Microbial Iron Acquisition: Marine and Terrestrial Side

Chemical Reviews 109, 4580-4595

DOI: 10.1021/cr9002787

Citation Report

#	Article	IF	CITATIONS
1	Synthesis of [4-(2-Hydroxyphenyl)thiazol-2-yl]methanones as Potential Bioisosteres of Salicylidene Acylhydrazides. Molecules, 2010, 15, 6019-6034.	3.8	4
2	Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Archives of Toxicology, 2010, 84, 825-889.	4.2	330
5	Adhesive Vesicles through Adaptive Response of a Biobased Surfactant. Angewandte Chemie - International Edition, 2010, 49, 9509-9512.	13.8	32
6	Microbial Siderophores. Progress in the Chemistry of Organic Natural Products, 2010, 92, 1-75.	1.1	22
7	Characterization of a Hemophore-like Protein from Porphyromonas gingivalis. Journal of Biological Chemistry, 2010, 285, 40028-40038.	3.4	49
8	Chemistry and biology of siderophores. Natural Product Reports, 2010, 27, 637.	10.3	1,330
9	Siderophore-promoted dissolution of cobalt from hydroxide minerals. Geochimica Et Cosmochimica Acta, 2010, 74, 2915-2925.	3.9	28
10	Kinetic and Inhibition Studies of Dihydroxybenzoate-AMP Ligase from <i>Escherichia coli</i> Biochemistry, 2010, 49, 3648-3657.	2.5	34
11	Biochemical and Structural Characterization of Bisubstrate Inhibitors of BasE, the Self-Standing Nonribosomal Peptide Synthetase Adenylate-Forming Enzyme of Acinetobactin Synthesis,. Biochemistry, 2010, 49, 9292-9305.	2.5	52
12	Evidence for ligand hydrolysis and Fe(III) reduction in the dissolution of goethite by desferrioxamine-B. Geochimica Et Cosmochimica Acta, 2010, 74, 6706-6720.	3.9	28
13	Production of Metabolites as Bacterial Responses to the Marine Environment. Marine Drugs, 2010, 8, 705-727.	4.6	158
14	Discovery of novel antibacterials. Expert Opinion on Drug Discovery, 2010, 5, 145-154.	5.0	28
15	Structural Characterization and High-Throughput Screening of Inhibitors of PvdQ, an NTN Hydrolase Involved in Pyoverdine Synthesis. ACS Chemical Biology, 2011, 6, 1277-1286.	3.4	83
16	Pericyclic Reactions Catalyzed by Chorismate-Utilizing Enzymes. Biochemistry, 2011, 50, 7476-7483.	2.5	29
17	Natural and Synthetic Small Boron-Containing Molecules as Potential Inhibitors of Bacterial and Fungal Quorum Sensing. Chemical Reviews, 2011, 111, 209-237.	47.7	173
18	Muscarine, imidazole, oxazole, and thiazole alkaloids. Natural Product Reports, 2011, 28, 1143.	10.3	272
19	Structure and Biosynthesis of Amychelin, an Unusual Mixed-Ligand Siderophore from <i>Amycolatopsis sp. </i> AA4. Journal of the American Chemical Society, 2011, 133, 11434-11437.	13.7	103
20	Complexes Formed in Solution Between Vanadium(IV)/(V) and the Cyclic Dihydroxamic Acid Putrebactin or Linear Suberodihydroxamic Acid. Inorganic Chemistry, 2011, 50, 5978-5989.	4.0	19

#	Article	IF	Citations
21	Magnetite Biomineralization in Bacteria. Progress in Molecular and Subcellular Biology, 2011, 52, 3-27.	1.6	12
22	Radionuclide Geomicrobiology of the Deep Biosphere. Geomicrobiology Journal, 2011, 28, 540-561.	2.0	31
23	Transition metal complexes as solar photocatalysts in the environment. Advances in Inorganic Chemistry, 2011, , 291-343.	1.0	14
24	Essential metals for nitrogen fixation in a freeâ€living N ₂ â€fixing bacterium: chelation, homeostasis and high use efficiency. Environmental Microbiology, 2011, 13, 1395-1411.	3.8	93
25	The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium. Environmental Microbiology, 2011, 13, 2990-2999.	3.8	105
26	Mechanistic and structural studies of the N-hydroxylating flavoprotein monooxygenases. Bioorganic Chemistry, 2011, 39, 171-177.	4.1	46
27	The biological occurrence and trafficking of cobalt. Metallomics, 2011, 3, 963.	2.4	136
28	Identification of new members within suites of amphiphilic marine siderophores. BioMetals, 2011, 24, 85-92.	4.1	34
29	Chemical and structural characterization of hydroxamate siderophore produced by marine Vibrio harveyi. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 265-273.	3.0	20
30	Bacillus spp. of Human Origin: A Potential Siderophoregenic Probiotic Bacteria. Applied Biochemistry and Biotechnology, 2011, 164, 386-400.	2.9	24
31	Metallosurfactants of bioinorganic interest: Coordination-induced self assembly. Coordination Chemistry Reviews, 2011, 255, 678-687.	18.8	66
32	Facile synthesis of salmochelin S1, S2, MGE, DGE, and TGE. Tetrahedron, 2011, 67, 144-151.	1.9	29
33	Recent Achievements on Siderophore Production and Application. Recent Patents on Biotechnology, 2011, 5, 183-198.	0.8	17
34	Cloning and Heterologous Expression of the Vibrioferrin Biosynthetic Gene Cluster from a Marine Metagenomic Library. Bioscience, Biotechnology and Biochemistry, 2011, 75, 2283-2287.	1.3	33
35	Biosynthesis of a Complex Yersiniabactin-Like Natural Product via the <i>mic</i> Locus in Phytopathogen Ralstonia solanacearum. Applied and Environmental Microbiology, 2011, 77, 6117-6124.	3.1	52
36	Two distinct pathways for iron acquisition by iron-limited cyanobacterial cells: evidence from experiments using siderophores and synthetic chelators. Botany, 2012, 90, 181-190.	1.0	13
37	Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8400-8404.	7.1	81
38	Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 2012, 35, 1044-1051.	1.3	1,040

#	ARTICLE	IF	CITATIONS
39	Exploiting bacterial iron acquisition: siderophore conjugates. Future Medicinal Chemistry, 2012, 4, 297-313.	2.3	132
40	Magnetotactic bacteria, magnetosomes and their application. Microbiological Research, 2012, 167, 507-519.	5.3	176
41	Genomics-driven discovery of taiwachelin, a lipopeptide siderophore from Cupriavidus taiwanensis. Organic and Biomolecular Chemistry, 2012, 10, 9338.	2.8	27
42	Elemental Economy. Advances in Microbial Physiology, 2012, 60, 91-210.	2.4	180
43	Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20059-20064.	7.1	294
44	Synthesis and structure confirmation of fuscachelins A and B, structurally unique natural product siderophores from Thermobifida fusca. Organic and Biomolecular Chemistry, 2012, 10, 5353.	2.8	5
45	An Enzymatic Pathway for the Biosynthesis of the Formylhydroxyornithine Required for Rhodochelin Iron Coordination. Biochemistry, 2012, 51, 3059-3066.	2.5	31
46	Structure and Biosynthetic Assembly of Cupriachelin, a Photoreactive Siderophore from the Bioplastic Producer Cupriavidus necator H16. Journal of the American Chemical Society, 2012, 134, 5415-5422.	13.7	58
47	Mixing and Matching Siderophore Clusters: Structure and Biosynthesis of Serratiochelins from <i>Serratia sp.</i> V4. Journal of the American Chemical Society, 2012, 134, 13550-13553.	13.7	48
48	Preparation of bifunctional isocyanate hydroxamate linkers: synthesis of carbamate and urea tethered polyhydroxamic acid chelators. Tetrahedron Letters, 2012, 53, 6367-6371.	1.4	2
49	Structure and Biosynthetic Assembly of Piscibactin, a Siderophore from <i>Photobacterium damselae</i> subsp. <i>piscicida</i> , Predicted from Genome Analysis. European Journal of Organic Chemistry, 2012, 2012, 5693-5700.	2.4	49
50	Syntheses of Siderophore–Drug Conjugates Using a Convergent Thiol–Maleimide System. ACS Medicinal Chemistry Letters, 2012, 3, 799-803.	2.8	49
52	Heterologous production of bisucaberin using a biosynthetic gene cluster cloned from a deep sea metagenome. Molecular BioSystems, 2012, 8, 482-485.	2.9	32
53	New Porous Crystals of Extended Metal-Catecholates. Chemistry of Materials, 2012, 24, 3511-3513.	6.7	618
54	Analysis of the Global Ocean Sampling (GOS) Project for Trends in Iron Uptake by Surface Ocean Microbes. PLoS ONE, 2012, 7, e30931.	2.5	79
55	Disassembling Iron Availability to Phytoplankton. Frontiers in Microbiology, 2012, 3, 123.	3.5	168
56	Feedback Interactions between Trace Metal Nutrients and Phytoplankton in the Ocean. Frontiers in Microbiology, 2012, 3, 204.	3.5	289
57	Emerging Paradigms for Complex Iron-Sulfur Cofactor Assembly and Insertion. Annual Review of Biochemistry, 2012, 81, 429-450.	11.1	90

#	ARTICLE	IF	CITATIONS
58	Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides. World Journal of Microbiology and Biotechnology, 2012, 28, 2615-2623.	3.6	68
59	Iron transporters in marine prokaryotic genomes and metagenomes. Environmental Microbiology, 2012, 14, 114-128.	3.8	93
60	Biosynthesis of the pyoverdine siderophore of <i>Pseudomonas aeruginosa</i> involves precursors with a myristic or a myristoleic acid chain. FEBS Letters, 2012, 586, 96-101.	2.8	53
61	Voltammetric investigation of iron(III) complexes with siderophore chrysobactin in aqueous solution. Electrochimica Acta, 2012, 59, 479-484.	5.2	13
62	Pathogenesis, virulence factors and virulence regulation of vibrios belonging to the <i>Harveyi</i> clade. Reviews in Aquaculture, 2012, 4, 59-74.	9.0	117
63	Haemophore functions revisited. Molecular Microbiology, 2012, 85, 618-631.	2.5	52
64	Iron transport in the genus Marinobacter. BioMetals, 2012, 25, 135-147.	4.1	32
65	Siderophore-mediated iron uptake in two clades of Marinobacter spp. associated with phytoplankton: the role of light. BioMetals, 2012, 25, 181-192.	4.1	27
66	Synthesis of Chromone, Quinolone, and Benzoxazinone Sulfonamide Nucleosides as Conformationally Constrained Inhibitors of Adenylating Enzymes Required for Siderophore Biosynthesis. Journal of Organic Chemistry, 2013, 78, 7470-7481.	3.2	43
67	Detection of photoactive siderophore biosynthetic genes in the marine environment. BioMetals, 2013, 26, 507-516.	4.1	17
68	Insights on how the <i>Mycobacterium tuberculosis</i> heme uptake pathway can be used as a drug target. Future Medicinal Chemistry, 2013, 5, 1391-1403.	2.3	46
69	Siderophore-modified Fenton-like system for the degradation of propranolol in aqueous solutions at near neutral pH values. Chemical Engineering Journal, 2013, 229, 177-182.	12.7	12
70	Iron homeostasis in the Rhodobacter genus. Advances in Botanical Research, 2013, 66, 289-326.	1.1	10
71	Structural Characterization of the Heterobactin Siderophores from <i>Rhodococcus erythropolis</i> PR4 and Elucidation of Their Biosynthetic Machinery. Journal of Natural Products, 2013, 76, 2282-2290.	3.0	52
72	Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira antarctica. Nature Communications, 2013, 4, 2156.	12.8	115
73	The variable hydroxamic acid siderophore metabolome of the marine actinomycete Salinispora tropica CNB-440. Metallomics, 2013, 5, 1519.	2.4	43
74	Crystal ball – 2013. Environmental Microbiology Reports, 2013, 5, 1-16.	2.4	2
75	Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte <i><scp>H</scp>erbaspirillum seropedicae</i> Microbiology, 2013, 15, 916-927.	3.8	66

#	Article	IF	Citations
76	Catecholâ€Based Biomimetic Functional Materials. Advanced Materials, 2013, 25, 653-701.	21.0	638
77	Iron in Cyanobacteria. Advances in Botanical Research, 2013, , 57-105.	1.1	68
78	Interactions of a Periplasmic Binding Protein with a Tetradentate Siderophore Mimic. Angewandte Chemie - International Edition, 2013, 52, 4595-4598.	13.8	23
79	Integrated Metabolomics Approach Facilitates Discovery of an Unpredicted Natural Product Suite from <i>Streptomyces coelicolor</i> M145. ACS Chemical Biology, 2013, 8, 2009-2016.	3.4	62
80	Non-Nucleoside Inhibitors of BasE, an Adenylating Enzyme in the Siderophore Biosynthetic Pathway of the Opportunistic Pathogen <i>Acinetobacter baumannii</i> . Journal of Medicinal Chemistry, 2013, 56, 2385-2405.	6.4	48
81	An efficient chemical synthesis of carboxylate-isostere analogs of daptomycin. Organic and Biomolecular Chemistry, 2013, 11, 4680.	2.8	11
82	Gold–deferrioxamine nanometric interface for selective recognition of Fe(III) using square wave voltammetry and electrochemical impedance spectroscopy methods. Biosensors and Bioelectronics, 2013, 39, 31-36.	10.1	36
83	Synthesis and antibacterial activity of conjugates between norfloxacin and analogues of the siderophore vanchrobactin. Bioorganic and Medicinal Chemistry, 2013, 21, 295-302.	3.0	36
84	Heme-Delivering Proteins in Bacteria. Handbook of Porphyrin Science, 2013, , 191-222.	0.8	1
85	An antioxidant role for catecholate siderophores in Salmonella. Biochemical Journal, 2013, 454, 543-549.	3.7	49
86	Isotope-Assisted Screening for Iron-Containing Metabolites Reveals a High Degree of Diversity among Known and Unknown Siderophores Produced by Trichoderma spp. Applied and Environmental Microbiology, 2013, 79, 18-31.	3.1	81
88	Bisucaberin B, a Linear Hydroxamate Class Siderophore from the Marine Bacterium Tenacibaculum mesophilum. Molecules, 2013, 18, 3917-3926.	3.8	35
89	Turnerbactin, a Novel Triscatecholate Siderophore from the Shipworm Endosymbiont Teredinibacter turnerae T7901. PLoS ONE, 2013, 8, e76151.	2.5	55
90	Opening Study on the Development of a New Biosensor for Metal Toxicity Based on Pseudomonas fluorescens Pyoverdine. Biosensors, 2013, 3, 385-399.	4.7	20
91	The Functional Potential of Microbial Communities in Hydraulic Fracturing Source Water and Produced Water from Natural Gas Extraction Characterized by Metagenomic Sequencing. PLoS ONE, 2014, 9, e107682.	2.5	51
94	Citric Acid Chemistry. , 2014, , 213-266.		4
95	Citric Acid., 2014,,.		62
96	Bioweathering of nontronite colloids in hybrid silica gel: implications for iron mobilization. Journal of Applied Microbiology, 2014, 116, 325-334.	3.1	6

#	ARTICLE	IF	CITATIONS
97	Interactions of three soil bacteria species with phyllosilicate surfaces in hybrid silica gels. FEMS Microbiology Letters, 2014, 354, 37-45.	1.8	11
99	Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. Developmental and Comparative Immunology, 2014, 43, 223-242.	2.3	80
100	Siderophore production by actinobacteria. BioMetals, 2014, 27, 623-631.	4.1	114
102	<i>Bordetella pertussis</i> FbpA Binds Both Unchelated Iron and Iron Siderophore Complexes. Biochemistry, 2014, 53, 3952-3960.	2.5	12
103	A Short Stereoselective Synthesis of Prepiscibactin Using a Sml ₂ -Mediated Reformatsky Reaction and Zn ²⁺ -Induced Asymmetric Thiazolidine Formation. Organic Letters, 2014, 16, 5820-5823.	4.6	22
104	Evaluation of photo-reactive siderophore producing bacteria before, during and after a bloom of the dinoflagellate Lingulodinium polyedrum. Metallomics, 2014, 6, 1156-1163.	2.4	13
105	Iron acquisition and regulation systems in Streptococcus species. Metallomics, 2014, 6, 996.	2.4	31
106	Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics, 2014, 6, 748-773.	2.4	442
107	Perspective: what is known, and not known, about the connections between alkane oxidation and metal uptake in alkanotrophs in the marine environment. Metallomics, 2014, 6, 1121-1125.	2.4	2
108	Amphiphilic siderophore production by oil-associating microbes. Metallomics, 2014, 6, 1150-1155.	2.4	35
109	Cell growth and protein expression of Shewanella oneidensis in biofilms and hydrogel-entrapped cultures. Molecular BioSystems, 2014, 10, 1035.	2.9	40
110	Phosphate Solubilizing Microorganisms., 2014,,.		42
111	Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents. Nature Communications, 2014, 5, 3192.	12.8	75
112	Evolution of Siderophore Pathways in Human Pathogenic Bacteria. Journal of the American Chemical Society, 2014, 136, 5599-5602.	13.7	27
113	Microbial Tailoring of Acyl Peptidic Siderophores. Biochemistry, 2014, 53, 2624-2631.	2.5	14
114	Hyalachelins A–C, Unusual Siderophores Isolated from the Terrestrial Myxobacterium <i>Hyalangium minutum ⟨i⟩. Organic Letters, 2014, 16, 4130-4133.</i>	4.6	43
115	Dinuclear [(V ^V O(putrebactin)) ₂ (ν-OCH ₃) ₂] Formed in Solution as Established from LC-MS Measurements Using ⁵⁰ V-Enriched V _{0₅. Inorganic Chemistry, 2014, 53, 5852-5861.}	4.0	10
116	Habitat structure and the evolution of diffusible siderophores in bacteria. Ecology Letters, 2014, 17, 1536-1544.	6.4	98

#	Article	IF	CITATIONS
117	Biosynthesis of Amphi-enterobactin Siderophores by Vibrio harveyi BAA-1116: Identification of a Bifunctional Nonribosomal Peptide Synthetase Condensation Domain. Journal of the American Chemical Society, 2014, 136, 5615-5618.	13.7	45
118	Identification of Inhibitors of PvdQ, an Enzyme Involved in the Synthesis of the Siderophore Pyoverdine. ACS Chemical Biology, 2014, 9, 1536-1544.	3.4	36
119	Syntheses and Iron Binding Affinities of the <i>Bacillus anthracis</i> Siderophore Petrobactin and Sidechainâ€Modified Analogues. European Journal of Organic Chemistry, 2014, 2014, 426-435.	2.4	7
120	Microbial Acceleration of Olivine Dissolution via Siderophore Production. Procedia Earth and Planetary Science, 2014, 10, 118-122.	0.6	11
121	Characterization of a ferric uptake regulator (Fur)-mutant of the cyanotrophic bacterium Pseudomonas pseudoalcaligenes CECT5344. Journal of Biotechnology, 2014, 190, 2-10.	3.8	19
123	Virulence mechanisms of bacterial aquaculture pathogens and antivirulence therapy for aquaculture. Reviews in Aquaculture, 2014, 6, 100-114.	9.0	73
124	Preparation of 3-benzyloxy-2-pyridinone functional linkers: tools for the synthesis of 3,2-hydroxypyridinone (HOPO) and HOPO/hydroxamic acid chelators. Tetrahedron, 2015, 71, 9271-9281.	1.9	4
125	Total Synthesis and Structure Revision of Mirubactin, and Its Iron Binding Activity. Chemistry Letters, 2015, 44, 1303-1305.	1.3	12
126	Multiple modes of iron uptake by the filamentous, siderophoreâ€producing cyanobacterium, <scp><i>A</i></scp> <i>nabaena</i> 67120. Molecular Microbiology, 2015, 97, 577-588.	2.5	43
127	Plasticity of the Malleobactin Pathway and Its Impact on Siderophore Action in Human Pathogenic Bacteria. Chemistry - A European Journal, 2015, 21, 8010-8014.	3.3	34
128	Mechanisms of Heme Utilization by Francisella tularensis. PLoS ONE, 2015, 10, e0119143.	2.5	10
129	Structure and Mechanism of the Siderophore-Interacting Protein from the Fuscachelin Gene Cluster of <i>Thermobifida fusca</i> . Biochemistry, 2015, 54, 3989-4000.	2.5	23
130	Bioprospects of Coastal Eubacteria. , 2015, , .		3
131	Magnetic susceptibility of Mn(III) complexes of hydroxamate siderophores. Journal of Inorganic Biochemistry, 2015, 148, 22-26.	3.5	11
132	Molecular characterization of a homolog of the ferric-uptake regulator, Fur, from the marine bacterium Marinobacter algicola DG893. BioMetals, 2015, 28, 197-206.	4.1	4
133	Role of copper and iron in methane oxidation and bacterial biopolymer accumulation. Engineering in Life Sciences, 2015, 15, 387-399.	3.6	32
134	Prospects of host-associated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish and Shellfish Immunology, 2015, 45, 2-12.	3.6	178
135	Siderophores., 2015, , .		9

#	Article	IF	CITATIONS
136	Acyl peptidic siderophores: structures, biosyntheses and post-assembly modifications. BioMetals, 2015, 28, 445-459.	4.1	22
137	Synthesis and Pharmacokinetic Evaluation of Siderophore Biosynthesis Inhibitors for <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2015, 58, 5459-5475.	6.4	46
138	Forward and Reverse (Retro) Iron(III) or Gallium(III) Desferrioxamine E and Ring-Expanded Analogues Prepared Using Metal-Templated Synthesis from <i>endo</i> -Hydroxamic Acid Monomers. Inorganic Chemistry, 2015, 54, 3573-3583.	4.0	15
139	Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria. BMC Genomics, 2015, 16, 158.	2.8	96
140	pFe ³⁺ determination of multidentate ligands by a fluorescence assay. Analyst, The, 2015, 140, 3603-3606.	3.5	6
141	Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Transactions, 2015, 44, 6320-6339.	3.3	332
142	Novel insights into nickel import in Staphylococcus aureus: the positive role of free histidine and structural characterization of a new thiazolidine-type nickel chelator. Metallomics, 2015, 7, 613-621.	2.4	44
143	Synergistic Effect of Reductive and Ligand-Promoted Dissolution of Goethite. Environmental Science & E	10.0	69
144	Diverging roles of bacterial siderophores during infection. Metallomics, 2015, 7, 986-995.	2.4	214
145	Conformational and structural studies of N-methylacetohydroxamic acid and of its mono- and bis-chelated uranium(VI) complexes. Journal of Inorganic Biochemistry, 2015, 151, 164-175.	3.5	8
146	Structural characterization of amphiphilic siderophores produced by a soda lake isolate, Halomonas sp. SL01, reveals cysteine-, phenylalanine- and proline-containing head groups. Extremophiles, 2015, 19, 1183-1192.	2.3	13
147	Co-cultivation and transcriptome sequencing of two co-existing fish pathogens Moritella viscosa and Aliivibrio wodanis. BMC Genomics, 2015, 16, 447.	2.8	32
148	Accurate Mass MS/MS/MS Analysis of Siderophores Ferrioxamine B and E1 by Collision-Induced Dissociation Electrospray Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2015, 26, 1899-1902.	2.8	8
149	Evolution of probiotics in aquatic world: Potential effects, the current status in Egypt and recent prospectives. Journal of Advanced Research, 2015, 6, 765-791.	9.5	110
150	The Ferrojan Horse Hypothesis: Iron-Virus Interactions in the Ocean. Frontiers in Marine Science, 2016, 3, .	2.5	53
151	Identification of Metallophores and Organic Ligands in the Chemosphere of the Marine Macroalga Ulva (Chlorophyta) and at Land-Sea Interfaces. Frontiers in Marine Science, 2016, 3, .	2.5	25
152	Diversity and Metabolic Potentials of Subsurface Crustal Microorganisms from the Western Flank of the Mid-Atlantic Ridge. Frontiers in Microbiology, 2016, 7, 363.	3.5	37
153	Bacterial Modes of Action for Enhancing of Plant Growth. Journal of Biotechnology & Biomaterials, 2016, 6, .	0.3	11

#	Article	IF	Citations
154	An Iron(III) Catalyst with Unusually Broad Substrate Scope in Regioselective Alkylation of Diols and Polyols. Chemistry - A European Journal, 2016, 22, 2481-2486.	3.3	46
155	Insights into the virulenceâ€related genes of <i>Edwardsiella tarda</i> isolated from turbot in Europe: genetic homogeneity and evidence for vibrioferrin production. Journal of Fish Diseases, 2016, 39, 565-576.	1.9	11
156	Serobactinsâ€mediated iron acquisition systems optimize competitive fitness of <scp><i>H</i></scp> <i>erbaspirillum seropedicae</i> inside rice plants. Environmental Microbiology, 2016, 18, 2523-2533.	3.8	17
157	Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14237-14242.	7.1	179
158	Variochelins, Lipopeptide Siderophores from <i>Variovorax boronicumulans</i> Discovered by Genome Mining. Journal of Natural Products, 2016, 79, 865-872.	3.0	21
159	Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP. ISME Journal, 2016, 10, 2304-2316.	9.8	112
160	Quorum Sensing Is a Language of Chemical Signals and Plays an Ecological Role in Algal-Bacterial Interactions. Critical Reviews in Plant Sciences, 2016, 35, 81-105.	5.7	141
162	An overview of siderophores for iron acquisition in microorganisms living in the extreme. BioMetals, 2016, 29, 551-571.	4.1	28
163	Siderophores as molecular tools in medical and environmental applications. Organic and Biomolecular Chemistry, 2016, 14, 8212-8227.	2.8	79
164	Capsular polysaccharides facilitate enhanced iron acquisition by the colonial cyanobacterium <i>Microcystis</i> sp. isolated from a freshwater lake. Journal of Phycology, 2016, 52, 105-115.	2.3	18
165	Siderophores in Cloud Waters and Potential Impact on Atmospheric Chemistry: Production by Microorganisms Isolated at the Puy de Dôme Station. Environmental Science & Environ	10.0	25
166	Assessing the potential of polyculture to accelerate algal biofuel production. Algal Research, 2016, 19, 264-277.	4.6	58
167	Chemical Speciation and Bioavailability of Iron in Natural Waters - Linkage of Forest, River and Sea in View of Dynamics of Iron and Organic Matter. Journal of Japan Society on Water Environment, 2016, 39, 197-210.	0.4	12
168	Eco Friendly Management of Damping-off of Solanaceous Crops Caused by Pythium Species. Fungal Biology, 2016, , 49-90.	0.6	5
169	Studies on Siderophore and Pigment Produced by an Adhered Bacterial Strain Halobacillus trueperi MXM-16 from the Mangrove Ecosystem of Goa, India. Indian Journal of Microbiology, 2016, 56, 461-466.	2.7	18
170	Cyanobacteria for Bioremediation of Wastewaters. , 2016, , .		20
171	Metals Removal by Cyanobacteria and Accumulation in Biomass. , 2016, , 61-111.		2
172	Remediation of Heavy Metal-Contaminated Agricultural Soils Using Microbes. , 2016, , 115-132.		1

#	Article	IF	CITATIONS
173	Structure and functional analysis of the siderophore periplasmic binding protein from the fuscachelin gene cluster of T hermobifida fusca. Proteins: Structure, Function and Bioinformatics, 2016, 84, 118-128.	2.6	2
174	Xanthurenic acid: a natural ionophore with high selectivity and sensitivity for potassium ions in an aqueous solution. New Journal of Chemistry, 2016, 40, 1930-1934.	2.8	10
175	Simultaneous biosynthesis of putrebactin, avaroferrin and bisucaberin by Shewanella putrefaciens and characterisation of complexes with iron(III), molybdenum(VI) or chromium(V). Journal of Inorganic Biochemistry, 2016, 162, 207-215.	3.5	27
176	Mixing Up the Pieces of the Desferrioxamine B Jigsaw Defines the Biosynthetic Sequence Catalyzed by DesD. ACS Chemical Biology, 2016, 11, 1452-1462.	3.4	28
177	Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiology and Molecular Biology Reviews, 2016, 80, 91-138.	6.6	864
178	Genome-Guided Discovery of Natural Products and Biosynthetic Pathways from Australia's Untapped Microbial Megadiversity. Australian Journal of Chemistry, 2016, 69, 129.	0.9	5
179	FecB, a periplasmic ferric-citrate transporter from E. coli, can bind different forms of ferric-citrate as well as a wide variety of metal-free and metal-loaded tricarboxylic acids. Metallomics, 2016, 8, 125-133.	2.4	36
180	Strain-level diversity of secondary metabolism in the biocontrol species Aneurinibacillus migulanus. Microbiological Research, 2016, 182, 116-124.	5.3	31
181	Ti(IV) and the Siderophore Desferrioxamine B: A Tight Complex Has Biological and Environmental Implications. Inorganic Chemistry, 2017, 56, 1264-1272.	4.0	21
182	The Maintenance of Iron Homeostasis Among Prokaryotic Phototrophs. , 2017, , 123-161.		4
183	Bacterial activity in hydrogenetic ferromanganese crust from the Indian Ocean: a combined geochemical, experimental and pyrosequencing study. Environmental Earth Sciences, 2017, 76, 1.	2.7	4
184	Bacterial siderophores promote plant growth: Screening of catechol and hydroxamate siderophores. International Journal of Phytoremediation, 2017, 19, 825-833.	3.1	66
185	Microbial Biofilm: Role in Crop Productivity., 2017,, 107-118.		8
186	The skin microbiome of the common thresher shark (<i>Alopias vulpinus</i>) has low taxonomic and gene function βâ€diversity. Environmental Microbiology Reports, 2017, 9, 357-373.	2.4	47
187	Siderophore coated magnetic iron nanoparticles: Rational designing of water soluble nanobiosensor for visualizing Al 3+ in live organism. Biosensors and Bioelectronics, 2017, 97, 338-344.	10.1	21
188	Siderophores and mussel foot proteins: the role of catechol, cations, and metal coordination in surface adhesion. Journal of Biological Inorganic Chemistry, 2017, 22, 739-749.	2.6	35
189	Heteroatom–Heteroatom Bond Formation in Natural Product Biosynthesis. Chemical Reviews, 2017, 117, 5784-5863.	47.7	131
190	Pseudochelin A, a siderophore of Pseudoalteromonas piscicida S2040. Tetrahedron, 2017, 73, 2633-2637.	1.9	15

#	Article	IF	CITATIONS
191	Structural and functional diversity of transient heme binding to bacterial proteins. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 683-697.	2.4	28
192	Clinical Variants of New Delhi Metallo-β-Lactamase Are Evolving To Overcome Zinc Scarcity. ACS Infectious Diseases, 2017, 3, 927-940.	3.8	49
193	Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 2017, 33, 197.	3.6	683
194	Biotechnology of siderophores in high-impact scientific fields. Biomolecular Concepts, 2017, 8, 169-178.	2.2	38
196	Genomic insights into specialized metabolism in the marine actinomycete <i>Salinispora</i> Environmental Microbiology, 2017, 19, 3660-3673.	3.8	69
197	Dimeric and trimeric homo- and heteroleptic hydroxamic acid macrocycles formed using mixed-ligand Fe(III)-based metal-templated synthesis. Journal of Inorganic Biochemistry, 2017, 177, 344-351.	3.5	7
198	Visualizing Zn ²⁺ in Living Whole Organism <i>Artemia</i> by a Natural Fluorimetric Intermediate Siderophore. ChemistrySelect, 2017, 2, 6407-6412.	1.5	12
199	Plant Growth–Promoting Microbes: A Boon for Sustainable Agriculture. , 2017, , 125-158.		9
200	Catechol amide iron chelators produced by a mangrove-derived Bacillus subtilis. Tetrahedron, 2017, 73, 5245-5252.	1.9	10
201	Identification and occurrence of the hydroxamate siderophores aerobactin, putrebactin, avaroferrin and ochrobactin C as virulence factors from entomopathogenic bacteria. Environmental Microbiology, 2017, 19, 4080-4090.	3.8	22
202	Bacterial RNAP Inhibitors: Synthesis and Evaluation of Prodrugs of Arylâ€ureidothiopheneâ€carboxylic acids. ChemistrySelect, 2017, 2, 11899-11905.	1.5	2
205	Investigating the Biosynthesis of Natural Products from Marine Proteobacteria: A Survey of Molecules and Strategies. Marine Drugs, 2017, 15, 235.	4.6	44
206	Transcriptomic analysis of aerobic respiratory and anaerobic photosynthetic states in Rhodobacter capsulatus and their modulation by global redox regulators RegA, FnrL and CrtJ. Microbial Genomics, 2017, 3, e000125.	2.0	13
207	Isolation of Imaqobactin, an Amphiphilic Siderophore from the Arctic Marine Bacterium <i>Variovorax</i> Species RKJM285. Journal of Natural Products, 2018, 81, 858-865.	3.0	24
208	Microbial Siderophores in Metal Detoxification and Therapeutics: Recent Prospective and Applications. Microorganisms for Sustainability, 2018, , 337-350.	0.7	8
209	Catechol oxidation: considerations in the design of wet adhesive materials. Biomaterials Science, 2018, 6, 332-339.	5.4	72
210	Glomalin-related soil protein deposition and carbon sequestration in the Old Yellow River delta. Science of the Total Environment, 2018, 625, 619-626.	8.0	32
211	The biogeochemical cycling of iron, copper, nickel, cadmium, manganese, cobalt, lead, and scandium in a California Current experimental study. Limnology and Oceanography, 2018, 63, S425.	3.1	17

#	Article	IF	CITATIONS
212	Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils. Soil Biology and Biochemistry, 2018, 120, 283-291.	8.8	31
213	Anti-inflammatory and antialgic actions of a nanoemulsion of Rosmarinus officinalis L. essential oil and a molecular docking study of its major chemical constituents. Inflammopharmacology, 2018, 26, 183-195.	3.9	37
214	Recent progress in the development of organic dye based near-infrared fluorescence probes for metal ions. Coordination Chemistry Reviews, 2018, 354, 74-97.	18.8	280
215	Function-related replacement of bacterial siderophore pathways. ISME Journal, 2018, 12, 320-329.	9.8	66
216	Advances in the Chemical Biology of Desferrioxamine B. ACS Chemical Biology, 2018, 13, 11-25.	3.4	62
217	Crystal Structure of the Siderophore Binding Protein BauB Bound to an Unusual 2:1 Complex Between Acinetobactin and Ferric Iron. Biochemistry, 2018, 57, 6653-6661.	2.5	20
218	Rubik's Cube of Siderophore Assembly Established from Mixed-Substrate Precursor-Directed Biosynthesis. ACS Omega, 2018, 3, 18160-18169.	3.5	5
219	Genome Mining of Streptomyces sp. YIM 130001 Isolated From Lichen Affords New Thiopeptide Antibiotic. Frontiers in Microbiology, 2018, 9, 3139.	3.5	26
220	Cloning of the Bisucaberin B Biosynthetic Gene Cluster from the Marine Bacterium Tenacibaculum mesophilum, and Heterologous Production of Bisucaberin B. Marine Drugs, 2018, 16, 342.	4.6	6
221	Multiple siderophores: bug or feature?. Journal of Biological Inorganic Chemistry, 2018, 23, 983-993.	2.6	35
222	Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems. Biosensors and Bioelectronics, 2018, 117, 1-14.	10.1	52
223	Variability in the production of organic ligands, by Synechococcus PCC 7002, under different iron scenarios. Journal of Oceanography, 2018, 74, 277-286.	1.7	2
224	Î ² -Hydroxyaspartic acid in siderophores: biosynthesis and reactivity. Journal of Biological Inorganic Chemistry, 2018, 23, 957-967.	2.6	19
225	The chemical biology and coordination chemistry of putrebactin, avaroferrin, bisucaberin, and alcaligin. Journal of Biological Inorganic Chemistry, 2018, 23, 969-982.	2.6	16
226	Quorum sensing and iron regulate a two-for-one siderophore gene cluster in <i>Vibrio harveyi</i> Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7581-7586.	7.1	56
227	Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatalysis and Agricultural Biotechnology, 2018, 15, 264-269.	3.1	87
228	Herbaspirillum seropedicae Differentially Expressed Genes in Response to Iron Availability. Frontiers in Microbiology, 2018, 9, 1430.	3.5	10
229	Identification of a New Siderophore Acinetoamonabactin Produced by a Salt†olerant Bacterium <i>Acinetobacter Soli</i>). ChemistrySelect, 2018, 3, 8207-8211.	1.5	4

#	Article	IF	CITATIONS
230	Iron and Harmful Algae Blooms: Potential Algal-Bacterial Mutualism Between Lingulodinium polyedrum and Marinobacter algicola. Frontiers in Marine Science, 2018, 5, .	2.5	18
231	Diverse and Abundant Secondary Metabolism Biosynthetic Gene Clusters in the Genomes of Marine Sponge Derived Streptomyces spp. Isolates. Marine Drugs, 2018, 16, 67.	4.6	81
232	Effect of biodegradable chelating ligands on Fe uptake in and growth of marine microalgae. Journal of Applied Phycology, 2018, 30, 2215-2225.	2.8	4
233	Study of the coordination of ortho-tyrosine and trans-4-hydroxyproline with aluminum(III) and iron(III). Journal of Molecular Liquids, 2018, 269, 387-397.	4.9	36
234	Fluorinated Analogues of Desferrioxamine B from Precursor-Directed Biosynthesis Provide New Insight into the Capacity of DesBCD. ACS Chemical Biology, 2018, 13, 2456-2471.	3.4	11
235	Amphi-enterobactin commonly produced among Vibrio campbellii and Vibrio harveyi strains can be taken up by a novel outer membrane protein FapA that also can transport canonical Fe(III)-enterobactin. Journal of Biological Inorganic Chemistry, 2018, 23, 1009-1022.	2.6	7
236	Metal Assimilation Pathways., 2019, , 171-206.		1
237	Microscale and Nanoscale Electrophotonic Diagnostic Devices. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034249.	6.2	2
238	The Chemistry of Lanthanides in Biology: Recent Discoveries, Emerging Principles, and Technological Applications. ACS Central Science, 2019, 5, 1496-1506.	11.3	166
239	Plant Growth Promoting Rhizobacteria (PGPR): A Novel Agent for Sustainable Food Production. American Journal of Agricultural and Biological Science, 2019, 14, 35-54.	0.4	64
240	The Farmed Atlantic Salmon (Salmo salar) Skin–Mucus Proteome and Its Nutrient Potential for the Resident Bacterial Community. Genes, 2019, 10, 515.	2.4	26
241	A review of the effects of iron compounds on methanogenesis in anaerobic environments. Renewable and Sustainable Energy Reviews, 2019, 113, 109282.	16.4	83
242	Uncoupling Traditional Functionalities of Metastasis: The Parting of Ways with Real-Time Assays. Journal of Clinical Medicine, 2019, 8, 941.	2.4	2
243	Preparation of functionalized magnetic nanoparticles conjugated with feroxamine and their evaluation for pathogen detection. RSC Advances, 2019, 9, 13533-13542.	3.6	9
244	Chemistry and Biology of Siderophores from Marine Microbes. Marine Drugs, 2019, 17, 562.	4.6	31
246	Physicochemical Properties of Nanostructured Complexes Formed between Deferrioxamine Siderophore and Zr(IV), Hf(IV), or Fe(III) Metal Ions at the Gold Electrode/Solution Interface: A Comparative Study. Journal of Physical Chemistry C, 2019, 123, 29932-29945.	3.1	5
247	Natural Hydroxamate-Containing Siderophore Acremonpeptides A–D and an Aluminum Complex of Acremonpeptide D from the Marine-Derived <i>Acremonium persicinum</i> SCSIO 115. Journal of Natural Products, 2019, 82, 2594-2600.	3.0	24
248	Iron supplementation and management in aquaponic systems: A review. Aquaculture Reports, 2019, 15, 100221.	1.7	33

#	Article	IF	CITATIONS
249	Siderophore profiling of co-habitating soil bacteria by ultra-high resolution mass spectrometry. Metallomics, 2019, 11, 166-175.	2.4	19
250	Whole-cell biosensing by siderophore-based molecular recognition and localized surface plasmon resonance. Analytical Methods, 2019, 11, 296-302.	2.7	18
251	<i>endo</i> -Hydroxamic Acid Monomers for the Assembly of a Suite of Non-native Dimeric Macrocyclic Siderophores Using Metal-Templated Synthesis. Inorganic Chemistry, 2019, 58, 13591-13603.	4.0	9
252	In silico study of the mechanism of action, pharmacokinetic and toxicological properties of some N-methylanthranilates and their analogs. Food and Chemical Toxicology, 2019, 131, 110556.	3.6	4
253	Uncultured <i>Nitrospina</i> -like species are major nitrite oxidizing bacteria in oxygen minimum zones. ISME Journal, 2019, 13, 2391-2402.	9.8	67
254	Optimal iron concentrations for growth-associated polyhydroxyalkanoate biosynthesis in the marine photosynthetic purple bacterium Rhodovulum sulfidophilum under photoheterotrophic condition. PLoS ONE, 2019, 14, e0212654.	2.5	17
255	Drug delivery systems designed to overcome antimicrobial resistance. Medicinal Research Reviews, 2019, 39, 2343-2396.	10.5	64
256	Genome Sequence of Pigmented Siderophore-Producing Strain Serratia marcescens SM6. Microbiology Resource Announcements, 2019, 8, .	0.6	13
257	Why microbes secrete molecules to modify their environment: the case of iron-chelating siderophores. Journal of the Royal Society Interface, 2019, 16, 20180674.	3.4	61
258	Distribution of dissolved iron and bacteria producing the photoactive siderophore, vibrioferrin, in waters off Southern California and Northern Baja. BioMetals, 2019, 32, 139-154.	4.1	6
259	Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria. Applied and Environmental Microbiology, 2019, 85, .	3.1	23
260	Covalently hooked EOSIN-Y in a Zr(IV) framework as visible-light mediated, heterogeneous photocatalyst for efficient C H functionalization of tertiary amines. Journal of Catalysis, 2019, 371, 298-304.	6.2	42
261	The kinetics of siderophoreâ€mediated olivine dissolution. Geobiology, 2019, 17, 401-416.	2.4	16
262	Comparative Genomics, Siderophore Production, and Iron Scavenging Potential of Root Zone Soil Bacteria Isolated from †Concord' Grape Vineyards. Microbial Ecology, 2019, 78, 699-713.	2.8	14
263	How Many Oâ€Donor Groups in Enterobactin Does It Take to Bind a Metal Cation?. Chemistry - A European Journal, 2019, 25, 6955-6962.	3.3	7
264	Siderophore (from Synechococcus sp. PCC 7002)-Chelated Iron Promotes Iron Uptake in Caco-2 Cells and Ameliorates Iron Deficiency in Rats. Marine Drugs, 2019, 17, 709.	4.6	6
265	Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chemical Society Reviews, 2019, 48, 5624-5657.	38.1	138
266	Cyanobacterial Siderophores: Ecological and Biotechnological Significance. , 2019, , 383-397.		7

#	Article	IF	CITATIONS
267	Fe(II)-Catalyzed Ligand-Controlled Dissolution of Iron(hydr)oxides. Environmental Science & Emp; Technology, 2019, 53, 88-97.	10.0	26
268	Patterns of iron and siderophore distributions across the California Current System. Limnology and Oceanography, 2019, 64, 376-389.	3.1	41
269	Legonoxamines A-B, two new hydroxamate siderophores from the soil bacterium, Streptomyces sp. MA37. Tetrahedron Letters, 2019, 60, 75-79.	1.4	22
270	Cyanobacteria biomass in shallow eutrophic lakes is linked to the presence of iron-binding ligands. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 1728-1739.	1.4	4
271	Synthesis, characterisation and quantum chemical studies of a new series of iron chelatable fluorescent sensors. Molecular Physics, 2019, 117, 661-671.	1.7	7
272	Contribution of resuspended sedimentary particles to dissolved iron and manganese in the ocean: An experimental study. Chemical Geology, 2019, 511, 389-415.	3.3	25
273	Host-Associated Probiotics: A Key Factor in Sustainable Aquaculture. Reviews in Fisheries Science and Aquaculture, 2020, 28, 16-42.	9.1	178
274	Bacterial siderophores in community and host interactions. Nature Reviews Microbiology, 2020, 18, 152-163.	28.6	495
275	Linking Isotope Exchange with Fe(II)-Catalyzed Dissolution of Iron(hydr)oxides in the Presence of the Bacterial Siderophore Desferrioxamine-B. Environmental Science & Environ	10.0	5
276	Siderophore production by bacteria isolated from mangrove sediments: A microcosm study. Journal of Experimental Marine Biology and Ecology, 2020, 524, 151290.	1.5	12
277	Hydroxamate siderophores: Natural occurrence, chemical synthesis, iron binding affinity and use as Trojan horses against pathogens. European Journal of Medicinal Chemistry, 2020, 208, 112791.	5.5	50
278	Biological, biomolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chemical Society Reviews, 2020, 49, 8315-8334.	38.1	34
279	Bioactivity of Serratiochelin A, a Siderophore Isolated from a Co-Culture of Serratia sp. and Shewanella sp Microorganisms, 2020, 8, 1042.	3.6	14
280	Iron homeostasis and plant immune responses: Recent insights and translational implications. Journal of Biological Chemistry, 2020, 295, 13444-13457.	3.4	62
281	Recent developments in siderotyping: procedure and application. World Journal of Microbiology and Biotechnology, 2020, 36, 178.	3.6	9
282	Insights into the chemistry of the amphibactin–metal (M3+) interaction and its role in antibiotic resistance. Scientific Reports, 2020, 10, 21049.	3.3	3
283	Characterization of the promiscuous <i>N</i> -acyl CoA transferase, LgoC, in legonoxamine biosynthesis. Organic and Biomolecular Chemistry, 2020, 18, 2219-2222.	2.8	11
284	Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. International Journal of Environmental Research and Public Health, 2020, 17, 1434.	2.6	44

#	Article	IF	CITATIONS
285	Genome Mining and Biosynthesis of Primary Amine-Acylated Desferrioxamines in a Marine Gliding Bacterium. Organic Letters, 2020, 22, 939-943.	4.6	14
286	Genomic, metabolic and phenotypic variability shapes ecological differentiation and intraspecies interactions of Alteromonas macleodii. Scientific Reports, 2020, 10, 809.	3.3	48
287	The biochemistry of lanthanide acquisition, trafficking, and utilization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118864.	4.1	25
288	Iron-meditated fungal starvation by lupine rhizosphere-associated and extremotolerant <i>Streptomyces</i> sp. S29 desferrioxamine production. Molecular Omics, 2021, 17, 95-107.	2.8	12
289	A unique porin meditates ironâ€selective transport through cyanobacterial outer membranes. Environmental Microbiology, 2021, 23, 376-390.	3.8	31
290	AIE-based luminescence probes for metal ion detection. Coordination Chemistry Reviews, 2021, 429, 213693.	18.8	157
291	Metabolic Interactions between $\mbox{\ensuremath{\mbox{\scriptsize i}}\mbox{\ensuremath{\mbox{\scriptsize Brachypodium}\mbox{\ensuremath{\mbox{\scriptsize /i}}\mbox{\ensuremath{\mbox{\scriptsize and}}\mbox{\ensuremath{\mbox{\scriptsize Pseudomonas}}\mbox{\ensuremath{\mbox{\scriptsize fluorescens}}\mbox{\ensuremath{\mbox{\scriptsize under}}\mbox{\ensuremath{\mbox{\scriptsize controlled}}\mbox{\ensuremath{\mbox{\scriptsize loss}}\mbox{\ensuremath{\mbox{\scriptsize loss}}\mbox{\ensuremath{\mbox{\scriptsize mbox{\scriptsize loss}}\mbox{\ensuremath{\mbox{\scriptsize loss}}$	3.8	13
292	Dynamic proteome response of a marine Vibrio to a gradient of iron and ferrioxamine bioavailability. Marine Chemistry, 2021, 229, 103913.	2.3	5
293	Diversity of siderophore-producing bacterial cultures from Carlsbad Caverns National Park caves, Carlsbad, New Mexico. Journal of Cave and Karst Studies, 2021, 83, 29-43.	0.6	6
294	Biological Inoculant of Salt-Tolerant Bacteria for Plant Growth Stimulation under Different Saline Soil Conditions. Journal of Microbiology and Biotechnology, 2021, 31, 398-407.	2.1	15
295	Enhancement of Iron-Based Photo-Driven Processes by the Presence of Catechol Moieties. Catalysts, 2021, 11, 372.	3.5	13
296	Microbial Degradation of Citric Acid in Low Level Radioactive Waste Disposal: Impact on Biomineralization Reactions. Frontiers in Microbiology, 2021, 12, 565855.	3.5	12
297	A Microfluidic Hanging-Drop-Based Islet Perifusion System for Studying Glucose-Stimulated Insulin Secretion From Multiple Individual Pancreatic Islets. Frontiers in Bioengineering and Biotechnology, 2021, 9, 674431.	4.1	14
298	Acute phase $\hat{l}\pm 1$ -acid glycoprotein as a siderophore-capturing component of the human plasma: A molecular modeling study. Journal of Molecular Graphics and Modelling, 2021, 105, 107861.	2.4	3
299	PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	120
300	Soft Materials that Intercept, Respond to, and Sequester Bacterial Siderophores. Chemistry of Materials, 2021, 33, 5401-5412.	6.7	2
301	Saccharochelins Aâ€"H, Cytotoxic Amphiphilic Siderophores from the Rare Marine Actinomycete <i>Saccharothrix</i> sp. D09. Journal of Natural Products, 2021, 84, 2149-2156.	3.0	6
302	Quorum sensing in <i>Aliivibrio wodanis</i> 06/09/139 and its role in controlling various phenotypic traits. PeerJ, 2021, 9, e11980.	2.0	2

#	Article	IF	CITATIONS
303	Cyanochelins, an Overlooked Class of Widely Distributed Cyanobacterial Siderophores, Discovered by Silent Gene Cluster Awakening. Applied and Environmental Microbiology, 2021, 87, e0312820.	3.1	11
304	Homeostasis drives intense microbial trace metal processing on marine particles. Limnology and Oceanography, 2021, 66, 3842-3855.	3.1	8
305	Photoactive siderophores: Structure, function and biology. Journal of Inorganic Biochemistry, 2021, 221, 111457.	3.5	12
306	Fox Cluster determinants for iron biooxidation in the extremely thermoacidophilic Sulfolobaceae. Environmental Microbiology, 2022, 24, 850-865.	3.8	3
307	Fatty ethanolamide of Bertholletia excelsa triglycerides (Brazil nuts): anti-inflammatory action and acute toxicity evaluation in Zebrafish (Danio rerio). Inflammopharmacology, 2021, 29, 1519-1537.	3.9	4
308	Neodymium as Metal Cofactor for Biological Methanol Oxidation: Structure and Kinetics of an XoxF1-Type Methanol Dehydrogenase. MBio, 2021, 12, e0170821.	4.1	9
309	The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. GeoHealth, 2021, 5, e2020GH000380.	4.0	19
310	Siderophores: Importance in bacterial pathogenesis and applications in medicine and industry. Microbiological Research, 2021, 250, 126790.	5. 3	50
311	Organic complexation of iron by strong ligands and siderophores in the eastern tropical North Pacific oxygen deficient zone. Marine Chemistry, 2021, 236, 104021.	2.3	8
312	Siderophores from Fish Pathogenic Bacteria. Topics in Heterocyclic Chemistry, 2021, , 175-207.	0.2	1
313	Convergent Synthesis of Macrocyclic and Linear Desferrioxamines. European Journal of Organic Chemistry, 2020, 2020, 3650-3659.	2.4	3
314	Role of Phosphate-Solubilizing Microbes in the Management of Plant Diseases. , 2014, , 225-256.		9
315	Eubacterial Siderophores and Factors Modulating Their Production., 2015,, 25-38.		2
316	Field Application of Rhizobial Inoculants in Enhancing Faba Bean Production in Acidic Soils: An Innovative Strategy to Improve Crop Productivity. , 2019, , 147-180.		3
317	Biotechnological applications of beneficial microbiomes for evergreen agriculture and human health. , 2020, , 255-279.		29
318	Calcareous organic matter coatings sequester siderophores in alkaline soils. Science of the Total Environment, 2020, 724, 138250.	8.0	14
319	Cobalt and Nickel. 2-Oxoglutarate-Dependent Oxygenases, 2014, , 381-428.	0.8	6
321	Functional Role of PilA in Iron Acquisition in the Cyanobacterium Synechocystis sp. PCC 6803. PLoS ONE, 2014, 9, e105761.	2.5	36

#	Article	IF	CITATIONS
322	Participant Recruitment and Retention in Remote eHealth Intervention Trials: Methods and Lessons Learned From a Large Randomized Controlled Trial of Two Web-Based Smoking Interventions. Journal of Medical Internet Research, 2018, 20, e10351.	4.3	89
323	Concise Modular Synthesis and NMR Structural Determination of Gallium Mycobactin T. Journal of Organic Chemistry, 2021, 86, 15453-15468.	3.2	4
324	Vibrio neptunius Produces Piscibactin and Amphibactin and Both Siderophores Contribute Significantly to Virulence for Clams. Frontiers in Cellular and Infection Microbiology, 2021, 11, 750567.	3.9	8
325	Effects of riboflavin and desferrioxamine B on Fe(II) oxidation by O2. Fundamental Research, 2022, 2, 208-217.	3.3	3
326	Siderophore-Mediated Iron Acquisition: Target for the Development of Selective Antibiotics Towards Mycobacterium tuberculosis. Springer Briefs in Molecular Science, 2013, , 65-88.	0.1	0
328	The Plant Healthy and Safety Guards Plant Growth Promoting Rhizo Bacteria (PGPR). Transcriptomics: Open Access, 2015, 03, .	0.2	2
332	Free-Living PGPRs in Biotic Stress Management. Microorganisms for Sustainability, 2019, , 275-324.	0.7	2
336	Phân tÃch kênh phân phối và giá trị gia tăng cá»§a cá chét (Eleutheronema tetradactytum) khai thÃ ven bổở tỉnh Bạc Liêu. Tap Chi Khoa Hoc = Journal of Science, 2020, 56(Aquaculture), 161.	icbằng	lを°á»>i rê
337	Tổng hợp váºŧ liệu khung cÆ; kim cấu trúc tinh thể 3D dá»±a trên dẫn xuất cá»§a phenol. Tap Ch Science, 2020, 56(3), 38.	i Khoa Hoo	c
338	Biosynthesis of fluopsin C, a copper-containing antibiotic from <i>Pseudomonas aeruginosa</i> Science, 2021, 374, 1005-1009.	12.6	50
339	Native mass spectrometry-based metabolomics identifies metal-binding compounds. Nature Chemistry, 2022, 14, 100-109.	13.6	30
340	Genomics and transcriptomics insights into luteolin effects on the betaâ€rhizobial strain <i>Cupriavidus necator</i> UYPR2.512. Environmental Microbiology, 2022, 24, 240-264.	3.8	3
341	Sorghum-Phosphate Solubilizers Interactions: Crop Nutrition, Biotic Stress Alleviation, and Yield Optimization. Frontiers in Plant Science, 2021, 12, 746780.	3.6	6
342	Siderophores and iron transport. , 2021, , .		3
343	Plant Beneficial Deep-Sea Actinobacterium, Dermacoccus abyssi MT1.1T Promote Growth of Tomato (Solanum lycopersicum) under Salinity Stress. Biology, 2022, 11, 191.	2.8	12
344	Acetyl-CoA-Mediated Post-Biosynthetic Modification of Desferrioxamine B Generates $\langle i \rangle N \langle i \rangle$ and N- $\langle i \rangle O \langle i \rangle$ -Acetylated Isomers Controlled by a pH Switch. ACS Chemical Biology, 2022, 17, 426-437.	3.4	4
345	Mode of action of different microbial products in plant growth promotion., 2022,, 85-120.		2
347	Quorum Sensing Controls the CRISPR and Type VI Secretion Systems in Aliivibrio wodanis 06/09/139. Frontiers in Veterinary Science, 2022, 9, 799414.	2.2	7

#	Article	IF	CITATIONS
349	Crystal structure and metal binding properties of the periplasmic iron component EfeM from Pseudomonas syringae EfeUOB/M iron-transport system. BioMetals, 2022, 35, 573-589.	4.1	3
350	Sediment Features and Human Activities Structure the Surface Microbial Communities of the Venice Lagoon. Frontiers in Marine Science, 2021, 8, .	2.5	5
351	Soil Properties and Moisture Synergistically Influence Nontuberculous Mycobacterial Prevalence in Natural Environments of Hawai'i. Applied and Environmental Microbiology, 2022, 88, e0001822.	3.1	7
352	Membrane disruption boosts iron overload and endogenous oxidative stress to inactivate Escherichia coli by nanoscale zero-valent iron. Journal of Hazardous Materials, 2022, 435, 128951.	12.4	7
359	The Effect of Siderophore Virulence Genes Entb and Ybts on the Virulence of Carbapenem-Resistant Klebsiella Pneumoniae. SSRN Electronic Journal, 0, , .	0.4	0
360	The Effect of Siderophore Virulence Genes Entb and Ybts on the Virulence of Carbapenem-Resistant Klebsiella Pneumoniae. SSRN Electronic Journal, 0, , .	0.4	0
361	The Purified Siderophore from Streptomyces tricolor HM10 Accelerates Recovery from Iron-Deficiency-Induced Anemia in Rats. Molecules, 2022, 27, 4010.	3.8	3
362	Proteomic Analysis of Methanococcus voltae Grown in the Presence of Mineral and Nonmineral Sources of Iron and Sulfur. Microbiology Spectrum, 2022, 10, .	3.0	1
363	Musselâ€inspired biomaterials: From chemistry to clinic. Bioengineering and Translational Medicine, 2022, 7, .	7.1	26
364	The effect of siderophore virulence genes entB and ybtS on the virulence of Carbapenem-resistant Klebsiella pneumoniae. Microbial Pathogenesis, 2022, 171, 105746.	2.9	6
365	Shrimp Vibriosis. , 2022, , 191-206.		1
366	The diversity and utility of arylthiazoline and aryloxazoline siderophores: challenges of total synthesis. RSC Advances, 2022, 12, 25284-25322.	3.6	6
367	Genome Sequence of <i>Halomonas</i> sp. Strain MS1, a Metallophore-Producing, Algal Growth-Promoting Marine Bacterium Isolated from the Green Seaweed Ulva mutabilis (Chlorophyta). Microbiology Resource Announcements, 2022, 11, .	0.6	1
369	Siderophores and Their Applications in Sustainable Management of Plant Diseases. , 2022, , 289-302.		2
370	Discovery, Biosynthesis and Biological Activity of a Succinylated Myxochelin from the Myxobacterial Strain MSr12020. Microorganisms, 2022, 10, 1959.	3.6	4
371	Ligand-Promoted Surface Solubilization of TiO2 Nanoparticles by the Enterobactin Siderophore in Biological Medium. Biomolecules, 2022, 12, 1516.	4.0	1
372	Virulence Genes and In Vitro Antibiotic Profile of Photobacterium damselae Strains, Isolated from Fish Reared in Greek Aquaculture Facilities. Animals, 2022, 12, 3133.	2.3	5
373	<i>C</i> -Diazeniumdiolate Graminine in the Siderophore Gramibactin Is Photoreactive and Originates from Arginine. ACS Chemical Biology, 2022, 17, 3140-3147.	3.4	9

#	Article	IF	CITATIONS
374	Metabolomics and Genomics Enable the Discovery of a New Class of Nonribosomal Peptidic Metallophores from a Marine <i>Micromonospora</i> . Journal of the American Chemical Society, 2023, 145, 58-69.	13.7	10
376	Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution. BioMetals, 2023, 36, 777-797.	4.1	9
379	Chryseochelinsâ€"structural characterization of novel citrate-based siderophores produced by plant protecting <i>Chryseobacterium</i> i> spp Metallomics, 2023, 15, .	2.4	4
380	Iron Sequestration by Galloyl–Silane Nano Coatings Inhibits Biofilm Formation of Sulfitobacter sp Biomimetics, 2023, 8, 79.	3.3	1
381	Comparative Genomics of Halobacterium salinarum Strains Isolated from Salted Foods Reveals Protechnological Genes for Food Applications. Microorganisms, 2023, 11, 587.	3.6	1
382	Determinants of synergistic cell-cell interactions in bacteria. Biological Chemistry, 2023, 404, 521-534.	2.5	1
383	Iron uptake, transport and storage in marine brown algae. BioMetals, 2023, 36, 371-383.	4.1	0
384	Research progress on iron uptake pathways and mechanisms of foodborne microorganisms and their application in the food sector. Critical Reviews in Food Science and Nutrition, 0 , , 1 -19.	10.3	0
385	Structural Requirements for Ga ³⁺ Coordination in Synthetic Analogues of the Siderophore Piscibactin Deduced by Chemical Synthesis and Density Functional Theory Calculations. Inorganic Chemistry, 2023, 62, 7503-7514.	4.0	1
387	Engineering Siderophore Biosynthesis and Regulation Pathways to Increase Diversity and Availability. Biomolecules, 2023, 13, 959.	4.0	1
388	Tistrellabactins A and B Are Photoreactive <i>C</i> Diazeniumdiolate Siderophores from the Marine-Derived Strain <i>Tistrella mobilis</i> KA081020-065. Journal of Natural Products, 2023, 86, 1770-1778.	3.0	1
389	Siderophore production and utilization by marine bacteria in the North Pacific Ocean. Limnology and Oceanography, 2023, 68, 1636-1653.	3.1	1
390	Thermostable homologues of the periplasmic siderophore-binding protein CeuE from <i>Geobacillus stearothermophilus</i> and <i>Parageobacillus thermoglucosidasius</i> Acta Crystallographica Section D: Structural Biology, 2023, 79, 694-705.	2.3	1
391	A Comprehensive Review on the Roles of Metals Mediating Insect–Microbial Pathogen Interactions. Metabolites, 2023, 13, 839.	2.9	0
392	Jellyfish detritus supports niche partitioning and metabolic interactions among pelagic marine bacteria. Microbiome, 2023, $11,\ldots$	11.1	4
393	Reduction-cleavable desferrioxamine B pulldown system enriches Ni(<scp>ii</scp>)-superoxide dismutase from a <i>Streptomyces</i> proteome. RSC Chemical Biology, 0, , .	4.1	0
394	Metal Organic Complexation in Seawater: Historical Background and Future Directions. Annual Review of Marine Science, 2024, 16, 577-599.	11.6	1
395	Bacterial networks in Atlantic salmon with Piscirickettsiosis. Scientific Reports, 2023, 13, .	3.3	0

#	Article	IF	CITATIONS
396	Regulation of PGPR-Related Genes in Medicinal Plants in Adverse Conditions., 2023,, 243-273.		0
397	The diversity and utility of arylthiazoline and aryloxazoline siderophores: Challenges of coordination chemistry, biological activity and selected applications. Coordination Chemistry Reviews, 2024, 501, 215551.	18.8	0
398	Microbial iron acquisition is influenced by spatial and temporal conditions in a glacial influenced river and estuary system. Environmental Microbiology, 2023, 25, 3450-3465.	3.8	O
399	Comparative exploration of biological treatment of hydrothermal liquefaction wastewater from sewage sludge: Effects of culture, fermentation conditions, and ammonia stripping. Journal of Environmental Management, 2024, 349, 119527.	7.8	1
400	Effects of iron concentration and DFB (Desferrioxamine-B) on transcriptional profiles of an ecologically relevant marine bacterium. PLoS ONE, 2023, 18, e0295257.	2.5	0
401	Siderophore producing bacteria as biocontrol agent against phytopathogens for a better environment: A review. South African Journal of Botany, 2024, 165, 153-162.	2.5	O
402	Insights into group-specific pattern of secondary metabolite gene cluster in Burkholderia genus. Frontiers in Microbiology, 0, 14 , .	3. 5	0
403	Deciphering Microbial Communities and Distinct Metabolic Pathways in the Tangyin Hydrothermal Fields of Okinawa Trough through Metagenomic and Genomic Analyses. Microorganisms, 2024, 12, 517.	3.6	O
405	A redox switch allows binding of Fe(II) and Fe(III) ions in the cyanobacterial iron-binding protein FutA from $\langle i \rangle$ Prochlorococcus $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
406	Iron-mediated DAMO–anammox process: Revealing the mechanism of electron transfer. Journal of Environmental Management, 2024, 356, 120750.	7.8	0
407	A Mild and Modular Approach to the Total Synthesis of Desferrioxamine B. Journal of Organic Chemistry, 2024, 89, 5118-5125.	3.2	0