Generation of Induced Pluripotent Stem Cell Lines from

Cell Stem Cell 4, 11-15 DOI: 10.1016/j.stem.2008.11.013

Citation Report

#	Article	IF	CITATIONS
1	The Effect of Sodium Chloride on Solute Potential and Proline Accumulation in Soybean Leaves. Plant Physiology, 1987, 83, 238-240.	2.3	99
5	Developmental Potential of Rat Extraembryonic Stem Cells. Stem Cells and Development, 2009, 18, 1309-1318.	1.1	32
6	Human embryonic stem cells and genomic instability. Regenerative Medicine, 2009, 4, 899-909.	0.8	47
7	MRPS18–2 protein immortalizes primary rat embryonic fibroblasts and endows them with stem cell-like properties. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19866-19871.	3.3	21
8	Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10993-10998.	3.3	434
9	DERIVATION AND THERAPEUTIC POTENTIALS OF INDUCED PLURIPOTENT STEM CELLS. Gene Therapy and Regulation, 2009, 04, 81-104.	0.3	0
10	Rats!. DMM Disease Models and Mechanisms, 2009, 2, 206-210.	1.2	219
11	Pig induced pluripotent stem cells: a new resource for generating genetically modified pigs. Regenerative Medicine, 2009, 4, 787-789.	0.8	13
12	Determinants of pluripotency: From avian, rodents, to primates. Journal of Cellular Biochemistry, 2010, 109, 16-25.	1.2	19
13	Are induced pluripotent stem cells the future of cellâ€based regenerative therapies for spinal cord injury?. Journal of Cellular Physiology, 2010, 222, 515-521.	2.0	46
14	Current progress and prospects of induced pluripotent stem cells. Science in China Series C: Life Sciences, 2009, 52, 622-636.	1.3	27
15	Induced pluripotent stem cells and the stability of the differentiated state. EMBO Reports, 2009, 10, 714-721.	2.0	33
16	iPS cells produce viable mice through tetraploid complementation. Nature, 2009, 461, 86-90.	13.7	737
17	Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nature Genetics, 2009, 41, 968-976.	9.4	385
18	A Fresh Look at iPS Cells. Cell, 2009, 137, 13-17.	13.5	636
19	Rats, Cats, and Elephants, but Still No Unicorn: Induced Pluripotent Stem Cells from New Species. Cell Stem Cell, 2009, 4, 3-4.	5.2	14
20	Molecules that Promote or Enhance Reprogramming of Somatic Cells to Induced Pluripotent Stem Cells. Cell Stem Cell, 2009, 4, 301-312.	5.2	357
21	Metastable Pluripotent States in NOD-Mouse-Derived ESCs. Cell Stem Cell, 2009, 4, 513-524.	5.2	318

#	Article	IF	CITATIONS
23	Generation of Pig Induced Pluripotent Stem Cells with a Drug-Inducible System. Journal of Molecular Cell Biology, 2009, 1, 46-54.	1.5	346
24	2008: year of the rat for stem cell research. Cell Research, 2009, 19, 149-151.	5.7	2
25	Generation of Induced Pluripotent Stem Cell Lines from Tibetan Miniature Pig. Journal of Biological Chemistry, 2009, 284, 17634-17640.	1.6	367
26	Transplantation tolerance in an age of induced pluripotency. Current Opinion in Organ Transplantation, 2009, 14, 321-325.	0.8	14
27	National BioResource Project-Rat and Related Activities. Experimental Animals, 2009, 58, 333-341.	0.7	63
28	Evolution of induced pluripotent stem cell technology. Current Opinion in Hematology, 2010, 17, 276-280.	1.2	42
29	Cryopreserving and Recovering of Human iPS Cells using Complete KnockOut Serum Replacement Feeder-Free Medium. Journal of Visualized Experiments, 2010, , .	0.2	4
30	Feeder-Free Adaptation, Culture and Passaging of Human IPS Cells using Complete KnockOut Serum Replacement Feeder-Free Medium. Journal of Visualized Experiments, 2010, , .	0.2	10
31	Genetic Materials at the Gene Engineering Division, RIKEN BioResource Center. Experimental Animals, 2010, 59, 115-124.	0.7	7
32	Zinc-finger nucleases: new strategies to target the rat genome. Clinical Science, 2010, 119, 303-311.	1.8	39
33	Establishment of rat embryonic stem cell lines that can participate in germline chimerae at high efficiency. Molecular Reproduction and Development, 2010, 77, 94-94.	1.0	38
34	Embryonic and adult neural stem cell research in China. Science China Life Sciences, 2010, 53, 338-341.	2.3	9
35	The Promise of Stem Cell Research in Pigs and Other Ungulate Species. Stem Cell Reviews and Reports, 2010, 6, 31-41.	5.6	76
36	Generation of induced pluripotent stem cells from newborn marmoset skin fibroblasts. Stem Cell Research, 2010, 4, 180-188.	0.3	108
37	Gene targeting in the rat: advances and opportunities. Trends in Genetics, 2010, 26, 510-518.	2.9	89
38	Porcine induced pluripotent stem cells may bridge the gap between mouse and human iPS. IUBMB Life, 2010, 62, 277-282.	1.5	14
39	Cell reprogramming: expectations and challenges for chemistry in stem cell biology and regenerative medicine. Cell Death and Differentiation, 2010, 17, 1230-1237.	5.0	42
40	The knockout rat pack. Nature Medicine, 2010, 16, 254-257.	15.2	15

#	Article	IF	CITATIONS
41	Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nature Protocols, 2010, 5, 418-428.	5.5	200
42	The challenge of immunogenicity in the quest for induced pluripotency. Nature Reviews Immunology, 2010, 10, 868-875.	10.6	72
43	Faithful reprogramming to pluripotency in mammals - what does nuclear transfer teach us?. International Journal of Developmental Biology, 2010, 54, 1609-1621.	0.3	8
44	Generation of Knockout Rats with X-Linked Severe Combined Immunodeficiency (X-SCID) Using Zinc-Finger Nucleases. PLoS ONE, 2010, 5, e8870.	1.1	211
45	Direct Reprogramming of Rat Neural Precursor Cells and Fibroblasts into Pluripotent Stem Cells. PLoS ONE, 2010, 5, e9838.	1.1	54
46	Linking Incomplete Reprogramming to the Improved Pluripotency of Murine Embryonal Carcinoma Cell-Derived Pluripotent Stem Cells. PLoS ONE, 2010, 5, e10320.	1.1	18
47	An ES-Like Pluripotent State in FGF-Dependent Murine iPS cells. PLoS ONE, 2010, 5, e16092.	1.1	17
48	Online tools for understanding rat physiology. Briefings in Bioinformatics, 2010, 11, 431-439.	3.2	15
49	Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology. , 2010, 123, 127-141.		23
50	Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation. Molecular Human Reproduction, 2010, 16, 856-868.	1.3	71
51	Generation and genetic modification of induced pluripotent stem cells. Expert Opinion on Biological Therapy, 2010, 10, 1089-1103.	1.4	21
52	Alternative Sources of Pluripotent Stem Cells: Ethical and Scientific Issues Revisited. Stem Cells and Development, 2010, 19, 1121-1129.	1.1	32
53	Induced Pluripotent Stem Cells: A New Approach for Physiological Research. Cellular Physiology and Biochemistry, 2010, 26, 105-124.	1.1	16
54	The Mighty Mice Prove Pluripotency for iPSCs. Journal of Molecular Cell Biology, 2010, 2, 171-172.	1.5	0
55	Mice Cloned from Induced Pluripotent Stem Cells (iPSCs)1. Biology of Reproduction, 2010, 83, 238-243.	1.2	46
56	Successful generation of cloned mice using nuclear transfer from induced pluripotent stem cells. Cell Research, 2010, 20, 850-853.	5.7	38
57	Potentialities of Induced Pluripotent Stem (iPS) Cells for Treatment of Diseases. Current Molecular Medicine, 2010, 10, 756-762.	0.6	7
58	Myc transcription factors: key regulators behind establishment and maintenance of pluripotency. Regenerative Medicine, 2010, 5, 947-959.	0.8	49

#	Article	IF	CITATIONS
59	Generation of genetically modified rats from embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14223-14228.	3.3	99
60	Porcine Induced Pluripotent Stem Cells Produce Chimeric Offspring. Stem Cells and Development, 2010, 19, 1211-1220.	1.1	205
61	Establishment of Embryonic Stem Cells from Rat Blastocysts. Methods in Molecular Biology, 2010, 597, 169-177.	0.4	15
62	A Murine ESC-like State Facilitates Transgenesis and Homologous Recombination in Human Pluripotent Stem Cells. Cell Stem Cell, 2010, 6, 535-546.	5.2	194
63	Different Flavors of Pluripotency, MolecularÂMechanisms, and Practical Implications. Cell Stem Cell, 2010, 7, 559-564.	5.2	37
64	The use of signalling pathway inhibitors and chromatin modifiers for enhancing pluripotency. Theriogenology, 2010, 74, 525-533.	0.9	7
65	Derivation of embryonic stem cells from Brown Norway rats blastocysts. Journal of Genetics and Genomics, 2010, 37, 467-473.	1.7	21
66	Modulation of embryonic stem cell fate and somatic cell reprogramming by small molecules. Reproductive BioMedicine Online, 2010, 21, 26-36.	1.1	9
67	Induced pluripotency: history, mechanisms, and applications. Genes and Development, 2010, 24, 2239-2263.	2.7	678
68	Rat Genomics. Methods in Molecular Biology, 2010, , .	0.4	3
69	Bioreactor Systems for Tissue Engineering II. , 2010, , .		2
70	Rat traps: filling the toolbox for manipulating the rat genome. Genome Biology, 2010, 11, 217.	3.8	12
71	Advancing stem cell research with microtechnologies: opportunities and challenges. Integrative Biology (United Kingdom), 2010, 2, 305.	0.6	36
72	Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Research, 2011, 21, 600-608.	5.7	108
73	Chromatin structure of pluripotent stem cells and induced pluripotent stem cells. Briefings in Functional Genomics, 2011, 10, 37-49.	1.3	28
74	Induced pluripotent stem cells and regenerative medicine. Journal of Clinical Gerontology and Geriatrics, 2011, 2, 1-6.	0.7	8
75	Somatic Cloning and Epigenetic Reprogramming in Mammals. , 2011, , 129-158.		5
76	Toward Regeneration of Retinal Function Using Pluripotent Stem Cells. , 2011, , 155-175.		Ο

\sim			n
CH	TAT	ION	Report

#	Article	IF	CITATIONS
77	Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Research, 2011, 21, 1509-1512.	5.7	131
78	Full-term development of rats from oocytes fertilized in vitro using cryopreserved ejaculated sperm. Cryobiology, 2011, 63, 7-11.	0.3	7
79	Induced pluripotent stem cells' self-renewal and pluripotency is maintained by a bovine granulosa cell line-conditioned medium. Biochemical and Biophysical Research Communications, 2011, 410, 252-257.	1.0	7
80	Induced Pluripotent Stem Cells: Emerging Techniques for Nuclear Reprogramming. Antioxidants and Redox Signaling, 2011, 15, 1799-1820.	2.5	31
81	Directed differentiation of murine-induced pluripotent stem cells to functional hepatocyte-like cells. Journal of Hepatology, 2011, 54, 98-107.	1.8	84
82	Genome Stability in Embryonic Stem Cells. , 2011, , .		4
83	Battle for Pluripotency: Derivation of Induced Pluripotent Stem Cells. Recent Patents on Regenerative Medicine, 2011, 1, 123-130.	0.4	0
84	Induced Pluripotent Stem Cells. , 2011, , 241-252.		2
86	Induced Pluripotent Stem Cells in Cardiovascular Medicine. Stem Cells International, 2011, 2011, 1-7.	1.2	22
87	Induced Pluripotent Stem Cells. , 2011, , 203-215.		1
88	The Past, Present and Future of Induced Pluripotent Stem Cells. , 0, , .		0
89	A Virus-Free Poly-Promoter Vector Induces Pluripotency in Quiescent Bovine Cells under Chemically Defined Conditions of Dual Kinase Inhibition. PLoS ONE, 2011, 6, e24501.	1.1	68
90	Derivation, Characterization, and Stable Transfection of Induced Pluripotent Stem Cells from Fischer344 Rats. PLoS ONE, 2011, 6, e27345.	1.1	26
91	Cell Reprogramming: A New Chemical Approach to Stem Cell Biology and Tissue Regeneration. Current Pharmaceutical Biotechnology, 2011, 12, 146-150.	0.9	9
92	Adult Stem Cell Transplants for Spinal Cord Injury Repair: Current State in Preclinical Research. Current Stem Cell Research and Therapy, 2011, 6, 273-287.	0.6	62
93	From skin to the treatment of diseases - the possibilities of iPS cell research in dermatology. Experimental Dermatology, 2011, 20, 523-528.	1.4	27
94	New approaches for the generation of induced pluripotent stem cells. Expert Opinion on Biological Therapy, 2011, 11, 569-579.	1.4	24
95	Preclinical Derivation and Imaging of Autologously Transplanted Canine Induced Pluripotent Stem Cells. Journal of Biological Chemistry, 2011, 286, 32697-32704.	1.6	88

#	Article	IF	CITATIONS
96	Sequencing and characterization of the porcine α-galactosidase A gene: towards the generation of a porcine model for Fabry disease. Molecular Biology Reports, 2011, 38, 3145-3152.	1.0	5
97	The emerging role for rat models in gene discovery. Mammalian Genome, 2011, 22, 466-475.	1.0	25
98	PET molecular imaging in stem cell therapy for neurological diseases. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1926-1938.	3.3	16
99	A Journey from Dental Pulp Stem Cells to a Bio-tooth. Stem Cell Reviews and Reports, 2011, 7, 161-171.	5.6	52
100	Induced Pluripotent Stem Cell Lines Derived from Equine Fibroblasts. Stem Cell Reviews and Reports, 2011, 7, 693-702.	5.6	213
101	Generation of Pig iPS Cells: A Model for Cell Therapy. Journal of Cardiovascular Translational Research, 2011, 4, 121-130.	1.1	84
102	Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells in rats. Reproductive Medicine and Biology, 2011, 10, 231-238.	1.0	1
103	A novel strategy to derive iPS cells from porcine fibroblasts. Science China Life Sciences, 2011, 54, 553-559.	2.3	28
104	Comprehensive analysis of clinical significance of stem-cell related factors in renal cell cancer. World Journal of Surgical Oncology, 2011, 9, 121.	0.8	27
105	Induced pluripotent stem cells: opportunities and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2198-2207.	1.8	225
106	Efficient Generation of Nonhuman Primate Induced Pluripotent Stem Cells. Stem Cells and Development, 2011, 20, 795-807.	1.1	26
107	Induction of Retinal Pigment Epithelial Cells from Monkey iPS Cells. , 2011, 52, 8785.		76
108	FROM TETRAPLOID-COMPLEMENTING MOUSE ıPS CELLS TO FULLY PLURIPOTENT PATIENT-SPECIFIC iPS CELLS. Gene Therapy and Regulation, 2011, 06, 5-20.	0.3	0
109	Pluripotent Stem Cells and Reprogrammed Cells in Farm Animals. Microscopy and Microanalysis, 2011, 17, 474-497.	0.2	48
110	Generation of Leukemia Inhibitory Factor and Basic Fibroblast Growth Factor-Dependent Induced Pluripotent Stem Cells from Canine Adult Somatic Cells. Stem Cells and Development, 2011, 20, 1669-1678.	1.1	87
111	Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming. Cell Research, 2011, 21, 849-853.	5.7	62
112	NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts1. Journal of Animal Science, 2011, 89, 2708-2716.	0.2	126
113	De NovoKidney Regeneration with Stem Cells. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-10.	3.0	15

#	Article	IF	CITATIONS
114	Basic principles in generating induced pluripotent stem cells. , 2012, , 49-63.		1
115	Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton's jelly in the horse. Reproduction, 2012, 143, 455-468.	1.1	97
116	Generation of Induced Pluripotent Stem Cells From Buffalo (<i>Bubalus bubalis</i>) Fetal Fibroblasts with Buffalo Defined Factors. Stem Cells and Development, 2012, 21, 2485-2494.	1.1	53
117	Stem cell gene expression in MRPS18-2-immortalized rat embryonic fibroblasts. Cell Death and Disease, 2012, 3, e357-e357.	2.7	14
118	Induction of Pluripotency in Adult Equine Fibroblasts without c-MYC. Stem Cells International, 2012, 2012, 1-9.	1.2	40
119	Advances in Induced Pluripotent Stem Cell Technologies. Stem Cells International, 2012, 2012, 1-1.	1.2	Ο
120	The Convergence of Cochlear Implantation with Induced Pluripotent Stem Cell Therapy. Stem Cell Reviews and Reports, 2012, 8, 741-754.	5.6	34
121	Derivation of Germline Competent Rat Embryonic Stem Cells from DA Rats. Journal of Genetics and Genomics, 2012, 39, 603-606.	1.7	9
122	Investigating cellular identity and manipulating cell fate using induced pluripotent stem cells. Stem Cell Research and Therapy, 2012, 3, 8.	2.4	8
123	Inducing pluripotency in somatic cells from the snow leopard (Panthera uncia), an endangered felid. Theriogenology, 2012, 77, 220-228.e2.	0.9	92
124	Overcoming barriers to the clinical utilization of iPSCs: reprogramming efficiency, safety and quality. Protein and Cell, 2012, 3, 834-845.	4.8	15
125	Generation of Tripotent Neural Progenitor Cells from Rat Embryonic Stem Cells. Journal of Genetics and Genomics, 2012, 39, 643-651.	1.7	7
127	Nuclear Reprogramming and Stem Cells. , 2012, , .		1
128	Kinetic Analysis of Porcine Fibroblast Reprogramming Toward Pluripotency by Defined Factors. Cellular Reprogramming, 2012, 14, 312-323.	0.5	16
129	The state of the art for pluripotent stem cells derivation in domestic ungulates. Theriogenology, 2012, 78, 1749-1762.	0.9	48
130	Gene Targeting. , 2012, , 19-35.		5
131	Technological Progress in Generation of Induced Pluripotent Stem Cells for Clinical Applications. Scientific World Journal, The, 2012, 2012, 1-10.	0.8	12
132	Characterization of Bovine Induced Pluripotent Stem Cells by Lentiviral Transduction of Reprogramming Factor Fusion Proteins. International Journal of Biological Sciences, 2012, 8, 498-511.	2.6	69

		CITATION REPORT	
#	Article	IF	CITATIONS
133	Human Stem Cells and Articular Cartilage Regeneration. Cells, 2012, 1, 994-1009.	1.8	28
134	Proteins Reprogramming: Present and Future. Scientific World Journal, The, 2012, 2012, 1-5.	0.8	3
135	Induction of Vascular Progenitor Cells From Endothelial Cells Stimulates Coronary Collateral Growth. Circulation Research, 2012, 110, 241-252.	2.0	43
136	Microfluidic Single-Cell Analysis Shows That Porcine Induced Pluripotent Stem Cell–Derived Endothelial Cells Improve Myocardial Function by Paracrine Activation. Circulation Research, 20 111, 882-893.	12, 2.0	106
137	Delineating nuclear reprogramming. Protein and Cell, 2012, 3, 329-345.	4.8	3
138	Ovine-Induced Pluripotent Stem Cells Can Contribute to Chimeric Lambs. Cellular Reprogrammi 2012, 14, 8-19.	ng, 0.5	46
139	Generation of Induced Pluripotent Stem Cells from the Prairie Vole. PLoS ONE, 2012, 7, e38119	. 1.1	20
140	Construction of recombinant proteins for reprogramming of endangered Luxi cattle fibroblast co Molecular Biology Reports, 2012, 39, 7175-7182.	ells. 1.0	13
141	Induced Pluripotent Stem Cells: Fundamentals and Applications of the Reprogramming Process Ramifications on Regenerative Medicine. Stem Cell Reviews and Reports, 2012, 8, 100-115.	and its 5.6	52
142	Induction of pluripotent stem cells from fetal and adult cynomolgus monkey fibroblasts using fo human transcription factors. Primates, 2012, 53, 205-213.	our 0.7	21
143	Large animal induced pluripotent stem cells as pre linical models for studying human disease of Cellular and Molecular Medicine, 2012, 16, 1196-1202.	. Journal 1.6	23
144	Stem cells and veterinary medicine: Tools to understand diseases and enable tissue regeneration drug discovery. Veterinary Journal, 2012, 191, 19-27.	n and 0.6	16
145	Generation of rat-induced pluripotent stem cells: Reprogramming and culture medium. Cell and Biology, 2012, 6, 115-121.	Tissue 0.2	2
146	Rapid conversion of human ESCs into mouse ESC-like pluripotent state by optimizing culture conditions. Protein and Cell, 2012, 3, 71-79.	4.8	33
147	Induced pluripotent stem cells and hepatic differentiation. Journal of the Chinese Medical Association, 2013, 76, 599-605.	0.6	13
148	Derivation and Characterization of Induced Pluripotent Stem Cells from Equine Fibroblasts. Ster Cells and Development, 2013, 22, 611-621.	n 1.1	79
149	RNA-Based Tools for Nuclear Reprogramming and Lineage-Conversion: Towards Clinical Applicat Journal of Cardiovascular Translational Research, 2013, 6, 956-968.	ions. 1.1	53
150	The case for genetic monitoring of mice and rats used in biomedical research. Mammalian Geno 2013, 24, 89-94.	me, 1.0	30

#	Article	IF	CITATIONS
151	Induced pluripotent stem cells: origins, applications, and future perspectives. Journal of Zhejiang University: Science B, 2013, 14, 1059-1069.	1.3	25
152	Monitoring bovine fetal fibroblast reprogramming utilizing a bovine <i>NANOG</i> promoterâ€driven EGFP reporter system. Molecular Reproduction and Development, 2013, 80, 193-203.	1.0	11
153	Isolation and Culture of Bovine Embryonic Stem Cells. Methods in Molecular Biology, 2013, 1074, 111-123.	0.4	2
154	Differentiation of rat iPS cells and ES cells into granulosa cell-like cells in vitro. Acta Biochimica Et Biophysica Sinica, 2013, 45, 289-295.	0.9	13
155	Growth Requirements and Chromosomal Instability of Induced Pluripotent Stem Cells Generated from Adult Canine Fibroblasts. Stem Cells and Development, 2013, 22, 951-963.	1.1	49
156	Defining the Diversity of Phenotypic Respecification Using Multiple Cell Lines and Reprogramming Regimens. Stem Cells and Development, 2013, 22, 2641-2654.	1.1	4
157	Stem cell potency and the ability to contribute to chimeric organisms. Reproduction, 2013, 145, R81-R88.	1.1	18
158	Somatic Cloning and Epigenetic Reprogramming in Mammals. , 2013, , 101-124.		0
159	Reprogramming of mouse renal tubular epithelial cells to induced pluripotent stem cells. Cytotherapy, 2013, 15, 578-585.	0.3	15
160	Cynomolgus monkey induced pluripotent stem cells established by using exogenous genes derived from the same monkey species. Differentiation, 2013, 85, 131-139.	1.0	18
161	An update on spinal cord injury research. Neuroscience Bulletin, 2013, 29, 94-102.	1.5	39
162	Efficient <i>p53</i> gene targeting by homologous recombination in ratâ€induced pluripotent stem cells. Cell Proliferation, 2013, 46, 1-9.	2.4	4
163	Induced Pluripotent Stem Cells. , 2013, , 227-235.		2
164	Induced Pluripotent Stem Cells. , 2013, , 197-218.		0
165	Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT–MET mechanism for optimal reprogramming. Nature Cell Biology, 2013, 15, 829-838.	4.6	201
166	Mitigating the Risk of Immunogenicity in the Pursuit of Induced Pluripotency. , 2013, , 77-94.		0
167	FOXM1 promotes the epithelial to mesenchymal transition by stimulating the transcription of Slug in human breast cancer. Cancer Letters, 2013, 340, 104-112.	3.2	90
168	Systematic Review of Induced Pluripotent Stem Cell Technology as a Potential Clinical Therapy for Spinal Cord Injury. Cell Transplantation, 2013, 22, 571-617.	1.2	49

#	ARTICLE	IF	CITATIONS
169	A novel reporter rat strain that expresses LacZ upon Creâ€mediated recombination. Genesis, 2013, 51, 268-274.	0.8	4
170	Generation of Transgenic Rats through Induced Pluripotent Stem Cells. Journal of Biological Chemistry, 2013, 288, 27150-27158.	1.6	10
171	Induced Pluripotent Stem Cells. , 2013, , 1-19.		0
172	Bioimaging of Transgenic Rats Established at Jichi Medical University: Applications in Transplantation Research. Cell Medicine, 2013, 5, 45-51.	5.0	0
173	Octamer-binding transcription factors: genomics and functions. Frontiers in Bioscience - Landmark, 2013, 18, 1051.	3.0	48
174	Neural Stem/Progenitor Cells for Spinal Cord Regeneration. , 2013, , .		3
175	Generation of Rat-Induced Pluripotent Stem Cells from a New Model of Metabolic Syndrome. PLoS ONE, 2014, 9, e104462.	1.1	10
176	Establishment of a Rabbit Oct4 Promoter-Based EGFP Reporter System. PLoS ONE, 2014, 9, e109728.	1.1	8
177	Immortalized tumor derived rat fibroblasts as feeder cells facilitate the cultivation of male embryonic stem cells from the rat strain WKY/Ztm. SpringerPlus, 2014, 3, 588.	1.2	1
178	Stimulation of Somatic Cell Reprogramming by ERas-Akt-FoxO1 Signaling Axis. Stem Cells, 2014, 32, 349-363.	1.4	40
179	Generation of chimeric piglets by injection of embryonic germ cells from inbred Wuzhishan miniature pigs into blastocysts. Xenotransplantation, 2014, 21, 140-148.	1.6	10
180	Rat Induced Pluripotent Stem Cells Protect H9C2 Cells from Cellular Senescence via a Paracrine Mechanism. Cardiology, 2014, 128, 43-50.	0.6	15
181	Stem cell sources for tooth regeneration: current status and future prospects. Frontiers in Physiology, 2014, 5, 36.	1.3	77
182	Production of Transgenic Rats. , 2014, , 251-273.		1
183	Characterization of the proximal region of the goat NANOG promoter that is used for monitoring cell reprogramming and early embryo development. Veterinary Journal, 2014, 199, 80-87.	0.6	4
184	Generation and characterization of bat-induced pluripotent stem cells. Theriogenology, 2014, 82, 283-293.	0.9	22
185	Telomere Length Maintenance, Shortening, and Lengthening. Journal of Cellular Physiology, 2014, 229, 1323-1329.	2.0	50
186	GM-CSF and MEF-conditioned media support feeder-free reprogramming of mouse granulocytes to iPS cells. Differentiation, 2014, 87, 193-199.	1.0	11

#	Article	IF	CITATIONS
187	All Roads Lead to Induced Pluripotent Stem Cells: The Technologies of iPSC Generation. Stem Cells and Development, 2014, 23, 1285-1300.	1.1	87
188	Cellular reprogramming by transcription factor engineering. Current Opinion in Genetics and Development, 2014, 28, 1-9.	1.5	7
189	Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells. Journal of Hematology and Oncology, 2014, 7, 50.	6.9	36
190	Deletion of Alox5 gene decreases osteogenic differentiation but increases adipogenic differentiation of mouse induced pluripotent stem cells. Cell and Tissue Research, 2014, 358, 135-147.	1.5	6
191	Transitions between epithelial and mesenchymal states during cell fate conversions. Protein and Cell, 2014, 5, 580-591.	4.8	44
192	Preclinical Studies for Induced Pluripotent Stem Cell-based Therapeutics. Journal of Biological Chemistry, 2014, 289, 4585-4593.	1.6	50
193	From "ES-like―cells to induced pluripotent stem cells: A historical perspective in domestic animals. Theriogenology, 2014, 81, 103-111.	0.9	58
194	The role of Importinâ€Î²s in the maintenance and lineage commitment of mouse embryonic stem cells. FEBS Open Bio, 2014, 4, 112-120.	1.0	16
195	Generation of induced pluripotent stem cells using skin fibroblasts from patients with myocardial infarction under feeder-free conditions. Molecular Medicine Reports, 2014, 10, 1170-1170.	1.1	1
196	Application of Induced Pluripotent Stem Cells in Liver Diseases. Cell Medicine, 2014, 7, 1-13.	5.0	15
197	Generation of induced pluripotent stem cells using skin fibroblasts from patients with myocardial infarction under feeder-free conditions. Molecular Medicine Reports, 2014, 9, 837-842.	1.1	2
198	Reprogramming of adult stem/progenitor cells into iPSCs without reprogramming factors. Journal of Medical Hypotheses and Ideas, 2015, 9, 99-103.	0.7	9
199	Chromosome microduplication in somatic cells decreases the genetic stability of human reprogrammed somatic cells and results in pluripotent stem cells. Scientific Reports, 2015, 5, 10114.	1.6	10
200	Detection of Intracellular Gene Expression in Live Cells of Murine, Human and Porcine Origin Using Fluorescence-labeled Nanoparticles. Journal of Visualized Experiments, 2015, , .	0.2	0
201	Qualitative Analyses of Protein Phosphorylation in Bovine Pluripotent Stem CellsÂGenerated from Embryonic Fibroblasts. Reproduction in Domestic Animals, 2015, 50, 989-998.	0.6	4
202	Barriers for Deriving Transgene-Free Pig iPS Cells with Episomal Vectors. Stem Cells, 2015, 33, 3228-3238.	1.4	60
203	<scp>PRMT</scp> 5 enhances generation of induced pluripotent stem cells from dairy goat embryonic fibroblasts <i>via</i> downâ€regulation of p53. Cell Proliferation, 2015, 48, 29-38.	2.4	26
204	Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World Journal of Stem Cells, 2015, 7, 315.	1.3	40

#	Article	IF	CITATIONS
205	Genetic cell reprogramming: A new technology for basic research and applied usage. Russian Journal of Genetics, 2015, 51, 386-396.	0.2	8
206	Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Scientific Reports, 2014, 4, 6382.	1.6	179
207	Retinoid Processing in Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cultures. Progress in Molecular Biology and Translational Science, 2015, 134, 477-490.	0.9	3
208	Generation and Characterization of Rat iPSCs. Methods in Molecular Biology, 2015, 1357, 133-148.	0.4	3
209	Cellular reprogramming and its application in regenerative medicine. Tissue Engineering and Regenerative Medicine, 2015, 12, 80-89.	1.6	11
210	Derivation and Characterization of Bovine Induced Pluripotent Stem Cells by Transposon-Mediated Reprogramming. Cellular Reprogramming, 2015, 17, 131-140.	0.5	70
211	Generation of Induced Pluripotent Stem Cells from Bovine Epithelial Cells and Partial Redirection Toward a Mammary Phenotype <i>In Vitro</i> . Cellular Reprogramming, 2015, 17, 211-220.	0.5	27
212	Generation of Arbas Cashmere Goat Induced Pluripotent Stem Cells Through Fibroblast Reprogramming. Cellular Reprogramming, 2015, 17, 297-305.	0.5	14
213	Generation of Induced Pluripotent Stem Cells (iPSCs) from Adult Canine Fibroblasts. Methods in Molecular Biology, 2015, 1330, 69-78.	0.4	12
214	Combining TGF-Î ² signal inhibition and connexin43 silencing for iPSC induction from mouse cardiomyocytes. Scientific Reports, 2015, 4, 7323.	1.6	1
215	Live Fluorescent RNA-Based Detection of Pluripotency Gene Expression in Embryonic and Induced Pluripotent Stem Cells of Different Species. Stem Cells, 2015, 33, 392-402.	1.4	27
216	Phylogenetic and Structural Analysis of the Pluripotency Factor Sex-Determining Region Y box2 Gene of Camelus dromedarius (cSox2). Bioinformatics and Biology Insights, 2016, 10, BBI.S39047.	1.0	2
217	Direct Reprogramming of Human Amniotic Fluid Stem Cells by OCT4 and Application in Repairing of Cerebral Ischemia Damage. International Journal of Biological Sciences, 2016, 12, 558-568.	2.6	19
218	The Importance of Ubiquitination and Deubiquitination in Cellular Reprogramming. Stem Cells International, 2016, 2016, 1-14.	1.2	73
219	Describing the Stem Cell Potency: The Various Methods of Functional Assessment and In silico Diagnostics. Frontiers in Cell and Developmental Biology, 2016, 4, 134.	1.8	58
220	Potential of Induced Pluripotent Stem Cells (iPSCs) for Treating Age-Related Macular Degeneration (AMD). Cells, 2016, 5, 44.	1.8	28
221	Recent Advances in Disease Modeling and Drug Discovery for Diabetes Mellitus Using Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2016, 17, 256.	1.8	29
222	Biodegradable Polymers and Stem Cells for Bioprinting. Molecules, 2016, 21, 539.	1.7	60

#	Article	IF	CITATIONS
223	Determining Stem Cell Fate with Hydrogels. , 2016, , 53-86.		0
224	Induced Pluripotent Stem Cells in Regenerative Medicine. , 2016, , 51-75.		2
225	Efficient generation of selectionâ€geneâ€free rat knockout models by homologous recombination in ES cells. FEBS Letters, 2016, 590, 3416-3424.	1.3	7
226	Establishment and adipocyte differentiation of polycystic ovary syndromeâ€derived induced pluripotent stem cells. Cell Proliferation, 2016, 49, 352-361.	2.4	10
227	Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells. Journal of Controlled Release, 2016, 235, 222-235.	4.8	99
228	Efficient biotechnological approach for lentiviral transduction of induced pluripotent stem cells. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 743-748.	1.9	15
229	InÂVivo Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Neonatal and Adult Rat Hearts. Stem Cell Reports, 2017, 8, 278-289.	2.3	138
230	Oct4 induces EMT through LEF1/ \hat{l}^2 -catenin dependent WNT signaling pathway in hepatocellular carcinoma. Oncology Letters, 2017, 13, 2599-2606.	0.8	39
231	Generation and characterization of induced pluripotent stem cells from guinea pig fetal fibroblasts. Molecular Medicine Reports, 2017, 15, 3690-3698.	1.1	5
232	Genetic Manipulation by Zinc-Finger Nucleases in Rat-Induced Pluripotent Stem Cells. Cellular Reprogramming, 2017, 19, 180-188.	0.5	3
233	Derivation of Transgene-Free Rat Induced Pluripotent Stem Cells Approximating the Quality of Embryonic Stem Cells. Stem Cells Translational Medicine, 2017, 6, 340-351.	1.6	5
234	Transcriptome Analysis of Induced Pluripotent Stem Cell (iPSC)-derived Pancreatic β-like Cell Differentiation. Cell Transplantation, 2017, 26, 1380-1391.	1.2	11
235	Naked Mole Rat Induced Pluripotent Stem Cells and Their Contribution to Interspecific Chimera. Stem Cell Reports, 2017, 9, 1706-1720.	2.3	30
236	Xenotransplantation and Kidney Regenerative Technology. , 2017, , 1151-1161.		0
237	Stem cell manipulation, gene therapy and the risk of cancer stem cell emergence. Stem Cell Investigation, 2017, 4, 67-67.	1.3	30
238	Comparison of Non-human Primate versus Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Treatment of Myocardial Infarction. Stem Cell Reports, 2018, 10, 422-435.	2.3	49
239	Stem-Cell Therapy Advances in China. Human Gene Therapy, 2018, 29, 188-196.	1.4	11
240	Human-induced pluripotent stem cell-derived macrophages and their immunological function in response to tuberculosis infection. Stem Cell Research and Therapy, 2018, 9, 49.	2.4	22

ARTICLE IF CITATIONS # In vitro platform of allogeneic stem cell-derived cardiomyocyte transplantation for cardiac 241 0.7 2 conduction defects. Europace, 2018, 20, 1553-1560. Generation of transgene-free porcine intermediate type induced pluripotent stem cells. Cell Cycle, 242 1.3 2018, 17, 2547-2563. Generation of rat-mouse chimeras by introducing single cells of rat inner cell masses into mouse 243 1.7 2 blastocysts. Journal of Genetics and Genomics, 2018, 45, 325-328. The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Research and 244 2.4 Therapy, 2018, 9, 201. Reproductive technologies for the generation and maintenance of valuable animal strains. Journal of 245 0.5 12 Reproduction and Development, 2018, 64, 209-215. Generation of functional cardiomyocytes from rat embryonic and induced pluripotent stem cells using feeder-free expansion and differentiation in suspension culture. PLoS ONE, 2018, 13, e0192652. 1.1 Pluripotent stem cell-derived organogenesis in the rat model system. Transgenic Research, 2019, 28, 247 1.3 7 287-297. Improvement of in vitro and early in utero porcine clone development after somatic donor cells are 1.0 10 cultured under hypoxia. Molecular Reproduction and Development, 2019, 86, 558-565. Organ Generation from Knockedout Rat Blastocysts Complemented with Pluripotent Stem Cells. 250 0.4 1 Methods in Molecular Biology, 2019, 1874, 313-326. Cell therapies for spinal cord injury regeneration., 2020, , 157-186. Induced Pluripotent Stem Cells: Hope in the Treatment of Diseases, including Muscular Dystrophies. 252 1.8 9 International Journal of Molecular Sciences, 2020, 21, 5467. Genetic Signatures of Evolution of the Pluripotency Gene Regulating Network across Mammals. 1.1 Genome Biology and Evolution, 2020, 12, 1806-1818. A Comparative Approach of Cellular Reprogramming in the Rodentia Order. Cellular Reprogramming, 254 0.5 2 2020, 22, 227-235. Comparative Metabolomic Profiling of Rat Embryonic and Induced Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2020, 16, 1256-1265. 1.7 Differentiation and characterization of neurons derived from rat iPSCs. Journal of Neuroscience 256 1.3 6 Methods, 2020, 338, 108693. Small Molecules that Promote Self-Renewal of Stem Cells and Somatic Cell Reprogramming. Stem Cell Reviews and Reports, 2020, 16, 511-523. Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement 258 2.6 50 Therapy. BioResearch Open Access, 2020, 9, 121-136. Bovine iPSC and applications in precise genome engineering., 2021, , 129-148.

# 260	ARTICLE Valproic Acid Enhance Reprogramming of Bactrian Camel Cells through Promoting the Expression of Endogenous Gene c-Myc and the Process of Angiogenesis. International Journal of Stem Cells, 2021, 14, 191-202.	IF 0.8	CITATIONS
261	FOXA2-Interacting FOXP2 Prevents Epithelial-Mesenchymal Transition of Breast Cancer Cells by Stimulating E-Cadherin and PHF2 Transcription. Frontiers in Oncology, 2021, 11, 605025.	1.3	12
262	Rat in vitro spermatogenesis promoted by chemical supplementations and oxygen-tension control. Scientific Reports, 2021, 11, 3458.	1.6	19
263	L-myc Gene Expression in Canine Fetal Fibroblasts Promotes Self-Renewal Capacity but Not Tumor Formation. Cells, 2021, 10, 1980.	1.8	3
264	Stem Cells: The Holy Grail of Regenerative Medicine. , 2014, , 19-69.		5
265	Derivation of Equine-Induced Pluripotent Stem Cell Lines Using a piggyBac Transposon Delivery System and Temporal Control of Transgene Expression. Methods in Molecular Biology, 2015, 1330, 79-88.	0.4	4
266	Synchroton Radiation and Nanotechnology for Stem Cell Researchers. , 2012, , 81-102.		1
267	Proposing a Model for Studying Primate Development Using Induced Pluripotent Stem Cells. Research and Perspectives in Neurosciences, 2013, , 31-39.	0.4	2
268	Induced pluripotent stem cells from farm animals. Journal of Animal Science, 2020, 98, .	0.2	30
269	Reprogramming of Sheep Fibroblasts into Pluripotency under a Drug-Inducible Expression of Mouse-Derived Defined Factors. PLoS ONE, 2011, 6, e15947.	1.1	90
270	Intramyocardial Transplantation of Undifferentiated Rat Induced Pluripotent Stem Cells Causes Tumorigenesis in the Heart. PLoS ONE, 2011, 6, e19012.	1.1	69
271	Generation of Germline-Competent Rat Induced Pluripotent Stem Cells. PLoS ONE, 2011, 6, e22008.	1.1	67
272	Cross-Species Genome Wide Expression Analysis during Pluripotent Cell Determination in Mouse and Rat Preimplantation Embryos. PLoS ONE, 2012, 7, e47107.	1.1	12
273	Porcine Induced Pluripotent Stem Cells Require LIF and Maintain Their Developmental Potential in Early Stage of Embryos. PLoS ONE, 2012, 7, e51778.	1.1	65
274	Efficient Generation of Rat Induced Pluripotent Stem Cells Using a Non-Viral Inducible Vector. PLoS ONE, 2013, 8, e55170.	1.1	23
275	Differentiation of Mouse Induced Pluripotent Stem Cells (iPSCs) into Nucleus Pulposus-Like Cells In Vitro. PLoS ONE, 2013, 8, e75548.	1.1	52
276	New Type of Sendai Virus Vector Provides Transgene-Free iPS Cells Derived from Chimpanzee Blood. PLoS ONE, 2014, 9, e113052.	1.1	50
277	Transplantation of Induced Pluripotent Stem Cells Alleviates Cerebral Inflammation and Neural Damage in Hemorrhagic Stroke. PLoS ONE, 2015, 10, e0129881.	1.1	56

	C	CITATION REPORT	
#	ARTICLE In Vitro and In Vivo Development of Horse Cloned Embryos Generated with iPSCs, Mesenchymal	IF	CITATIONS
278	Stromal Cells and Fetal or Adult Fibroblasts as Nuclear Donors. PLoS ONE, 2016, 11, e0164049.	1.1	29
279	Mitochondrial ribosomal protein S18-2 evokes chromosomal instability and transforms primary rat skin fibroblasts. Oncotarget, 2015, 6, 21016-21028.	0.8	16
280	Induced Pluripotent Stem Cells of Microtus levis x Microtus arvalis Vole Hybrids: Conditions Necessary for Their Generation and Self-Renewal. Acta Naturae, 2015, 7, 56-69.	1.7	4
281	Induced pluripotent stem (iPS) cells: an up-to-the-minute review. F1000 Biology Reports, 2009, 1, 84	ł. 4.0	10
282	Induced Pluripotent Stem Cells(iPS Cells):Current Status and Future Prospect*. Progress in Biochemistry and Biophysics, 2009, 2009, 950-960.	0.3	4
283	Hepatic differentiation of rat induced pluripotent stem cellsin vitro. World Journal of Gastroenterology, 2015, 21, 11118.	1.4	8
284	Establishment and Characterization of Novel Porcine Induced Pluripotent Stem Cells Expressing hrGFP. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	4
285	Patient-specific Induced Pluripotent Stem Cells as a Platform for Disease Modeling, Drug Discovery and Precision Personalized Medicine. Journal of Stem Cell Research & Therapy, 2012, 01, .	0.3	9
286	An Insight on Small Molecule Induced Foot-Print Free Naive Pluripotent Stem Cells in Livestock. Stem Cell Discovery, 2015, 05, 1-9.	۱ 0.5	3
287	Induced pluripotent stem cells throughout the animal kingdom: Availability and applications. World Journal of Stem Cells, 2019, 11, 491-505.	1.3	44
288	Rat embryonic stem cells created. Nature, 0, , .	13.7	0
289	Stem cells: Rat cells reprogrammed. Nature China, 2009, , .	0.0	0
290	Chapter 6. Induced Pluripotent Stem Cells: Their Role in Modeling Disease and Regenerative Medicine 2010, , 117-140.	e.,	0
291	Expression of human Oct4 and cell penetrating peptide fusion protein. Academic Journal of Second Military Medical University, 2010, 30, 489-493.	0.0	0
292	Generation of Induced Pluripotent Stem Cells From Porcine Fibroblasts*. Progress in Biochemistry and Biophysics, 2010, 37, 607-612.	0.3	0
293	Human Amnion-derived Pluripotent Stem Cells as a Promising Source for Regenerative Medicine and Tissue Engineering. Journal of Bioengineering & Biomedical Science, 2011, 01, .	0.2	1
294	The Progress of Induced Pluripotent Stem Cells (iPSCs) for Research and Applications. Progress in Biochemistry and Biophysics, 2011, 38, 101-112.	0.3	1
296	Transgenics transgenic(s) : Alternative Gene Transfer Methods transgenic(s) alternative gene transfe methods. , 2012, , 10895-10923.	r	0

#	Article	IF	CITATIONS
297	118 INDUCING PLURIPOTENCY IN SOMATIC CELLS FROM THE SNOW LEOPARD (PANTHERA UNCIA), AN ENDANGERED FELID. Reproduction, Fertility and Development, 2012, 24, 171.	0.1	1
298	Recent Progress in Induced Cells*. Progress in Biochemistry and Biophysics, 2012, 39, 327-334.	0.3	0
299	Transgenics transgenic(s) : Alternative Gene Transfer Methods transgenic(s) alternative gene transfer methods. , 2013, , 1799-1827.		0
300	The different characteristics of pluripotent stem cells deriving from the difference of animal species. Japanese Journal of Thrombosis and Hemostasis, 2014, 25, 407-410.	0.1	0
301	Pluripotency of iPSC and the Underlining Mechanism. Springer Theses, 2014, , 53-74.	0.0	0
306	Easy Isolation, Propagation, Characterization and Multilineage Differentiation of Equine Amniotic Fluid Derived Stem Cells. Journal of Research in Veterinary Medicine, 0, , 1-22.	0.1	0
308	Induced Pluripotent Stem Cells of Microtus levis x Microtus arvalis Vole Hybrids: Conditions Necessary for Their Generation and Self-Renewal. Acta Naturae, 2015, 7, 56-69.	1.7	4
309	Fish Pluripotent Stem-Like Cell Line Induced by Small-Molecule Compounds From Caudal Fin and its Developmental Potentiality. Frontiers in Cell and Developmental Biology, 2021, 9, 817779.	1.8	6
310	Defining the Pluripotent Marker Genes for Identification of Teleost Fish Cell Pluripotency During Reprogramming. Frontiers in Genetics, 2022, 13, 819682.	1.1	2
311	Dopaminergic neurons derived from porcine induced pluripotent stem cell like cells function in the Lanyu pig model of Parkinson's disease. Animal Biotechnology, 2022, , 1-12.	0.7	2
313	A real-time pluripotency reporter for the long-term and real-time monitoring of pluripotency changes in induced pluripotent stem cells. Aging, 2022, 14, .	1.4	1
314	Biocompatibility of Human Induced Pluripotent Stem Cell–Derived Retinal Progenitor Cell Grafts in Immunocompromised Rats. Cell Transplantation, 2022, 31, 096368972211044.	1.2	9
315	Therapeutic function of a novel rat induced pluripotent stem cell line in a 6‑OHDA‑induced rat model of Parkinson's disease. International Journal of Molecular Medicine, 2022, 50, .	1.8	0
316	Establishment of Bactrian Camel Induced Pluripotent Stem Cells and Prediction of Their Unique Pluripotency Genes. International Journal of Molecular Sciences, 2023, 24, 1917.	1.8	2
318	Stem Cell Therapy for the Treatment of Parkinson's Disease: What Promise Does it Hold?. Current Stem Cell Research and Therapy, 2023, 18, .	0.6	0
319	Reprogramming efficiency and pluripotency of mule iPSCs over its parents. Biology of Reproduction, 2023, 108, 887-901.	1.2	3
321	iPSCs and their Role in Amelioration of Neurodegenerative Disorders. , 2023, , 111-137.		0