherry stones? A discussion on overlooked aspects of chemical activation. Wood Science and Technology, 2018, 52, 1645-1669.	1.4	5
1576	Lipomyces starkeyi: an emerging cell factory for production of lipids, oleochemicals and biotechnology applications. World Journal of Microbiology and Biotechnology, 2018, 34, 147.	1.7	34
1577	Optimization of Lignin-Based Biocatalyst Production from Pine Sawdust and Wheat Straw. Molecules, 2018, 23, 1877.	1.7	1
1578	Microbial Production of Violacein and Process Optimization for Dyeing Polyamide Fabrics With Acquired Antimicrobial Properties. Frontiers in Microbiology, 2018, 9, 1495.	1.5	51
1579	Pretreatment Process and Its Synergistic Effects on Enzymatic Digestion of Lignocellulosic Material. , 2018, , 1-25.		4
1580	Self-Nitrogen-Doped Carbon from Plant Waste as an Oxygen Electrode Material with Exceptional Capacity and Cycling Stability for Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2018, 10, 32212-32219.	4.0	38
1581	Livestock Feed Production from Sago Solid Waste by Pretreatment and Anaerobic Fermentation Process. MATEC Web of Conferences, 2018, 156, 03044.	0.1	5

ARTICLE IF CITATIONS Effect of subcritical water and steam explosion pretreatments on the recovery of sterols, phenols 1582 4.2 35 and oil from olive pomace. Food Chemistry, 2018, 265, 298-307. Solvent processing of cellulose for effective bioresource utilization. Current Opinion in Green and 3.2 Sustainable Chemistry, 2018, 14, 40-52. Cellulases. Methods in Molecular Biology, 2018, , . 1584 0.4 1 Two-Dimensional High-Throughput Endo-Enzyme Screening Assays Based on Chromogenic Polysaccharide Hydrogel and Complex Biomass Substrates. Methods in Molecular Biology, 2018, 1796, 1585 201-217. Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw 1586 237 8.2 materials. Renewable and Sustainable Energy Reviews, 2018, 91, 483-489. 1587 Cellulases: Role in Lignocellulosic Biomass Utilization. Methods in Molecular Biology, 2018, 1796, 3-23. 0.4 Effectiveness of cross-linked enzyme aggregates of cellulolytic enzymes in hydrolyzing wheat straw. 1588 1.1 18 Journal of Bioscience and Bioengineering, 2018, 126, 445-450. Production of biogas (methane and hydrogen) from anaerobic digestion of hemicellulosic 1589 hydrolysate generated in the oxidative pretreatment of coffee husks. Bioresource Technology, 2018, 4.8 263, 601-612 Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery 1590 0.8 127 applications: A review. Journal of Renewable and Sustainable Energy, 2018, 10, . Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation. 1591 8.2 Renewable and Sustainable Energy Reviews, 2018, 94, 476-485. Novel Superabsorbent Cellulose-Based Hydrogels: Present Status, Synthesis, Characterization, and 1592 2 0.6 Application Prospects. Polymers and Polymeric Composites, 2018, , 1-41. Life cycle assessment and life cycle costing of conventional and modified dilute acid pretreatment for 4.6 fuel éthanol production from rice straw in India. Journal of Cleaner Production, 2018, 197, 732-741. 1594 Conversion of Solid Wastes to Fuels and Chemicals Through Pyrolysis., 2018, 239-263. 58 Synergistic Effects between Lignin and Cellulose during Pyrolysis of Agricultural Waste. Energy 1595 2.5 39 & Fuels, 2018, 32, 8420-8430. Lignocellulosic biomass to biofuels and biochemicals: A comprehensive review with a focus on 1596 122 1.7 ethanol organosolv pretreatment technology. Biotechnology and Bioengineering, 2018, 115, 2683-2702. Chemical composition analysis of various genetically modified sorghum traits: Pretreatment process optimization and bioethanol production from hemicellulosic hydrolyzates without detoxification. Journal of Environmental Chemical Engineering, 2018, 6, 5625-5634. Agave tequilana bagasse for methane production in batch and sequencing batch reactors: Acid 1598 catalyst effect, batch optimization and stability of the semi-continuous process. Journal of 3.8 28 Environmental Management, 2018, 224, 156-163. Integrated experimental and technoeconomic evaluation of two-stage Cu-catalyzed alkaline–oxidative 1599 6.2 pretreatment of hybrid poplar. Biotechnology for Biofuels, 2018, 11, 143.

# 1600	ARTICLE Biomimetic strategy for constructing Clostridium thermocellum cellulosomal operons in Bacillus subtilis. Biotechnology for Biofuels, 2018, 11, 157.	IF 6.2	CITATIONS
1601	Sugar Beet Pulp as a Source of Valuable Biotechnological Products. , 2018, , 359-392.		16
1602	Nanoparticles and Organic Matter. , 2018, , 407-428.		10
1603	A Comprehensive Investigation on the Effects of Biomass Particle Size in Cellulosic Biofuel Production. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140, .	1.4	11
1604	Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: kinetics and process economic analysis. Biotechnology for Biofuels, 2018, 11, 164.	6.2	42
1605	Biodegradation of lignin by <i>Pseudomonas</i> sp. Q18 and the characterization of a novel bacterial DyP-type peroxidase. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 913-927.	1.4	37
1606	Ammonium sulfite pretreatment of wheat straw for efficient enzymatic saccharification. Sustainable Energy Technologies and Assessments, 2018, 29, 12-18.	1.7	14
1607	Low temperature hydrothermal treatment of palm fiber fuel for simultaneous potassium removal, enhanced oil recovery and biogas production. Fuel, 2018, 234, 1055-1063.	3.4	27
1608	A novel hybrid organosolv: steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnology for Biofuels, 2018, 11, 160.	6.2	97
1612	Enhanced production of succinic acid from methanol–organosolv pretreated Strophanthus preussii by recombinant Escherichia coli. Bioprocess and Biosystems Engineering, 2018, 41, 1497-1508.	1.7	7
1613	Organosolv Fractionation of Softwood Biomass for Biofuel and Biorefinery Applications. Energies, 2018, 11, 50.	1.6	86
1614	Pretreatment of Corn Stover Using Organosolv with Hydrogen Peroxide for Effective Enzymatic Saccharification. Energies, 2018, 11, 1301.	1.6	13
1616	Integrated Consolidated Bioprocessing for Conversion of Lignocellulosic Feedstock to Biofuels and Value-Added Bioproducts. , 2018, , 247-273.		2
1617	1.21 Food and Energy. , 2018, , 850-874.		3
1618	An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technologies and Environmental Policy, 2018, 20, 1615-1630.	2.1	336
1619	Fungal Biorefineries. Fungal Biology, 2018, , .	0.3	3
1620	Protic Ionic Liquids for Lignin Extraction—A Lignin Characterization Study. International Journal of Molecular Sciences, 2018, 19, 428.	1.8	64
1621	Production of Biofuels from Biomass by Fungi. Fungal Biology, 2018, , 21-45.	0.3	1

ARTICLE IF CITATIONS A full utilization of rice husk to evaluate phytochemical bioactivities and prepare cellulose 52 1622 1.6 nanocrystals. Scientific Reports, 2018, 8, 10482. Revisiting alkaline aerobic lignin oxidation. Green Chemistry, 2018, 20, 3828-3844. 4.6 114 Biochemical Modification of Lignocellulosic Biomass., 2018, , 315-350. 1624 10 Effect of lignin on the thermal properties of nanocrystalline prepared from kenaf core. IOP 0.3 Conference Series: Materials Science and Engineering, 2018, 368, 012039. Identification of Inhibitors in Lignocellulosic Slurries and Determination of Their Effect on 1626 2.0 24 Hydrocarbon-Producing Microorganisms. Frontiers in Bioengineering and Biotechnology, 2018, 6, 23. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to 1.8 208 Energy and Value-Added Chemicals. Frontiers in Chemistry, 2018, 6, 141. Conversion of <i>Symphytum officinale</i> and <i>Panicum virgatum</i> plant extracts to 1628 5-hydroxymethylfurfural catalysed by metal chlorides in ionic liquids. Canadian Journal of Chemistry, 0.6 6 2018, 96, 815-820. What cell wall components are the best indicators for Miscanthus digestibility and conversion to 1629 6.2 ethanol following variable pretreatments?. Biotechnology for Biofuels, 2018, 11, 67. A comparative thermodynamic evaluation of bioethanol processing from wheat straw. Applied Energy, 1630 5.1 18 2018, 224, 136-146. Influence and strategies for enhanced biohydrogen production from food waste. Renewable and 8.2 101 Sustainable Energy Reviews, 2018, 92, 807-822 Flammulina velutipes treatment of non-sterile tall wheat grass for enhancing biodegradability and 1632 4.8 14 methane production. Bioresource Technology, 2018, 263, 660-664. Role of Systematic Biology in Biorefining of Lignocellulosic Residues for Biofuels and Chemicals Production., 2018,, 5-55 1634 Interpretable Data-Driven Modeling in Biomass Preprocessing., 2018,,. 1 Catalytic Strategies Towards Lignin-Derived Chemicals. Topics in Current Chemistry, 2018, 376, 36. Char Reduction for Pyrolysis of Lignocellulosic Biomass. Analytical Chemistry Letters, 2018, 8, 475-485. 2 1636 0.4 Waste office paper: A potential feedstock for cellulase production by a novel strain Bacillus 44 velezensis ASN1. Waste Management, 2018, 79, 491-500. Solvent production from xylose. Applied Microbiology and Biotechnology, 2018, 102, 8707-8715. 1638 1.7 4 Transparency, moisture barrier property, and performance of the alternative solar cell encapsulants based on PU/PVDC blend reinforced with different types of cellulose nanocrystals. Materials for 1.5 Renewable and Sustainable Energy, 2018, 7, 1.

#	Article	IF	CITATIONS
1640	Selective conversion of concentrated glucose to 1,2-propylene glycol and ethylene glycol by using RuSn/AC catalysts. Applied Catalysis B: Environmental, 2018, 239, 300-308.	10.8	49
1641	BBr ₃ -Assisted Preparation of Aromatic Alkyl Bromides from Lignin and Lignin Model Compounds. Journal of Organic Chemistry, 2018, 83, 11019-11027.	1.7	10
1642	Production of Microbial Lipids from Lignocellulosic Biomass. , 0, , .		15
1643	Nitric Acid Pretreatment of Jerusalem Artichoke Stalks for Enzymatic Saccharification and Bioethanol Production. Energies, 2018, 11, 2153.	1.6	39
1644	A Novel Method for the Pentosan Analysis Present in Jute Biomass and Its Conversion into Sugar Monomers Using Acidic Ionic Liquid. Journal of Visualized Experiments, 2018, , .	0.2	4
1645	Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels. Renewable Energy, 2018, 129, 384-408.	4.3	81
1646	Analysis of enzymolysis process kinetics and estimation of the resource conversion efficiency to corn cobs with alkali soaking, water and acid steam explosion pretreatments. Bioresource Technology, 2018, 264, 391-394.	4.8	12
1647	From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews, 2018, 94, 340-362.	8.2	407
1648	Bioconversion of Hemicellulose Into Ethanol and Value-Added Products. , 2018, , 97-134.		24
1649	Nanocelluloses From Sugarcane Biomass. , 2018, , 179-196.		18
1650	Monitoring and Control of Bioethanol Production From Lignocellulosic Biomass. , 2018, , 727-749.		10
1651	Characteristics of hydrogen-producing enrichment cultures from marine sediment using macroalgae Laminaria japonica as a feedstock. Journal of Bioscience and Bioengineering, 2018, 126, 710-714.	1.1	6
1652	Advanced bioprocessing strategies for biobutanol production from biomass. Renewable and Sustainable Energy Reviews, 2018, 91, 1192-1204.	8.2	77
1653	Lignocellulosic Materials and Their Use in Bio-based Packaging. Springer Briefs in Molecular Science, 2018, , .	0.1	10
1654	Lignocellulosic Materials: Sources and Processing Technologies. Springer Briefs in Molecular Science, 2018, , 13-33.	0.1	5
1655	Room temperature pretreatment of pubescens by AlCl3 aqueous solution. Journal of Energy Chemistry, 2019, 31, 138-147.	7.1	6
1656	Bioprocessing Perspective in Biorefineries. Biofuel and Biorefinery Technologies, 2019, , 1-23.	0.1	3
1657	The enhancement of black liquor treatment by applying a natural flocculant and converting its sludge to a highâ€benefit product. Canadian Journal of Chemical Engineering, 2019, 97, 1077-1085	0.9	2

#	Article	IF	CITATIONS
1658	Pyrolysis of sugarcane bagasse pretreated with sulfuric acid. Journal of the Energy Institute, 2019, 92, 1149-1157.	2.7	28
1659	Quantification and characterization of dissolved organic carbon from biochars. Geoderma, 2019, 335, 161-169.	2.3	130
1660	Biohydrogen production from rice straw: Effect of combinative pretreatment, modelling assessment and energy balance consideration. International Journal of Hydrogen Energy, 2019, 44, 2203-2215.	3.8	90
1661	Effective one-step saccharification of lignocellulosic biomass using magnetite-biocatalysts containing saccharifying enzymes. Science of the Total Environment, 2019, 647, 806-813.	3.9	27
1662	Structural characterization of hemicellulose released from corn cob in continuous flow type hydrothermal reactor. Journal of Bioscience and Bioengineering, 2019, 127, 222-230.	1.1	37
1663	Nanoparticleâ€induced enzyme pretreatment method for increased glucose production from lignocellulosic biomass under cold conditions. Journal of the Science of Food and Agriculture, 2019, 99, 767-780.	1.7	23
1664	Effect of Co-digestion Ratio and Enzyme Treatment on Biogas Production from Grass Silage and Chicken Litter. Waste and Biomass Valorization, 2019, 10, 3271-3277.	1.8	7
1665	Combination of Superheated Steam Explosion and Alkaline Autoclaving Pretreatment for Improvement of Enzymatic Digestibility of the Oil Palm Tree Residues as Alternative Sugar Sources. Waste and Biomass Valorization, 2019, 10, 3009-3023.	1.8	13
1666	The potential of fungal co-cultures as biological inducers for increased ligninolytic enzymes on agricultural residues. International Journal of Environmental Science and Technology, 2019, 16, 305-324.	1.8	9
1667	Lignin degradation under anaerobic digestion: Influence of lignin modifications -A review. Biomass and Bioenergy, 2019, 128, 105325.	2.9	122
1668	Improvement of bioethanol production from pomegranate peels via acidic pretreatment and enzymatic hydrolysis. Environmental Science and Pollution Research, 2019, 26, 29366-29378.	2.7	28
1669	Liquid hot water pretreatment to enhance the anaerobic digestion of wheat straw—effects of temperature and retention time. Environmental Science and Pollution Research, 2019, 26, 29424-29434.	2.7	27
1670	Component Degradation-Enabled Preparation of Biomass-Based Highly Porous Carbon Materials for Energy Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 15259-15266.	3.2	36
1671	Consumption of sugars and inhibitors of softwood hemicellulose hydrolysates as carbon sources for polyhydroxybutyrate (PHB) production with Paraburkholderia sacchari IPT 101. Cellulose, 2019, 26, 7939-7952.	2.4	8
1672	Production and characterization of briquette from the activated charcoal of corncob. Journal of Physics: Conference Series, 2019, 1153, 012076.	0.3	0
1673	Pretreatment of Crop Residues by Application of Microwave Heating and Alkaline Solution for Biofuel Processing: A Review. , 0, , .		7
1674	Complete chloroplast genome of Prunus canescens: an endemic shrub in China. Mitochondrial DNA Part B: Resources, 2019, 4, 2381-2382.	0.2	1
1675	Theevaluation of the biogas potential of lignocellulosic wastes subjected to the enzymatic hydrolysis. IOP Conference Series: Earth and Environmental Science, 2019, 214, 012062.	0.2	0

#	Article	IF	CITATIONS
1676	Telescopic synthesis of cellulose nanofibrils with a stable dispersion of Fe(0) nanoparticles for synergistic removal of 5-fluorouracil. Scientific Reports, 2019, 9, 11703.	1.6	22
1677	Renewable energy: evaluation of low energy demand preâ€treatments to optimise methane production from microalgae. IET Renewable Power Generation, 2019, 13, 1701-1710.	1.7	8
1678	Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Critical Reviews in Biotechnology, 2019, 39, 924-943.	5.1	93
1679	Microwave-Assisted Conversion of Simple Sugars and Waste Coffee Grounds into 5-Hydroxymethylfurfural in a Highly Aqueous DMSO Solvent System Catalyzed by a Combination of Al(NO3)3 and H2SO4. Industrial & Engineering Chemistry Research, 2019, 58, 14621-14631.	1.8	9
1680	Microbial delignification and hydrolysis of lignocellulosic biomass to enhance biofuel production: an overview and future prospect. Bulletin of the National Research Centre, 2019, 43, .	0.7	79
1681	Waste Biorefinery. , 2019, , 35-52.		17
1682	Integrated enzymatic pretreatment and hydrolysis of apple pomace in a bubble column bioreactor. Biochemical Engineering Journal, 2019, 150, 107306.	1.8	20
1683	Choosing Physical, Physicochemical and Chemical Methods of Pre-Treating Lignocellulosic Wastes to Repurpose into Solid Fuels. Sustainability, 2019, 11, 3604.	1.6	43
1684	Pretreatment Technologies for Lignocellulosic Biomass Deconstruction Within a Biorefinery Perspective. , 2019, , 379-399.		16
1685	Direct and complete utilization of agricultural straw to fabricate all-biomass films with high-haze and UV-shielding properties. Carbohydrate Polymers, 2019, 223, 115057.	5.1	38
1686	Resurrection of efficient Precambrian endoglucanases for lignocellulosic biomass hydrolysis. Communications Chemistry, 2019, 2, .	2.0	21
1688	Recovery of Lactic Acid from Corn Stover Hemicellulose-Derived Liquor. ACS Omega, 2019, 4, 10571-10579.	1.6	16
1689	Advances in the pretreatment of brown macroalgae for biogas production. Fuel Processing Technology, 2019, 195, 106151.	3.7	82
1690	Anaerobic Codigestion of Alkali-Pretreated <i>Prosopis juliflora</i> Biomass with Sewage Sludge for Biomethane Production. Energy & amp; Fuels, 2019, 33, 7357-7365.	2.5	12
1691	Advanced strategy to produce insecticidal destruxins from lignocellulosic biomass Miscanthus. Biotechnology for Biofuels, 2019, 12, 188.	6.2	8
1692	Biochemical methane potential from lignocellulosic wastes hydrothermally pretreated. Industrial Crops and Products, 2019, 139, 111555.	2.5	31
1693	Changes in oxygen functionality of soluble portions and residues from bagasse sub- and supercritical alkanolyses: Identification of complex structural fragments. Biomass and Bioenergy, 2019, 127, 105288.	2.9	3
1694	Effect of power ultrasound and Fenton reagents on the biomethane potential from steam-exploded birchwood. Ultrasonics Sonochemistry, 2019, 58, 104675.	3.8	31

	CHANON	REPORT	
#	ARTICLE	IF	CITATIONS
1693	Experimental studies of furfural production from water hyacinth (<i>Eichhornia Crassipes</i>).	1.0	0
1098	Energy Science and Engineering, 2019, 7, 2155-2164. Polyhydroxyalkanoates: Recent Advances in Their Synthesis and Applications. European Journal of Lipid Science and Technology, 2019, 121, 1900101.	1.9	71
1702	Low-frequency noise suppression for desert seismic data based on a wide inference network. Journal of Geophysics and Engineering, 2019, 16, 801-810.	0.7	7
1703	Chemical pretreatment of lignocellulosic wastes for cellulase production by Aspergillus niger FNU 6018. AIP Conference Proceedings, 2019, , .	0.3	4
1704	Solvability and thermal response of cellulose with different crystal configurations. Frontiers of Engineering Management, 2019, 6, 62-69.	3.3	4
1705	Overview of the Process of Enzymatic Transformation of Biomass. , 2019, , .		4
1706	Enzymatic hydrolysis and fermentation of corn stover liquor from magnesium oxide pretreatment without detoxification. Industrial Crops and Products, 2019, 140, 111728.	2.5	7
1707	Effect of various pretreatments on energy recovery from waste biomass. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45, 9616-9628.	1.2	11
1708	Improving corn stover enzymatic saccharification via ferric chloride catalyzed dimethyl sulfoxide pretreatment and various additives. Industrial Crops and Products, 2019, 140, 111663.	2.5	44
1709	Optimization of sugar release from banana peel powder waste (BPPW) using box-behnken design (BBD): BPPW to biohydrogen conversion. International Journal of Hydrogen Energy, 2019, 44, 25505-25513.	3.8	32
1710	Improvement of Anaerobic Digestion of Lignocellulosic Biomass by Hydrothermal Pretreatment. Applied Sciences (Switzerland), 2019, 9, 3853.	1.3	46
1711	Effects of autohydrolysis on rice biomass for reducing sugars production. Materials Today: Proceedings, 2019, 16, 2078-2087.	0.9	4
1712	Immobilization of cellulase and yeast for the hydrolysis and fermentation of pre-treated bagasse for ethanol production. Nigerian Journal of Biotechnology, 2019, 36, 113.	0.1	3
1713	Molecular Cooperative Assembly-Mediated Synthesis of Ultra-High-Performance Hard Carbon Anodes for Dual-Carbon Sodium Hybrid Capacitors. ACS Nano, 2019, 13, 11935-11946.	7.3	29
1714	Process optimization and mass balance studies of pilot scale steam explosion pretreatment of rice straw for higher sugar release. Biomass and Bioenergy, 2019, 130, 105390.	2.9	28
1715	Energy harnessing from banana plant wastes: A review. Bioresource Technology Reports, 2019, 7, 100212.	1.5	18
1716	Potential of bioethanol production from biomass of various Miscanthus genotypes cultivated in three-year plantations in west-central Poland. Industrial Crops and Products, 2019, 141, 111790.	2.5	23

#	Article	IF	CITATIONS
1717	Synergetic effect of microwave heated alkali pre-treatment on densification of rice (Oryza sativa) husk biomass grinds. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, , 1-12.	1.2	1
1718	Gel-Type and Macroporous Cross-Linked Copolymers Functionalized with Acid Groups for the Hydrolysis of Wheat Straw Pretreated with an Ionic Liquid. Catalysts, 2019, 9, 675.	1.6	13
1719	Current achievements in the mechanically pretreated conversion of plant biomass. Biotechnology and Bioengineering, 2019, 116, 1231-1244.	1.7	49
1720	Potential of acetone-butanol-ethanol (ABE) as a biofuel. Fuel, 2019, 242, 673-686.	3.4	223
1721	Growth of engineered <i>Pseudomonas putida</i> KT2440 on glucose, xylose, and arabinose: Hemicellulose hydrolysates and their major sugars as sustainable carbon sources. GCB Bioenergy, 2019, 11, 249-259.	2.5	35
1722	Optimization of Lignin Extraction from Pine Wood for Fast Pyrolysis by Using a γ-Valerolactone-Based Binary Solvent System. ACS Sustainable Chemistry and Engineering, 2019, 7, 4058-4068.	3.2	21
1723	Lignocellulosic materials as novel carriers, also at nanoscale, of organic active principles for agri-food applications. , 2019, , 161-178.		2
1724	Olive Fruit and Olive Oil. , 2019, , 193-220.		12
1725	Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry, 2019, 39, 109-143.	7.1	412
1726	Plant Molecular Farming – Integration and Exploitation of Side Streams to Achieve Sustainable Biomanufacturing. Frontiers in Plant Science, 2018, 9, 1893.	1.7	94
1727	The optimized co-cultivation system of Penicillium oxalicum 16 and Trichoderma reesei RUT-C30 achieved a high yield of hydrolase applied in second-generation bioethanol production. Renewable Energy, 2019, 136, 1028-1035.	4.3	13
1728	Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review. Sustainable Energy and Fuels, 2019, 3, 11-62.	2.5	164
1729	Role of Solid-State Fermentation to Enhance Cellulase Production. , 2019, , 127-153.		0
1730	Gasification of lignin-rich residues for the production of biofuels via syngas fermentation: Comparison of gasification technologies. Fuel, 2019, 251, 580-592.	3.4	72
1731	Current status and perspectives on biobutanol production using lignocellulosic feedstocks. Bioresource Technology Reports, 2019, 7, 100245.	1.5	30
1732	Feasibility of ABE fermentation from Rhizoclonium spp. hydrolysate with low nutrient supplementation. Biomass and Bioenergy, 2019, 127, 105269.	2.9	15
1733	Biodiesel facilities: What can we address to make biorefineries commercially competitive?. Renewable and Sustainable Energy Reviews, 2019, 112, 686-705.	8.2	60
1734	Elucidating the Coir Particle Filler Interaction in Epoxy Polymer Composites at Low Strain Rate. Fibers and Polymers, 2019, 20, 428-439.	1.1	14

ARTICLE IF CITATIONS Laccase pretreatment of wheat straw: effects of the physicochemical characteristics and the kinetics 1735 6.2 90 of enzymatic hydrolysis. Biotechnology for Biofuels, 2019, 12, 159. Carbon Materials as Phaseâ€Transfer Promoters for Obtaining 5â€Hydroxymethylfurfural from Cellulose 3.6 in a Biphasic System. ChemSusChem, 2019, 12, 3769-3777. Lignocellulosic feedstocks for the production of bioethanol: availability, structure, and 1737 14 composition., 2019, , 1-19. Enzymatic hydrolysis of hemicellulose from pretreated Finger millet (Eleusine coracana) straw by recombinant endo-1,4-β-xylanase and exo-1,4-β-xylosidase. International Journal of Biological Macromolecules, 2019, 135, 1098-1106. The enzyme biorefinery platform for advanced biofuels production. Bioresource Technology Reports, 1739 1.5 59 2019, 7, 100257. Co-production of xylooligosaccharides and fermentable sugars from poplar through acetic acid pretreatment followed by poly (ethylene glycol) ether assisted alkali treatment. Bioresource 1740 4.8 Technology, 2019, 288, 121569 Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization 1741 8.2 145 – A review. Renewable and Sustainable Energy Reviews, 2019, 112, 75-86. Pretreatment of <i>Miscanthus</i> with biomassâ€degrading bacteria for increasing delignification and 1742 2.0 20 enzymatic hydrolysability. Microbial Biotechnology, 2019, 12, 787-798. Solid base pretreatment to improve the accessibility of lignocellulosic molecules for biomass 1743 2.4 3 recovery. Cellulose, 2019, 26, 8453-8464. Versatility of a Dilute Acid/Butanol Pretreatment Investigated on Various Lignocellulosic Biomasses 1744 to Produce Lignin, Monosaccharides and Cellulose in Distinct Phases. ACS Sustainable Chemistry and 3.2 Engineering, 2019, 7, 11069-11079. Cascade utilization of lignocellulosic biomass to high-value products. Green Chemistry, 2019, 21, 1745 273 4.6 3499-3535. Crystal Structure and Biophysical Analysis of Furfural-Detoxifying Aldehyde Reductase from 1746 1.4 Clóstridium beijerinckii. Applied and Environmental Microbiology, 2019, 85, . A Thermostable Aspergillus fumigatus GH7 Endoglucanase Over-Expressed in Pichia pastoris Stimulates 1747 1.8 27 Lignocellulosic Biomass Hydrolysis. International Journal of Molecular Sciences, 2019, 20, 2261. Environmental Geotechnology. Lecture Notes in Civil Engineering, 2019, , . 1748 0.3 Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. 1749 4.2 120 Chemosphere, 2019, 231, 588-606. Effectiveness of Sodium Borohydride Treatment on Acid Hydrolyzates from Olive-Tree Pruning 2.2 Biomass for Bioethanol Production. Bioenergy Research, 2019, 12, 302-311. Enhancement of high solid anaerobic co-digestion of swine manure with rice straw pretreated by 1751 1.515 microwave and alkaline. Bioresource Technology Reports, 2019, 7, 100208. Establishing the oxidative tolerance of <i>Thermomyces lanuginosus</i> xylanase. Journal of Applied 1.4 Microbiology, 2019, 127, 508-519.

ARTICLE IF CITATIONS Statistical prediction of interactions between low concentrations of inhibitors on yeast cells 1753 6.2 3 responses added to the SD-medium at low pH values. Biotechnology for Biofuels, 2019, 12, 114. Cost Economy Analysis of Biomass-Based Biofuel Production., 2019, , 1-10. 1754 Development of Novel Imidazoleâ€"Poly(ethylene glycol) Solvent for the Conversion of Lignocellulosic 1755 Agro-Residues to Valuable Chemicals. Industrial & amp; Engineering Chemistry Research, 2019, 58, 1.8 5 16033-16044. A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels. Fuel, 2019, 251, 352-367. Effect of hydrophilic/hydrophobic properties of carbon materials on plasma-sulfonation process and 1757 2.2 16 their catalytic activities in cellulose conversion. Catalysis Today, 2019, 337, 155-161. Lignocellulose solubilization and conversion by extremely thermophilic <i>Caldicellulosiruptor bescii (/i> improves by maintaining metabolic activity. Biotechnology and Bioengineering, 2019, 116, 1.7 1901-1908. Directly covalent immobilization of Candida antarctica lipase B on oxidized aspen powder by introdúcing polyâ€'lysines: An economical approach to improve enzyme performance. International Journal of Biological Macromolecules, 2019, 133, 226-234. 1759 3.6 8 Lignocellulosic Biomass to Fungal Oils: A Radical Bioconversion Toward Establishing a Prospective 1760 0.3 Resource. Fungal Biology, 2019, , 407-440. Lignocellulose Structure and the Effect on Nanocellulose Production., 2019, , 17-30. 1761 10 Effects of Dilute Phosphoric Acid Treatment on Structure and Burning Characteristics of 1762 Lignocellulosic Biomass. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, 1.4 Investigation of Enzymatic Hydrolysis of Coffee Silverskin Aimed at the Production of Butanol and 1763 2.2 23 Succinic Acid by Fermentative Processes. Bioenergy Research, 2019, 12, 312-324. Design of a highly thermostable hemicellulose-degrading blend from Thermotoga neapolitana for the 1764 24 treatment of lignocellulosic biomass. Journal of Biotechnology, 2019, 296, 42-52. Optimization of dilute sulfuric acid, aqueous ammonia, and steam explosion as the pretreatments steps for distillers' dried grains with solubles as a potential fermentation feedstock. Bioresource 1765 4.8 35 Technology, 2019, 282, 475-481. Predicting the Biomethanation Potential of Some Lignocellulosic Feedstocks using Linear Regression Models: The Effect of Pretreatment. KSCE Journal of Civil Engineering, 2019, 23, 1501-1512. 1766 Multiple response optimization of alkaline pretreatment of sisal fiber (<scp><i>Agave) Tj ETQq0 0 0 rgBT /Overlock, 10 Tf 50 182 Td (sisa 1767 Prediction of Cellulose Crystallinity in Liquid Phase Using CBM-GFP Probe. Macromolecular Research, 1768 1.0 2019, 27, 377-385. A Single Step Fractionation of Lignocellulose in Aqueous Solutions of a Carboxylic 1769 0.7 0 Acidã€Functionalized Ionic Liquid. ChemistrySelect, 2019, 4, 2774-2779.

1770	Ceria Promoted Cu-Ni/SiO ₂ Catalyst for Selective Hydrodeoxygenation of Vanillin. ACS Omega, 2019, 4, 4770-4778.		1.6	55
------	---	--	-----	----

#	Article	IF	CITATIONS
1771	Surface modification of cellulose via conventional and controlled radiation-induced grafting. Radiation Physics and Chemistry, 2019, 160, 1-8.	1.4	40
1772	Cellulosic ethanol production from highland bamboo (Yushania alpina) grown in Ethiopia. Biofuels, 2019, , 1-10.	1.4	1
1773	Improving co-fermentation of glucose and xylose by adaptive evolution of engineering xylose-fermenting Saccharomyces cerevisiae and different fermentation strategies. Renewable Energy, 2019, 139, 1176-1183.	4.3	32
1774	Two-stage steam explosion pretreatment of softwood with 2-naphthol as carbocation scavenger. Biotechnology for Biofuels, 2019, 12, 37.	6.2	15
1775	Crop Residue Burning in India: Policy Challenges and Potential Solutions. International Journal of Environmental Research and Public Health, 2019, 16, 832.	1.2	381
1776	Preparation of kenaf stem hemicellulosic hydrolysate and its fermentability in microbial production of xylitol by Escherichia coli BL21. Scientific Reports, 2019, 9, 4080.	1.6	19
1777	Seed culture pre-adaptation of Bacillus coagulans MA-13 improves lactic acid production in simultaneous saccharification and fermentation. Biotechnology for Biofuels, 2019, 12, 45.	6.2	36
1778	Comparison of deep eutectic solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): Cellulose digestibility, structural and morphology changes. Bioresource Technology, 2019, 282, 525-529.	4.8	73
1779	Development of novel processes for the aqueous extraction of natural rubber from <i>Taraxacum kokâ€saghyz</i> (TK). Journal of Chemical Technology and Biotechnology, 2019, 94, 2452-2464.	1.6	17
1780	Fermentation of Oil Extraction: Bioethanol, Acetone and Butanol Production. Biofuel and Biorefinery Technologies, 2019, , 219-249.	0.1	1
1781	From sugars to ethanol—from agricultural wastes to algal sources: An overview. , 2019, , 3-34.		4
1782	Physical and chemical pretreatment of lignocellulosic biomass. , 2019, , 143-196.		57
1783	Fermentation processes for second-generation biofuels. , 2019, , 241-272.		8
1784	Pretreatment and enzymatic saccharification of oak at high solids loadings to obtain high titers and high yields of sugars. Bioresource Technology, 2019, 284, 391-397.	4.8	26
1785	Integrated Renewable Production of ETBE from Switchgrass. ACS Sustainable Chemistry and Engineering, 2019, 7, 8943-8953.	3.2	12
1786	Degradation of bamboo lignocellulose by bamboo snout beetle Cyrtotrachelus buqueti in vivo and vitro: efficiency and mechanism. Biotechnology for Biofuels, 2019, 12, 75.	6.2	23
1787	Sugarcane Bagasse Pretreatment Methods for Ethanol Production. , 2019, , .		8
1788	Technologies for Biofuel Production: Current Development, Challenges, and Future Prospects. Biofuel and Biorefinery Technologies, 2019, , 1-50.	0.1	48

#	Article	IF	Citations
1789	Lignocellulosic Biomass for Bioethanol Production Through Microbes: Strategies to Improve Process Efficiency. Biofuel and Biorefinery Technologies, 2019, , 357-386.	0.1	5
1790	Biochemical Strategies for Enhanced Biofuel Production. Biofuel and Biorefinery Technologies, 2019, , 51-87.	0.1	5
1791	Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, 2019, , .	0.1	39
1792	Biologische Transformation. , 2019, , .		7
1793	An introduction to biofuels, foods, livestock, and the environment. , 2019, , 241-276.		19
1795	Zirconium based metal-organic framework in-situ assisted hydrothermal pretreatment and enzymatic hydrolysis of Platanus X acerifolia exfoliating bark for bioethanol production. Bioresource Technology, 2019, 280, 213-221.	4.8	18
1796	Production of nanocellulose by enzymatic hydrolysis: Trends and challenges. Engineering in Life Sciences, 2019, 19, 279-291.	2.0	150
1797	Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renewable and Sustainable Energy Reviews, 2019, 105, 268-292.	8.2	154
1798	Novel Nanoscaled Materials from Lignocellulosic Sources: Potential Applications in the Agricultural Sector. , 2019, , 2657-2679.		3
1799	Heterotrophic cultivation of microalgae in straw lignocellulose hydrolysate for production of high-value biomass rich in polyunsaturated fatty acids (PUFA). Chemical Engineering Journal, 2019, 367, 37-44.	6.6	30
1800	Active prokaryotic population dynamics exhibit high correlation to reactor performance during methane production from acid hydrolysates of <i>Agave tequilana</i> var. <i>azul</i> bagasse. Journal of Applied Microbiology, 2019, 126, 1618-1630.	1.4	7
1801	Geminal Coordinatively Unsaturated Sites on MOFâ€808 for the Selective Uptake of Phenolics from a Real Bioâ€Oil Mixture. ChemSusChem, 2019, 12, 1256-1266.	3.6	29
1802	Ultrafine grinding of poplar biomass: effect of particle morphology on the liquefaction of biomass for methyl glycosides and phenolics. Cellulose, 2019, 26, 3685-3701.	2.4	11
1803	Simultaneous biogas and biogas slurry production from co-digestion of pig manure and corn straw: Performance optimization and microbial community shift. Bioresource Technology, 2019, 282, 37-47.	4.8	99
1804	Rapid Fractionation of Lignocellulosic Biomass by <i>p</i> -TsOH Pretreatment. Energy & Fuels, 2019, 33, 2258-2264.	2.5	21
1805	Kinetic pH Titration to Predict the Acid and Hydrothermal Conditions for the Hydrolysis of Disaccharides: Use of a Microcapillary System. Journal of Chemistry, 2019, 2019, 1-9.	0.9	2
1806	Cellulosic Biofuel: Technologies, Prospects, and Challenges. , 2019, , 1-12.		0
1807	Repeated cultures of Saccharomyces cerevisiae SC90 to tolerate inhibitors generated during cassava processing waste hydrolysis for bioethanol production. 3 Biotech, 2019, 9, 76.	1.1	4

	Сіт	ATION REPORT	
#	Article	IF	Citations
1808	Kinetic analysis of delignification of cedar wood during organosolv treatment with a two-phase solvent using the unreacted-core model. Chemical Engineering Journal, 2019, 368, 71-78.	6.6	25
1809	Biobutanol Production from Bagasse Using Ammonia Pre-treatment and Acid Hydrolysis Method. IOP Conference Series: Materials Science and Engineering, 2019, 543, 012053.	0.3	1
1810	Engineering Microbial Consortia for Bioconversion of Multisubstrate Biomass Streams to Biofuels. , 0, , .		11
1811	Green Production and Biotechnological Applications of Cell Wall Lytic Enzymes. Applied Sciences (Switzerland), 2019, 9, 5012.	1.3	17
1812	Chemical and Enzymatic Treatment of Hemp Biomass for Bioethanol Production. Applied Sciences (Switzerland), 2019, 9, 5348.	1.3	24
1813	Factorial Analysis on Nitric Acid Pretreatment of Oil Palm Frond Bagasse for Xylan Recovery. Materials Today: Proceedings, 2019, 19, 1189-1198.	0.9	3
1814	Plant and Biomass Extraction and Valorisation under Hydrodynamic Cavitation. Processes, 2019, 7, 96	5. 1.3	30
1815	<i>(Invited) </i> Novel Fuel Production Based on Sonochemistry and Sonoelectrochemistry. ECS Transactions, 2019, 92, 1-16.	0.3	22
1816	The Empty Palm Oil Fruit Bunch as the Potential Source of Biomass in Furfural Production in Indonesia: Preliminary Process Design and Environmental Perspective. Journal of Physics: Conference Series, 2019, 1363, 012096.	0.3	2
1817	Valorization of Industrial Vegetable Waste Using Dilute HCl Pretreatment. Processes, 2019, 7, 853.	1.3	6
1818	Catalytic Mechanism of Aryl-Ether Bond Cleavage in Lignin by LigF and LigG. Journal of Physical Chemistry B, 2019, 123, 10142-10151.	1.2	8
1819	A Review of the Compositions, Processing, Materials and Properties of Brake Pad Production. Journal of Physics: Conference Series, 2019, 1378, 032103.	0.3	4
1820	Bioprospection of Enzymes and Microorganisms in Insects to Improve Second-Generation Ethanol Production. Industrial Biotechnology, 2019, 15, 336-349.	0.5	12
1821	Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnology for Biofuels, 2019, 12, 294.	6.2	282
1822	A hierarchical MnOx/ZSM-5 heterogeneous catalyst for the conversion of cellulose from mahogany wood to levulinic acid. IOP Conference Series: Materials Science and Engineering, 2019, 496, 012055.	0.3	1
1823	Facile Synthesis of Nitrogen-Doped Carbon Dots from Lignocellulosic Waste. Nanomaterials, 2019, 9, 1500.	1.9	54
1824	Different Pretreatment Methods of Lignocellulosic Biomass for Use in Biofuel Production. , 0, , .		31
1825	Biohydrogen production from carob waste of the Lebanese industry by dark fermentation. Biofuels, 2022, 13, 219-229	1.4	7

	Сіт	ation Report	
#	Article	IF	Citations
1826	Anaerobic Conversion of Lignocellulose to Materials for Biofuel Production: Volatile Fatty Acids and Ethanol. Applied Biochemistry and Microbiology, 2019, 55, 756-764.	0.3	2
1827	Effect of Enzyme Interaction with Lignin Isolated from Pretreated Miscanthus x gigantues on Cellulolytic Efficiency. Processes, 2019, 7, 755.	1.3	5
1828	Pinewood pyrolysis occurs at lower temperatures following treatment with choline-amino acid ionic liquids. Fuel, 2019, 236, 306-312.	3.4	21
1829	A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresource Technology, 2019, 271, 462-472.	4.8	386
1830	Ethanol for Food or Transportation. , 2019, , 103-129.		0
1831	Selective redox photocatalysis: Is there any chance for solar bio-refineries?. Current Opinion in Green and Sustainable Chemistry, 2019, 15, 38-46.	3.2	30
1832	Forest Bioresources for Bioethanol and Biodiesel Production With Emphasis on Mohua (Madhuca) Tj E	FQq0 0 0 rgBT /Overl	oçk 10 Tf 50
1833	Energy recovery from industrial crop wastes by dry anaerobic digestion: A review. Industrial Crops and Products, 2019, 129, 673-687.	2.5	69
1834	New trends in application of nanotechnology for the pretreatment of lignocellulosic biomass. Biofuels, Bioproducts and Biorefining, 2019, 13, 776-788.	1.9	44
1835	The synergistic effect of lignin peroxidase and cellulase in Aspergillus oryzae solidâ€state fermentation substrate on enzymeâ€catalyzed oxidative degradation of lignin. Journal of Chemical Technology and Biotechnology, 2019, 94, 1480-1487.	1.6	2
1836	Electroporation of harvest residues for enhanced biogas production in anaerobic co-digestion with dairy cow manure. Bioresource Technology, 2019, 274, 215-224.	4.8	11
1837	Predicting the increase of methane yield using alkali pretreatment for weeds prior to co-digestion. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, 41, 1124-1131.	1.2	7
1838	Energy Extraction From Toxic Waste Originating From Food Processing Industries. , 2019, , 17-42.		8
1839	Lignin-first biomass fractionation using a hybrid organosolv – Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresource	4.8	114

	Technology, 2019, 273, 521-528.		
1840	Potential of Hydrogen Production From Biomass. , 2019, , 123-164.		24
1841	Combined antioxidant-biofuel production from coffee silverskin. Applied Microbiology and Biotechnology, 2019, 103, 1021-1029.	1.7	16
1842	Novel Superabsorbent Cellulose-Based Hydrogels: Present Status, Synthesis, Characterization, and Application Prospects. Polymers and Polymeric Composites, 2019, , 155-195.	0.6	4
1843	Strategic situation, design and simulation of a biorefinery in Andalusia. Energy Conversion and Management, 2019, 182, 201-214.	4.4	18

#	Article	IF	CITATIONS
1844	A Review on Nanoparticles as Boon for Biogas Producers—Nano Fuels and Biosensing Monitoring. Applied Sciences (Switzerland), 2019, 9, 59.	1.3	52
1845	Maize stover as a feedstock for enhanced laccase production by two gammaproteobacteria: A solution to agroindustrial waste stockpiling. Industrial Crops and Products, 2019, 129, 611-623.	2.5	26
1846	Streptomyces from rotten wheat straw endowed the high plant growth potential traits and agro-active compounds. Biocatalysis and Agricultural Biotechnology, 2019, 17, 507-513.	1.5	37
1847	Enhancing Lignocellulosic Biomass Hydrolysis by Hydrothermal Pretreatment, Extraction of Surface Lignin, Wet Milling and Production of Cellulolytic Enzymes. ChemSusChem, 2019, 12, 1179-1195.	3.6	70
1848	Enhancement of bioethanol production from Moso bamboo pretreated with biodiesel crude glycerol: Substrate digestibility, cellulase absorption and fermentability. Bioresource Technology, 2019, 276, 300-309.	4.8	23
1849	Physical, Chemical, and Biological Substrate Pretreatments to Enhance Biogas Yield. Biofuel and Biorefinery Technologies, 2019, , 25-44.	0.1	8
1850	Sequential fractionation of the lignocellulosic components in hardwood based on steam explosion and hydrotropic extraction. Biotechnology for Biofuels, 2019, 12, 1.	6.2	320
1851	Laccase-induced HBT-grafting to milled beech wood reduces unspecific protein adsorption. Biocatalysis and Biotransformation, 2019, 37, 66-76.	1.1	3
1852	Production of cellulases by solid state fermentation using natural and pretreated sugarcane bagasse with different fungi. Biocatalysis and Agricultural Biotechnology, 2019, 17, 1-6.	1.5	46
1853	Heteroatom-doped hierarchically porous carbons derived from cucumber stem as high-performance anodes for sodium-ion batteries. Journal of Materials Science, 2019, 54, 5641-5657.	1.7	34
1854	Emerging Trends in the Industrial Production of Chemical Products by Microorganisms. , 2019, , 107-125.		21
1855	Emerging Trends of Microorganism in the Production of Alternative Energy. , 2019, , 275-305.		11
1856	Bioethanol production from different Matooke peels species: A surprising source for alternative fuel. Case Studies in Thermal Engineering, 2019, 13, 100357.	2.8	29
1857	Disruption of lignocellulosic biomass along the length of the screws with different screw elements in a twin-screw extruder. Bioresource Technology, 2019, 275, 266-271.	4.8	17
1858	Capturing CO2 to reversible ionic liquids for dissolution pretreatment of cellulose towards enhanced enzymatic hydrolysis. Carbohydrate Polymers, 2019, 204, 50-58.	5.1	28
1859	Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance. Journal of Colloid and Interface Science, 2019, 535, 276-286.	5.0	197
1860	Role of biomass supply chain management in sustainable bioenergy production. Biofuels, 2019, 10, 109-119.	1.4	16
1861	Weed as Underutilized Bio-resource and Management Tool: A Comprehensive Review. Waste and Biomass Valorization, 2019, 10, 1795-1810.	1.8	7

#	Article	IF	CITATIONS
1862	Combined Effects of Ionic Liquid and Tungsten–Halogen Radiation on Heterogeneous Hydrolysis Kinetics of Waste Papaya Epidermis for Production of Total Reducing Sugar. Waste and Biomass Valorization, 2019, 10, 1845-1855.	1.8	5
1863	Recent trends in biobutanol production. Reviews in Chemical Engineering, 2019, 35, 475-504.	2.3	49
1864	Availability and Suitability of Agroindustrial Residues as Feedstock for Cellulose-Based Materials: Brazil Case Study. Waste and Biomass Valorization, 2019, 10, 2863-2878.	1.8	22
1865	Analysis of an Ionic Liquid and Salt Tolerant Microbial Consortium Which Is Useful for Enhancement of Enzymatic Hydrolysis and Biogas Production. Waste and Biomass Valorization, 2019, 10, 1481-1491.	1.8	28
1866	Pyrolysis kinetics of <i>Hibiscus rosa sinensis</i> and <i>Nerium oleander</i> . Biofuels, 2020, 11, 903-917.	1.4	10
1867	Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process – a critical review. Reviews in Chemical Engineering, 2020, 36, 333-367.	2.3	67
1868	Bioethanol Production from Musambi Peel by Acid Catalyzed Steam Pretreatment and Enzymatic Saccharification: Optimization of Delignification Using Taguchi Design. Waste and Biomass Valorization, 2020, 11, 2631-2643.	1.8	18
1869	Mechanical properties changes in oak (Quersus canariensis) and stone pine (Pinus pinea) wood subjected to various convective drying conditions. European Journal of Environmental and Civil Engineering, 2020, 24, 2117-2129.	1.0	2
1870	Process optimization of microwaveâ€essisted alkali pretreatment for enhanced delignification of <i>Prosopis juliflora</i> biomass. Environmental Progress and Sustainable Energy, 2020, 39, 13289.	1.3	29
1871	Energetically feasible biohydrogen production from sea eelgrass via homogenization through a surfactant, sodium tripolyphosphate. International Journal of Hydrogen Energy, 2020, 45, 5900-5910.	3.8	24
1872	Pretreatment Chemometrics in Holistic Biogas Life Cycle Assessment: Framing Case Study with Carica papaya. Waste and Biomass Valorization, 2020, 11, 7029-7042.	1.8	4
1873	Impact of triticale cultivar (× Triticosecale sp. Wittmack) and location on pretreatment requirements and fermentable sugars yield. Biomass Conversion and Biorefinery, 2020, 10, 107-118.	2.9	1
1874	Hot-water extraction of Miscanthus × giganteus prior to soda-AQ pulping: a biorefining perspective. Biofuels, 2020, 11, 937-943.	1.4	3
1875	Bioprospecting non-conventional yeasts for ethanol production from rice straw hydrolysate and their inhibitor tolerance. Renewable Energy, 2020, 147, 1694-1703.	4.3	42
1876	Feasibility of membrane processes for the recovery and purification of bio-based volatile fatty acids: A comprehensive review. Journal of Industrial and Engineering Chemistry, 2020, 81, 24-40.	2.9	92
1877	Characterization of liquid–liquid extraction fractions from lignocellulosic biomass by high performance liquid chromatography hyphenated to tandem high-resolution mass spectrometry. Journal of Chromatography A, 2020, 1610, 460569.	1.8	13
1878	Plasma in-Liquid Using Non-contact Electrodes: A Method of Pretreatment to Enhance the Enzymatic Hydrolysis of Biomass. Waste and Biomass Valorization, 2020, 11, 4921-4931.	1.8	14
1879	Understanding the influence of alumina supported ruthenium catalysts synthesis and reaction parameters on the hydrodeoxygenation of lignin derived monomers. Molecular Catalysis, 2020, 480, 110525.	1.0	19

			2
#		IF.	CITATIONS
1880	Enhanced bio-hydrogen production from cornstalk hydrolysate pretreated by alkaline-enzymolysis with orthogonal design method. International Journal of Hydrogen Energy, 2020, 45, 3750-3759.	3.8	21
1881	Effect of alkaline and sonication pretreatments on the rumen degradability of date palm seeds. Tropical Animal Health and Production, 2020, 52, 771-776.	0.5	5
1882	Alternative Fuels and Their Utilization Strategies in Internal Combustion Engines. Energy, Environment, and Sustainability, 2020, , .	0.6	5
1883	From second generation feed-stocks to innovative fermentation and downstream techniques for succinic acid production. Critical Reviews in Environmental Science and Technology, 2020, 50, 1829-1873.	6.6	37
1884	Biochemical conversion of sweet sorghum bagasse to succinic acid. Journal of Bioscience and Bioengineering, 2020, 129, 104-109.	1.1	33
1885	Process optimization of biogas recovery from giant reed (Arundo donax) alternatively pretreated with acid and oxidant agent: experimental and kinetic study. Biomass Conversion and Biorefinery, 2020, 10, 1121-1135.	2.9	5
1886	Combined pretreatments of coffee silverskin to enhance fermentable sugar yield. Biomass Conversion and Biorefinery, 2020, 10, 1237-1249.	2.9	13
1887	Dissolution of lignocellulosic biopolymers in ethanolamine-based protic ionic liquids. Polymer Bulletin, 2020, 77, 3637-3656.	1.7	18
1888	Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Processing Technology, 2020, 199, 106244.	3.7	386
1889	Trends in the production of cellulose nanofibers from non-wood sources. Cellulose, 2020, 27, 575-593.	2.4	151
1890	Bioethanol production from rice straw through an enzymatic route mediated by enzymes developed in-house from Aspergillus fumigatus. Energy, 2020, 190, 116395.	4.5	63
1891	Enzymatic saccharification of banana peel and sequential fermentation of the reducing sugars to produce lactic acid. Bioprocess and Biosystems Engineering, 2020, 43, 413-427.	1.7	14
1892	Optimization and comparison of induction heating and LPG assisted acid pretreatment of cocoa pod for ABE fermentation. Fuel, 2020, 262, 116499.	3.4	15
1893	Process Variable Optimization of Kenaf Two-Stage Fractionation Based on Dilute Hydrochloric Acid Followed by Ethanol Organosolv for Component Separation. Bioenergy Research, 2020, 13, 249-259.	2.2	3
1894	Screening and evaluation of cellulytic fungal strains for saccharification and bioethanol production from rice residue. Energy, 2020, 190, 116422.	4.5	41
1895	Impact of pretreatment on food waste for biohydrogen production: A review. International Journal of Hydrogen Energy, 2020, 45, 18211-18225.	3.8	69
1897	Ligninolytic Enzymes Mediated Ligninolysis: An Untapped Biocatalytic Potential to Deconstruct Lignocellulosic Molecules in a Sustainable Manner. Catalysis Letters, 2020, 150, 524-543.	1.4	43
1898	Successive Organic Solvent Fractionation and Characterization of Heterogeneous Lignin Extracted by <i>p-</i> Toluenesulfonic Acid from Hybrid Poplar. Energy & Fuels, 2020, 34, 557-567.	2.5	14

#	Article	IF	CITATIONS
1900	A new surfactant assisted acid prehydrolysis process for enhancing biomass pretreatment. Cellulose, 2020, 27, 2149-2160.	2.4	13
1901	Recombinant Penicillium oxalicum 16 β-Glucosidase 1 Displays Comprehensive Inhibitory Resistance to Several Lignocellulose Pretreatment Products, Ethanol, and Salt. Applied Biochemistry and Biotechnology, 2020, 191, 772-784.	1.4	5
1902	Adsorptive removal of chromium(VI) from aqueous solution using binary bio-polymeric beads made from bagasse. Applied Water Science, 2020, 10, 1.	2.8	23
1903	High-pressure CO2 hydrothermal pretreatment of peanut shells for enzymatic hydrolysis conversion into glucose. Chemical Engineering Journal, 2020, 385, 123949.	6.6	60
1905	Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production. Renewable Energy, 2020, 148, 923-934.	4.3	50
1906	Comparison of the increase in methane yield using alkali pretreatment for French weed and water lettuce prior to coâ€digestion. Environmental Progress and Sustainable Energy, 2020, 39, e13361.	1.3	7
1907	Recycling of an Agricultural Bio-waste as a Novel Cellulose Aerogel: A Green Chemistry Study. Journal of Polymers and the Environment, 2020, 28, 323-330.	2.4	15
1908	Sulfur dioxide-ethanol-water fractionation platform for conversion of recycled wood to sugars, lignin and lignosulfonates. Bioresource Technology, 2020, 300, 122652.	4.8	11
1909	Low concentration of NaOH/Urea pretreated rice straw at low temperature for enhanced hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 1578-1587.	3.8	16
1910	Enhancement of bio-oil hydrodeoxygenation activity over Ni-based bimetallic catalysts supported on SBA-15. Renewable Energy, 2020, 149, 1-10.	4.3	26
1911	Effect of cellulolytic enzyme binding on lignin isolated from alkali and acid pretreated switchgrass on enzymatic hydrolysis. 3 Biotech, 2020, 10, 1.	1.1	50
1912	Biobutanol from lignocellulosic biomass: bioprocess strategies. , 2020, , 169-193.		13
1913	Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review. Bioresource Technology, 2020, 298, 122476.	4.8	195
1914	Structural and biochemical characterization of a family 7 highly thermostable endoglucanase from the fungus <i>Rasamsonia emersonii</i> . FEBS Journal, 2020, 287, 2577-2596.	2.2	11
1915	Pretreatment of lignocellulosic biomass for efficient enzymatic saccharification of cellulose. , 2020, , 17-65.		40
1916	The challenge of converting biomass polysaccharides into levulinic acid through heterogeneous catalytic processes. Biofuels, Bioproducts and Biorefining, 2020, 14, 417-445.	1.9	19
1917	Application of engineered yeast strain fermentation for oligogalacturonides production from pectin-rich waste biomass. Bioresource Technology, 2020, 300, 122645.	4.8	25
1918	Cellulose obtained from banana plant waste for catalytic production of 5-HMF: Effect of grinding on the cellulose properties. Fuel, 2020, 265, 116857.	3.4	39

#	Article	IF	Citations
1919	The influences of monosaccharide structure on power generation performance. Journal of Electroanalytical Chemistry, 2020, 857, 113753.	1.9	4
1920	Saccharification Yield through Enzymatic Hydrolysis of the Steam-Exploded Pinewood. Energies, 2020, 13, 4552.	1.6	9
1921	Enhancing the enzymatic digestibility of oil palm biomass using supercritical carbon dioxide-based pretreatment towards biorefinery application. Industrial Crops and Products, 2020, 157, 112923.	2.5	14
1922	Iron based catalysts in biomass processing. Renewable and Sustainable Energy Reviews, 2020, 134, 110292.	8.2	24
1923	Pretreatment and fermentation of lignocellulosic biomass: reaction mechanisms and process engineering. Reaction Chemistry and Engineering, 2020, 5, 2017-2047.	1.9	57
1924	Plasma-assisted pre-treatment of lignocellulosic biomass for anaerobic digestion. Food and Bioproducts Processing, 2020, 124, 287-295.	1.8	8
1925	The Role of Ionic Liquids in the Lignin Separation from Lignocellulosic Biomass. Energies, 2020, 13, 4864.	1.6	42
1926	Biofuels Production – Sustainability and Advances in Microbial Bioresources. Biofuel and Biorefinery Technologies, 2020, , .	0.1	14
1927	Anaerobic co-digestion of cow dung and cotton seed hull with different blend ratio: experimental and kinetic study. Biomass Conversion and Biorefinery, 2022, 12, 5635-5645.	2.9	11
1928	Interaction of enzymes with lignocellulosic materials: causes, mechanism and influencing factors. Bioresources and Bioprocessing, 2020, 7, .	2.0	34
1929	Ethanol Production from Enzymatic Hydrolysates Optimized of Agave tequilana Weber var. azul and Agave karwinskii bagasses. Bioenergy Research, 2021, 14, 785-798.	2.2	6
1930	Hydrothermal pretreatment of agave bagasse for biomethane production: Operating conditions and energy balance. Biomass and Bioenergy, 2020, 142, 105753.	2.9	6
1931	The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. Renewable and Sustainable Energy Reviews, 2020, 134, 110308.	8.2	141
1932	Lignocellulose materials for supercapacitor and battery electrodes: A review. Renewable and Sustainable Energy Reviews, 2020, 134, 110345.	8.2	73
1933	Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review. Renewable Energy, 2020, 160, 1228-1252.	4.3	91
1934	Kinetics of catalytic and non-catalytic pyrolysis of Nerium Oleander. Fuel, 2020, 280, 118591.	3.4	22
1935	Efficient d-lactic acid production by Lactobacillus delbrueckii subsp. bulgaricus through conversion of organosolv pretreated lignocellulosic biomass. Biomass and Bioenergy, 2020, 140, 105672.	2.9	43
1936	Evaluation of a novel pretreatment of NaOH/Urea at outdoor cold-winter conditions for enhanced enzymatic conversion and hythane production from rice straw. Science of the Total Environment, 2020, 744, 140900.	3.9	17

#	Article	IF	Citations
1937	Lignocellulosic Ethanol Production from a Biorefinery Perspective. , 2020, , .		4
1938	Challenges and prospects of xylitol production by conventional and non-conventional yeasts. , 2020, , 211-222.		2
1939	Acid-catalysed α-O-4 aryl-ether bond cleavage in methanol/(aqueous) ethanol: understanding depolymerisation of a lignin model compound during organosolv pretreatment. Scientific Reports, 2020, 10, 11037.	1.6	41
1940	Agroindustrial Byproducts for the Generation of Biobased Products: Alternatives for Sustainable Biorefineries. Frontiers in Energy Research, 2020, 8, .	1.2	62
1941	Characterization of an alkali-tolerant, thermostable, and multifunctional GH5 family endoglucanase from Thermoactinospora rubra YIM 77501T for prebiotic production. Biomass Conversion and Biorefinery, 2022, 12, 3399-3408.	2.9	4
1942	Lignocellulose-derived monosugars: a review of biomass pre-treating techniques and post-methods to produce sustainable biohydrogen. Biomass Conversion and Biorefinery, 2020, , 1.	2.9	9
1943	Fermentative bio-hydrogen production using lignocellulosic waste biomass: a review. Waste Disposal & Sustainable Energy, 2020, 2, 249-264.	1.1	12
1944	Recent advances in the pretreatment of lignocellulosic biomass for enhanced biofuel production. International Journal of Global Warming, 2020, 22, 342.	0.2	4
1945	Efficiency of Catalytic Liquid Hot Water Pretreatment for Conversion of Corn Stover to Bioethanol. ACS Omega, 2020, 5, 29872-29881.	1.6	20
1946	Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient. International Journal of Biological Macromolecules, 2020, 163, 1579-1590.	3.6	91
1947	Evaluation of cellulolytic exogenous enzyme-containing microbial inoculants as feed additives for ruminant rations composed of low-quality roughage. Journal of Agricultural Science, 2020, 158, 326-338.	0.6	6
1948	Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review. Energies, 2020, 13, 3573.	1.6	54
1949	Willow Lignin Recovered from Hotâ€Water Extraction for the Production of Hydrogels and Thermoplastic Blends. ChemSusChem, 2020, 13, 4702-4721.	3.6	13
1950	Pretreatment of plant feedstocks and agrofood waste using ionic liquids. , 2020, , 393-413.		Ο
1951	Production Nanocellulose from Raw Materials For Oil Palm Empty Bunches (TKKS) with Hydrolysis and Freeze Drying Methods. IOP Conference Series: Materials Science and Engineering, 2020, 742, 012033.	0.3	3
1952	Effects of Ammonia Stripping and Other Physico-Chemical Pretreatments on Anaerobic Digestion of Swine Wastewater. Energies, 2020, 13, 3413.	1.6	13
1953	Eco-Friendly Cellulose Nanofiber Extraction from Sugarcane Bagasse and Film Fabrication. Sustainability, 2020, 12, 6015.	1.6	52
1954	Enzymes and biomass pretreatment. , 2020, , 61-100.		5

# 1955	ARTICLE The enrichment of anaerobic fungi and methanogens showed higher lignocellulose degrading and methane producing ability than that of bacteria and methanogens. World Journal of Microbiology and Biotechnology, 2020, 36, 125.	lF 1.7	Citations
1956	Production of Bioethanol from Napier grass: Comparison in Pre-treatment and Fermentation Methods. IOP Conference Series: Earth and Environmental Science, 2020, 520, 012005.	0.2	3
1957	Effect of Acid Production by <i>Penicillium oxalicum</i> on Physicochemical Properties of Bauxite Residue. Geomicrobiology Journal, 2020, 37, 929-936.	1.0	9
1958	Moderate pretreatment strategies for improvement of reducing sugar production from oil palm empty fruit bunches. IOP Conference Series: Earth and Environmental Science, 2020, 443, 012081.	0.2	2
1960	Fungi in Fuel Biotechnology. Fungal Biology, 2020, , .	0.3	4
1961	Consolidated bioethanol production from olive mill waste: Wood-decay fungi from central Morocco as promising decomposition and fermentation biocatalysts. Biotechnology Reports (Amsterdam,) Tj ETQq1 1	0.784214 rgB	Г‡@verlock
1962	Time domain NMR spectroscopy as a fast method for probing the efficiency of biomass pretreatments for second generation ethanol production. Biomass and Bioenergy, 2020, 142, 105734.	2.9	4
1963	Zmo0994, a novel LEA-like protein from Zymomonas mobilis, increases multi-abiotic stress tolerance in Escherichia coli. Biotechnology for Biofuels, 2020, 13, 151.	6.2	7
1965	Synergy of municipal solid waste co-processing with lignocellulosic waste for improved biobutanol production. Waste Management, 2020, 118, 45-54.	3.7	20
1966	Bioethanol production from cereal crops and lignocelluloses rich agro-residues: prospects and challenges. SN Applied Sciences, 2020, 2, 1.	1.5	22
1967	Operational Classification of Torrefied Biomass in a Gasifier as an Alternative Source of Electricity for EV Charging Station. , 2020, , .		0
1968	Milling byproducts are an economically viable substrate for butanol production using clostridial ABE fermentation. Applied Microbiology and Biotechnology, 2020, 104, 8679-8689.	1.7	8
1969	Lignocellulolytic Enzymes in Biotechnological and Industrial Processes: A Review. Sustainability, 2020, 12, 7282.	1.6	83
1970	Biological Transformation. , 2020, , .		5
1971	Environmental management and valorization of cultivated tobacco stalks by combined pretreatment for potential bioethanol production. Biomass Conversion and Biorefinery, 2020, , 1.	2.9	27
1972	Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules, 2020, 25, 3652.	1.7	99
1973	Promotion of enzymatic hydrolysis of lignocellulosic biomass using natural additives for bioethanol production. Environmental Quality Management, 2020, , .	1.0	7
1974	Arundo donax Refining to Second Generation Bioethanol and Furfural. Processes, 2020, 8, 1591.	1.3	13

#	Article	IF	CITATIONS
1975	Mechanism and Compatibility of Pretreated Lignocellulosic Biomass and Polymeric Mixed Matrix Membranes: A Review. Membranes, 2020, 10, 370.	1.4	16
1976	The Effects of Microwave-Assisted Pretreatment and Cofermentation on Bioethanol Production from Elephant Grass. International Journal of Microbiology, 2020, 2020, 1-11.	0.9	6
1977	Valorization of Wheat Straw for the Paper Industry: Pre-extraction of Reducing Sugars and Its Effect on Pulping and Papermaking Properties. ACS Omega, 2020, 5, 30704-30715.	1.6	16
1978	Feasibility study on the utilization of mahogany (Swietenia macrophylla King) wood as a raw material in the bio-oil production. Journal of Physics: Conference Series, 2020, 1567, 022029.	0.3	3
1979	Combination of Biological and Hydrothermal Pretreatment of Mixed Rice Biomass for Fermentable Sugars Production. IOP Conference Series: Materials Science and Engineering, 2020, 864, 012170.	0.3	1
1980	Insights into delignification behavior using aqueous p-toluenesulfonic acid treatment: comparison with different biomass species. Cellulose, 2020, 27, 10345-10358.	2.4	19
1981	Recent advances of greener pretreatment technologies of lignocellulose. Current Research in Green and Sustainable Chemistry, 2020, 3, 100035.	2.9	122
1982	Thermal Biomass Conversion: A Review. Processes, 2020, 8, 516.	1.3	70
1984	Subcritical water hydrolysis pretreatment of sugarcane bagasse to produce second generation ethanol. Journal of Supercritical Fluids, 2020, 164, 104916.	1.6	18
1985	Aqueous solutions of deep eutectic systems as reaction media for the saccharification and fermentation of hardwood xylan into xylitol. Bioresource Technology, 2020, 311, 123524.	4.8	32
1986	Novel two-pot approach ultrasonication and deep eutectic solvent pretreatments for watermelon rind delignification: Parametric screening and optimization via response surface methodology. Energy, 2020, 203, 117872.	4.5	44
1987	Biotechnology for Biofuels: A Sustainable Green Energy Solution. , 2020, , .		4
1988	Enhancement of bioenergy recovery from agricultural wastes through recycling of cellulosic alcoholic fermentation vinasse for anaerobic co-digestion. Bioresource Technology, 2020, 311, 123511.	4.8	29
1989	Acid soaking followed by steam flash-explosion pretreatment to enhance saccharification of rice husk for poly(3-hydroxybutyrate) production. International Journal of Biological Macromolecules, 2020, 160, 446-455.	3.6	10
1990	Facile Synthesis of SiO ₂ /CMC/Ag Hybrids Derived from Waste Biomass (Sugarcane Bagasse) Having Special Medical Application. Journal of Nanoscience and Nanotechnology, 2020, 20, 6413-6421.	0.9	13
1991	Multiproduct biorefinery optimal design: application to the acetone-butanol-ethanol system. Oil and Gas Science and Technology, 2020, 75, 9.	1.4	6
1993	Greener Routes to Biomass Waste Valorization: Lignin Transformation Through Electrocatalysis for Renewable Chemicals and Fuels Production. ChemSusChem, 2020, 13, 4214-4237.	3.6	123
1994	A simple strategy for the preparation of chlorine functionalized coal-based solid acid with rich carboxyl to improve the activity for hydrolysis of cellulose. Molecular Catalysis, 2020, 492, 111015.	1.0	7
#	Article	IF	CITATIONS
------	---	-----	-----------
1995	Pretreatment of sugarcane bagasse using citric acid and its use in enzymatic hydrolysis. Renewable Energy, 2020, 157, 332-341.	4.3	34
1996	Preparation of a sugarcane bagasse-based substrate for second-generation ethanol: Effect of pasteurisation conditions on dephenolisation. Renewable Energy, 2020, 157, 859-866.	4.3	5
1997	Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources. Renewable and Sustainable Energy Reviews, 2020, 130, 109944.	8.2	128
1998	Novel strategies for glucose production from biomass using heteropoly acid catalyst. Renewable Energy, 2020, 159, 215-220.	4.3	23
1999	Enhancement of levoglucosan production via fast pyrolysis of sugarcane bagasse by pretreatment with Keggin heteropolyacids. Industrial Crops and Products, 2020, 154, 112680.	2.5	11
2000	Radiolysis as a Powerful Tool for Polymer Waste Recycling. High Energy Chemistry, 2020, 54, 194-204.	0.2	9
2001	MnOx nanosheets anchored on a bio-derived porous carbon framework for high-performance asymmetric supercapacitors. Applied Surface Science, 2020, 527, 146842.	3.1	20
2002	Insights into Structural Changes of Lignin toward Tailored Properties during Deep Eutectic Solvent Pretreatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 9783-9793.	3.2	72
2003	A Study on the Potential Biomass Available in Northeast India for Its Applicability in Certain Clean Energy Generation Purposes. Journal of the Institution of Engineers (India): Series E, 2020, 101, 133-140.	0.5	2
2004	Comprehensive assessment of 2G bioethanol production. Bioresource Technology, 2020, 313, 123630.	4.8	183
2005	Development of zinc-loaded nanoparticle hydrogel made from sugarcane bagasse for special medical application. Journal of Material Cycles and Waste Management, 2020, 22, 1723-1733.	1.6	15
2006	Delignification of oil palm empty fruit bunch via ultrasound-assisted deep eutectic solvent pretreatment. IOP Conference Series: Earth and Environmental Science, 2020, 463, 012007.	0.2	5
2007	In-situ lignin drives lytic polysaccharide monooxygenases to enhance enzymatic saccharification. International Journal of Biological Macromolecules, 2020, 161, 308-314.	3.6	11
2008	Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. International Journal of Biological Macromolecules, 2020, 161, 1099-1116.	3.6	91
2009	Production of Sorbitol via Catalytic Transfer Hydrogenation of Glucose. Applied Sciences (Switzerland), 2020, 10, 1843.	1.3	29
2010	Microwave-Assisted Modification of Corncob with Trimethylammonium Chloride for Efficient Removal of Cr(VI): Preparation, Characterization, and Mechanism. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	4
2011	Extrusion followed by ultrasound as a chemical-free pretreatment method to enhance enzymatic hydrolysis of rice hull for fermentable sugars production. Industrial Crops and Products, 2020, 149, 112356.	2.5	41
2012	Sustainable Aromatic Aliphatic Polyesters and Polyurethanes Prepared from Vanillin-Derived Diols via Green Catalysis. Polymers, 2020, 12, 586.	2.0	16

#	Article	IF	CITATIONS
2013	Nanomaterials in Biofuels Research. Clean Energy Production Technologies, 2020, , .	0.3	9
2014	Chemical and non-chemical pre-treatment techniques for bio ethanol production from biomass. International Journal of Energy and Water Resources, 2020, 4, 199-204.	1.3	9
2015	Life cycle assessment of ethylene production from empty fruit bunch. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2436.	0.8	5
2016	Kinetic analysis and thermodynamics properties of air/steam gasification of agricultural waste. Journal of Environmental Chemical Engineering, 2020, 8, 103829.	3.3	67
2017	Levulinic Acid Production from Delignified Rice Husk Waste over Manganese Catalysts: Heterogeneous Versus Homogeneous. Catalysts, 2020, 10, 327.	1.6	15
2018	Present status and future prospect of genetic and metabolic engineering for biofuels from lignocellulosic biomass. , 2020, , 37-46.		1
2019	Downstream processing of biofuel. , 2020, , 47-62.		3
2020	Energy recovery from biomass using gasification. , 2020, , 363-382.		9
2021	Lignin Chemistry. Topics in Current Chemistry Collections, 2020, , .	0.2	7
2022	Biofuel Production Technologies: Critical Analysis for Sustainability. Clean Energy Production Technologies, 2020, , .	0.3	6
2023	Kinetic Characterization of Enzymatic Hydrolysis of Apple Pomace as Feedstock for a Sugar-Based Biorefinery. Energies, 2020, 13, 1051.	1.6	9
2024	Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi. Polymers, 2020, 12, 530.	2.0	44
2025	Biohydrogen production from fruit waste by Clostridium strain BOH3. Renewable Energy, 2020, 153, 1368-1377.	4.3	57
2026	Circular economy aspects of lignin: Towards a lignocellulose biorefinery. Renewable and Sustainable Energy Reviews, 2020, 130, 109977.	8.2	135
2027	1. Furfural derivatives from agricultural and agri-food wastes by heterogeneous catalysis. , 2020, , 1-30.		0
2028	Hyperthermophilic Treatment of Grass and Leaves to Produce Hydrogen, Methane and VFA-Rich Digestate: Preliminary Results. Energies, 2020, 13, 2814.	1.6	4
2029	Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation. Energies, 2020, 13, 2937.	1.6	55
2030	Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by iron addition. Bioresource Technology, 2020, 314, 123713.	4.8	36

#	Article	IF	CITATIONS
2031	Cell Factories for Industrial Production Processes: Current Issues and Emerging Solutions. Processes, 2020, 8, 768.	1.3	26
2032	Novel Routes in Transformation of Lignocellulosic Biomass to Furan Platform Chemicals: From Pretreatment to Enzyme Catalysis. Catalysts, 2020, 10, 743.	1.6	31
2033	Subcritical CO2 shows no effect on liquid hot water pretreatment of poplar wood. Bioresource Technology Reports, 2020, 11, 100442.	1.5	2
2034	Screening of factors influencing dilute nitric acid pretreatment for xylan recovery from oil palm frond bagasse. IOP Conference Series: Materials Science and Engineering, 2020, 736, 032007.	0.3	0
2035	Variables Affecting Delignification of Corn Wastes Using Urea for Total Reducing Sugars Production. ACS Omega, 2020, 5, 12196-12201.	1.6	6
2036	Single-pot conversion of fruit peel waste to 5-hydroxymethylfurfural catalyzed by modified activated carbon in green solvent: kinetics and thermodynamic study. Biomass Conversion and Biorefinery, 2022, 12, 469-489.	2.9	5
2037	Recent progress in cellulose-based smart nanocrystals by agricultural resources. , 2020, , 461-483.		3
2038	Process parameter optimization of pretreated pineapple leaves fiber for enhancement of sugar recovery. Industrial Crops and Products, 2020, 152, 112514.	2.5	15
2039	Biocompatibility analysis of Borassus flabellifer biomass-derived nanofibrillated cellulose. Carbohydrate Polymers, 2020, 235, 115961.	5.1	37
2040	Enhance photocatalytic hydrogen evolution by using alkaline pretreated corn stover as a sacrificial agent. International Journal of Energy Research, 2020, 44, 4616-4628.	2.2	15
2041	Silica removal by alkaline hydrogen peroxide treatment to enhance the conversion of rice straw to sugars. Materials Today: Proceedings, 2020, 31, 145-149.	0.9	2
2042	Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world. Biotechnology Advances, 2020, 40, 107535.	6.0	102
2043	Chelator-mediated biomimetic degradation of cellulose and chitin. International Journal of Biological Macromolecules, 2020, 153, 433-440.	3.6	11
2045	Effect of Sugars on the Real-Time Adsorption of Expansin on Cellulose. Biomacromolecules, 2020, 21, 1776-1784.	2.6	8
2046	Application of enzyme cocktails from Indonesian isolates to corncob (Zea mays) waste saccharification. Biocatalysis and Agricultural Biotechnology, 2020, 24, 101537.	1.5	7
2047	Forestry biorefineries. Renewable Energy, 2020, 154, 461-475.	4.3	54
2048	Acid and Enzymatic Fractionation of Olive Stones for Ethanol Production Using Pachysolen tannophilus. Processes, 2020, 8, 195.	1.3	15
2049	Nanocelluloseâ€Enabled Membranes for Water Purification: Perspectives. Advanced Sustainable Systems, 2020, 4, 1900114.	2.7	118

		CITATION RE	PORT	
#	ARTICLE Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretr	eated	IF 1.7	CITATIONS
2051	Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage fermentation. Renewable Energy, 2020, 153, 1226-1237.	via dark	4.3	55
2052	Bio-based and agriculture resources for production of bioproducts. , 2020, , 263-282.			6
2053	Protein engineering approaches for lignocellulosic ethanol biorefinery. , 2020, , 243-260.			2
2054	Optimization of harvest and logistics for multiple lignocellulosic biomass feedstocks in th northeastern United States. Energy, 2020, 197, 117260.	ie	4.5	32
2055	Engineered Penicillium funiculosum produces potent lignocellulolytic enzymes for saccha of various pretreated biomasses. Process Biochemistry, 2020, 92, 49-60.	rification	1.8	21
2056	The effect of using different acids to catalyze the prehydrolysis stage on the organosolv delignification of beech wood in two-stage process. Renewable Energy, 2020, 153, 1479	1487.	4.3	8
2057	Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatmen for production of drop-in fuels. Renewable and Sustainable Energy Reviews, 2020, 123, 1	t methods 09763.	8.2	317
2058	Pressurised disc refining of wheat straw as a pre-treatment approach for agricultural resid preliminary assessment of energy consumption and fibre composition. Bioresource Techr 304, 122976.	lues: A ıology, 2020,	4.8	12
2059	Golden section algorithm to optimise the chemical pretreatment of agro-industrial waste extraction. Fuel, 2020, 266, 117028.	for sugars	3.4	10
2060	Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy produ Review. Renewable and Sustainable Energy Reviews, 2020, 121, 109669.	iction:	8.2	116
2061	Evaluation of pre-treatment methods for Lantana camara stem for enhanced enzymatic saccharification. 3 Biotech, 2020, 10, 37.		1.1	6
2063	Nanostructure-modified in-situ synthesis of nitrogen-doped porous carbon microspheres loaded with FeTe2 nanocrystals and NPCM as superior anodes to construct high-perform lithium-ion capacitors. Electrochimica Acta, 2020, 337, 135749.	(NPCM) ance	2.6	20
2064	In silico and in vitro comparison of nicotinamide adenine dinucleotide phosphate depend reductase rossmaan fold in Debaryomycetaceae yeast family. Biocatalysis and Agricultura Biotechnology, 2020, 24, 101508.	ent xylose I	1.5	1
2065	Value-added chemicals and materials from lignocellulosic biomass. , 2020, , 367-436.			6
2066	Lignocellulosic bio-refinery approach for microbial 2,3-Butanediol production. Bioresource Technology, 2020, 302, 122873.	2	4.8	64
2067	Understanding the Impact of Lignocellulosic Biomass Variability on the Size Reduction Pr Review. ACS Sustainable Chemistry and Engineering, 2020, 8, 2327-2343.	ocess: A	3.2	60
2068	Strong acid- and solvent-resistant polyether ether ketone separation membranes with ad pores. Chemical Engineering Journal, 2020, 386, 124086.	ustable	6.6	32

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2069	Substrate Analysis for Effective Biofuels Production. Clean Energy Production Technolog	gies, 2020, , .	0.3	3
2070	Mechanochemical-assisted production of 5-hydroxymethylfurfural from high concentrat cellulose. Cellulose, 2020, 27, 3013-3023.	ion of	2.4	35
2071	Nanobiotechnological advancements in lignocellulosic biomass pretreatment. Materials Energy Technologies, 2020, 3, 308-318.	Science for	1.0	51
2072	Current approaches and trends in the production of microbial cellulases using residual lignocellulosic biomass: a bibliometric analysis of the last 10Âyears. Archives of Microbio 202, 935-951.	ology, 2020,	1.0	22
2073	One-pot selective production of levulinic acid and formic acid from spent coffee ground catalyst-free biphasic system. Bioresource Technology, 2020, 303, 122898.	s in a	4.8	18
2074	Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic Bioresource Technology, 2020, 303, 122897.	solvents.	4.8	98
2075	Insights from enzymatic degradation of cellulose and hemicellulose to fermentable suga Biomass and Bioenergy, 2020, 134, 105481.	ırs– a review.	2.9	172
2076	Influence of Raw Material Drying Temperature on the Scots Pine (Pinus sylvestris L.) Bio Agglomeration Process—A Preliminary Study. Energies, 2020, 13, 1809.	mass	1.6	16
2077	Comparative evaluation of microwave-assisted acid, alkaline, and inorganic salt pretreat sugarcane bagasse for sugar recovery. Biomass Conversion and Biorefinery, 2020, , 1.	ments of	2.9	19
2078	Towards a more sustainable circular bioeconomy. Innovative approaches to rice residue The RiceRes case study. Bioresource Technology Reports, 2020, 11, 100427.	valorization:	1.5	13
2079	Different pretreatment technologies of lignocellulosic biomass for bioethanol productio overview. Energy, 2020, 199, 117457.	n: An	4.5	292
2080	Thermal treatment of lignin, cellulose and hemicellulose in nitrogen and carbon dioxide. 271, 117656.	Fuel, 2020,	3.4	51
2081	Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference and 5-hydroxymethylfurfural. International Journal of Biological Macromolecules, 2020,	of furfural 156, 180-185.	3.6	94
2082	The role of pretreatment in the catalytic valorization of cellulose. Molecular Catalysis, 20 110883.	020, 487,	1.0	43
2083	Fruits By-Products – A Source of Valuable Active Principles. A Short Review. Frontiers Bioengineering and Biotechnology, 2020, 8, 319.	n	2.0	83
2084	Lignocellulose-derived platform molecules. , 2020, , 1-31.			6
2085	Biocatalyst systems for xylooligosaccharides production from lignocellulosic biomass ar uses. , 2020, , 413-425.	id their		1
2086	Pretreatment of corn stover via sodium hydroxide–urea solutions to improve the gluc Bioresource Technology, 2020, 307, 123191.	ose yield.	4.8	32

#	Article	IF	Citations
2087	Improved 2,3-butanediol yield and productivity from lignocellulose biomass hydrolysate in metabolically engineered Enterobacter aerogenes. Bioresource Technology, 2020, 309, 123386.	4.8	18
2088	Genetic modification of cereal plants: A strategy to enhance bioethanol yields from agricultural waste. Industrial Crops and Products, 2020, 150, 112408.	2.5	25
2089	Correlations between lignin content and structural robustness in plants revealed by X-ray ptychography. Scientific Reports, 2020, 10, 6023.	1.6	29
2090	Elucidation of Changes in Cellulose Ultrastructure and Accessibility in Hardwood Fractionation Processes with Carbohydrate Binding Modules. ACS Sustainable Chemistry and Engineering, 2020, 8, 6767-6776.	3.2	8
2091	Bioconversion of sago effluent and oil cakes for bio-butanol production using environmental isolates. Biofuels, 2021, 12, 35-42.	1.4	6
2092	Towards upscaling the valorization of wheat straw residues: alkaline pretreatment using sodium hydroxide, enzymatic hydrolysis and biogas production. Environmental Science and Pollution Research, 2021, 28, 24486-24498.	2.7	25
2093	Enzymatic conversion of pistachio (<i>pistacia vera</i> L.) shells for fermentable sugar production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 1444-1455.	1.2	6
2094	Characterization of paper mill sludge as a renewable feedstock for sustainable hydrogen and biofuels production. International Journal of Hydrogen Energy, 2021, 46, 4761-4775.	3.8	43
2095	Bioethanol production from coconut pulp residue using hydrothermal and postalkaline pretreatment. International Journal of Energy Research, 2021, 45, 8140-8150.	2.2	11
2096	The immobilization of yeast for fermentation of macroalgae Rhizoclonium sp. for efficient conversion into bioethanol. Biomass Conversion and Biorefinery, 2021, 11, 827-835.	2.9	43
2097	Exploration on UV-Blocking Performance of Lignin from Palm (Trachycarpus Fortunei) Fiber. Journal of Natural Fibers, 2021, 18, 71-79.	1.7	4
2098	Pulsed electric field: An emerging pretreatment technology in a biogas production. Waste Management, 2021, 120, 467-483.	3.7	27
2099	A biorefinery for the valorization of marigold (Calendula officinalis) residues to produce biogas and phenolic compounds. Food and Bioproducts Processing, 2021, 125, 91-104.	1.8	9
2100	An efficient catalytic transfer hydrogenation-hydrodeoxygenation of lignin derived monomers: Investigating catalyst properties-activity correlation. Catalysis Communications, 2021, 149, 106220.	1.6	12
2101	Hydrothermal and Steam Explosion Pretreatment of Bambusa stenostachya Bamboo. Waste and Biomass Valorization, 2021, 12, 4103-4112.	1.8	28
2102	Biorefinery potential of <i>Eucalyptus grandis</i> to produce phenolic compounds and biogas. Canadian Journal of Forest Research, 2021, 51, 89-100.	0.8	11
2103	Environmental impact and cost assessment of a novel lignin production method. Journal of Cleaner Production, 2021, 279, 123515.	4.6	34
2104	Lignocellulose, Cellulose and Lignin as Renewable Alternative Fuels for Direct Biomass Fuel Cells. ChemSusChem, 2021, 14, 189-207.	3.6	30

		CITATION REPORT	
#	Article	IF	CITATIONS
2105	The second- and third-generation biofuel technologies: comparative perspectives. , 2021, , 29-5	0.	13
2106	Evaluation of current and future solvents for selective lignin dissolution–A review. Journal of Molecular Liquids, 2021, 321, 114577.	2.3	43
2107	Synergistic Improvement of Carbohydrate and Lignin Processability by Biomimicking Biomass Processing. Frontiers in Energy Research, 2021, 8, .	1.2	3
2108	Developments in Bioethanol. Green Energy and Technology, 2021, , .	0.4	16
2109	Liquefaction of lignocellulosic biomass through biochemical conversion pathway: A strategic approach to achieve an industrial titer of bioethanol. Fuel, 2021, 287, 119545.	3.4	17
2110	Thermochemical pretreatments of maize stem for sugar recovery: Comparative evaluation of microwave and conventional heating. Industrial Crops and Products, 2021, 160, 113106.	2.5	13
2111	Uniqueness of biphasic organosolv treatment of soft- and hardwood using water/1-butanol co-solvent. Industrial Crops and Products, 2021, 159, 113078.	2.5	19
2112	A review on the prospective use of chicken manure leachate in high-rate anaerobic reactors. Jou of Environmental Chemical Engineering, 2021, 9, 104695.	rnal 3.3	6
2113	Modeling and economic optimization of cellulosic biofuel supply chain considering multiple conversion pathways. Applied Energy, 2021, 281, 116059.	5.1	24
2114	Immobilization of Laccase on Magnetic Nanoparticles and Application in the Detoxification of R Straw Hydrolysate for the Lipid Production of Rhodotorula glutinis. Applied Biochemistry and Biotechnology, 2021, 193, 998-1010.	ice 1.4	10
2115	Extraction and recovery of lignin derived phenolic inhibitors to enhance enzymatic glucose production. Biomass and Bioenergy, 2021, 144, 105897.	2.9	15
2116	Cooperative utilization of beet pulp and industrial waste fly ash to produce N/P/O self-co-dopec hierarchically porous carbons for high-performance supercapacitors. Journal of Power Sources, 2021, 482, 228935.	4.0	45
2117	Extraction and characterization of nanocellulose from three types of palm residues. Journal of Materials Research and Technology, 2021, 10, 526-537.	2.6	60
2118	Sustainability of <scp><i>Ageratum conyzoides</i></scp> (billy goat weed) for bioethanol and recycling of residues for gaseous fuel production. Engineering Reports, 2021, 3, e12284.	0.9	2
2119	2G waste lignin to fuel and high value-added chemicals: Approaches, challenges and future outl for sustainable development. Chemosphere, 2021, 268, 129326.	ook 4.2	44
2120	Two-step pretreatment of oil palm trunk for ethanol production by thermotolerent Saccharomy cerevisiae SC90. Bioresource Technology, 2021, 320, 124298.	ces 4.8	23
2121	Pretreatment of Mango (Mangifera indica L. Anacardiaceae) Seed Husk for Bioethanol Producti Dilute Acid Treatment and Enzymatic Hydrolysis. Applied Biochemistry and Biotechnology, 202 1338-1350.	on by 1, 193, 1.4	11
2122	Improving probiotic spore yield using rice straw hydrolysate. Letters in Applied Microbiology, 20 149-156.	021, 72, 1.0	3

#	Article	IF	CITATIONS
2123	Power to Gas Systems Integrated with Anaerobic Digesters and Gasification Systems. Waste and Biomass Valorization, 2021, 12, 29-64.	1.8	3
2124	Biomass to Xylose. Advances in Science, Technology and Innovation, 2021, , 247-265.	0.2	2
2125	METHODS FOR PRETREATMENT OF LIGNOCELLULOSIC BIOMASSAND BY-PRODUCTS FOR LIGNOCELLULOLYTIC ENZYMES MODIFICATION: A REVIEW. International Journal of Agriculture and Environmental Research, 2021, 07, 102-143.	0.0	0
2126	Microbial Lipid Production from Lignocellulosic Biomass Pretreated by Effective Pretreatment. , 2021, , 175-206.		1
2127	Resource Utilization of Agricultural/Forestry Residues via Fractionation into Cellulose, Hemicellulose and Lignin. Green Chemistry and Sustainable Technology, 2021, , 179-204.	0.4	1
2128	Agricultural biomass as value chain developers in different sectors. , 2021, , 467-509.		1
2129	Occurrence and fate of aromaticity driven recalcitrance in anaerobic treatment of wastewater and organic solidÂwastes. , 2021, , 203-226.		1
2130	Lignin extraction and isolation methods. , 2021, , 61-104.		1
2131	Utilization of Aqueous Weeds for Biofuel Production: Current Status and Future Prospects. Energy, Environment, and Sustainability, 2021, , 37-57.	0.6	1
2132	Biomass conversion., 2021,, 3-39.		7
2133	Thermochemical conversion methods of bio-derived lignocellulosic waste molecules into renewable fuels. , 2021, , 197-215.		1
2134	Enhanced one-pot selective conversion of cellulose to ethylene glycol over NaZSM-5 supported metal catalysts. New Journal of Chemistry, 2021, 45, 19244-19254.	1.4	15
2135	An overview on pretreatment processes for an effective conversion of lignocellulosic biomass into bioethanol. , 2021, , 41-68.		2
2136	Effects of Cellulolytic Bacteria on Nitrogen-Fixing Bacteria, 16S rRNA, nifH Gene Abundance, and Chemical Properties of Water Hyacinth Compost. Journal of Soil Science and Plant Nutrition, 2021, 21, 768-779.	1.7	2
2137	Rice Straws With Different Cell Wall Components Differ on Abilities of Saccharification. Frontiers in Bioengineering and Biotechnology, 2020, 8, 624314.	2.0	11
2138	Biotransformation of Citrus Waste-I: Production of Biofuel and Valuable Compounds by Fermentation. Processes, 2021, 9, 220.	1.3	30
2139	Production processes from lignocellulosic feedstock. , 2021, , 129-169.		4
2140	Bioconversion of Food Waste into Ethanol: A Review. Advances in Science, Technology and Innovation, 2021, , 45-58.	0.2	2

#	Article	IF	CITATIONS
2141	Nanoporous Carbon From Mulberry Leaves Residues via Microwave Assisted Hydrothermal-Carbonization for Methyl Orange Adsorption: Kinetic, Equilibrium and Thermodynamic Studies. SSRN Electronic Journal, 0, , .	0.4	0
2142	Biomethanization of agricultural lignocellulosic wastes: Pretreatments. , 2021, , 155-202.		1
2143	Sustainability of the Catalytic Process for Biomass Conversion: Recent Trends and Future Prospects. , 2021, , 237-272.		0
2144	Bioconversion of Lignocellulosic Residues into Hydrogen. Advances in Science, Technology and Innovation, 2021, , 59-80.	0.2	1
2145	Pretreatments of Solid Wastes for Anaerobic Digestion and Its Importance for the Circular Economy. , 2021, , 1-27.		0
2146	Application of Hemicellulose in Biohydrogen Production. Advances in Science, Technology and Innovation, 2021, , 315-327.	0.2	2
2147	Synthesis of activated carbon from biomass. AIP Conference Proceedings, 2021, , .	0.3	6
2148	Algae: Biomass to Biofuel. Methods in Molecular Biology, 2021, 2290, 31-51.	0.4	8
2149	Review on the synthesis, performance and trends of butanol: a cleaner fuel additive for gasoline. International Journal of Ambient Energy, 2022, 43, 4207-4223.	1.4	8
2150	Background and General Information. SpringerBriefs in Applied Sciences and Technology, 2021, , 1-8.	0.2	0
2151	The Place of Biofuel in Sustainable Living; Prospects and Challenges. , 2022, , 226-258.		6
2152	Biomethanation of agricultural residues: Potential, limitations and possible solutions. Renewable and Sustainable Energy Reviews, 2021, 135, 110217.	8.2	61
2153	Characterization and pre-leaching effect on the peels of predominant cassava varieties in Uganda for production of activated carbon. Current Research in Green and Sustainable Chemistry, 2021, 4, 100083.	2.9	10
2154	Characterization and hydrolysis optimization of Sargassum cinereum for the fermentative production of 3G bioethanol. Biomass Conversion and Biorefinery, 2023, 13, 1831-1841.	2.9	10
2155	Pretreatment of Sorghum Stalks Using Glycerol. Methods in Molecular Biology, 2021, 2290, 115-127.	0.4	0
2156	A predictive toolset for the identification of effective lignocellulosic pretreatment solvents: a case study of solvents tailored for lignin extraction. Green Chemistry, 2021, 23, 7269-7289.	4.6	22
2157	Microbial and Bioinformatics Approach in Biofuel Production. Clean Energy Production Technologies, 2021, , 257-306.	0.3	2
2158	Bioconversion of Hemicelluloses into Hydrogen. Advances in Science, Technology and Innovation, 2021, , 267-280.	0.2	1

		EPORT	
#	Article	IF	CITATIONS
2159	Lignin Nanoparticles and Their Biodegradable Composites. Materials Horizons, 2021, , 295-327.	0.3	0
2160	Overcome saccharification barrier. , 2021, , 137-159.		12
2161	The "Zero Miles Product―Concept Applied to Biofuel Production: A Case Study. Energies, 2021, 14, 565.	1.6	4
2162	Potassium Hydroxyde Pre-Treatment Enhances Methane Yield from Giant Reed (Arundo donax L.). Energies, 2021, 14, 630.	1.6	14
2163	Challenges in Bioethanol Production: Effect of Inhibitory Compounds. Clean Energy Production Technologies, 2021, , 119-154.	0.3	3
2164	Hydrogen production from acidic, alkaline, and steam-exploded Bambusa stenostachya hydrolysates in dark fermentation process. Biomass Conversion and Biorefinery, 2022, 12, 3435-3446.	2.9	4
2165	Release Mechanism, Secondary Pollutants and Denitrification Performance Comparison of Six Kinds of Agricultural Wastes as Solid Carbon Sources for Nitrate Removal. International Journal of Environmental Research and Public Health, 2021, 18, 1232.	1.2	20
2166	Biogas, biohydrogen, and polyhydroxyalkanoates production from organic waste in the circular economy context. , 2021, , 305-343.		4
2167	The digestibility of improved sugar cane bagasse on Barbonymus schwanenfeldii. IOP Conference Series: Earth and Environmental Science, 2021, 674, 012004.	0.2	1
2168	Biomass pyrolysis technologies for value-added products: a state-of-the-art review. Environment, Development and Sustainability, 2021, 23, 14324-14378.	2.7	77
2169	Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules, 2021, 26, 753.	1.7	122
2170	Fermentation and pyrolysis of Finger millet straw: Significance of hydrolysate composition for ethanol production and characterization of bio-oil. Bioresource Technology Reports, 2021, 13, 100630.	1.5	6
2171	Chemical Pretreatments on Residual Cocoa Pod Shell Biomass for Bioethanol Production. Revista Bionatura, 2021, 6, 1490-1500.	0.1	5
2172	Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. International Journal of Biological Macromolecules, 2021, 169, 564-582.	3.6	120
2173	Technical Evaluation of a Levulinic Acid Plant Based on Biomass Transformation under Techno-Economic and Exergy Analyses. ACS Omega, 2021, 6, 5627-5641.	1.6	23
2174	Does conventional energy pricing induce innovation in renewable energy? New evidence from a nonlinear approach. Applied Economic Perspectives and Policy, 2021, 43, 659-679.	3.1	5
2175	Bioethanol Production from Stalk Residues of Chiquere and Gebabe Varieties of Sweet Sorghum. International Journal of Microbiology, 2021, 2021, 1-16.	0.9	7
2176	Hygroscopicity of Organic Aerosols Linked to Formation Mechanisms. Geophysical Research Letters, 2021, 48, e2020GL091683.	1.5	13

\sim		<u> </u>	
			ЪΤ
	ITAL	KLPU	IN I

#	Article	IF	CITATIONS
2177	Material utilization of green waste: a review on potential valorization methods. Bioresources and Bioprocessing, 2021, 8, .	2.0	35
2178	Pretreatment of Switchgrass for Production of Glucose via Sulfonic Acid-Impregnated Activated Carbon. Processes, 2021, 9, 504.	1.3	9
2179	Orange peel extract enhanced sugar recovery and butanol production from potato peel by <i>Clostridium acetobutylicum</i> . International Journal of Green Energy, 2021, 18, 987-997.	2.1	6
2180	Rheology, Hydration, and Microstructure of Portland Cement Pastes Produced with Ground AçaÃ- Fibers. Applied Sciences (Switzerland), 2021, 11, 3036.	1.3	50
2181	In-depth understanding of molecular mechanisms of aldehyde toxicity to engineer robust Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2021, 105, 2675-2692.	1.7	25
2182	Iron incorporation both intra- and extra-cellularly improves the yield and saccharification of switchgrass (Panicum virgatum L.) biomass. Biotechnology for Biofuels, 2021, 14, 55.	6.2	2
2183	Ionic liquids in the pretreatment of lignocellulosic biomass. Acta Innovations, 2021, , 23-36.	0.4	19
2184	Value addition to jute: assessing the effect of artificial reduction of lignin on jute diversification. Heliyon, 2021, 7, e06353.	1.4	7
2185	New Functions of <i>Ceriporia lacerata</i> HG2011: Mobilization of Soil Nitrogen and Phosphorus and Enhancement of Yield and Quality of Ketchup-Processing Tomato. Journal of Agricultural and Food Chemistry, 2021, 69, 4056-4063.	2.4	12
2186	The Santorini Volcanic Complex as a Valuable Source of Enzymes for Bioenergy. Energies, 2021, 14, 1414.	1.6	3
2187	Adsorptive and Surface Characterization of Mediterranean Agrifood Processing Wastes: Prospection for Pesticide Removal. Agronomy, 2021, 11, 561.	1.3	8
2188	Intensified wheat husk conversion employing energy-efficient hybrid electromagnetic radiations for production of fermentable sugar: process optimization and life cycle assessment. Environmental Science and Pollution Research, 2021, 28, 58902-58914.	2.7	4
2189	A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production. Biomass Conversion and Biorefinery, 2023, 13, 1503-1527.	2.9	54
2190	Enzymatic Saccharification of Canola Straw and Oat Hull Subjected to Microwave-Assisted Alkali Pretreatment. , 0, , .		1
2191	Optimizing lime pretreatment of rice straw for biolipid production using oleaginous microorganisms. Chemosphere, 2021, 269, 129390.	4.2	10
2192	Production of Nanocellulose by Enzymatic Treatment for Application in Polymer Composites. Materials, 2021, 14, 2124.	1.3	29
2194	Integrated Renewable Production of Sorbitol and Xylitol from Switchgrass. Industrial & Engineering Chemistry Research, 2021, 60, 5558-5573.	1.8	12
2195	A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes. Renewable and Sustainable Energy Reviews, 2021, 139, 110687.	8.2	62

#	Article	IF	CITATIONS
2197	High value add bio-based low-carbon materials: Conversion processes and circular economy. Journal of Cleaner Production, 2021, 293, 126101.	4.6	33
2198	Use of Deep Eutectic Solvents in the Treatment of Agro-Industrial Lignocellulosic Wastes for Bioactive Compounds. , 0, , .		6
2199	Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment. Renewable and Sustainable Energy Reviews, 2021, 139, 110716.	8.2	71
2200	Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy. Sustainability, 2021, 13, 4200.	1.6	32
2201	Improving the enzymatic digestibility of alkaline-pretreated lignocellulosic biomass using polyDADMAC. Industrial Crops and Products, 2021, 162, 113244.	2.5	12
2202	Screening and Growth Characterization of Non-conventional Yeasts in a Hemicellulosic Hydrolysate. Frontiers in Bioengineering and Biotechnology, 2021, 9, 659472.	2.0	14
2203	Integrated Biorefinery Technology: Monetization of Oil Palm Empty Fruit Bunch to Biofuel & Bio-based Chemicals, and Beyond. IOP Conference Series: Materials Science and Engineering, 2021, 1143, 012053.	0.3	0
2204	Custom-sized graphene oxide for the hydrolysis of cellulose. Carbon, 2021, 175, 429-439.	5.4	9
2205	Effects of steam explosion pretreatment on the bioactive components and characteristics of rapeseed and rapeseed products. LWT - Food Science and Technology, 2021, 143, 111172.	2.5	29
2207	Anaerobic digestion of elephant camp–derived wastes: methane potential, kinetic study, and biorefinery platform. Biomass Conversion and Biorefinery, 2023, 13, 6175-6184.	2.9	2
2208	Facile synthesis and application of aluminum oxide nanoparticle based biodegradable film. Polymer Composites, 2021, 42, 3899-3910.	2.3	4
2209	Enhanced lactic acid production from P2O5-pretreated biomass by domesticated PediococcusÂpentosaceus without detoxification. Bioprocess and Biosystems Engineering, 2021, 44, 2153-2166.	1.7	5
2210	Plant cell wall chemistry: implications for ruminant utilisation. Journal of Applied Animal Nutrition, 2021, 9, 31-56.	0.3	10
2211	The effects of compound treatment of Aspergillus oryzae and fibrolytic enzyme on in vitro degradation, gas production and fermentative profile of maize silage and sugarcane silage. Journal of Agricultural Science, 0, , 1-12.	0.6	4
2212	Lignocellulosic Waste Pretreatment Solely via Biocatalysis as a Partial Simultaneous Lignino-Holocellulolysis Process. Catalysts, 2021, 11, 668.	1.6	4
2214	Role of Catalysis in Biofuels Production Process – A Review. ChemBioEng Reviews, 2021, 8, 417-438.	2.6	4
2215	Biotransformation Methods of Paddy Straw into Bioethanol. IOP Conference Series: Earth and Environmental Science, 2021, 757, 012085.	0.2	1
2216	Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus. Journal of Bioresources and Bioproducts, 2021, 6, 83-107.	11.8	69

#	Article	IF	Citations
2217	One-step peracetic acid pretreatment of hardwood and softwood biomass for platform chemicals production. Scientific Reports, 2021, 11, 11183.	1.6	43
2218	Effect of sodium borohydride and hydrogen peroxide pretreatments on soda pulping of sugar maple (<i>Acer saccharum</i>). Journal of Wood Chemistry and Technology, 2021, 41, 128-136.	0.9	1
2219	Biosurfactants produced from corncob: a bibliometric perspective of a renewable and promising substrate. Preparative Biochemistry and Biotechnology, 2022, 52, 123-134.	1.0	5
2220	Trends and perspectives of liquid biofuel – Process and industrial viability. Energy Conversion and Management: X, 2021, 10, 100075.	0.9	22
2221	Value-added chemicals from sugarcane bagasse using ionic liquids. Chemical Papers, 2021, 75, 5605-5622.	1.0	11
2222	Understanding acid pretreatment of lotus leaves to prepare hard carbons as anodes for sodium ion batteries. Surface and Coatings Technology, 2021, 415, 127125.	2.2	15
2223	Controlled Instant Pressure Drop (DIC) Pretreatment to Enhance Fractionation and Enzymatic Saccharification of Poppy Capsule Waste. Bioenergy Research, 2022, 15, 426-438.	2.2	2
2224	Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. Food and Bioprocess Technology, 2021, 14, 1446-1477.	2.6	51
2225	High efficient ethanol production from corn stover by modified mild alkaline pretreatment. Renewable Energy, 2021, 170, 714-723.	4.3	22
2226	Optimization of zero-waste hydrogen peroxide - Acetic acid pretreatment for sequential ethanol and methane production. Energy, 2021, 225, 120324.	4.5	16
2227	Effect of MgCl2 solution pretreatment on pubescens conversion at room temperature. Renewable Energy, 2021, 171, 287-298.	4.3	7
2228	Fruit residues as a sustainable feedstock for the production of bacterial polyhydroxyalkanoates. Journal of Cleaner Production, 2021, 307, 127236.	4.6	24
2229	Synergistic enhancement of methane production from anaerobic digestion of spent mushroom substrate via addition of biochar and cerium chloride following compost pretreatment. Biomass and Bioenergy, 2021, 150, 106128.	2.9	6
2230	Processes for the valorization of food and agricultural wastes to value-added products: recent practices and perspectives. Systems Microbiology and Biomanufacturing, 2022, 2, 50-66.	1.5	21
2231	Flow behavior characterization of biomass Feedstocks. Powder Technology, 2021, 387, 156-180.	2.1	22
2232	A comprehensive review on ecological approaches of waste to wealth strategies for production of sustainable biobutanol and its suitability in automotive applications. Energy Conversion and Management, 2021, 239, 114219.	4.4	46
2233	Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization. Renewable and Sustainable Energy Reviews, 2021, 145, 111078.	8.2	49
2234	Polluted lignocellulose-bearing sediments as a resource for marketable goods—a review of potential technologies for biochemical and thermochemical processing and remediation. Clean Technologies and Environmental Policy, 0, , 1.	2.1	3

#	Article	IF	CITATIONS
2235	Alkali pretreatment of industrial mixed vegetable waste for fermentable sugar production. Biomass Conversion and Biorefinery, 2023, 13, 5367-5377.	2.9	2
2236	Integrating chemical and biological catalysis for simultaneous production of polyphenolics and butyric acid from waste pomegranate peels. Science of the Total Environment, 2021, 778, 146095.	3.9	9
2237	Lignin Biorefinery: New Horizons in Catalytic Hydrodeoxygenation for the Production of Chemicals. Energy & Fuels, 2021, 35, 16965-16994.	2.5	39
2238	Spanish Poplar Biomass as a Precursor for Nanocellulose Extraction. Applied Sciences (Switzerland), 2021, 11, 6863.	1.3	18
2239	Sustainable Hydrogen Production from Starch Aqueous Suspensions over a Cd0.7Zn0.3S-Based Photocatalyst. Catalysts, 2021, 11, 870.	1.6	6
2240	Statistical optimisation of saccharification process using Amorphophallus paeoniifolius tubers into fermentable sugars for bioethanol production in stirred tank batch reactor (STBR). Biomass Conversion and Biorefinery, 0, , 1.	2.9	2
2241	Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review. Biotechnology for Biofuels, 2021, 14, 159.	6.2	81
2242	Pretreatment, Anaerobic Codigestion, or Both? Which Is More Suitable for the Enhancement of Methane Production from Agricultural Waste?. Molecules, 2021, 26, 4175.	1.7	9
2243	Integrated bioethanol and briquette recovery from rice husk: a biorefinery analysis. Biomass Conversion and Biorefinery, 0, , 1.	2.9	9
2244	Evaluating the economic feasibility of cellulosic ethanol: A meta-analysis of techno-economic analysis studies. Renewable and Sustainable Energy Reviews, 2021, 145, 111098.	8.2	46
2245	Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion. Sustainability, 2021, 13, 7491.	1.6	8
2246	Valorisation of walnut shell and pea pod as novel sources for the production of xylooligosaccharides. Carbohydrate Polymers, 2021, 263, 117932.	5.1	19
2247	Curtailing citrate buffer inhibition effect on S. cerevisiae to enhance the fermentability of cellulosic hydrolysate. Journal of Environmental Chemical Engineering, 2021, 9, 105696.	3.3	2
2248	Valorization of agricultural residues: Different biorefinery routes. Journal of Environmental Chemical Engineering, 2021, 9, 105435.	3.3	50
2249	Ball milling as an important pretreatment technique in lignocellulose biorefineries: a review. Biomass Conversion and Biorefinery, 2023, 13, 15593-15616.	2.9	25
2250	Recent trends and future perspectives of lignocellulose biomass for biofuel production: a comprehensive review. Biomass Conversion and Biorefinery, 2023, 13, 6457-6469.	2.9	25
2251	Bioconversion and valorization of cassava-based industrial wastes to bioethanol gel and its potential application as a clean cooking fuel. Biocatalysis and Agricultural Biotechnology, 2021, 35, 102093.	1.5	13
2252	Design of hydrothermal and subsequent lime pretreatment for fermentable sugar and bioethanol production from acacia wood. Renewable Energy, 2021, 174, 170-177.	4.3	11

# 2253	ARTICLE Laboratory Optimization Study of Sulfonation Reaction toward Lignin Isolated from Bagasse. , 0, , .	IF	CITATIONS 2
2254	Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production. Frontiers in Microbiology, 2021, 12, 658284.	1.5	56
2255	Acid hydrolysis of sawdust waste into bioethanol. Biomass Conversion and Biorefinery, 2023, 13, 5743-5756.	2.9	6
2256	Wear Mechanism Analysis of a New Rotary Shear Biomass Comminution System. ACS Sustainable Chemistry and Engineering, 2021, 9, 11652-11660.	3.2	8
2257	Recent Progress and Trends in the Development of Microbial Biofuels from Solid Waste—A Review. Energies, 2021, 14, 6011.	1.6	7
2258	Assessment of organosolv, hydrothermal, and combined organosolv and hydrothermal with enzymatic pretreatment to increase the production of biogas from Napier grass and Napier silage. Renewable Energy, 2022, 181, 1237-1249.	4.3	12
2259	Bioconversion of Untreated Corn Hull into <i>L</i> -Malic Acid by Trifunctional Xylanolytic Enzyme from <i>Paenibacillus curdlanolyticus</i> B-6 and <i>Acetobacter tropicalis</i> H-1. Journal of Microbiology and Biotechnology, 2021, 31, 1262-1271.	0.9	3
2260	Assessment of shock pretreatment and alkali pretreatment on corn stover using enzymatic hydrolysis. Biotechnology Progress, 2022, 38, e3217.	1.3	4
2261	Biotransformation of lignocellulosic biomass to xylitol: an overview. Biomass Conversion and Biorefinery, 2023, 13, 9643-9661.	2.9	9
2262	Effect and optimization of NaOH combined with Fenton pretreatment conditions on enzymatic hydrolysis of poplar sawdust. Chemical Papers, 2022, 76, 533-544.	1.0	1
2264	Chemical Methods for Hydrolyzing Dairy Manure Fiber: A Concise Review. Energies, 2021, 14, 6159.	1.6	4
2265	The Effect of Detoxification of Lignocellulosic Biomass for Enhanced Methane Production. Energies, 2021, 14, 5650.	1.6	4
2266	Current status of xylanase for biofuel production: a review on classification and characterization. Biomass Conversion and Biorefinery, 2023, 13, 8773-8791.	2.9	16
2267	Cascade temperature-arising strategy for xylo-oligosaccharide production from lignocellulosic biomass with acetic acid catalyst recycling operation. Renewable Energy, 2021, 175, 625-637.	4.3	9
2268	Engineering of Klebsiella oxytoca for the Production of 2,3-Butanediol from High Concentration of Xylose. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	3
2269	Valorization of biomass-derived furfurals: reactivity patterns, synthetic strategies, and applications. Biomass Conversion and Biorefinery, 2023, 13, 10361-10386.	2.9	16
2270	lonic liquid pretreatment of stinging nettle stems and giant miscanthus for bioethanol production. Scientific Reports, 2021, 11, 18465.	1.6	9
2271	Co-production of functional xylo-oligosaccharides and fermentable sugars from corn stover through fast and facile ball mill-assisted alkaline peroxide pretreatment. Bioresource Technology, 2021, 337, 125327.	4.8	21

#	Article	IF	CITATIONS
2272	Ethanol from lignocellulosic biomass: An in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. Journal of Environmental Chemical Engineering, 2021, 9, 105798.	3.3	92
2273	Improved hydrolysis yields and silica recovery by design of experiments applied to acid-alkali pretreatment in rice husks. Industrial Crops and Products, 2021, 170, 113676.	2.5	12
2274	Hydrogen production from biomasses and wastes: A technological review. International Journal of Hydrogen Energy, 2021, 46, 33756-33781.	3.8	125
2275	Optimization of maleic acid pretreatment of oil palm empty fruit bunches (OPEFB) using response surface methodology to produce reducing sugars. Industrial Crops and Products, 2021, 171, 113971.	2.5	22
2276	Synthesis of Î ³ -valerolactone (GVL) and their applications for lignocellulosic deconstruction for sustainable green biorefineries. Fuel, 2021, 303, 121333.	3.4	52
2277	Recent nanobiotechnological advancements in lignocellulosic biomass valorization: A review. Journal of Environmental Management, 2021, 297, 113422.	3.8	43
2278	Intensification of delignification and enzymatic hydrolysis of orange peel waste using ultrasound for enhanced fermentable sugar production. Chemical Engineering and Processing: Process Intensification, 2021, 168, 108556.	1.8	16
2279	Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective. Renewable and Sustainable Energy Reviews, 2021, 151, 111519.	8.2	23
2280	Current insights into lignocellulose related waste valorization. Chemical Engineering Journal Advances, 2021, 8, 100186.	2.4	25
2281	Biphasic pretreatment for energy and carbon efficient conversion of lignocellulose into bioenergy and reactive lignin. Applied Energy, 2021, 303, 117653.	5.1	25
2282	Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology, 2021, 223, 106997.	3.7	256
2283	Biopolymer poly-hydroxyalkanoates (PHA) production from apple industrial waste residues: A review. Chemosphere, 2021, 284, 131427.	4.2	92
2284	Preparation of activated carbon from pine sawdust with hydrothermal-pressure preconditioning. Journal of Environmental Chemical Engineering, 2021, 9, 106391.	3.3	20
2285	Application of biodegradable cellulose-based biomass materials in wastewater treatment. Environmental Pollution, 2021, 290, 118087.	3.7	56
2286	Preparation of a novel solid acid bearing sulfur-containing active groups and evaluation of its activity for cellulose hydrolysis. Fuel Processing Technology, 2021, 224, 107004.	3.7	7
2287	An overview of biomass waste utilization. , 2022, , 1-23.		2
2288	Background and general information. , 2022, , 1-10.		1
2289	Overview of key pretreatment methods. , 2022, , 97-130.		1

#	Article	IF	CITATIONS
2290	Ultralight Coral-like hierarchical Fe/CNTs/Porous carbon composite derived from biomass with tunable microwave absorption performance. Applied Surface Science, 2022, 571, 151349.	3.1	25
2291	Biomass pretreatment technologies. , 2022, , 203-228.		12
2292	Recent Developments in Pretreatment and Enzymatic Hydrolysis for Cellulosic Bioethanol Production. , 2021, , 103-121.		1
2293	Biobutanol from lignocellulosic biomass and microalgae: scope, technology, and economics. , 2021, , 163-223.		6
2294	Bioconversion of Renewable Plant Biomass. Second-Generation Biofuels: Raw Materials, Biomass Pretreatment, Enzymes, Processes, and Cost Analysis. Biochemistry (Moscow), 2021, 86, S166-S195.	0.7	14
2295	Hemicellulose-triggered high-yield synthesis of carbon dots from biomass. New Journal of Chemistry, 2021, 45, 5484-5490.	1.4	13
2296	Cellulose and its derivatives: towards biomedical applications. Cellulose, 2021, 28, 1893-1931.	2.4	386
2298	Pretreatment processes and their effect on enzymatic hydrolysis of lignocellulosic biomass for improved biofuel production. , 2021, , 115-144.		1
2299	Evaluation of Different Pretreatment Methods for Xylooligosaccharides Production. International Journal of Current Microbiology and Applied Sciences, 2021, 10, 517-527.	0.0	0
2301	Xylanases: A Helping Module for the Enzyme Biorefinery Platform. Clean Energy Production Technologies, 2021, , 161-180.	0.3	3
2302	Bioconversion of Agro-Industrial Waste into Value-Added Compounds. Advances in Science, Technology and Innovation, 2021, , 349-368.	0.2	18
2303	Essential process and key barriers for converting plant biomass into biofuels. , 2021, , 53-70.		3
2305	Recent developments in Agave performance as a droughtâ€ŧolerant biofuel feedstock: agronomics, characterization, and biorefining. Biofuels, Bioproducts and Biorefining, 2017, 11, 732-748.	1.9	32
2306	Biochemical Conversion of Biomass to Fuels. , 2012, , 965-999.		5
2307	Biochemical Conversion of Biomass to Fuels. , 2015, , 1-28.		1
2308	Coherent Raman Microscopy Analysis of Plant Cell Walls. Methods in Molecular Biology, 2012, 908, 49-60.	0.4	17
2309	Sustainable Nutrient Management. , 2019, , 167-211.		5
2310	Myco-Nanotechnological Approach for Improved Degradation of Lignocellulosic Waste: Its Future Aspect. Fungal Biology, 2019, , 227-245.	0.3	3

#	Article	IF	CITATIONS
2311	Pleurotus ostreatus: A Biofactory for Lignin-Degrading Enzymes of Diverse Industrial Applications. Fungal Biology, 2019, , 101-152.	0.3	1
2312	Bioconversion of Lignocellulosic Residues into Single-Cell Protein (SCP) by Chaetomium. Fungal Biology, 2020, , 343-375.	0.3	1
2313	A Short Overview of Analytical Techniques in Biomass Feedstock Characterization. Green Energy and Technology, 2020, , 21-46.	0.4	2
2314	Biotechnological Strategies for Enhanced Production of Biofuels from Lignocellulosic Biomass. Green Energy and Technology, 2020, , 521-551.	0.4	6
2315	Extraction of Multiple Value-Added Compounds from Agricultural Biomass Waste: A Review. Green Energy and Technology, 2020, , 163-192.	0.4	5
2317	Microbial Biofuel and Their Impact on Environment and Agriculture. Biofuel and Biorefinery Technologies, 2020, , 139-161.	0.1	1
2318	Evaluation of Cashew Apple Bagasse for Xylitol Production. Advanced Structured Materials, 2014, , 179-204.	0.3	2
2319	Cellulose from Lignocellulosic Waste. , 2015, , 475-511.		16
2320	Energy Recovery by Biological Process. , 2016, , 227-249.		1
2321	Application of Pulsed Electric Energy for Lignocellulosic Biorefinery. , 2017, , 2843-2861.		2
2322	Effect of Hydrothermal Processing on Hemicellulose Structure. , 2017, , 45-94.		19
2323	Response of Biomass Species to Hydrothermal Pretreatment. , 2017, , 95-140.		10
2324	Hydrothermal Pretreatment: Process Modeling and Economic Assessment Within the Framework of Biorefinery Processes. , 2017, , 207-235.		3
2325	Enzymatic Conversion of First- and Second-Generation Sugars. , 2018, , 169-189.		8
2326	Woody Biomass and Purpose-Grown Trees as Feedstocks for Renewable Energy. Biotechnology in Agriculture and Forestry, 2010, , 155-208.	0.2	6
2327	Utilization of Lignocellulose-feeding Insects for Viable Biofuels: an Emerging and Promising Area of Entomological Science. , 2011, , 434-500.		12
2328	The Global Scenario of Biofuel Production and Development. Green Energy and Technology, 2020, , 29-56.	0.4	3
2329	Thermochemical Conversion of Biomass. Green Energy and Technology, 2020, , 159-194.	0.4	1

		Citation Re	PORT	
#	Article		IF	CITATIONS
2330	Biomass Conversion to Bioenergy Products. Managing Forest Ecosystems, 2014, , 137	-167.	0.4	4
2331	Catalytic Transformation of Biomass in Ionic Liquids. Biofuels and Biorefineries, 2014,	, 195-222.	0.5	1
2332	Dark Fermentative Hydrogen Production from Lignocellulosic Biomass. Biofuels and Bi 2015, , 3-40.	orefineries,	0.5	4
2333	Pretreatment Strategies of Lignocellulosic Biomass Towards Ethanol Yield: Case Study Needles. Green Energy and Technology, 2017, , 85-102.	of Pine	0.4	2
2334	Biotechnological Production of Xylitol from Biomass. Biofuels and Biorefineries, 2017,	, 311-342.	0.5	6
2335	Progress and Prospects in the Production of Cellulosic Ethanol. , 2019, , 245-275.			3
2336	Biofuels Generation Based on Technical Process and Biomass Quality. Clean Energy Pro Technologies, 2020, , 37-64.	oduction	0.3	6
2337	Synthesis of Iron Oxide Nanomaterials for Biofuel Applications. Clean Energy Productic Technologies, 2020, , 275-307.	bn	0.3	1
2338	Second Generation Bioethanol Production from Organic Waste. Energy, Environment, Sustainability, 2020, , 49-64.	and	0.6	7
2339	Biorefinery Approaches for the Production of Fuels and Chemicals from Lignocellulosic Feedstocks. , 2020, , 141-170.	and Algal		1
2340	Current Trends and Aspects of Microbiological Biogas Production. Environmental and I Biotechnology, 2020, , 265-297.	Microbial	0.4	2
2341	Nanoparticles for Sustainable Bioenergy and Biofuel Production. , 2020, , 23-60.			2
2342	Introduction to Lignocellulosic Ethanol. , 2020, , 1-21.			2
2343	Cellulosic Ethanol Feedstock: Diversity and Potential. , 2020, , 23-63.			8
2344	Climate Change: Challenges to Reduce Global Warming and Role of Biofuels. , 2020, ,	13-54.		4
2345	Production of Polyhydroxyalkanoates and Its Potential Applications. Materials Horizon 131-164.	s, 2019, ,	0.3	7
2346	Biomass Pretreatment, Biorefineries, and Potential Products for a Bioeconomy Develop 1-22.	oment. , 2016, ,		35
2347	Recent trends in biorefinery-based valorisation of lignocellulosic biomass. , 2020, , 219	-242.		6

# 2348	ARTICLE Novel bioethanol production processes and purification technology using membranes. Studies in Surface Science and Catalysis, 2020, 179, 359-384.	IF 1.5	Citations
2349	Water hyacinth as a biomass: A review. Journal of Cleaner Production, 2020, 277, 122214.	4.6	80
2350	Effect of ionic liquid pretreatment on the physicochemical properties of hemicellulose from bamboo. Journal of Molecular Structure, 2020, 1210, 128067.	1.8	20
2351	Successive organic solvent fractionation and structural characterization of lignin extracted from hybrid poplar by deep eutectic solvent for improving the homogeneity and isolating narrow fractions. Renewable Energy, 2020, 157, 1025-1034.	4.3	28
2353	Conversion of Biomass into Sugars. RSC Green Chemistry, 2015, , 1-53.	0.0	21
2354	Chapter 2. Introduction to High Pressure CO2 and H2O Technologies in Sustainable Biomass Processing. RSC Green Chemistry, 0, , 9-36.	0.0	2
2355	Microwaves in the Catalytic Valorisation of Biomass Derivatives. RSC Green Chemistry, 2018, , 243-299.	0.0	5
2356	Pretreatments to Enhance the Digestibility of Wheat Straw. International Journal of Renewable and Sustainable Energy, 2014, 3, 26.	0.3	4
2359	Occurrence of Priming in the Degradation of Lignocellulose in Marine Sediments. PLoS ONE, 2015, 10, e0143917.	1.1	30
2360	The Highly Selective and Near-Quantitative Conversion of Glucose to 5-Hydroxymethylfurfural Using lonic Liquids. PLoS ONE, 2016, 11, e0163835.	1.1	34
2361	Systematic studies of the interactions between a model polyphenol compound and microbial \hat{l}^2 -glucosidases. PLoS ONE, 2017, 12, e0181629.	1.1	6
2362	Heterobasidion annosum s.l. and wood degradation of Norway spruce (Picea abies): the effects of sectioning, crown type and wood properties. Dissertationes Forestales, 2013, 2013, .	0.1	1
2364	Lignocellulosic Biomass to Biofuel Production: Integration of Chemical and Extrusion (Screw Press) Pretreatment. King Mongkut's University of Technology North Bangkok International Journal of Applied Science and Technology, 2016, , .	0.2	11
2365	An improvement in fermentability of acid-hydrolysed hemicellulose from kenaf stem for xylitol production. International Journal of Food Engineering, 2020, 16, .	0.7	8
2366	Lignin-Based Carbon Nanomaterials—The Future Scope. Materials Performance and Characterization, 2019, 8, 20180153.	0.2	4
2367	Effect of Simultaneous Steam Explosion and Alkaline Depolymerization on Corncob Lignin and Cellulose Structure. Chemical and Biochemical Engineering Quarterly, 2018, 32, 177-189.	0.5	13
2368	Thermo-catalytic process for conversion of lignocellulosic biomass to fuels and chemicals: a review. International Journal of Petrochemical Science & Engineering, 2018, 3, .	0.2	7
2369	A Review on Current Technological Advancement of Lignocellulosic Bioethanol Production. Journal of Applied Biotechnology & Bioengineering, 2016, 1, .	0.0	3

#	Article	IF	CITATIONS
2370	Chemical Modification of Poplar Wood with Benzophenone Tetracarboxylic Di Methacrylates. Journal of Forestry Faculty of Kastamonu University, 0, , 285-294.	0.1	1
2371	THERMAL BEHAVIORS OF OIL PALM EMPTY FRUIT BUNCH FIBER UPON EXPOSURE TO ACID-BASE AQUEOUS SOLUTIONS. Malaysian Journal of Analytical Sciences, 2016, 20, 1095-1103.	0.2	11
2372	A Short Review on Biobutanol, a Second Generation Biofuel Production from Lignocellulosic Biomass. Journal of Clean Energy Technologies, 2017, 5, 27-30.	0.1	34
2373	Utilization of Empty Fruit Bunch Fiber of Palm Oil Industry for Bio-Hydrogen Production. International Journal on Advanced Science, Engineering and Information Technology, 2018, 8, 842.	0.2	3
2374	Residuos urbanos, agrÃcolas y pecuarios en el contexto de las biorrefinerÃas. Revista Facultad De IngenierÃa, 2019, 28, 7-32.	0.0	8
2375	Production of Bioethanol from Bamboo using Thermotolerant Yeast with Simultaneous Saccharification and Fermentation Process. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 1718-1727.	0.0	4
2376	Screening and Identification of Trichoderma Strains Isolated from Natural Habitats with Potential to Cellulose and Xylan Degrading Enzymes Production. Polish Journal of Microbiology, 2018, 67, 181-190.	0.6	10
2378	Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering. Current Medicinal Chemistry, 2019, 26, 2456-2474.	1.2	18
2379	Comparative Alterations in the Compositional Profile of Selected Root and Vegetable Peels Subjected to Three Pretreatments for Enhanced Saccharification. International Journal of Environment Agriculture and Biotechnology, 2017, 2, 1732-1744.	0.0	8
2380	Technological Processes for Conversion of Lignocellulosic Biomass to Bioethanol. Journal of Pure and Applied Microbiology, 2017, 11, 1863-1881.	0.3	4
2381	Lignocellulosic biofuels $\hat{a} \in ``$ challenges And potentials. International Journal of Pharma and Bio Sciences, 2017, 8, .	0.1	1
2382	Effective Pre-Treatments for Enhancement of Biodegradation of Agricultural Lignocellulosic Wastes in Anaerobic Digestion – A Review. Acta Technologica Agriculturae, 2020, 23, 105-110.	0.2	2
2383	Role of different lignin systems in polymers: mechanical properties and thermal stability. Polish Journal of Chemical Technology, 2020, 22, 10-16.	0.3	1
2384	Microalgae based biorefinery: Issues to consider. CTyF - Ciencia, Tecnologia Y Futuro, 2011, 4, 05-21.	0.3	79
2385	Acid hydrolysis of water hyacinth to obtaining fermentable sugars. CTyF - Ciencia, Tecnologia Y Futuro, 2013, 5, 101-112.	0.3	16
2386	ACID HYDROLYSIS AS A METHOD TO VALORIZE CELLULOSIC FILTER CAKE FROM INDUSTRIAL CARRAGEENAN PROCESSING. Detritus, 2019, Volume 06 - June 2019, 1.	0.4	3
2387	Pretreatment of Ligno-cellulosic Biomass for Biofuels and Bioproducts. Edis, 2013, 2013, .	0.0	2
2389	Ideal Feedstock and Fermentation Process Improvements for the Production of Lignocellulolytic Enzymes. Processes, 2021, 9, 38.	1.3	13

ARTICLE IF CITATIONS Improvement of Bioethanol Production using Amylasic Properties from Bacillus licheniformis and 2390 0.3 12 Yeasts Strains Fermentation for Biomass Valorization. Asian Journal of Biotechnology, 2011, 3, 254-261. Cocoa Pod Ash Pre-treatment of Wawa (Triplochiton scleroxylon) and Sapele (Entandrophragma) Tj ETQq1 1 0.784314 rgBT /Overloc 2391 0.3 Journal of Scientific Research, 2013, 6, 812-818. Bioethanol Production from Lignocellulosic Feedstocks Based on Enzymatic Hydrolysis: Current 2392 0.535 Status and Recent Developments. Biotechnology, 2013, 13, 1-21. Influence of Solid Loading Concentrations, Inoculums Size and Nitrogen Sources on Ethanol Production from Empty Fruit Bunches (EFB) Hydrolysate in Separate Hydrolysis and Fermentation (SHF). Research Journal of Applied Sciences, 2011, 6, 310-319. 2393 0.1 Production and Characterization of Multi-Polysaccharide Degrading Enzymes from Aspergillus aculeatus BCC199 for Saccharification of Agricultural Residues. Journal of Microbiology and 2394 0.9 22 Biotechnology, 2014, 24, 1427-1437. Production of Ethanol from Agarose by Unified Enzymatic Saccharification and Fermentation in Recombinant Yeast. Journal of Microbiology and Biotechnology, 2019, 29, 625-632. Mycotechnology for Lignocellulosic Bioethanol Production. Advances in Environmental Engineering 2396 0.3 2 and Green Technologies Book Series, 2018, , 28-43. Bacterial Carbon Storage to Value Added Products. Journal of Microbial & Biochemical Technology, 0, 0.2 Optimization of Liquid Ammonia Treatment for Enzymatic Hydrolysis of Miscanthus sinensis Anderss. 2398 0.3 1 Journal of Power and Energy Engineering, 2015, 03, 26-32. Microwave-Assisted Alkaline Pretreatment and Microwave Assisted Enzymatic Saccharification of Oil 2399 Palm Empty Fruit Bunch Fiber for Enhanced Fermentable Sugar Yield. Journal of Sustainable Bioenergy 0.2 Systems, 2013, 03, 7-17. A Review on 1<sup&gt;st&lt;/sup&gt; and 2&lt;sup&gt;nd&lt;/sup&gt; Generation Bioethanol Production-Recent Progress. Journal of Sustainable Bioenergy Systems, 2016, 2400 0.2 70 06, 72-92. Optimization of Microwave Assisted Alkaline Extraction of Xylan from Birch Wood Using Response Surface Methodology. Journal of Materials Science and Chemical Engineering, 2013, 01, 38-50. 2402 Lignin--Designed Randomness. BIO-complexity, 2012, 2012, . 1.0 32 Bioethanol Production from Macroalgal Biomass. Journal of Life Science, 2016, 26, 976-982. 2403 0.2 Biomass to Bioethanol: Initiatives of the Future for Lignin. ISRN Materials Science, 2011, 2011, 1-10. 39 2404 1.0 Alkaline-assisted Microwave Pretreatment of Tetraselmis suecica Biomass for Fed-batch Enzymatic 2405 Hydrolysis. Journal of Engineering and Technological Sciences, 2019, 51, 272-289. A Method for Producing Bioethanol from the Lignocellulose of Shorea uliginosa Foxw. by Enzymatic 2406 Saccharification and Fermentation. Journal of Mathematical and Fundamental Sciences, 2014, 46, 0.3 2 169-174. Disruption of Oil Palm Empty Fruit Bunches by Microwave-assisted Oxalic Acid Pretreatment. Journal 2407 of Mathematical and Fundamental Sciences, 2017, 49, 244.

#	Article	IF	CITATIONS
2408	Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review. Carbon Letters, 2016, 17, 1-10.	3.3	61
2409	Microbial Biodiesel Production - Oil Feedstocks Produced from Microbial Cell Cultivations. , 0, , .		2
2410	Bio-hydrogen and Methane Production from Lignocellulosic Materials. , 0, , .		9
2412	Pretreatment of Kenaf Core by Combined Electron Beam Irradiation and Water Steam for Enhanced Hydrolysis. Korean Chemical Engineering Research, 2014, 52, 113-118.	0.2	6
2413	Wet Air Oxidation Pretreatment of Mixed Lignocellulosic Biomass to Enhance Enzymatic Convertibility. Korean Chemical Engineering Research, 2015, 53, 216-223.	0.2	10
2414	Two-step Acid Hydrolysis Method for Producing Fermentable Sugar from Lignocellulosic Biomass. Korean Chemical Engineering Research, 2016, 54, 1-5.	0.2	6
2415	Improvement of Delignification, Desilication and Cellulosic Content Availability in Paddy Straw via Physico-chemical Pretreatments. Annual Research & Review in Biology, 2018, 26, 1-11.	0.4	6
2416	Determination of the Chemical Oxygen Demand (COD) of Hydrothermal Pretreated Hay Samples. British Journal of Applied Science & Technology, 2015, 8, 356-360.	0.2	2
2417	Stabilising Potential of Sawdust Lignin based Extracts in Compressed Lateritic Bricks. Civil Engineering Dimension, 2018, 20, 16-20.	0.6	3
2418	Alkanolamines as Dual Functional Solvents for Biomass Deconstruction and Bioenergy Production. Green Chemistry, 2021, 23, 8611-8631.	4.6	8
2419	Ethanol production by <i>Escherichia coli</i> from detoxified lignocellulosic teak wood hydrolysates with high concentration of phenolic compounds. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	1.4	7
2420	Chemical Characterization of Emissions Arising from Solid Fuel Combustion—Contrasting Wood and Cow Dung Burning. ACS Earth and Space Chemistry, 2021, 5, 2925-2937.	1.2	6
2421	Simultaneous Biological Pretreatment and Saccharification of Rice Straw by Ligninolytic Enzymes from Panus neostrigosus I9 and Commercial Cellulase. Journal of Fungi (Basel, Switzerland), 2021, 7, 853.	1.5	9
2422	Effect of alkali-treated birch sawdust on the lignocellulase secretion and exo-polysaccharide production by Inonotus obliquus under submerged fermentation and its lignocellulose degradation patterns. Journal of Bioscience and Bioengineering, 2022, 133, 33-38.	1.1	4
2423	Upgradation of an Agro-residue by Acid Pretreatment into a Solid Fuel with Improved Energy Recovery Potential: An Optimization Study. Arabian Journal for Science and Engineering, 2022, 47, 6311-6323.	1.7	3
2424	Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood. Energy, 2022, 239, 122361.	4.5	8
2425	Ultrasonic Microwave-Assisted Micelle Combined with Fungal Pretreatment of Eucommia ulmoides Leaves Significantly Improved the Extraction Efficiency of Total Flavonoids and Gutta-Percha. Foods, 2021, 10, 2399.	1.9	11
2426	Mechanistic Investigations on the Catalytic Transfer Hydrogenation of Lignin-Derived Monomers over Ru Catalysts: Theoretical and Kinetic Studies. ACS Sustainable Chemistry and Engineering, 2021, 9, 14040-14050.	3.2	15

#	Article	IF	CITATIONS
2427	A Novel Multifunctional Arabinofuranosidase/Endoxylanase/β-Xylosidase GH43 Enzyme from Paenibacillus curdlanolyticus B-6 and Its Synergistic Action To Produce Arabinose and Xylose from Cereal Arabinoxylan. Applied and Environmental Microbiology, 2021, 87, e0173021.	1.4	14
2430	Aqueous-Phase Catalytic Processing in Biomass Valorization to H2 and Liquid Fuels. , 2011, , 37-73.		0
2431	Niche Position and Opportunities for Woody Biomass Conversion. RSC Green Chemistry, 2012, , 151-179.	0.0	0
2432	Changes in Activities of Lignin Degrading Enzymes and Lignin Content During Degradation of Wood Chips by Polyporus brumalis. Journal of the Korean Wood Science and Technology, 2012, 40, 424-430.	0.8	1
2433	Assessing the Potential of Torrefaction for Locally Available Biomass in Mauritius. Climate Change Management, 2013, , 531-545.	0.6	0
2434	Development of Solid Acid Catalyzed Hydrolysis Methods for Unused Cellulose. Kobunshi Ronbunshu, 2013, 70, 145-150.	0.2	0
2435	Modelling Anaerobic Digestion Process for Grass Silage After Beating Treatment Using Design of Experiment. , 2013, , 675-695.		1
2437	Environmentally-Friendly Pretreatment of Rice Straw by an Electron Beam Irradiation. KSBB Journal, 2014, 29, 297-302.	0.1	0
2438	Comparison of pretreatment of fallen leaves for application evaluation by Bio-ethanol raw material. Journal of Energy Engineering, 2014, 23, 241-246.	0.2	4
2439	Effect of Biological and Chemical Pre-treatment on the Hydrolysis of Corn Leaf. BioResources, 2014, 9,	0.5	0
2440	The use of lignocellulosic biomass for fermentative butanol production in biorefining processes. Dissertationes Forestales, 2015, 2015, .	0.1	3
2441	Extraction of Lignin from Biomass for Biofuel Production. , 2015, , 391-402.		3
2443	Environmentally friendly technologies for obtaining high sugars concentrations from invasive woody species. AIMS Environmental Science, 2015, 2, 884-898.	0.7	0
2444	Hot-press Pretreatment of Rice Straw for Enzymatic Hydrolysis and Volume Reduction. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2015, 94, 1105-1109.	0.2	0
2447	CHARACTERISTICS OF CORN STOVER PRETREATED WITH LIQUID HOT WATER AND FED-BATCH SEMI-SIMULTANEOUS SACCHARIFICATION AND FERMENTATION FOR BIOETHANOL PRODUCTION. , 2015, , 21-49.		0
2448	Suitability of thermal treated sawdust as replacements for peat moss in horticultural media. Journal of Agriculture & Life Science, 2015, 49, 105-115.	0.1	3
2449	Organosolv Pretreatment of Slurry Composting and Biofiltration of Liquid Fertilizer-Treated Yellow Poplar for Sugar Production. Journal of the Korean Wood Science and Technology, 2015, 43, 578-590.	0.8	2
2450	Effect of torrefaction on enzymatic saccharification of lignocellulosic biomass. Journal of Energy Engineering, 2015, 24, 1-5.	0.2	0

#	Article	IF	CITATIONS
2451	Potencial de Fibras Lignocelulósicas para a Produção de Etanol de Segunda Geração. , 0, , .		0
2452	Hemicellulose: Isolation and Its Application in Pharmacy. , 2016, , 338-373.		0
2453	"Soranovskii― A New Miscanthus Cultivar Developed in Russia. , 2016, , 67-76.		0
2454	Investigation of Furfural Yields of Liquid Hydrolyzate during Dilute Acid Pretreatment Process on Quercus Mongolica using Response Surface Methodology. Journal of the Korean Wood Science and Technology, 2016, 44, 85-95.	0.8	3
2455	Background and General Introduction. Springer Briefs in Molecular Science, 2016, , 1-5.	0.1	0
2456	CELLULOLYTIC ACTIVITY OF TRICHODERMA VIRIDE WITH REGARD TO SELECTED LIGNOCELLULOSIC WASTE MATERIALS. Journal of Ecological Engineering, 2016, 17, 119-122.	0.5	1
2457	Summary of Biomass Pretreatment Methods. Springer Briefs in Molecular Science, 2016, , 71-75.	0.1	2
2458	Sacarificación y fermentación simultánea de olote pretratado / Simultaneous Saccharification and Fermentation process of pre-treated corn cob. CIBA Revista Iberoamericana De Las Ciencias Biológicas Y Agropecuarias, 2016, 5, 53.	0.1	0
2459	Hydrothermal and Thermochemical Synthesis of Bio-Oil from Lignocellulosic Biomass: Composition, Engineering and Catalytic Upgrading. , 2016, , 325-370.		1
2460	Effect of Hydrothermal Pretreatment for Enhanced Biogas Production Using Micro-algal Biomass. International Journal of Bio-Science and Bio-Technology, 2016, 8, 67-76.	0.2	1
2461	Biochemical Conversion of Biomass to Fuels. , 2017, , 1777-1811.		1
2462	WpÅ,yw metod obróbki wstÄ™pnej biomasy na wydajność otrzymywania biogazu. Studia Ecologiae Et Bioethicae, 2016, 14, 191-203.	0.2	1
2464	Potential of Lignin-Degrading Endophytic Fungi on Lignocellulosic Biorefineries. Sustainable Development and Biodiversity, 2017, , 261-281.	1.4	4
2465	An easy and reliable method for syringyl: guaiacyl ratio measurement. Tappi Journal, 2017, 16, 145-152.	0.2	1
2466	Lime Pretreatment Associated Compositional and Ultrastructural Changes in Selected Root and Vegetable Processing Residues. International Journal of Environment Agriculture and Biotechnology, 2017, 2, 306-318.	0.0	1
2467	Advanced Biodiesel and Biojet Fuels from Lignocellulosic Biomass. , 2017, , 1-25.		0
2468	Advanced Biodiesel and Biojet Fuels from Lignocellulosic Biomass. , 2017, , 109-132.		2
2470	Agriculture Waste Composites. , 2017, , 241-279.		0

ARTICLE IF CITATIONS Agriculture Waste Composites., 2017, , 241-279. 0 2471 Comparative evaluation of different pretreatment methods on biogas production from paddy straw. 2472 0.2 Journal of Applied and Natural Science, 2017, 9, 1525-1533. Optimization of Organosolv Pretreatment of Waste Wood for Lignin Extraction. Daehan Hwan'gyeong 2474 0 0.4 Gonghag Hoeji, 2017, 39, 568-574. Effect of Low Temperatures and Residence Times of Pretreatment on Glucan Reactivity of Sodium 2475 0.5 Hydroxide-Pretreated Rice Straw. Walailak Journal of Science and Technology, 2018, 15, 313-323. The effect of beta-glucosidase supplementation on enzymatic hydrolysis of cellulose in 2476 0.5 0 hydrothermally pretreated sugar beet shreds. Acta Periodica Technologica, 2018, , 1-9. Agricultural Waste Management for Bioethanol Production. Advances in Environmental Engineering and Green Technologies Book Series, 2018, , 1-33. 2477 0.3 Marin biyok¼tlenin hidrotermal sıvılaÅŸtırılması: Entegre bir proses. Academic Platform Journal of 2478 0.5 0 Engineering and Science, 0, , . Alkali Pretreatment and Enzyme Hydrolysis to Enhance the Digestibility of Rice Straw Cellulose for Microbial Oil Production. King Mongkut's University of Technology North Bangkok International 2480 0.2 Journal of Applied Science and Technology, 2018, , . 2481 Proizvodnja bioetanola iz kukuruznih oklasaka. Kemija U Industriji, 2018, 67, 297-308. 0.2 0 Effect of Tea Dregs Form and Different Fermentation Process on the Nutrient, Tannin, Saponin, 2482 0.2 flavonoid content and Antioxidant Activity. Pakistan Journal of Nutrition, 2018, 18, 25-33. New Paradigm in Degradation of Lignocellulosic Biomass and Discovery of Novel Microbial Strains., 2483 2 2019, , 403-440. Das Wertstoff-Prinzip., 2019,, 265-315. 2484 Identification of Agricultural Crop Residues Using Non-Destructive Methods. Advances in 2485 0.3 0 Environmental Engineering and Green Technologies Book Series, 2019, , 114-144. Agricultural Waste Management for Bioethanol Production., 2019, , 492-524. 2486 Recent Advancements in Mycodegradation of Lignocellulosic Biomass for Bioethanol Production. 2487 0 0.3Fungal Biology, 2019, , 167-192. Bioproduct Engineering Solution to Sustainable Energyâ€"Retrospection. Lecture Notes in Civil 2488 Engineering, 2019, , 291-305. Cellulosic Biofuel: Technologies, Prospects, and Challenges., 2019, , 1383-1394. 2489 0 The curing behavior of urea-formaldehyde adhesive in the presence of chemically treated 2490 0.1 narrow-leaved ash. Materials Protection, 2019, 60, 64-69.

#	Article	IF	CITATIONS
2491	Production of Liquid Biofuels from Biomass. Green Energy and Technology, 2019, , 1-33.	0.4	1
2492	Rapid Bioconversion of Lignocellulosic Biomass by Fungi. Fungal Biology, 2019, , 137-165.	0.3	1
2493	The Method of Obtaining Amorphous Nanosized Silicon Dioxide from Rice Production Waste. Ecology and Industry of Russia, 2019, 23, 30-35.	0.2	3
2494	Cutting Energy Assessment of Selected Biomass Materials as Feedstock for Gasification. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 1092-1100.	0.0	0
2495	Optimization of Acid and Steam Explosion Pretreatment of Cogon Grass for Improved Cellulose Enzymatic Saccharification. Eurasian Chemico-Technological Journal, 2019, 21, 143.	0.3	1
2496	Culture of Pleurotus ostreatus in pine shavings: isolation of strains and evaluation of their productivity. Madera Bosques, 2019, 25, .	0.1	2
2497	Lignocellulosic Biofuel Production Technologies and Their Applications for Bioenergy Systems. Biofuel and Biorefinery Technologies, 2020, , 287-306.	0.1	1
2498	Biochemical and Thermochemical Conversion Performance of Densified Products for Biofuels Production. , 2020, , 123-160.		0
2499	Water Hyacinth: An Environmental Concern or a Sustainable Lignocellulosic Substrate. , 2020, , 11-19.		1
2500	Impact of Pretreatment Technology on Cellulosic Availability for Fuel Production. Clean Energy Production Technologies, 2020, , 217-242.	0.3	0
2501	Lignocellulosic Pretreatment Methods for Bioethanol Production. Green Energy and Technology, 2020, , 135-162.	0.4	0
2502	Enhancement of Biogas Production from Plant Biomass Using Iron Nanoparticles. Lecture Notes in Electrical Engineering, 2020, , 110-126.	0.3	1
2503	Pretreatment Technologies for Biomass Deconstruction. , 2020, , 65-109.		1
2504	Ensemble models of feedstock blend ratios to minimize supply chain risk in bio-based manufacturing. Biochemical Engineering Journal, 2022, 181, 107896.	1.8	4
2505	Microbial Factories for Biofuel Production: Current Trends and Future Prospects. Environmental and Microbial Biotechnology, 2021, , 71-97.	0.4	0
2506	Decongestion of lignocellulosics: a critical assessment of physicochemical approaches. , 2022, , 189-206.		5
2507	Resource recovery of lignocellulosic biomass waste into lactic acid - Trends to sustain cleaner production. Journal of Environmental Management, 2022, 301, 113925.	3.8	21
2508	Catalytic Conversion of Fossil and Renewable Fuel Resources: Approaches Using Sub and Supercritical Water as a Reaction Medium. RSC Energy and Environment Series, 2020, , 46-79.	0.2	0

#	Article	IF	CITATIONS
2509	Effect of Environmental Conditions on Date Palm Fiber Composites. , 2020, , 287-320.		4
2511	Enhanced Biofuel Production from Lignocellulosic Biomass: An Overview of Advanced Physico-Chemical and Biological Technologies. Clean Energy Production Technologies, 2020, , 151-172.	0.3	1
2512	Pretreatment of tobacco stems as bioethanol raw material: The effect of temperature and time using chemical method. AIP Conference Proceedings, 2020, , .	0.3	1
2513	Pretreatment Strategies: Unlocking of Lignocellulosic Substrate. , 2020, , 37-49.		2
2514	Valorization of organic waste into biofertilizer and its field application. , 2020, , 179-198.		3
2515	The impact of mechanical pretreatment on biogas production from waste materials of the chemical and brewing industries. Czasopismo Techniczne, 2020, , 1-12.	0.2	0
2517	Potential for Biobutanol Production in Fiji from Sugarcane and Timber Industry Residues: Contribution to Avoided Emissions. Advances in Global Change Research, 2020, , 287-313.	1.6	0
2518	Significance of lignocellulosic biomass waste in the biofuel production process. , 2020, , 1-18.		0
2519	Pretreatment and Enzymatic Hydrolysis of Lignocellulosic Biomass for Reducing Sugar Production. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 1-27.	0.2	0
2520	Proteases: an unexplored enzyme for biomass conversion. , 2020, , 159-181.		0
2521	Molecular and Genetic Strategies for Enhanced Production of Heterologous Lignocellulosic Enzymes. Grand Challenges in Biology and Biotechnology, 2020, , 281-313.	2.4	1
2522	The Resource Principle. , 2020, , 261-310.		0
2523	Wood-Rotting Fungi for Biofuel Production. Fungal Biology, 2020, , 123-147.	0.3	1
2524	A Comparison of Alkali and Biological Pretreatment Methods in Napier Grass (Pennisetum purpureum) Tj ETQq0 (Biological Science Technology and Management, 2020, 2, 31.	0 0 rgBT /0 0.3	Overlock 10 T 2
2525	Extraction and Characterization of Biogenic Silica Obtained from Selected Agro-Waste in Africa. Applied Sciences (Switzerland), 2021, 11, 10363.	1.3	11
2526	Reducing Sugar Production from Teff Straw Biomass Using Dilute Sulfuric Acid Hydrolysis: Characterization and Optimization Using Response Surface Methodology. International Journal of Biomaterials, 2021, 2021, 1-13.	1.1	10
2527	Pretreatment of Lignocelluloses Biomass for Bioethanol Production. Green Energy and Technology, 2021, , 111-144.	0.4	3

ARTICLE IF CITATIONS Role of Substrate to Improve Biomass to Biofuel Production Technologies. Clean Energy Production 2528 0.3 1 Technologies, 2021, , 127-156. Pretreatment of fiber-based biomass material for lignin extraction., 2022, , 105-135. Eco-friendly biogas production from algal biomass., 2022, , 225-249. 0 2531 Waste biomass to biobutanol: recent trends and advancements. , 2022, , 393-423. Role of lignocellulosic bioethanol in the transportation sector: limitations and advancements in 2533 3 bioethanol production from lignocellulosic biomass., 2022, , 57-85. Miscanthus sp. – Perennial lignocellulosic biomass as feedstock for greener fumaric acid 2534 2.5 bioproduction. Industrial Crops and Products, 2022, 175, 114248. Integrated conversion technologies for sustainable agri-food waste valorization: A critical review. 2535 2.9 20 Biomass and Bioenergy, 2022, 156, 106314. Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: A review. 8.2 96 Renewable and Sustainable Energy Reviews, 2022, 154, 111871. Species diversity, taxonomy and multi-gene phylogeny of phlebioid clade (Phanerochaetaceae,) Tj ETQq0 0 0 rgBT /Qyerlock 10 Tf 50 42 2537 Fungal biorefinery for sustainable resource recovery from waste. Bioresource Technology, 2022, 345, 4.8 126443. High performance nanoporous carbon from mulberry leaves (Morus alba L.) residues via microwave treatment assisted hydrothermal-carbonization for methyl orange adsorption: Kinetic, equilibrium 2539 1.3 9 and thermodynamic studies. Materialia, 2022, 21, 101288. Effect of Protic Ionic Liquids in Sugar Cane Bagasse Pretreatment for Lignin Valorization and Ethanol 2540 3.2 Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 16965-16976. Lignocellulosic Biomass Pretreatment for Enhanced Bioenergy Recovery: Effect of Lignocelluloses

CITATION REPORT

1.2

26

2542	Mobilization of organic nitrogen and phosphorus and reduction of synthetic fertilizer usage by Ceriporia lacerata HG2011 in pepper cultivation. Scientia Horticulturae, 2022, 293, 110721.	1.7	4
2543	Conversion of Cellulose into Value-Added Products. , 0, , .		1
2544	Experimental Investigation on the effect of Chemical Pretreatments of Slow-Pyrolyzed Nigerian Jatropha curcas L. Biomass Residues on Pyrolytic oil. Nigerian Journal of Pure Applied Sciences, 0, , 4126-4152.	0.0	0
2546	Integrated Catalytic Hydrolysis and Complete Conversion of Three Crop Stalks to Valuable Oxygenated Organic Chemicals. SSRN Electronic Journal, 0, , .	0.4	0
2547	Hemicelluloses Role in Biorefinery Systems of Cellulosic Bioethanol, Particleboard, and Pulp and Paper Industries. Clean Energy Production Technologies, 2022, , 1-37.	0.3	2

Recalcitrance and Enhancement Strategies. Frontiers in Energy Research, 2021, 9, .

#	Article	IF	CITATIONS
2548	Pretreatment of Lignocellulosic Materials to Enhance their Methane Potential. Applied Environmental Science and Engineering for A Sustainable Future, 2022, , 85-120.	0.2	3
2549	Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers, 2022, 14, 182.	2.0	121
2550	Elimination of selected heavy metals from aqueous solutions using biochar and bentonite composite monolith in a fixed-bed operation. Journal of Environmental Chemical Engineering, 2022, 10, 106993.	3.3	8
2551	Initial carbon release characteristics, mechanisms and denitrification performance of a novel slow release carbon source. Journal of Environmental Sciences, 2022, 118, 32-45.	3.2	22
2552	Estudo granulométrico do resÃduo da palha de feijão para efeito benéfico no processo de obtenção do bioetanol. Research, Society and Development, 2020, 9, e827997891.	0.0	0
2553	Potential Utilization of Low Quality Sweet Potato for Bioethanol Production by Saccharomyces cerevisiae TISTR5339. Walailak Journal of Science and Technology, 2020, 17, 933-946.	0.5	1
2554	Enhanced Enzymatic Conversion of Durian Peel by Sulfuric Pretreatment for Biofuel Production. , 2020, , .		2
2555	Bioconversion of Methanol by Synthetic Methylotrophy. Advances in Biochemical Engineering/Biotechnology, 2021, , .	0.6	1
2556	Hydrothermal Pretreatment as a Strategy for the Improvement of Sugarcane Bagasse Saccharification by Fungal Enzyme Blend. Brazilian Archives of Biology and Technology, 0, 64, .	0.5	1
2557	ULTRASONIC DISINTEGRATION OF LIGNOCELLULOSE RAW MATERIALS AS A PRE-TREATMENT OF A SUBSTRATE FOR MICROBIOLOGICAL PRODUCTION OF BIOBUTANOL. Biotechnologia Acta, 2021, 14, 49-55.	0.3	0
2558	Critical Review of Bioadsorption on Modified Cellulose and Removal of Divalent Heavy Metals (Cd, Pb,) Tj ETQqO C) 0.rgBT /C	Verlock 101
2559	Biosorption and bioreduction of Cr (VI) by rice husk and toxicity analysis on zebrafish embryos. International Journal of Environmental Science and Technology, 0, , 1.	1.8	0
2560	Chemical, physical and biological methods to convert lignocellulosic waste into value-added products. A review. Environmental Chemistry Letters, 2022, 20, 1129-1152.	8.3	67
2562	Extrapolation of design strategies for lignocellulosic biomass conversion to the challenge of plastic waste. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	1.4	1
2563	PolyE-IL, an Efficient and Recyclable Bronsted Acid Catalyst for Conversion of Rice Straw into Levulinic and Other Organic Acids. Energy & Fuels, 2022, 36, 1592-1603.	2.5	5
2564	Integrated technologies for extractives recovery, fractionation, and bioethanol production from lignocellulose. , 2022, , 107-139.		1
2565	Process SimulationÂof Preparing Biochar by BiomassÂPyrolysisÂVia Aspen Plus andÂlts Economic Evaluation. Waste and Biomass Valorization, 2022, 13, 2609-2622.	1.8	16
2566	Sargassum Invasion in the Caribbean: An Opportunity for Coastal Communities to Produce Bioenergy Based on Biorefinery—An Overview. Waste and Biomass Valorization, 2022, 13, 2769-2793.	1.8	11

#	Article	IF	CITATIONS
2567	Pretreatment of Sugarcane Residues for Combustion in Biomass Power Stations: A Review. Sugar Tech, 2022, 24, 732-745.	0.9	4
2568	Yeast-mediated ethanol fermentation from lignocellulosic pentosan. , 2022, , 217-241.		1
2570	Recent Advances in Biomass Pretreatment Technologies for Biohydrogen Production. Energies, 2022, 15, 999.	1.6	42
2571	Microwave Assisted Pretreatment of Szarvasi (Agropyron elongatum) Biomass to Enhance Enzymatic Saccharification and Direct Glucose Production. Frontiers in Plant Science, 2021, 12, 767254.	1.7	4
2572	Corncob-based biorefinery: A comprehensive review of pretreatment methodologies, and biorefinery platforms. Journal of the Energy Institute, 2022, 101, 290-308.	2.7	22
2573	Nanopolysaccharides: fundamentals, isolation, and applications. , 2022, , 21-59.		0
2577	Co-production of xylooligosaccharides and glucose from birch sawdust by hot water pretreatment and enzymatic hydrolysis. Bioresource Technology, 2022, 348, 126795.	4.8	32
2578	Solvents and ions for pretreatment in lignocellulosic biorefineries. Process Biochemistry, 2022, 113, 241-257.	1.8	4
2579	Trends in valorization of highly-toxic lignocellulosic biomass derived-compounds via engineered microbes. Bioresource Technology, 2022, 346, 126614.	4.8	7
2580	Pretreatments of Solid Wastes for Anaerobic Digestion and Its Importance for the Circular Economy. , 2022, , 69-94.		1
2581	Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to fuels. Energy and Environmental Science, 2022, 15, 938-990.	15.6	93
2582	Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges. Biotechnology Advances, 2022, 56, 107925.	6.0	43
2583	Utilization of Kiwi Peel Lignocellulose as Fillers in Poly(Lactic Acid) Films. Journal of the Turkish Chemical Society, Section A: Chemistry, 0, , 283-294.	0.4	3
2584	Insight into understanding sequential two-stage pretreatment on modifying lignin physiochemical properties and improving holistic utilization of renewable lignocellulose biomass. Renewable Energy, 2022, 187, 123-134.	4.3	9
2585	Assessment of the effectiveness of liquid hot water and steam explosion pretreatments of fast-growing poplar (Populus trichocarpa) wood. Wood Science and Technology, 2022, 56, 87-109.	1.4	26
2586	Direct Hydrolysis of Biomass Polymers using High-pressure CO2 and CO2–H2O Mixtures. RSC Green Chemistry, 2017, , 83-114.	0.0	3
2588	Thermophilic Fungal Lignocellulolytic Enzymes inÂBiorefineries. , 2021, , 15-43.		1
2589	Scale-Up of the Ionic Liquid-Based Biomass Conversion Processes. , 2022, , 1-8.		0

#	Article	IF	CITATIONS
2591	Bioethanol: Substrates, Current Status, and Challenges. Clean Energy Production Technologies, 2022, , 231-269.	0.3	1
2592	Plasma technology for lignocellulosic biomass conversion toward an electrified biorefinery. Green Chemistry, 2022, 24, 2680-2721.	4.6	18
2593	The Role of Acidic, Alkaline and Hydrothermal Pretreatment on Pyrolysis of Wild Mustard (Sinapis) Tj ETQq0 0 0 r	gBT /Over 0.4	lock 10 Tf 50
2595	The role of acidic, alkaline and hydrothermal pretreatment on pyrolysis of wild mustard (Sinapis) Tj ETQq1 1 0.78	4314 rgB1 1.5	- /Qyerlock 1
2596	Xylitol: Bioproduction and Applications-A Review. Frontiers in Sustainability, 2022, 3, .	1.3	26
2597	A review on various types of densification/briquetting technologies of biomass residues. IOP Conference Series: Materials Science and Engineering, 2022, 1228, 012019.	0.3	8
2598	Mild-temperature Organosolv treatment of rice-straw: extracting ability of dimethylformamide and material applications. International Journal of Environmental Science and Technology, 0, , 1.	1.8	2
2599	Analysis of a biorefinery with multiple raw materials in the context of post-conflict zones in Colombia: plantain and avocado integration in the Montes de MarÃa region. Biomass Conversion and Biorefinery, 2022, 12, 4531-4548.	2.9	9
2600	Chemical Characteristics of Wood Cell Wall with an Emphasis on Ultrastructure: A Mini-Review. Forests, 2022, 13, 439.	0.9	17
2601	Recent advances in the use of lignocellulosic biomass in microbial fuel cells for electricity generation. International Journal of Sustainable Energy, 0, , 1-17.	1.3	2
2602	Bio-Oil: Production, Modification, and Application. Chemistry and Technology of Fuels and Oils, 0, , 1.	0.2	6
2603	A Detoxification-Free Process for Enhanced Ethanol Production From Corn Fiber Under Semi-Simultaneous Saccharification and Fermentation. Frontiers in Microbiology, 2022, 13, 861918.	1.5	2
2605	Sequential production of biomethane and bioethanol through the whole biorefining of rice straw: Analysis of structural properties and mass balance. Biomass Conversion and Biorefinery, 2024, 14, 2693-2705.	2.9	6
2606	Discovery of extremophilic cellobiohydrolases from marine Aspergillus niger with computational analysis. Process Biochemistry, 2022, 115, 118-127.	1.8	3
2607	How adaptive laboratory evolution can boost yeast tolerance to lignocellulosic hydrolyses. Current Genetics, 2022, 68, 319-342.	0.8	11
2608	RDRP (Meth)acrylic Homo and Block Polymers from Lignocellulosic Sugar Derivatives. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	7
2609	Dilute acid pretreatment for enhancing the enzymatic saccharification of agroresidues using a <i>Botrytis ricini</i> endoglucanase. Biotechnology and Applied Biochemistry, 2023, 70, 184-192.	1.4	6
2610	A hydrotrope pretreatment for stabilized lignin extraction and high titer ethanol production. Bioresources and Bioprocessing, 2022, 9, .	2.0	12

#	Article	IF	CITATIONS
2611	Comparative Analysis of Lignocellulose Agricultural Waste and Pre-treatment Conditions with FTIR and Machine Learning Modeling. Bioenergy Research, 2023, 16, 123-137.	2.2	10
2612	Visible light photocatalytic degradation and pretreatment of lignin using magnetic graphitic carbon nitride for enhancing methane production in anaerobic digestion. Fuel, 2022, 318, 123600.	3.4	9
2613	Kajian Pustaka: Potensi Kulit Buah Untuk Menghasilkan Bioetanol Dengan Mengkaji Kondisi, Substrat, Dan Metode Fermentasi. , 2021, 1, .		0
2614	Influence of mechanical operation on the biodelignification of Leucaena leucocephala by xylanase treatment. 3 Biotech, 2022, 12, 20.	1.1	1
2615	Conversion of Carbohydrates in Lignocellulosic Biomass after Chemical Pretreatment. Energies, 2022, 15, 254.	1.6	12
2616	Hydrolysis of Red Beet Bagasse and Modeling of Hydrolysates for Bioethanol Production. Ciencia E IngenierÃa Neogranadina, 2021, 31, 135-148.	0.1	0
2617	Sweet sorghum for phytoremediation and bioethanol production. Journal of Leather Science and Engineering, 2021, 3, .	2.7	13
2618	Bacterial Cellulose Production from agricultural Residues by two <i>Komagataeibacter</i> sp. Strains. Bioengineered, 2022, 13, 10010-10025.	1.4	20
2619	Salt-tolerant and thermostable mechanisms of an endoglucanase from marine Aspergillus niger. Bioresources and Bioprocessing, 2022, 9, .	2.0	6
2620	Gut Microbiota of Ostrinia nubilalis Larvae Degrade Maize Cellulose. Frontiers in Microbiology, 2022, 13, 816954.	1.5	9
2621	Integrated catalytic hydroconversion of three crop stalks to valuable oxygenated organic chemicals. Fuel, 2022, 322, 124149.	3.4	7
2622	Optimization of synergistic degradation of steam exploded corn straw by lytic polysaccharide monooxygenase R17L and cellulase. Industrial Crops and Products, 2022, 182, 114924.	2.5	5
2623	CHAPTER 6. Advanced Generation of Bioenergy. RSC Green Chemistry, 0, , 117-145.	0.0	0
2624	High Value Chemicals and Materials Production Based on Biomass Components Separation. RSC Green Chemistry, 2014, , 146-175.	0.0	0
2636	Nitro-Oxidation Process for Fabrication of Efficient Bioadsorbent from Lignocellulosic Biomass by Combined Liquid-Gas Phase Treatment. SSRN Electronic Journal, 0, , .	0.4	0
2638	Optimized HY via Thermal Modification as a Green Catalyst for One-Pot Synthesis of Fructose from Glucose Isomerization in Methanol/Water Medium. Catalysis Letters, 0, , 1.	1.4	0
2639	Domestic Wastewater Treatment Using Neem Leaves and Coconut Husk as Adsorbents. ECS Transactions, 2022, 107, 4733-4746.	0.3	0
2640	An Overview of Extrusion as a Pretreatment Method of Lignocellulosic Biomass. Energies, 2022, 15, 3002.	1.6	12

#	Article	IF	CITATIONS
2641	Pretreatment of Natural Lignocellulose with Inorganic Salts Improves Ligninase Production Fermented by Aspergillus fumigatus. Journal of Polymers and the Environment, 2022, 30, 3633-3644.	2.4	1
2642	Sequential mild acid and alkali pretreatment of rice straw to improve enzymatic saccharification for bioethanol production. Preparative Biochemistry and Biotechnology, 2023, 53, 231-238.	1.0	2
2643	Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention. Biomass Conversion and Biorefinery, 2024, 14, 2959-2981.	2.9	15
2644	A comprehensive review on optimization of anaerobic digestion technologies for lignocellulosic biomass available in India. Biomass and Bioenergy, 2022, 161, 106479.	2.9	28
2645	Pretreatment, Hydrolysis and Fermentation of Lignocellulosic Biomass for Bioethanol. Current World Environment Journal, 2022, 17, 113-121.	0.2	0
2646	Cassava Leaves as an Alternative Nitrogen Source for Ethanol Fermentation. Bioenergy Research, 2023, 16, 835-842.	2.2	2
2647	Valorization of sawdust biomass for biopolymer extraction <i>via</i> green method: Comparison with conventional process. International Journal of Energy Research, 0, , .	2.2	0
2648	Bioethanol from various types of banana waste: A review. Bioresource Technology Reports, 2022, 18, 101092.	1.5	9
2649	Nitro-oxidation process for fabrication of efficient bioadsorbent from lignocellulosic biomass by combined liquid-gas phase treatment. Carbohydrate Polymer Technologies and Applications, 2022, 3, 100219.	1.6	0
2650	Efficient sugar production from plant biomass: Current status, challenges, and future directions. Renewable and Sustainable Energy Reviews, 2022, 164, 112583.	8.2	38
2651	Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production. Renewable and Sustainable Energy Reviews, 2022, 165, 112606.	8.2	15
2653	Potential of Weed Biomass for Bioethanol Production. Green Chemistry and Sustainable Technology, 2022, , 65-71.	0.4	2
2655	2G-biofuel ethanol: an overview of crucial operations, advances and limitations. Biomass Conversion and Biorefinery, 2024, 14, 2983-3006.	2.9	1
2656	Optimization of alkali, acid and organic solvent pretreatment on rice husk and its techno economic analysis for efficient sugar production. Preparative Biochemistry and Biotechnology, 2023, 53, 279-287.	1.0	1
2657	Sugarcane bagasse: an important lignocellulosic substrate for production of enzymes and biofuels. Biomass Conversion and Biorefinery, 2024, 14, 6111-6142.	2.9	5
2658	Coffee Husk and Lignin Revalorization: Modification with Ag Nanoparticles for Heavy Metals Removal and Antifungal Assays. Water (Switzerland), 2022, 14, 1796.	1.2	4
2661	Conversion of Renewable Biomass into Bioproducts. ACS Symposium Series, 0, , 1-5.	0.5	0
2662	Bioethanol Production. , 2022, , .		0

#	Article	lF	CITATIONS
2663	New insights of cellulosic ethanol production from lignocellulosic feedstocks. , 2022, , 749-779.		0
2664	Advances and sustainable conversion of waste lignocellulosic biomass into biofuels. , 2022, , 167-206.		Ο
2665	A comprehensive integration of biorefinery concepts for the production of biofuels from lignocellulosic biomass. , 2022, , 45-70.		1
2666	Co-production of schizophyllan and cellulolytic enzymes from bagasse by <i>Schizophyllum commune</i> . Bioscience, Biotechnology and Biochemistry, 2022, 86, 1144-1150.	0.6	2
2667	Continuous Bioethanol Production by Fungi and Yeast Working in Tandem. Energies, 2022, 15, 4338.	1.6	4
2668	Sensitivity Analysis and Parameter Optimization for the Fractionative Catalytic Conversion of Lignocellulosic Biomass in the Polyoxometalate–lonosolv Concept. ACS Sustainable Chemistry and Engineering, 2022, 10, 8474-8483.	3.2	3
2669	An insight into the principles of lignocellulosic biomass-based zero-waste biorefineries: a green leap towards imperishable energy-based future. Biotechnology and Genetic Engineering Reviews, 2022, 38, 288-338.	2.4	4
2670	Harnessing the power of cellulolytic nitrogen-fixing bacteria for biovalorization of lignocellulosic biomass. Industrial Crops and Products, 2022, 186, 115235.	2.5	7
2671	Optimization of the anaerobic conversion of green biomass into volatile fatty acids for further production of high-calorie liquid fuel. , 2022, , 67-82.		0
2672	Temperature change and mitigation potential of Indian cement industry. Carbon Management, 2022, 13, 341-351.	1.2	0
2673	Catalytic microwave pyrolysis of mushroom spent compost (MSC) biomass for bio-oil production and its life cycle assessment (LCA). Biomass Conversion and Biorefinery, 0, , .	2.9	3
2674	Optimal Conversion of Organic Wastes to Value-Added Products: Toward a Sustainable Integrated Biorefinery in Denmark. Frontiers in Chemical Engineering, 0, 4, .	1.3	4
2675	A Review on Role of Nanomaterials in Bioconversion of Sustainable Fuel Bioethanol. Waste and Biomass Valorization, 2022, 13, 4651-4667.	1.8	1
2676	Characteristics of crystalline and amorphous fractions of date-pits as treated by alcohol-water pressure cooking. Bioactive Carbohydrates and Dietary Fibre, 2022, 28, 100331.	1.5	3
2677	Cross-Comparison of the Impact of Grass Silage Pulsed Electric Field and Microwave-Induced Disintegration on Biogas Production Efficiency. Energies, 2022, 15, 5122.	1.6	3
2678	Isolation, Screening and Identification of Lignin Degraders from the Gut of Termites Odontotermes obesus. Journal of Pure and Applied Microbiology, 0, , .	0.3	1
2679	Non-ionic surfactant integrated extraction of exopolysaccharides from engineered Synechocystis sp. PCC 6803 under fed-batch mode facilitates the sugar-rich syrup production for ethanol fermentation. Algal Research, 2022, 66, 102772.	2.4	2
2680	A review on the production and recovery of sugars from lignocellulosics for use in the synthesis of bioproducts. Industrial Crops and Products, 2022, 186, 115213.	2.5	12

#	Article	IF	CITATIONS
2681	Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chemistry: X, 2022, 15, 100398.	1.8	27
2682	Multidisciplinary Pretreatment Approaches to Improve the Bio-methane Production from Lignocellulosic Biomass. Bioenergy Research, 2023, 16, 228-247.	2.2	7
2683	Pretreatment of agricultural lignocellulosic biomass for fermentable sugar: opportunities, challenges, and future trends. Biomass Conversion and Biorefinery, 2024, 14, 6155-6183.	2.9	12
2684	Predicting the techno-economic performance of a large-scale second-generation bioethanol production plant: a case study for Kenya. International Journal of Energy and Environmental Engineering, 2023, 14, 95-108.	1.3	2
2685	Evaluation of banana peel hydrolysate as alternate and cheaper growth medium for growth of microalgae Chlorella sorokiniana. Biomass Conversion and Biorefinery, 0, , .	2.9	7
2686	Biomass Behavior upon Fast Pyrolysis in Inert and in CO2-Rich Atmospheres: Role of Lignin, Hemicellulose and Cellulose Content. Energies, 2022, 15, 5430.	1.6	1
2688	A review on facile synthesis of nanoparticles made from biomass wastes. Nanotechnology for Environmental Engineering, 2022, 7, 783-796.	2.0	3
2689	Choline chloride-based deep eutectic solvent system as a pretreatment for microcrystalline cellulose. Cellulose, 2022, 29, 8133-8150.	2.4	9
2690	Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review. Sustainability, 2022, 14, 9953.	1.6	11
2691	Fractionation of Lignocellulosic Fibrous Straw Digestate by Combined Hydrothermal and Enzymatic Treatment. Energies, 2022, 15, 6111.	1.6	5
2692	Lytic polysaccharide monooxygenase – A new driving force for lignocellulosic biomass degradation. Bioresource Technology, 2022, 362, 127803.	4.8	7
2693	Enhancing economic and environmental friendliness of xylonic acid bioproduction from corncob hydrolysate by the combined recycling-technology of detoxifying-resin and catalyzing-cell. Industrial Crops and Products, 2022, 188, 115550.	2.5	4
2694	Design and applications of biocompatible choline amino acid ionic liquids. Green Chemistry, 2022, 24, 7281-7304.	4.6	16
2695	Waste Biorefineries Facilities: The Feedstock Choice. , 2022, , 43-68.		0
2696	Step Forward on Waste Biorefineries: Technology Bottlenecks and Perspective on Commercialization. , 2022, , 119-136.		1
2697	Biobutanol. Green Energy and Technology, 2022, , 51-89.	0.4	0
2698	An Overview on Organosolv Production of Bio-refinery Process Streams for the Production of Biobased Chemicals. Clean Energy Production Technologies, 2022, , 345-374.	0.3	0
2699	Understanding Biomass Recalcitrance: Conventional Physical, Chemical, and Biological Pretreatment Methods for Overcoming Biomass Recalcitrance. Clean Energy Production Technologies, 2022, , 53-78.	0.3	2
#	Article	IF	CITATIONS
------	--	-----	-----------
2700	Alkali Impregnation and Steam Explosion of Cogon Grass for Improved Enzymatic Saccharification. Materials Science Forum, 0, 1069, 177-182.	0.3	0
2701	Radiation-Assisted Hydrolysis of Lignocellulosic Biomass. Mechanistic Study. Waste and Biomass Valorization, 2023, 14, 1113-1122.	1.8	1
2702	Sawdust Biodegradation: Cellulase and Ligninase Production via Submerged Fermentation and Glucose Production by Streptomyces lazureus. Journal of Pure and Applied Microbiology, 0, , .	0.3	0
2703	Increase Butanol Production from Corn Straw by Mineral Compounds Supplementation. Energies, 2022, 15, 6899.	1.6	0
2704	Valorization of bamboo shoot shell waste for the coproduction of fermentable sugars and xylooligosaccharides. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
2705	An overview on fermentation strategies to overcome lignocellulosic inhibitors in second-generation ethanol production using cell immobilization. Critical Reviews in Biotechnology, 2023, 43, 1150-1171.	5.1	5
2706	Investigation of Steam Explosion Pretreatment of Sawdust and Oat Straw to Improve Their Quality as Biofuel Pellets. Energies, 2022, 15, 7168.	1.6	10
2707	Peroxyacetic Acid Pretreatment: A Potentially Promising Strategy towards Lignocellulose Biorefinery. Molecules, 2022, 27, 6359.	1.7	6
2708	Study of Progress on Nanocrystalline Cellulose and Natural Fiber Reinforcement Biocomposites. Journal of Nanomaterials, 2022, 2022, 1-16.	1.5	3
2709	Bioethanol from Biomass: Technologies and Challenges. Microorganisms for Sustainability, 2022, , 41-55.	0.4	0
2710	Bioethanol Production Technologies: Commercial and Future Perspectives. Microorganisms for Sustainability, 2022, , 117-139.	0.4	1
2711	Feedstocks and Pre-Treatment Techniques for Third-Generation Bioethanol Production. Biofuel and Biorefinery Technologies, 2022, , 281-300.	0.1	0
2712	Wastewater and Solid Waste as Feedstock for Energy Production. Clean Energy Production Technologies, 2022, , 219-270.	0.3	1
2713	Role of Thermophilic Bacterial Enzymes in Lignocellulosic Bioethanol Production: A Panoramic View. Microorganisms for Sustainability, 2022, , 57-81.	0.4	0
2715	Principle and Application of Steam Explosion Technology in Modification of Food Fiber. Foods, 2022, 11, 3370.	1.9	12
2716	Interactions of Torrefaction and Alkaline Pretreatment with Respect to Glucose Yield of Hydrolyzed Wheat Straw. Biomass, 2022, 2, 264-278.	1.2	6
2717	Investigating the potential of Andean lupin as a lignocellulosic feedstock for Europe: first genomeâ€wide association study on <i>L. mutabilis</i> biomass quality. GCB Bioenergy, 0, , .	2.5	2
2718	A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets. Energies, 2022, 15, 7303.	1.6	5

#	Article	IF	CITATIONS
2719	Bioethanol processing from wheat straw: investment appraisal of a full-scale UK biofuel refinery. Biofuels, 0, , 1-11.	1.4	1
2720	Extraction of Cellulose from Sugarcane Bagasse Optimization and Characterization. Advances in Materials Science and Engineering, 2022, 2022, 1-10.	1.0	13
2721	A review of Willow (Salix spp.) as an integrated biorefinery feedstock. Industrial Crops and Products, 2022, 189, 115823.	2.5	8
2722	Ethanol organosolv pretreatment of sugarcane bagasse assisted by organic acids and supercritical carbon dioxide. Carbohydrate Polymers, 2023, 300, 120263.	5.1	2
2723	Recent advances in consolidated bioprocessing for conversion of lignocellulosic biomass into bioethanol – A review. Chemical Engineering Journal, 2023, 453, 139783.	6.6	57
2724	State-of-the-art in bioresources for sustainable transportation. International Journal of Hydrogen Energy, 2023, 48, 3768-3790.	3.8	7
2725	Processing of Biomass Prior to Hydrogen Fermentation and Post-Fermentative Broth Management. Molecules, 2022, 27, 7658.	1.7	4
2726	Review of chemical pretreatment of lignocellulosic biomass using low-liquid and low-chemical catalysts for effective bioconversion. Bioresource Technology, 2023, 368, 128339.	4.8	15
2727	Pretreatment with fermentable and recyclable deep eutectic solvent (DES) for improving resource utilization of biomass. Industrial Crops and Products, 2022, 190, 115868.	2.5	5
2728	Nanobacterial Cellulose Production and Its Antibacterial Activity in Biodegradable Poly(vinyl) Tj ETQq1 1 0.78431	4 rgBT /Ov 1.6	reglock 10 Tf
2729	Investigation of the structure of gallate xylose polymers and their antioxidant properties for skin care products. Carbohydrate Research, 2023, 523, 108728.	1.1	3
2730	INFLUENCE OF BIOMASS PRETREATMENT ON SUBSEQUENT PYROLYSIS AND HYDRODEOXYGENATION IN BIO-BASED TRANSPORT FUELS AND CHEMICALS PRODUCTION: A CRITICAL REVIEW. International Journal of Energy for A Clean Environment, 2023, 24, 59-114.	0.6	1
2731	Diseño de una BiorrefinerÃa para la Obtención de Bioproductos a partir de Residuos Lignocelulósicos. Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia, 0, , 172-184.	0.1	0
2732	Review on biobutanol as Malaysia potential biofuels. AIP Conference Proceedings, 2022, , .	0.3	0
2733	Intensification of delignification and subsequent hydrolysis of sustainable waste as banana peels for the HMF production using ultrasonic irradiation. Chemical Engineering and Processing: Process Intensification, 2023, 183, 109247.	1.8	4
2734	Physicochemical characteristics of lignin-g-PMMA/PLA blend via atom transfer radical polymerization depending on the structural difference of organosolv lignin. International Journal of Biological Macromolecules, 2023, 226, 279-290.	3.6	4
2735	Free nitrous acid (FNA) pretreatment enhances biomethanation of lignocellulosic agro-waste (wheat) Tj ETQq0 0	0 rgBT /Ov 4:5	verlock 10 Tf

2736	Application of Ceriporia lacerata HG2011 as biocontrol agent against multiple phytopathogenic fungi and oomycetes. Pesticide Biochemistry and Physiology, 2023, 190, 105316.	t	1.6	3	
------	--	---	-----	---	--

		CITATION RE	PORT	
#	Article		IF	Citations
2737	Impact and flexural properties of ABS biocomposites reinforced with coir fiber. , 2022, ,	, 295-309.		0
2739	Hydrothermal Liquefaction of Lignocellulosic and Protein-Containing Biomass: A Comp Review. Catalysts, 2022, 12, 1621.	rehensive	1.6	7
2741	Potential Use of Cow Manure for Poly(Lactic Acid) Production. Sustainability, 2022, 14	, 16753.	1.6	4
2742	Co-Fermentation of Glucose–Xylose Mixtures from Agroindustrial Residues by Ethand Escherichia coli: A Study on the Lack of Carbon Catabolite Repression in Strain MS04. № 27, 8941.	blogenic Molecules, 2022,	1.7	4
2743	Evaluation of Agricultural Waste Management Mechanism in Iran. , 2022, 2, 113-124.			2
2745	Wood Plastic Composites (WPCs): Applications of Nanomaterials. , 2023, , 97-133.			2
2746	Effect of combining exogenous fibrolytics enzymes with Saccharomyces cerevisiae or E essential oil on the in vitro ruminal fermentation and digestibility of wheat straw. Indiar Animal Sciences, 2019, 89, .	ucalyptus 1 Journal of	0.1	0
2747	Deep Eutectic Solvents for Processing Lignocellulosic Biomass to Renewable Energy. , 2	2022, , 1-10.		0
2748	Agricultural Lignocellulosic Waste to Biofuels. Clean Energy Production Technologies, 2 205-247.	2023, ,	0.3	2
2749	Effect of Alkaline and Mechanical Pretreatment of Wheat Straw on Enrichment Culture Pachnoda marginata Larva Gut. Fermentation, 2023, 9, 60.	s from	1.4	5
2750	Utilization of Wheat and Maize Waste as Biofuel Source. Clean Energy Production Tech , 27-66.	nologies, 2023,	0.3	2
2751	Optimisation of the processing conditions of hydrolytic hydrogenation of cellulose usir nanofiber supported Ni catalysts. Catalysis Today, 2023, , .	ıg carbon	2.2	2
2752	Effects of crude oligosaccharide extract from agricultural by-products on the performar development of broilers. Animal Bioscience, 0, , .	nce and gut	0.8	1
2753	Investigation of the Effect of Zeolite Supports and the Role of Wâ€Species for Oneâ€P Conversion of Cellulose to Ethylene Glycol: Theoretical & Experimental Studies Cl Asian Journal, 2023, 18, .	ot Catalytic hemistry - an	1.7	1
2754	Dark fermentation for H2 production from food waste and novel strategies for its enha International Journal of Hydrogen Energy, 2023, 48, 9957-9970.	ncement.	3.8	12
2755	Disposal and resource utilization of waste masks: a review. Environmental Science and Research, 2023, 30, 19683-19704.	Pollution	2.7	6
2756	Comparison of coupled chemical pretreatment and mechanical refining of spruce sawd network properties and initial production of lignin-bonded biocomposites. Biomass Cor Biorefinery, 0, , .	ust: fiber version and	2.9	1
2757	Challenges to biofuel production. , 2023, , 67-89.			0

щ		IF	CITATIONS
#	ARTICLE	IF	CHATIONS
2758	ash as a source of CaO. AIP Conference Proceedings, 2023, , .	0.3	1
2759	A Review on Magnetic Nanobiochar with Their Use in Environmental Remediation and High-Value Applications. Journal of Nanomaterials, 2023, 2023, 1-14.	1.5	2
2760	Improving the hydrodeoxygenation activity of vanillin and its homologous compounds by employing MoO ₃ -incorporated Co-BTC MOF-derived MoCoO _{<i>x</i>} @C. Dalton Transactions, 2023, 52, 3111-3126.	1.6	4
2761	Recent advances of nanocellulose as biobased adsorbent for heavy metal ions removal: A sustainable approach integrating with waste management. Environmental Nanotechnology, Monitoring and Management, 2023, 20, 100791.	1.7	7
2762	Biomass valorization to biobutanol. , 2023, , 151-178.		0
2763	Nanomaterials-based additives in nanofuel. , 2023, , 243-268.		1
2764	Lignocellulosic biowaste for composite applications. , 2023, , 639-678.		0
2765	Using a systematic review to develop a cellulose nanocrystals production framework for use as a design baseline and optimization tool. South African Journal of Chemical Engineering, 2023, 44, 344-355.	1.2	0
2766	Facile preparation of cellulose/lignosulfonate derivatives composite films with high UV-shielding and gas barrier properties. International Journal of Biological Macromolecules, 2023, 237, 124218.	3.6	5
2767	Production of ethanol from xylan by indigenous xylanolytic and ethanologenic bacteria isolated from fruit wastes. Sustainable Energy Technologies and Assessments, 2023, 57, 103216.	1.7	1
2768	Extraction methods and characterization of cellulose fractions from a sugarcane by-product for potential industry applications. Industrial Crops and Products, 2023, 197, 116615.	2.5	9
2769	Use of hydrogen peroxide to prime the autohydrolysis and enzymatic hydrolysis efficiency of wheat straw pulp residues. Fuel, 2023, 346, 128283.	3.4	3
2770	Direct cost-efficient hydrothermal conversion of Amazonian lignocellulosic biomass residue. Biomass Conversion and Biorefinery, 0, , .	2.9	1
2771	Photoreforming of Waste Polymers for Sustainable Hydrogen Fuel and Chemicals Feedstock: Waste to Energy. Chemical Reviews, 2023, 123, 4443-4509.	23.0	47
2772	Technoâ€economic analysis of biochemical conversion of biomass to biofuels and platform chemicals. Biofuels, Bioproducts and Biorefining, 2023, 17, 718-750.	1.9	7
2773	pH-Based Control of Anaerobic Digestion to Maximise Ammonium Production in Liquid Digestate. Water (Switzerland), 2023, 15, 417.	1.2	2
2774	SUPPLEMENTS TO THE PROBLEM OF ENERGY CONSUMPTION IN REDUCING LIGNOCELLULOSES BIOMASS SIZE TO PRODUCE ENERGY. Journal of Applied Life Sciences and Environment, 2023, 55, 159-165.	0.1	0
2775	Analysis of Single-Step Pretreatments for Lignocellulosic Platform Isolation as the Basis of Biorefinery Design. Molecules, 2023, 28, 1278.	1.7	5

#	Article	IF	CITATIONS
2776	Scale-Up of the Ionic Liquid-Based Biomass Conversion Processes. , 2022, , 1183-1190.		0
2777	Rio Tinto as a niche for acidophilus enzymes of industrial relevance. Microbial Biotechnology, 2023, 16, 1069-1086.	2.0	1
2779	Development of a Dual-Chamber Pyrolizer for Biochar Production from Agricultural Waste in Sri Lanka. Energies, 2023, 16, 1819.	1.6	6
2780	Agricultural Residues as Raw Materials for Pulp and Paper Production: Overview and Applications on Membrane Fabrication. Membranes, 2023, 13, 228.	1.4	17
2781	Evaluation of Agave tequilana by-products for microbial production of hyaluronic acid. Bioresource Technology Reports, 2023, 21, 101366.	1.5	1
2783	Role of Microbes in the Synthesis of Industrial Products from Lignocellulosic Materials. Sustainable Agriculture Reviews, 2023, , 415-458.	0.6	1
2784	Pre-treatment of lignocellulosic biomass: review of various physico-chemical and biological methods influencing the extent of biomass depolymerization. International Journal of Environmental Science and Technology, 2023, 20, 13895-13922.	1.8	7
2785	Value Added Products Generation from Sugarcane Bagasse and Its Impact on Economizing Biorefinery and Sustainability of Sugarcane Industry. , 0, , .		1
2786	Lactic Acid: A Comprehensive Review of Production to Purification. Processes, 2023, 11, 688.	1.3	10
2787	Lignocellulose coffee waste-based epoxy composites: effect of various treatment methods on composite properties. Cellulose, 2023, 30, 3589-3609.	2.4	2
2788	Solvent-Assisted Adsorption of Cellulose on a Carbon Catalyst as a Pretreatment Method for Hydrolysis to Glucose. Chemistry, 2023, 5, 381-392.	0.9	0
2789	Comparative Study of Green and Traditional Routes for Cellulose Extraction from a Sugarcane By-Product. Polymers, 2023, 15, 1251.	2.0	3
2790	Poly(lactic acid) (PLA) as a building block for a circular economy. , 2023, , 235-271.		2
2791	Biogenic Straw Aerogel Thermal Insulation Materials. Advanced Engineering Materials, 2023, 25, .	1.6	7
2792	Ionic liquids and deep eutectic solvents in wastewater treatment: recent endeavours. International Journal of Environmental Science and Technology, 2024, 21, 977-996.	1.8	0
2793	A Review on Eco-friendly Isolation of Lignin by Natural Deep Eutectic Solvents from Agricultural Wastes. Journal of Polymers and the Environment, 2023, 31, 3283-3316.	2.4	6
2794	Modeling and optimization of alkaline pretreatment conditions for the production of bioethanol from giant reed (Arundo donax L.) biomass using response surface methodology (RSM). Biomass Conversion and Biorefinery, 0, , .	2.9	1
2795	Application of lignocellulosic composite (Taiwan incense-cedar) for digital light processing (DLP) in 3D printing. Wood Material Science and Engineering, 0, , 1-12.	1.1	1

#	Article	IF	Citations
2796	Factors affecting biohydrogen production: Overview and perspectives. International Journal of Hydrogen Energy, 2023, 48, 27513-27539.	3.8	5
2797	COMPARATIVE ANALYSIS OF MORPHOLOGICAL AND STRUCTURAL CHANGES IN GAMMA AND ELECTRON BEAM IRRADIATED SUGARCANE BAGASSE. Cellulose Chemistry and Technology, 2023, 57, 61-70.	0.5	0
2798	Structure and Formation Mechanism of Pseudo-Lignin Derived from Lignocellulose. , 2023, , 85-99.		0
2800	Fungal Enzymes in the Production of Biofuels. , 2023, , 399-434.		0
2804	Pretreatment technologies for lignocellulosic biomass refineries. , 2023, , 81-106.		1
2806	Waste valorization for biofuel production by oleaginous yeast. , 2023, , 139-165.		0
2807	Biopreservative technologies of food: an alternative to chemical preservation and recent developments. Food Science and Biotechnology, 2023, 32, 1337-1350.	1.2	5
2808	Role of microorganisms in agricultural waste management. , 2023, , 137-153.		0
2811	Emerging applications of nanomaterials in the pretreatment of lignocellulosic biomass. , 2023, , 117-141.		0
2815	Amylolytic lactic acid bacteria: Cell factories for direct lactic acid production from biomass by simultaneous saccharification and fermentation. , 2023, , 199-217.		0
2820	High-Entropy Materials as the Catalysts for Valorization of Biomass and Biomass-Derived Platform Compounds. ACS Sustainable Chemistry and Engineering, 2023, 11, 10203-10218.	3.2	3
2822	Weed—An Alternate Energy Source. Energy, Environment, and Sustainability, 2023, , 165-193.	0.6	0
2825	Assessment of Pretreatment Strategies for Valorization of Lignocellulosic Biomass: Path Forwarding Towards Lignocellulosic Biorefinery. Waste and Biomass Valorization, 2024, 15, 1-36.	1.8	3
2826	Preparation of Nanocellulose From Plants. , 2023, , 55-88.		0
2853	Improving the Value of Spent Coffee Ground by Converting Carbohydrates into Sugars by Saccharomyces cerevisiae to Produce Bioethanol. , 2023, , 208-214.		0
2855	Gaseous Energy Carrier From Algal Material. , 2023, , .		0
2861	ϴʹϿϧϿʹϿϴϿʹϿͱϴΫϴϴϫϴͺϸͱϴ;ϴ;ϴ;ϴ϶ϴϿ·ϴ;ϿϨϤϤϿϧϿϧϿʹϿͺϴϴϥϽʹϿʹʹϴͺϨ϶϶;ϴ;	ДУÐЛf)-@ĐžĐœ Đ

2862 Microalgal biofuels: From biomass to bioenergy. , 2024, , 3-22.

0

	Сіта	tion Report	
#	Article	IF	Citations
2871	(Re)-thinking the red seaweed biomass for biofuel production to meet sustainable development goals toward circular bioeconomy. Energy, Ecology and Environment, 2024, 9, 42-57.	1.9	0
2876	Sustainable production of advanced biofuel and platform chemicals from woody biomass. , 2024, , 163-194.		0
2877	Lactic Acid Production from Lignocellulosic Biomass. , 0, , .		0
2881	An Economic and Sustainable Method of Bio-Ethanol Production from Agro-Waste: A Waste to Energy Approach. , 2023, , 65-99.		0
2900	Microbial Production of Sugar Alcohols. , 2024, , 1-25.		0
2904	Nanobiotechnological Routes in Lignocellulosic Waste Pre-treatment for Bio-renewables Production. Springer Proceedings in Energy, 2023, , 23-34.	0.2	0
2909	Solar reforming as an emerging technology for circular chemical industries. Nature Reviews Chemistry, 2024, 8, 87-105.	13.8	0
2912	Versatility of microbial laccases in industrial applications. , 2024, , 263-332.		0
2913	Properties of Violacein: A Promising Natural Pharmaceutical Secondary Metabolite from Marine Environment with Emphasis on Its Anticancer Activity. , 2023, , 197-230.		0
2914	Municipal Waste and Garbage Characterization and Exploitation. , 2024, , .		0
2918	Bio-oil production from waste and waste plastics. , 2024, , 121-138.		0
2919	Use of cellulose, hemicellulose and generated sugars and lignin. , 2024, , 173-202.		0
2920	Enzymes responsible for lignocellulose degradation. , 2024, , 47-64.		0
2926	Recycling Resources of Soil and Agroecosystem. Earth and Environmental Sciences Library, 2024, , 173-203.	0.3	0
2933	Biotechnology for bioenergy production: current status, challenges, and prospects. , 2024, , 277-296.		0
2937	Redesigning Saccharomyces cerevisiae Meyen ex E.C. Hansen Using CRISPR to Combat Industrial Needs 2024, , 113-137.		0