Allometric equations for tree species and carbon stocks Mexico

Forest Ecology and Management 257, 427-434 DOI: 10.1016/j.foreco.2008.09.028

Citation Report

#	Article	IF	CITATIONS
1	Projections of Carbon Stocks in Sites Reforested with Pinyon Pine Species in Northeastern Mexico. Arid Land Research and Management, 2009, 23, 342-358.	1.6	1
2	Biomass component equations for Latin American species and groups of species. Annals of Forest Science, 2009, 66, 208-208.	2.0	74
3	Allometric prediction of above-ground biomass of eleven woody tree species in the Sudanian savanna-woodland of West Africa. Journal of Forestry Research, 2010, 21, 475-481.	3.6	54
4	Methods od Assessment of Aboveground Tree Biomass. , 2010, , .		5
5	Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. Forest Ecology and Management, 2010, 260, 1873-1885.	3.2	189
6	Using the dummy variable model approach to construct compatible single-tree biomass equations at different scales — a case study for Masson pine (<i>Pinus massoniana</i>) in southern China. Canadian Journal of Forest Research, 2011, 41, 1547-1554.	1.7	38
7	Ontogeny partly explains the apparent heterogeneity of published biomass equations for Fagus sylvatica in central Europe. Forest Ecology and Management, 2011, 261, 1188-1202.	3.2	71
8	Above- and belowground biomass in a Brazilian Cerrado. Forest Ecology and Management, 2011, 262, 491-499.	3.2	86
9	Carbon density and accumulation in woody species of tropical dry forest in India. Forest Ecology and Management, 2011, 262, 1576-1588.	3.2	111
10	A New General Allometric Biomass Model. Nature Precedings, 2011, , .	0.1	2
11	A New General Allometric Biomass Model. Nature Precedings, 2011, , .	0.1	11
12	Fire regime in a Mexican forest under indigenous resource management. , 2011, 21, 764-775.		50
13	Allometric models for predicting above- and belowground biomass of Leucaena-KX2 in a shaded coffee agroecosystem in Hawaii. Agroforestry Systems, 2011, 83, 331-345.	2.0	15
14	Oleoresin yield and carbon stocks in tapped subtropical Pinus elliottii forests. BMC Proceedings, 2011, 5, P100.	1.6	0
15	A fine-scale model for area-based predictions of tree-size-related attributes derived from LiDAR canopy heights. Scandinavian Journal of Forest Research, 2012, 27, 312-322.	1.4	28
16	Pine oleoresin: tapping green chemicals, biofuels, food protection, and carbon sequestration from multipurpose trees. Food and Energy Security, 2012, 1, 81-93.	4.3	72
17	A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecological Applications, 2012, 22, 572-583.	3.8	167
18	Using linear mixed model and dummy variable model approaches to construct compatible single-tree biomass equations at different scales - A case study for Masson pine in Southern China. Journal of Forest Science, 2012, 58, 101-115.	1.1	34

#	Article	IF	CITATIONS
19	Biomass Estimation of Dry Tropical Woody Species at Juvenile Stage. Scientific World Journal, The, 2012, 2012, 1-5.	2.1	40
20	Assessing nutrient uptake by field-grown orange trees. European Journal of Agronomy, 2012, 41, 73-80.	4.1	48
21	Sprouting productivity and allometric relationships of two oak species managed for traditional charcoal making in central Mexico. Biomass and Bioenergy, 2012, 36, 192-207.	5.7	29
22	Spatial variation and prediction of forest biomass in a heterogeneous landscape. Journal of Forestry Research, 2012, 23, 13-22.	3.6	7
23	Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. New Forests, 2012, 43, 197-211.	1.7	64
24	Aboveground biomass estimation of small diameter woody species of tropical dry forest. New Forests, 2013, 44, 509-519.	1.7	47
25	Allometric equations for estimating aboveground biomass of Coffea arabica L. grown in the Rift Valley escarpment of Ethiopia. Agroforestry Systems, 2013, 87, 953-966.	2.0	46
26	Regional aboveground biomass equations for North American arid and semi-arid forests. Journal of Arid Environments, 2013, 97, 127-135.	2.4	18
27	Variability of Soil Organic Carbon stocks under different land uses: A study in an afro-montane landscape in southwestern Uganda. Geoderma, 2013, 193-194, 282-289.	5.1	39
29	Changes in forest biomass carbon stock in Northern Turkey between 1973 and 2006. Environmental Monitoring and Assessment, 2013, 185, 8343-8354.	2.7	1
30	Using basal area to estimate aboveground carbon stocks in forests: La Primavera Biosphere's Reserve, Mexico. Forestry, 2013, 86, 267-281.	2.3	40
31	Allometry for Biomass Estimation in Jatropha Trees Planted as Boundary Hedge in Farmers' Fields. Forests, 2013, 4, 218-233.	2.1	22
32	Allometries for Widely Spaced Populus ssp. and Betula ssp. in Nurse Crop Systems. Forests, 2013, 4, 1003-1031.	2.1	13
33	Potential for Climate Change Mitigation in Degraded Forests: A Study from La Primavera, México. Forests, 2013, 4, 1032-1054.	2.1	7
34	Allometric Models for Estimating Carbon Fixation in Citrus Trees. Agronomy Journal, 2013, 105, 1355-1366.	1.8	4
35	Allometric equations for predicting aboveground biomass of beech-hornbeam standsin the Hyrcanian forests of Iran. Journal of Forest Science, 2014, 60, 236-247.	1.1	31
36	Biomass Equations for Tropical Forest Tree Species in Mozambique. Forests, 2014, 5, 535-556.	2.1	42
37	Cuantificación del Contenido de Carbono en una Plantación de Pino Insigne (Pinus radiata) y en Estrato de Páramo de Ozogoche Bajo, Parque Nacional Sangay, Ecuador. Informacion Tecnologica (discontinued), 2014, 25, 83-92.	0.3	10

#	Article	IF	CITATIONS
38	Firewood extraction affects carbon pools and nutrients in remnant fragments of temperate forests at the Mexican Transvolcanic Belt. Bosque, 2014, 35, 311-324.	0.3	9
39	Generic linear mixed-effects individual-tree biomass models for <i>Pinus massoniana</i> in southern China. Southern Forests, 2014, 76, 47-56.	0.7	19
40	Updated generalized biomass equations for North American tree species. Forestry, 2014, 87, 129-151.	2.3	230
41	Error propagation in stock-difference and gain–loss estimates of a forest biomass carbon balance. European Journal of Forest Research, 2014, 133, 1137-1155.	2.5	19
42	Development of monitoring and assessment of forest biomass and carbon storage in China. Forest Ecosystems, 2014, 1, .	3.1	18
43	Root and shoot biomasses in the tropical dry forest of semi-arid Northeast Brazil. Plant and Soil, 2014, 378, 113-123.	3.7	37
44	Intra-specific differences in allometric equations for aboveground biomass of eastern Mediterranean Pinus brutia. Annals of Forest Science, 2014, 71, 101-112.	2.0	33
45	The Right Tree for the Job? Perceptions of Species Suitability for the Provision of Ecosystem Services. Environmental Management, 2014, 53, 783-799.	2.7	13
46	Modeling above-ground biomass for three tropical tree species at their juvenile stage. Forest Science and Technology, 2014, 10, 51-60.	0.8	14
47	Carbon stock in influenced forest of Srinagar hydroelectric project, Uttarakhand, India. Forest Science and Technology, 2014, 10, 125-129.	0.8	1
48	Modelling available crown fuel for Pinus pinaster Ait. stands in the "Cazorla, Segura and Las Villas Natural Park―(Spain). Journal of Environmental Management, 2014, 144, 26-33.	7.8	9
49	Effects of Uncertainty in Model Predictions of Individual Tree Volume on Large Area Volume Estimates. Forest Science, 2014, 60, 34-42.	1.0	114
50	Model errors in tree biomass estimates computed with an approximation to a missing covariance matrix. Carbon Balance and Management, 2015, 10, 21.	3.2	13
51	Allometric Models for Accurate Estimation of Aboveground Biomass of Teak in Tropical Dry Forests of India. Forest Science, 2015, 61, 938-949.	1.0	22
52	A Three-Step Proportional Weighting System of Nonlinear Biomass Equations. Forest Science, 2015, 61, 35-45.	1.0	42
53	Evaluation of Four Methods for Predicting Carbon Stocks of Korean Pine Plantations in Heilongjiang Province, China. PLoS ONE, 2015, 10, e0145017.	2.5	7
54	Individual-based fine root biomass and its functional relationship with leaf for Pinus tabuliformis in northern China. European Journal of Forest Research, 2015, 134, 705-714.	2.5	13
55	Interactions of fuel treatments, wildfire severity, and carbon dynamics in dry conifer forests. Forest Ecology and Management, 2015, 349, 66-72.	3.2	22

#	Article	IF	CITATIONS
56	Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Annals of Forest Science, 2015, 72, 835-864.	2.0	55
57	A general method for assessing the effects of uncertainty in individual-tree volume model predictions on large-area volume estimates with a subtropical forest illustration. Canadian Journal of Forest Research, 2015, 45, 44-51.	1.7	36
58	Using nonlinear mixed model and dummy variable model approaches to develop origin-based individual tree biomass equations. Trees - Structure and Function, 2015, 29, 275-283.	1.9	33
59	Erosion rates as a potential bottomâ€up control of forest structural characteristics in the Sierra Nevada Mountains. Ecology, 2015, 96, 31-38.	3.2	40
60	Aboveground biomass and leaf area equations for three common tree species of Hyrcanian temperate forests in northern Iran. Botany, 2015, 93, 663-670.	1.0	7
61	Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests. Ecological Applications, 2015, 25, 1433-1446.	3.8	56
62	A single-tree additive biomass model of Quercus variabilis Blume forests in North China. Trees - Structure and Function, 2015, 29, 705-716.	1.9	21
63	Integrated individual tree biomass simultaneous equations for two larch species in northeastern and northern China. Scandinavian Journal of Forest Research, 2015, 30, 594-604.	1.4	27
64	Root stock biomass and productivity assessments of reforested pine stands in northern Mexico. Forest Ecology and Management, 2015, 338, 139-147.	3.2	5
65	Temporal Variation of Wood Density and Carbon in Two Elevational Sites of Pinus cooperi in Relation to Climate Response in Northern Mexico. PLoS ONE, 2016, 11, e0156782.	2.5	22
66	Tree allometry for estimation of carbon stocks in African tropical forests. Forestry, 2016, 89, 446-455.	2.3	38
67	Bayesian and Classical Models to Predict Aboveground Tree Biomass Allometry. Forest Science, 2016, 62, 247-259.	1.0	8
68	Estimating Forest and Woodland Aboveground Biomass Using Active and Passive Remote Sensing. Photogrammetric Engineering and Remote Sensing, 2016, 82, 271-281.	0.6	12
69	Aboveground biomass equations for sustainable production of fuelwood in a native dry tropical afro-montane forest of Ethiopia. Annals of Forest Science, 2016, 73, 411-423.	2.0	24
70	Species-specific and general allometric equations for estimating tree biomass components of subtropical forests in southern China. European Journal of Forest Research, 2016, 135, 963-979.	2.5	66
71	Aboveground carbon stock, allocation and sequestration potential during vegetation recovery in the karst region of southwestern China: A case study at a watershed scale. Agriculture, Ecosystems and Environment, 2016, 235, 91-100.	5.3	63
72	A predictive nondestructive model for the covariation of tree height, diameter and stem volume scaling relationships. Scientific Reports, 2016, 6, 31008.	3.3	10
73	Allometric exponents as a tool to study the influence of climate on the trade-off between primary and secondary growth in major north-eastern American tree species. Annals of Botany, 2016, 117, 551-563.	2.9	14

#	Article	IF	CITATIONS
74	Incorporating topographic factors in nonlinear mixed-effects models for aboveground biomass of natural Simao pine in Yunnan, China. Journal of Forestry Research, 2016, 27, 119-131.	3.6	15
75	Allometric biomass, nutrient and carbon stock models for Kandelia candel of the Sundarbans, Bangladesh. Trees - Structure and Function, 2016, 30, 709-717.	1.9	21
76	Carbon stock in agroforestry coffee plantations with different shade trees in Villa Rica, Peru. Agroforestry Systems, 2016, 90, 433-445.	2.0	36
77	Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: A review. Forest Ecology and Management, 2016, 359, 332-351.	3.2	101
78	Additive biomass equations for small diameter trees of temperate mixed deciduous forests. Scandinavian Journal of Forest Research, 2016, 31, 394-398.	1.4	12
79	Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China. European Journal of Forest Research, 2017, 136, 233-249.	2.5	65
80	Changes in ecosystem carbon pool and soil CO 2 flux following post-mine reclamation in dry tropical environment, India. Science of the Total Environment, 2017, 583, 153-162.	8.0	79
81	Simultaneous estimation of above- and below-ground biomass in tropical forests of Viet Nam. Forest Ecology and Management, 2017, 390, 147-156.	3.2	33
82	Construction of compatible and additive individual-tree biomass models for <i>Pinustabulaeformis</i> in China. Canadian Journal of Forest Research, 2017, 47, 467-475.	1.7	32
83	Individual Tree Biomass Models to Estimate Forest Biomass for Large Spatial Regions Developed Using Four Pine Species in China. Forest Science, 2017, 63, 241-249.	1.0	16
84	The Anatomy and Functioning of the Xylem in Oaks. Tree Physiology, 2017, , 261-302.	2.5	15
85	Estimating Aboveground Tree Biomass for Beetle-Killed Lodgepole Pine in the Rocky Mountains of Northern Colorado. Forest Science, 2017, 63, 413-419.	1.0	6
86	Allometric Equations for Estimating Biomass and Carbon Stocks in the Temperate Forests of North-Western Mexico. Forests, 2017, 8, 269.	2.1	53
87	Remote Sensing of Above-Ground Biomass. Remote Sensing, 2017, 9, 935.	4.0	153
88	Biomass Modeling of Larch (Larix spp.) Plantations in China Based on the Mixed Model, Dummy Variable Model, and Bayesian Hierarchical Model. Forests, 2017, 8, 268.	2.1	21
89	Mapping Changes in Carbon Storage and Productivity Services Provided by Riparian Ecosystems of Semi-Arid Environments in Northwestern Mexico. ISPRS International Journal of Geo-Information, 2017, 6, 298.	2.9	14
90	Predicting of biomass in Brazilian tropical dry forest: a statistical evaluation of generic equations. Anais Da Academia Brasileira De Ciencias, 2017, 89, 1815-1828.	0.8	8
91	Aboveground biomass estimation at different scales for subtropical forests in China. , 2017, 58, 45.		4

#	Article	IF	CITATIONS
92	Uso y disponibilidad de leña en la región de La Montaña en el estado de Guerrero y sus implicaciones en la unidad ambiental. Madera Bosques, 2017, 23, 121-135.	0.2	10
93	Spatial patterns and environmental factors influencing leaf carbon content in the forests and shrublands of China. Journal of Chinese Geography, 2018, 28, 791-801.	3.9	13
94	Developing individual tree-based models for estimating aboveground biomass of five key coniferous species in China. Journal of Forestry Research, 2018, 29, 1251-1261.	3.6	14
95	Individual tree aboveground biomass for Castanopsis indica in the mid-hills of Nepal. Agroforestry Systems, 2018, 92, 1611-1623.	2.0	8
96	Allometric relationships and reforestation guidelines for Maclura tinctoria, an important multi-purpose timber tree of Latin America. New Forests, 2018, 49, 249-263.	1.7	2
97	Using aerial photography to estimate wood suitable for charcoal in managed oak forests. Environmental Research Letters, 2018, 13, 025006.	5.2	2
98	Using nonparametric modeling approaches and remote sensing imagery to estimate ecological welfare forest biomass. Journal of Forestry Research, 2018, 29, 151-161.	3.6	15
99	MODELLING OF ALLOMETRIC EQUATIONS FOR BIOMASS ESTIMATE IN DECIDUOUS FOREST. Floresta, 2018, 49, 143.	0.2	2
100	Estimating aboveground carbon density across forest landscapes of Hawaii: Combining FIA plot-derived estimates and airborne LiDAR. Forest Ecology and Management, 2018, 424, 323-337.	3.2	17
101	A systematic review on the aboveground biomass and carbon stocks of Indian forest ecosystems. Ecological Processes, 2018, 7, .	3.9	41
102	Evaluating the Multi-Functionality of Forest Ecosystems in Northern Mexico. Forests, 2018, 9, 178.	2.1	8
103	Dendroecological Approach to Assessing Carbon Accumulation Dynamics in Two <i>Pinus</i> Species from Northern Mexico. Tree-Ring Research, 2018, 74, 196-209.	0.6	8
104	Variables Selection for Aboveground Biomass Estimations Using Satellite Data: A Comparison between Relative Importance Approach and Stepwise Akaike's Information Criterion. ISPRS International Journal of Geo-Information, 2019, 8, 245.	2.9	8
105	Biomass estimation of individual trees for coppice-originated oak forests. European Journal of Forest Research, 2019, 138, 623-637.	2.5	13
106	A Spatial Forestry Productivity Potential Model for Pinus arizonica Engelm, a Key Timber Species from Northwest Mexico. Sustainability, 2019, 11, 829.	3.2	2
107	Allometric equations for aboveground biomass estimation of <i>Diospyros abyssinica</i> (Hiern) F. White tree species. Ecosystem Health and Sustainability, 2019, 5, 86-97.	3.1	16
108	Wildfire-induced reduction in the carbon storage of Mediterranean ecosystems: An application to brush and forest fires impacts assessment. Environmental Impact Assessment Review, 2019, 76, 88-97.	9.2	12
109	A technical and socioeconomic approach to estimate forest residues as a feedstock for bioenergy in northern Mexico. Forest Ecosystems, 2019, 6,	3.1	4

#	Article	IF	CITATIONS
112	Clues to wood quality and production from analyzing ring width and density variabilities of fertilized Pinus taeda trees. New Forests, 2019, 50, 821-843.	1.7	9
113	Optimal harvest cycle on Nothofagus forests including carbon storage in Southern America: An application to Chilean subsidies in temperate forests. Land Use Policy, 2019, 81, 705-713.	5.6	5
114	Biomass, carbon density and diversity of tree species in tropical dry deciduous forests in Central India. Acta Ecologica Sinica, 2019, 39, 289-299.	1.9	34
115	Bayesian and classical biomass allometries for open grown valonian oaks (Q. ithaburensis subs.) Tj ETQq1 10.78	4314 rgB1 2.0	- /Overlock 1
116	Modeling biomass of white birch (<i>Betula platyphylla</i>) in the Lesser Khingan Range of China based on terrestrial 3D laser scanning system. Natural Resource Modelling, 2020, 33, .	2.0	3
117	Biomass and carbon projection models in <i>Hardwickia binata</i> Roxb. <i>vis a vis</i> estimation of its carbon sequestration potential under arid environment. Archives of Agronomy and Soil Science, 2020, 66, 1925-1935.	2.6	2
118	Organic Carbon Stocks of Mexican Montane Habitats: Variation Among Vegetation Types and Land-Use. Frontiers in Environmental Science, 2020, 8, .	3.3	7
119	Carbon estimation in the undershrub layer and the soil of a dry deciduous forest of West Bengal (eastern India). Tropical Ecology, 2020, 61, 487-496.	1.2	2
120	Allometric models for estimating aboveground biomass of selected homestead tree species in the plain land Narsingdi district of Bangladesh. Trees, Forests and People, 2020, 2, 100035.	1.9	6
121	Improving the accuracy of aboveground biomass estimations in secondary tropical dry forests. Forest Ecology and Management, 2020, 474, 118384.	3.2	10
122	Influence of Climate on Carbon Sequestration in Conifers Growing under Contrasting Hydro-Climatic Conditions. Forests, 2020, 11, 1134.	2.1	5
123	Biomass, carbon and nitrogen in single tree components of grey poplar (Populus × canescens) in an uncultivated habitat in Van, Turkey. Environmental Monitoring and Assessment, 2020, 192, 363.	2.7	2
124	High-Resolution Mapping of Forest Carbon Stock Using Object-Based Image Analysis (OBIA) Technique. Journal of the Indian Society of Remote Sensing, 2020, 48, 865-875.	2.4	2
125	Forest productivity and carbon stock analysis from vegetation phenological indices using satellite remote sensing in Indonesia. Asia-Pacific Journal of Regional Science, 2020, 4, 657-690.	2.1	6
126	Estimating carbon fixation in fruit crops. , 2020, , 67-76.		1
127	Pol-InSAR sensitivity to hemi-boreal forest structure at L- and P-bands. International Journal of Applied Earth Observation and Geoinformation, 2021, 94, 102213.	2.8	2
128	Developing national and regional individual tree biomass models and analyzing impact of climatic factors on biomass estimation for poplar plantations in China. Trees - Structure and Function, 2021, 35, 93-102.	1.9	9
129	Soil organic carbon pool under selected tree plantations in the Southern Western Ghats of Kerala, India. Tropical Ecology, 2021, 62, 126-138.	1.2	2

#	Article	IF	CITATIONS
130	Analysing species site-specific tree growth, mortality and in-growth for miombo woodlands in Tanzania. Southern Forests, 2021, 83, 43-55.	0.7	1
131	Stem and Total Above-Ground Biomass Models for the Tree Species of Freshwater Wetlands Forest, Coastal Areas and Dry Areas of Bangladesh: Using a Non-Destructive Approach. Open Journal of Forestry, 2021, 11, 73-82.	0.3	1
132	Allometric equations to estimate aboveground biomass of Dalbergia cearensis species in the Brazilian seasonally dry tropical forest. Forest Ecology and Management, 2021, 484, 118920.	3.2	2
133	Allometric biomass models for the most abundant fruit tree species of Bangladesh: A Non-destructive approach. Environmental Challenges, 2021, 3, 100047.	4.2	6
134	Assessment of Above-Ground Biomass in Pakistan Forest Ecosystem's Carbon Pool: A Review. Forests, 2021, 12, 586.	2.1	14
135	Models to estimate the above and below ground carbon stocks from a subtropical scrub forest of Pakistan. Global Ecology and Conservation, 2021, 27, e01539.	2.1	8
136	Allometric equations for estimating stem biomass of Artocarpus chaplasha Roxb. in Sylhet hill forest of Bangladesh. Trees, Forests and People, 2021, 4, 100084.	1.9	7
137	Carbon stocks of above- and belowground tree biomass in Kibate Forest around Wonchi Crater Lake, Central Highland of Ethiopia. PLoS ONE, 2021, 16, e0254231.	2.5	7
138	Assessing vertical structure of an endemic forest in succession using terrestrial laser scanning (TLS). Case study: Guadalupe Island. Remote Sensing of Environment, 2021, 263, 112563.	11.0	3
139	Temporal dynamics of above ground biomass of Kaimoor Wildlife Sanctuary, Uttar Pradesh, India: conjunctive use of field and Landsat data. Proceedings of the Indian National Science Academy, 2021, 87, 499.	1.4	1
140	Multipurpose benefits and scaling-up strategies for Bauhinia thonningii Schumacher: a review. Agroforestry Systems, 0, , 1.	2.0	1
141	Assessing relationship of forest biophysical factors with NDVI for carbon management in key coniferous strata of temperate Himalayas. Mitigation and Adaptation Strategies for Global Change, 2021, 26, 1.	2.1	13
142	Carbon Sequestration Potential of Trees in Kuvempu University Campus Forest Area, Western Ghats, Karnataka. Environmental Science and Engineering, 2020, , 303-312.	0.2	3
143	Carbon Per cent in Different Components of Tree Species and Soil Organic Carbon Pool Under these Tree Species in Kashmir Valley. Current World Environment Journal, 2014, 9, 174-181.	0.5	13
144	Organic Carbon Storage in Four Ecosystem Types in the Karst Region of Southwestern China. PLoS ONE, 2013, 8, e56443.	2.5	29
145	The Allometry of Coarse Root Biomass: Log-Transformed Linear Regression or Nonlinear Regression?. PLoS ONE, 2013, 8, e77007.	2.5	40
146	Compatible Models of Carbon Content of Individual Trees on a Cunninghamia lanceolata Plantation in Fujian Province, China. PLoS ONE, 2016, 11, e0151527.	2.5	2
147	Tree Morphologic Plasticity Explains Deviation from Metabolic Scaling Theory in Semi-Arid Conifer Forests, Southwestern USA. PLoS ONE, 2016, 11, e0157582.	2.5	8

#	Article	IF	CITATIONS
148	A GENERALIZED ABOVEGROUND BIOMASS MODEL FOR JUVENILE INDIVIDUALS OF Rhododendron arboreum (SM.) IN NEPAL. Cerne, 2019, 25, 119-130.	0.9	6
150	Los bosques templados del estado de Nuevo LeÃ ³ n: el manejo sustentable para bienes y servicios ambientales. Madera Bosques, 2010, 16, 51-69.	0.2	7
151	Estimación de la densidad de madera en árboles de comunidades forestales templadas del norte del estado de Durango, México. Madera Bosques, 2012, 18, 77-88.	0.2	7
152	Ecuaciones de biomasa aérea para Quercus laurina y Q. crassifolia en Oaxaca. Madera Bosques, 2014, 20, 33-48.	0.2	14
153	Ecuaciones alométricas para estimar biomasa en especies de encino en Guanajuato, México. Madera Bosques, 2019, 25, .	0.2	3
154	Ajuste de ecuaciones alométricas para estimar biomasa aérea en Pinus oocarpa y Quercus resinosa en Guerrero, México. Madera Bosques, 2020, 26, .	0.2	3
155	Perspectivas de los anillos de crecimiento para estimación potencial de carbono en México. Madera Bosques, 2020, 26, .	0.2	3
156	Tree biomass and carbon density estimation in the tropical dry forest of Southern Western Ghats, India. IForest, 2018, 11, 534-541.	1.4	19
157	Tissue carbon concentration of 175 Mexican forest species. IForest, 2017, 10, 754-758.	1.4	17
158	Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests - A Review. Journal of Ecosystem & Ecography, 2012, 02, .	0.2	170
159	Disponibilidad y costos de producción de biomasa forestal como materia prima para la producción de bioetanol. Forest Systems, 2012, 21, 526.	0.3	6
160	Estimation of Total Carbon Stocks in Soil and Vegetation of Tropical Peat Forest in Indonesia. Jurnal Manajemen Hutan Tropika, 2012, 18, 118-128.	0.4	3
161	Modeling tree diversity, stand structure and productivity of northern temperate coniferous forests of Mexico. PeerJ, 2019, 7, e7051.	2.0	5
162	Hydroclimatic variations reveal differences in carbon capture in two sympatric conifers in northern Mexico. PeerJ, 2019, 7, e7085.	2.0	7
163	Tree biomass and carbon stock assessment of subtropical and temperate forests in the Central Himalaya, India. Trees, Forests and People, 2021, 6, 100147.	1.9	16
164	Estimation above ground biomass by using a diameter and density parameters (case study: district one) Tj ETQq1	1.0,78431 0.1	14 rgBT /O
165	Ecuaciones alométricas para árboles tropicales: aplicación al inventario forestal de Sinaloa, México Agronomy Mesoamerican, 2013, 24, 347.	0.2	5
166	Compartimentos de biomasa aérea en rodales de Pinus oaxacana bajo tratamientos silvÃcolas. Madera Bosques, 2017, 23, 147-161.	0.2	5

#	Article	IF	Citations
167	Developing Site-Specific Allometric Equations for Above-Ground Biomass Estimation in Peat Swamp Forests of Rokan Hilir District, Riau Province, Indonesia. Indonesian Journal of Forestry Research, 2014, 1, 47-65.	0.3	1
168	Biomass Modeling of Alnus nepalensis D. Don at Juvenile Stage. Nepal Journal of Environmental Science, 2014, 2, 47-60.	0.3	0
169	Biomass. , 2015, , 53-70.		0
171	The Relationship between Stand Mean DBH and Temperature at a Watershed Scale: The Case of Andong-dam Basin. Korean Journal of Agricultural and Forest Meteorology, 2016, 18, 287-297.	0.2	0
172	Assessment of Ecological Capability and Estimation of Aboveground Biomass in Plantations Darabkola Forest. Bul,,m/shinal,,sil,,-i Jangal/hal,,-yi Il,,ral,,n, 2017, 5, 11-21.	0.2	1
173	Ecuaciones de biomasa aérea y volumen para Pinus halepensis Mill., en Coahuila, México. Madera Bosques, 0, 24, .	0.2	1
174	Estructura y carbono especÃfico en una cronosecuencia de sistemas agroforestales de Teobroma cacao L. en Tabasco, México. Madera Bosques, 2020, 26, .	0.2	2
175	Sentinel SAR Data and In-Situ-Based High-Resolution Above-Ground Carbon Stocks Estimation Within the Open Forests of Ramgarh District. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 180-205.	0.4	0
176	Role of Tropical Floodplain Wetlands in Carbon Sequestration: A Case Study from Barak River Basin of Assam, Northeast India. Disaster Resilience and Green Growth, 2020, , 365-390.	0.2	1
177	Allometric models for estimating aboveground biomass in the tropical woodlands of Ghana, West Africa. Forest Ecosystems, 2020, 7, .	3.1	11
178	TreeTool: A tool for detecting trees and estimating their DBH using forest point clouds. SoftwareX, 2021, 16, 100889.	2.6	3
179	Estimation and Mapping of Asabot Monastery Dry Afromontane Forest Carbon Stock Under Diverse Land-Use Scenarios. , 2022, , 91-110.		2
180	Assessment of the Carbon Budget of Local Governments in South Korea. Atmosphere, 2022, 13, 342.	2.3	4
181	Estimation of above-ground biomass in tropical afro-montane forest using Sentinel-2 derived indices. Environmental Systems Research, 2022, 11, .	3.7	6
182	Allometric model of biomass of white bolaina (Guazuma crinitaMart.) trees in forest plantations of Ucayali, Peru. Scientia Agropecuaria, 2021, 12, 579-587.	1.0	3
183	AlometrÃa generalizada para la estimación de la biomasa aérea total de plantas leñosas: marco teórico general y aplicaciones. Madera Bosques, 2021, 27, .	0.2	1
184	Allometric relationships to estimate aboveground biomass of species in a tropical dry forest of Central Mexico. Madera Bosques, 2021, 27, .	0.2	0
185	A Review of General Methods for Quantifying and Estimating Urban Trees and Biomass. Forests, 2022, 13, 616.	2.1	13

#	Article	IF	CITATIONS
190	Sentinel SAR Data and In-Situ-Based High-Resolution Above-Ground Carbon Stocks Estimation Within the Open Forests of Ramgarh District. , 2022, , 402-422.		0
191	Semi-Empirical Models and Revision of Predicting Approaches of Tree Aboveground Biomass Assessments. Forests, 2022, 13, 999.	2.1	0
192	Recently absorbed nitrogen incorporates into new and old tissues: evidence from a 15ÂN-labelling experiment in deciduous oaks. Plant and Soil, 0, , .	3.7	0
193	Modeling Litter Stocks in Planted Forests of Northern Mexico. Forests, 2022, 13, 1049.	2.1	0
194	Caracterización estructural y carbono almacenado en un bosque templado frÃo censado en el noroeste de México. Revista Mexicana De Ciencias Forestales, 2022, 13, .	0.3	0
195	Multi-Platform LiDAR for Non-Destructive Individual Aboveground Biomass Estimation for Changbai Larch (Larix olgensis Henry) Using a Hierarchical Bayesian Approach. Remote Sensing, 2022, 14, 4361.	4.0	6
196	Forest composition regulates above-ground biomass in Sal forests of Ranchi, Eastern India. Environmental Sustainability, 2022, 5, 355-373.	2.8	0
197	Biomass and Carbon Capture in Trees at Amelia Earhart Park, Miami Dade County, Florida, US. European Journal of Environment and Earth Sciences, 2022, 3, 18-22.	0.3	1
198	Stand-level biomass estimation for Korean pine plantations based on four additive methods in Heilongjiang province, northeast China. Cerne, 0, 28, .	0.9	3
199	Simple Allometry To Estimate The Aboveground Tree Biomass For Five Cool-Broadleaved Species Of Bhutan Himalaya. International Journal of Progressive Sciences and Technologies, 2021, 29, 58.	0.1	0
200	Sensitivity of Stand-Level Biomass to Climate for Three Conifer Plantations in Northeast China. Forests, 2022, 13, 2022.	2.1	3
201	Recent Advances in UAV-Based Structure-from-Motion Photogrammetry for Aboveground Biomass and Carbon Storage Estimations in Forestry. , 2022, , 395-409.		1
202	Biomass allometric models for Larix rupprechtii based on Kosak's taper curve equations and nonlinear seemingly unrelated regression. Frontiers in Plant Science, 0, 13, .	3.6	1
203	Allometric equations for estimating biomass of natural shrubs and young trees of subtropical forests. New Forests, 2024, 55, 15-46.	1.7	1
204	Allometric Equations of Beech (Fagus orientalis L.) Biomass in Managed and Unmanaged Stands in Safarood's Forest, Mazandaran Province. BuÌ"m/shinaÌ"siÌ"-i Jangal/hal"-yi IÌ"raÌ"n, 2020, 8, 103-114.	0.2	0
205	Carbon Sequestration in Resin-Tapped Slash Pine (Pinus elliottii Engelm.) Subtropical Plantations. Biology, 2023, 12, 324.	2.8	3
206	Allometric Models and Biomass Conversion and Expansion Factors to Predict Total Tree-level Aboveground Biomass for Three Conifers Species in Iran. Forest Science, 0, , .	1.0	0
208	An Alternative Method for Estimation of Stand-Level Biomass for Three Conifer Species in Northeast China. Forests, 2023, 14, 1274.	2.1	0

#	Article	IF	CITATIONS
209	Developing a Model for Curve-Fitting a Tree Stem's Cross-Sectional Shape and Sapwood–Heartwood Transition in a Polar Diagram System Using Nonlinear Regression. Forests, 2023, 14, 1102.	2.1	2
210	Rates of Stemwood Carbon Accumulation Are Linked to Hydroclimate Variability in Mexican Conifers. Forests, 2023, 14, 1381.	2.1	1
211	Generic above-ground biomass estimator for urban forests using machine learning. Arboricultural Journal, 0, , 1-17.	0.8	1
212	Modeling Biometric Attributes from Tree Height Using Unmanned Aerial Vehicles (UAV) in Natural Forest Stands. Ingenieria E Investigacion, 2023, 43, e98945.	0.4	0
213	Growth characteristics and biomass model of Cupressus gigantea sapling. Trees - Structure and Function, 2024, 38, 27-35.	1.9	0
214	Species-specific and generalized allometric equations for improving aboveground biomass estimations of 33 understory woody species in northeastern China forest ecosystems. Canadian Journal of Forest Research, 0, , .	1.7	0
215	Improving Volume and Biomass Equations for Pinus oocarpa in Nicaragua. Forests, 2024, 15, 309.	2.1	0
216	Exploring nutrient-sensitive landscape configurations for rural communities in southern Mexico. Landscape and Urban Planning, 2024, 246, 105041.	7.5	0
217	Forest carbon stock-based bioeconomy: Mixed models improve accuracy of tree biomass estimates. Biomass and Bioenergy, 2024, 183, 107142.	5.7	0
218	Aboveground Biomass and Carbon Storage in Mangrove Forests in Southeastern Mexico. Resources, 2024, 13, 41.	3.5	0