Comparison of ray-tracing method and thin-lens formucalculations

Journal of Cataract and Refractive Surgery 35, 650-662

DOI: 10.1016/j.jcrs.2008.12.015

Citation Report

#	Article	IF	CITATIONS
1	Intraocular lens power calculation. Journal of Cataract and Refractive Surgery, 2009, 35, 2176-2177.	0.7	5
2	Intraocular lens power calculation after laser refractive surgery. Journal of Cataract and Refractive Surgery, 2010, 36, 87-96.	0.7	27
3	Impact of axis misalignment of toric intraocular lenses on refractive outcomes after cataract surgery. Journal of Cataract and Refractive Surgery, 2010, 36, 2061-2072.	0.7	52
4	Estimation of effective lens position using a method independent of preoperative keratometry readings. Journal of Cataract and Refractive Surgery, 2011, 37, 506-512.	0.7	12
5	Intraocular lens power calculation after intrastromal femtosecond laser treatment for presbyopia: Theoretic approach. Journal of Cataract and Refractive Surgery, 2011, 37, 532-537.	0.7	12
6	Clinically relevant biometry. Current Opinion in Ophthalmology, 2012, 23, 47-53.	1.3	64
7	Challenges and approaches in modern biometry and IOL calculation. Saudi Journal of Ophthalmology, 2012, 26, 7-12.	0.3	46
8	Cataract surgery after previous femtosecond laser intrastromal presbyopia treatment. Journal of Cataract and Refractive Surgery, 2012, 38, 1293-1297.	0.7	6
9	Ray-tracing intraocular lens power calculation using anterior segment optical coherence tomography measurements. Journal of Cataract and Refractive Surgery, 2012, 38, 1758-1763.	0.7	35
10	Corneal power estimation for intraocular lens power calculation after corneal laser refractive surgery in Chinese eyes. Journal of Cataract and Refractive Surgery, 2012, 38, 1749-1757.	0.7	15
11	Personalized Pseudophakic Model for Refractive Assessment. PLoS ONE, 2012, 7, e46780.	1.1	16
12	Minimizing the IOL Power Error Induced by Keratometric Power. Optometry and Vision Science, 2013, 90, 639-649.	0.6	10
13	Refractive Changes after Removal of Anterior IOLs in Temporary Piggyback IOL Implantation for Congenital Cataracts. Korean Journal of Ophthalmology: KJO, 2013, 27, 93.	0.5	3
14	Intraocular Lens Power Calculation by Ray-Tracing after Myopic Excimer Laser Surgery. American Journal of Ophthalmology, 2014, 157, 150-153.e1.	1.7	58
15	The role of the posterior corneal surface in surgical planning. Expert Review of Ophthalmology, 2015, 10, 587-593.	0.3	0
16	Mathematical Method for Analysis of the Refractive Outcome after Toric Intraocular Lens Implantation. Ophthalmic Research, 2016, 55, 194-198.	1.0	0
17	The accuracy of axial length measurements in cases of macula-off retinal detachment. Canadian Journal of Ophthalmology, 2016, 51, 108-112.	0.4	18
18	Prediction of Postoperative Intraocular Lens Position with Angle-to-Angle Depth Using Anterior Segment Optical Coherence Tomography. Ophthalmology, 2016, 123, 2474-2480.	2.5	29

#	ARTICLE	IF	Citations
19	Comparison of OKULIX ray-tracing software with SRK-T and Hoffer-Q formula in intraocular lens power calculation. Journal of Current Ophthalmology, 2018, 30, 63-67.	0.3	20
20	Myopic Laser Corneal Refractive Surgery Reduces Interdevice Agreement in the Measurement of Anterior Corneal Curvature. Eye and Contact Lens, 2018, 44, S151-S157.	0.8	6
21	Use of the Posterior/Anterior Corneal Curvature Radii Ratio to Improve the Accuracy of Intraocular Lens Power Calculation: Eom's Adjustment Method., 2018, 59, 1016.		20
22	Intraocular lens power calculation using a Placido disk–Scheimpflug tomographer in eyes that had previous myopic corneal excimer laser surgery. Journal of Cataract and Refractive Surgery, 2018, 44, 935-941.	0.7	25
23	Intraocular lens power calculation in eyes with previous corneal refractive surgery. Eye and Vision (London, England), 2018, 5, 18.	1.4	76
24	New Approach for the Calculation of the Intraocular Lens Power Based on the Fictitious Corneal Refractive Index Estimation. Journal of Ophthalmology, 2019, 2019, 1-9.	0.6	13
25	Intrasession Repeatability of Biometric Measurements Obtained with a Low-Coherence Interferometry System in Pseudophakic Eyes. Current Eye Research, 2020, 45, 221-226.	0.7	5
26	Update on Intraocular Lens Formulas and Calculations. Asia-Pacific Journal of Ophthalmology, 2020, 9, 186-193.	1.3	47
27	A Comparative Study of Total Corneal Power Using a Ray Tracing Method Obtained from 3 Different Scheimpflug Camera Devices. American Journal of Ophthalmology, 2020, 216, 90-98.	1.7	7
28	Accuracy of Constant C for Ray Tracing: Assisted Intraocular Lens Power Calculation in Normal Ocular Axial Eyes. Ophthalmic Research, 2021, 64, 85-90.	1.0	5
29	Evaluation and comparison of a novel Scheimpflugâ€based optical biometer with standard partial coherence interferometry for biometry and intraocular lens power calculation. Experimental and Therapeutic Medicine, 2021, 21, 326.	0.8	4
30	Predictability of intraocular lens power calculation after small-incision lenticule extraction for myopia. Journal of Cataract and Refractive Surgery, 2021, 47, 304-310.	0.7	20
31	Predictability of Refractive Outcome of a Small-Aperture Intraocular Lens in Eyes With Irregular Corneal Astigmatism. Journal of Refractive Surgery, 2021, 37, 312-317.	1.1	5
32	Intraocular lens master optical biometry versus conventional ultrasound biometry in intraocular lens power calculations in highly myopic eyes. Menoufia Medical Journal, 2017, 30, 485.	0.1	6
33	Accuracy of axial length measurements from immersion B-scan ultrasonography in highly myopic eyes. International Journal of Ophthalmology, 2014, 7, 441-5.	0.5	6
34	Intraocular lens power calculation in virgin eyes: Accuracy of the Barrett Universal II formula and a Ray tracing software. European Journal of Ophthalmology, 2021, , 112067212110655.	0.7	0
35	Three-dimensional topographic changes of anterior chamber depth following phacoemulsification with intraocular lens implantation in cataract patients. International Ophthalmology, 2022, , 1.	0.6	0
36	Accuracy of optimized Sirius ray-tracing method in intraocular lens power calculation. International Journal of Ophthalmology, 2022, 15, 228-232.	0.5	0

3

#	Article	IF	CITATIONS
38	Ray Tracing versus Thin-Lens Formulas for IOL Power Calculation Using Swept-Source Optical Coherence Tomography Biometry. Journal of Ophthalmic and Vision Research, 0, , .	0.7	3
39	IOL Power Calculations and Cataract Surgery in Eyes with Previous Small Incision Lenticule Extraction. Journal of Clinical Medicine, 2022, 11, 4418.	1.0	9
40	Comparison of two one-piece acrylic foldable intraocular lenses: Short-term change in axial movement after cataract surgery and its effect on refraction. PLoS ONE, 2022, 17, e0273431.	1.1	1
41	Comparison of lens refractive parameters in myopic and hyperopic eyes of 6–12-year-old children. Frontiers in Medicine, 0, 9, .	1.2	0
42	Calculation of IOL Optical Power Using OKULIX Ray-Tracing Software in Real Clinical Practice. Oftalmologiya, 2023, 20, 61-68.	0.2	0
43	IOL Power Calculation After Refractive Surgery. , 2023, , 215-222.		0