Identification of Selective Inhibitors of Cancer Stem Cel

Cell 138, 645-659

DOI: 10.1016/j.cell.2009.06.034

Citation Report

#	Article	IF	CITATIONS
1	State of the stem cell. Nature Reports Stem Cells, 2009, , .	0.1	0
2	The combination of 5-Fluorouracil plus p53 pathway restoration is associated with depletion of p53-deficient or mutant p53-expressing putative colon cancer stem cells. Cancer Biology and Therapy, 2009, 8, 2185-2192.	1.5	27
3	TGFÎ ² and cancer initiating cells. Cell Cycle, 2009, 8, 3787-3788.	1.3	7
4	Differential Destruction of Stem Cells: Implications for Targeted Cancer Stem Cell Therapy. Cancer Research, 2009, 69, 9481-9489.	0.4	35
5	Differentiation therapy with transcription factors might present as an ideal strategy for the treatment of cancer. Hepatology, 2009, 50, 2046-2047.	3.6	7
6	What is the relationship among microRNA-181, epithelial cell-adhesion molecule (EpCAM) and \hat{l}^2 -catenin in hepatic cancer stem cells. Hepatology, 2009, 50, 2047-2048.	3.6	6
7	ABCG2â€associated resistance to Hoechst 33342 and topotecan in a murine cell model with constitutive expression of side population characteristics. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 924-933.	1.1	17
8	Urothelial carcinoma: Stem cells on the edge. Cancer and Metastasis Reviews, 2009, 28, 291-304.	2.7	54
9	Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer and Metastasis Reviews, 2009, 28, 335-344.	2.7	324
12	Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nature Reviews Drug Discovery, 2009, 8, 806-823.	21.5	755
13	Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 2009, 139, 871-890.	13.5	8,592
14	Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochemical and Biophysical Research Communications, 2009, 390, 743-749.	1.0	177
15	Can Increased Understanding of the Role of Lung Development and Aging Drive New Advances in Chronic Obstructive Pulmonary Disease?. Proceedings of the American Thoracic Society, 2009, 6, 614-617.	3.5	17
16	Epithelial to mesenchymal transition and breast cancer. Breast Cancer Research, 2009, 11, 213.	2.2	253
17	Dynamic regulation of CD24 and the invasive, CD44posCD24negphenotype in breast cancer cell lines. Breast Cancer Research, 2009, 11, R82.	2.2	128
18	Synthetic lethality: a framework for the development of wiser cancer therapeutics. Genome Medicine, 2009, 1, 99.	3.6	77
19	Targeting the Perpetrator: Breast Cancer Stem Cell Therapeutics. Current Drug Targets, 2010, 11, 1147-1156.	1.0	12
20	Salinomycin in cancer: A new mission for an old agent. Molecular Medicine Reports, 2010, 3, 555-9.	1.1	77

#	Article	IF	CITATIONS
21	Reduction of the putative CD44+CD24â^' breast cancer stem cell population by targeting the polyamine metabolic pathway with PG11047. Anti-Cancer Drugs, 2010, 21, 897-906.	0.7	20
22	The therapeutic promise of the cancer stem cell concept. Journal of Clinical Investigation, 2010, 120, 41-50.	3.9	573
24	Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance. Drug Resistance Updates, 2010, 13, 109-118.	6.5	313
25	Cyanobacterial Cyclopeptides as Lead Compounds to Novel Targeted Cancer Drugs. Marine Drugs, 2010, 8, 629-657.	2.2	68
26	Emerging roles for WNK kinases in cancer. Cellular and Molecular Life Sciences, 2010, 67, 1265-1276.	2.4	75
27	Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cellular and Molecular Life Sciences, 2010, 67, 2605-2618.	2.4	88
29	Cancer: evolutionary, genetic and epigenetic aspects. Clinical Epigenetics, 2010, 1, 85-100.	1.8	14
30	Epithelial-Mesenchymal Transition (EMT) in Tumor-Initiating Cells and Its Clinical Implications in Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 253-260.	1.0	229
31	Epithelial Mesenchymal Transition Traits in Human Breast Cancer Cell Lines Parallel the CD44hi/CD24lo/- Stem Cell Phenotype in Human Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 235-252.	1.0	252
32	Epithelial-Mesenchymal Transition in Cancer: Parallels Between Normal Development and Tumor Progression. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 117-134.	1.0	842
33	Snail Family Regulation and Epithelial Mesenchymal Transitions in Breast Cancer Progression. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 135-147.	1.0	205
34	Cell Polarity in Motion: Redefining Mammary Tissue Organization Through EMT and Cell Polarity Transitions. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 149-168.	1.0	70
35	The Pathophysiology of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor-β in Normal and Malignant Mammary Epithelial Cells. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 169-190.	1.0	202
36	microRNAs and EMT in Mammary Cells and Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 213-223.	1.0	51
37	Leukemia stem cells. Seminars in Cancer Biology, 2010, 20, 71-76.	4.3	65
38	Normal stem cells and cancer stem cells: similar and different. Seminars in Cancer Biology, 2010, 20, 85-92.	4.3	127
39	Cancer stem cells and telomerase as potential biomarkers in veterinary oncology. Veterinary Journal, 2010, 185, 15-22.	0.6	28
40	Aggressive progression of breast cancer with microscopic pulmonary emboli possessing a stem cell-like phenotype independent of its origin. Pathology International, 2010, 60, 228-234.	0.6	7

#	Article	IF	CITATIONS
41	Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance. BMC Cancer, 2010, 10, 166.	1.1	99
42	SLUG/SNAI2 and Tumor Necrosis Factor Generate Breast Cells With CD44+/CD24- Phenotype. BMC Cancer, 2010, 10, 411.	1.1	155
43	New promising drug targets in cancer- and metastasis-initiating cells. Drug Discovery Today, 2010, 15, 354-364.	3.2	38
44	TGF- \hat{l}^2 Receptor Inhibitors Target the CD44high/Id1high Glioma-Initiating Cell Population in Human Glioblastoma. Cancer Cell, 2010, 18, 655-668.	7.7	534
45	Dynamic interplay between the collagen scaffold and tumor evolution. Current Opinion in Cell Biology, 2010, 22, 697-706.	2.6	725
46	Annexin A1 attenuates EMT and metastatic potential in breast cancer. EMBO Molecular Medicine, 2010, 2, 401-414.	3.3	71
47	GATA3 in development and cancer differentiation: Cells GATA have it!. Journal of Cellular Physiology, 2010, 222, 42-49.	2.0	261
48	A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids. Biomaterials, 2010, 31, 8436-8444.	5.7	71
49	Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions. International Journal of Radiation Oncology Biology Physics, 2010, 76, 889-895.	0.4	39
50	Modeling the clonal heterogeneity of stem cells. Theoretical Biology and Medical Modelling, 2010, 7, 44.	2.1	1
51	Targeting lymphatic vessel functions through tyrosine kinases. Journal of Angiogenesis Research, 2010, 2, 13.	2.9	14
52	Permanently Blocked Stem Cells Derived From Breast Cancer Cell Lines. Stem Cells, 2010, 28, 1008-1018.	1.4	47
53	Potential for therapeutic targeting of tumor stem cells. Cancer Science, 2010, 101, 16-21.	1.7	50
54	Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene, 2010, 29, 4625-4635.	2.6	125
55	EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010, 29, 4741-4751.	2.6	2,263
56	DEK oncoprotein regulates transcriptional modifiers and sustains tumor initiation activity in high-grade neuroendocrine carcinoma of the lung. Oncogene, 2010, 29, 4671-4681.	2.6	56
57	TWISTing an embryonic transcription factor into an oncoprotein. Oncogene, 2010, 29, 3173-3184.	2.6	155
58	Expansion of CD133+ colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery. British Journal of Cancer, 2010, 102, 1265-1275.	2.9	135

#	Article	IF	CITATIONS
59	Multidrug resistance of non-adherent cancer cells. Nature Precedings, 2010, , .	0.1	0
60	A Comprehensive Panel of Three-Dimensional Models for Studies of Prostate Cancer Growth, Invasion and Drug Responses. PLoS ONE, 2010, 5, e10431.	1.1	299
61	Pathway Signature and Cellular Differentiation in Clear Cell Renal Cell Carcinoma. PLoS ONE, 2010, 5, e10696.	1.1	146
62	The Regulation of miRNA-211 Expression and Its Role in Melanoma Cell Invasiveness. PLoS ONE, 2010, 5, e13779.	1.1	184
63	Challenges in the development of future treatments for breast cancer stem cells. Breast Cancer: Targets and Therapy, 2010, , 1 .	1.0	10
64	Signaling Mechanism(S) of Reactive Oxygen Species in Epithelial-Mesenchymal Transition Reminiscent of Cancer Stem Cells in Tumor Progression. Current Stem Cell Research and Therapy, 2010, 5, 74-80.	0.6	101
65	Depletion of drug-surviving glioma cells by a second phase treatment with low concentration of salinomycin. Drugs and Therapy Studies, 2010, 1, 7.	0.6	5
66	Modulation of T-Cell Activation by Malignant Melanoma Initiating Cells. Cancer Research, 2010, 70, 697-708.	0.4	256
67	New hope in the horizon: cancer stems cells. Acta Biochimica Et Biophysica Sinica, 2010, 42, 237-242.	0.9	17
68	Monensin Is a Potent Inducer of Oxidative Stress and Inhibitor of Androgen Signaling Leading to Apoptosis in Prostate Cancer Cells. Molecular Cancer Therapeutics, 2010, 9, 3175-3185.	1.9	80
69	Regulation of Excision Repair Cross-Complementation Group 1 by Snail Contributes to Cisplatin Resistance in Head and Neck Cancer. Clinical Cancer Research, 2010, 16, 4561-4571.	3.2	145
70	Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21737-21742.	3.3	236
71	Cyclins A and E trigger DNA damage. Cell Cycle, 2010, 9, 1231-1240.	1.3	4
72	CD44posCD49fhiCD133/2hi Defines Xenograft-Initiating Cells in Estrogen Receptor–Negative Breast Cancer. Cancer Research, 2010, 70, 4624-4633.	0.4	166
73	Chemotherapy and signaling. Cancer Biology and Therapy, 2010, 10, 839-853.	1.5	88
74	Oncostatin M Renders Epithelial Cell Adhesion Molecule–Positive Liver Cancer Stem Cells Sensitive to 5-Fluorouracil by Inducing Hepatocytic Differentiation. Cancer Research, 2010, 70, 4687-4697.	0.4	88
75	Molecular Biology and Anticancer Drug Discovery. Progress in Molecular Biology and Translational Science, 2010, 95, 9-29.	0.9	4
76	Do stem-like cells play a role in drug resistance of sarcomas?. Expert Review of Anticancer Therapy, 2010, 10, 261-270.	1.1	30

#	Article	IF	Citations
77	Stem Cells of the Breast and Cancer Therapy. Women's Health, 2010, 6, 205-219.	0.7	4
78	Microtentacles Tip the Balance of Cytoskeletal Forces in Circulating Tumor Cells. Cancer Research, 2010, 70, 7737-7741.	0.4	67
79	Immune Promotion of Epithelial-mesenchymal Transition and Generation of Breast Cancer Stem Cells. Cancer Research, 2010, 70, 3005-3008.	0.4	99
80	Image-Based Chemical Screening Identifies Drug Efflux Inhibitors in Lung Cancer Cells. Cancer Research, 2010, 70, 7723-7733.	0.4	36
81	Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15449-15454.	3.3	909
82	Epithelial-Mesenchymal Transition in Pancreatic Carcinoma. Cancers, 2010, 2, 2058-2083.	1.7	59
83	Contribution of Epithelial-Mesenchymal Transition to Pancreatic Cancer Progression. Cancers, 2010, 2, 2084-2097.	1.7	14
84	High-Throughput Screening of Natural Products for Cancer Therapy. Planta Medica, 2010, 76, 1080-1086.	0.7	56
85	Mesenchymal Stem Cells Promote Mammosphere Formation and Decrease E-Cadherin in Normal and Malignant Breast Cells. PLoS ONE, 2010, 5, e12180.	1.1	148
86	Tumor suppressor effect of the microRNA miR-519 is mediated via the mRNA-binding protein HuR. Cell Cycle, 2010, 9, 1231-1240.	1.3	10
87	Evidences of cervical cancer stem cells derived from established cell lines. Cell Cycle, 2010, 9, 1231-1240.	1.3	4
88	The "stem―of chemoresistance. Cell Cycle, 2010, 9, 628-629.	1.3	11
89	Interaction of TACC3 and TSC2 at the nuclear envelope and mitotic structures. Cell Cycle, 2010, 9, 1231-1240.	1.3	2
90	MicroRNA-RNA binding protein face-off in cancer. Cell Cycle, 2010, 9, 1231-1240.	1.3	0
91	A histone methylation code for SV40 minichromosomes. Cell Cycle, 2010, 9, 1231-1240.	1.3	0
92	On the move: p27Kip1 drives cell motility in glioma cells. Cell Cycle, 2010, 9, 1231-1240.	1.3	3
93	From Dolly to hiPS: New insights into reprogramming. Cell Cycle, 2010, 9, 1231-1240.	1.3	0
94	TACCing on new functions for the TSC2 tumor suppressor. Cell Cycle, 2010, 9, 1231-1240.	1.3	0

#	Article	IF	CITATIONS
95	Virus-host interaction: The struggle for control of chromatin. Cell Cycle, 2010, 9, 1231-1240.	1.3	6
96	Breast cancer stem cells: initiating a new sort of thinking. DMM Disease Models and Mechanisms, 2010, 3, 257-258.	1.2	4
97	Targeting Ovarian Cancer-Initiating Cells. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 157-163.	0.9	26
98	Bcl9/Bcl9l Are Critical for Wnt-Mediated Regulation of Stem Cell Traits in Colon Epithelium and Adenocarcinomas. Cancer Research, 2010, 70, 6619-6628.	0.4	116
99	Patents Related to Cancer Stem Cell Research. Recent Patents on DNA & Gene Sequences, 2010, 4, 40-45.	0.7	5
100	Potential Targets for Improving Radiosensitivity of Breast Tumor-Initiating Cells. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 152-156.	0.9	2
101	Targeting tumour-initiating cells to improve the cure rates for triple-negative breast cancer. Expert Reviews in Molecular Medicine, 2010, 12, e22.	1.6	28
102	Tumor-Initiating and -Propagating Cells: Cells That We Would to Identify and Control. Neoplasia, 2010, 12, 506-515.	2.3	78
103	The Importance of Targeting Cancer Stem Cells in Breast Cancer Treatment. Breast Diseases, 2010, 21, 23-25.	0.0	0
104	Enrichment for Breast Cancer Cells with Stem/Progenitor Properties by Differential Adhesion. Stem Cells and Development, 2010, 19, 1175-1182.	1.1	31
105	Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells. Molecular Cancer, 2010, 9, 180.	7.9	66
106	Personalized therapies in the cancer "omics" era. Molecular Cancer, 2010, 9, 202.	7.9	52
107	Increasing CD44+/CD24- tumor stem cells, and upregulation of COX-2 and HDAC6, as major functions of HER2 in breast tumorigenesis. Molecular Cancer, 2010, 9, 288.	7.9	51
108	Targeting breast cancer stem cells: fishing season open!. Breast Cancer Research, 2010, 12, 312.	2.2	11
109	Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Research, 2010, 12, R94.	2.2	132
110	Kitlow Stem Cells Cause Resistance to Kit/Platelet-Derived Growth Factor \hat{l}_{\pm} Inhibitors in Murine Gastrointestinal Stromal Tumors. Gastroenterology, 2010, 139, 942-952.	0.6	112
111	Stem cells in cancer: instigators and propagators?. Journal of Cell Science, 2010, 123, 2357-2368.	1.2	86
112	Genomic tracing of the elusive liver cancer ancestor. Journal of Hepatology, 2010, 53, 578-579.	1.8	1

#	Article	IF	CITATIONS
113	Epigenetic regulation of cancer stem cells in liver cancer: Current concepts and clinical implications. Journal of Hepatology, 2010, 53, 568-577.	1.8	96
114	Efficacy of anti-cancer agents in cell lines versus human primary tumour tissue. Current Opinion in Pharmacology, 2010, 10, 375-379.	1.7	89
115	Cancer stem cells as the relevant biomass for drug discovery. Current Opinion in Pharmacology, 2010, 10, 385-390.	1.7	34
116	Tumors as Organs: Complex Tissues that Interface with the Entire Organism. Developmental Cell, 2010, 18, 884-901.	3.1	988
117	The long road to colorectal cancer therapy: Searching for the right signals. Drug Resistance Updates, 2010, 13, 44-56.	6.5	25
118	The role of tumor initiating cells in drug resistance of breast cancer: Implications for future therapeutic approaches. Drug Resistance Updates, 2010, 13, 99-108.	6.5	70
119	Cancer stemness and metastasis: Therapeutic consequences and perspectives. European Journal of Cancer, 2010, 46, 1198-1203.	1.3	169
120	Nuclear S100A4 is a novel prognostic marker in colorectal cancer. European Journal of Cancer, 2010, 46, 2919-2925.	1.3	42
121	Interaction and self-organization of human mesenchymal stem cells and neuro-blastoma SH-SY5Y cells under co-culture conditions: A novel system for modeling cancer cell micro-environment. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 253-259.	2.0	21
122	Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells. Biochemical and Biophysical Research Communications, 2010, 394, 1098-1104.	1.0	200
123	The cancer stem cell selective inhibitor salinomycin is a p-glycoprotein inhibitor. Blood Cells, Molecules, and Diseases, 2010, 45, 86-92.	0.6	133
124	Colon Cancer Stem Cells: Promise of Targeted Therapy. Gastroenterology, 2010, 138, 2151-2162.	0.6	411
125	<i>BRAF</i> Gene Amplification Can Promote Acquired Resistance to MEK Inhibitors in Cancer Cells Harboring the BRAF V600E Mutation. Science Signaling, 2010, 3, ra84.	1.6	314
126	Targeting Wnt Signaling: Can We Safely Eradicate Cancer Stem Cells?. Clinical Cancer Research, 2010, 16, 3153-3162.	3.2	459
127	Targeting breast cancer stem cells. Molecular Oncology, 2010, 4, 404-419.	2.1	170
128	Prolonged Drug Selection of Breast Cancer Cells and Enrichment of Cancer Stem Cell Characteristics. Journal of the National Cancer Institute, 2010, 102, 1637-1652.	3.0	241
129	The Telomerase Inhibitor Imetelstat Depletes Cancer Stem Cells in Breast and Pancreatic Cancer Cell Lines. Cancer Research, 2010, 70, 9494-9504.	0.4	121
130	Small molecule modulation of stem cells in regenerative medicine: recent applications and future direction. MedChemComm, 2010, $1, 16$.	3.5	16

#	ARTICLE	IF	CITATIONS
131	Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Research, 2010, 12, R68.	2.2	1,748
132	Breast tumors: of mice and women. Breast Cancer Research, 2010, 12, 108.	2.2	3
133	Cancerous stem cells: deviant stem cells with cancer-causing misbehavior. Stem Cell Research and Therapy, 2010, 1, 13.	2.4	19
134	MicroRNA: Potential Targets for the Development of Novel Drugs?. Drugs in R and D, 2010, 10, 1-8.	1.1	38
135	Oncogenes and Tumor Suppressor Genes. Cold Spring Harbor Perspectives in Biology, 2010, 2, a003236-a003236.	2.3	307
136	Metformin regulates breast cancer stem cello ntogeny by transcriptional regulation of the epithelial-mesenchymal transition (EMT) status. Cell Cycle, 2010, 9, 3831-3838.	1.3	179
137	Osthole Suppresses Hepatocyte Growth Factor (HGF)-Induced Epithelial-Mesenchymal Transition via Repression of the c-Met/Akt/mTOR Pathway in Human Breast Cancer Cells. Journal of Agricultural and Food Chemistry, 2011, 59, 9683-9690.	2.4	73
138	Evolving standards in the treatment of docetaxel-refractory castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2011, 14, 192-205.	2.0	61
139	Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12425-12430.	3.3	409
140	Breast cancer stem cells: treatment resistance and therapeutic opportunities. Carcinogenesis, 2011, 32, 650-658.	1.3	120
141	Molecular Markers of Epithelial-to-Mesenchymal Transition Are Associated with Tumor Aggressiveness in Breast Carcinoma. Translational Oncology, 2011, 4, 222-226.	1.7	49
142	Cancer Stem Cells in Squamous Cell Carcinoma Switch between Two Distinct Phenotypes That Are Preferentially Migratory or Proliferative. Cancer Research, 2011, 71, 5317-5326.	0.4	308
143	The clinical and therapeutic implications of cancer stem cell biology. Expert Review of Anticancer Therapy, 2011, 11, 1133-1145.	1.1	24
144	The natural products parthenolide and andrographolide exhibit anti-cancer stem cell activity in multiple myeloma. Leukemia and Lymphoma, 2011, 52, 1085-1097.	0.6	79
145	Deconstructing the molecular portraits of breast cancer. Molecular Oncology, 2011, 5, 5-23.	2.1	1,059
146	A concise route to the macrocyclic core of the rakicidins. Chemical Communications, 2011, 47, 12837.	2.2	22
147	Small Molecule Probes of Cellular Pathways and Networks. ACS Chemical Biology, 2011, 6, 86-94.	1.6	42
148	Cancer Stem Cells: Historical Perspectives and Lessons from Leukemia. , 2011, , 3-11.		1

#	Article	IF	CITATIONS
149	Cancer Stem Cells in Breast Cancer. , 2011, , 15-36.		1
150	Defining the E-Cadherin Repressor Interactome in Epithelial-Mesenchymal Transition: The PMC42 Model as a Case Study. Cells Tissues Organs, 2011, 193, 23-40.	1.3	72
152	Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis. Cancers, 2011, 3, 2106-2130.	1.7	50
153	Cancer Stem Cells: Characteristics and Their Potential Role for New Therapeutic Strategies. Onkologie, 2011, 34, 269-274.	1.1	14
154	Signalling pathways involved in endocrine resistance in breast cancer and associations with epithelial to mesenchymal transition (Review). International Journal of Oncology, 2011, 38, 1197-217.	1.4	59
155	Cancer Stem Cells in Solid Tumors. , 2011, , .		7
156	Diosgenin Suppresses Hepatocyte Growth Factor (HGF)-Induced Epithelial–Mesenchymal Transition by Down-regulation of Mdm2 and Vimentin. Journal of Agricultural and Food Chemistry, 2011, 59, 5357-5363.	2.4	41
157	The Role of Breast Cancer Stem Cells in Metastasis and Therapeutic Implications. American Journal of Pathology, 2011, 179, 2-11.	1.9	155
158	Stochastic State Transitions Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells. Cell, 2011, 146, 633-644.	13.5	1,334
159	Salinomycin can effectively kill ALDHhigh stem-like cells on gastric cancer. Biomedicine and Pharmacotherapy, 2011, 65, 509-515.	2.5	97
160	MicroRNAs, cancer and cancer stem cells. Cancer Letters, 2011, 300, 10-19.	3.2	161
162	Combination of salinomycin and gemcitabine eliminates pancreatic cancer cells. Cancer Letters, 2011, 313, 137-144.	3.2	122
163	Salinomycin inhibits osteosarcoma by targeting its tumor stem cells. Cancer Letters, 2011, 311, 113-121.	3.2	138
164	In vitro and in vivo activity of 4-thio-uridylate against JY cells, a model for human acute lymphoid leukemia. Biochemical and Biophysical Research Communications, 2011, 410, 682-687.	1.0	1
165	Salinomycin-induced apoptosis of human prostate cancer cells due to accumulated reactive oxygen species and mitochondrial membrane depolarization. Biochemical and Biophysical Research Communications, 2011, 413, 80-86.	1.0	159
166	A Bidirectional Approach to the Synthesis of Polypropionates: Synthesis of C1â€"C13 Fragment of Zincophorin and Related Isomers. Journal of Organic Chemistry, 2011, 76, 7654-7676.	1.7	19
167	Dysadherin can enhance tumorigenesis by conferring properties of stem-like cells to hepatocellular carcinoma cells. Journal of Hepatology, 2011, 54, 122-131.	1.8	29
168	The metastasis-promoting protein S100A4 regulates mammary branching morphogenesis. Developmental Biology, 2011, 352, 181-190.	0.9	26

#	Article	IF	Citations
169	Revisiting the canonical tumour progression model. Pathologie Et Biologie, 2011, 59, 294-297.	2.2	1
170	Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nature Structural and Molecular Biology, 2011, 18, 867-874.	3.6	340
171	Transcription factors that mediate epithelial–mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death and Disease, 2011, 2, e179-e179.	2.7	305
172	Cancer stem cells: the development of new cancer therapeutics. Expert Opinion on Biological Therapy, 2011, 11, 875-892.	1.4	34
173	The Potential Role of CD133 in Immune Surveillance and Apoptosis: A Mitochondrial Connection?. Antioxidants and Redox Signaling, 2011, 15, 2989-3002.	2.5	8
174	Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Research, 2011, 13, 202.	2.2	280
175	Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity. Breast Cancer Research, 2011, 13, 226.	2.2	131
176	Breast Cancer Stem Cells. , 2011, , .		0
177	Drugs that Kill Cancer Stem-like Cells. , 2011, , .		2
178	Role of TWIST proteins in cancer progression. Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2011, , .	0.1	2
179	Breast Cancer Stem Cells. , 2011, , .		0
180	Cancer Stem Cells in Drug Resistance and Drug Screening: Can We Exploit the Cancer Stem Cell Paradigm in Search for New Antitumor Agents?. , $2011, \ldots$		0
181	Oxaliplatin-incorporated micelles eliminate both cancer stem-like and bulk cell populations in colorectal cancer. International Journal of Nanomedicine, 2011, 6, 3207.	3.3	32
182	Novel Perspectives on p53 Function in Neural Stem Cells and Brain Tumors. Journal of Oncology, 2011, 2011, 1-11.	0.6	27
183	Cooperation of Cancer Stem Cell Properties and Epithelial-Mesenchymal Transition in the Establishment of Breast Cancer Metastasis. Journal of Oncology, 2011, 2011, 1-7.	0.6	45
184	Triple-negative breast cancers and the human mammary epithelial cell hierarchy. Breast Disease, 2011, 32, 49-61.	0.4	2
185	Evidence for cancer stem cells contributing to the pathogenesis of ovarian cancer. Frontiers in Bioscience - Landmark, 2011, 16, 368.	3.0	49
186	Signal Transduction Pathways in Breast Cancer – Drug Targets and Challenges. , 0, , .		0

#	Article	IF	CITATIONS
187	Dickkopf1 Regulates Fate Decision and Drives Breast Cancer Stem Cells to Differentiation: An Experimentally Supported Mathematical Model. PLoS ONE, 2011, 6, e24225.	1.1	28
188	Drug-Tolerant Cancer Cells Show Reduced Tumor-Initiating Capacity: Depletion of CD44+ Cells and Evidence for Epigenetic Mechanisms. PLoS ONE, 2011, 6, e24397.	1.1	47
189	Differentiation of Chronic Lymphocytic Leukemia B Cells into Immunoglobulin Secreting Cells Decreases LEF-1 Expression. PLoS ONE, 2011, 6, e26056.	1.1	21
190	Niclosamide Suppresses Cancer Cell Growth By Inducing Wnt Co-Receptor LRP6 Degradation and Inhibiting the Wnt/ \hat{l}^2 -Catenin Pathway. PLoS ONE, 2011, 6, e29290.	1.1	187
191	miRNAs Highlights in Stem and Cancer Cells. Mini-Reviews in Medicinal Chemistry, 2011, 11, 1165-1182.	1.1	20
192	Induction of metastatic cancer stem cells from the NK/LAK-resistant floating, but not adherent, subset of the UP-LN1 carcinoma cell line by IFN-γ. Laboratory Investigation, 2011, 91, 1502-1513.	1.7	27
194	3-O-methylfunicone, from Penicillium pinophilum, is a selective inhibitor of breast cancer stem cells. Cell Proliferation, 2011, 44, 401-409.	2.4	19
195	Salinomycin sensitizes cancer cells to the effects of doxorubicin and etoposide treatment by increasing DNA damage and reducing p21 protein. British Journal of Pharmacology, 2011, 162, 773-784.	2.7	119
196	Stem cell characteristics of cell sub-populations in cell lines derived from head and neck cancers of Fanconi anemia patients. Journal of Oral Pathology and Medicine, 2011, 40, 143-152.	1.4	9
197	CD44: can a cancer-initiating cell profit from an abundantly expressed molecule?. Nature Reviews Cancer, 2011, 11, 254-267.	12.8	957
198	Towards systematic functional characterization of cancer genomes. Nature Reviews Genetics, 2011, 12, 487-498.	7.7	77
199	Towards novel paradigms for cancer therapy. Oncogene, 2011, 30, 1-20.	2.6	112
200	Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene, 2011, 30, 2307-2318.	2.6	195
201	Twist2 contributes to breast cancer progression by promoting an epithelial–mesenchymal transition and cancer stem-like cell self-renewal. Oncogene, 2011, 30, 4707-4720.	2.6	175
202	Natural products for cancer chemotherapy. Microbial Biotechnology, 2011, 4, 687-699.	2.0	520
203	Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutation Research - Reviews in Mutation Research, 2011, 728, 23-34.	2.4	642
204	Targeted drug delivery to tumors: Myths, reality and possibility. Journal of Controlled Release, 2011, 153, 198-205.	4.8	1,580
205	Mathematical Approach to Predict the Drug Effects on Cancer Stem Cell Models. Electronic Notes in Theoretical Computer Science, 2011, 277, 29-39.	0.9	4

#	Article	IF	CITATIONS
206	Acetaminophen-induced differentiation of human breast cancer stem cells and inhibition of tumor xenograft growth in mice. Biochemical Pharmacology, 2011, 81, 1124-1135.	2.0	37
207	Nonreceptor Tyrosine Kinase BMX Maintains Self-Renewal and Tumorigenic Potential of Glioblastoma Stem Cells by Activating STAT3. Cancer Cell, 2011, 19, 498-511.	7.7	233
208	BikDD Eliminates Breast Cancer Initiating Cells and Synergizes with Lapatinib for Breast Cancer Treatment. Cancer Cell, 2011, 20, 341-356.	7.7	67
209	An Integrated InÂVitro and InÂVivo High-Throughput Screen Identifies Treatment Leads for Ependymoma. Cancer Cell, 2011, 20, 384-399.	7.7	105
210	Inhibition of Mitochondrial Translation as a Therapeutic Strategy for Human Acute Myeloid Leukemia. Cancer Cell, 2011, 20, 674-688.	7.7	546
211	Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating–cancer stem cells: distinct, overlapping or same populations. Oncogene, 2011, 30, 4609-4621.	2.6	173
212	TGFβ/TNFα-Mediated Epithelial–Mesenchymal Transition Generates Breast Cancer Stem Cells with a Claudin-Low Phenotype. Cancer Research, 2011, 71, 4707-4719.	0.4	256
213	The Ins and Outs of the Epithelial to Mesenchymal Transition in Health and Disease. Annual Review of Cell and Developmental Biology, 2011, 27, 347-376.	4.0	647
214	Salinomycin Selectively Targets â€^CD133+' Cell Subpopulations and Decreases Malignant Traits in Colorectal Cancer Lines. Annals of Surgical Oncology, 2011, 18, 1797-1804.	0.7	112
215	Target cell movement in tumor and cardiovascular diseases based on the epithelial–mesenchymal transition concept. Advanced Drug Delivery Reviews, 2011, 63, 558-567.	6.6	38
216	Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Research and Treatment, 2011, 128, 45-55.	1.1	102
217	Two possible mechanisms of epithelial to mesenchymal transition in invasive ductal breast cancer. Clinical and Experimental Metastasis, 2011, 28, 811-818.	1.7	24
218	Epithelial cell-targeted transgene expression enables isolation of cyan fluorescent protein (CFP)-expressing prostate stem/progenitor cells. Transgenic Research, 2011, 20, 1073-1086.	1.3	8
219	Cancer stem cell theory in gastrointestinal malignancies: recent progress and upcoming challenges. Journal of Gastroenterology, 2011, 46, 1145-1157.	2.3	24
220	Cancer stem cells: a new framework for the design of tumor therapies. Journal of Molecular Medicine, 2011, 89, 95-107.	1.7	65
221	An Inhibitor of Arachidonate 5-Lipoxygenase, Nordy, Induces Differentiation and Inhibits Self-Renewal of Glioma Stem-Like Cells. Stem Cell Reviews and Reports, 2011, 7, 458-470.	5.6	39
222	Breast Cancer Stem Cells and Their Role in Resistance to Endocrine Therapy. Hormones and Cancer, 2011, 2, 91-103.	4.9	54
223	MicroRNA-mediated drug resistance in breast cancer. Clinical Epigenetics, 2011, 2, 171-185.	1.8	156

#	Article	IF	CITATIONS
224	Cancer stem cells and cancer therapy. Tumor Biology, 2011, 32, 425-440.	0.8	124
225	CD133, Stem Cells, and Cancer Stem Cells: Myth or Reality?. Current Colorectal Cancer Reports, 2011, 7, 253-259.	1.0	33
226	P27Kip1, regulated by glycogen synthase kinase- $3\hat{l}^2$, results in HMBA-induced differentiation of human gastric cancer cells. BMC Cancer, 2011, 11, 109.	1.1	13
227	Activation of \hat{l}^2 -catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer, 2011, 11, 49.	1.1	298
228	c-Myc dependent expression of pro-apoptotic Bim renders HER2-overexpressing breast cancer cells dependent on anti-apoptotic Mcl-1. Molecular Cancer, 2011, 10, 110.	7.9	38
229	Stem cell biology and drug discovery. BMC Biology, 2011, 9, 42.	1.7	39
230	Cancer stem cells: problems for therapy?. Journal of Pathology, 2011, 223, 148-162.	2.1	259
231	Concise Review: Emerging Concepts in Clinical Targeting of Cancer Stem Cells. Stem Cells, 2011, 29, 883-887.	1.4	80
232	Phenotypic plasticity and epithelialâ€mesenchymal transitions in cancer and normal stem cells?. International Journal of Cancer, 2011, 129, 2310-2314.	2.3	191
235	Chemical Control of Stem Cell Fate and Developmental Potential. Angewandte Chemie - International Edition, 2011, 50, 200-242.	7.2	124
236	Insights into Lasalocidâ€A Ring Formation by Chemical Chain Termination Inâ€Vivo. Angewandte Chemie - International Edition, 2011, 50, 11930-11933.	7.2	40
237	Genes Associated with Epithelial-Mesenchymal Transition: Possible Therapeutic Targets in Ductal Pancreatic Adenocarcinoma?. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 448-454.	0.9	14
238	Therapy of locally advanced pancreatic adenocarcinoma: unresectable and borderline patients. Expert Review of Anticancer Therapy, 2011, 11, 1555-1565.	1.1	13
239	Omacetaxine as an Anticancer Therapeutic: What is Old is New Again. Current Pharmaceutical Design, 2011, 17, 59-64.	0.9	70
240	Novel Insights into Targeting ATP-Binding Cassette Transporters for Antitumor Therapy. Current Medicinal Chemistry, 2011, 18, 4237-4249.	1.2	34
241	Salinomycin induces calpain and cytochrome c-mediated neuronal cell death. Cell Death and Disease, 2011, 2, e168-e168.	2.7	102
242	Escape from p21-mediated Oncogene-induced Senescence Leads to Cell Dedifferentiation and Dependence on Anti-apoptotic Bcl-xL and MCL1 Proteins. Journal of Biological Chemistry, 2011, 286, 12825-12838.	1.6	44
243	Cancer Stem Cells in Ulcerative Colitis. Onkologie, 2011, 34, 660-662.	1.1	0

#	Article	IF	CITATIONS
244	Autophagy positively regulates the CD44 ⁺ CD24 ^{-/low} breast cancer stem-like phenotype. Cell Cycle, 2011, 10, 3871-3885.	1.3	172
245	Functional Drug Screening Assay Reveals Potential Glioma Therapeutics. Assay and Drug Development Technologies, 2011, 9, 281-289.	0.6	31
246	A cisplatin-resistant subpopulation of mesenchymal-like cells in head and neck squamous cell carcinoma. Cell Cycle, 2011, 10, 2836-2835.	1.3	4
247	Circulating Tumor Cells from Patients with Advanced Prostate and Breast Cancer Display Both Epithelial and Mesenchymal Markers. Molecular Cancer Research, 2011, 9, 997-1007.	1.5	586
248	Pancreatic cancer: understanding and overcoming chemoresistance. Nature Reviews Gastroenterology and Hepatology, 2011, 8, 27-33.	8.2	303
249	FOXQ1 Regulates Epithelial-Mesenchymal Transition in Human Cancers. Cancer Research, 2011, 71, 3076-3086.	0.4	153
250	Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Molecular Biology of the Cell, 2011, 22, 2423-2435.	0.9	162
251	Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins?. Cancers, 2011, 3, 716-729.	1.7	299
252	Preclinical development of molecular-targeted agents for cancer. Nature Reviews Clinical Oncology, 2011, 8, 200-209.	12.5	145
253	Oncogene-Mediated Human Lung Epithelial Cell Transformation Produces Adenocarcinoma Phenotypes <i>In Vivo</i> . Cancer Research, 2011, 71, 2541-2549.	0.4	35
254	Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13253-13257.	3.3	342
255	Targeting Oncogenic Protein-Protein Interactions by Diversity Oriented Synthesis and Combinatorial Chemistry Approaches. Molecules, 2011, 16, 4408-4427.	1.7	20
256	Targeting mesenchymal exaptation to mitigate tumor growth. Cell Cycle, 2011, 10, 2626-2627.	1.3	2
257	Inflammation and autophagy conspire to promote tumor growth. Cell Cycle, 2011, 10, 2623-2623.	1.3	13
258	Reversing the Warburg effect through stromal autophagy. Cell Cycle, 2011, 10, 2836-2835.	1.3	3
259	Detecting and targeting mesenchymal-like subpopulations within squamous cell carcinomas. Cell Cycle, 2011, 10, 2008-2016.	1.3	51
260	MicroRNAs as molecular classifiers for cancer. Cell Cycle, 2011, 10, 2836-2835.	1.3	0
261	DUSPs strike again. Cell Cycle, 2011, 10, 2827-2835.	1.3	4

#	ARTICLE	IF	CITATIONS
262	Coordinated epigenetic regulation of autophagy and apoptosis. Cell Cycle, 2011, 10, 2836-2835.	1.3	3
263	Tension no longer, as Tensin2 is identified as a long-sought-after link between thrombopoietin-induced receptor signaling and activation of the PI3K/Akt pathway. Cell Cycle, 2011, 10, 2624-2624.	1.3	0
264	Eating for two: How stromal fibroblasts might nurture adjacent carcinoma cells. Cell Cycle, 2011, 10, 2836-2835.	1.3	1
265	Phosphoproteomics microarray screen reveals novel interaction between MPL and Tensin2. Cell Cycle, 2011, 10, 2621-2621.	1.3	O
266	Inhibition of epithelial-to-mesenchimal transition. Cell Cycle, 2011, 10, 2616-2616.	1.3	1
267	Stacking the deck: Putting your Ases where you want them. Cell Cycle, 2011, 10, 2625-2625.	1.3	0
268	New insights into the biology of melanomas using a microRNA tool-KIT. Cell Cycle, 2011, 10, 2836-2835.	1.3	0
269	Is there a "G spot" in sister chromatid cohesion resolution?. Cell Cycle, 2011, 10, 2836-2835.	1.3	0
270	p27 ^{Kip1} enforces maintenance of quiescence in the mammalian ear and the pituitary gland. Cell Cycle, 2011, 10, 2617-2618.	1.3	0
271	Unbearable stress: Collapse of the SSeCKS/AKAP12 scaffold leads to senescence and transformation. Cell Cycle, 2011, 10, 2836-2835.	1.3	1
272	The changing view of Dna2. Cell Cycle, 2011, 10, 2620-2620.	1.3	8
273	Mini Golgi stacks participate in spindle assembly in acentrosomal mouse oocytes?. Cell Cycle, 2011, 10, 2622-2622.	1.3	1
274	Diving into in vivo p53 tumor suppressor studies using a new platform mouse model. Cell Cycle, 2011, 10, 2619-2619.	1.3	1
275	Tumor suppression by Spinophilin. Cell Cycle, 2011, 10, 2836-2835.	1.3	3
276	Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7950-7955.	3.3	1,024
277	Canine Mammary Cancer Stem Cells are Radio- and Chemo- Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype. Cancers, 2011, 3, 1744-1762.	1.7	43
278	Strategies to target molecules that control the acquisition of a mesenchymal-like phenotype by carcinoma cells. Experimental Biology and Medicine, 2011, 236, 537-545.	1.1	31
279	Cancer Stem Cells in Breast Cancer. Cancers, 2011, 3, 1311-1328.	1.7	18

#	Article	IF	Citations
280	The Role of Colorectal Cancer Stem Cells in Metastatic Disease and Therapeutic Response. Cancers, 2011, 3, 319-339.	1.7	65
281	Breast Cancer-Initiating Cells: Insights into Novel Treatment Strategies. Cancers, 2011, 3, 1405-1425.	1.7	9
282	Tetrandrine, a Compound Common in Chinese Traditional Medicine, Preferentially Kills Breast Cancer Tumor Initiating Cells (TICs) In Vitro. Cancers, 2011, 3, 2274-2285.	1.7	33
283	Lower Salinomycin Concentration Increases Apoptotic Detachment in High-Density Cancer Cells. International Journal of Molecular Sciences, 2012, 13, 13169-13182.	1.8	17
284	CD133+, CD166+CD44+, and CD24+CD44+ Phenotypes Fail to Reliably Identify Cell Populations with Cancer Stem Cell Functional Features in Established Human Colorectal Cancer Cell Lines. Stem Cells Translational Medicine, 2012, 1, 592-603.	1.6	55
285	Salinomycin as a Drug for Targeting Human Cancer Stem Cells. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-17.	3.0	274
286	Cancer stem cells, tumor dormancy, and metastasis. Frontiers in Endocrinology, 2012, 3, 125.	1.5	66
287	A 1536-Well Quantitative High-Throughput Screen to Identify Compounds Targeting Cancer Stem Cells. Journal of Biomolecular Screening, 2012, 17, 1231-1242.	2.6	35
288	Human Correlates of Provocative Questions in Pancreatic Pathology. Advances in Anatomic Pathology, 2012, 19, 351-362.	2.4	29
289	Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what?. Open Biology, 2012, 2, 120066.	1.5	169
290	Versatile pathway-centric approach based on high-throughput sequencing to anticancer drug discovery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4609-4614.	3.3	63
291	Combination of Pan-Histone Deacetylase Inhibitor and Autophagy Inhibitor Exerts Superior Efficacy against Triple-Negative Human Breast Cancer Cells. Molecular Cancer Therapeutics, 2012, 11, 973-983.	1.9	93
292	Breast cancer stem cells: new therapeutic approaches. Breast Cancer Management, 2012, 1, 277-294.	0.2	1
293	ErbB receptor tyrosine kinase/NF-κB signaling controls mammosphere formation in human breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6584-6589.	3.3	97
294	Influence of IL-8 on the epithelial–mesenchymal transition and the tumor microenvironment. Future Oncology, 2012, 8, 713-722.	1.1	138
295	Progress and Pitfalls in the Identification of Cancer Stem Cell-Targeting Therapies in Head and Neck Squamous Cell Carcinoma. Current Medicinal Chemistry, 2012, 19, 6056-6064.	1.2	5
296	Cancer Stem Cells and Novel Targets for Antitumor Strategies. Current Pharmaceutical Design, 2012, 18, 2838-2849.	0.9	121
297	Targeting CD20 in Melanoma Patients at High Risk of Disease Recurrence. Molecular Therapy, 2012, 20, 1056-1062.	3.7	69

#	Article	IF	CITATIONS
298	MicroRNA-mediated posttranscriptional mechanisms of gene expression in proliferating and quiescent cancer cells. RNA Biology, 2012, 9, 871-880.	1.5	13
299	Pluripotency factor-mediated expression of the leptin receptor (OB-R) links obesity to oncogenesis through tumor-initiating stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 829-834.	3.3	85
300	Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2358-2363.	3.3	112
301	Androgen Deprivation Causes Epithelial–Mesenchymal Transition in the Prostate: Implications for Androgen-Deprivation Therapy. Cancer Research, 2012, 72, 527-536.	0.4	319
302	Non-small cell lung cancer stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity. Cell Death and Disease, 2012, 3, e352-e352.	2.7	104
303	Tracing cancer stem cells. Science-Business EXchange, 2012, 5, 830-830.	0.0	0
304	Advances in Cancer Stem Cell Biology. , 2012, , .		3
305	CTLA-4 Blockade Expands Infiltrating T Cells and Inhibits Cancer Cell Repopulation during the Intervals of Chemotherapy in Murine Mesothelioma. Molecular Cancer Therapeutics, 2012, 11, 1809-1819.	1.9	71
306	Epithelial Cell Adhesion Molecule Regulates Tumor Initiation and Tumorigenesis via Activating Reprogramming Factors and Epithelial-Mesenchymal Transition Gene Expression in Colon Cancer. Journal of Biological Chemistry, 2012, 287, 39449-39459.	1.6	91
307	Advanced prostate cancerâ€"a case for adjuvant differentiation therapy. Nature Reviews Urology, 2012, 9, 595-602.	1.9	32
308	ESE3/EHF Controls Epithelial Cell Differentiation and Its Loss Leads to Prostate Tumors with Mesenchymal and Stem-like Features. Cancer Research, 2012, 72, 2889-2900.	0.4	109
309	The Role of Cancer Stem Cells in Breast Cancer Initiation and Progression: Potential Cancer Stem Cell-Directed Therapies. Oncologist, 2012, 17, 1394-1401.	1.9	69
310	New Challenges for Cancer Systems Biomedicine. SIMAI Springer Series, 2012, , .	0.4	8
311	Mathematical Modelling of Cancer Stem Cells Population Behavior. Mathematical Modelling of Natural Phenomena, 2012, 7, 279-305.	0.9	17
312	Salinomycin inhibits prostate cancer growth and migration via induction of oxidative stress. British Journal of Cancer, 2012, 106, 99-106.	2.9	141
313	High Content Screening in Neurodegenerative Diseases. Journal of Visualized Experiments, 2012, , e3452.	0.2	5
314	Tissue Biomarkers for Prostate Cancer Radiation Therapy. Current Molecular Medicine, 2012, 12, 772-787.	0.6	19
315	Role of Cancer Stem Cells in Spine Tumors. Neurosurgery, 2012, 71, 117-125.	0.6	11

#	Article	IF	Citations
316	Targeting Cancer Stem Cells with Natural Products. Current Drug Targets, 2012, 13, 1054-1064.	1.0	29
317	Novel micelle formulation of curcumin for enhancing antitumor activity and inhibiting colorectal cancer stem cells. International Journal of Nanomedicine, 2012, 7, 4487.	3.3	60
318	A small molecule screening strategy with validation on human leukemia stem cells uncovers the therapeutic efficacy of kinetin riboside. Blood, 2012, 119, 1200-1207.	0.6	36
319	BMP4 Administration Induces Differentiation of CD133+ Hepatic Cancer Stem Cells, Blocking Their Contributions to Hepatocellular Carcinoma. Cancer Research, 2012, 72, 4276-4285.	0.4	91
320	Global Profiling Strategies for Mapping Dysregulated Metabolic Pathways in Cancer. Cell Metabolism, 2012, 16, 565-577.	7.2	103
321	A miR Image of Stem Cells and Their Lineages. Current Topics in Developmental Biology, 2012, 99, 175-199.	1.0	16
322	Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine, 2012, 7, 597-615.	1.7	389
323	Overexpression of chromatin assembly factorâ€1 p60, poly(ADPâ€ribose) polymerase 1 and nestin predicts metastasizing behaviour of oral cancer. Histopathology, 2012, 61, 1089-1105.	1.6	40
324	Silibinin inhibits Wnt/\hat{l}^2 -catenin signaling by suppressing Wnt co-receptor LRP6 expression in human prostate and breast cancer cells. Cellular Signalling, 2012, 24, 2291-2296.	1.7	105
325	Î ³ -Secretase inhibition promotes cell death, Noxa upregulation, and sensitization to BH3 mimetic ABT-737 in human breast cancer cells. Breast Cancer Research, 2012, 14, R96.	2.2	37
326	Cloning and Characterization of the Polyether Salinomycin Biosynthesis Gene Cluster of Streptomyces albus XM211. Applied and Environmental Microbiology, 2012, 78, 994-1003.	1.4	61
327	Phenotypic High-Throughput Screening Elucidates Target Pathway in Breast Cancer Stem Cell–Like Cells. Journal of Biomolecular Screening, 2012, 17, 1204-1210.	2.6	31
328	Breast-cancer stem cells—beyond semantics. Lancet Oncology, The, 2012, 13, e43-e48.	5.1	137
329	Die and let live: harnessing BikDD to combat breast cancer stem cells. Breast Cancer Research, 2012, 14, 310.	2.2	0
330	NOTCH1 inhibition in vivo results in mammary tumor regression and reduced mammary tumorsphere-forming activity in vitro. Breast Cancer Research, 2012, 14, R126.	2.2	48
331	Bioengineering natural product biosynthetic pathways for therapeutic applications. Current Opinion in Biotechnology, 2012, 23, 931-940.	3.3	31
332	Epithelial Plasticity, Cancer Stem Cells, and the Tumor-Supportive Stroma in Bladder Carcinoma. Molecular Cancer Research, 2012, 10, 995-1009.	1.5	142
333	Discrimination of colon cancer stem cells using noncanonical amino acid. Chemical Communications, 2012, 48, 9035.	2.2	2

#	Article	IF	Citations
334	Breast cancer stem cells: a moving target for cancer nanomedicine. European Journal of Nanomedicine, 2012, 4, 59-72.	0.6	1
335	Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2939-48.	3.3	292
336	Cancer Stem Cells: Current Status and Evolving Complexities. Cell Stem Cell, 2012, 10, 717-728.	5.2	1,128
337	The Valley of Death in anticancer drug development: a reassessment. Trends in Pharmacological Sciences, 2012, 33, 173-180.	4.0	80
338	Drug-mediated toxicity: illuminating the †bad†in the test tube by means of cellular assays?. Trends in Pharmacological Sciences, 2012, 33, 353-364.	4.0	18
339	Heterogeneity and Targeting of Pancreatic Cancer Stem Cells. Clinical Cancer Research, 2012, 18, 4277-4284.	3.2	65
340	Effects of salinomycin on human ovarian cancer cell line OV2008 are associated with modulating p38 MAPK. Tumor Biology, 2012, 33, 1855-1862.	0.8	28
341	MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling. Cell Cycle, 2012, 11, 1273-1281.	1.3	104
342	The evolving concept of cancer and metastasis stem cells. Journal of Cell Biology, 2012, 198, 281-293.	2.3	356
343	Cancer stem cell definitions and terminology: the devil is in the details. Nature Reviews Cancer, 2012, 12, 767-775.	12.8	599
344	Contribution of Epithelial-to-Mesenchymal Transition and Cancer Stem Cells to Pancreatic Cancer Progression. Journal of Surgical Research, 2012, 173, 105-112.	0.8	80
345	X-ray, FT-IR, NMR and PM5 structural studies and antibacterial activity of unexpectedly stable salinomycin–benzotriazole intermediate ester. Journal of Molecular Structure, 2012, 1022, 197-203.	1.8	26
346	Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest. Biochemical and Biophysical Research Communications, 2012, 418, 98-103.	1.0	72
347	Diindolilmethane (DIM) selectively inhibits cancer stem cells. Biochemical and Biophysical Research Communications, 2012, 424, 45-51.	1.0	29
348	Breast cancer stem cells. International Journal of Biochemistry and Cell Biology, 2012, 44, 573-577.	1.2	133
349	Synthesis and antimicrobial activity of amide derivatives of polyether antibiotic—salinomycin. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4697-4702.	1.0	57
350	Identification of heat shock protein 90 inhibitors to sensitize drug resistant side population tumor cells using a cell based assay platform. Cancer Letters, 2012, 317, 78-88.	3.2	14
351	Converting Cancer Therapies into Cures: Lessons from Infectious Diseases. Cell, 2012, 148, 1089-1098.	13.5	159

#	Article	IF	CITATIONS
352	Target Practice: Modeling Tumors with Stem Cells. Cell, 2012, 149, 1185-1187.	13.5	5
353	Drug resistance: Still a daunting challenge to the successful treatment of AML. Drug Resistance Updates, 2012, 15, 62-69.	6.5	218
354	Immunotherapy: A useful strategy to help combat multidrug resistance. Drug Resistance Updates, 2012, 15, 106-113.	6.5	42
355	Guaianolide Sesquiterpene Lactones, a Source To Discover Agents That Selectively Inhibit Acute Myelogenous Leukemia Stem and Progenitor Cells. Journal of Medicinal Chemistry, 2012, 55, 8757-8769.	2.9	164
356	Phenolic Secoiridoids in Extra Virgin Olive Oil Impede Fibrogenic and Oncogenic Epithelial-to-Mesenchymal Transition: Extra Virgin Olive Oil As a Source of Novel Antiaging Phytochemicals. Rejuvenation Research, 2012, 15, 3-21.	0.9	36
357	RAC1 activation mediates Twist1-induced cancer cell migration. Nature Cell Biology, 2012, 14, 366-374.	4.6	217
358	Elf5 inhibits the epithelial–mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nature Cell Biology, 2012, 14, 1212-1222.	4.6	251
359	Phosphosulindac (OXT-328) Selectively Targets Breast Cancer Stem Cells In Vitro and in Human Breast Cancer Xenografts. Stem Cells, 2012, 30, 2065-2075.	1.4	26
360	Defining new criteria for selection of cell-based intestinal models using publicly available databases. BMC Genomics, 2012, 13, 274.	1.2	49
361	Impact of Salinomycin on human cholangiocarcinoma: induction of apoptosis and impairment of tumor cell proliferation in vitro. BMC Cancer, 2012, 12, 466.	1.1	30
362	Salinomycin induces cell death and differentiation in head and neck squamous cell carcinoma stem cells despite activation of epithelial-mesenchymal transition and Akt. BMC Cancer, 2012, 12, 556.	1.1	66
363	Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells. Journal of Translational Medicine, 2012, 10, 167.	1.8	44
364	Identification of inhibitors of ovarian cancer stem-like cells by high-throughput screening. Journal of Ovarian Research, 2012, 5, 30.	1.3	36
365	Regulation of Cell Behavior and Tissue Patterning by Bioelectrical Signals: Challenges and Opportunities for Biomedical Engineering. Annual Review of Biomedical Engineering, 2012, 14, 295-323.	5.7	185
366	The epithelial–mesenchymal transition under control: Global programs to regulate epithelial plasticity. Seminars in Cancer Biology, 2012, 22, 361-368.	4.3	244
367	Polyether ionophoresâ€"promising bioactive molecules for cancer therapy. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7002-7010.	1.0	107
368	Therapeutic targeting of the p53 pathway in cancer stem cells. Expert Opinion on Therapeutic Targets, 2012, 16, 1161-1174.	1.5	38
369	Histone Deacetylase Inhibitors Stimulate Dedifferentiation of Human Breast Cancer Cells Through WNT/βâ€Catenin Signaling. Stem Cells, 2012, 30, 2366-2377.	1.4	100

#	Article	IF	CITATIONS
370	Identification of Pancreatic Cancer Stem Cells and Selective Toxicity of Chemotherapeutic Agents. Gastroenterology, 2012, 143, 234-245.e7.	0.6	119
371	Salinomycin, a polyether ionophoric antibiotic, inhibits adipogenesis. Biochemical and Biophysical Research Communications, 2012, 428, 487-493.	1.0	13
372	Highly sensitive profiling of CD44+/CD24â [^] ' breast cancer stem cells by combining global mRNA amplification and next generation sequencing: Evidence for a hyperactive PI3K pathway. Cancer Letters, 2012, 325, 165-174.	3.2	53
373	Epithelial–mesenchymal transition and breast cancer: Role, molecular mechanisms and clinical impact. Cancer Treatment Reviews, 2012, 38, 689-697.	3.4	235
374	Can lung cancer stem cells be targeted for therapies?. Cancer Treatment Reviews, 2012, 38, 580-588.	3 . 4	52
375	Cancer stem cells: In the line of fire. Cancer Treatment Reviews, 2012, 38, 589-598.	3.4	212
376	Proteomic surfaceome analysis of mesothelioma. Lung Cancer, 2012, 75, 189-196.	0.9	24
377	Trifluoperazine, an Antipsychotic Agent, Inhibits Cancer Stem Cell Growth and Overcomes Drug Resistance of Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 1180-1188.	2.5	172
378	Coxsackie-adenovirus receptor as a novel marker of stem cells in treatment-resistant non-small cell lung cancer. Radiotherapy and Oncology, 2012, 105, 250-257.	0.3	15
379	CD44: a validated target for improved delivery of cancer therapeutics. Expert Opinion on Therapeutic Targets, 2012, 16, 635-650.	1.5	101
380	Cancer Stem Cells of the Head and Neck. Stem Cells and Cancer Stem Cells, 2012, , 275-286.	0.1	0
381	Mechanisms of acquired resistance to targeted cancer therapies. Future Oncology, 2012, 8, 999-1014.	1.1	150
382	Overcoming Challenges of Ovarian Cancer Stem Cells: Novel Therapeutic Approaches. Stem Cell Reviews and Reports, 2012, 8, 994-1010.	5.6	51
384	Antiproliferative activity of salinomycin and its derivatives. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7146-7150.	1.0	62
387	Targeting Cancer Stem Cells with Phytochemicals: Inhibition of the Rat C6 Glioma Side Population by Curcumin., 2012,, 61-68.		6
388	Stem Cells and Cancer Stem Cells, Volume 3., 2012, , .		2
389	RhoC Impacts the Metastatic Potential and Abundance of Breast Cancer Stem Cells. PLoS ONE, 2012, 7, e40979.	1.1	60
390	Salinomycin Induces Autophagy in Colon and Breast Cancer Cells with Concomitant Generation of Reactive Oxygen Species. PLoS ONE, 2012, 7, e44132.	1.1	86

#	Article	IF	CITATIONS
391	Side Population in Human Non-Muscle Invasive Bladder Cancer Enriches for Cancer Stem Cells That Are Maintained by MAPK Signalling. PLoS ONE, 2012, 7, e50690.	1.1	42
392	The role of cancer stem cells in relapse of solid tumors. Frontiers in Bioscience - Elite, 2012, E4, 1528.	0.9	75
393	The role of cancer stem cells in relapse of solid tumors. Frontiers in Bioscience - Elite, 2012, E4, 1528-1541.	0.9	117
394	Suppression of colorectal cancer metastasis by nigericin through inhibition of epithelial-mesenchymal transition. World Journal of Gastroenterology, 2012, 18, 2640.	1.4	35
395	Functional Heterogeneity within the CD44 High Human Breast Cancer Stem Cell-Like Compartment Reveals a Gene Signature Predictive of Distant Metastasis. Molecular Medicine, 2012, 18, 1109-1121.	1.9	73
396	Monensin Induced Oxidative Stress Reduces Prostate Cancer Cell Migration and Cancer Stem Cell Population. , 0, , .		2
397	Identification and Characterization of Cancer Stem Cells Using Flow Cytometry. , 0, , .		0
398	Expression of Transforming Growth Factor \hat{l}^21 and Cadherins in Lung Adenocarcinoma. Journal of Lung Cancer, 2012, 11, 38.	0.2	0
399	8.2 Targeting the tumor microenvironment in cancer progression. , 0, , .		1
400	Challenges and limitations of targeting cancer stem cells and/or the tumour microenvironment. Drugs and Therapy Studies, 2012, 2, 10.	0.6	16
401	A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer. Chinese Journal of Cancer, 2012, 31, 564-572.	4.9	24
402	Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Research, 2012, 14, R15.	2.2	262
403	In vitro models. Stem Cells, 2012, 30, 95-99.	1.4	31
404	Identification of Drugs IncludingÂa DopamineÂReceptor Antagonist that Selectively Target Cancer Stem Cells. Cell, 2012, 149, 1284-1297.	13.5	420
405	Cancer stem cells and epithelial–mesenchymal transition: Concepts and molecular links. Seminars in Cancer Biology, 2012, 22, 396-403.	4.3	781
406	To differentiate or not — routes towards metastasis. Nature Reviews Cancer, 2012, 12, 425-436.	12.8	547
407	Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nature Chemical Biology, 2012, 8, 583-589.	3.9	203
408	Exploring the cancer stem cell phenotype with high-throughput screening applications. Future Medicinal Chemistry, 2012, 4, 1229-1241.	1.1	9

#	Article	IF	CITATIONS
409	Cancer stem cells and their potential implications for the treatment of solid tumors. Journal of Surgical Oncology, 2012, 106, 209-215.	0.8	36
410	Impairment of tumorâ€initiating stemâ€like property and reversal of epithelial–mesenchymal transdifferentiation in head and neck cancer by resveratrol treatment. Molecular Nutrition and Food Research, 2012, 56, 1247-1258.	1.5	90
411	Combinatorial treatment of mammospheres with trastuzumab and salinomycin efficiently targets HER2â€positive cancer cells and cancer stem cells. International Journal of Cancer, 2012, 131, 2808-2819.	2.3	65
412	The detection of EBP50 expression using quantum dot immunohistochemistry in pancreatic cancer tissue and down-regulated EBP50 effect on PC-2 cells. Journal of Molecular Histology, 2012, 43, 517-526.	1.0	12
413	Clonal evolution in cancer. Nature, 2012, 481, 306-313.	13.7	2,570
414	Overexpression of Snail induces epithelial–mesenchymal transition and a cancer stem cell–like phenotype in human colorectal cancer cells. Cancer Medicine, 2012, 1, 5-16.	1.3	190
416	Cancer stem cells and EMT in carcinoma. Cancer and Metastasis Reviews, 2012, 31, 285-293.	2.7	136
417	Salinomycin, a p-glycoprotein inhibitor, sensitizes radiation-treated cancer cells by increasing DNA damage and inducing G2 arrest. Investigational New Drugs, 2012, 30, 1311-1318.	1.2	67
418	Role of microRNAs in the Regulation of Breast Cancer Stem Cells. Journal of Mammary Gland Biology and Neoplasia, 2012, 17, 15-21.	1.0	84
419	Generation of Cancerous Neural Stem Cells Forming Glial Tumor by Oncogenic Stimulation. Stem Cell Reviews and Reports, 2012, 8, 532-545.	5.6	17
420	Eradication of breast cancer cells in patients with distant metastasis: the finishing touches?. Breast Cancer, 2012, 19, 206-211.	1.3	9
421	Treating metastatic cancer with nanotechnology. Nature Reviews Cancer, 2012, 12, 39-50.	12.8	1,023
422	Salinomycin – A New Cancer Drug Candidate. Chemical Biology and Drug Design, 2012, 79, 235-238.	1.5	88
423	Stem cells in squamous head and neck cancer. Critical Reviews in Oncology/Hematology, 2012, 81, 224-240.	2.0	55
424	Targeting cancer-initiating cell drug-resistance: a roadmap to a new-generation of cancer therapies?. Drug Discovery Today, 2012, 17, 435-442.	3.2	31
425	The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials, 2012, 33, 679-691.	5.7	182
426	Selective inhibitory effect of HPMA copolymer-cyclopamine conjugate on prostate cancer stem cells. Biomaterials, 2012, 33, 1863-1872.	5.7	61
427	The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials, 2012, 33, 2961-2970.	5.7	190

#	Article	IF	CITATIONS
428	Identification of a selective small molecule inhibitor of breast cancer stem cells. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3571-3574.	1.0	28
429	Cancer Vaccines Targeting the Epithelial-Mesenchymal Transition: Tissue Distribution of Brachyury and Other Drivers of the Mesenchymal-Like Phenotype of Carcinomas. Seminars in Oncology, 2012, 39, 358-366.	0.8	48
430	Concepts of metastasis in flux: The stromal progression model. Seminars in Cancer Biology, 2012, 22, 174-186.	4.3	75
431	EMT as the ultimate survival mechanism of cancer cells. Seminars in Cancer Biology, 2012, 22, 194-207.	4.3	421
432	Cancer stem cells and metastasis. Seminars in Cancer Biology, 2012, 22, 187-193.	4.3	183
433	Metastatic disease: A drug discovery perspective. Seminars in Cancer Biology, 2012, 22, 261-271.	4.3	7
434	Identification of tumour initiating cells in feline head and neck squamous cell carcinoma and evidence for gefitinib induced epithelial to mesenchymal transition. Veterinary Journal, 2012, 193, 46-52.	0.6	21
435	Linkage between Twist1 and Bmi1: Molecular mechanism of cancer metastasis/stemness and clinical implications. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 668-673.	0.9	17
436	A Lateâ€Stage Intermediate in Salinomycin Biosynthesis Is Revealed by Specific Mutation in the Biosynthetic Gene Cluster. ChemBioChem, 2012, 13, 66-71.	1.3	59
437	The wnt/βâ€catenin signaling pathway: A potential therapeutic target in the treatment of triple negative breast cancer. Journal of Cellular Biochemistry, 2012, 113, 13-18.	1.2	239
438	Identification of cancer stem cells in vincristine preconditioned SGC7901 gastric cancer cell line. Journal of Cellular Biochemistry, 2012, 113, 302-312.	1.2	69
439	Stochastic gene expression stabilization as a new therapeutic strategy for cancer. BioEssays, 2012, 34, 170-173.	1.2	22
440	Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell and Tissue Research, 2013, 352, 95-122.	1.5	151
441	Quercetin in elimination of tumor initiating stemâ€like and mesenchymal transformation property in head and neck cancer. Head and Neck, 2013, 35, 413-419.	0.9	49
442	miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs. Breast Cancer Research, 2013, 15, R33.	2.2	170
443	Curcumin in VIP-targeted sterically stabilized phospholipid nanomicelles: a novel therapeutic approach for breast cancer and breast cancer stem cells. Drug Delivery and Translational Research, 2013, 3, 562-574.	3.0	33
444	In vitro treatment of carcinoma cell lines with pancreatic (pro)enzymes suppresses the EMT programme and promotes cell differentiation. Cellular Oncology (Dordrecht), 2013, 36, 289-301.	2.1	10
445	Cancer heterogeneity—a multifaceted view. EMBO Reports, 2013, 14, 686-695.	2.0	208

#	Article	IF	CITATIONS
446	Cancer Stem Cells: Potential Target For Anti-Cancer Nanomedicines. ACS Symposium Series, 2013, , 127-149.	0.5	2
447	Adhesion Protein Protocols. Methods in Molecular Biology, 2013, , .	0.4	5
448	CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. Journal of Controlled Release, 2013, 171, 280-287.	4.8	168
450	Assessment of potential anti-cancer stem cell activity of marine algal compounds using an in vitro mammosphere assay. Cancer Cell International, 2013, 13, 39.	1.8	36
451	Role of integrated cancer nanomedicine in overcoming drug resistance. Advanced Drug Delivery Reviews, 2013, 65, 1784-1802.	6.6	288
452	Three-Dimensional-Engineered Matrix to Study Cancer Stem Cells and Tumorsphere Formation: Effect of Matrix Modulus. Tissue Engineering - Part A, 2013, 19, 669-684.	1.6	68
453	Pharmacophore modeling, 3D-QSAR and DFT studies of IWR small-molecule inhibitors of Wnt response. Journal of Receptor and Signal Transduction Research, 2013, 33, 276-285.	1.3	10
454	microRNA in the control of stem-like phenotype of cancer cells. Open Life Sciences, 2013, 8, 931-942.	0.6	3
455	Breast Cancer Stem Cells, Pathways and Therapeutic Perspectives 2011. Indian Journal of Surgery, 2013, 75, 170-180.	0.2	14
456	Metalloproteinase-disintegrin ADAM12 is associated with a breast tumor-initiating cell phenotype. Breast Cancer Research and Treatment, 2013, 139, 691-703.	1.1	24
457	Enrichment of tumor-initiating breast cancer cells within a mammosphere-culture microdevice. Biomedical Microdevices, 2013, 15, 645-655.	1.4	8
458	Cancer stem cell hypothesis: a brief summary and two proposals. Cytotechnology, 2013, 65, 505-512.	0.7	24
459	Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: basic knowledge and therapeutic possibilities for an innovative approach. Journal of Experimental and Clinical Cancer Research, 2013, 32, 48.	3.5	72
461	Cancer Stem Cells: Prospective Isolation and Progress Toward Functional Biomarker Identification. Current Pathobiology Reports, 2013, 1, 81-90.	1.6	0
462	Breast Cancer Metastasis and Drug Resistance. , 2013, , .		12
463	Transcriptional control of cancer metastasis. Trends in Cell Biology, 2013, 23, 603-611.	3.6	94
464	Protein Kinase C \hat{l}_{\pm} Is a Central Signaling Node and Therapeutic Target for Breast Cancer Stem Cells. Cancer Cell, 2013, 24, 347-364.	7.7	277
465	One-pot synthesis and cytotoxicity studies of new Mannich base derivatives of polyether antibioticâ€"Lasalocid acid. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5053-5056.	1.0	23

#	Article	IF	CITATIONS
466	Discovery of the cancer stem cell related determinants of radioresistance. Radiotherapy and Oncology, 2013, 108, 378-387.	0.3	159
467	Mechanism of action of salinomycin on growth and migration in pancreatic cancer cell lines. Pancreatology, 2013, 13, 72-78.	0.5	41
468	Combined gemcitabine and CHK1 inhibitor treatment induces apoptosis resistance in cancer stem cell-like cells enriched with tumor spheroids from a non-small cell lung cancer cell line. Frontiers of Medicine, 2013, 7, 462-476.	1.5	16
469	Modeling colorectal cancer as a 3-dimensional disease in a dish: the case for drug screening using organoids, zebrafish, and fruit flies. Drug Discovery Today: Technologies, 2013, 10, e73-e81.	4.0	13
470	Salinomycin induces apoptosis in cisplatin-resistant colorectal cancer cells by accumulation of reactive oxygen species. Toxicology Letters, 2013, 222, 139-145.	0.4	87
471	Monensin, a polyether ionophore antibiotic, overcomes TRAIL resistance in glioma cells via endoplasmic reticulum stress, DR5 upregulation and c-FLIP downregulation. Carcinogenesis, 2013, 34, 1918-1928.	1.3	94
472	Transient treatment with epigenetic modifiers yields stable neuroblastoma stem cells resembling aggressive large-cell neuroblastomas. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6097-6102.	3.3	50
473	Breast cancer stem cells: an update. Journal of Clinical Pathology, 2013, 66, 485-490.	1.0	33
474	Salinomycin induces activation of autophagy, mitophagy and affects mitochondrial polarity: Differences between primary and cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2057-2069.	1.9	135
475	Cinnamides as selective small-molecule inhibitors of a cellular model of breast cancer stem cells. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1834-1838.	1.0	17
477	Can nanomedicines kill cancer stem cells?. Advanced Drug Delivery Reviews, 2013, 65, 1763-1783.	6.6	114
478	Identification of FDA-approved Drugs Targeting Breast Cancer Stem Cells Along With Biomarkers of Sensitivity. Scientific Reports, 2013, 3, 2530.	1.6	53
479	Epithelial–Mesenchymal Transition and Tumor Suppression Are Controlled by a Reciprocal Feedback Loop between ZEB1 and Grainyhead-like-2. Cancer Research, 2013, 73, 6299-6309.	0.4	160
480	Atorvastatin inhibited Rho-associated kinase 1 (ROCK1) and focal adhesion kinase (FAK) mediated adhesion and differentiation of CD133+CD44+ prostate cancer stem cells. Biochemical and Biophysical Research Communications, 2013, 441, 586-592.	1.0	25
481	Maintenance of stem cell self-renewal in head and neck cancers requires actions of $GSK3\hat{1}^2$ influenced by CD44 and RHAMM. Stem Cells, 2013, 31, 2073-2083.	1.4	60
482	Nanomedicine therapeutic approaches to overcome cancer drug resistance. Advanced Drug Delivery Reviews, 2013, 65, 1866-1879.	6.6	598
483	Breast cancer stem cells and epithelial mesenchymal plasticity $\hat{a} \in \text{``Implications for chemoresistance}$. Cancer Letters, 2013, 341, 56-62.	3.2	108
484	Targeting cancer stem cells expressing an embryonic signature with anti-proteases to decrease their tumor potential. Cell Death and Disease, 2013, 4, e706-e706.	2.7	14

#	Article	IF	CITATIONS
485	Loss of CDH1 upâ€regulates epidermal growth factor receptor via phosphorylation of YBX1 in nonâ€small cell lung cancer cells. FEBS Letters, 2013, 587, 3995-4000.	1.3	26
486	Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity. Toxicology, 2013, 314, 209-220.	2.0	95
488	Niche-based screening identifies small-molecule inhibitors of leukemia stem cells. Nature Chemical Biology, 2013, 9, 840-848.	3.9	103
489	Sheep, wolf, or werewolf: Cancer stem cells and the epithelial-to-mesenchymal transition. Cancer Letters, 2013, 341, 16-23.	3.2	23
490	Systematic Identification of Molecular Subtype-Selective Vulnerabilities in Non-Small-Cell Lung Cancer. Cell, 2013, 155, 552-566.	13.5	151
491	Knockdown of dual specificity phosphatase 4 enhances the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin. Experimental Cell Research, 2013, 319, 3140-3149.	1.2	31
492	Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes and Development, 2013, 27, 2192-2206.	2.7	996
493	Perspective: Flicking with flow: Can microfluidics revolutionize the cancer research?. Biomicrofluidics, 2013, 7, 011811.	1.2	16
494	The Fruits of Maclura pomifera Extracts Inhibits Glioma Stem-Like Cell Growth and Invasion. Neurochemical Research, 2013, 38, 2105-2113.	1.6	22
495	Salinomycin increases chemosensitivity to the effects of doxorubicin in soft tissue sarcomas. BMC Cancer, 2013, 13, 490.	1.1	24
496	Activation of NF-κB by the RANKL/RANK system up-regulates snail and twist expressions and induces epithelial-to-mesenchymal transition in mammary tumor cell lines. Journal of Experimental and Clinical Cancer Research, 2013, 32, 62.	3.5	95
497	Silibinin inhibits β-catenin/ZEB1 signaling and suppresses bladder cancer metastasis via dual-blocking epithelial–mesenchymal transition and stemness. Cellular Signalling, 2013, 25, 2625-2633.	1.7	106
498	An Integrin-Linked Machinery of Cytoskeletal Regulation that Enables Experimental Tumor Initiation and Metastatic Colonization. Cancer Cell, 2013, 24, 481-498.	7.7	174
499	Systems Biology of Tumor Dormancy. Advances in Experimental Medicine and Biology, 2013, , .	0.8	9
500	Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Advanced Drug Delivery Reviews, 2013, 65, 1731-1747.	6.6	218
501	A Genome-wide siRNA Screen Identifies Proteasome Addiction as a Vulnerability of Basal-like Triple-Negative Breast Cancer Cells. Cancer Cell, 2013, 24, 182-196.	7.7	147
502	Synthetic modification of salinomycin: selective O-acylation and biological evaluation. Chemical Communications, 2013, 49, 9944.	2.2	56
503	Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Integrative Biology (United Kingdom), 2013, 5, 381-389.	0.6	150

#	Article	IF	CITATIONS
504	Metformin: a case of divide and conquer. Breast Cancer Research, 2013, 15, 306.	2.2	7
505	An intelligent digital microfluidic system with fuzzy-enhanced feedback for multi-droplet manipulation. Lab on A Chip, 2013, 13, 443-451.	3.1	54
506	Part III. Molecular changes induced by high nitric oxide adaptation in human breast cancer cell line BT-20 (BT-20-HNO): a switch from aerobic to anaerobic metabolism. Tumor Biology, 2013, 34, 403-413.	0.8	13
507	Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene, 2013, 32, 5210-5219.	2.6	287
508	Breast cancer stem cell enrichment and isolation by mammosphere culture and its potential diagnostic applications. Expert Review of Molecular Diagnostics, 2013, 13, 49-60.	1.5	30
509	2-Hydroxycinnamaldehyde inhibits the epithelial-mesenchymal transition in breast cancer cells. Breast Cancer Research and Treatment, 2013, 137, 697-708.	1.1	32
510	Predicting outcomes in radiation oncologyâ€"multifactorial decision support systems. Nature Reviews Clinical Oncology, 2013, 10, 27-40.	12.5	329
511	Breast Cancer Stem Cells: A Novel Therapeutic Target. Clinical Breast Cancer, 2013, 13, 7-15.	1.1	104
512	Crown Ether Host-Rotaxanes as Cytotoxic Agents. ACS Medicinal Chemistry Letters, 2013, 4, 27-31.	1.3	10
513	FOXC2 Expression Links Epithelial–Mesenchymal Transition and Stem Cell Properties in Breast Cancer. Cancer Research, 2013, 73, 1981-1992.	0.4	242
514	A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy. Biochemical and Biophysical Research Communications, 2013, 430, 1329-1333.	1.0	22
515	TGF- \hat{l}^2 -Id1 Signaling Opposes Twist1 and Promotes Metastatic Colonization via a Mesenchymal-to-Epithelial Transition. Cell Reports, 2013, 5, 1228-1242.	2.9	205
516	Nigericin selectively targets cancer stem cells in nasopharyngeal carcinoma. International Journal of Biochemistry and Cell Biology, 2013, 45, 1997-2006.	1.2	45
517	Targeted cancer therapy – Are the days of systemic chemotherapy numbered?. Maturitas, 2013, 76, 308-314.	1.0	88
518	Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma. Experimental Cell Research, 2013, 319, 1220-1228.	1.2	19
519	Colon cancer stem cells – From basic to clinical application. Cancer Letters, 2013, 338, 127-140.	3.2	51
520	Heterogeneity and immunophenotypic plasticity of malignant cells in human liposarcomas. Stem Cell Research, 2013, 11, 772-781.	0.3	16
521	Epithelial-to-mesenchymal transition and cancer stem(-like) cells in head and neck squamous cell carcinoma. Cancer Letters, 2013, 338, 47-56.	3.2	108

#	ARTICLE	IF	CITATIONS
522	Activation of MAPK Pathways due to DUSP4 Loss Promotes Cancer Stem Cell-like Phenotypes in Basal-like Breast Cancer. Cancer Research, 2013, 73, 6346-6358.	0.4	124
523	Targeting melanoma by small molecules: challenges ahead. Pigment Cell and Melanoma Research, 2013, 26, 464-469.	1.5	10
524	A Phase II Trial of Temsirolimus in Men With Castration-Resistant Metastatic Prostate Cancer. Clinical Genitourinary Cancer, 2013, 11, 397-406.	0.9	52
525	A novel anticancer agent Broussoflavonol B downregulates estrogen receptor (ER)- $\hat{l}\pm 36$ expression and inhibits growth of ER-negative breast cancer MDA-MB-231 cells. European Journal of Pharmacology, 2013, 714, 56-64.	1.7	34
526	TNF \hat{l}_{\pm} and Fas/FasL pathways are involved in 9-Methoxycamptothecin-induced apoptosis in cancer cells with oxidative stress and G2/M cell cycle arrest. Food and Chemical Toxicology, 2013, 55, 396-410.	1.8	19
527	Pancreatic cancer stem cells: Emerging target for designing novel therapy. Cancer Letters, 2013, 338, 94-100.	3.2	115
528	Salinomycin inhibits Akt/NF-κB and induces apoptosis in cisplatin resistant ovarian cancer cells. Cancer Epidemiology, 2013, 37, 512-517.	0.8	50
529	Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Letters, 2013, 335, 41-51.	3.2	125
530	Stem cell–directed therapies in pancreatic cancer. Current Problems in Cancer, 2013, 37, 280-286.	1.0	2
531	New Paradigms and Future Challenges in Radiation Oncology: An Update of Biological Targets and Technology. Science Translational Medicine, 2013, 5, 173sr2.	5 . 8	197
532	The inhibitory effect of salinomycin on the proliferation, migration and invasion of human endometrial cancer stem-like cells. Gynecologic Oncology, 2013, 129, 598-605.	0.6	75
533	Cell surface markers of cancer stem cells: diagnostic macromolecules and targets for drug delivery. Drug Delivery and Translational Research, 2013, 3, 121-142.	3.0	15
534	Salinomycin induces apoptosis and senescence in breast cancer: Upregulation of p21, downregulation of survivin and histone H3 and H4 hyperacetylation. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3121-3135.	1.1	51
535	Tumor Dormancy and Cancer Stem Cells: Two Sides of the Same Coin?. Advances in Experimental Medicine and Biology, 2013, 734, 145-179.	0.8	108
536	Emerging targeted agents in metastatic breast cancer. Nature Reviews Clinical Oncology, 2013, 10, 191-210.	12.5	158
537	Biological rationale for the design of polymeric anti-cancer nanomedicines. Journal of Drug Targeting, 2013, 21, 1-26.	2.1	63
538	Solute carriers (SLCs) in cancer. Molecular Aspects of Medicine, 2013, 34, 719-734.	2.7	63
539	The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. Natural Product Reports, 2013, 30, 625.	5. 2	93

#	ARTICLE	IF	CITATIONS
540	Hyaluronic Acid-Based Nanogel–Drug Conjugates with Enhanced Anticancer Activity Designed for the Targeting of CD44-Positive and Drug-Resistant Tumors. Bioconjugate Chemistry, 2013, 24, 658-668.	1.8	171
541	Novel Therapies for the Treatment of Advanced Prostate Cancer. Current Treatment Options in Oncology, 2013, 14, 109-126.	1.3	18
542	Therapeutic strategies targeting cancer stem cells. Cancer Biology and Therapy, 2013, 14, 295-303.	1.5	65
543	Effects of salinomycin on human bone marrow-derived mesenchymal stem cells in vitro. Toxicology Letters, 2013, 218, 207-214.	0.4	30
544	Understanding glioma stem cells: rationale, clinical relevance and therapeutic strategies. Expert Review of Neurotherapeutics, 2013, 13, 545-555.	1.4	75
545	An automatic microfluidic system for rapid screening of cancer stem-like cell-specific aptamers. Microfluidics and Nanofluidics, 2013, 14, 753-765.	1.0	37
546	Overcoming Intrinsic Multidrug Resistance in Melanoma by Blocking the Mitochondrial Respiratory Chain of Slow-Cycling JARID1Bhigh Cells. Cancer Cell, 2013, 23, 811-825.	7.7	553
547	<i>In vivo</i> screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal. Integrative Biology (United Kingdom), 2013, 5, 889-898.	0.6	31
548	Cancer stem cells and their role in metastasis. , 2013, 138, 285-293.		203
549	Accurate Models for P-gp Drug Recognition Induced from a Cancer Cell Line Cytotoxicity Screen. Journal of Medicinal Chemistry, 2013, 56, 5691-5708.	2.9	45
550	Metformin selectively affects human glioblastoma tumor-initiating cell viability. Cell Cycle, 2013, 12, 145-156.	1.3	154
551	Targeted therapies of metastatic breast cancer: Relationships with cancer stem cells. Biomedicine and Pharmacotherapy, 2013, 67, 543-555.	2.5	11
553	Herceptinâ€decorated salinomycinâ€loaded nanoparticles for breast tumor targeting. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1405-1415.	2.1	27
554	Stem cell signaling as a target for novel drug discovery: recent progress in the WNT and Hedgehog pathways. Acta Pharmacologica Sinica, 2013, 34, 777-783.	2.8	18
555	Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials, 2013, 34, 7191-7203.	5.7	110
556	CD133 expression in circulating tumor cells from breast cancer patients: Potential role in resistance to chemotherapy. International Journal of Cancer, 2013, 133, 2398-2407.	2.3	92
557	A Study of Exocyclic Radical Reductions of Polysubstituted Tetrahydropyrans. Journal of Organic Chemistry, 2013, 78, 6075-6103.	1.7	6
558	X-ray crystallographic, FT-IR and NMR studies as well as anticancer and antibacterial activity of the salt formed between ionophore antibiotic Lasalocid acid and amines. Journal of Molecular Structure, 2013, 1032, 69-77.	1.8	11

#	Article	IF	CITATIONS
559	Genomic Profiling in Triple-Negative Breast Cancer. Breast Care, 2013, 8, 408-413.	0.8	24
560	Personalizing Oncology: Perspectives and Prospects. Journal of Clinical Oncology, 2013, 31, 1904-1911.	0.8	121
561	Telomerase reverse transcriptase promotes epithelial–mesenchymal transition and stem cell-like traits in cancer cells. Oncogene, 2013, 32, 4203-4213.	2.6	227
562	Characterization of disease progression in ovarian cancer by utilizing †chemograms†of ovarian cancer stem cells. Journal of Chemotherapy, 2013, 25, 184-191.	0.7	0
563	Targeted therapy of cancer stem cells: science or fiction. Therapeutic Delivery, 2013, 4, 135-138.	1.2	0
564	Emerging Therapeutic Biomarkers in Endometrial Cancer. BioMed Research International, 2013, 2013, 1-11.	0.9	49
565	MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis, 2013, 34, 530-538.	1.3	212
566	Ovarian and Breast Cancer Spheres Are Similar in Transcriptomic Features and Sensitive to Fenretinide. BioMed Research International, 2013, 2013, 1-11.	0.9	26
567	Regulation of Ovarian Cancer Stem Cells or Tumor-Initiating Cells. International Journal of Molecular Sciences, 2013, 14, 6624-6648.	1.8	59
568	A Preclinical Evaluation of Antimycin A as a Potential Antilung Cancer Stem Cell Agent. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-13.	0.5	20
569	Low Amount of Salinomycin Greatly Increases Akt Activation, but Reduces Activated p70S6K Levels. International Journal of Molecular Sciences, 2013, 14, 17304-17318.	1.8	15
570	"Take it up a NOTCH. Cell Cycle, 2013, 12, 191-192.	1.3	6
571	Smac Mimetics in Combination with TRAIL Selectively Target Cancer Stem Cells in Nasopharyngeal Carcinoma. Molecular Cancer Therapeutics, 2013, 12, 1728-1737.	1.9	33
572	Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. OncoTargets and Therapy, 2013, 6, 1347.	1.0	169
573	Hbo1 Is a Cyclin E/CDK2 Substrate That Enriches Breast Cancer Stem-like Cells. Cancer Research, 2013, 73, 5556-5568.	0.4	46
574	Microscale technologies for stem cell culture. , 2013, , 143-175.		4
575	Wnt Modulating Agents Inhibit Human Cytomegalovirus Replication. Antimicrobial Agents and Chemotherapy, 2013, 57, 2761-2767.	1.4	45
576	Gramicidin A Induces Metabolic Dysfunction and Energy Depletion Leading to Cell Death in Renal Cell Carcinoma Cells. Molecular Cancer Therapeutics, 2013, 12, 2296-2307.	1.9	26

#	Article	IF	CITATIONS
577	EZH2 Is Required for Breast and Pancreatic Cancer Stem Cell Maintenance and Can Be Used as a Functional Cancer Stem Cell Reporter. Stem Cells Translational Medicine, 2013, 2, 43-52.	1.6	104
578	Cancer stem cells, a fuzzy evolving concept: A cell population or a cell property?. Cell Cycle, 2013, 12, 3743-3748.	1.3	56
579	Regulation of YAP and TAZ by Epithelial Plasticity., 2013,, 89-113.		1
580	CD44 Staining of Cancer Stem-Like Cells Is Influenced by Down-Regulation of CD44 Variant Isoforms and Up-Regulation of the Standard CD44 Isoform in the Population of Cells That Have Undergone Epithelial-to-Mesenchymal Transition. PLoS ONE, 2013, 8, e57314.	1.1	83
581	The Function of miRNA in Hepatic Cancer Stem Cell. BioMed Research International, 2013, 2013, 1-9.	0.9	31
582	Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy, 2013, 9, 714-729.	4.3	163
583	Miniaturized Three-Dimensional Cancer Model for Drug Evaluation. Assay and Drug Development Technologies, 2013, 11, 435-448.	0.6	52
584	A new gamboge derivative Compound 2 inhibits cancer stemâ€like cells via suppressing EGFR tyrosine phosphorylation in head and neck squamous cell carcinoma. Journal of Cellular and Molecular Medicine, 2013, 17, 1422-1433.	1.6	11
585	The effects of <scp>CD</scp> 44 downâ€regulation on stem cell properties of head and neck cancer cell lines. Journal of Oral Pathology and Medicine, 2013, 42, 682-690.	1.4	17
586	Activation-induced cytidine deaminase (AID) is necessary for the epithelial–mesenchymal transition in mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2977-86.	3.3	67
587	miR-125b Functions as a Key Mediator for Snail-induced Stem Cell Propagation and Chemoresistance. Journal of Biological Chemistry, 2013, 288, 4334-4345.	1.6	54
589	The embryonic transcription factor Brachyury blocks cell cycle progression and mediates tumor resistance to conventional antitumor therapies. Cell Death and Disease, 2013, 4, e682-e682.	2.7	70
590	Salinomycin induces cell death via inactivation of Stat3 and downregulation of Skp2. Cell Death and Disease, 2013, 4, e693-e693.	2.7	62
591	ATP citrate lyase knockdown impacts cancer stem cells in vitro. Cell Death and Disease, 2013, 4, e696-e696.	2.7	78
592	Sterically stabilized liposomes as a platform for salinomycin metal coordination compounds: physicochemical characterization and in vitro evaluation. Journal of Drug Delivery Science and Technology, 2013, 23, 215-223.	1.4	10
593	Hypoxia-inducible Factor-1α (HIF-1α) Promotes Cap-dependent Translation of Selective mRNAs through Up-regulating Initiation Factor eIF4E1 in Breast Cancer Cells under Hypoxia Conditions. Journal of Biological Chemistry, 2013, 288, 18732-18742.	1.6	55
594	Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells. Autophagy, 2013, 9, 1057-1068.	4.3	121
595	Cancer Stem Cells. , 2013, , 1-22.		1

#	ARTICLE	IF	CITATIONS
596	Epigenetic control of epithelial-mesenchymal-transition in human cancer. Molecular and Clinical Oncology, 2013, 1, 3-11.	0.4	100
597	Antitumor properties of salinomycin on cisplatin-resistant human ovarian cancer cells in vitro and in vivo: Involvement of p38 MAPK activation. Oncology Reports, 2013, 29, 1371-1378.	1.2	43
598	Development of a screen to identify selective small molecules active against patient-derived metastatic and chemoresistant breast cancer cells. Breast Cancer Research, 2013, 15, R58.	2.2	16
599	Snail expression and outcome in T1 high-grade and T2 bladder cancer: a retrospective immunohistochemical analysis. BMC Urology, 2013, 13, 73.	0.6	12
600	Therapeutic potential of human adipose stem cells in a cancer stem cell-like gastric cancer cell model. International Journal of Oncology, 2013, 43, 1301-1309.	1.4	10
601	The role of epithelial–mesenchymal transition programming in invasion and metastasis: a clinical perspective. Cancer Management and Research, 2013, 5, 187.	0.9	117
602	Noncoding RNAs in cancer and cancer stem cells. Chinese Journal of Cancer, 2013, 32, 582-593.	4.9	121
603	Ribophorin II regulates breast tumor initiation and metastasis through the functional suppression of GSK3 \hat{l}^2 . Scientific Reports, 2013, 3, 2474.	1.6	44
604	An automated system for high-throughput single cell-based breeding. Scientific Reports, 2013, 3, 1191.	1.6	66
605	Colon cancer stem cells: Controversies and perspectives. World Journal of Gastroenterology, 2013, 19, 2997.	1.4	62
606	Editorial (Thematic issue: Discovering New Anticancer Activities from Old Drugs). Current Medicinal Chemistry, 2013, 20, 4093-4094.	1.2	6
607	The C-Terminal Region Mesd Peptide Mimics Full-Length Mesd and Acts as an Inhibitor of Wnt/ \hat{l}^2 -Catenin Signaling in Cancer Cells. PLoS ONE, 2013, 8, e58102.	1.1	12
608	A Unifying Mechanism for Cancer Cell Death through Ion Channel Activation by HAMLET. PLoS ONE, 2013, 8, e58578.	1.1	28
609	Effect of CD44 Binding Peptide Conjugated to an Engineered Inert Matrix on Maintenance of Breast Cancer Stem Cells and Tumorsphere Formation. PLoS ONE, 2013, 8, e59147.	1.1	35
610	Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1. PLoS ONE, 2013, 8, e66931.	1.1	42
611	Dose-Dependent Adverse Effects of Salinomycin on Male Reproductive Organs and Fertility in Mice. PLoS ONE, 2013, 8, e69086.	1.1	38
612	The Antihelmintic Drug Pyrvinium Pamoate Targets Aggressive Breast Cancer. PLoS ONE, 2013, 8, e71508.	1.1	46
613	Downregulation of miR-200a Induces EMT Phenotypes and CSC-like Signatures through Targeting the \hat{l}^2 -catenin Pathway in Hepatic Oval Cells. PLoS ONE, 2013, 8, e79409.	1.1	62

#	Article	IF	CITATIONS
614	Loss of CLCA4 Promotes Epithelial-to-Mesenchymal Transition in Breast Cancer Cells. PLoS ONE, 2013, 8, e83943.	1.1	51
615	Drug Screening Identifies Niclosamide as an Inhibitor of Breast Cancer Stem-Like Cells. PLoS ONE, 2013, 8, e74538.	1.1	101
616	Breast cancer stem cells. Frontiers in Physiology, 2013, 4, 225.	1.3	65
617	Brefeldin A Effectively Inhibits Cancer Stem Cell-Like Properties and MMP-9 Activity in Human Colorectal Cancer Colo 205 Cells. Molecules, 2013, 18, 10242-10253.	1.7	26
618	Camptothecin Resistance in Cancer: Insights into the Molecular Mechanisms of a DNA-Damaging Drug. Current Medicinal Chemistry, 2013, 20, 1541-1565.	1.2	75
619	Low Concentration of Salinomycin Prevents Regrowth and Partially Depletes Human Glioma Cells Surviving High Concentrations of Alkylating Agents. Clinical Cancer Drugs, 2013, 1, 72-77.	0.3	3
620	Roles of Epithelial-Mesenchymal Transition in Cancer Drug Resistance. Current Cancer Drug Targets, 2013, 13, 915-929.	0.8	109
621	Salinomycin-Induced Apoptosis in Human Prostate Cancer Cells. , 2013, , .		0
623	Investigating Molecular Profiles of Ovarian Cancer: An Update on Cancer Stem Cells. Journal of Cancer, 2014, 5, 301-310.	1.2	39
624	Quantitative Phenotyping-Based In Vivo Chemical Screening in a Zebrafish Model of Leukemia Stem Cell Xenotransplantation. PLoS ONE, 2014, 9, e85439.	1.1	52
625	Salinomycin Potentiates the Cytotoxic Effects of TRAIL on Glioblastoma Cell Lines. PLoS ONE, 2014, 9, e94438.	1.1	33
626	Inhibition of Autophagic Flux by Salinomycin Results in Anti-Cancer Effect in Hepatocellular Carcinoma Cells. PLoS ONE, 2014, 9, e95970.	1.1	51
627	Highly Adaptable Triple-Negative Breast Cancer Cells as a Functional Model for Testing Anticancer Agents. PLoS ONE, 2014, 9, e109487.	1.1	17
628	New Molecules and Old Drugs as Emerging Approaches to Selectively Target Human Glioblastoma Cancer Stem Cells. BioMed Research International, 2014, 2014, 1-11.	0.9	59
629	5-Azacytidine Induces Anoikis, Inhibits Mammosphere Formation and Reduces Metalloproteinase 9 Activity in MCF-7 Human Breast Cancer Cells. Molecules, 2014, 19, 3149-3159.	1.7	22
630	Cancer stem cells: Involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics. World Journal of Gastroenterology, 2014, 20, 10790.	1.4	42
631	Brefeldin A Reduces Anchorage-Independent Survival, Cancer Stem Cell Potential and Migration of MDA-MB-231 Human Breast Cancer Cells. Molecules, 2014, 19, 17464-17477.	1.7	35
632	Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition. Oncotarget, 2014, 5, 7328-7341.	0.8	120

#	Article	IF	CITATIONS
633	Salinomycin inhibited cell proliferation and induced apoptosis in human uterine leiomyoma cells. Obstetrics and Gynecology Science, 2014, 57, 501.	0.6	11
634	Intestinal stem cells and the colorectal cancer microenvironment. World Journal of Gastroenterology, 2014, 20, 1898.	1.4	36
635	Large scale integration of drug-target information reveals poly-pharmacological drug action mechanisms in tumor cell line growth inhibition assays. Oncotarget, 2014, 5, 659-666.	0.8	5
636	Stem Cells in Pancreatic Cancer. , 0, , .		0
638	Sequential Salinomycin Treatment Results in Resistance Formation through Clonal Selection of Epithelial-Like Tumor Cells. Translational Oncology, 2014, 7, 702-711.	1.7	10
639	Cancer stem cells as a target population for drug discovery. Future Medicinal Chemistry, 2014, 6, 1567-1585.	1.1	10
640	Targeting Cancer Stem Cells by Phytochemicals: a Multimodal Approach to Colorectal Cancer. Current Colorectal Cancer Reports, 2014, 10, 431-441.	1.0	1
641	Modification of topoisomerases in mammospheres derived from breast cancer cell line: clinical implications for combined treatments with tyrosine kinase inhibitors. BMC Cancer, 2014, 14, 910.	1.1	11
642	Cytochrome P450 2C Epoxygenases Mediate Photochemical Stress-induced Death of Photoreceptors. Journal of Biological Chemistry, 2014, 289, 8337-8352.	1.6	13
643	An in vivo RNAi screen identifies SALL1 as a tumor suppressor in human breast cancer with a role in CDH1 regulation. Oncogene, 2014, 33, 4273-4278.	2.6	39
644	Honokiol Suppresses Renal Cancer Cells' Metastasis via Dual-Blocking Epithelial-Mesenchymal Transition and Cancer Stem Cell Properties through Modulating miR-141/ZEB2 Signaling. Molecules and Cells, 2014, 37, 383-388.	1.0	53
645	Desmoplasia and Chemoresistance in Pancreatic Cancer. Cancers, 2014, 6, 2137-2154.	1.7	121
646	Apoptotic Death of Cancer Stem Cells for Cancer Therapy. International Journal of Molecular Sciences, 2014, 15, 8335-8351.	1.8	50
647	Expression of Stem Cell and Epithelial-Mesenchymal Transition Markers in Circulating Tumor Cells of Breast Cancer Patients. BioMed Research International, 2014, 2014, 1-11.	0.9	86
648	Sensitization of Cancer Cells through Reduction of Total Akt and Downregulation of Salinomycin-Induced pAkt, pGSk3 <i<math>\hat{r}^2, pTSC2, and p4EBP1 by Cotreatment with MK-2206. BioMed Research International, 2014, 2014, 1-8.</i<math>	0.9	16
649	Cancer stem cells: emerging actors in both basic and clinical cancer research. Turkish Journal of Biology, 2014, 38, 829-838.	2.1	7
650	Gene expression signatures for identifying diffuse-type gastric cancer associated with epithelial-mesenchymal transition. International Journal of Oncology, 2014, 44, 1955-1970.	1.4	42
651	The endoplasmic reticulum may be an Achilles' heel of cancer cells that have undergone an epithelial-to-mesenchymal transition. Molecular and Cellular Oncology, 2014, 1, e961822.	0.3	4

#	Article	IF	CITATIONS
652	Inhibition of C-terminal binding protein attenuates transcription factor 4 signaling to selectively target colon cancer stem cells. Cell Cycle, 2014, 13, 3506-3518.	1.3	26
653	Triggering of Erythrocyte Cell Membrane Scrambling by Salinomycin. Basic and Clinical Pharmacology and Toxicology, 2014, 115, 396-402.	1.2	30
654	Cancer stem cells – important players in tumor therapy resistance. FEBS Journal, 2014, 281, 4779-4791.	2.2	225
655	Axes of differentiation in breast cancer: untangling stemness, lineage identity, and the epithelial to mesenchymal transition. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2014, 6, 93-106.	6.6	18
656	A Dehydratase Domain in Ambruticin Biosynthesis Displays Additional Activity as a Pyranâ€Forming Cyclase. Angewandte Chemie - International Edition, 2014, 53, 14240-14244.	7.2	59
658	Genome-Wide Activities of RNA Binding Proteins That Regulate Cellular Changes in the Epithelial to Mesenchymal Transition (EMT). Advances in Experimental Medicine and Biology, 2014, 825, 267-302.	0.8	22
659	Comparative studies of salinomycin-loaded nanoparticles prepared by nanoprecipitation and single emulsion method. Nanoscale Research Letters, 2014, 9, 351.	3.1	26
660	Significance of glioma-associated oncogene homolog 1 (GLI1) expression in claudin-low breast cancer and crosstalk with the nuclear factor kappa-light-chain-enhancer of activated B cells (NFÎB) pathway. Breast Cancer Research, 2014, 16, 444.	2.2	58
661	Novel clinical therapeutics targeting the epithelial to mesenchymal transition. Clinical and Translational Medicine, 2014, 3, 35.	1.7	65
662	Synergistic Therapeutic Effect of Cisplatin and Phosphatidylinositol 3-Kinase (PI3K) Inhibitors in Cancer Growth and Metastasis of Brca1 Mutant Tumors. Journal of Biological Chemistry, 2014, 289, 24202-24214.	1.6	21
663	Cancer stem cells. Anti-Cancer Drugs, 2014, 25, 353-367.	0.7	33
664	Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Science Signaling, 2014, 7, ra121.	1.6	163
665	HDAC inhibitors enhance the lethality of low dose salinomycin in parental and stem-like GBM cells. Cancer Biology and Therapy, 2014, 15, 305-316.	1.5	32
666	Biological and clinical significance of cancer stem cell plasticity. Clinical and Translational Medicine, 2014, 3, 32.	1.7	40
668	The receptor tyrosine kinase Axl regulates cell–cell adhesion and stemness in cutaneous squamous cell carcinoma. Oncogene, 2014, 33, 4185-4192.	2.6	57
669	P46 INHIBITION OF AUTOPHAGIC FLUX BY SALINOMYCIN RESULTS IN ANTI-CANCER EFFECT IN HEPATOCELLULAR CARCINOMA CELLS. Journal of Hepatology, 2014, 60, S82.	1.8	0
670	Ectopic over-expression of miR-429 induces mesenchymal-to-epithelial transition (MET) and increased drug sensitivity in metastasizing ovarian cancer cells. Gynecologic Oncology, 2014, 134, 96-103.	0.6	32
671	Enrichment of cancer stem cell-like cells by culture in alginate gel beads. Journal of Biotechnology, 2014, 177, 1-12.	1.9	37

#	Article	IF	Citations
672	Nonsteroidal antiâ€inflammatory drugs suppress cancer stem cells <i>via</i> inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1 and activating PPARG in colorectal cancer. International Journal of Cancer, 2014, 134, 519-529.	2.3	84
673	Induction of cells with cancer stem cell properties from nontumorigenic human mammary epithelial cells by defined reprogramming factors. Oncogene, 2014, 33, 643-652.	2.6	104
674	Clonal evolution in hematological malignancies and therapeutic implications. Leukemia, 2014, 28, 34-43.	3.3	138
675	Cancer cells acquire a drug resistant, highly tumorigenic, cancer stemâ€like phenotype through modulation of the PI3K/Akt/βâ€catenin/CBP pathway. International Journal of Cancer, 2014, 134, 43-54.	2.3	58
676	Parthenolide induces apoptosis via TNFRSF10B and PMAIP1 pathways in human lung cancer cells. Journal of Experimental and Clinical Cancer Research, 2014, 33, 3.	3.5	75
677	The role of epithelial plasticity in prostate cancer dissemination and treatment resistance. Cancer and Metastasis Reviews, 2014, 33, 441-468.	2.7	59
678	Synthesis, cytotoxicity and antibacterial activity of new esters of polyether antibiotic – salinomycin. European Journal of Medicinal Chemistry, 2014, 76, 435-444.	2.6	80
679	Prolylâ€isomerase Pin1 controls normal and cancer stem cells of the breast. EMBO Molecular Medicine, 2014, 6, 99-119.	3.3	130
680	Cell adhesion molecules and their relation to (cancer) cell stemness. Carcinogenesis, 2014, 35, 747-759.	1.3	154
681	Formation of Substituted Tetrahydropyrans through Oxetane Ring Opening: Application to the Synthesis of C1–C17 Fragment of Salinomycin. Organic Letters, 2014, 16, 836-839.	2.4	43
682	SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin. Molecular Cancer, 2014, 13, 37.	7.9	75
683	Implications of Mesenchymal Cells in Cancer Stem Cell Populations: Relevance to EMT. Current Pathobiology Reports, 2014, 2, 21-26.	1.6	37
684	Salinomycin treatment reduces metastatic tumor burden by hampering cancer cell migration. Molecular Cancer, 2014, 13, 16.	7.9	53
685	Epithelial-to-Mesenchymal Transition Activates PERK–elF2α and Sensitizes Cells to Endoplasmic Reticulum Stress. Cancer Discovery, 2014, 4, 702-715.	7.7	250
686	Targeting tumour-supportive cellular machineries in anticancer drug development. Nature Reviews Drug Discovery, 2014, 13, 179-196.	21.5	202
688	Synthesis, antiproliferative and antibacterial activity of new amides of salinomycin. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1724-1729.	1.0	56
689	Using SV119â€Gold Nanocage Conjugates to Eradicate Cancer Stem Cells Through a Combination of Photothermal and Chemo Therapies. Advanced Healthcare Materials, 2014, 3, 1283-1291.	3.9	69
691	Theranostic nanomedicine for cancer detection and treatment. Journal of Food and Drug Analysis, 2014, 22, 3-17.	0.9	138

#	Article	IF	CITATIONS
692	<scp>CD</scp> 44â€Targeted Docetaxel Conjugate for Cancer Cells and Cancer Stemâ€Like Cells: A Novel Hyaluronic Acidâ€Based Drug Delivery System. Chemical Biology and Drug Design, 2014, 83, 741-752.	1.5	62
693	Differentiation therapy for solid tumors. Journal of Digestive Diseases, 2014, 15, 159-165.	0.7	35
694	Novel Neutralizing Hedgehog Antibody MEDI-5304 Exhibits Antitumor Activity by Inhibiting Paracrine Hedgehog Signaling. Molecular Cancer Therapeutics, 2014, 13, 386-398.	1.9	19
696	Cancer biomarker discovery: Current status and future perspectives. International Journal of Radiation Biology, 2014, 90, 659-677.	1.0	98
697	Chloroquine Eliminates Cancer Stem Cells Through Deregulation of Jak2 and DNMT1. Stem Cells, 2014, 32, 2309-2323.	1.4	95
698	Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials, 2014, 35, 836-845.	5.7	150
699	A human cancer xenograft model utilizing normal pancreatic duct epithelial cells conditionally transformed with defined oncogenes. Carcinogenesis, 2014, 35, 1840-1846.	1.3	15
700	Repurposing of Clinically Developed Drugs for Treatment of Middle East Respiratory Syndrome Coronavirus Infection. Antimicrobial Agents and Chemotherapy, 2014, 58, 4885-4893.	1.4	564
701	Tumorsphere assay provides more accurate prediction of in vivo responses to chemotherapeutics. Biotechnology Letters, 2014, 36, 481-488.	1.1	34
702	Epithelial-to-mesenchymal transition: What is the impact on breast cancer stem cells and drug resistance. Cancer Treatment Reviews, 2014, 40, 341-348.	3.4	219
703	Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene, 2014, 33, 4451-4463.	2.6	213
704	Stem Cells and Cancer Stem Cells, Volume 11. Stem Cells and Cancer Stem Cells, 2014, , .	0.1	0
705	Cancer Stem Cells, Pluripotency, and Cellular Heterogeneity. Current Topics in Developmental Biology, 2014, 107, 373-404.	1.0	40
706	VEGF-Mediated Angiogenesis Links EMT-Induced Cancer Stemness to Tumor Initiation. Cancer Research, 2014, 74, 1566-1575.	0.4	170
707	Simvastatin Radiosensitizes Differentiated and Stem-Like Breast Cancer Cell Lines and Is Associated With Improved Local Control in Inflammatory Breast Cancer Patients Treated With Postmastectomy Radiation. Stem Cells Translational Medicine, 2014, 3, 849-856.	1.6	69
708	Total Synthesis and Determination of the Absolute Configuration of Rakicidin A. Journal of the American Chemical Society, 2014, 136, 15787-15791.	6.6	39
709	Concise Review: Breast Cancer Stem Cells: Regulatory Networks, Stem Cell Niches, and Disease Relevance. Stem Cells Translational Medicine, 2014, 3, 942-948.	1.6	41
710	Roles of Wnt/ \hat{l}^2 -catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death and Disease, 2014, 5, e1039-e1039.	2.7	206

#	Article	IF	CITATIONS
711	AXL Is a Key Regulator of Inherent and Chemotherapy-Induced Invasion and Predicts a Poor Clinical Outcome in Early-Stage Colon Cancer. Clinical Cancer Research, 2014, 20, 164-175.	3.2	95
712	The therapeutic potential of targeting the epithelial–mesenchymal transition in cancer. Expert Opinion on Therapeutic Targets, 2014, 18, 731-745.	1.5	29
713	Epithelial-to-mesenchymal transition and the cancer stem cell phenotype: insights from cancer biology with therapeutic implications for colorectal cancer. Cancer Gene Therapy, 2014, 21, 181-187.	2.2	104
715	Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2182-90.	3.3	109
716	Synthetic, Non-saccharide, Glycosaminoglycan Mimetics Selectively Target Colon Cancer Stem Cells. ACS Chemical Biology, 2014, 9, 1826-1833.	1.6	37
717	Semisynthesis of SY-1 for Investigation of Breast Cancer Stem Cell Selectivity of C-Ring-Modified Salinomycin Analogues. ACS Chemical Biology, 2014, 9, 1587-1594.	1.6	35
718	Vaccine-Mediated Immunotherapy Directed against a Transcription Factor Driving the Metastatic Process. Cancer Research, 2014, 74, 1945-1957.	0.4	31
719	Persisters, persistent infections and the Yin–Yang model. Emerging Microbes and Infections, 2014, 3, 1-10.	3.0	180
720	Metabolic Profiling Reveals PAFAH1B3 as a Critical Driver of Breast Cancer Pathogenicity. Chemistry and Biology, 2014, 21, 831-840.	6.2	44
721	Getting to the Source: Selective Drug Targeting of Cancer Stem Cells. ChemMedChem, 2014, 9, 885-898.	1.6	10
722	The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials, 2014, 35, 9208-9223.	5.7	120
723	Targeting EMT in cancer: opportunities for pharmacological intervention. Trends in Pharmacological Sciences, 2014, 35, 479-488.	4.0	276
724	Systematic screen of chemotherapeutics in <i>Drosophila</i> stem cell tumors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4530-4535.	3.3	119
725	Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells. Nature Chemistry, 2014, 6, 885-892.	6.6	348
726	Thioaryl Naphthylmethanone Oxime Ether Analogs as Novel Anticancer Agents. Journal of Medicinal Chemistry, 2014, 57, 8010-8025.	2.9	36
727	WEE1 Inhibition Alleviates Resistance to Immune Attack of Tumor Cells Undergoing Epithelial–Mesenchymal Transition. Cancer Research, 2014, 74, 2510-2519.	0.4	71
728	A Breast Cancer Stem Cell-Selective, Mammospheres-Potent Osmium(VI) Nitrido Complex. Journal of the American Chemical Society, 2014, 136, 14413-14416.	6.6	88
729	E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition. BMC Cancer, 2014, 14, 552.	1.1	108

#	Article	IF	Citations
730	Phenethyl isothiocyanate upregulates death receptors 4 and 5 and inhibits proliferation in human cancer stem-like cells. BMC Cancer, 2014, 14, 591.	1.1	35
731	Differentiation therapy: sesamin as an effective agent in targeting cancer stem-like side population cells of human gallbladder carcinoma. BMC Complementary and Alternative Medicine, 2014, 14, 254.	3.7	26
732	Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells. Cell Death and Differentiation, 2014, 21, 1936-1949.	5.0	46
733	The Cancer Stem Cell Hypothesis: A Guide to Potential Molecular Targets. Cancer Investigation, 2014, 32, 470-495.	0.6	77
734	Chemical Probes for the Functionalization of Polyketide Intermediates. Angewandte Chemie - International Edition, 2014, 53, 11944-11949.	7.2	27
735	A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nature Cell Biology, 2014, 16, 1105-1117.	4.6	380
736	Spontaneous tumour regression in keratoacanthomas is driven by Wnt/retinoic acid signalling cross-talk. Nature Communications, 2014, 5, 3543.	5.8	52
737	Construction of breast cancer gene regulatory networks and drug target optimization. Archives of Gynecology and Obstetrics, 2014, 290, 749-755.	0.8	6
738	iTEP Nanoparticle-Delivered Salinomycin Displays an Enhanced Toxicity to Cancer Stem Cells in Orthotopic Breast Tumors. Molecular Pharmaceutics, 2014, 11, 2703-2712.	2.3	46
739	Cancer stem cells and their implication in breast cancer. European Journal of Clinical Investigation, 2014, 44, 678-687.	1.7	40
740	Modeling of cancer metastasis and drug resistance via biomimetic nano-cilia and microfluidics. Biomaterials, 2014, 35, 1562-1571.	5.7	59
741	Selective inhibition of breast cancer stem cells by gold nanorods mediated plasmonic hyperthermia. Biomaterials, 2014, 35, 4667-4677.	5 . 7	81
742	Targeting stem cell signaling pathways for drug discovery: advances in the Notch and Wnt pathways. Science China Life Sciences, 2014, 57, 575-580.	2.3	17
743	Estrogen promotes stemness and invasiveness of ER-positive breast cancer cells through Gli1 activation. Molecular Cancer, 2014, 13, 137.	7.9	116
744	Definition of PKC-α, CDK6, and MET as Therapeutic Targets in Triple-Negative Breast Cancer. Cancer Research, 2014, 74, 4822-4835.	0.4	61
745	Tackling the cancer stem cells â€" what challenges do they pose?. Nature Reviews Drug Discovery, 2014, 13, 497-512.	21.5	831
746	Can we safely target the WNT pathway?. Nature Reviews Drug Discovery, 2014, 13, 513-532.	21.5	840
747	Advances in the approach to novel drug clinical development for breast cancer. Expert Opinion on Drug Discovery, 2014, 9, 647-668.	2.5	6

#	Article	IF	CITATIONS
748	An agent-based model of cancer stem cell initiated avascular tumour growth and metastasis: the effect of seeding frequency and location. Journal of the Royal Society Interface, 2014, 11, 20140640.	1.5	38
749	Aldehyde dehydrogenases in cancer: an opportunity for biomarker and drug development?. Drug Discovery Today, 2014, 19, 1953-1963.	3.2	89
750	Enhanced Photodynamic Therapy and Effective Elimination of Cancer Stem Cells Using Surfactant–Polymer Nanoparticles. Molecular Pharmaceutics, 2014, 11, 3186-3195.	2.3	40
752	Siteâ€Specific Modification of the Anticancer and Antituberculosis Polyether Salinomycin by Biosynthetic Engineering. ChemBioChem, 2014, 15, 2081-2085.	1.3	17
753	The EMT activator ZEB1 promotes tumor growth and determines differential response to chemotherapy in mantle cell lymphoma. Cell Death and Differentiation, 2014, 21, 247-257.	5.0	105
7 55	Mucins and tumor resistance to chemotherapeutic drugs. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 142-151.	3.3	64
756	Uncovering Scaling Laws to Infer Multidrug Response of Resistant Microbes and Cancer Cells. Cell Reports, 2014, 6, 1073-1084.	2.9	53
757	Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Letters, 2014, 349, 8-14.	3.2	303
758	395 Synthetic, Non-Saccharide Glycosaminoglycan Mimetics Selectively Target Colon Cancer Stem Cells. Gastroenterology, 2014, 146, S-84-S-85.	0.6	0
7 59	Chemical approaches to targeting drug resistance in cancer stem cells. Drug Discovery Today, 2014, 19, 1547-1562.	3.2	90
760	Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo. Biochemical and Biophysical Research Communications, 2014, 443, 712-717.	1.0	26
761	Specific targeting of neurotoxic side effects and pharmacological profile of the novel cancer stem cell drug salinomycin in mice. Journal of Molecular Medicine, 2014, 92, 889-900.	1.7	42
762	Salinomycin Suppresses LRP6 Expression and Inhibits Both Wnt/βâ€eatenin and mTORC1 Signaling in Breast and Prostate Cancer Cells. Journal of Cellular Biochemistry, 2014, 115, 1799-1807.	1.2	85
764	Gastric cancer stem cells: therapeutic targets. Gastric Cancer, 2014, 17, 13-25.	2.7	44
7 65	AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene, 2014, 33, 1316-1324.	2.6	235
766	Multilayer control of the EMT master regulators. Oncogene, 2014, 33, 1755-1763.	2.6	278
767	The role of microRNAs in the regulation of cancer stem cells. Frontiers in Genetics, 2014, 4, 295.	1.1	128
768	Intermediates in monensin biosynthesis: A late step in biosynthesis of the polyether ionophore monensin is crucial for the integrity of cation binding. Beilstein Journal of Organic Chemistry, 2014, 10, 361-368.	1.3	22

#	Article	IF	Citations
769	Synthesis, Anticancer and Antibacterial Activity of Salinomycin N-Benzyl Amides. Molecules, 2014, 19, 19435-19459.	1.7	42
772	Electrically-enhanced proliferation control of cancer-stem-cells-like adult human mesenchymal stem cells – a novel modality of treatment. , 2014, , 127-159.		2
773	BIOINSPIRED ENGINEERED MATRIX TO REGULATE CANCER STEM CELL NICHE. World Scientific Series in Nanoscience and Nanotechnology, 2014, , 1257-1274.	0.1	0
776	Cells susceptible to epithelial-mesenchymal transition are enriched in stem-like side population cells from prostate cancer. Oncology Reports, 2014, 31, 874-884.	1.2	20
777	Snail-induced epithelial-mesenchymal transition promotes cancer stem cell-like phenotype in head and neck cancer cells. International Journal of Oncology, 2014, 44, 693-699.	1.4	63
778	Cancer stem cells as a therapeutic target of the future. Clinical Investigation, 2014, 4, 289-291.	0.0	1
780	Paracrine effects of stem cells in wound healing and cancer progression. International Journal of Oncology, 2014, 44, 1789-1798.	1.4	69
781	Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death and Disease, 2015, 6, e2020-e2020.	2.7	76
782	Enzymology of Pyran Ringâ€A Formation in Salinomycin Biosynthesis. Angewandte Chemie, 2015, 127, 13826-13829.	1.6	11
783	Enzymology of Pyran Ringâ€A Formation in Salinomycin Biosynthesis. Angewandte Chemie - International Edition, 2015, 54, 13622-13625.	7.2	40
786	Dedifferentiation of patientâ€derived glioblastoma multiforme cell lines results in a cancer stem cellâ€like state with mitogenâ€independent growth. Journal of Cellular and Molecular Medicine, 2015, 19, 1262-1272.	1.6	47
787	Salinomycin enhances doxorubicin-induced cytotoxicity in multidrug resistant MCF-7/MDR human breast cancer cells via decreased efflux of doxorubicin. Molecular Medicine Reports, 2015, 12, 1898-1904.	1.1	33
788	The Hedgehog signalling pathway mediates drug response of MCF-7 mammosphere cells in breast cancer patients. Clinical Science, 2015, 129, 809-822.	1.8	46
790	Bub1 is required for maintaining cancer stem cells in breast cancer cell lines. Scientific Reports, 2015, 5, 15993.	1.6	68
791	Direct cloning and heterologous expression of the salinomycin biosynthetic gene cluster from Streptomyces albus DSM41398 in Streptomyces coelicolor A3(2). Scientific Reports, 2015, 5, 15081.	1.6	49
792	Salinomycin inhibits the tumor growth of glioma stem cells by selectively suppressing glioma-initiating cells. Molecular Medicine Reports, 2015, 11, 2407-2412.	1.1	24
793	Effects of salinomycin and CGP37157 on head and neck squamous cell carcinoma cell lines in vitro. Molecular Medicine Reports, 2015, 12, 4455-4461.	1.1	8
794	Electrophysiological, behavioral and histological characterization of paclitaxel, cisplatin, vincristine and bortezomib-induced neuropathy in C57Bl/6 mice. Scientific Reports, 2014, 4, 6370.	1.6	103

#	Article	IF	CITATIONS
796	Targeting Breast Cancer Metastasis. Breast Cancer: Basic and Clinical Research, 2015, 9s1, BCBCR.S25460.	0.6	145
797	Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells. Journal of the American Chemical Society, 2015, 137, 15892-15898.	6.6	109
798	Early effects of the antineoplastic agent salinomycin on mitochondrial function. Cell Death and Disease, 2015, 6, e1930-e1930.	2.7	64
799	Detonation nanodiamond complexes with cancer stem cells inhibitors or paracrine products of mesenchymal stem cells as new potential medications. Crystallography Reports, 2015, 60, 763-767.	0.1	3
800	Formation of the Δ ^{18,19} Double Bond and Bis(spiroacetal) in Salinomycin Is Atypically Catalyzed by SlnM, a Methyltransferaseâ€ike Enzyme. Angewandte Chemie - International Edition, 2015, 54, 9097-9100.	7.2	24
801	Synthesis and Antiproliferative Activity of Silybin Conjugates with Salinomycin and Monensin. Chemical Biology and Drug Design, 2015, 86, 1378-1386.	1.5	25
802	Apoptotic and autophagic pathways with relevant smallâ€molecule compounds, in cancer stem cells. Cell Proliferation, 2015, 48, 385-397.	2.4	13
803	Expression Distribution of Cancer Stem Cells, Epithelial to Mesenchymal Transition, and Telomerase Activity in Breast Cancer and Their Association with Clinicopathologic Characteristics. Clinical Medicine Insights Pathology, 2015, 8, CPath.S19615.	0.6	25
804	Phenotypic plasticity and epithelialâ€toâ€mesenchymal transition in the behaviour and therapeutic response of oral squamous cell carcinoma. Journal of Oral Pathology and Medicine, 2015, 44, 649-655.	1.4	20
805	Antiproliferative Activity of Polyether Antibiotic – <i>Cinchona</i> Alkaloid Conjugates Obtained <i>via</i> Click Chemistry. Chemical Biology and Drug Design, 2015, 86, 911-917.	1.5	28
807	Doxycycline and therapeutic targeting of the DNA damage response in cancer cells: old drug, new purpose. Oncoscience, 2015, 2, 696-699.	0.9	26
808	Cancer stem cell plasticity and tumor hierarchy. World Journal of Stem Cells, 2015, 7, 27.	1.3	202
809	Wnt blockers inhibit the proliferation of lung cancer stem cells. Drug Design, Development and Therapy, 2015, 9, 2399.	2.0	31
810	Salinomycin decreases doxorubicin resistance in hepatocellular carcinoma cells by inhibiting the \hat{l}^2 -catenin/TCF complex association via FOXO3a activation. Oncotarget, 2015, 6, 10350-10365.	0.8	84
811	Links between cancer stem cells and epithelial& ndash; mesenchymal transition. OncoTargets and Therapy, 2015, 8, 2973.	1.0	89
812	Targeting Cancer Stem Cells: Promises and Challenges. Anti-Cancer Agents in Medicinal Chemistry, 2015, 16, 38-58.	0.9	33
813	ABC Transporter Inhibitors in Reversing Multidrug Resistance to Chemotherapy. Current Drug Targets, 2015, 16, 1356-1371.	1.0	69
814	Matrix metalloproteinase function in non-mammalian model organisms. Frontiers in Bioscience - Scholar, 2015, 7, 168-183.	0.8	18

#	Article	IF	Citations
815	Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells. International Journal of Nanomedicine, 2015, 10, 2537.	3.3	75
816	Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors. International Journal of Molecular Sciences, 2015, 16, 27313-27326.	1.8	53
817	Editorial: Cellular and Phenotypic Plasticity in Cancer. Frontiers in Oncology, 2015, 5, 171.	1.3	15
818	In vitro spontaneous differentiation of human breast cancer stem cells and methods to control this process. Biomedical Research and Therapy, 2015, 2, .	0.3	1
819	Role of autophagy in the maintenance and function of cancer stem cells. International Journal of Developmental Biology, 2015, 59, 95-108.	0.3	35
820	Cancer Stem Cells in Solid and Liquid Tissues of Breast Cancer Patients: Characterization and Therapeutic Perspectives. Current Cancer Drug Targets, 2015, 15, 256-269.	0.8	26
821	Bridging 'Green' with Nanoparticles: Biosynthesis Approaches for Cancer Management and Targeting of Cancer Stem Cells. Current Nanoscience, 2015, 12, 47-62.	0.7	8
822	Pro-Oxidant Activity of Amine-Pyridine-Based Iron Complexes Efficiently Kills Cancer and Cancer Stem-Like Cells. PLoS ONE, 2015, 10, e0137800.	1.1	28
823	Salinomycin Promotes Anoikis and Decreases the CD44+/CD24- Stem-Like Population via Inhibition of STAT3 Activation in MDA-MB-231 Cells. PLoS ONE, 2015, 10, e0141919.	1.1	75
824	Epithelial to Mesenchymal Transition in a Clinical Perspective. Journal of Oncology, 2015, 2015, 1-10.	0.6	84
825	Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype?. Oncotarget, 2015, 6, 12890-12908.	0.8	92
826	EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget, 2015, 6, 10697-10711.	0.8	408
827	An anti-EpCAM antibody EpAb2-6 for the treatment of colon cancer. Oncotarget, 2015, 6, 24947-24968.	0.8	41
830	Glucose starvation-mediated inhibition of salinomycin induced autophagy amplifies cancer cell specific cell death. Oncotarget, 2015, 6, 10134-10145.	0.8	25
831	Role of the Wnt/ \hat{l}^2 -catenin pathway in gastric cancer: An in-depth literature review. World Journal of Experimental Medicine, 2015, 5, 84.	0.9	246
832	High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget, 2015, 6, 30472-30486.	0.8	175
833	The Non-Coding RNA Journal Club: Highlights on Recent Papers—3. Non-coding RNA, 2015, 1, 285-288.	1.3	0
834	Gramicidin A: A New Mission for an Old Antibiotic. Journal of Kidney Cancer and VHL, 2015, 2, 15-24.	0.2	37

#	Article	IF	Citations
835	Roles of Tumor Microenvironment in Hepatocelluar Carcinoma. Current Cancer Therapy Reviews, 2015, 11, 82-93.	0.2	20
836	PHLDA1 expression is controlled by an estrogen receptor-NFκB-miR-181 regulatory loop and is essential for formation of ER+ mammospheres. Oncogene, 2015, 34, 2309-2316.	2.6	61
837	ATP Binding Cassette Transporters in Cancer Stem-Like Cells. Resistance To Targeted Anti-cancer Therapeutics, 2015, , 105-131.	0.1	0
838	Cancer stem cells: a potential target for cancer therapy. Cellular and Molecular Life Sciences, 2015, 72, 3411-3424.	2.4	53
839	Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: †What does not kill me strengthens me'. British Journal of Cancer, 2015, 112, 1725-1732.	2.9	252
840	TLR4-Dependent Tumor-Initiating Stem Cell-Like Cells (TICs) in Alcohol-Associated Hepatocellular Carcinogenesis. Advances in Experimental Medicine and Biology, 2015, 815, 131-144.	0.8	21
841	A novel molecular marker of breast cancer stem cells identified by cell-SELEX method. Cancer Biomarkers, 2015, 15, 163-170.	0.8	29
842	Malignant Glioma: Viewpoint—Chemotherapy. , 2015, , 279-293.		0
843	Establishment of a novel system for the culture and expansion of hepatic stem-like cancer cells. Cancer Letters, 2015, 360, 177-186.	3.2	20
844	Epithelial–mesenchymal transition in colorectal cancer metastasis: A system review. Pathology Research and Practice, 2015, 211, 557-569.	1.0	307
845	The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Scientific Reports, 2015, 5, 10205.	1.6	32
846	Rescue of Targeted Nonstem-Like Cells from Bystander Stem-Like Cells in Human Fibrosarcoma HT1080. Radiation Research, 2015, 184, 334.	0.7	15
847	Breast Cancer Stem Cells & Dringer Briefs in Stem Cells, 2015, , .	0.1	4
848	Metformin exerts anticancer effects through the inhibition of the Sonic hedgehog signaling pathway in breast cancer. International Journal of Molecular Medicine, 2015, 36, 204-214.	1.8	54
849	A Concept of Cancer Stem Cells: Entity and Theories. , 2015, , 43-56.		0
851	Cancer Stem Cell Markers: Classification and Their Significance in Cancer Stem Cells. , 2015, , 57-70.		1
852	Cantharidin and norcantharidin impair stemness of pancreatic cancer cells by repressing the \hat{l}^2 -catenin pathway and strengthen the cytotoxicity of gemcitabine and erlotinib. International Journal of Oncology, 2015, 47, 1912-1922.	1.4	39
853	Valproic acid suppresses the self-renewal and proliferation of head and neck cancer stem cells. Oncology Reports, 2015, 34, 2065-2071.	1.2	15

#	Article	IF	Citations
854	Salinomycin inhibits the growth of colorectal carcinoma by targeting tumor stem cells. Oncology Reports, 2015, 34, 2469-2476.	1.2	34
855	Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathway. Oncology Reports, 2015, 34, 3311-3317.	1.2	81
856	Function and clinical potential of microRNAs in hepatocellular carcinoma. Oncology Letters, 2015, 10, 3345-3353.	0.8	24
857	Cancer Stem Cells: Biology and Potential Therapeutic Applications. , 2015, , 151-176.		1
858	Total synthesis of zincophorin methyl ester. Stereocontrol ofÂ1,2-inductionÂusingÂsterically hindered enoxysilanes. Tetrahedron, 2015, 71, 709-726.	1.0	12
859	Monitoring of autophagy is complicated—salinomycin as an example. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 604-610.	1.9	19
860	The palladacycle, AJ-5, exhibits anti-tumour and anti-cancer stem cell activity in breast cancer cells. Cancer Letters, 2015, 357, 206-218.	3.2	26
861	Radiopharmaceuticals as probes to characterize tumour tissue. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 537-561.	3.3	14
862	Relationship between LSD1 expression and E-cadherin expression in prostate cancer. International Urology and Nephrology, 2015, 47, 485-490.	0.6	26
863	The telomerase inhibitor imetelstat alone, and in combination with trastuzumab, decreases the cancer stem cell population and self-renewal of HER2+ breast cancer cells. Breast Cancer Research and Treatment, 2015, 149, 607-618.	1.1	28
864	Third row transition metals for the treatment of cancer. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140185.	1.6	82
865	The evolving cancer stem cell paradigm: Implications in veterinary oncology. Veterinary Journal, 2015, 205, 154-160.	0.6	24
866	Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 995-1004.	1.4	25
867	Small molecule growth inhibitors of human oncogenic gammaherpesvirus infected Bâ€cells. Molecular Oncology, 2015, 9, 365-376.	2.1	8
868	Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nature Communications, 2015, 6, 6139.	5.8	222
869	Resistance to Targeted ABC Transporters in Cancer. Resistance To Targeted Anti-cancer Therapeutics, 2015, , .	0.1	3
870	Targeting Cancer Stem Cells in Breast Cancer: Potential Anticancer Properties of 6-Shogaol and Pterostilbene. Journal of Agricultural and Food Chemistry, 2015, 63, 2432-2441.	2.4	71
871	Epithelial–mesenchymal transition in human cancer: Comprehensive reprogramming of metabolism, epigenetics, and differentiation. , 2015, 150, 33-46.		243

#	Article	IF	Citations
872	The metabolic state of cancer stem cellsâ€"a valid target for cancer therapy?. Free Radical Biology and Medicine, 2015, 79, 264-268.	1.3	27
873	Spherical Cancer Models in Tumor Biology. Neoplasia, 2015, 17, 1-15.	2.3	882
874	Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy. Journal of Controlled Release, 2015, 208, 14-24.	4.8	67
875	Nanocarrier-mediated drugs targeting cancer stem cells: an emerging delivery approach. Expert Opinion on Drug Delivery, 2015, 12, 1177-1201.	2.4	15
876	Glycosaminoglycans. Methods in Molecular Biology, 2015, 1229, v.	0.4	5
877	Synthesis and biological activity of salinomycin conjugates with floxuridine. European Journal of Medicinal Chemistry, 2015, 93, 33-41.	2.6	44
878	Catabolic metabolism during cancer EMT. Archives of Pharmacal Research, 2015, 38, 313-320.	2.7	49
879	Salinomycin inhibits growth of pancreatic cancer and cancer cell migration by disruption of actin stress fiber integrity. Cancer Letters, 2015, 358, 161-169.	3.2	56
880	Salinomycin exerts anticancer effects on human breast carcinoma MCF-7 cancer stem cells via modulation of Hedgehog signaling. Chemico-Biological Interactions, 2015, 228, 100-107.	1.7	52
881	Addressing the Right Targets in Oncology. Journal of Biomolecular Screening, 2015, 20, 305-317.	2.6	14
882	Salinomycin and Other Polyether Ionophores Are a New Class of Antiscarring Agent. Journal of Biological Chemistry, 2015, 290, 3563-3575.	1.6	32
883	Small-Molecule ONC201/TIC10 Targets Chemotherapy-Resistant Colorectal Cancer Stem–like Cells in an Akt/Foxo3a/TRAlL–Dependent Manner. Cancer Research, 2015, 75, 1423-1432.	0.4	113
884	Clinical Implications of Circulating Tumor Cells of Breast Cancer Patients: Role of EpithelialĀ¢â,¬â€œMesenchymal Plasticity. Frontiers in Oncology, 2015, 5, 42.	1.3	61
885	Synthesis and antiproliferative activity of new bioconjugates of Salinomycin with amino acid esters. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3511-3514.	1.0	20
886	AAV9 delivering a modified human Mullerian inhibiting substance as a gene therapy in patient-derived xenografts of ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4418-27.	3.3	45
887	Pyrvinium Targets CD133 in Human Glioblastoma Brain Tumor–Initiating Cells. Clinical Cancer Research, 2015, 21, 5324-5337.	3.2	48
888	Radiotherapy in the Era of Precision Medicine. Seminars in Radiation Oncology, 2015, 25, 227-236.	1.0	29
889	Synergistic treatment of cancer stem cells by combinations of antioncogenes and doxorubicin. Journal of Drug Delivery Science and Technology, 2015, 30, 417-423.	1.4	8

#	Article	IF	Citations
890	Polymeric Micelles of PEG-PLA Copolymer as a Carrier for Salinomycin Against Gemcitabine-Resistant Pancreatic Cancer. Pharmaceutical Research, 2015, 32, 3756-3767.	1.7	25
891	The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis. Carcinogenesis, 2015, 36, S128-S159.	1.3	40
892	Inhibition of the autocrine IL-6–JAK2–STAT3–calprotectin axis as targeted therapy for HR ^{â^'} /HER2 ⁺ breast cancers. Genes and Development, 2015, 29, 1631-1648.	2.7	94
893	Co-Eradication of Breast Cancer Cells and Cancer Stem Cells by Cross-Linked Multilamellar Liposomes Enhances Tumor Treatment. Molecular Pharmaceutics, 2015, 12, 2811-2822.	2.3	46
894	Using circulating tumor cells to inform on prostate cancer biology and clinical utility. Critical Reviews in Clinical Laboratory Sciences, 2015, 52, 191-210.	2.7	20
895	Multiple drug resistance due to resistance to stem cells and stem cell treatment progress in cancer (Review). Experimental and Therapeutic Medicine, 2015, 9, 289-293.	0.8	58
896	Existing drugs and their application in drug discovery targeting cancer stem cells. Archives of Pharmacal Research, 2015, 38, 1617-1626.	2.7	21
897	Metabolic reprogramming supports the invasive phenotype in malignant melanoma. Cancer Letters, 2015, 366, 71-83.	3.2	70
898	The promotion of salinomycin delivery to hepatocellular carcinoma cells through EGFR and CD133 aptamers conjugation by PLGA nanoparticles. Nanomedicine, 2015, 10, 1863-1879.	1.7	47
899	Phenotypic screening identifies Brefeldin A/Ascotoxin as an inducer of lipid storage in the algae Chlamydomonas reinhardtii. Algal Research, 2015, 11, 74-84.	2.4	12
900	Clinical implications of epithelial cell plasticity in cancer progression. Cancer Letters, 2015, 366, 1-10.	3.2	43
901	Loss of microRNA-27b contributes to breast cancer stem cell generation by activating ENPP1. Nature Communications, 2015, 6, 7318.	5.8	126
902	Salinomycin and Other Ionophores as a New Class of Antimalarial Drugs with Transmission-Blocking Activity. Antimicrobial Agents and Chemotherapy, 2015, 59, 5135-5144.	1.4	40
903	Adhesion promoter for a multi-dielectric-layer on a digital microfluidic chip. RSC Advances, 2015, 5, 48626-48630.	1.7	16
904	Evaluation of self-emulsified DIM-14 in dogs for oral bioavailability and in Nu/nu mice bearing stem cell lung tumor models for anticancer activity. Journal of Controlled Release, 2015, 213, 18-26.	4.8	11
906	A phase II study of single-agent RO4929097, a gamma-secretase inhibitor of Notch signaling, in patients with recurrent platinum-resistant epithelial ovarian cancer: A study of the Princess Margaret, Chicago and California phase II consortia. Gynecologic Oncology, 2015, 137, 216-222.	0.6	65
907	Msi1 confers resistance to TRAIL by activating ERK in liver cancer cells. FEBS Letters, 2015, 589, 897-903.	1.3	11
908	Impact of kinesin Eg5 inhibition by 3,4-dihydropyrimidin-2(1H)-one derivatives on various breast cancer cell features. BMC Cancer, 2015, 15, 283.	1.1	38

#	Article	IF	Citations
909	Three-Dimensional Cell Culture-Based Screening Identifies the Anthelmintic Drug Nitazoxanide as a Candidate for Treatment of Colorectal Cancer. Molecular Cancer Therapeutics, 2015, 14, 1504-1516.	1.9	122
910	Phenotypic screening of a library of compounds against metastatic and non-metastatic clones of a canine mammary gland tumour cell line. Veterinary Journal, 2015, 205, 288-296.	0.6	6
911	ADAM12-L is a direct target of the miR-29 and miR-200 families in breast cancer. BMC Cancer, 2015, 15, 93.	1.1	34
912	Relationship of tumor marker CA125 and ovarian tumor stem cells: preliminary identification. Journal of Ovarian Research, 2015, 8, 19.	1.3	14
913	Mesenchymal stem cells mediate the clinical phenotype of inflammatory breast cancer in a preclinical model. Breast Cancer Research, 2015, 17, 42.	2.2	49
914	IKK \hat{I}^2 Enforces a LIN28B/TCF7L2 Positive Feedback Loop That Promotes Cancer Cell Stemness and Metastasis. Cancer Research, 2015, 75, 1725-1735.	0.4	45
915	Let-7a regulates mammosphere formation capacity through Ras/NF-κB and Ras/MAPK/ERK pathway in breast cancer stem cells. Cell Cycle, 2015, 14, 1686-1697.	1.3	40
916	Targeting breast cancer stem cells in triple-negative breast cancer using a combination of LBH589 and salinomycin. Breast Cancer Research and Treatment, 2015, 151, 281-294.	1.1	56
917	The emerging molecular machinery and therapeutic targets of metastasis. Trends in Pharmacological Sciences, 2015, 36, 349-359.	4.0	52
918	Recurrence and metastasis of breast cancer is influenced by ovarian hormone's effect on breast cancer stem cells. Future Oncology, 2015, 11, 983-995.	1.1	22
919	Therapeutic potential of cancer stem cells. Medical Oncology, 2015, 32, 619.	1.2	15
920	Silibinin affects tumor cell growth because of reduction of stemness properties and induction of apoptosis in 2D and 3D models of MDA-MB-468. Anti-Cancer Drugs, 2015, 26, 487-497.	0.7	16
921	Intratumoral Heterogeneity: From Diversity Comes Resistance. Clinical Cancer Research, 2015, 21, 2916-2923.	3.2	118
922	Geno- and cytotoxicity of salinomycin in human nasal mucosa and peripheral blood lymphocytes. Toxicology in Vitro, 2015, 29, 813-818.	1.1	21
924	CD44 as a drug delivery target in human cancers: where are we now?. Expert Opinion on Therapeutic Targets, 2015, 19, 1587-1591.	1.5	18
925	Inhibition of LSD1 by Pargyline inhibited process of EMT and delayed progression of prostate cancer inÂvivo. Biochemical and Biophysical Research Communications, 2015, 467, 310-315.	1.0	54
927	ROS-p53-cyclophilin-D signaling mediates salinomycin-induced glioma cell necrosis. Journal of Experimental and Clinical Cancer Research, 2015, 34, 57.	3. 5	96
928	Stem-Cell-like Properties and Epithelial Plasticity Arise as Stable Traits after Transient Twist1 Activation. Cell Reports, 2015, 10, 131-139.	2.9	155

#	Article	IF	CITATIONS
930	Twist predicts poor outcome of patients with astrocytic glioma. Journal of Clinical Pathology, 2015, 68, 905-912.	1.0	17
931	Identification of thiostrepton as a novel therapeutic agent that targets human colon cancer stem cells. Cell Death and Disease, 2015, 6, e1801-e1801.	2.7	25
932	Endometrial Cancer Stem Cell as a Potential Therapeutic Target. Seminars in Reproductive Medicine, 2015, 33, 341-349.	0.5	13
933	Epithelial–Mesenchymal Plasticity: A Central Regulator of Cancer Progression. Trends in Cell Biology, 2015, 25, 675-686.	3.6	832
934	Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway. Biochemical and Biophysical Research Communications, 2015, 466, 696-703.	1.0	30
935	Chimeric antigen receptor T cells targeting HERV-K inhibit breast cancer and its metastasis through downregulation of Ras. Oncolmmunology, 2015, 4, e1047582.	2.1	68
936	Identifying and targeting tumor-initiating cells in the treatment of breast cancer. Endocrine-Related Cancer, 2015, 22, R135-R155.	1.6	42
937	Cancer Stem Cells: Formidable Allies of Cancer. Indian Journal of Surgical Oncology, 2015, 6, 400-414.	0.3	5
938	Metabolic stress induces a Wnt-dependent cancer stem cell-like state transition. Cell Death and Disease, 2015, 6, e1805-e1805.	2.7	39
939	Minireview: Prolactin Regulation of Adult Stem Cells. Molecular Endocrinology, 2015, 29, 667-681.	3.7	28
940	Maspin Expression in Prostate Tumor Cells Averts Stemness and Stratifies Drug Sensitivity. Cancer Research, 2015, 75, 3970-3979.	0.4	25
941	Cancer Stem Cell Marker Phenotypes Are Reversible and Functionally Homogeneous in a Preclinical Model of Pancreatic Cancer. Cancer Research, 2015, 75, 4582-4592.	0.4	22
942	iRGD-conjugated DSPE-PEG2000 nanomicelles for targeted delivery of salinomycin for treatment of both liver cancer cells and cancer stem cells. Nanomedicine, 2015, 10, 2677-2695.	1.7	56
943	Breast Cancer Cells Respond Differentially to Modulation of $TGF\hat{l}^22$ Signaling after Exposure to Chemotherapy or Hypoxia. Cancer Research, 2015, 75, 4605-4616.	0.4	9
944	Metastasis of circulating tumor cells: Favorable soil or suitable biomechanics, or both?. Cell Adhesion and Migration, 2015, 9, 345-356.	1.1	93
945	Breast Cancer Stem Cell Culture and Proliferation. SpringerBriefs in Stem Cells, 2015, , 41-55.	0.1	4
946	Molecular Pathways: New Signaling Considerations When Targeting Cytoskeletal Balance to Reduce Tumor Growth. Clinical Cancer Research, 2015, 21, 5209-5214.	3.2	20
947	Drug Transporter-Mediated Protection of Cancer Stem Cells From Ionophore Antibiotics. Stem Cells Translational Medicine, 2015, 4, 1028-1032.	1.6	30

#	Article	IF	CITATIONS
948	Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 2015, 527, 472-476.	13.7	1,498
949	miRNAs in Cancer Stem Cells. , 2015, , 137-161.		0
950	PI3K/mTOR Dual Inhibitor VS-5584 Preferentially Targets Cancer Stem Cells. Cancer Research, 2015, 75, 446-455.	0.4	114
951	Combination therapy of prostate cancer with HPMA copolymer conjugates containing PI3K/mTOR inhibitor and docetaxel. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 107-115.	2.0	26
952	Cytotoxicity of monensin, narasin and salinomycin and their interaction with silybin in HepG2, LMH and L6 cell cultures. Toxicology in Vitro, 2015, 29, 337-344.	1.1	19
953	Biological Basis of Alcohol-Induced Cancer. Advances in Experimental Medicine and Biology, 2015, , .	0.8	6
954	Polycomb-dependent repression of the potassium channel-encoding gene KCNA5 promotes cancer cell survival under conditions of stress. Oncogene, 2015, 34, 4591-4600.	2.6	19
955	Autophagy in cancer stem/progenitor cells. Cancer Chemotherapy and Pharmacology, 2015, 75, 879-886.	1.1	13
956	A Strategic Approach to Identification of Selective Inhibitors of Cancer Stem Cells. Methods in Molecular Biology, 2015, 1229, 529-541.	0.4	9
957	Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Molecular Carcinogenesis, 2015, 54, 554-565.	1.3	324
958	Tumor heterogeneity and cancer stem cell paradigm: Updates in concept, controversies and clinical relevance. International Journal of Cancer, 2015, 136, 1991-2000.	2.3	112
959	The impact of tumor stroma on drug response in breast cancer. Seminars in Cancer Biology, 2015, 31, 3-15.	4.3	82
960	FRA-1 as a driver of tumour heterogeneity: a nexus between oncogenes and embryonic signalling pathways in cancer. Oncogene, 2015, 34, 4421-4428.	2.6	60
961	β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death and Differentiation, 2015, 22, 298-310.	5.0	87
962	Targeting the Wnt pathway in human cancers: Therapeutic targeting with a focus on OMP-54F28. , 2015, 146, 1-11.		201
963	Implications of stemness-related signaling pathways in breast cancer response to therapy. Seminars in Cancer Biology, 2015, 31, 43-51.	4.3	51
964	GD3 synthase regulates epithelial–mesenchymal transition and metastasis in breast cancer. Oncogene, 2015, 34, 2958-2967.	2.6	98
965	Cancer stem cells: perspectives for therapeutic targeting. Cancer Immunology, Immunotherapy, 2015, 64, 91-97.	2.0	63

#	Article	IF	CITATIONS
966	Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget, 2016, 7, 49349-49367.	0.8	95
967	Cancer of the Pancreas: Molecular Pathways and Current Advancement in Treatment. Journal of Cancer, 2016, 7, 1497-1514.	1.2	71
968	Repurposing atovaquone: Targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget, 2016, 7, 34084-34099.	0.8	171
969	The effect of salinomycin on ovarian cancer stem-like cells. Obstetrics and Gynecology Science, 2016, 59, 261.	0.6	20
970	Bypassing Mechanisms of Mitochondria-Mediated Cancer Stem Cells Resistance to Chemo- and Radiotherapy. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	1.9	42
971	Mesenchymal Stem/Stromal Cells in Stromal Evolution and Cancer Progression. Stem Cells International, 2016, 2016, 1-11.	1.2	67
972	The Extraordinary Progress in Very Early Cancer Diagnosis and Personalized Therapy: The Role of Oncomarkers and Nanotechnology. Journal of Nanotechnology, 2016, 2016, 1-18.	1.5	10
973	Renal Cancer Stem Cells: Characterization and Targeted Therapies. Stem Cells International, 2016, 2016, 1-12.	1.2	31
974	Mifepristone Suppresses Basal Triple-Negative Breast Cancer Stem Cells by Down-regulating KLF5 Expression. Theranostics, 2016, 6, 533-544.	4.6	103
975	Phytochemicals and Cancer Stem Cells: A Pancreatic Cancer Overview. Current Chemical Biology, 2016, 10, 98-108.	0.2	6
976	Overcoming Therapeutic Resistance of Bone Sarcomas: Overview of the Molecular Mechanisms and Therapeutic Targets for Bone Sarcoma Stem Cells. Stem Cells International, 2016, 2016, 1-13.	1.2	18
977	The combination of NVP-BKM120 with trastuzumab or RAD001 synergistically inhibits the growth of breast cancer stem cells in vivo. Oncology Reports, 2016, 36, 356-364.	1.2	19
978	Boromycin Kills Mycobacterial Persisters without Detectable Resistance. Frontiers in Microbiology, 2016, 7, 199.	1.5	67
979	Anti-Cancer Stem-like Cell Compounds in Clinical Development – An Overview and Critical Appraisal. Frontiers in Oncology, 2016, 6, 115.	1.3	42
980	Targeting Epithelial–Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules, 2016, 21, 965.	1.7	548
981	Cancer Stem Cell Plasticity Drives Therapeutic Resistance. Cancers, 2016, 8, 8.	1.7	132
982	A Second WNT for Old Drugs: Drug Repositioning against WNT-Dependent Cancers. Cancers, 2016, 8, 66.	1.7	52
984	ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS ONE, 2016, 11, e0147344.	1.1	81

#	Article	IF	CITATIONS
985	Anti-Tumor Effects of Second Generation \hat{l}^2 -Hydroxylase Inhibitors on Cholangiocarcinoma Development and Progression. PLoS ONE, 2016, 11, e0150336.	1.1	31
986	Stem cell technology in breast cancer: current status and potential applications. Stem Cells and Cloning: Advances and Applications, 2016, 9, 17.	2.3	10
987	Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy. International Journal of Nanomedicine, 2016, Volume 11, 3655-3675.	3.3	80
988	Using Pharmacogenomic Databases for Discovering Patient-Target Genes and Small Molecule Candidates to Cancer Therapy. Frontiers in Pharmacology, 2016, 7, 312.	1.6	22
989	Nanobiomaterials in cancer therapy. , 2016, , 57-89.		8
990	Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells <i>in vitro</i> and <i>iin vivo</i> . Oncotarget, 2016, 7, 771-785.	0.8	66
991	A high-content EMT screen identifies multiple receptor tyrosine kinase inhibitors with activity on TGF \hat{l}^2 receptor. Oncotarget, 2016, 7, 25983-26002.	0.8	20
992	The cancer stem-cell signaling network and resistance to therapy. Cancer Treatment Reviews, 2016, 49, 25-36.	3.4	122
993	Isolation and characterization of alborixin from Streptomyces scabrisporus: A potent cytotoxic agent against human colon (HCT-116) cancer cells. Chemico-Biological Interactions, 2016, 256, 198-208.	1.7	24
994	Salinomycin encapsulated nanoparticles as a targeting vehicle for glioblastoma cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 455-464.	2.1	23
995	EMT: 2016. Cell, 2016, 166, 21-45.	13.5	3,573
996	Chemical Screening Identifies EUrd as a Novel Inhibitor Against Temozolomide-Resistant Glioblastoma-Initiating Cells. Stem Cells, 2016, 34, 2016-2025.	1.4	9
997	Codelivery of salinomycin and chloroquine by liposomes enables synergistic antitumor activity <i>in vitro</i> . Nanomedicine, 2016, 11, 1831-1846.	1.7	38
998	Breast Cancer Stem Cell Potent Copper(II)–Non‧teroidal Antiâ€Inflammatory Drug Complexes. Angewandte Chemie - International Edition, 2016, 55, 2845-2850.	7.2	105
999	Breast Cancer Stem Cell Potent Copper(II)–Nonâ€6teroidal Antiâ€Inflammatory Drug Complexes. Angewandte Chemie, 2016, 128, 2895-2900.	1.6	41
1000	Proton pump inhibitor pantoprazole inhibits the proliferation, self-renewal and chemoresistance of gastric cancer stem cells via the EMT/ \hat{l}^2 -catenin pathways. Oncology Reports, 2016, 36, 3207-3214.	1.2	29
1001	Targeting the Epithelial-to-Mesenchymal Transition: The Case for Differentiation-Based Therapy. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 11-19.	2.0	51
1002	Embryonic stem cell preconditioned microenvironment suppresses tumorigenic properties in breast cancer. Stem Cell Research and Therapy, 2016, 7, 95.	2.4	18

#	ARTICLE	IF	CITATIONS
1003	Eradicating Quiescent Tumor Cells by Targeting Mitochondrial Bioenergetics. Trends in Cancer, 2016, 2, 657-663.	3.8	17
1004	Salinomycin inhibits metastatic colorectal cancer growth and interferes with Wnt/l²-catenin signaling in CD133+ human colorectal cancer cells. BMC Cancer, 2016, 16, 896.	1.1	46
1005	MUC1 upregulation promotes immune resistance in tumor cells undergoing brachyury-mediated epithelial-mesenchymal transition. Oncolmmunology, 2016, 5, e1117738.	2.1	53
1006	Cancer stem cell metabolism. Breast Cancer Research, 2016, 18, 55.	2.2	377
1007	Hallmarks of cancer stem cell metabolism. British Journal of Cancer, 2016, 114, 1305-1312.	2.9	390
1008	Phenotypic Plasticity Determines Cancer Stem Cell Therapeutic Resistance in Oral Squamous Cell Carcinoma. EBioMedicine, 2016, 4, 138-145.	2.7	115
1009	Minimal residual disease in breast cancer: an overview of circulating and disseminated tumour cells. Clinical and Experimental Metastasis, 2016, 33, 521-550.	1.7	30
1010	Consecutive salinomycin treatment reduces doxorubicin resistance of breast tumor cells by diminishing drug efflux pump expression and activity. Oncology Reports, 2016, 35, 1732-1740.	1.2	39
1011	Salinomycin induces selective cytotoxicity to MCF-7 mammosphere cells through targeting the Hedgehog signaling pathway. Oncology Reports, 2016, 35, 912-922.	1.2	28
1012	Eradication of CD44-variant positive population in head and neck tumors through controlled intracellular navigation of cisplatin-loaded nanomedicines. Journal of Controlled Release, 2016, 230, 26-33.	4.8	17
1013	Liquid-based three-dimensional tumor models for cancer research and drug discovery. Experimental Biology and Medicine, 2016, 241, 939-954.	1.1	82
1014	Combined Inhibition of DNMT and HDAC Blocks the Tumorigenicity of Cancer Stem-like Cells and Attenuates Mammary Tumor Growth. Cancer Research, 2016, 76, 3224-3235.	0.4	122
1015	The impact of metformin and salinomycin on transforming growth factor \hat{l}^2 -induced epithelial-to-mesenchymal transition in non-small cell lung cancer cell lines. Oncology Letters, 2016, 11, 2946-2952.	0.8	24
1016	p53 family members regulate cancer stem cells. Cell Cycle, 2016, 15, 1403-1404.	1.3	9
1017	Nanomedicines Eradicating Cancer Stem-like Cells <i>in Vivo</i> by pH-Triggered Intracellular Cooperative Action of Loaded Drugs. ACS Nano, 2016, 10, 5643-5655.	7.3	63
1018	Temozolomide in combination with metformin act synergistically to inhibit proliferation and expansion of glioma stem-like cells. Oncology Letters, 2016, 11, 2792-2800.	0.8	45
1019	Salinomycin Hydroxamic Acids: Synthesis, Structure, and Biological Activity of Polyether Ionophore Hybrids. ACS Medicinal Chemistry Letters, 2016, 7, 635-640.	1.3	30
1020	Synthesis and biological activity evaluation of 20-epi-salinomycin and its 20-O-acyl derivatives. RSC Advances, 2016, 6, 41885-41890.	1.7	23

#	Article	IF	CITATIONS
1021	Breast Cancer: A Molecular and Redox Snapshot. Antioxidants and Redox Signaling, 2016, 25, 337-370.	2.5	16
1022	Prognostic significance of stem cell marker CD133 determined by promoter methylation but not by immunohistochemical expression in malignant gliomas. Journal of Neuro-Oncology, 2016, 127, 221-232.	1.4	13
1023	CD24 cell surface expression in Mvt1 mammary cancer cells serves as a biomarker for sensitivity to anti-IGF1R therapy. Breast Cancer Research, 2016, $18, 51$.	2.2	4
1024	Post-translational Modifications of OLIG2 Regulate Glioma Invasion through the TGF-Î ² Pathway. Cell Reports, 2016, 16, 950-966.	2.9	49
1025	Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression. Biochemical Pharmacology, 2016, 122, 90-98.	2.0	10
1026	Tumor microenvironment-mediated chemoresistance in breast cancer. Breast, 2016, 30, 92-100.	0.9	112
1027	The Role of Autophagy in the Maintenance of Stemness and Differentiation of Mesenchymal Stem Cells. Stem Cell Reviews and Reports, 2016, 12, 621-633.	5.6	91
1028	Ionophore Antibiotics as Cancer Stem Cell-Selective Drugs: Open Questions. Oncologist, 2016, 21, 1291-1293.	1.9	15
1029	Second-generation probes for biosynthetic intermediate capture: towards a comprehensive profiling of polyketide assembly. Chemical Communications, 2016, 52, 10392-10395.	2.2	10
1030	The Potent Inhibitory Effect of a Naproxenâ€Appended Cobalt(III)â€Cyclam Complex on Cancer Stem Cells. ChemBioChem, 2016, 17, 1713-1718.	1.3	29
1031	Physiological controls of largeâ€scale patterning in planarian regeneration: a molecular and computational perspective on growth and form. Regeneration (Oxford, England), 2016, 3, 78-102.	6.3	44
1032	Pluripotent Stem Cells From Livestock. , 2016, , 312-354.		0
1033	Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma. Journal of Hematology and Oncology, 2016, 9, 74.	6.9	146
1034	Bioinspired Functional Surfaces for Technological Applications. Journal of Molecular and Engineering Materials, 2016, 04, 1640006.	0.9	16
1035	Estimation of environmentally relevant chemical properties of veterinary ionophore antibiotics. Environmental Science and Pollution Research, 2016, 23, 18353-18361.	2.7	8
1037	EMT, cell plasticity and metastasis. Cancer and Metastasis Reviews, 2016, 35, 645-654.	2.7	672
1038	Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance. Journal of Biological Chemistry, 2016, 291, 21496-21509.	1.6	31
1039	Codelivery of salinomycin and doxorubicin using nanoliposomes for targeting both liver cancer cells and cancer stem cells. Nanomedicine, 2016, 11, 2565-2579.	1.7	43

#	Article	IF	CITATIONS
1040	Current Concepts of How to Eliminate Cancer Stem Cells. , 2016, , 181-212.		0
1041	Determinants of resistance to chemotherapy and ionizing radiation in breast cancer stem cells. Cancer Letters, 2016, 380, 485-493.	3.2	70
1042	High-throughput screening identifies artesunate as selective inhibitor of cancer stemness: Involvement of mitochondrial metabolism. Biochemical and Biophysical Research Communications, 2016, 477, 737-742.	1.0	29
1043	Ring-opening reactions of oxetanes: A review of methodology development and synthetic applications. Synthetic Communications, 2016, 46, 1397-1416.	1.1	38
1044	The breast cancer stem cell potency of copper(<scp>ii</scp>) complexes bearing nonsteroidal anti-inflammatory drugs and their encapsulation using polymeric nanoparticles. Dalton Transactions, 2016, 45, 17867-17873.	1.6	42
1045	WIP Drives Tumor Progression through YAP/TAZ-Dependent Autonomous Cell Growth. Cell Reports, 2016, 17, 1962-1977.	2.9	44
1046	Isolation and characterization of tumorspheres from a recurrent pineoblastoma patient: Feasibility of a patient-derived xenograft. International Journal of Oncology, 2016, 49, 569-578.	1.4	14
1048	Large-Scale Gene Expression Profiling Platform for Identification of Context-Dependent Drug Responses in Multicellular Tumor Spheroids. Cell Chemical Biology, 2016, 23, 1428-1438.	2.5	32
1049	Heterogeneity of Cancer Stem Cells: Rationale for Targeting the Stem Cell Niche. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 276-289.	3.3	42
1050	Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression. Nature Communications, 2016, 7, 11702.	5.8	155
1051	Prodigiosin inhibits Wnt/ \hat{l}^2 -catenin signaling and exerts anticancer activity in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13150-13155.	3.3	151
1052	Effects of flavopiridol on critical regulation pathways of CD133high/CD44high lung cancer stem cells. Medicine (United States), 2016, 95, e5150.	0.4	5
1053	Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment. Cancer Biology and Therapy, 2016, 17, 698-707.	1.5	43
1054	The bad seed: Cancer stem cells in tumor development and resistance. Drug Resistance Updates, 2016, 28, 1-12.	6.5	88
1055	Reprogramming strategies for the establishment of novel human cancer models. Cell Cycle, 2016, 15, 2393-2397.	1.3	3
1056	Saikosaponin-d: A potential chemotherapeutics in castration resistant prostate cancer by suppressing cancer metastases and cancer stem cell phenotypes. Biochemical and Biophysical Research Communications, 2016, 474, 722-729.	1.0	27
1057	Breast cancer stem cell selectivity of synthetic nanomolar-active salinomycin analogs. BMC Cancer, 2016, 16, 145.	1.1	38
1058	Targeting Estrogen Receptor Signaling with Fulvestrant Enhances Immune and Chemotherapy-Mediated Cytotoxicity of Human Lung Cancer. Clinical Cancer Research, 2016, 22, 6204-6216.	3.2	49

#	Article	IF	CITATIONS
1059	Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer. Molecular Carcinogenesis, 2016, 55, 537-551.	1.3	100
1060	Genistein-induced differentiation of breast cancer stem/progenitor cells through a paracrine mechanism. International Journal of Oncology, 2016, 48, 1063-1072.	1.4	32
1061	Cancer stem cells and personalized cancer nanomedicine. Nanomedicine, 2016, 11, 307-320.	1.7	27
1062	Combined niclosamide with cisplatin inhibits epithelial-mesenchymal transition and tumor growth in cisplatin-resistant triple-negative breast cancer. Tumor Biology, 2016, 37, 9825-9835.	0.8	52
1063	Structure–activity & structure–toxicity relationship study of salinomycin diastereoisomers and their benzoylated derivatives. Organic and Biomolecular Chemistry, 2016, 14, 2840-2845.	1.5	21
1064	Twist mediates an aggressive phenotype in human colorectal cancer cells. International Journal of Oncology, 2016, 48, 1117-1124.	1.4	58
1065	Transforming growth factor-beta increases breast cancer stem cell population partially through upregulating PMEPA1 expression. Acta Biochimica Et Biophysica Sinica, 2016, 48, 194-201.	0.9	26
1066	TMPRSS4 induces cancer stem cell-like properties in lung cancer cells and correlates with ALDH expression in NSCLC patients. Cancer Letters, 2016, 370, 165-176.	3.2	42
1067	Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer. International Journal of Biochemistry and Cell Biology, 2016, 71, 12-23.	1.2	22
1068	CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids and Surfaces B: Biointerfaces, 2016, 143, 532-546.	2.5	148
1069	An iTEP-salinomycin nanoparticle that specifically and effectively inhibits metastases of 4T1 orthotopic breast tumors. Biomaterials, 2016, 93, 1-9.	5.7	29
1070	Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science, 2016, 351, aad3680.	6.0	271
1071	Cancer stem cells and chemoresistance: The smartest survives the raid., 2016, 160, 145-158.		360
1072	Does primary neoadjuvant systemic therapy eradicate minimal residual disease? Analysis of disseminated and circulating tumor cells before and after therapy. Breast Cancer Research, 2016, 18, 20.	2.2	72
1073	Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models. Gene Therapy, 2016, 23, 450-459.	2.3	21
1074	Establishment and characterization of a new feline mammary cancer cell line, FkMTp. Cytotechnology, 2016, 68, 1529-1543.	0.7	12
1075	Salinomycin suppresses TGF- \hat{l}^21 -induced epithelial-to-mesenchymal transition in MCF-7 human breast cancer cells. Chemico-Biological Interactions, 2016, 248, 74-81.	1.7	23
1076	Bio-mimicked gold nanoparticles with complex fetal bovine serum as sensors for single cell MALDI MS of cancer cell and cancer stem cell. Sensors and Actuators B: Chemical, 2016, 231, 154-165.	4.0	9

#	Article	IF	CITATIONS
1077	Cancer Stem Cells and Circulating Tumor Cells: Molecular Markers, Isolation Techniques, and Clinical Implications. Current Cancer Research, 2016, , 75-97.	0.2	1
1078	Candidate Antimetastasis Drugs Suppress the Metastatic Capacity of Breast Cancer Cells by Reducing Membrane Fluidity. Cancer Research, 2016, 76, 2037-2049.	0.4	123
1079	Methylisoindigo preferentially kills cancer stem cells by interfering cell metabolism via inhibition of LKB1 and activation of AMPK in PDACs. Molecular Oncology, 2016, 10, 806-824.	2.1	43
1080	Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the \hat{l}^3 -glutamyl cycle as a proton sink. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1630-1635.	3.3	67
1081	Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. Journal of Controlled Release, 2016, 225, 240-251.	4.8	62
1082	HDAC and PI3K Antagonists Cooperate to Inhibit Growth of MYC- Driven Medulloblastoma. Cancer Cell, 2016, 29, 311-323.	7.7	204
1083	Cancer stem cell drugs target K-ras signaling in a stemness context. Oncogene, 2016, 35, 5248-5262.	2.6	78
1084	Rapid Recognition and Isolation of Live Colon Cancer Stem Cells by Using Metabolic Labeling of Azido Sugar and Magnetic Beads. Analytical Chemistry, 2016, 88, 3953-3958.	3.2	6
1085	E-Cadherin repression increases amount of cancer stem cells in human A549 lung adenocarcinoma and stimulates tumor growth. Cell Cycle, 2016, 15, 1084-1092.	1.3	30
1086	Salinomycin efficiency assessment in non-tumor (HB4a) and tumor (MCF-7) human breast cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 557-571.	1.4	10
1087	Endoplasmic reticulum stress-inducing drugs sensitize glioma cells to temozolomide through downregulation of MGMT, MPG, and Rad51. Neuro-Oncology, 2016, 18, 1109-1119.	0.6	42
1088	Discovery of a ¹⁹ F MRI sensitive salinomycin derivative with high cytotoxicity towards cancer cells. Chemical Communications, 2016, 52, 5136-5139.	2.2	39
1089	The RNA-binding protein LARP1 is a post-transcriptional regulator of survival and tumorigenesis in ovarian cancer. Nucleic Acids Research, 2016, 44, 1227-1246.	6.5	120
1090	Treatment of Triple-Negative Breast Cancer with TORC1/2 Inhibitors Sustains a Drug-Resistant and Notch-Dependent Cancer Stem Cell Population. Cancer Research, 2016, 76, 440-452.	0.4	93
1091	ALDH+/CD44+ cells in breast cancer are associated with worse prognosis and poor clinical outcome. Experimental and Molecular Pathology, 2016, 100, 145-150.	0.9	22
1092	Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells?., 2016, 157, 43-64.		36
1093	Novel approach to target cancer stem cells for therapy. Medical Hypotheses, 2016, 88, 83-85.	0.8	5
1094	Nanomedicine-mediated cancer stem cell therapy. Biomaterials, 2016, 74, 1-18.	5.7	117

#	ARTICLE	IF	CITATIONS
1095	Tumor Cell-Derived Periostin Regulates Cytokines That Maintain Breast Cancer Stem Cells. Molecular Cancer Research, 2016, 14, 103-113.	1.5	46
1096	Apoptotic effects of salinomycin on human ovarian cancer cell line (OVCAR-3). Tumor Biology, 2016, 37, 3897-3903.	0.8	18
1097	Increased Expression of Beige/Brown Adipose Markers from Host and Breast Cancer Cells Influence Xenograft Formation in Mice. Molecular Cancer Research, 2016, 14, 78-92.	1.5	49
1098	Salinomycin radiosensitizes human nasopharyngeal carcinoma cell line CNE-2 to radiation. Tumor Biology, 2016, 37, 305-311.	0.8	9
1099	Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes. Brain Research, 2016, 1638, 57-73.	1.1	108
1101	Emerging Role of Nestin as an Angiogenesis and Cancer Stem Cell Marker in Epithelial Ovarian Cancer: Immunohistochemical Study. Applied Immunohistochemistry and Molecular Morphology, 2017, 25, 571-580.	0.6	9
1102	Overcoming treatment resistance in cancer: Current understanding and tactics. Cancer Letters, 2017, 387, 69-76.	3.2	35
1103	Analysis of microtubule growth dynamics arising from altered actin network structure and contractility in breast tumor cells. Physical Biology, 2017, 14, 026005.	0.8	4
1104	Self-targeted salinomycin-loaded DSPE-PEG-methotrexate nanomicelles for targeting both head and neck squamous cell carcinoma cancer cells and cancer stem cells. Nanomedicine, 2017, 12, 295-315.	1.7	18
1105	Glucocorticoid receptor signalling activates YAP in breast cancer. Nature Communications, 2017, 8, 14073.	5.8	129
1106	Targeting Cancer Stem Cells with Small Molecules. Israel Journal of Chemistry, 2017, 57, 239-250.	1.0	19
1107	Prognostic significance of S100A4-expression and subcellular localization in early-stage breast cancer. Breast Cancer Research and Treatment, 2017, 162, 127-137.	1.1	24
1108	The Cellular Origin and Evolution of Breast Cancer. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a027128.	2.9	67
1109	Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer Letters, 2017, 389, 23-32.	3.2	101
1110	Concise Review: Emerging Drugs Targeting Epithelial Cancer Stem-Like Cells. Stem Cells, 2017, 35, 839-850.	1.4	34
1111	The role of epithelial–mesenchymal transition drivers <scp>ZEB</scp> 1 and <scp>ZEB</scp> 2 in mediating docetaxelâ€resistant prostate cancer. Molecular Oncology, 2017, 11, 251-265.	2.1	100
1112	The anti-tumor activities of Neferine on cell invasion and oxaliplatin sensitivity regulated by EMT via Snail signaling in hepatocellular carcinoma. Scientific Reports, 2017, 7, 41616.	1.6	62
1113	Molecular and Functional Diagnostic Tools in Precision Oncology for Urological Malignancies. Indian Journal of Surgical Oncology, 2017, 8, 24-32.	0.3	1

#	Article	IF	CITATIONS
1114	Cancer cells exhibit clonal diversity in phenotypic plasticity. Open Biology, 2017, 7, 160283.	1.5	30
1115	On glioblastoma and the search for a cure: where do we stand?. Cellular and Molecular Life Sciences, 2017, 74, 2451-2466.	2.4	56
1116	The role of autophagy in the cross-talk between epithelial-mesenchymal transitioned tumor cells and cancer stem-like cells. Molecular Cancer, 2017, 16, 3.	7.9	59
1117	The Snail Family in Normal and Malignant Haematopoiesis. Cells Tissues Organs, 2017, 203, 82-98.	1.3	11
1118	Regulation of stem-like cancer cells by glutamine through \hat{l}^2 -catenin pathway mediated by redox signaling. Molecular Cancer, 2017, 16, 51.	7.9	81
1119	Epithelial–mesenchymal transition promotes SOX2 and NANOG expression in bladder cancer. Laboratory Investigation, 2017, 97, 567-576.	1.7	40
1120	Pentraxin-3 is a PI3K signaling target that promotes stem cellâ \in "like traits in basal-like breast cancers. Science Signaling, 2017, 10, .	1.6	43
1121	Cancer stem cells: The root of tumor recurrence and metastases. Seminars in Cancer Biology, 2017, 44, 10-24.	4.3	295
1122	Mutant p53 oncogenic functions in cancer stem cells are regulated by WIP through YAP/TAZ. Oncogene, 2017, 36, 3515-3527.	2.6	69
1123	Lasalocid induces cytotoxic apoptosis and cytoprotective autophagy through reactive oxygen species in human prostate cancer PC-3 cells. Biomedicine and Pharmacotherapy, 2017, 88, 1016-1024.	2.5	21
1124	Emerging Biological Principles of Metastasis. Cell, 2017, 168, 670-691.	13.5	2,208
1125	Replacing <scp>d</scp> -Glucosamine with Its <scp>l</scp> -Enantiomer in Glycosylated Antitumor Ether Lipids (GAELs) Retains Cytotoxic Effects against Epithelial Cancer Cells and Cancer Stem Cells. Journal of Medicinal Chemistry, 2017, 60, 2142-2147.	2.9	13
1126	The Effect of a Histone Deacetylase Inhibitor (ARâ€42) on Canine Prostate Cancer Growth and Metastasis. Prostate, 2017, 77, 776-793.	1.2	24
1127	4-Nitro styrylquinoline is an antimalarial inhibiting multiple stages of Plasmodium falciparum asexual life cycle. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 120-129.	1.4	35
1128	Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells. Cancer Letters, 2017, 394, 52-64.	3.2	108
1129	Combination antitumor therapy with targeted dual-nanomedicines. Advanced Drug Delivery Reviews, 2017, 115, 23-45.	6.6	111
1130	AKR1B1 promotes basal-like breast cancer progression by a positive feedback loop that activates the EMT program. Journal of Experimental Medicine, 2017, 214, 1065-1079.	4.2	99
1131	Therapeutic implications of tumor interstitial acidification. Seminars in Cancer Biology, 2017, 43, 119-133.	4.3	82

#	Article	lF	CITATIONS
1132	Current Status and Perspectives in Stem Cell Research: The Concept of Normal Stem (NSC) and Cancer Stem Cell (CSC). , 2017, , 7-16.		0
1133	Concept of Targeted Cancer Stem Cell Therapy and New Versions. , 2017, , 113-123.		0
1134	Salinomycin attenuates liver cancer stem cell motility by enhancing cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signalling pathway. Toxicology, 2017, 384, 1-10.	2.0	45
1135	EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nature Reviews Clinical Oncology, 2017, 14, 611-629.	12.5	1,865
1136	Inhibiting epidermal growth factor receptor signalling potentiates mesenchymal–epithelial transition of breast cancer stem cells and their responsiveness to anticancer drugs. FEBS Journal, 2017, 284, 1830-1854.	2.2	47
1137	Cancer nanotheranostics: A review of the role of conjugated ligands for overexpressed receptors. European Journal of Pharmaceutical Sciences, 2017, 104, 273-292.	1.9	86
1138	Salinomycin exhibits anti-angiogenic activity against human glioma in vitro and in vivo by suppressing the VEGF-VEGFR2-AKT/FAK signaling axis. International Journal of Molecular Medicine, 2017, 39, 1255-1261.	1.8	18
1139	Nanomedicine-mediated drug targeting of cancer stem cells. Drug Discovery Today, 2017, 22, 952-959.	3.2	29
1140	Bivalent polyether ionophores: Synthesis and biological evaluation of C2-symmetric salinomycin dimers. Tetrahedron Letters, 2017, 58, 2396-2399.	0.7	11
1141	Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nature Chemistry, 2017, 9, 1025-1033.	6.6	423
1142	Oct4 induces EMT through LEF1/ \hat{l}^2 -catenin dependent WNT signaling pathway in hepatocellular carcinoma. Oncology Letters, 2017, 13, 2599-2606.	0.8	39
1143	Therapeutic PEG-ceramide nanomicelles synergize with salinomycin to target both liver cancer cells and cancer stem cells. Nanomedicine, 2017, 12, 1025-1042.	1.7	25
1144	Effects of irradiation on radioresistance, HOTAIR and epithelial-mesenchymal transition/cancer stem cell marker expression in esophageal squamous cell carcinoma. Oncology Letters, 2017, 13, 2751-2757.	0.8	12
1145	Salinomycin overcomes radioresistance in nasopharyngeal carcinoma cells by inhibiting Nrf2 level and promoting ROS generation. Biomedicine and Pharmacotherapy, 2017, 91, 147-154.	2.5	34
1146	Salinomycin acts through reducing AKT-dependent thymidylate synthase expression to enhance erlotinib-induced cytotoxicity in human lung cancer cells. Experimental Cell Research, 2017, 357, 59-66.	1.2	9
1147	Co-delivery of all-trans-retinoic acid enhances the anti-metastasis effect of albumin-bound paclitaxel nanoparticles. Chemical Communications, 2017, 53, 212-215.	2.2	26
1148	Synthetic tambjamine analogues induce mitochondrial swelling and lysosomal dysfunction leading to autophagy blockade and necrotic cell death in lung cancer. Biochemical Pharmacology, 2017, 126, 23-33.	2.0	48
1149	Targeting SRC Coactivators Blocks the Tumor-Initiating Capacity of Cancer Stem-like Cells. Cancer Research, 2017, 77, 4293-4304.	0.4	36

#	Article	IF	CITATIONS
1150	Cancer stem cells: at the forefront of personalized medicine and immunotherapy. Current Opinion in Pharmacology, 2017, 35, 1-11.	1.7	46
1151	Angiogenesis and cancer stem cells: New perspectives on therapy of ovarian cancer. European Journal of Medicinal Chemistry, 2017, 142, 87-94.	2.6	72
1152	Endogenous Bioelectric Signaling Networks: Exploiting Voltage Gradients for Control of Growth and Form. Annual Review of Biomedical Engineering, 2017, 19, 353-387.	5.7	182
1153	<scp>EMT</scp> : Present and future in clinical oncology. Molecular Oncology, 2017, 11, 718-738.	2.1	205
1154	Normal and cancerous mammary stem cells evade interferon-induced constraint through the miR-199a–LCOR axis. Nature Cell Biology, 2017, 19, 711-723.	4.6	83
1155	The <scp>EMT</scp> spectrum and therapeutic opportunities. Molecular Oncology, 2017, 11, 878-891.	2.1	80
1156	Induction of Necroptosis in Cancer Stem Cells using a Nickel(II)â€Dithiocarbamate Phenanthroline Complex. Chemistry - A European Journal, 2017, 23, 9674-9682.	1.7	42
1157	Mitochondrial uncoupler exerts a synthetic lethal effect against βâ€catenin mutant tumor cells. Cancer Science, 2017, 108, 772-784.	1.7	14
1158	Cytoprotective effect of neuropeptides on cancer stem cells: vasoactive intestinal peptide-induced antiapoptotic signaling. Cell Death and Disease, 2017, 8, e2844-e2844.	2.7	23
1159	New insights into the role of <scp>EMT</scp> in tumor immune escape. Molecular Oncology, 2017, 11, 824-846.	2.1	332
1160	Miniaturized platform for high-throughput screening of stem cells. Current Opinion in Biotechnology, 2017, 46, 141-149.	3.3	19
1161	Targeting acute myeloid leukemia stem cell signaling by natural products. Molecular Cancer, 2017, 16, 13.	7.9	104
1162	Robotic Mammosphere Assay for High-Throughput Screening in Triple-Negative Breast Cancer. SLAS Discovery, 2017, 22, 827-836.	1.4	1
1163	Salinomycin: A new paradigm in cancer therapy. Tumor Biology, 2017, 39, 101042831769503.	0.8	102
1164	Nigericin decreases the viability of multidrug-resistant cancer cells and lung tumorspheres and potentiates the effects of cardiac glycosides. Tumor Biology, 2017, 39, 101042831769431.	0.8	28
1165	Combination of chemotherapy and cancer stem cell targeting agents: Preclinical and clinical studies. Cancer Letters, 2017, 396, 103-109.	3.2	70
1166	Preâ€clinical validation of a selective antiâ€cancer stem cell therapy for Numbâ€deficient human breast cancers. EMBO Molecular Medicine, 2017, 9, 655-671.	3.3	33
1167	Evaluation of growth inhibitory response of Resveratrol and Salinomycin combinations against triple negative breast cancer cells. Biomedicine and Pharmacotherapy, 2017, 89, 1142-1151.	2.5	20

#	Article	IF	CITATIONS
1168	Cancer stem cell molecular markers verified in vivo. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2017, 11, 43-54.	0.2	14
1169	The challenge of targeting cancer stem cells to halt metastasis. Seminars in Cancer Biology, 2017, 44, 25-42.	4.3	154
1170	Induction of G1 Cell Cycle Arrest in Human Glioma Cells by Salinomycin Through Triggering ROS-Mediated DNA Damage In Vitro and In Vivo. Neurochemical Research, 2017, 42, 997-1005.	1.6	27
1171	Antroquinonol, a Ubiquinone Derivative from the Mushroom <i>Antrodia camphorata</i> , Inhibits Colon Cancer Stem Cell-like Properties: Insights into the Molecular Mechanism and Inhibitory Targets. Journal of Agricultural and Food Chemistry, 2017, 65, 51-59.	2.4	42
1172	Functional connectivity decreases in autism in emotion, self, and face circuits identified by Knowledge-based Enrichment Analysis. NeuroImage, 2017, 148, 169-178.	2.1	52
1173	Pharmacological and immunological targeting of tumor mesenchymalization., 2017, 170, 212-225.		14
1174	A CD13â€targeting peptide integrated protein inhibits human liver cancer growth by killing cancer stem cells and suppressing angiogenesis. Molecular Carcinogenesis, 2017, 56, 1395-1404.	1.3	33
1175	A vimentin binding small molecule leads to mitotic disruption in mesenchymal cancers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9903-E9912.	3.3	55
1176	Influence of salinomycin treatment on division and movement of individual cancer cells cultured in normoxia or hypoxia evaluated with time-lapse digital holographic microscopy. Cell Cycle, 2017, 16, 2128-2138.	1.3	22
1177	IGFBPâ€'4 expression is adversely associated with lung cancer prognosis. Oncology Letters, 2017, 14, 6876-6880.	0.8	17
1178	Computational study of putative functional variants in human kisspeptin. Journal of Genetic Engineering and Biotechnology, 2017, 15, 419-422.	1.5	3
1179	Tissue Force Programs Cell Fate and Tumor Aggression. Cancer Discovery, 2017, 7, 1224-1237.	7.7	181
1180	Amphiphilic Modulation of Glycosylated Antitumor Ether Lipids Results in a Potent Triamino Scaffold against Epithelial Cancer Cell Lines and BT474 Cancer Stem Cells. Journal of Medicinal Chemistry, 2017, 60, 9724-9738.	2.9	20
1181	Mitochondrial OXPHOS Induced by RB1 Deficiency in Breast Cancer: Implications for Anabolic Metabolism, Stemness, and Metastasis. Trends in Cancer, 2017, 3, 768-779.	3.8	98
1182	Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. Convergent Science Physical Oncology, 2017, 3, 043001.	2.6	35
1183	The Plasticity of Stem-Like States in Patient-Derived Tumor Xenografts. Molecular and Translational Medicine, 2017, , 71-91.	0.4	0
1184	Autophagy inhibition enhances antiproliferative effect of salinomycin in pancreatic cancer cells. Pancreatology, 2017, 17, 990-996.	0.5	22
1186	pH multistage responsive micellar system with charge-switch and PEG layer detachment for co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells. Biomaterials, 2017, 147, 53-67.	5.7	132

#	Article	IF	CITATIONS
1187	Nigericin inhibits epithelial ovarian cancer metastasis by suppressing the cell cycle and epithelialâ^mesenchymal transition. Biochemistry (Moscow), 2017, 82, 933-941.	0.7	14
1188	Targeting epithelial–mesenchymal plasticity in cancer: clinical and preclinical advances in therapy and monitoring. Biochemical Journal, 2017, 474, 3269-3306.	1.7	53
1189	Primary patient-derived lung adenocarcinoma cell culture challenges the association of cancer stem cells with epithelial-to-mesenchymal transition. Scientific Reports, 2017, 7, 10040.	1.6	26
1190	Breast Cancer Spheroids Reveal a Differential Cancer Stem Cell Response to Chemotherapeutic Treatment. Scientific Reports, 2017, 7, 10382.	1.6	112
1191	Hybrid nanoparticles coated with hyaluronic acid lipoid for targeted co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells. Journal of Materials Chemistry B, 2017, 5, 6762-6775.	2.9	70
1192	Peptideâ€Directed Binding for the Discovery of Modulators of αâ€Helixâ€Mediated Protein–Protein Interactions: Proofâ€ofâ€Concept Studies with the Apoptosis Regulator Mclâ€1. Angewandte Chemie - International Edition, 2017, 56, 10446-10450.	7.2	11
1193	Thy1 (CD90) Expression Is Elevated in Radiation-Induced Periprosthetic Capsular Contracture: Implication for Novel Therapeutics. Plastic and Reconstructive Surgery, 2017, 140, 316-326.	0.7	16
1194	Novel combination of salinomycin and resveratrol synergistically enhances the anti-proliferative and pro-apoptotic effects on human breast cancer cells. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 1246-1259.	2.2	54
1195	Reprogramming to developmental plasticity in cancer stem cells. Developmental Biology, 2017, 430, 266-274.	0.9	38
1196	Peptideâ€Directed Binding for the Discovery of Modulators of αâ€Helixâ€Mediated Protein–Protein Interactions: Proofâ€ofâ€Concept Studies with the Apoptosis Regulator Mclâ€1. Angewandte Chemie, 2017, 129, 10582-10586.	1.6	1
1197	Integrating Biological and Mathematical Models to Explain and Overcome Drug Resistance in Cancer. Part 1: Biological Facts and Studies in Drug Resistance. Current Stem Cell Reports, 2017, 3, 253-259.	0.7	6
1198	Targeting Phenotypic Plasticity in Prostate Cancer. Current Molecular Biology Reports, 2017, 3, 183-196.	0.8	3
1199	Therapeutic Targeting of Epithelial Plasticity Programs: Focus on the Epithelial-Mesenchymal Transition. Cells Tissues Organs, 2017, 203, 114-127.	1.3	31
1200	EMT programs promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary ciliogenesis and Hedgehog signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10532-E10539.	3.3	104
1201	Selective photocytotoxicity of anthrols on cancer stem-like cells: The effect of quinone methides or reactive oxygen species. European Journal of Medicinal Chemistry, 2017, 137, 558-574.	2.6	19
1202	Two novel diterpenoid heterodimers, Bisebracteolasins A and B, from Euphorbia ebracteolata Hayata, and the cancer chemotherapeutic potential of Bisebracteolasin A. Scientific Reports, 2017, 7, 14507.	1.6	18
1203	Cancer Stem Cell and Bulk Cancer Cell Active Copper(II) Complexes with Vanillin Schiff Base Derivatives and Naproxen. Chemistry - A European Journal, 2017, 23, 11366-11374.	1.7	42
1204	Codelivery of salinomycin and docetaxel using poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles to target both gastric cancer cells and cancer stem cells. Anti-Cancer Drugs, 2017, 28, 989-1001.	0.7	24

#	Article	IF	CITATIONS
1205	An in vitro study on the effects of the combination of salinomycin with cisplatin on human gastric cancer cells. Molecular Medicine Reports, 2017, 16, 1031-1038.	1.1	5
1206	Design and synthesis of conformationally constrained salinomycin derivatives. European Journal of Medicinal Chemistry, 2017, 138, 353-356.	2.6	14
1207	Effects of salinomycin and 17-AAG on proliferation of human gastric cancer cells in vitro. Molecular Medicine Reports, 2017, 16, 1063-1070.	1.1	5
1209	Spectroscopic and structural studies of a new para-iodo-N-benzyl amide of salinomycin. Journal of Molecular Structure, 2017, 1147, 197-205.	1.8	2
1210	Salinomycin overcomes acquired tamoxifen resistance through <i><scp>AIB</scp>1</i> and inhibits cancer cell invasion in endocrine resistant breast cancer. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 1042-1052.	0.9	9
1211	Synthesis and biological evaluation of salinomycin triazole analogues as anticancer agents. European Journal of Medicinal Chemistry, 2017, 127, 900-908.	2.6	51
1212	SlnR is a positive pathway-specific regulator for salinomycin biosynthesis in Streptomyces albus. Applied Microbiology and Biotechnology, 2017, 101, 1547-1557.	1.7	40
1213	Evolution from genetics to phenotype: reinterpretation of NSCLC plasticity, heterogeneity, and drug resistance. Protein and Cell, 2017, 8, 178-190.	4.8	22
1214	Are There Any Other Compounds Isolated From Dermacoccus spp at All?. Current Microbiology, 2017, 74, 132-144.	1.0	12
1215	Spectroscopic and structural studies of the first complex formed between salinomycin and organic amine. Journal of Molecular Structure, 2017, 1130, 719-726.	1.8	5
1216	Collagen XVIII in tissue homeostasis and dysregulation â€" Lessons learned from model organisms and human patients. Matrix Biology, 2017, 57-58, 55-75.	1.5	86
1217	Phenotypical and Pharmacological Characterization of Stem-Like Cells in Human Pituitary Adenomas. Molecular Neurobiology, 2017, 54, 4879-4895.	1.9	57
1218	Structure–Activity Relationships in Salinomycin: Cytotoxicity and Phenotype Selectivity of Semiâ€synthetic Derivatives. Chemistry - A European Journal, 2017, 23, 2077-2083.	1.7	30
1219	Full antagonism of the estrogen receptor without a prototypical ligand side chain. Nature Chemical Biology, 2017, 13, 111-118.	3.9	48
1220	Regulation of Head and Neck Squamous Cancer Stem Cells by PI3K and SOX2. Journal of the National Cancer Institute, 2017, 109, djw189.	3.0	98
1221	Multidrug-resistant cancer cells and cancer stem cells hijack cellular systems to circumvent systemic therapies, can natural products reverse this?. Cellular and Molecular Life Sciences, 2017, 74, 777-801.	2.4	34
1222	Combined SN-38 and gefitinib treatment promotes CD44 degradation in head and neck squamous cell carcinoma cells. Oncology Reports, 2018, 39, 367-375.	1,2	6
1223	TanshinonellA enhances the chemosensitivity of breast cancer cells to doxorubicin through down-regulating the expression of MDR-related ABC transporters. Biomedicine and Pharmacotherapy, 2017, 96, 371-377.	2.5	42

#	Article	IF	CITATIONS
1225	Adult Stem Cells and Anticancer Therapy. Advances in Molecular Toxicology, 2017, 11, 123-202.	0.4	9
1226	A reactive oxygen species-generating, cyclooxygenase-2 inhibiting, cancer stem cell-potent tetranuclear copper(<scp>ii</scp>) cluster. Dalton Transactions, 2017, 46, 12785-12789.	1.6	49
1227	The Role of Stem Cells in Breast Cancer. , 2017, , .		3
1228	The combination therapy of salinomycin and gefitinib using poly(D,L-lactic-co-glycolic) Tj ETQq1 1 0.784314 rgBT OncoTargets and Therapy, 2017, Volume 10, 5653-5666.	/Overlock 1.0	10 Tf 50 62 17
1229	Drug-Loaded Polymeric Nanoparticles for Cancer Stem Cell Targeting. Frontiers in Pharmacology, 2017, 8, 51.	1.6	59
1230	Inhibition of Autophagy Promotes Salinomycin-Induced Apoptosis via Reactive Oxygen Species-Mediated PI3K/AKT/mTOR and ERK/p38 MAPK-Dependent Signaling in Human Prostate Cancer Cells. International Journal of Molecular Sciences, 2017, 18, 1088.	1.8	151
1231	Cancer Biology and the Principles of Targeted Cancer Drug Discovery. , 2017, , 1-38.		1
1232	Use of a MCL-1 inhibitor alone to de-bulk melanoma and in combination to kill melanoma initiating cells. Oncotarget, 2017, 8, 46801-46817.	0.8	28
1233	Molecular-Targeted Therapies for Epidermal Growth Factor Receptor and Its Resistance Mechanisms. International Journal of Molecular Sciences, 2017, 18, 2420.	1.8	102
1234	Drug Resistance Driven by Cancer Stem Cells and Their Niche. International Journal of Molecular Sciences, 2017, 18, 2574.	1.8	376
1235	A Cancer Stem Cell Potent Cobalt(III)–Cyclam Complex Bearing Two Tolfenamic Acid Moieties. Inorganics, 2017, 5, 12.	1.2	16
1236	Repurposing Established Compounds to Target Pancreatic Cancer Stem Cells (CSCs). Medical Sciences (Basel, Switzerland), 2017, 5, 14.	1.3	8
1237	Stem Cell-Like Properties of CK2β-down Regulated Mammary Cells. Cancers, 2017, 9, 114.	1.7	6
1238	188Re-Liposome Can Induce Mitochondrial Autophagy and Reverse Drug Resistance for Ovarian Cancer: From Bench Evidence to Preliminary Clinical Proof-of-Concept. International Journal of Molecular Sciences, 2017, 18, 903.	1.8	29
1239	Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applicationsâ€"Focus on Prostate and Breast Cancer. International Journal of Molecular Sciences, 2017, 18, 1102.	1.8	59
1240	The Implications and Future Perspectives of Nanomedicine for Cancer Stem Cell Targeted Therapies. Frontiers in Molecular Biosciences, 2017, 4, 52.	1.6	24
1241	Salinomycin Exerts Anticancer Effects on PC-3 Cells and PC-3-Derived Cancer Stem Cells In Vitro and In Vivo. BioMed Research International, 2017, 2017, 1-13.	0.9	16
1242	Selective and Irreversible Induction of Necroptotic Cell Death in Lung Tumorspheres by Short-Term Exposure to Verapamil in Combination with Sorafenib. Stem Cells International, 2017, 2017, 1-9.	1.2	2

#	Article	IF	CITATIONS
1243	Pathobiology and Therapeutic Implications of Tumor Acidosis. Current Medicinal Chemistry, 2017, 24, 2827-2845.	1.2	10
1244	Targeting protein homeostasis with nelfinavir/salinomycin dual therapy effectively induces death of mTORC1 hyperactive cells. Oncotarget, 2017, 8, 48711-48724.	0.8	13
1245	Polymer& ndash; lipid hybrid anti-HER2 nanoparticles for targeted salinomycin delivery to HER2-positive breast cancer stem cells and cancer cells. International Journal of Nanomedicine, 2017, Volume 12, 6909-6921.	3.3	40
1246	Salinomycin enhances doxorubicin sensitivity through reversing the epithelial-mesenchymal transition of cholangiocarcinoma cells by regulating ARK5. Brazilian Journal of Medical and Biological Research, 2017, 50, e6147.	0.7	16
1247	HER2 regulates cancer stem-like cell phenotype in ALK translocated NSCLC. International Journal of Oncology, 2017, 51, 599-606.	1.4	5
1248	Multi-Targeted Anticancer Agents. Current Topics in Medicinal Chemistry, 2017, 17, 3084-3098.	1.0	71
1249	Comparative gene co-expression network analysis of epithelial to mesenchymal transition reveals lung cancer progression stages. BMC Cancer, 2017, 17, 830.	1.1	10
1250	Cancer cell-soluble factors reprogram mesenchymal stromal cells to slow cycling, chemoresistant cells with a more stem-like state. Stem Cell Research and Therapy, 2017, 8, 254.	2.4	36
1251	Salinomycin's potential to eliminate glioblastoma stem cells and treat glioblastoma multiforme (Review). International Journal of Oncology, 2017, 51, 753-759.	1.4	12
1252	Identification of antipsychotic drug fluspirilene as a potential anti-glioma stem cell drug. Oncotarget, 2017, 8, 111728-111741.	0.8	29
1253	Potential therapeutic targets of triple-negative breast cancer based on its intrinsic subtype. Oncotarget, 2017, 8, 73329-73344.	0.8	64
1254	Salinomycin repressed the epithelial–mesenchymal transition of epithelial ovarian cancer cells via downregulating Wnt/β-catenin pathway. OncoTargets and Therapy, 2017, Volume 10, 1317-1325.	1.0	31
1255	Inhibition of FAK kinase activity preferentially targets cancer stem cells. Oncotarget, 2017, 8, 51733-51747.	0.8	64
1256	Hitting a Moving Target: Glioma Stem Cells Demand New Approaches in Glioblastoma Therapy. Current Cancer Drug Targets, 2017, 17, 236-254.	0.8	18
1257	Salinomycin reduces stemness and induces apoptosis on human ovarian cancer stem cell. Journal of Gynecologic Oncology, 2017, 28, e14.	1.0	41
1258	Wnt3a Expression Is Associated with Epithelial-Mesenchymal Transition and Impacts Prognosis of Lung Adenocarcinoma Patients. Journal of Cancer, 2017, 8, 2523-2531.	1.2	14
1259	Comparative effects of <i>meso</i> -2,3-dimercaptosuccinic acid, monensin, and salinomycin on cadmium-induced brain dysfunction in cadmium-intoxicated mice. Interdisciplinary Toxicology, 2017, 10, 107-113.	1.0	9
1260	Phase I study of the gamma secretase inhibitor PF-03084014 in combination with docetaxel in patients with advanced triple-negative breast cancer. Oncotarget, 2017, 8, 2320-2328.	0.8	66

#	Article	IF	CITATIONS
1261	Tracing and targeting cancer stem cells: New venture for personalized molecular cancer therapy. World Journal of Stem Cells, 2017, 9, 169-178.	1.3	17
1262	Celecoxib targets breast cancer stem cells by inhibiting the synthesis of prostaglandin E2 and down-regulating the Wnt pathway activity. Oncotarget, 2017, 8, 115254-115269.	0.8	43
1263	Synergistic induction of apoptosis by salinomycin and gefitinib through lysosomal and mitochondrial dependent pathway overcomes gefitinib resistance in colorectal cancer. Oncotarget, 2017, 8, 22414-22432.	0.8	40
1264	Fumonisin B1 Inhibits Endoplasmic Reticulum Stress Associated-apoptosis After FoscanPDT Combined with C6-Pyridinium Ceramide or Fenretinide. Anticancer Research, 2017, 37, 455-464.	0.5	9
1265	Serotonergic system antagonists target breast tumor initiating cells and synergize with chemotherapy to shrink human breast tumor xenografts. Oncotarget, 2017, 8, 32101-32116.	0.8	32
1266	Ivermectin as an inhibitor of cancer stemâ€'like cells. Molecular Medicine Reports, 2018, 17, 3397-3403.	1.1	42
1267	Interleukinâ \in 6/signal transducer and activator of transcription 3 promotes prostate cancer resistance to androgen deprivation therapy via regulating pituitary tumor transforming gene 1 expression. Cancer Science, 2018, 109, 678-687.	1.7	26
1268	Xylanilyticolides A–C, Three New Compounds from Cultures of the Actinomycete Promicromonospora xylanilytica YIM 61515. Natural Products and Bioprospecting, 2018, 8, 91-95.	2.0	2
1269	Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomedicine and Pharmacotherapy, 2018, 100, 441-447.	2.5	106
1270	Scalable Culturing of Primary Human Glioblastoma Tumor-Initiating Cells with a Cell-Friendly Culture System. Scientific Reports, 2018, 8, 3531.	1.6	27
1271	Spheroidâ€based 3D cell cultures identify salinomycin as a promising drug for the treatment of chondrosarcoma. Journal of Orthopaedic Research, 2018, 36, 2305-2312.	1.2	19
1272	Einblicke in die duale Aktivit¤einer bifunktionalen Dehydrataseâ€Cyclaseâ€Domäe. Angewandte Chemie, 2018, 130, 349-353.	1.6	4
1273	Nigericin Exerts Anticancer Effects on Human Colorectal Cancer Cells by Inhibiting Wnt/ \hat{l}^2 -catenin Signaling Pathway. Molecular Cancer Therapeutics, 2018, 17, 952-965.	1.9	24
1274	Salinomycin derivatives exhibit activity against primary acute lymphoblastic leukemia (ALL) cells in vitro. Biomedicine and Pharmacotherapy, 2018, 99, 384-390.	2.5	23
1275	Characterizing Cancer Drug Response and Biological Correlates: A Geometric Network Approach. Scientific Reports, 2018, 8, 6402.	1.6	17
1276	Concise Review: Aggressive Colorectal Cancer: Role of Epithelial Cell Adhesion Molecule in Cancer Stem Cells and Epithelial-to-Mesenchymal Transition. Stem Cells Translational Medicine, 2018, 7, 495-501.	1.6	59
1277	Salinomycin nanoparticles interfere with tumor cell growth and the tumor microenvironment in an orthotopic model of pancreatic cancer. Drug Development and Industrial Pharmacy, 2018, 44, 1434-1442.	0.9	14
1278	Extra-virgin olive oil contains a metabolo-epigenetic inhibitor of cancer stem cells. Carcinogenesis, 2018, 39, 601-613.	1.3	53

#	Article	IF	CITATIONS
1279	Synthesis and biological evaluation of 20-epi-amino-20-deoxysalinomycin derivatives. European Journal of Medicinal Chemistry, 2018, 148, 279-290.	2.6	24
1280	Cerasomal Lovastatin Nanohybrids for Efficient Inhibition of Triple-Negative Breast Cancer Stem Cells To Improve Therapeutic Efficacy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7022-7030.	4.0	23
1281	PDE5 inhibition eliminates cancer stem cells via induction of PKA signaling. Cell Death and Disease, 2018, 9, 192.	2.7	33
1282	Inhibition of tumor-promoting stroma to enforce subsequently targeting AT1R on tumor cells by pathological inspired micelles. Biomaterials, 2018, 161, 33-46.	5.7	58
1283	Assessing multiparametric drug response in tissue engineered tumor microenvironment models. Methods, 2018, 134-135, 20-31.	1.9	21
1284	Detection and Clinical Implications of Occult Systemic Micrometastatic Breast Cancer. , 2018, , 858-866.e3.		2
1285	Salinomycin-loaded lipid-polymer nanoparticles with anti-CD20 aptamers selectively suppress human CD20+ melanoma stem cells. Acta Pharmacologica Sinica, 2018, 39, 261-274.	2.8	36
1286	Senescence-associated reprogramming promotes cancer stemness. Nature, 2018, 553, 96-100.	13.7	714
1287	Salinomycin induces primary chicken cardiomyocytes death via mitochondria mediated apoptosis. Chemico-Biological Interactions, 2018, 282, 45-54.	1.7	19
1288	Iron-dependent cell death as executioner of cancer stem cells. Journal of Experimental and Clinical Cancer Research, 2018, 37, 79.	3. 5	20
1289	Reprogramming the chemical reactivity of iron in cancer stem cells. Comptes Rendus Chimie, 2018, 21, 704-708.	0.2	1
1291	Current perspectives on the crosstalk between lung cancer stem cells and cancer-associated fibroblasts. Critical Reviews in Oncology/Hematology, 2018, 125, 102-110.	2.0	23
1292	Identification of Novel Molecules Targeting Cancer Stem Cells. Methods in Molecular Biology, 2018, 1765, 333-347.	0.4	4
1293	Identification of selective inhibitors for diffuse-type gastric cancer cells by screening of annotated compounds in preclinical models. British Journal of Cancer, 2018, 118, 972-984.	2.9	9
1294	CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells. Gut, 2018, 67, 903-917.	6.1	64
1295	Analysis of MicroRNA-Mediated Translation Activation of In Vitro Transcribed Reporters in Quiescent Cells. Methods in Molecular Biology, 2018, 1686, 251-264.	0.4	4
1296	Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism. Oncogene, 2018, 37, 963-970.	2.6	85
1297	Insights into the Dual Activity of a Bifunctional Dehydrataseâ€Cyclase Domain. Angewandte Chemie - International Edition, 2018, 57, 343-347.	7.2	22

#	Article	IF	CITATIONS
1299	How to Assess Drug Resistance in Cancer Stem Cells. Methods in Molecular Biology, 2018, 1692, 107-115.	0.4	4
1300	Functionalised nanomaterials for eradication of CSCs, a promising approach for overcoming tumour heterogeneity. Journal of Drug Targeting, 2018, 26, 649-657.	2.1	9
1301	The FOXO3-FOXM1 axis: A key cancer drug target and a modulator of cancer drug resistance. Seminars in Cancer Biology, 2018, 50, 77-89.	4.3	146
1302	Stem Cells in Breast Development and Cancer. , 2018, , 308-314.e2.		2
1303	Semi-synthetic salinomycin analogs exert cytotoxic activity against human colorectal cancer stem cells. Biochemical and Biophysical Research Communications, 2018, 495, 53-59.	1.0	10
1304	The developmental transcription factor IRF6 attenuates ABCG2 gene expression and distinctively reverses stemness phenotype in nasopharyngeal carcinoma. Cancer Letters, 2018, 431, 230-243.	3.2	31
1305	Psychotropic agent thioridazine elicits potent in vitro and in vivo anti-melanoma effects. Biomedicine and Pharmacotherapy, 2018, 97, 833-837.	2.5	22
1306	Transcriptome profile analysis reveals cardiotoxicity of maduramicin in primary chicken myocardial cells. Archives of Toxicology, 2018, 92, 1267-1281.	1.9	19
1307	Mesenchymal stem cell differentiation: Control by calciumâ€activated potassium channels. Journal of Cellular Physiology, 2018, 233, 3755-3768.	2.0	45
1308	Breast cancer stem cells and the challenges of eradication: a review of novel therapies. Stem Cell Investigation, 2018, 5, 39-39.	1.3	48
1309	Expression profile of stem cell pathway genes in patients with advanced breast cancer after neoadjuvant therapy. Journal of Physics: Conference Series, 2018, 1073, 032037.	0.3	1
1310	Towards Resolving the Pro- and Anti-Tumor Effects of the Aryl Hydrocarbon Receptor. International Journal of Molecular Sciences, 2018, 19, 1388.	1.8	45
1311	Dasatinib sensitises triple negative breast cancer cells to chemotherapy by targeting breast cancer stem cells. British Journal of Cancer, 2018, 119, 1495-1507.	2.9	73
1312	Cellular Phenotype Plasticity in Cancer Dormancy and Metastasis. Frontiers in Oncology, 2018, 8, 505.	1.3	28
1313	Modulating ROS to overcome multidrug resistance in cancer. Drug Resistance Updates, 2018, 41, 1-25.	6.5	420
1314	Oxytetracycline have the therapeutic efficiency in CD133+ HCC population through suppression CD133 expression by decreasing of protein stability of CD133. Scientific Reports, 2018, 8, 16100.	1.6	19
1315	Enhanced anticancer effect of oncostatin M combined with salinomycin in CD133+ HepG2 liver cancer cells. Oncology Letters, 2018, 17, 1798-1806.	0.8	7
1316	Tumor heterogeneity of gastric cancer: From the perspective of tumor-initiating cell. World Journal of Gastroenterology, 2018, 24, 2567-2581.	1.4	94

#	Article	IF	CITATIONS
1317	Signaling pathway inhibitors target breast cancer stem cells in triple-negative breast cancer. Oncology Reports, 2019, 41, 437-446.	1.2	26
1318	Development of Small-Molecule MERS-CoV Inhibitors. Viruses, 2018, 10, 721.	1.5	46
1319	Dichloroacetate and Salinomycin Exert a Synergistic Cytotoxic Effect in Colorectal Cancer Cell Lines. Scientific Reports, 2018, 8, 17744.	1.6	19
1320	Tackling tumor heterogeneity and phenotypic plasticity in cancer precision medicine: our experience and a literature review. Cancer and Metastasis Reviews, 2018, 37, 655-663.	2.7	18
1321	WebNetCoffee: a web-based application to identify functionally conserved proteins from Multiple PPI networks. BMC Bioinformatics, 2018, 19, 422.	1.2	5
1322	MSCs inhibit tumor progression and enhance radiosensitivity of breast cancer cells by down-regulating Stat3 signaling pathway. Cell Death and Disease, 2018, 9, 1026.	2.7	73
1323	Cancer Stem Cells in Metastasis Therapy. Advances in Experimental Medicine and Biology, 2018, 1089, 97-113.	0.8	16
1324	RCAN1.4 acts as a suppressor of cancer progression and sunitinib resistance in clear cell renal cell carcinoma. Experimental Cell Research, 2018, 372, 118-128.	1.2	14
1325	Crown ethers reverse P-glycoprotein-mediated multidrug resistance in cancer cells. Scientific Reports, 2018, 8, 14467.	1.6	18
1326	Ionophores: Potential Use as Anticancer Drugs and Chemosensitizers. Cancers, 2018, 10, 360.	1.7	57
1327	Single-Cell Tracking of Breast Cancer Cells Enables Prediction of Sphere Formation from Early Cell Divisions. IScience, 2018, 8, 29-39.	1.9	16
1328	Salinomycin suppresses cancer cell stemness and attenuates TGF- $\hat{1}^2$ -induced epithelial-mesenchymal transition of renal cell carcinoma cells. Chemico-Biological Interactions, 2018, 296, 145-153.	1.7	27
1329	Salinomycin ameliorates oxidative hepatic damage through AMP-activated protein kinase, facilitating autophagy. Toxicology and Applied Pharmacology, 2018, 360, 141-149.	1.3	8
1330	Novel silk fibroin nanoparticles incorporated silk fibroin hydrogel for inhibition of cancer stem cells and tumor growth. International Journal of Nanomedicine, 2018, Volume 13, 5405-5418.	3.3	39
1331	Current report of natural product development against breast cancer stem cells. International Journal of Biochemistry and Cell Biology, 2018, 104, 114-132.	1.2	28
1332	Phosphoglycerate dehydrogenase inhibition induces p-mTOR-independent autophagy and promotes multilineage differentiation in embryonal carcinoma stem-like cells. Cell Death and Disease, 2018, 9, 990.	2.7	22
1333	Codelivery of doxorubicin and elacridar to target both liver cancer cells and stem cells by polylactide-co-glycolide/d-alpha-tocopherol polyethylene glycol 1000 succinate nanoparticles. International Journal of Nanomedicine, 2018, Volume 13, 6855-6870.	3.3	27
1334	Vascular related pathologies in cardiovascular disease and cancer. Health Problems of Civilization, 2018, 12, 163-187.	0.1	0

#	Article	IF	CITATIONS
1335	Deep Tumorâ€Penetrated Nanocages Improve Accessibility to Cancer Stem Cells for Photothermalâ€Chemotherapy of Breast Cancer Metastasis. Advanced Science, 2018, 5, 1801012.	5.6	62
1336	Polymer Thin Film–Induced Tumor Spheroids Acquire Cancer Stem Cell–like Properties. Cancer Research, 2018, 78, 6890-6902.	0.4	20
1337	Assessment of Nuclear ZEB2 as a Biomarker for Colorectal Cancer Outcome and TNM Risk Stratification. JAMA Network Open, 2018, 1, e183115.	2.8	24
1338	Aglycone Polyether Nanchangmycin and Its Homologues Exhibit Apoptotic and Antiproliferative Activities against Cancer Stem Cells. ACS Pharmacology and Translational Science, 2018, 1, 84-95.	2.5	10
1339	Combination of salinomycin and radiation effectively eliminates head and neck squamous cell carcinoma cells in $\hat{A}^-\hat{A}_2\hat{A}^{1/2}$ vitro. Oncology Reports, 2018, 39, 1991-1998.	1.2	3
1340	Apoferritin nanocages loading mertansine enable effective eradiation of cancer stem-like cells in vitro. International Journal of Pharmaceutics, 2018, 553, 201-209.	2.6	8
1341	Identification of a panel of genes as a prognostic biomarker for glioblastoma. EBioMedicine, 2018, 37, 68-77.	2.7	46
1342	Squamous Cell Carcinoma: Biomarkers and Potential Therapeutic Targets. , 2018, , .		2
1343	Cell & Delicular Biology of Prostate Cancer. Advances in Experimental Medicine and Biology, 2018, , .	0.8	9
1344	Differentiation-state plasticity is a targetable resistance mechanism in basal-like breast cancer. Nature Communications, 2018, 9, 3815.	5. 8	137
1345	Inflammation and Prostate Cancer. Advances in Experimental Medicine and Biology, 2018, 1095, 41-65.	0.8	28
1346	Targeting Breast Cancer Stem Cells to Overcome Treatment Resistance. Molecules, 2018, 23, 2193.	1.7	122
1347	Inhibition of Chloride Intracellular Channel 1 (CLIC1) as Biguanide Class-Effect to Impair Human Glioblastoma Stem Cell Viability. Frontiers in Pharmacology, 2018, 9, 899.	1.6	30
1348	Methylglyoxal at metronomic doses sensitizes breast cancer cells to doxorubicin and cisplatin causing synergistic induction of programmed cell death and inhibition of stemness. Biochemical Pharmacology, 2018, 156, 322-339.	2.0	18
1349	Vitamin E-based redox-sensitive salinomycin prodrug-nanosystem with paclitaxel loaded for cancer targeted and combined chemotherapy. Colloids and Surfaces B: Biointerfaces, 2018, 172, 506-516.	2.5	17
1350	Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nature Communications, 2018, 9, 3513.	5.8	85
1351	Defective Replication Stress Response Is Inherently Linked to the Cancer Stem Cell Phenotype. Cell Reports, 2018, 23, 2095-2106.	2.9	37
1352	STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nature Communications, 2018, 9, 1908.	5.8	282

#	Article	IF	CITATIONS
1353	Rapid phenotyping of cancer stem cells using multichannel nanosensor arrays. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1931-1939.	1.7	22
1354	The natural agent 4-vinylphenol targets metastasis and stemness features in breast cancer stem-like cells. Cancer Chemotherapy and Pharmacology, 2018, 82, 185-197.	1.1	12
1355	The enhanced delivery of salinomycin to CD133+ ovarian cancer stem cells through CD133 antibody conjugation with poly(lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles. Oncology Letters, 2018, 15, 6611-6621.	0.8	24
1356	ILK promotes angiogenic activity of mesenchymal stem cells in multiple myeloma. Oncology Letters, 2018, 16, 1101-1106.	0.8	5
1357	Beyond the Blood–Brain Barrier. , 2018, , 397-437.		6
1358	Salinomycin-loaded Nanofibers for Glioblastoma Therapy. Scientific Reports, 2018, 8, 9377.	1.6	39
1359	Stem Cells and Cancer. , 2018, , 271-309.		0
1360	Breast cancer stem cells: Features, key drivers and treatment options. Seminars in Cancer Biology, 2018, 53, 59-74.	4.3	132
1361	Stroma-derived IL-6, G-CSF and Activin-A mediated dedifferentiation of lung carcinoma cells into cancer stem cells. Scientific Reports, 2018, 8, 11573.	1.6	26
1362	Autophagy inhibition synergizes with calcium mobilization to achieve efficient therapy of malignant gliomas. Cancer Science, 2018, 109, 2497-2508.	1.7	16
1363	Mammary Stem Cells and Breast Cancer Stem Cells: Molecular Connections and Clinical Implications. Biomedicines, 2018, 6, 50.	1.4	13
1364	Highly Charged, Cytotoxic, Cyclometalated Iridium(III) Complexes as Cancer Stem Cell Mitochondriotropics. Chemistry - A European Journal, 2018, 24, 15205-15210.	1.7	25
1365	Cytotoxicity of anticancer candidate salinomycin and identification of its metabolites in rat cell cultures. Toxicology in Vitro, 2018, 52, 314-320.	1.1	5
1366	Salinomycin induces apoptosis and differentiation in human acute promyelocytic leukemia cells. Oncology Reports, 2018, 40, 877-886.	1.2	12
1367	Targeting cancer stem cells and their niche: perspectives for future therapeutic targets and strategies. Seminars in Cancer Biology, 2018, 53, 139-155.	4.3	94
1368	Roles of genetic and microenvironmental factors in cancer epithelial-to-mesenchymal transition and therapeutic implication. Experimental Cell Research, 2018, 370, 190-197.	1.2	6
1369	Immune Curbing of Cancer Stem Cells by CTLs Directed to NANOG. Frontiers in Immunology, 2018, 9, 1412.	2.2	40
1370	An Antimicrobial Peptide Induces FIG1-Dependent Cell Death During Cell Cycle Arrest in Yeast. Frontiers in Microbiology, 2018, 9, 1240.	1.5	4

#	Article	IF	Citations
1371	Live-Cell Mesothelioma Biobank to Explore Mechanisms of Tumor Progression. Frontiers in Oncology, 2018, 8, 40.	1.3	15
1372	STARD13-correlated ceRNA network-directed inhibition on YAP/TAZ activity suppresses stemness of breast cancer via co-regulating Hippo and Rho-GTPase/F-actin signaling. Journal of Hematology and Oncology, 2018, 11, 72.	6.9	106
1373	Biological activity of doubly modified salinomycin analogs – Evaluation inÂvitro and exÂvivo. European Journal of Medicinal Chemistry, 2018, 156, 510-523.	2.6	30
1374	Targeting Pancreatic Cancer Cell Plasticity: The Latest in Therapeutics. Cancers, 2018, 10, 14.	1.7	26
1375	The Ever-Evolving Concept of the Cancer Stem Cell in Pancreatic Cancer. Cancers, 2018, 10, 33.	1.7	89
1376	Cancer cell specific inhibition of Wnt/ \hat{l}^2 -catenin signaling by forced intracellular acidification. Cell Discovery, 2018, 4, 37.	3.1	34
1377	Preferential Inhibition of Wnt/ \hat{l}^2 -Catenin Signaling by Novel Benzimidazole Compounds in Triple-Negative Breast Cancer. International Journal of Molecular Sciences, 2018, 19, 1524.	1.8	35
1378	Cancer stem cell in breast cancer therapeutic resistance. Cancer Treatment Reviews, 2018, 69, 152-163.	3.4	197
1379	Salinomycin may inhibit the cancer stemâ€'like populations with increased chemoradioresistance that nasopharyngeal cancer tumorspheres contain. Oncology Letters, 2018, 16, 2495-2500.	0.8	8
1380	Micrometastatic Drug Screening Platform Shows Heterogeneous Response to MAP Chemotherapy in Osteosarcoma Cell Lines. Clinical Orthopaedics and Related Research, 2018, 476, 1400-1411.	0.7	15
1381	Metabolic traits of cancer stem cells. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	63
1382	Marine spongeâ€derived smenospongine preferentially eliminates breast cancer stemâ€like cells via p38/ <scp>AMPK</scp> α pathways. Cancer Medicine, 2018, 7, 3965-3976.	1.3	11
1383	Graphene Oxideâ∈"Silver Nanocomposite Enhances Cytotoxic and Apoptotic Potential of Salinomycin in Human Ovarian Cancer Stem Cells (OvCSCs): A Novel Approach for Cancer Therapy. International Journal of Molecular Sciences, 2018, 19, 710.	1.8	80
1384	Chemical biology of salinomycin. Tetrahedron, 2018, 74, 5585-5614.	1.0	22
1385	Microenvironmental Signals and Biochemical Information Processing: Cooperative Determinants of Intratumoral Plasticity and Heterogeneity. Frontiers in Cell and Developmental Biology, 2018, 6, 44.	1.8	38
1386	Nothing in cancer makes sense except…. BMC Biology, 2018, 16, 22.	1.7	24
1387	Salinomycin, as an autophagy modulator a new avenue to anticancer: a review. Journal of Experimental and Clinical Cancer Research, 2018, 37, 26.	3.5	58
1388	Flubendazole elicits antiâ€metastatic effects in tripleâ€negative breast cancer via STAT3 inhibition. International Journal of Cancer, 2018, 143, 1978-1993.	2.3	64

#	Article	IF	CITATIONS
1389	Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochemical Journal, 2018, 475, 1611-1634.	1.7	205
1391	New Directions in the Study and Treatment of Metastatic Cancer. Frontiers in Oncology, 2018, 8, 258.	1.3	14
1392	Inhibition of GSK3 and MEK induced cancer stem cell generation via the Wnt and MEK signaling pathways. Oncology Reports, 2018, 40, 2005-2013.	1,2	7
1393	Metastatic tumor cells – genotypes and phenotypes. Frontiers in Biology, 2018, 13, 277-286.	0.7	10
1394	The Next Generation of Anticancer Metallopharmaceuticals: Cancer Stem Cellâ€Active Inorganics. ChemBioChem, 2018, 19, 2246-2253.	1.3	46
1395	Visualizing biologically active small molecules in cells using click chemistry. Nature Reviews Chemistry, 2018, 2, 202-215.	13.8	133
1396	Loading Lovastatin into Camptothecin–Floxuridine Conjugate Nanocapsules for Enhancing Anti-metastatic Efficacy of Cocktail Chemotherapy on Triple-negative Breast Cancer. ACS Applied Materials & Diterfaces, 2018, 10, 29385-29397.	4.0	21
1397	Cancer cell plasticity: Impact on tumor progression and therapy response. Seminars in Cancer Biology, 2018, 53, 48-58.	4.3	148
1398	Combined Strategy of Radioactive 125I Seeds and Salinomycin for Enhanced Glioma Chemo-radiotherapy: Evidences for ROS-Mediated Apoptosis and Signaling Crosstalk. Neurochemical Research, 2018, 43, 1317-1327.	1.6	8
1399	The Molecular Basis for Inhibition of Stemlike Cancer Cells by Salinomycin. ACS Central Science, 2018, 4, 760-767.	5. 3	58
1400	Cancer stem cells in triple-negative breast cancer: a potential target and prognostic marker. Biomarkers in Medicine, 2018, 12, 813-820.	0.6	95
1401	Mitostemness. Cell Cycle, 2018, 17, 918-926.	1.3	15
1402	The Kraken Wakes: induced EMT as a driver of tumour aggression and poor outcome. Clinical and Experimental Metastasis, 2018, 35, 285-308.	1.7	47
1403	Telomerase reverse transcriptase coordinates with the epithelial-to-mesenchymal transition through a feedback loop to define properties of breast cancer stem cells. Biology Open, 2018, 7, .	0.6	25
1404	To reduce premature drug release while ensuring burst intracellular drug release of solid lipid nanoparticle-based drug delivery system with clathrin modification. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 108-118.	1.7	23
1405	Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene, 2019, 38, 455-468.	2.6	165
1406	Vasculogenic mimicry is associated with trastuzumab resistance of HER2-positive breast cancer. Breast Cancer Research, 2019, 21, 88.	2.2	36
1407	A proteomics outlook towards the elucidation of epithelial–mesenchymal transition molecular events. Molecular Omics, 2019, 15, 316-330.	1.4	8

#	Article	IF	CITATIONS
1408	Bi-layer blood vessel mimicking microfluidic platform for antitumor drug screening based on co-culturing 3D tumor spheroids and endothelial layers. Biomicrofluidics, 2019, 13, 044108.	1.2	11
1409	Discovery of selective, antimetastatic and anti-cancer stem cell metallohelices <i>via</i> post-assembly modification. Chemical Science, 2019, 10, 8547-8557.	3.7	23
1410	Total ginsenosides extract induce autophagic cell death in NSCLC cells through activation of endoplasmic reticulum stress. Journal of Ethnopharmacology, 2019, 243, 112093.	2.0	17
1411	Sleeping beauty genetic screen identifies miR-23b::BTBD7 gene interaction as crucial for colorectal cancer metastasis. EBioMedicine, 2019, 46, 79-93.	2.7	13
1412	Novel cyclin-dependent kinase 9 (CDK9) inhibitor with suppression of cancer stemness activity against non-small-cell lung cancer. European Journal of Medicinal Chemistry, 2019, 181, 111535.	2.6	34
1413	Targeting Cancer Cell Metastasis by Converting Cancer Cells into Fat. Cancer Research, 2019, 79, 5471-5475.	0.4	29
1414	Marine Microbiome as a Source of Antimalarials. Tropical Medicine and Infectious Disease, 2019, 4, 103.	0.9	5
1415	Salinomycin exerts antiâ€colorectal cancer activity by targeting the βâ€catenin/Tâ€cell factor complex. British Journal of Pharmacology, 2019, 176, 3390-3406.	2.7	30
1416	Numerical Simulation of Erosion of Valve Sealing Surface by High Speed Water Flow Based on ALE Method. Journal of Physics: Conference Series, 2019, 1300, 012006.	0.3	0
1417	Unbiased peptoid combinatorial cell screen identifies plectin protein as a potential biomarker for lung cancer stem cells. Scientific Reports, 2019, 9, 14954.	1.6	27
1418	Discovery of a new pyrimidine synthesis inhibitor eradicating glioblastoma-initiating cells. Neuro-Oncology, 2020, 22, 229-239.	0.6	15
1419	Comparison between tumors in plants and human beings: Mechanisms of tumor development and therapy with secondary plant metabolites. Phytomedicine, 2019, 64, 153081.	2.3	29
1420	Label-Free Estimation of Therapeutic Efficacy on 3D Cancer Spheres Using Convolutional Neural Network Image Analysis. Analytical Chemistry, 2019, 91, 14093-14100.	3.2	29
1421	Microstructure and Mechanical Properties of Polyphosphoric Acid Modified Asphalt. IOP Conference Series: Earth and Environmental Science, 2019, 304, 052031.	0.2	1
1422	Controversies around epithelial–mesenchymal plasticity in cancer metastasis. Nature Reviews Cancer, 2019, 19, 716-732.	12.8	294
1423	Mathematical modeling reveals the factors involved in the phenomena of cancer stem cells stabilization. PLoS ONE, 2019, 14, e0224787.	1.1	4
1424	N-arylpiperazine-containing compound (C2): An enhancer of sunitinib in the treatment of pancreatic cancer, involving D1DR activation. Toxicology and Applied Pharmacology, 2019, 384, 114789.	1.3	8
1425	Flexible Tactile and Shear Force Sensing Array Based on Multilayered Mxene/Carbon Nanotube Composites., 2019,,.		1

#	Article	IF	Citations
1426	In silico identification of thiostrepton as an inhibitor of cancer stem cell growth and an enhancer for chemotherapy in non–smallâ€eell lung cancer. Journal of Cellular and Molecular Medicine, 2019, 23, 8184-8195.	1.6	28
1427	A genomeâ€wide <scp>RNA</scp> i screen reveals essential therapeutic targets of breast cancer stem cells. EMBO Molecular Medicine, 2019, 11, e9930.	3.3	27
1428	BRAF Mutation in Colorectal Rhabdoid and Poorly Differentiated Medullary Carcinomas. Cancers, 2019, 11, 1252.	1.7	4
1429	The Application of Ribosome Engineering to Natural Product Discovery and Yield Improvement in Streptomyces. Antibiotics, 2019, 8, 133.	1.5	34
1430	11PS04 is a new chemical entity identified by microRNA-based biosensing with promising therapeutic potential against cancer stem cells. Scientific Reports, 2019, 9, 11916.	1.6	2
1431	A high-throughput screen to identify novel synthetic lethal compounds for the treatment of E-cadherin-deficient cells. Scientific Reports, 2019, 9, 12511.	1.6	13
1432	Simultaneous targeting of DNA replication and homologous recombination in glioblastoma with a polyether ionophore. Neuro-Oncology, 2019, 22, 216-228.	0.6	8
1433	An anticancer Os(II) bathophenanthroline complex as a human breast cancer stem cell-selective, mammosphere potent agent that kills cells by necroptosis. Scientific Reports, 2019, 9, 13327.	1.6	21
1434	Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Frontiers in Oncology, 2019, 9, 1003.	1.3	42
1435	Decoupling of Nrf2 Expression Promotes Mesenchymal State Maintenance in Non-Small Cell Lung Cancer. Cancers, 2019, 11, 1488.	1.7	7
1436	Melanoma plasticity and phenotypic diversity: therapeutic barriers and opportunities. Genes and Development, 2019, 33, 1295-1318.	2.7	203
1437	High-throughput sequencing of circRNAs reveals novel insights into mechanisms of nigericin in pancreatic cancer. BMC Genomics, 2019, 20, 716.	1.2	14
1438	Nucleolin Is a Functional Binding Protein for Salinomycin in Neuroblastoma Stem Cells. Journal of the American Chemical Society, 2019, 141, 3613-3622.	6.6	35
1439	CD44 splice isoform switching determines breast cancer stem cell state. Genes and Development, 2019, 33, 166-179.	2.7	146
1440	Salinomycin decreases feline sarcoma and carcinoma cell viability when combined with doxorubicin. BMC Veterinary Research, 2019, 15, 36.	0.7	6
1441	Cognate Nonlytic Interactions between CD8+ T Cells and Breast Cancer Cells Induce Cancer Stem Cell–like Properties. Cancer Research, 2019, 79, 1507-1519.	0.4	31
1442	Primitive Cancer Cell States: A Target for Drug Screening?. Trends in Pharmacological Sciences, 2019, 40, 161-171.	4.0	10
1443	Enhancement of salinomycin production by ribosome engineering in Streptomyces albus. Science China Life Sciences, 2019, 62, 276-279.	2.3	16

#	Article	IF	CITATIONS
1444	The ionophore antibiotic gramicidin A inhibits pancreatic cancer stem cells associated with CD47 down-regulation. Cancer Cell International, 2019, 19, 145.	1.8	15
1445	A Triangular Platinum(II) Multinuclear Complex with Cytotoxicity Towards Breast Cancer Stem Cells. Angewandte Chemie - International Edition, 2019, 58, 12059-12064.	7.2	48
1446	MITF controls the TCA cycle to modulate the melanoma hypoxia response. Pigment Cell and Melanoma Research, 2019, 32, 792-808.	1.5	41
1447	A Triangular Platinum(II) Multinuclear Complex with Cytotoxicity Towards Breast Cancer Stem Cells. Angewandte Chemie, 2019, 131, 12187-12192.	1.6	10
1448	Cancer stem cells in breast and prostate: Fact or fiction?. Advances in Cancer Research, 2019, 144, 315-341.	1.9	14
1449	Actinomycin D inhibits the expression of the cystine/glutamate transporter xCT via attenuation of CD133 synthesis in CD133+ HCC. Chemico-Biological Interactions, 2019, 309, 108713.	1.7	12
1450	Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation. Acta Pharmacologica Sinica, 2019, 40, 1219-1227.	2.8	41
1451	Chemische Synthesen und chemische Biologie von Carboxylpolyetherâ€lonophoren: Aktuelle Entwicklungen. Angewandte Chemie, 2019, 131, 13764-13777.	1.6	13
1452	Twiner: correlation-based regularization for identifying common cancer gene signatures. BMC Bioinformatics, 2019, 20, 356.	1.2	12
1453	β-Asarone increases doxorubicin sensitivity by suppressing NF-κB signaling and abolishes doxorubicin-induced enrichment of stem-like population by destabilizing Bmi1. Cancer Cell International, 2019, 19, 153.	1.8	4
1454	Engineered Mesenchymal Stem Cells as Nanocarriers for Cancer Therapy and Diagnosis., 2019,, 19-56.		0
1455	The Triple-negative Breast Cancer Cell Line MDA-MB 231 Is Specifically Inhibited by the Ionophore Salinomycin. Anticancer Research, 2019, 39, 2821-2827.	0.5	28
1456	Ovatodiolides: Scalable Protectionâ€Free Syntheses, Configuration Determination, and Biological Evaluation against Hepatic Cancer Stem Cells. Angewandte Chemie, 2019, 131, 10697-10700.	1.6	1
1457	Cancer Stem Cells: From Birth to Death. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 1-30.	0.1	1
1458	Ovatodiolides: Scalable Protectionâ€Free Syntheses, Configuration Determination, and Biological Evaluation against Hepatic Cancer Stem Cells. Angewandte Chemie - International Edition, 2019, 58, 10587-10590.	7.2	11
1459	Terrosamycins A and B, Bioactive Polyether Ionophores from Streptomyces sp. RKND004 from Prince Edward Island Sediment. Marine Drugs, 2019, 17, 347.	2.2	20
1460	Small Interfering RNA-Mediated Silencing of the Ribophorin II Gene: Advances in the Treatment of Malignant Breast Cancer., 2019,, 27-41.		1
1461	Icaritin: A Novel Natural Candidate for Hematological Malignancies Therapy. BioMed Research International, 2019, 2019, 1-7.	0.9	19

#	Article	IF	CITATIONS
1462	Salinomycin and its derivatives – A new class of multiple-targeted "magic bullets― European Journal of Medicinal Chemistry, 2019, 176, 208-227.	2.6	45
1463	Contribution of Epithelial Plasticity to Therapy Resistance. Journal of Clinical Medicine, 2019, 8, 676.	1.0	42
1464	Enrichment of cancer stemâ€like cells by the induction of epithelialâ€mesenchymal transition using lentiviral vector carrying Eâ€cadherin shRNA in HT29 cell line. Journal of Cellular Physiology, 2019, 234, 22935-22946.	2.0	9
1465	Determinants of Ion-Transporter Cancer Cell Death. CheM, 2019, 5, 2079-2098.	5.8	73
1466	Nanomedicine in Gastric Cancer. Current Clinical Pathology, 2019, , 213-247.	0.0	0
1467	Salinomycin reduces growth, proliferation and metastasis of cisplatin resistant breast cancer cells via NF-kB deregulation. Toxicology in Vitro, 2019, 60, 125-133.	1.1	31
1468	Salinomycin-Loaded Gold Nanoparticles for Treating Cancer Stem Cells by Ferroptosis-Induced Cell Death. Molecular Pharmaceutics, 2019, 16, 2532-2539.	2.3	90
1469	Preclinical animal tumor models to study prevention of colon cancer recurrence by curcumin. , 2019, , 293-307.		2
1470	Polyethers isolated from the marine actinobacterium Streptomyces cacaoi inhibit autophagy and induce apoptosis in cancer cells. Chemico-Biological Interactions, 2019, 307, 167-178.	1.7	20
1471	Gastric Cancer In The Precision Medicine Era. Current Clinical Pathology, 2019, , .	0.0	2
1472	Drug development using pancreatic and lung organoid models., 2019,, 323-342.		0
1473	Pinostrobin inhibits proliferation and induces apoptosis in cancer stem-like cells through a reactive oxygen species-dependent mechanism. RSC Advances, 2019, 9, 12097-12109.	1.7	20
1474	Modulating the Chemical and Biological Properties of Cancer Stem Cell-Potent Copper(II)-Nonsteroidal Anti-Inflammatory Drug Complexes. Molecules, 2019, 24, 1677.	1.7	10
1475	Doxycycline, salinomycin, monensin and ivermectin repositioned as cancer drugs. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1549-1554.	1.0	72
1476	Salinomycin triggers endoplasmic reticulum stress through ATP2A3 upregulation in PC-3 cells. BMC Cancer, 2019, 19, 381.	1.1	18
1477	Salinomycin inhibits breast cancer progression via targeting HIF- $1\hat{1}\pm/VEGF$ mediated tumor angiogenesis in vitro and in vivo. Biochemical Pharmacology, 2019, 164, 326-335.	2.0	46
1478	Using Human Neural Progenitor Cell Models to Conduct Large-Scale Drug Screens for Neurological and Psychiatric Diseases. Methods in Molecular Biology, 2019, 1942, 79-88.	0.4	2
1479	Combined using of paclitaxel and salinomycin active targeting nanostructured lipid carriers against non-small cell lung cancer and cancer stem cells. Drug Delivery, 2019, 26, 281-289.	2.5	36

#	Article	IF	CITATIONS
1480	Effects of D-α-tocopherol polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles on the absorption, pharmacokinetics, and pharmacodynamics of salinomycin sodium. Anti-Cancer Drugs, 2019, 30, 72-80.	0.7	1
1482	Meeting the Challenge of Targeting Cancer Stem Cells. Frontiers in Cell and Developmental Biology, 2019, 7, 16.	1.8	109
1483	Phenethyl Isothiocyanate Exposure Promotes Oxidative Stress and Suppresses Sp1 Transcription Factor in Cancer Stem Cells. International Journal of Molecular Sciences, 2019, 20, 1027.	1.8	19
1484	Activation of the PERK-ATF4 pathway promotes chemo-resistance in colon cancer cells. Scientific Reports, 2019, 9, 3210.	1.6	44
1485	A novel triazole, NMK-T-057, induces autophagic cell death in breast cancer cells by inhibiting γ-secretase–mediated activation of Notch signaling. Journal of Biological Chemistry, 2019, 294, 6733-6750.	1.6	23
1486	Therapeutic Targeting of Cancer Stem Cells: Integrating and Exploiting the Acidic Niche. Frontiers in Oncology, 2019, 9, 159.	1.3	45
1487	Modeling differentiation-state transitions linked to therapeutic escape in triple-negative breast cancer. PLoS Computational Biology, 2019, 15, e1006840.	1.5	18
1488	A Novel Edge Effect Detection Method for Real-Time Cellular Analyzer Using Functional Principal Component Analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 17, 1-1.	1.9	4
1489	Glutathione <i>S</i> â€transferase omega 1 inhibition activates <scp>JNK</scp> â€mediated apoptotic response in breast cancer stem cells. FEBS Journal, 2019, 286, 2167-2192.	2.2	34
1490	Chemical Syntheses and Chemical Biology of Carboxyl Polyether Ionophores: Recent Highlights. Angewandte Chemie - International Edition, 2019, 58, 13630-13642.	7.2	44
1491	Maintenance Defactinib Versus Placebo After First-Line Chemotherapy in Patients With Merlin-Stratified Pleural Mesothelioma: COMMAND—A Double-Blind, Randomized, Phase II Study. Journal of Clinical Oncology, 2019, 37, 790-798.	0.8	79
1492	A High-Throughput Platform for the Generation of Synthetic Ab Clones by Single-Strand Site-Directed Mutagenesis. Molecular Biotechnology, 2019, 61, 410-420.	1.3	1
1493	Small-Molecule Ferroptotic Agents with Potential to Selectively Target Cancer Stem Cells. Scientific Reports, 2019, 9, 5926.	1.6	46
1494	Heterogeneity in Circulating Tumor Cells: The Relevance of the Stem-Cell Subset. Cancers, 2019, 11, 483.	1.7	107
1495	Identification of Bis-Cyclic Guanidines as Antiplasmodial Compounds from Positional Scanning Mixture-Based Libraries. Molecules, 2019, 24, 1100.	1.7	7
1496	Inhibition of thymidine phosphorylase expression by Hsp90 inhibitor potentiates the cytotoxic effect of salinomycin in human non-small-cell lung cancer cells. Toxicology, 2019, 417, 54-63.	2.0	5
1497	High content screening identifies monensin as an EMT-selective cytotoxic compound. Scientific Reports, 2019, 9, 1200.	1.6	25
1498	Notch3 Targeting: A Novel Weapon against Ovarian Cancer Stem Cells. Stem Cells International, 2019, 2019, 1-8.	1.2	22

#	ARTICLE	IF	Citations
1499	Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells. Stem Cells International, 2019, 2019, 1-15.	1.2	220
1500	Salinomycin: Anti-tumor activity in a pre-clinical colorectal cancer model. PLoS ONE, 2019, 14, e0211916.	1.1	27
1501	Transcriptome-based identification of lovastatin as a breast cancer stem cell-targeting drug. Pharmacological Reports, 2019, 71, 535-544.	1.5	29
1502	Development of mi <scp>RNA</scp> â€based therapeutic approaches for cancer patients. Cancer Science, 2019, 110, 1140-1147.	1.7	101
1503	HEAD AND NECK CANCER STEM CELL PROTEOMICS. Journal of Cancer & Allied Specialties, 2019, 5, .	0.1	0
1504	Target Deconvolution of a Multikinase Inhibitor with Antimetastatic Properties Identifies TAOK3 as a Key Contributor to a Cancer Stem Cell–Like Phenotype. Molecular Cancer Therapeutics, 2019, 18, 2097-2110.	1.9	16
1505	Current knowledge on drug resistance and therapeutic approaches to eliminate pancreatic cancer stem cells., 2019,, 69-80.		3
1506	Targeting Breast Cancer Stem Cells: A Methodological Perspective. Current Stem Cell Research and Therapy, 2019, 14, 389-397.	0.6	6
1507	Salinomycin effectively eliminates cancer stem-like cells and obviates hepatic metastasis in uveal melanoma. Molecular Cancer, 2019, 18, 159.	7.9	34
1508	Cancer Stem Cells: Root of the Evil. Critical Reviews in Oncogenesis, 2019, 24, 69-87.	0.2	7
1509	A high-throughput screen identifies that CDK7 activates glucose consumption in lung cancer cells. Nature Communications, 2019, 10, 5444.	5.8	25
1510	An epigenetic screening determines BET proteins as targets to suppress self-renewal and tumorigenicity in canine mammary cancer cells. Scientific Reports, 2019, 9, 17363.	1.6	11
1511	Salinomycin reduces epithelial–mesenchymal transition-mediated multidrug resistance by modifying long noncoding RNA HOTTIP expression in gastric cancer cells. Anti-Cancer Drugs, 2019, 30, 892-899.	0.7	19
1512	Chimeric Antigen Receptor–modified T Cells Repressed Solid Tumors and Their Relapse in an Established Patient-derived Colon Carcinoma Xenograft Model. Journal of Immunotherapy, 2019, 42, 33-42.	1.2	41
1513	microRNAs Tune Oxidative Stress in Cancer Therapeutic Tolerance and Resistance. International Journal of Molecular Sciences, 2019, 20, 6094.	1.8	20
1514	Mitochondrial Involvement in Migration, Invasion and Metastasis. Frontiers in Cell and Developmental Biology, 2019, 7, 355.	1.8	88
1515	Starvation and Pseudo-Starvation as Drivers of Cancer Metastasis through Translation Reprogramming. Cell Metabolism, 2019, 29, 254-267.	7.2	88
1516	A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agent. European Journal of Medicinal Chemistry, 2019, 164, 366-377.	2.6	31

#	Article	IF	CITATIONS
1517	Identification and editing of stem-like cells in methylcholanthrene-induced sarcomas. Oncolmmunology, 2019, 8, e1404212.	2.1	4
1518	SIX2 Mediates Late-Stage Metastasis via Direct Regulation of <i>SOX2</i> and Induction of a Cancer Stem Cell Program. Cancer Research, 2019, 79, 720-734.	0.4	29
1519	TAp73 Modifies Metabolism and Positively Regulates Growth of Cancer Stem–Like Cells in a Redox-Sensitive Manner. Clinical Cancer Research, 2019, 25, 2001-2017.	3.2	25
1520	HDAC6 differentially regulates autophagy in stem-like versus differentiated cancer cells. Autophagy, 2019, 15, 686-706.	4.3	32
1521	Investigating the role of CRIPTOâ€1 (TDGFâ€1) in glioblastoma multiforme U87 cell line. Journal of Cellular Biochemistry, 2019, 120, 7412-7427.	1.2	7
1522	Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Archives of Pharmacal Research, 2019, 42, 14-24.	2.7	133
1523	Gain Fatâ€"Lose Metastasis: Converting Invasive Breast Cancer Cells into Adipocytes Inhibits Cancer Metastasis. Cancer Cell, 2019, 35, 17-32.e6.	7.7	205
1524	B591, a novel specific pan-PI3K inhibitor, preferentially targets cancer stem cells. Oncogene, 2019, 38, 3371-3386.	2.6	21
1525	A comprehensive review of salinomycin derivatives as potent anticancer and anti-CSCs agents. European Journal of Medicinal Chemistry, 2019, 166, 48-64.	2.6	44
1526	Phenotypic Plasticity: Driver of Cancer Initiation, Progression, and Therapy Resistance. Cell Stem Cell, 2019, 24, 65-78.	5.2	399
1527	Aiding and Abetting: How the Tumor Microenvironment Protects Cancer from Chemotherapy. Annual Review of Cancer Biology, 2019, 3, 409-428.	2.3	13
1528	Regulation of tumor cell $\hat{a}\in$ Microenvironment interaction by the autotaxin-lysophosphatidic acid receptor axis. Advances in Biological Regulation, 2019, 71, 183-193.	1.4	51
1529	Cancer cells stemness: A doorstep to targeted therapy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165424.	1.8	96
1530	Screening Therapeutic Agents Specific to Breast Cancer Stem Cells Using a Microfluidic Single ell Cloneâ€Forming Inhibition Assay. Small, 2020, 16, e1901001.	5.2	27
1531	Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene, 2020, 39, 987-1003.	2.6	24
1532	Inhibition of Autotaxin with GLPG1690 Increases the Efficacy of Radiotherapy and Chemotherapy in a Mouse Model of Breast Cancer. Molecular Cancer Therapeutics, 2020, 19, 63-74.	1.9	34
1533	Bone microenvironment signaling of cancer stem cells as a therapeutic target in metastatic prostate cancer. Cell Biology and Toxicology, 2020, 36, 115-130.	2.4	7
1534	Effects of salinomycin and niclosamide on small cell lung cancer and small cell lung cancer circulating tumor cell lines. Investigational New Drugs, 2020, 38, 946-955.	1.2	8

#	Article	IF	CITATIONS
1535	Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Seminars in Cancer Biology, 2020, 62, 134-148.	4.3	23
1536	Synthesis and Anticancer Activity of Tertiary Amides of Salinomycin and Their C20â€oxo Analogues. ChemMedChem, 2020, 15, 236-246.	1.6	12
1537	<scp>TAZ</scp> contributes to osteogenic differentiation of periodontal ligament cells under tensile stress. Journal of Periodontal Research, 2020, 55, 152-160.	1.4	12
1538	Repurposing Antibacterial AM404 As a Potential Anticancer Drug for Targeting Colorectal Cancer Stem-Like Cells. Cancers, 2020, 12, 106.	1.7	15
1539	Gallium(<scp>iii</scp>)-polypyridyl complexes as anti-osteosarcoma stem cell agents. Chemical Communications, 2020, 56, 1509-1512.	2.2	18
1540	The stem cell inhibitor salinomycin decreases colony formation potential and tumorâ€initiating population in docetaxelâ€sensitive and docetaxelâ€resistant prostate cancer cells. Prostate, 2020, 80, 267-273.	1.2	26
1541	Histone deacetylase (HDAC) inhibitors and doxorubicin combinations target both breast cancer stem cells and non-stem breast cancer cells simultaneously. Breast Cancer Research and Treatment, 2020, 179, 615-629.	1.1	31
1542	Imageâ€Based Morphological Profiling Identifies a Lysosomotropic, Ironâ€Sequestering Autophagy Inhibitor. Angewandte Chemie - International Edition, 2020, 59, 5721-5729.	7.2	41
1543	High-Throughput Generation of In Silico Derived Synthetic Antibodies via One-step Enzymatic DNA Assembly of Fragments. Molecular Biotechnology, 2020, 62, 142-150.	1.3	1
1544	HSPA1L Enhances Cancer Stem Cell-Like Properties by Activating IGF1Rβ and Regulating β-Catenin Transcription. International Journal of Molecular Sciences, 2020, 21, 6957.	1.8	9
1545	Promising Applications of Tumor Spheroids and Organoids for Personalized Medicine. Cancers, 2020, 12, 2727.	1.7	72
1546	Immune profiling before treatment is predictive of TLR9-induced antitumor efficacy. Biomaterials, 2020, 263, 120379.	5.7	0
1547	Emerging mechanisms and applications of ferroptosis in the treatment of resistant cancers. Biomedicine and Pharmacotherapy, 2020, 130, 110710.	2.5	48
1548	<p>Salinomycin-Loaded Small-Molecule Nanoprodrugs Enhance Anticancer Activity in Hepatocellular Carcinoma</p> . International Journal of Nanomedicine, 2020, Volume 15, 6839-6854.	3.3	8
1549	Lipid Phosphate Phosphatases and Cancer. Biomolecules, 2020, 10, 1263.	1.8	27
1550	Transcriptomic insight into salinomycin mechanisms in breast cancer cell lines: synergistic effects with dasatinib and induction of estrogen receptor \hat{I}^2 . BMC Cancer, 2020, 20, 661.	1.1	10
1551	Synthesis and Anticancer Activity of Dimeric Polyether Ionophores. Biomolecules, 2020, 10, 1039.	1.8	7
1552	Twist-mediated PAR1 induction is required for breast cancer progression and metastasis by inhibiting Hippo pathway. Cell Death and Disease, 2020, 11, 520.	2.7	29

#	Article	IF	Citations
1553	Differentiation of Tumorigenic C6 Glioma Cells Induced by Enhanced IL-6 Signaling. Medicina (Lithuania), 2020, 56, 625.	0.8	1
1554	Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Molecular Cancer, 2020, 19, 165.	7.9	217
1555	Fatty acid-like Pt(<scp>iv</scp>) prodrugs overcome cisplatin resistance in ovarian cancer by harnessing CD36. Chemical Communications, 2020, 56, 10706-10709.	2.2	26
1556	Cancer stem cells and nanomedicine: new opportunities to combat multidrug resistance?. Drug Discovery Today, 2020, 25, 1651-1667.	3.2	20
1557	Antagonists of the serotonin receptor 5A target human breast tumor initiating cells. BMC Cancer, 2020, 20, 724.	1.1	7
1558	A Novel CD133- and EpCAM-Targeted Liposome With Redox-Responsive Properties Capable of Synergistically Eliminating Liver Cancer Stem Cells. Frontiers in Chemistry, 2020, 8, 649.	1.8	23
1560	ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-30.	1.9	43
1561	Salinomycin Treatment Specifically Inhibits Cell Proliferation of Cancer Stem Cells Revealed by Longitudinal Single Cell Tracking in Combination with Fluorescence Microscopy. Applied Sciences (Switzerland), 2020, 10, 4732.	1.3	5
1562	A Multiâ€action Pt ^{IV} Conjugate with Oleate and Cinnamate Ligands Targets Human Epithelial Growth Factor Receptor HER2 in Aggressive Breast Cancer Cells. Angewandte Chemie - International Edition, 2020, 59, 21157-21162.	7.2	29
1563	High throughput screening setup of a scaleâ€down device for membrane chromatographyâ€aggregate removal of monoclonal antibodies. Biotechnology Progress, 2020, 36, e3055.	1.3	7
1564	Antibiotics for cancer treatment: A double-edged sword. Journal of Cancer, 2020, 11, 5135-5149.	1.2	123
1565	Head and Neck Cancer Stem Cell-Enriched Spheroid Model for Anticancer Compound Screening. Cells, 2020, 9, 1707.	1.8	15
1566	Design of naturally inspired jellyfish-shaped cyclopolylactides to manage osteosarcoma cancer stem cells fate. Materials Science and Engineering C, 2020, 117, 111291.	3.8	8
1567	Pyrvinium Pamoate Induces Death of Triple-Negative Breast Cancer Stem–Like Cells and Reduces Metastases through Effects on Lipid Anabolism. Cancer Research, 2020, 80, 4087-4102.	0.4	36
1568	Assessing the prognostic value of stemness-related genes in breast cancer patients. Scientific Reports, 2020, 10, 18325.	1.6	5
1569	Limiting Self-Renewal of the Basal Compartment by PKA Activation Induces Differentiation and Alters the Evolution of Mammary Tumors. Developmental Cell, 2020, 55, 544-557.e6.	3.1	20
1570	Salinomycin induces autophagic cell death in salinomycin-sensitive melanoma cells through inhibition of autophagic flux. Scientific Reports, 2020, 10, 18515.	1.6	10
1571	Targeting Metabolism in Cancer Cells and the Tumour Microenvironment for Cancer Therapy. Molecules, 2020, 25, 4831.	1.7	69

#	Article	IF	Citations
1572	Therapeutic targeting of KSP in preclinical models of high-risk neuroblastoma. Science Translational Medicine, 2020, 12, .	5.8	22
1573	Salinomycin promotes T-cell proliferation by inhibiting the expression and enzymatic activity of immunosuppressive indoleamine-2,3-dioxygenase in human breast cancer cells. Toxicology and Applied Pharmacology, 2020, 404, 115203.	1.3	17
1574	Salinomycin nanocrystals for colorectal cancer treatment through inhibition of Wnt/ \hat{l}^2 -catenin signaling. Nanoscale, 2020, 12, 19931-19938.	2.8	15
1575	A Multiâ€action Pt IV Conjugate with Oleate and Cinnamate Ligands Targets Human Epithelial Growth Factor Receptor HER2 in Aggressive Breast Cancer Cells. Angewandte Chemie, 2020, 132, 21343-21348.	1.6	7
1576	Molecular Mechanism of Stem Cell Differentiation into Adipocytes and Adipocyte Differentiation of Malignant Tumor. Stem Cells International, 2020, 2020, 1-16.	1.2	35
1577	A Mathematical Model of Average Dynamics in a Stem Cell Hierarchy Suggests the Combinatorial Targeting of Cancer Stem Cells and Progenitor Cells as a Potential Strategy against Tumor Growth. Cancers, 2020, 12, 2590.	1.7	6
1578	Targeting of BCL-2 Family Members during Anticancer Treatment: A Necessary Compromise between Individual Cell and Ecosystemic Responses?. Biomolecules, 2020, 10, 1109.	1.8	4
1579	Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review. Cells, 2020, 9, 1896.	1.8	73
1580	Repurposing Cationic Amphiphilic Drugs and Derivatives to Engage Lysosomal Cell Death in Cancer Treatment. Frontiers in Oncology, 2020, 10, 605361.	1.3	16
1581	Obesity and Cancer Metastasis: Molecular and Translational Perspectives. Cancers, 2020, 12, 3798.	1.7	42
1582	Reconstitution of a miniâ€gene cluster combined with ribosome engineering led to effective enhancement of salinomycin production in ⟨i⟩Streptomyces albus⟨/i⟩. Microbial Biotechnology, 2021, 14, 2356-2368.	2.0	8
1583	Differentiation of Cancer Stem Cells through Nanoparticle Surface Engineering. ACS Nano, 2020, 14, 15276-15285.	7.3	33
1584	Drug Repurposing for Triple-Negative Breast Cancer. Journal of Personalized Medicine, 2020, 10, 200.	1.1	29
1585	SH3RF3 promotes breast cancer stem-like properties via JNK activation and PTX3 upregulation. Nature Communications, 2020, 11, 2487.	5.8	35
1586	Inhibition of Wnt/ \hat{l}^2 -catenin pathway reverses multi-drug resistance and EMT in Oct4+/Nanog+ NSCLC cells. Biomedicine and Pharmacotherapy, 2020, 127, 110225.	2.5	63
1587	The hedgehog pathway regulates cancer stem cells in serous adenocarcinoma of the ovary. Cellular Oncology (Dordrecht), 2020, 43, 601-616.	2.1	23
1588	Breast Cancer Stem Cell Potency of Nickel(II)â€Polypyridyl Complexes Containing Nonâ€steroidal Antiâ€inflammatory Drugs. Chemistry - A European Journal, 2020, 26, 14011-14017.	1.7	10
1589	Pranlukast Antagonizes CD49f and Reduces Stemness in Triple-Negative Breast Cancer Cells Drug Design, Development and Therapy, 2020, Volume 14, 1799-1811.	2.0	4

#	Article	IF	CITATIONS
1590	Breast Cancer Prevention-Is there a Future for Sulforaphane and Its Analogs?. Nutrients, 2020, 12, 1559.	1.7	22
1591	Transition metal chelators, pro-chelators, and ionophores as small molecule cancer chemotherapeutic agents. Chemical Society Reviews, 2020, 49, 3726-3747.	18.7	115
1592	Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Advances, 2020, 10, 19089-19105.	1.7	34
1593	Salinomycin encapsulated PLGA nanoparticles eliminate osteosarcoma cells via inducing/inhibiting multiple signaling pathways: Comparison with free salinomycin. Journal of Drug Delivery Science and Technology, 2020, 58, 101834.	1.4	9
1594	Epithelial–Mesenchymal Transition Programs and Cancer Stem Cell Phenotypes: Mediators of Breast Cancer Therapy Resistance. Molecular Cancer Research, 2020, 18, 1257-1270.	1.5	86
1595	Tumor Models and Cancer Systems Biology for the Investigation of Anticancer Drugs and Resistance Development. Handbook of Experimental Pharmacology, 2020, 265, 269-301.	0.9	2
1596	Chaetocin Abrogates the Self-Renewal of Bladder Cancer Stem Cells via the Suppression of the KMT1A–GATA3–STAT3 Circuit. Frontiers in Cell and Developmental Biology, 2020, 8, 424.	1.8	12
1597	The Relevance of Transcription Factors in Gastric and Colorectal Cancer Stem Cells Identification and Eradication. Frontiers in Cell and Developmental Biology, 2020, 8, 442.	1.8	29
1598	TRIP6 enhances stemness property of breast cancer cells through activation of Wnt/ \hat{l}^2 -catenin. Cancer Cell International, 2020, 20, 51.	1.8	16
1599	Primary Human Hepatocytes, But not HepG2 or Balb/c 3T3 Cells, Efficiently Metabolize Salinomycin and Are Resistant to Its Cytotoxicity. Molecules, 2020, 25, 1174.	1.7	4
1600	A tri-metallic palladium complex with breast cancer stem cell potency. Dalton Transactions, 2020, 49, 4211-4215.	1.6	9
1601	<i>Numb</i> negatively regulates the epithelial-to-mesenchymal transition in colorectal cancer through the Wnt signaling pathway. American Journal of Physiology - Renal Physiology, 2020, 318, G841-G853.	1.6	21
1602	<p>Enhanced and Prolonged Antitumor Effect of Salinomycin-Loaded Gelatinase-Responsive Nanoparticles via Targeted Drug Delivery and Inhibition of Cervical Cancer Stem Cells</p> . International Journal of Nanomedicine, 2020, Volume 15, 1283-1295.	3.3	25
1603	Pharmacological interventions part III. , 2020, , 335-359.		2
1604	Nanocrystallized Oleanolic Acid Better Inhibits Proliferation, Migration and Invasion in Intracranial Glioma via Caspase-3 Pathway. Journal of Cancer, 2020, 11, 1949-1958.	1.2	15
1605	Targeting apoptosis in cancer therapy. Nature Reviews Clinical Oncology, 2020, 17, 395-417.	12.5	1,192
1606	Categorical Matrix Completion With Active Learning for High-Throughput Screening. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2261-2270.	1.9	3
1607	Salinomycin-Loaded Iron Oxide Nanoparticles for Glioblastoma Therapy. Nanomaterials, 2020, 10, 477.	1.9	25

#	Article	IF	CITATIONS
1608	Therapeutic Efficacy of Antibiotics in the Treatment of Chronic Diseases. , 2020, , 11-32.		0
1609	Repurposing old drugs to fight multidrug resistant cancers. Drug Resistance Updates, 2020, 52, 100713.	6.5	60
1610	Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chemical Society Reviews, 2020, 49, 8113-8136.	18.7	110
1611	<p>Salinomycin and Sulforaphane Exerted Synergistic Antiproliferative and Proapoptotic Effects on Colorectal Cancer Cells by Inhibiting the PI3K/Akt Signaling Pathway in vitro and in vivo</p> . OncoTargets and Therapy, 2020, Volume 13, 4957-4969.	1.0	12
1612	Tumor Heterogeneity and Phenotypic Plasticity in Bladder Carcinoma. Journal of the Indian Institute of Science, 2020, 100, 567-578.	0.9	0
1613	A SOX2 Reporter System Identifies Gastric Cancer Stem-Like Cells Sensitive to Monensin. Cancers, 2020, 12, 495.	1.7	29
1614	Imageâ€Based Morphological Profiling Identifies a Lysosomotropic, Ironâ€Sequestering Autophagy Inhibitor. Angewandte Chemie, 2020, 132, 5770-5778.	1.6	11
1615	DMT1 Inhibitors Kill Cancer Stem Cells by Blocking Lysosomal Iron Translocation. Chemistry - A European Journal, 2020, 26, 7369-7373.	1.7	61
1616	Salinomycin Derivatives Kill Breast Cancer Stem Cells by Lysosomal Iron Targeting. Chemistry - A European Journal, 2020, 26, 7416-7424.	1.7	57
1617	Extracellular Matrix Features Discriminate Aggressive HER2-Positive Breast Cancer Patients Who Benefit from Trastuzumab Treatment. Cells, 2020, 9, 434.	1.8	4
1618	Bioactive compounds of Streptomyces: Biosynthesis to applications. Studies in Natural Products Chemistry, 2020, , 467-491.	0.8	13
1619	A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells. Genome Biology, 2020, 21, 33.	3.8	22
1620	Autotaxin and Breast Cancer: Towards Overcoming Treatment Barriers and Sequelae. Cancers, 2020, 12, 374.	1.7	27
1621	(â^')-Epigallocatechin gallate inhibits stemness and tumourigenicity stimulated by AXL receptor tyrosine kinase in human lung cancer cells. Scientific Reports, 2020, 10, 2444.	1.6	32
1622	Plasticity of Cancer Stem Cell: Origin and Role in Disease Progression and Therapy Resistance. Stem Cell Reviews and Reports, 2020, 16, 397-412.	1.7	60
1623	Vimentin Intermediate Filaments as Potential Target for Cancer Treatment. Cancers, 2020, 12, 184.	1.7	150
1624	Overcoming Resistance to Platinum-Based Drugs in Ovarian Cancer by Salinomycin and Its Derivatives—An In Vitro Study. Molecules, 2020, 25, 537.	1.7	22
1625	A Stemness and EMT Based Gene Expression Signature Identifies Phenotypic Plasticity and is A Predictive but Not Prognostic Biomarker for Breast Cancer. Journal of Cancer, 2020, 11, 949-961.	1.2	13

#	Article	IF	CITATIONS
1626	Automated, flexible and versatile manipulation of nanoliter-to-picoliter droplets based on sequential operation droplet array technique. TrAC - Trends in Analytical Chemistry, 2020, 124, 115812.	5.8	32
1627	Monensin, a novel potent MYB inhibitor, suppresses proliferation of acute myeloid leukemia and adenoid cystic carcinoma cells. Cancer Letters, 2020, 479, 61-70.	3.2	44
1628	Combating metastasis of breast cancer cells with a carboplatin analogue containing an all-trans retinoic acid ligand. Dalton Transactions, 2020, 49, 5039-5043.	1.6	2
1629	Molecular Insights Into Therapeutic Potential of Autophagy Modulation by Natural Products for Cancer Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 283.	1.8	39
1630	Polyphenols Extracted from Artemisia annua L. Exhibit Anti-Cancer Effects on Radio-Resistant MDA-MB-231 Human Breast Cancer Cells by Suppressing Stem Cell Phenotype, Î ² -Catenin, and MMP-9. Molecules, 2020, 25, 1916.	1.7	15
1631	A potent CBP/p300-Snail interaction inhibitor suppresses tumor growth and metastasis in wild-type p53-expressing cancer. Science Advances, 2020, 6, eaaw8500.	4.7	32
1632	Role of Wnt/ $\langle i \rangle \hat{l}^2 \langle j \rangle$ -Catenin Signaling in the Chemoresistance Modulation of Colorectal Cancer. BioMed Research International, 2020, 2020, 1-9.	0.9	69
1633	Calcium Channels as Novel Therapeutic Targets for Ovarian Cancer Stem Cells. International Journal of Molecular Sciences, 2020, 21, 2327.	1.8	35
1634	Salinomycin inhibits epigenetic modulator EZH2 to enhance death receptors in colon cancer stem cells. Epigenetics, 2021, 16, 144-161.	1.3	17
1635	Singly and doubly modified analogues of C20-epi-salinomycin: A new group of antiparasitic agents against Trypanosoma brucei. European Journal of Medicinal Chemistry, 2021, 209, 112900.	2.6	6
1636	Diversity of the reaction mechanisms of SAM-dependent enzymes. Acta Pharmaceutica Sinica B, 2021, 11, 632-650.	5.7	44
1637	Breast cancer stem cells, heterogeneity, targeting therapies and therapeutic implications. Pharmacological Research, 2021, 163, 105320.	3.1	71
1638	Limitations of an ex vivo breast cancer model for studying the mechanism of action of the anticancer drug paclitaxel. European Journal of Pharmacology, 2021, 891, 173780.	1.7	10
1639	The roles of collagen in chronic kidney disease and vascular calcification. Journal of Molecular Medicine, 2021, 99, 75-92.	1.7	10
1640	Low-dose salinomycin inhibits breast cancer metastasis by repolarizing tumor hijacked macrophages toward the M1 phenotype. European Journal of Pharmaceutical Sciences, 2021, 157, 105629.	1.9	11
1641	Ester derivatives of salinomycin efficiently eliminate breast cancer cells via ER-stress-induced apoptosis. European Journal of Pharmacology, 2021, 893, 173824.	1.7	5
1642	Differentiation of Cancer Stem Cells by Using Synthetic Small Molecules: Toward New Therapeutic Strategies against Therapy Resistance. ChemMedChem, 2021, 16, 14-29.	1.6	2
1643	Perfluoro- <i>tert</i> -butanol: a cornerstone for high performance fluorine-19 magnetic resonance imaging. Chemical Communications, 2021, 57, 7743-7757.	2.2	20

#	Article	IF	CITATIONS
1644	Metastatic cancer: How one can address the therapeutic challenge. , 2021, , 485-514.		0
1645	Cancer Stem Cells and Advanced Novel Technologies in Oncotherapy. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 486-513.	0.1	0
1646	Small Molecule Regulators of Ferroptosis. Advances in Experimental Medicine and Biology, 2021, 1301, 81-121.	0.8	3
1647	A photoactivated Ir(<scp>iii</scp>) complex targets cancer stem cells and induces secretion of damage-associated molecular patterns in melanoma cells characteristic of immunogenic cell death. Inorganic Chemistry Frontiers, 2021, 8, 4696-4711.	3.0	28
1648	Co-delivery of Salinomycin and Curcumin for Cancer Stem Cell Treatment by Inhibition of Cell Proliferation, Cell Cycle Arrest, and Epithelial–Mesenchymal Transition. Frontiers in Chemistry, 2020, 8, 601649.	1.8	17
1649	Combined delivery of salinomycin and docetaxel by dual-targeting gelatinase nanoparticles effectively inhibits cervical cancer cells and cancer stem cells. Drug Delivery, 2021, 28, 510-519.	2.5	22
1650	Salinomycin suppresses TGF- \hat{l}^21 -induced EMT by down-regulating MMP-2 and MMP-9 via the AMPK/SIRT1 pathway in non-small cell lung cancer. International Journal of Medical Sciences, 2021, 18, 715-726.	1.1	25
1651	GE11 Modified PLGA/TPGS Nanoparticles Targeting Delivery of Salinomycin to Breast Cancer Cells. Technology in Cancer Research and Treatment, 2021, 20, 153303382110049.	0.8	11
1652	<i>Cis</i> double bond formation in polyketide biosynthesis. Natural Product Reports, 2021, 38, 1445-1468.	5.2	14
1653	Dichloroacetate attenuates the stemness of hepatocellular carcinoma cells via promoting nucleusâ€eytoplasm translocation of <scp>YAP</scp> . Environmental Toxicology, 2021, 36, 975-983.	2.1	9
1654	A novel 3D polycaprolactone high-throughput system for evaluation of toxicity in normoxia and hypoxia. Toxicology Reports, 2021, 8, 627-635.	1.6	5
1655	Potassium Channels in Cancer. Handbook of Experimental Pharmacology, 2021, 267, 253-275.	0.9	6
1656	Studying of Inhibitory Effect of Salinomycin on Glioblastoma U87 Cells. Hans Journal of Biomedicine, 2021, 11, 55-62.	0.0	1
1657	Summary, discussion, and conclusions. , 2021, , 369-385.		0
1658	Promotion of cancer cell stemness by Ras. Biochemical Society Transactions, 2021, 49, 467-476.	1.6	14
1659	Lipid tethering of breast tumor cells reduces cell aggregation during mammosphere formation. Scientific Reports, 2021, 11, 3214.	1.6	7
1660	Synergistic Combination of Calcium and Citrate in Mesoporous Nanoparticles Targets Pleural Tumors. CheM, 2021, 7, 480-494.	5.8	11
1661	Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors. Turkish Journal of Biology, 2021, 45, 1-16.	2.1	5

#	Article	IF	CITATIONS
1662	Nanosized Drug Delivery Systems for Breast Cancer Stem Cell Targeting. International Journal of Nanomedicine, 2021, Volume 16, 1487-1508.	3.3	11
1663	Two novel cell culture models of buccal mucosal oral cancer from patients with no risk-habits of tobacco smoking or chewing. Oral Oncology, 2021, 113, 105131.	0.8	9
1664	Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduction and Targeted Therapy, 2021, 6, 45.	7.1	124
1665	CCN5 activation by free or encapsulated EGCG is required to render tripleâ€negative breast cancer cell viability and tumor progression. Pharmacology Research and Perspectives, 2021, 9, e00753.	1.1	23
1666	Boromycin Has Potent Anti- <i>Toxoplasma</i> and Anti- <i>Cryptosporidium</i> Activity. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	9
1668	Salinomycin Modulates the Expression of mRNAs and miRNAs Related to Stemness in Endometrial Cancer. Current Pharmaceutical Biotechnology, 2021, 22, 317-326.	0.9	6
1669	Thinking Differently about Cancer Treatment Regimens. Cancer Discovery, 2021, 11, 1016-1023.	7.7	29
1670	Ki-67 regulates global gene expression and promotes sequential stages of carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
1671	MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic. Frontiers in Cell and Developmental Biology, 2021, 9, 640587.	1.8	67
1672	Direct Conversion of Human Fibroblasts into Adipocytes Using a Novel Small Molecular Compound: Implications for Regenerative Therapy for Adipose Tissue Defects. Cells, 2021, 10, 605.	1.8	4
1673	In Vitro Antiviral Activities of Salinomycin on Porcine Epidemic Diarrhea Virus. Viruses, 2021, 13, 580.	1.5	9
1674	A pan-cancer perspective analysis reveals the opposite prognostic significance of CD133 in lower grade glioma and papillary renal cell carcinoma. Science Progress, 2021, 104, 003685042110109.	1.0	0
1675	Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression. Cancer and Metastasis Reviews, 2021, 40, 575-588.	2.7	14
1676	Targeting Cancer Stem Cells with Differentiation Agents as an Alternative to Genotoxic Chemotherapy for the Treatment of Malignant Testicular Germ Cell Tumors. Cancers, 2021, 13, 2045.	1.7	5
1677	Salinomycin-loaded injectable thermosensitive hydrogels for glioblastoma therapy. International Journal of Pharmaceutics, 2021, 598, 120316.	2.6	21
1678	Reprogramming Cancer Stem-like Cells with Nanoforskolin Enhances the Efficacy of Paclitaxel in Targeting Breast Cancer. ACS Applied Bio Materials, 2021, 4, 3670-3685.	2.3	15
1679	Targeting of canonical WNT signaling ameliorates experimental sclerodermatous chronic graft-versus-host disease. Blood, 2021, 137, 2403-2416.	0.6	11
1680	Novel Primary Human Cancer Stem-Like Cell Populations from Non-Small Cell Lung Cancer: Inhibition of Cell Survival by Targeting NF-ήB and MYC Signaling. Cells, 2021, 10, 1024.	1.8	13

#	Article	IF	Citations
1681	Understanding Molecular Process and Chemotherapeutics for the Management of Breast Cancer. Current Chemical Biology, 2021, 15, 69-84.	0.2	1
1682	Evaluation of Variances in VEGF-A-D and VEGFR-1-3 Expression in the Ishikawa Endometrial Cancer Cell Line Treated with Salinomycin and Anti-Angiogenic/Lymphangiogenic Effect. Current Pharmaceutical Biotechnology, 2021, 22, 697-705.	0.9	1
1683	Cancer drug resistance induced by EMT:Ânovel therapeutic strategies. Archives of Toxicology, 2021, 95, 2279-2297.	1.9	92
1684	Revisiting the role of lysophosphatidic acid in stem cell biology. Experimental Biology and Medicine, 2021, 246, 1802-1809.	1.1	4
1685	Lysosome Fe 2+ release is responsible for etoposide―and cisplatin―induced stemness of small cell lung cancer cells. Environmental Toxicology, 2021, 36, 1654-1663.	2.1	6
1686	DFT based Computational Methodology of IC50 Prediction. Current Computer-Aided Drug Design, 2021, 17, 244-253.	0.8	3
1687	Targeting Wnt Signaling in Endometrial Cancer. Cancers, 2021, 13, 2351.	1.7	35
1688	Aptamer and Peptide-Modified Lipid-Based Drug Delivery Systems in Application of Combined Sequential Therapy of Hepatocellular Carcinoma. ACS Biomaterials Science and Engineering, 2021, 7, 2558-2568.	2.6	7
1689	Bioactive Compounds from Herbal Medicine Targeting Multiple Myeloma. Applied Sciences (Switzerland), 2021, 11, 4451.	1.3	1
1690	Epithelial-mesenchymal transition sensitizes breast cancer cells to cell death via the fungus-derived sesterterpenoid ophiobolin A. Scientific Reports, 2021, 11, 10652.	1.6	9
1691	Evidence of nigericin as a potential therapeutic candidate for cancers: A review. Biomedicine and Pharmacotherapy, 2021, 137, 111262.	2.5	15
1692	Bacteria as a treasure house of secondary metabolites with anticancer potential. Seminars in Cancer Biology, 2022, 86, 998-1013.	4.3	29
1693	Identification of TAZ-Dependent Breast Cancer Vulnerabilities Using a Chemical Genomics Screening Approach. Frontiers in Cell and Developmental Biology, 2021, 9, 673374.	1.8	5
1694	Inhibition of triple negative breast cancer metastasis and invasiveness by novel drugs that target epithelial to mesenchymal transition. Scientific Reports, 2021, 11, 11757.	1.6	14
1695	Natural Products as a Promising Therapeutic Strategy to Target Cancer Stem Cells. Current Medicinal Chemistry, 2022, 29, 741-783.	1.2	12
1696	Combined Anticancer Effect of Plasma-Activated Infusion and Salinomycin by Targeting Autophagy and Mitochondrial Morphology. Frontiers in Oncology, 2021, 11, 593127.	1.3	15
1697	Acidityâ€Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer. Advanced Materials, 2021, 33, e2101155.	11.1	180
1698	Cellular dormancy in minimal residual disease following targeted therapy. Breast Cancer Research, 2021, 23, 63.	2.2	16

#	Article	IF	CITATIONS
1699	Targeted nanoformulation of C1 inhibits the growth of KB spheroids and cancer stem cell-enriched MCF-7 mammospheres. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111702.	2.5	2
1700	Vasculogenic mimicry, a complex and devious process favoring tumorigenesis – Interest in making it a therapeutic target. , 2021, 223, 107805.		42
1701	Reporter gene systems for the identification and characterization of cancer stem cells. World Journal of Stem Cells, 2021, 13, 861-876.	1.3	5
1702	Effect of salinomycin on EMT and stemness pathways in 5-FU-resistant breast cancer. Advances in Cancer Biology Metastasis, 2021, 1, 100004.	1.1	1
1703	Salinomycin triggers prostate cancer cell apoptosis by inducing oxidative and endoplasmic reticulum stress via suppressing Nrf2 signaling. Experimental and Therapeutic Medicine, 2021, 22, 946.	0.8	15
1704	Trailblazing perspectives on targeting breast cancer stem cells. , 2021, 223, 107800.		20
1705	Afatinib induces pro-survival autophagy and increases sensitivity to apoptosis in stem-like HNSCC cells. Cell Death and Disease, 2021, 12, 728.	2.7	14
1706	Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications. Frontiers in Oncology, 2021, 11, 654428.	1.3	24
1707	Salinomycin-Based Drug Delivery Systems: Overcoming the Hurdles in Cancer Therapy. Pharmaceutics, 2021, 13, 1120.	2.0	11
1708	Chromatin insulation dynamics in glioblastoma: challenges and future perspectives of precision oncology. Clinical Epigenetics, 2021, 13, 150.	1.8	9
1709	Phenotypic screening system using three-dimensional (3D) culture models for natural product screening. Journal of Antibiotics, 2021, 74, 660-666.	1.0	3
1710	Dynamic EMT: a multiâ€ŧool for tumor progression. EMBO Journal, 2021, 40, e108647.	3.5	291
1711	A high-throughput screen identifies inhibitors of lung cancer stem cells. Biomedicine and Pharmacotherapy, 2021, 140, 111748.	2.5	8
1712	An insight into the cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer. Future Oncology, 2021, 17, 4185-4206.	1.1	68
1713	Lipid nanocapsules co-encapsulating paclitaxel and salinomycin for eradicating breast cancer and cancer stem cells. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111775.	2.5	24
1714	Engineering Amyloid Aggregation as a New Way to Eliminate Cancer Stem Cells by the Disruption of Iron Homeostasis. Nano Letters, 2021, 21, 7379-7387.	4.5	7
1715	Influences of the 3D microenvironment on cancer cell behaviour and treatment responsiveness: A recent update on lung, breast and prostate cancer models. Acta Biomaterialia, 2021, 132, 360-378.	4.1	25
1716	Heterogeneity of Circulating Tumor Cell Neoplastic Subpopulations Outlined by Single-Cell Transcriptomics. Cancers, 2021, 13, 4885.	1.7	17

#	Article	IF	CITATIONS
1717	Niclosamide and Pyrvinium Are Both Potential Therapeutics for Osteosarcoma, Inhibiting Wnt–Axin2–Snail Cascade. Cancers, 2021, 13, 4630.	1.7	9
1718	M1 Macrophage-Derived Exosomes Loaded with Gemcitabine and Deferasirox against Chemoresistant Pancreatic Cancer. Pharmaceutics, 2021, 13, 1493.	2.0	45
1719	Single and double modified salinomycin analogs target stem-like cells in 2D and 3D breast cancer models. Biomedicine and Pharmacotherapy, 2021, 141, 111815.	2.5	7
1720	HER2 Signaling and Breast Cancer Stem Cells: The Bridge behind HER2-Positive Breast Cancer Aggressiveness and Therapy Refractoriness. Cancers, 2021, 13, 4778.	1.7	27
1721	Establishing an efficient salinomycin biosynthetic pathway in three heterologous <i>Streptomyces</i> hosts by constructing a 106â€kb multioperon artificial gene cluster. Biotechnology and Bioengineering, 2021, 118, 4668-4677.	1.7	3
1722	Synthesis and Characterization of Salinomycin-Loaded High-Density Lipoprotein and Its Effects on Cervical Cancer Cells and Cervical Cancer Stem Cells. International Journal of Nanomedicine, 2021, Volume 16, 6367-6382.	3.3	3
1723	In Situ Programmable DNA Circuit-Promoted Electrochemical Characterization of Stemlike Phenotype in Breast Cancer. Journal of the American Chemical Society, 2021, 143, 16078-16086.	6.6	30
1724	Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models. IScience, 2021, 24, 103052.	1.9	58
1725	The involvement of epithelial-to-mesenchymal transition in doxorubicin resistance: Possible molecular targets. European Journal of Pharmacology, 2021, 908, 174344.	1.7	25
1726	Evaluation of the anticancer activity of singly and doubly modified analogues of C20-epi-salinomycin. European Journal of Pharmacology, 2021, 908, 174347.	1.7	7
1727	Transcriptional Profiling of Tumorspheres Reveals TRPM4 as a Novel Stemness Regulator in Breast Cancer. Biomedicines, 2021, 9, 1368.	1.4	9
1728	Exploring vulnerabilities of quiescent tumor cells by targeting mitochondrial bioenergetics. , 2021, , 547-564.		0
1729	Cancer Stem Cell Metabolism. Advances in Experimental Medicine and Biology, 2021, 1311, 161-172.	0.8	3
1730	The Great Escape: The Power of Cancer Stem Cells to Evade Programmed Cell Death. Cancers, 2021, 13, 328.	1.7	23
1731	Simultaneous immunodetection of ionophore antibiotics, salinomycin and narasin, in poultry products and milk. Analytical Methods, 2021, 13, 1550-1558.	1.3	5
1732	Screening and identification of potential biomarkers and therapeutic drugs in melanoma via integrated bioinformatics analysis. Investigational New Drugs, 2021, 39, 928-948.	1.2	3
1733	Epithelial-Mesenchymal Transition (EMT) as a Therapeutic Target. Cells Tissues Organs, 2022, 211, 157-182.	1.3	70
1734	Highâ€Throughput Assessment of Mammalian Cell Viability by Determination of Adenosine Triphosphate Levels. Current Protocols in Chemical Biology, 2010, 2, 153-161.	1.7	19

#	Article	IF	Citations
1735	Targeting Cancer Lysosomes with Good Old Cationic Amphiphilic Drugs. Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 107-152.	0.9	12
1736	Breast Cancer Stem Cells: Responsible for Therapeutic Resistance and Relapse?., 2013, , 385-398.		1
1737	Stem Cells in the Normal and Malignant Prostate. , 2013, , 3-41.		2
1738	Dietary Phytochemicals Target Cancer Stem Cells for Cancer Chemoprevention., 2013,, 85-125.		3
1739	Breast Cancer Stem Cells: Role in Tumor Initiation, Progression, and Targeted Therapy. Molecular Pathology Library, 2015, , 63-77.	0.1	1
1740	Evaluation of Anticancer Agents Using Flow Cytometry Analysis of Cancer Stem Cells. Methods in Molecular Biology, 2011, 716, 179-191.	0.4	17
1742	Use of Microarray Analysis to Investigate EMT Gene Signatures. Methods in Molecular Biology, 2013, 1046, 85-95.	0.4	2
1743	Isolation of Melanoma Cell Subpopulations Using Negative Selection. Methods in Molecular Biology, 2014, 1102, 501-512.	0.4	5
1744	MicroRNA Targeted Therapy for Overcoming Drug Resistance, Reversal of EMT and Elimination of Cancer Stem Cells in Prostate and Pancreatic Cancer., 2014, , 199-217.		3
1745	The Many Faces of Prolactin in Breast Cancer. Advances in Experimental Medicine and Biology, 2015, 846, 61-81.	0.8	12
1746	Drivers of EMT and Immune Evasion. , 2017, , 221-239.		1
1747	MicroRNAs and Cancer Stem Cells. , 2011, , 373-388.		4
1748	MicroRNA: Potential Targets for the Development of Novel Drugs?. Drugs in R and D, 2010, 10, 1-8.	1.1	1
1749	Salinomycin-loaded PLA nanoparticles: drug quantification by GPC and wave voltammetry and biological studies on osteosarcoma cancer stem cells. Analytical and Bioanalytical Chemistry, 2020, 412, 4681-4690.	1.9	14
1751	Mediating K ⁺ /H ⁺ Transport on Organelle Membranes to Selectively Eradicate Cancer Stem Cells with a Small Molecule. Journal of the American Chemical Society, 2020, 142, 10769-10779.	6.6	32
1752	Epithelial–mesenchymal transition in prostate cancer: providing new targets for therapy. Asian Journal of Andrology, 2011, 13, 179-180.	0.8	4
1753	Chapter 9. Metakaryotic Cancer Stem Cells are Constitutively Resistant to X-Rays and Chemotherapeutic Agents, but Sensitive to Many Common Drugs. Issues in Toxicology, 2016, , 196-249.	0.2	3
1754	Approach to nigericin derivatives and their therapeutic potential. RSC Advances, 2020, 10, 43085-43091.	1.7	5

#	Article	IF	CITATIONS
1758	Diversity, Bioactivity and Drug Development of Cultivable Actinobacteria in Six Species of Bird Feces. American Journal of BioScience, 2014, 2, 13.	0.3	6
1759	Epithelial-Mesenchymal Transition—A Hallmark of Breast Cancer Metastasis. Cancer Hallmarks, 2013, 1, 38-49.	0.9	135
1760	RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. Journal of Clinical Investigation, 2016, 126, 3739-3757.	3.9	107
1761	Breast Cancer and Cancer Stem Cells: A Mini-Review. Tumori, 2014, 100, 363-369.	0.6	19
1762	Cancer Stem Cells of Sarcoma. , 2013, , 23-78.		2
1763	Curcumol Controls Choriocarcinoma Stem-Like Cells Self-Renewal via Repression of DNA Methyltransferase (DNMT)- and Histone Deacetylase (HDAC)-Mediated Epigenetic Regulation. Medical Science Monitor, 2018, 24, 461-472.	0.5	18
1764	Epithelial to Mesenchymal Transition Is Mechanistically Linked with Stem Cell Signatures in Prostate Cancer Cells. PLoS ONE, 2010, 5, e12445.	1.1	354
1765	Markers of Tumor-Initiating Cells Predict Chemoresistance in Breast Cancer. PLoS ONE, 2010, 5, e15630.	1.1	60
1766	Up-Regulation of Sonic Hedgehog Contributes to TGF- \hat{l}^2 1-Induced Epithelial to Mesenchymal Transition in NSCLC Cells. PLoS ONE, 2011, 6, e16068.	1.1	119
1767	Rac1 Targeting Suppresses Human Non-Small Cell Lung Adenocarcinoma Cancer Stem Cell Activity. PLoS ONE, 2011, 6, e16951.	1.1	54
1768	An In Vitro Model That Recapitulates the Epithelial to Mesenchymal Transition (EMT) in Human Breast Cancer. PLoS ONE, 2011, 6, e17083.	1.1	45
1769	EGFR Kinase Promotes Acquisition of Stem Cell-Like Properties: A Potential Therapeutic Target in Head and Neck Squamous Cell Carcinoma Stem Cells. PLoS ONE, 2012, 7, e32459.	1.1	67
1770	Small Molecule Antagonists of the Wnt/Beta-Catenin Signaling Pathway Target Breast Tumor-Initiating Cells in a Her2/Neu Mouse Model of Breast Cancer. PLoS ONE, 2012, 7, e33976.	1.1	88
1771	Isocorydine Inhibits Cell Proliferation in Hepatocellular Carcinoma Cell Lines by Inducing G2/M Cell Cycle Arrest and Apoptosis. PLoS ONE, 2012, 7, e36808.	1.1	39
1772	EMT and Stem Cell-Like Properties Associated with HIF-2α Are Involved in Arsenite-Induced Transformation of Human Bronchial Epithelial Cells. PLoS ONE, 2012, 7, e37765.	1.1	44
1773	Low Molecular Weight Heparin Ablates Lung Cancer Cisplatin-Resistance by Inducing Proteasome-Mediated ABCG2 Protein Degradation. PLoS ONE, 2012, 7, e41035.	1.1	37
1774	Residual Tumor Cells That Drive Disease Relapse after Chemotherapy Do Not Have Enhanced Tumor Initiating Capacity. PLoS ONE, 2012, 7, e45647.	1.1	15
1775	Salinomycin Inhibits Proliferation and Induces Apoptosis of Human Hepatocellular Carcinoma Cells In Vitro and In Vivo. PLoS ONE, 2012, 7, e50638.	1.1	87

#	Article	IF	CITATIONS
1776	Nicotine Promotes Acquisition of Stem Cell and Epithelial-to-Mesenchymal Properties in Head and Neck Squamous Cell Carcinoma. PLoS ONE, 2012, 7, e51967.	1.1	46
1777	Sub-Sets of Cancer Stem Cells Differ Intrinsically in Their Patterns of Oxygen Metabolism. PLoS ONE, 2013, 8, e62493.	1.1	80
1778	CD49fhigh Cells Retain Sphere-Forming and Tumor-Initiating Activities in Human Gastric Tumors. PLoS ONE, 2013, 8, e72438.	1.1	31
1779	Differential Effects of Drugs Targeting Cancer Stem Cell (CSC) and Non-CSC Populations on Lung Primary Tumors and Metastasis. PLoS ONE, 2013, 8, e79798.	1.1	75
1780	Salinomycin Activates AMP-Activated Protein Kinase-Dependent Autophagy in Cultured Osteoblastoma Cells: A Negative Regulator against Cell Apoptosis. PLoS ONE, 2013, 8, e84175.	1.1	44
1781	The Synergistic In Vitro and In Vivo Antitumor Effect of Combination Therapy with Salinomycin and 5-Fluorouracil against Hepatocellular Carcinoma. PLoS ONE, 2014, 9, e97414.	1.1	43
1782	Epigenetic Mechanisms Underlying the Dynamic Expression of Cancer-Testis Genes, PAGE2, -2B and SPANX-B, during Mesenchymal-to-Epithelial Transition. PLoS ONE, 2014, 9, e107905.	1.1	13
1783	Histone Deacetylase 1/Sp1/MicroRNA-200b Signaling Accounts for Maintenance of Cancer Stem-Like Cells in Human Lung Adenocarcinoma. PLoS ONE, 2014, 9, e109578.	1.1	24
1784	Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells. PLoS ONE, 2015, 10, e0134793.	1.1	19
1785	Inhibition of Phosphatidylcholine-Specific Phospholipase C Interferes with Proliferation and Survival of Tumor Initiating Cells in Squamous Cell Carcinoma. PLoS ONE, 2015, 10, e0136120.	1.1	20
1786	High-Throughput Method for Automated Colony and Cell Counting by Digital Image Analysis Based on Edge Detection. PLoS ONE, 2016, 11, e0148469.	1.1	90
1787	Chemical Screens Identify Drugs that Enhance or Mitigate Cellular Responses to Antibody-Toxin Fusion Proteins. PLoS ONE, 2016, 11, e0161415.	1.1	8
1788	Targeting Epithelial-Mesenchymal Transition for Identification of Inhibitors for Pancreatic Cancer Cell Invasion and Tumor Spheres Formation. PLoS ONE, 2016, 11, e0164811.	1.1	17
1789	Cancer stem cells and autophagy: Facts and Perspectives. Journal of Cancer Stem Cell Research, 2014, 2, 1.	1.1	12
1790	A Dickens Tale of the Treatment of Advanced Breast Cancer: The Past, the Present, and the Future. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2012, , 28-38.	1.8	4
1791	Breast cancer stem-like cells: Clinical implications and therapeutic strategies. Medicine and Pharmacy Reports, 2016, 89, 193-198.	0.2	11
1792	Cancer stem cells in tumor pathogenesis after cryoablation. Problems of Cryobiology and Cryomedicine, 2015, 25, 205-218.	0.3	3
1793	Breast cancer and cancer stem cells: a mini-review. Tumori, 2014, 100, 363-9.	0.6	20

#	Article	IF	Citations
1795	Image Boundary, Corner, and Edge Detection: Past, Present, and Future. International Journal of Computer and Electrical Engineering, 2020, 12, 39-57.	0.2	5
1797	TGF-Î ² signaling regulates <i>SPOP</i> expression and promotes prostate cancer cell stemness. Aging, 2020, 12, 7747-7760.	1.4	13
1798	Overcoming EMT-driven therapeutic resistance by BH3 mimetics. Oncoscience, 2014, 1, 706-708.	0.9	12
1799	Salinomycin co-treatment enhances tamoxifen cytotoxicity in luminal A breast tumor cells by facilitating lysosomal degradation of receptor tyrosine kinases. Oncotarget, 2016, 7, 50461-50476.	0.8	17
1800	Serotonin transporter antagonists target tumor-initiating cells in a transgenic mouse model of breast cancer. Oncotarget, 2016, 7, 53137-53152.	0.8	22
1801	MZF-1/Elk-1 interaction domain as therapeutic target for protein kinase Cα-based triple-negative breast cancer cells. Oncotarget, 2016, 7, 59845-59859.	0.8	18
1802	Clinical significance of putative markers of cancer stem cells in gastric cancer: A retrospective cohort study. Oncotarget, 2016, 7, 62049-62069.	0.8	29
1803	Dual targeting of androgen receptor and mTORC1 by salinomycin in prostate cancer. Oncotarget, 2016, 7, 62240-62254.	0.8	23
1804	Low-dose salinomycin induces anti-leukemic responses in AML and MLL. Oncotarget, 2016, 7, 73448-73461.	0.8	11
1805	Identification of DNA-PKcs as a primary resistance factor of salinomycin in osteosarcoma cells. Oncotarget, 2016, 7, 79417-79427.	0.8	30
1806	WM130 preferentially inhibits hepatic cancer stem-like cells by suppressing AKT/GSK3 \hat{l}^2/\hat{l}^2 -catenin signaling pathway. Oncotarget, 2016, 7, 79544-79556.	0.8	15
1807	Immunological targeting of tumor cells undergoing an epithelial-mesenchymal transition via a recombinant brachyury-yeast vaccine. Oncotarget, 2013, 4, 1777-1790.	0.8	63
1808	ERN1 and ALPK1 inhibit differentiation of bi-potential tumor-initiating cells in human breast cancer. Oncotarget, 2016, 7, 83278-83293.	0.8	19
1809	Combining a GSI and BCL-2 inhibitor to overcome melanoma's resistance to current treatments. Oncotarget, 2016, 7, 84594-84607.	0.8	23
1810	New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate. Oncotarget, 2017, 8, 1007-1022.	0.8	22
1811	Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype. Oncotarget, 2017, 8, 10580-10593.	0.8	15
1812	Targeting of apoptotic pathways by SMAC or BH3 mimetics distinctly sensitizes paclitaxel-resistant triple negative breast cancer cells. Oncotarget, 2017, 8, 45088-45104.	0.8	22
1813	Niclosamide is a potential therapeutic for familial adenomatosis polyposis by disrupting Axin-GSK3 interaction. Oncotarget, 2017, 8, 31842-31855.	0.8	29

#	Article	IF	CITATIONS
1814	<i>BRCA1</i> haploinsufficiency cell-autonomously activates RANKL expression and generates denosumab-responsive breast cancer-initiating cells. Oncotarget, 2017, 8, 35019-35032.	0.8	12
1815	Artesunate overcomes drug resistance in multiple myeloma by inducing mitochondrial stress and non-caspase apoptosis. Oncotarget, 2014, 5, 4118-4128.	0.8	35
1816	Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range. Oncotarget, 2014, 5, 3287-3306.	0.8	95
1817	Involvement of FoxQ1 in NSCLC through regulating EMT and increasing chemosensitivity. Oncotarget, 2014, 5, 9689-9702.	0.8	45
1818	4EGI-1 targets breast cancer stem cells by selective inhibition of translation that persists in CSC maintenance, proliferation and metastasis. Oncotarget, 2014, 5, 6028-6037.	0.8	29
1819	The nutritional phenome of EMT-induced cancer stem-like cells. Oncotarget, 2014, 5, 3970-3982.	0.8	61
1820	MYC is downregulated by a mitochondrial checkpoint mechanism. Oncotarget, 2017, 8, 90225-90237.	0.8	13
1821	Eradicating cancer cells: struggle with a chameleon. Oncotarget, 2011, 2, 99-101.	0.8	14
1822	Salinomycin inhibits cholangiocarcinoma growth by inhibition of autophagic flux. Oncotarget, 2018, 9, 3619-3630.	0.8	11
1823	Induced cancer stem-like cells as a model for biological screening and discovery of agents targeting phenotypic traits of cancer stem cell. Oncotarget, 2014, 5, 8665-8680.	0.8	51
1824	Combining targeted drugs to overcome and prevent resistance of solid cancers with some stem-like cell features. Oncotarget, 2014, 5, 9295-9307.	0.8	12
1825	Loss of inter-cellular cooperation by complete epithelial-mesenchymal transition supports favorable outcomes in basal breast cancer patients. Oncotarget, 2018, 9, 20018-20033.	0.8	20
1826	CDKL2 promotes epithelial-mesenchymal transition and breast cancer progression. Oncotarget, 2014, 5, 10840-10853.	0.8	32
1827	Molecular profiling and computational network analysis of TAZ-mediated mammary tumorigenesis identifies actionable therapeutic targets. Oncotarget, 2014, 5, 12166-12176.	0.8	24
1828	Bcl-xL mediates therapeutic resistance of a mesenchymal breast cancer cell subpopulation. Oncotarget, 2014, 5, 11778-11791.	0.8	30
1829	Metformin and salinomycin as the best combination for the eradication of NSCLC monolayer cells and their alveospheres (cancer stem cells) irrespective of EGFR, KRAS, EML4/ALK and LKB1 status. Oncotarget, 2014, 5, 12877-12890.	0.8	47
1830	Irinotecan treatment and senescence failure promote the emergence of more transformed and invasive cells that depend on anti-apoptotic Mcl-1. Oncotarget, 2015, 6, 409-426.	0.8	42
1831	A switch from CD44+ cell to EMT cell drives the metastasis of prostate cancer. Oncotarget, 2015, 6, 1202-1216.	0.8	54

#	Article	IF	CITATIONS
1832	Inhibition of Wnt signaling and cancer stem cells. Oncotarget, 2011, 2, 587-587.	0.8	15
1833	Senescence versus apoptosis in chemotherapy. Oncotarget, 2015, 6, 4551-4552.	0.8	5
1834	Unraveling the complexity of basal-like breast cancer. Oncotarget, 2011, 2, 588-589.	0.8	12
1835	Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness. Oncotarget, 2015, 6, 10432-10444.	0.8	64
1836	Wnt-C59 arrests stemness and suppresses growth of nasopharyngeal carcinoma in mice by inhibiting the Wnt pathway in the tumor microenvironment. Oncotarget, 2015, 6, 14428-14439.	0.8	48
1837	Functional relevance of a six mesenchymal gene signature in epithelial-mesenchymal transition (EMT) reversal by the triple angiokinase inhibitor, nintedanib (BIBF1120). Oncotarget, 2015, 6, 22098-22113.	0.8	42
1838	A poxviral-based cancer vaccine targeting the transcription factor twist inhibits primary tumor growth and metastases in a model of metastatic breast cancer and improves survival in a spontaneous prostate cancer model. Oncotarget, 2015, 6, 28194-28210.	0.8	26
1839	The metastasis suppressor, NDRG1, inhibits "stemness―of colorectal cancer ⟨i⟩via⟨ i⟩ down-regulation of nuclear β-catenin and CD44. Oncotarget, 2015, 6, 33893-33911.	0.8	40
1840	Targeting stemness is an effective strategy to control <i>EML4-ALK</i> + non-small cell lung cancer cells. Oncotarget, 2015, 6, 40255-40267.	0.8	17
1841	Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. Oncotarget, 2015, 6, 36603-36614.	0.8	57
1842	A novel anti-cancer agent Icaritin suppresses hepatocellular carcinoma initiation and malignant growth through the IL-6/Jak2/Stat3 pathway. Oncotarget, 2015, 6, 31927-31943.	0.8	98
1843	Phenotypic Screening Reveals Topoisomerase I as a Breast Cancer Stem Cell Therapeutic Target. Oncotarget, 2012, 3, 998-1010.	0.8	14
1844	Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells. Oncotarget, 2016, 7, 11332-11348.	0.8	49
1845	High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion. Oncotarget, 2013, 4, 48-63.	0.8	95
1846	Virtual screening-driven repositioning of etoposide as CD44 antagonist in breast cancer cells. Oncotarget, 2016, 7, 23772-23784.	0.8	17
1847	Luteolin is a novel p90 ribosomal S6 kinase (RSK) inhibitor that suppresses Notch4 signaling by blocking the activation of Y-box binding protein-1 (YB-1). Oncotarget, 2013, 4, 329-345.	0.8	49
1848	Analysis of disseminated tumor cells before and after platinum based chemotherapy in primary ovarian cancer. Do stem cell like cells predict prognosis?. Oncotarget, 2016, 7, 26454-26464.	0.8	11
1849	Salinomycin exerts anti-angiogenic and anti-tumorigenic activities by inhibiting vascular endothelial growth factor receptor 2-mediated angiogenesis. Oncotarget, 2016, 7, 26580-26592.	0.8	35

#	Article	IF	Citations
1850	Salinomycin induced ROS results in abortive autophagy and leads to regulated necrosis in glioblastoma. Oncotarget, 2016, 7, 30626-30641.	0.8	55
1851	Suppression of endogenous lipogenesis induces reversion of the malignant phenotype and normalized differentiation in breast cancer. Oncotarget, 2016, 7, 71151-71168.	0.8	40
1852	Tumor acidosis enhances cytotoxic effects and autophagy inhibition by salinomycin on cancer cell lines and cancer stem cells. Oncotarget, 2016, 7, 35703-35723.	0.8	30
1853	A novel anticancer agent SNG1153 inhibits growth of lung cancer stem/progenitor cells. Oncotarget, 2016, 7, 45158-45170.	0.8	7
1854	Cellular plasticity and metastasis in breast cancer: a pre- and post-malignant problem. Journal of Cancer Metastasis and Treatment, 2019, 2019, .	0.5	11
1855	Computational analyses for cancer biology based on exhaustive experimental backgrounds. , 2019, 2, 419-427.		1
1856	<p>Co-Delivery of Docetaxel and Salinomycin to Target Both Breast Cancer Cells and Stem Cells by PLGA/TPGS Nanoparticles</p> . International Journal of Nanomedicine, 2019, Volume 14, 9199-9216.	3.3	60
1857	The Metaboloepigenetic Dimension of Cancer Stem Cells: Evaluating the Market Potential for New Metabostemness-Targeting Oncology Drugs. Current Pharmaceutical Design, 2015, 21, 3644-3653.	0.9	16
1858	Natural Products and Cancer Stem Cells. Current Pharmaceutical Design, 2015, 21, 5547-5557.	0.9	19
1859	Cancer-on-a-chip for Drug Screening. Current Pharmaceutical Design, 2019, 24, 5407-5418.	0.9	10
1860	Eradicating the Roots: Advanced Therapeutic Approaches Targeting Breast Cancer Stem Cells. Current Pharmaceutical Design, 2020, 26, 2009-2021.	0.9	4
1861	Cancer Stem Cell Niche in Colorectal Cancer and Targeted Therapies. Current Pharmaceutical Design, 2020, 26, 1979-1993.	0.9	6
1862	Cell Hierarchy, Metabolic Flexibility and Systems Approaches to Cancer Treatment. Current Pharmaceutical Biotechnology, 2013, 14, 289-299.	0.9	15
1863	Effect of Salinomycin on Expression Pattern of Genes Associated with Apoptosis in Endometrial Cancer Cell Line. Current Pharmaceutical Biotechnology, 2020, 21, 1269-1277.	0.9	4
1864	The Influence of Salinomycin on the Expression Profile of mRNAs Encoding Selected Caspases and MiRNAs Regulating their Expression in Endometrial Cancer Cell Line. Current Pharmaceutical Biotechnology, 2020, 21, 1505-1515.	0.9	2
1865	Nanomedicine: A New Frontier in Cancer Therapeutics. Current Drug Delivery, 2011, 8, 245-253.	0.8	51
1866	Salinomycin: A Novel Anti-Cancer Agent with Known Anti-Coccidial Activities. Current Medicinal Chemistry, 2013, 20, 4095-4101.	1.2	109
1867	Epithelial Mesenchymal Transition and Cancer Stem Cell-Like Phenotypes Facilitate Chemoresistance in Recurrent Ovarian Cancer. Current Cancer Drug Targets, 2010, 10, 268-278.	0.8	201

#	Article	IF	CITATIONS
1868	Systems Biology Approaches to a Rational Drug Discovery Paradigm. Current Topics in Medicinal Chemistry, 2015, 16, 1009-1025.	1.0	25
1869	Novel Therapeutics Against Breast Cancer Stem Cells by Targeting Surface Markers and Signaling Pathways. Current Stem Cell Research and Therapy, 2019, 14, 669-682.	0.6	15
1870	Combination of Salinomycin and AZD3463 Reveals Synergistic Effect on Reducing the Viability of T98G Glioblastoma Cells. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 2267-2273.	0.9	2
1871	Cancer Stem Cells, Models, Drugs and Future Prospective. , 2015, , 135-156.		1
1872	Monensin Induces PC-3 Prostate Cancer Cell Apoptosis via ROS Production and Ca2+ Homeostasis Disruption. Anticancer Research, 2016, 36, 5835-5844.	0.5	35
1873	Salinomycin Abolished STAT3 and STAT1 Interactions and Reduced Telomerase Activity in Colorectal Cancer Cells. Anticancer Research, 2017, 37, 445-454.	0.5	22
1874	Salinomycin Induces Reactive Oxygen Species and Apoptosis in Aggressive Breast Cancer Cells as Mediated with Regulation of Autophagy. Anticancer Research, 2017, 37, 1747-1758.	0.5	27
1875	Histone Deacetylases as New Therapeutic Targets in Triple-negative Breast Cancer: Progress and Promises. Cancer Genomics and Proteomics, 2017, 14, 299-313.	1.0	46
1876	Colon cancer stem cells: implications in carcinogenesis. Frontiers in Bioscience - Landmark, 2011, 16, 1651.	3.0	57
1877	Functional Gene Expression Differentiation of the Notch Signaling Pathway in Female Reproductive Tract Tissues—A Comprehensive Review With Analysis. Frontiers in Cell and Developmental Biology, 2020, 8, 592616.	1.8	10
1878	Synthesis of chemical tools to improve water solubility and promote the delivery of salinomycin to cancer cells. Experimental and Therapeutic Medicine, 2020, 19, 1835-1843.	0.8	4
1879	Salinomycin and its derivatives as potent RET transcriptional inhibitors for the treatment of medullary thyroid carcinoma. International Journal of Oncology, 2020, 56, 348-358.	1.4	11
1880	Enrichment of colorectal cancer stem cells through epithelial-mesenchymal transition via CDH1 knockdown. Molecular Medicine Reports, 2012, 6, 507-12.	1.1	22
1881	Narasin inhibits tumor metastasis and growth of ERα‑positive breast cancer cells by inactivation of the TGFâ€Î²/SMAD3 and IL‑6/STAT3 signaling pathways. Molecular Medicine Reports, 2020, 22, 5113-5124.	1.1	11
1882	Gene Expression Profiling from a Prostate Cancer PC-3 Cell Line Treated with Salinomycin Predicts Cell Cycle Arrest and Endoplasmic Reticulum Stress. Journal of Cancer Science & Therapy, 2013, 05, .	1.7	2
1883	Evolving Concept of Cancer Stem Cells: Role of Micro-RNAs and their Implications in Tumor Aggressiveness. Journal of Carcinogenesis & Mutagenesis, 0, s1, .	0.3	5
1884	Endogenous Voltage Potentials and the Microenvironment: Bioelectric Signals that Reveal, Induce and Normalize Cancer. Journal of Clinical & Experimental Oncology, 2014, s1, .	0.1	73
1885	Energy metabolism in cancer stem cells. World Journal of Stem Cells, 2020, 12, 448-461.	1.3	42

#	Article	IF	CITATIONS
1886	Stem cells in gastrointestinal cancers: The road less travelled. World Journal of Stem Cells, 2014, 6, 606.	1.3	14
1887	Therapies targeting cancer stem cells: Current trends and future challenges. World Journal of Stem Cells, 2015, 7, 1185.	1.3	202
1888	Presence of Leukemia-maintaining Cells in Differentiation-resistant Fraction of K562 Chronic Myelogenous Leukemia. Journal of Life Science, 2013, 23, 197-206.	0.2	1
1889	Correlation of Skp2 overexpression to prognosis of patients with nasopharyngeal carcinoma from South China. Chinese Journal of Cancer, 2011, 30, 204-212.	4.9	32
1890	Tumor microenvironment-based screening repurposes drugs targeting cancer stem cells and cancer-associated fibroblasts. Theranostics, 2021, 11, 9667-9686.	4.6	16
1891	A Strategic Approach to Identification of Selective of Cancer Stem. Methods in Molecular Biology, 2022, 2303, 765-777.	0.4	1
1892	Generation of offspring-producing 3D ovarian organoids derived from female germline stem cells and their application in toxicological detection. Biomaterials, 2021, 279, 121213.	5.7	29
1893	Mesoporous silicon nanoparticles loaded with salinomycin for cancer therapy applications. Microporous and Mesoporous Materials, 2021, 328, 111473.	2.2	6
1894	A screen for cancer killers. Nature, 0, , .	13.7	0
1895	Molecular targeting therapy: Cancer stem cell and invasion/metastasis. Japanese Journal of Head and Neck Cancer, 2010, 36, 442-446.	0.0	0
1896	Cancer Stem Cells and Liver Cancer. , 2010, , 279-299.		0
1897	Relationship of GATA3 with development and progression of breast cancer. Academic Journal of Second Military Medical University, 2010, 30, 787-789.	0.0	O
1898	Tumor Stem Cells: Therapeutic Implications of a Paradigm Shift in Multiple Myeloma., 2011,, 349-362.		0
1899	Stem Cells and Liver Cancer. Molecular Pathology Library, 2011, , 815-829.	0.1	0
1900	Cancer Stem Cells - Therapeutic Boon!. Journal of Cancer Science & Therapy, 2011, 03, .	1.7	8
1901	Cancer Stem Cells: An Innovative Therapeutic Approach. , 2012, , 239-266.		O
1902	Leukemia Stem Cells. , 2012, , 85-103.		0
1903	Immunomodulatory Functions of Cancer Stem Cells. , 2012, , 301-332.		O

#	Article	IF	CITATIONS
1904	Cancer Stem Cells and the Central Nervous System. , 2012, , 105-121.		0
1905	Role of Cancer Stem Cells of Breast, Colon, and Melanoma Tumors in the Response to Antitumor Therapy., 2012,, 157-171.		1
1906	Breast Cancer Stem Cells – A Review. , 0, , .		0
1907	Translating Mammary Stem Cell and Cancer Stem Cell Biology to the Clinics. , 2012, , 433-450.		О
1908	Plasticity of Cancer Stem Cells. , 2012, , 581-591.		0
1910	Recurrent Giant Sarcoma of the Anterior Abdominal Wall. Journal of Cancer Science & Therapy, 2012, 04, .	1.7	1
1911	Biomarkers to Target Heterogeneous Breast Cancer Stem Cells. Journal of Molecular Biomarkers & Diagnosis, 2012, Suppl 8, 6.	0.4	5
1912	Some Results on the Population Behavior of Cancer Stem Cells. SIMAI Springer Series, 2012, , 145-172.	0.4	2
1913	A case of metaplastic carcinoma of the breast. Nihon Rinsho Geka Gakkai Zasshi (Journal of Japan) Tj ETQq0 0 0	rgBJ_¦Ove	rlock 10 Tf 50
1914	The Stem Cell Environment: Kinetics, Signaling and Markers. , 0, , .		O
1914 1915	The Stem Cell Environment: Kinetics, Signaling and Markers. , 0, , . Cancer Stem Cells (CSCs) in Lung Cancer. , 0, , .		0
		0.4	
1915	Cancer Stem Cells (CSCs) in Lung Cancer., 0, , . Basic Issues on Cancer Stem Cells-Concept, In vitro Models and Therapeutic Implications. Niche	0.4	0
1915 1916	Cancer Stem Cells (CSCs) in Lung Cancer., 0, , . Basic Issues on Cancer Stem Cells-Concept, In vitro Models and Therapeutic Implications. Niche Journal, 2012, 1, 17-20.	0.4	0
1915 1916 1917	Cancer Stem Cells (CSCs) in Lung Cancer., 0, , . Basic Issues on Cancer Stem Cells-Concept, In vitro Models and Therapeutic Implications. Niche Journal, 2012, 1, 17-20. Clinical Flow Cytometry - Emerging Applications., 2012, , . Targeting Cancer Stem Cell Efficient DNA Repair Pathways: Screening for New Therapeutics., 2013, ,	0.4	0 0 10
1915 1916 1917 1919	Cancer Stem Cells (CSCs) in Lung Cancer., 0,, Basic Issues on Cancer Stem Cells-Concept, In vitro Models and Therapeutic Implications. Niche Journal, 2012, 1, 17-20. Clinical Flow Cytometry - Emerging Applications., 2012,, Targeting Cancer Stem Cell Efficient DNA Repair Pathways: Screening for New Therapeutics., 2013,, 157-172. Miscellaneous Approaches and Considerations: TLR Agonists and Other Inflammatory Agents, Anti-Chemokine Agents, Infectious Agents, Tumor Stroma Targeting, Age and Sex Effects, and	0.4	0 0 10
1915 1916 1917 1919	Cancer Stem Cells (CSCs) in Lung Cancer. , 0, , . Basic Issues on Cancer Stem Cells-Concept, In vitro Models and Therapeutic Implications. Niche Journal, 2012, 1, 17-20. Clinical Flow Cytometry - Emerging Applications. , 2012, , . Targeting Cancer Stem Cell Efficient DNA Repair Pathways: Screening for New Therapeutics. , 2013, , 157-172. Miscellaneous Approaches and Considerations: TLR Agonists and Other Inflammatory Agents, Anti-Chemokine Agents, Infectious Agents, Tumor Stroma Targeting, Age and Sex Effects, and Miscellaneous Small Molecules. , 2013, , 399-424. Beyond Cancer Stem Cells: Understanding Cancer Heterogeneity Through Gene Regulatory Networks		0 0 10 0

#	Article	IF	CITATIONS
1924	Stem Cells and Cancer. , 2013, , 413-433.		2
1925	Cancer Stem Cells, Wnt, Hedgehog and Notch Signaling, the Role of Dietary Phytochemicals: New Insights for Cancer Therapy. Translational Medicine (Sunnyvale, Calif), 2013, 03, .	0.4	0
1926	Therapy Resistance in Prostate Cancer: A Stem Cell Perspective. Pancreatic Islet Biology, 2013, , 279-300.	0.1	0
1927	Breast Cancer Stem Cells: From Theory to Therapy. , 2013, , 477-489.		1
1928	Tumour Stem Cell Enrichment by Anticancer Drugs: A Potential Mechanism of Tumour Recurrence., 2014, , 9-19.		0
1929	Isolation of Cancer Stem Cells Showing Drug Resistance in the Human Epithelia Ovarian Cancer. Stem Cells and Cancer Stem Cells, 2014, , 103-109.	0.1	0
1930	Biotechnology in Drug Discovery and Development for Cancer. , 2014, , 591-615.		0
1932	The role of epithelial-mesenchymal transition in invasion and metastasis of breast cancers. OA Cancer, 2013, 1, .	0.3	1
1933	Structure and Interaction in Lipid Bilayers Analyzed Using Bicelles. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 596-603.	0.0	0
1934	Predicting Chemotherapy Sensitivity Profiles for Breast Cancer Cell Lines with and Without Stem Cell-Like Features. Current Signal Transduction Therapy, 2014, 8, 268-273.	0.3	1
1936	Non-coding RNAs in Cancer and Cancer Stem Cells. , 2015, , 131-153.		0
1937	Synthetic Lethality with Homologous Recombination Repair Defects. Cancer Drug Discovery and Development, 2015, , 315-344.	0.2	0
1938	Targeting Key Stemness-Related Pathways in Human Cancers. , 2015, , 393-443.		0
1939	Cellular Plasticity, Cancer Stem Cells and Metastasis. , 2015, , 13-66.		0
1940	Targeting Cancer Stem Cells and the Tumor Microenvironment. , 2015, , 445-476.		0
1941	Therapeutic Implications of Cancer Stem Cell: Challenges and Opportunities in Translational Studies. , 2015, , 533-553.		0
1945	THE ROLE OF EPITHELIAL-MESENCHYMAL TRANSITION IN REGULATION OF SOLID TUMORS CANCER STEM CELLS CHARACTERISTICS. , 2015, 14, 3-8.	0.3	2
1946	Cell Proliferation and Differentiation. , 2017, , 11-35.		0

#	Article	IF	CITATIONS
1947	Loss of E-Cadherin Expression and Epithelial Mesenchymal Transition (EMT) as Key Steps in Tumor Progression. Journal of Cancer Prevention & Current Research, 2017, 7, .	0.1	0
1949	Automation In High Throughput/Content Screening For Cancer Stem Cell Drug Discovery. , 2018, , .		0
1950	Breast Cancer Stem Cells and Iron Dependency. Dicle Medical Journal, 0, , .	0.2	0
1953	Combinatorial drug screening of mammary cells with induced mesenchymal transformation to identify drug combinations for triple-negative breast cancer. Oncotarget, 2019, 10, 4822-4839.	0.8	0
1955	Long non-coding RNA <i>FENDRR</i> inhibits the stemenss of colorectal cancer cells through directly binding to <i>Sox2</i> RNA. Bioengineered, 2021, 12, 8698-8708.	1.4	11
1956	Autophagy and Cell Death: Antitumor Drugs Targeting Autophagy. , 0, , .		1
1957	Stiffening of Cancer Cell Membranes Is a Key Biophysical Mechanism of Primary and Tertiary Cancer Prevention with Green Tea Polyphenols. Chemical and Pharmaceutical Bulletin, 2020, 68, 1123-1130.	0.6	3
1958	A Yeast Mutant Screen Identifies TORC and Lys63 Polyubiquitination Pathway Genes among Determinants of Sensitivity to the Cancer Stem Cell-Specific Drug Salinomycin. Journal of Analytical Oncology, 0, 9, 33-45.	0.1	0
1959	Combination Cancer Chemoprevention by Targeting the Epigenome., 2020,, 577-612.		1
1960	miR-497-5p/SALL4 axis promotes stemness phenotype of choriocarcinoma and forms a feedback loop with DNMT-mediated epigenetic regulation. Cell Death and Disease, 2021, 12, 1046.	2.7	10
1961	Cancer Stem Cells: Metabolic Characterization for Targeted Cancer Therapy. Frontiers in Oncology, 2021, 11, 756888.	1.3	14
1962	Selective Inhibition of Esophageal Cancer Stem-like Cells with Salinomycin. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 783-789.	0.9	2
1963	Effect of Danggui-Shaoyao-San-Containing Serum on the Renal Tubular Epithelial-Mesenchymal Transition of Diabetic Nephropathy. Current Pharmaceutical Biotechnology, 2020, 21, 1204-1212.	0.9	8
1964	Androgen deprivation and stem cell markers in prostate cancers. International Journal of Clinical and Experimental Pathology, 2009, 3, 128-38.	0.5	24
1965	Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chirurgica, 2009, 64, 489-500.	0.8	133
1966	Molecular signature of epithelial-mesenchymal transition (EMT) in human prostate cancer bone metastasis. American Journal of Translational Research (discontinued), 2010, 3, 90-9.	0.0	126
1967	Challenges in the development of future treatments for breast cancer stem cells. Breast Cancer: Targets and Therapy, 2010, 2, 1-11.	1.0	13
1968	Regulation of cancer stem cell activities by tumor-associated macrophages. American Journal of Cancer Research, 2012, 2, 529-39.	1.4	24

#	Article	IF	CITATIONS
1970	On the origin and destination of cancer stem cells: a conceptual evaluation. American Journal of Cancer Research, 2013, 3, 107-16.	1.4	14
1973	Differential Expression of Key Signaling Proteins in MCF10 Cell Lines, a Human Breast Cancer Progression Model. Molecular and Cellular Pharmacology, 2012, 4, 31-40.	1.7	36
1975	Salinomycin Suppresses PDGFR \hat{i}^2 , MYC, and Notch Signaling in Human Medulloblastoma. Austin Journal of Pharmacology and Therapeutics, 2014, 2, 1020.	0.0	7
1976	ABCG2 regulated by MAPK pathways is associated with cancer progression in laryngeal squamous cell carcinoma. American Journal of Cancer Research, 2014, 4, 698-709.	1.4	14
1977	Chemotherapy targeting cancer stem cells. American Journal of Cancer Research, 2015, 5, 880-93.	1.4	27
1978	Pancreatic cancer stem cells. American Journal of Cancer Research, 2015, 5, 894-906.	1.4	10
1979	PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. American Journal of Cancer Research, 2015, 5, 1602-9.	1.4	177
1980	Cancer stem cells as a potential therapeutic target in breast cancer. Stem Cell Investigation, 2014, 1, 14.	1.3	7
1981	Fentanyl Inhibits Tumorigenesis from Human Breast Stem Cells by Inducing Apoptosis. Asian Pacific Journal of Cancer Prevention, 2017, 18, 735-739.	0.5	9
1982	The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug. American Journal of Cancer Research, 2018, 8, 317-331.	1.4	56
1983	Tannic acid attenuates the formation of cancer stem cells by inhibiting NF-κB-mediated phenotype transition of breast cancer cells. American Journal of Cancer Research, 2019, 9, 1664-1681.	1.4	6
1986	A reciprocal feedback loop between HIF- $1\hat{l}\pm$ and HPIP controls phenotypic plasticity in breast cancer cells. Cancer Letters, 2022, 526, 12-28.	3.2	10
1987	Salinomycin induces cell cycle arrest and apoptosis and modulates hepatic cytochrome P450 mRNA expression in HepG2/C3a cells. Toxicology Mechanisms and Methods, 2022, 32, 341-351.	1.3	4
1988	Emerging agents that target signaling pathways to eradicate colorectal cancer stem cells. Cancer Communications, 2021, 41, 1275-1313.	3.7	51
1989	M2 macrophage microvesicle-inspired nanovehicles improve accessibility to cancer cells and cancer stem cells in tumors. Journal of Nanobiotechnology, 2021, 19, 397.	4.2	17
1990	Detection of cancer stem cells by EMT-specific biomarker-based peptide ligands. Scientific Reports, 2021, 11, 22430.	1.6	8
1991	Epithelial-Mesenchymal Transition Induces GSDME Transcriptional Activation for Inflammatory Pyroptosis. Frontiers in Cell and Developmental Biology, 2021, 9, 781365.	1.8	8
1992	A Ferroptosis and Pyroptosis Molecular Subtype-Related Signature Applicable for Prognosis and Immune Microenvironment Estimation in Hepatocellular Carcinoma. Frontiers in Cell and Developmental Biology, 2021, 9, 761839.	1.8	24

#	ARTICLE	IF	CITATIONS
1993	Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Medicinal Research Reviews, 2022, 42, 1037-1063.	5.0	33
1994	Pharmacological Targeting of Ferroptosis in Cancer Treatment. Current Cancer Drug Targets, 2022, 22, 108-125.	0.8	7
1995	Recent advances in targeted nanotherapeutic approaches for breast cancer management. Nanomedicine, 2021, 16, 2605-2631.	1.7	11
1996	Mechanisms of Drug Resistance and Use of Nanoparticle Delivery to Overcome Resistance in Breast Cancers. Advances in Experimental Medicine and Biology, 2021, , 163-181.	0.8	4
1997	Expeditive Synthesis of Potent C20-epi-Amino Derivatives of Salinomycin against Cancer Stem-Like Cells. ACS Organic & Inorganic Au, 0, , .	1.9	2
1999	Flubendazole Plays an Important Anti-Tumor Role in Different Types of Cancers. International Journal of Molecular Sciences, 2022, 23, 519.	1.8	7
2000	Rapid Access to Ironomycin Derivatives by Click Chemistry. ACS Organic & Inorganic Au, 0, , .	1.9	1
2001	Impact of Cancer Stem Cells and Cancer Stem Cell-Driven Drug Resiliency in Lung Tumor: Options in Sight. Cancers, 2022, 14, 267.	1.7	11
2002	Nigericin exerts anticancer effects through inhibition of the SRC/STAT3/BCL-2 in osteosarcoma. Biochemical Pharmacology, 2022, 198, 114938.	2.0	6
2003	Targeting NF-κB Signaling in Cancer Stem Cells: A Narrative Review. Biomedicines, 2022, 10, 261.	1.4	11
2004	Synthesis and anti-tumor activity evaluation of salinomycin C20- <i>O</i> -alkyl/benzyl oxime derivatives. Organic and Biomolecular Chemistry, 2022, 20, 870-876.	1.5	5
2005	A novel DNA aptamer targeting lung cancer stem cells exerts a therapeutic effect by binding and neutralizing Annexin A2. Molecular Therapy - Nucleic Acids, 2022, 27, 956-968.	2.3	9
2006	A DFT/PCM Study on the Affinity of Salinomycin to Bind Monovalent Metal Cations. Molecules, 2022, 27, 532.	1.7	3
2007	LC-HRMS-Based Identification of Transformation Products of the Drug Salinomycin Generated by Electrochemistry and Liver Microsome. Antibiotics, 2022, 11, 155.	1.5	3
2009	Mycobacterial Membranes as Actionable Targets for Lipid-Centric Therapy in Tuberculosis. Journal of Medicinal Chemistry, 2022, 65, 3046-3065.	2.9	14
2010	Uncovering drug repurposing candidates for head and neck cancers: insights from systematic pharmacogenomics data analysis. Scientific Reports, 2021, 11, 23933.	1.6	5
2011	Liver cancer: the tumor microenvironment and associated pathways. , 2022, , 59-81.		0
2012	Metal complexes as chemotherapeutic agents. , 2022, , .		0

#	Article	IF	CITATIONS
2013	Intrinsic and Extrinsic Factors Impacting Cancer Stemness and Tumor Progression. Cancers, 2022, 14, 970.	1.7	19
2014	Targeting Epithelial-to-Mesenchymal Transition in Radioresistance: Crosslinked Mechanisms and Strategies. Frontiers in Oncology, 2022, 12, 775238.	1.3	19
2015	Persister cancer cells: Iron addiction and vulnerability to ferroptosis. Molecular Cell, 2022, 82, 728-740.	4.5	92
2016	Integrated Design of a Membraneâ€Lytic Peptideâ€Based Intravenous Nanotherapeutic Suppresses Tripleâ€Negative Breast Cancer. Advanced Science, 2022, 9, e2105506.	5 . 6	7
2017	Synergistic inhibition of the growth of MDAâ€'MBâ€'231 cells in tripleâ€'negative breast cancer by salinomycin combined with 17â€'AAG and its mechanism. Oncology Letters, 2022, 23, 138.	0.8	3
2018	Circulating tumour cells in the -omics era: how far are we from achieving the â€~singularity'?. British Journal of Cancer, 2022, 127, 173-184.	2.9	23
2019	Ion Channel Drugs Suppress Cancer Phenotype in NG108-15 and U87 Cells: Toward Novel Electroceuticals for Glioblastoma. Cancers, 2022, 14, 1499.	1.7	12
2020	Combating Cancer Stem-Like Cell-Derived Resistance to Anticancer Protein by Liposome-Mediated Acclimatization Strategy. Nano Letters, 2022, 22, 2419-2428.	4.5	12
2021	PDGF-R inhibition induces glioblastoma cell differentiation via DUSP1/p38MAPK signalling. Oncogene, 2022, 41, 2749-2763.	2.6	14
2022	Enrichment of cancer stem-like cells by controlling oxygen, glucose and fluid shear stress in a microfluidic spheroid culture device. Journal of Science: Advanced Materials and Devices, 2022, 7, 100439.	1.5	10
2023	Rate of translocation across lipid bilayer of triphenylphosphonium-linked salinomycin derivatives contributes significantly to their K+/H+ exchange activity on membranes. Bioelectrochemistry, 2022, 145, 108089.	2.4	1
2024	Labelâ€Free and In Situ Identification of Cells via Combinational Machine Learning Models. Small Methods, 2022, 6, e2101405.	4.6	2
2025	43 Natural Anticancer Products: Classified under the Cancer Hallmarks and the Available Evidence of their Anticancer Activities. Journal of Cancer Research Updates, 0, 10, 56-81.	0.3	0
2030	Molecular structure and spectroscopic studies of the product of acidic degradation of salinomycin and its potassium salt. Journal of Molecular Structure, 2022, 1263, 133129.	1.8	2
2031	Dipyridophenazine iridium(III) complex as a phototoxic cancer stem cell selective, mitochondria targeting agent. Chemico-Biological Interactions, 2022, 360, 109955.	1.7	13
2044	Alkaline-earth metal(II) complexes ofÂsalinomycin– spectral properties andÂantibacterial activity. ChemistrySelect, 2022, .	0.7	1
2047	SIA-IgG confers poor prognosis and represents a novel therapeutic target in breast cancer. Bioengineered, 2022, 13, 10072-10087.	1.4	1
2048	Comparative Transcriptome-Based Mining of Genes Involved in the Export of Polyether Antibiotics for Titer Improvement. Antibiotics, 2022, 11, 600.	1.5	3

#	Article	IF	CITATIONS
2049	Phenotypic plasticity during metastatic colonization. Trends in Cell Biology, 2022, 32, 854-867.	3.6	24
2050	Integrated regulation of chondrogenic differentiation in mesenchymal stem cells and differentiation of cancer cells. Cancer Cell International, 2022, 22, 169.	1.8	5
2051	Role and Significance of c-KIT Receptor Tyrosine Kinase in Cancer: A Review. Bosnian Journal of Basic Medical Sciences, 2022, , .	0.6	9
2052	Spatial epitranscriptomics reveals A-to-I editome specific to cancer stem cell microniches. Nature Communications, 2022, 13, 2540.	5.8	15
2053	Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm, 2022, 3, .	3.1	43
2054	Interaction of crown ethers with the ABCG2 transporter and their implication for multidrug resistance reversal. Histochemistry and Cell Biology, 0, , .	0.8	3
2056	Coding recognition of the dose–effect interdependence of small biomolecules encrypted on paired chromatographic-based microassay arrays. Analytical and Bioanalytical Chemistry, 2022, 414, 5991-6001.	1.9	0
2057	Probe Synthesis Reveals Eukaryotic Translation Elongation Factor 1 Alpha 1 as the Antiâ€Pancreatic Cancer Target of BEâ€43547A ₂ . Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
2058	Probe Synthesis Reveals Eukaryotic Translation Elongation Factor 1 Alpha 1 as the Antiâ€Pancreatic Cancer Target of BEâ€43547A2. Angewandte Chemie, 0, , .	1.6	0
2059	lon transporters: emerging agents for anticancer therapy. Science China Chemistry, 2022, 65, 1265-1278.	4.2	12
2060	Iron-Sensitive Prodrugs That Trigger Active Ferroptosis in Drug-Tolerant Pancreatic Cancer Cells. Journal of the American Chemical Society, 2022, 144, 11536-11545.	6.6	29
2061	Targeting Cancer Stem Cells: Therapeutic and diagnostic strategies by the virtue of nanoparticles. Journal of Controlled Release, 2022, 348, 518-536.	4.8	10
2063	Carbon Nanotubes in Tumor-Targeted Chemotherapeutic Formulations: A Review of Opportunities and Challenges. ACS Applied Nano Materials, 2022, 5, 8649-8679.	2.4	6
2064	Characterization of Pathway-Specific Regulator NigR for High Yield Production of Nigericin in Streptomyces malaysiensis F913. Antibiotics, 2022, 11, 938.	1.5	2
2065	Wnt signaling in liver regeneration, disease, and cancer. Clinical and Molecular Hepatology, 2023, 29, 33-50.	4.5	8
2066	A REVIEW OF ADVANCED NANOTECHNOLOGIES AND DRUG DELIVERY SYSTEMS OF SALINOMYCIN AND THEIR ROLE IN TRIPLE-NEGATIVE BREAST CANCER. International Journal of Applied Pharmaceutics, 0, , 103-114.	0.3	0
2067	MTH1 suppression enhances the stemness of MCF7 through upregulation of STAT3. Free Radical Biology and Medicine, 2022, 188, 447-458.	1.3	3
2068	Evidence of Metallic and Polyether Ionophores as Potent Therapeutic Drug Candidate in Cancer Management. Molecules, 2022, 27, 4708.	1.7	1

#	Article	IF	CITATIONS
2069	Therapeutic Targeting of Cancer Stem Cells Prevents Resistance of Colorectal Cancer Cells to MEK Inhibition. ACS Pharmacology and Translational Science, 2022, 5, 724-734.	2.5	6
2070	Reversal of epithelial-mesenchymal transition and inhibition of tumor stemness of breast cancer cells through advanced combined chemotherapy. Acta Biomaterialia, 2022, 152, 380-392.	4.1	9
2071	Targeting Telomerase Enhances Cytotoxicity of Salinomycin in Cancer Cells. ACS Omega, 2022, 7, 30565-30570.	1.6	1
2072	Immunotherapy in triple-negative breast cancer: Insights into tumor immune landscape and therapeutic opportunities. Frontiers in Molecular Biosciences, 0, 9, .	1.6	17
2073	Stem Cells as Target for Prostate cancer Therapy: Opportunities and Challenges. Stem Cell Reviews and Reports, 2022, 18, 2833-2851.	1.7	6
2074	Engaging plasticity: Differentiation therapy in solid tumors. Frontiers in Pharmacology, 0, 13, .	1.6	13
2075	(–)-Xanthatin as a Killer of Human Breast Cancer MCF-7 Mammosphere Cells: A Comparative Study with Salinomycin. Current Issues in Molecular Biology, 2022, 44, 3849-3858.	1.0	2
2076	Vitamin D3 and Salinomycin synergy in MCF-7 cells cause cell death via endoplasmic reticulum stress in monolayer and 3D cell culture. Toxicology and Applied Pharmacology, 2022, 452, 116178.	1.3	4
2077	Puzzling out iron complications in cancer drug resistance. Critical Reviews in Oncology/Hematology, 2022, 178, 103772.	2.0	3
2078	A synchronized dual drug delivery molecule targeting cancer stem cells in tumor heterogeneity and metastasis. Biomaterials, 2022, 289, 121781.	5.7	10
2079	Designing Dual Inhibitors of Autotaxin-LPAR GPCR Axis. Molecules, 2022, 27, 5487.	1.7	5
2080	Inhibitory effect of the novel tyrosine kinase inhibitor DCC-2036 on triple-negative breast cancer stem cells through AXL-KLF5 positive feedback loop. Cell Death and Disease, 2022, 13, .	2.7	4
2081	The Effect of Pantoprazole on Tumor Growth and Apoptosis in Gastric Cancer Stem-Like Cells. Current Drug Therapy, 2022, 17, .	0.2	0
2083	The impediments of cancer stem cells and an exploration into the nanomedical solutions for glioblastoma. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, .	0.9	1
2084	SOX2 contributes to invasion and poor prognosis of gastric cancer: A meta-analysis. Medicine (United) Tj ETQq0	0 8 <u>r</u> gBT /	Overlock 10
2085	Salinomycin suppresses T24 cells by regulating KDM1A and the unfolded protein response pathway. Cytotechnology, 2022, 74, 579-590.	0.7	0
2086	Salinopyridins A and B, two novel polyethers with a unique pyridine moiety from Streptomyces sp. NA4227. Tetrahedron Letters, 2022, , 154177.	0.7	0
2087	Identification of the polyether ionophore lenoremycin through a new screening strategy for targeting cancer stem cells. Journal of Antibiotics, 2022, 75, 671-678.	1.0	2

#	Article	IF	CITATIONS
2088	High throughput-screening of native herbal compounds identifies taccaoside A as a cytotoxic compound that mediates RAS signaling in cancer stem cells. Phytomedicine, 2023, 108, 154492.	2.3	2
2090	Recent advances of \hat{l}^2 -catenin small molecule inhibitors for cancer therapy: Current development and future perspectives. European Journal of Medicinal Chemistry, 2022, 243, 114789.	2.6	5
2091	Novel Salinomycin-Based Paramagnetic Complexesâ€"First Evaluation of Their Potential Theranostic Properties. Pharmaceutics, 2022, 14, 2319.	2.0	4
2092	Resistance to Trastuzumab. Cancers, 2022, 14, 5115.	1.7	23
2094	Ribosome changes reprogram translation for chemosurvival in GO leukemic cells. Science Advances, 2022, 8, .	4.7	3
2095	Dual-drug loaded nanomedicine hydrogel as a therapeutic platform to target both residual glioblastoma and glioma stem cells. International Journal of Pharmaceutics, 2022, 628, 122341.	2.6	3
2096	A <i>trans</i> -Pt(<scp>ii</scp>) hedgehog pathway inhibitor complex with cytotoxicity towards breast cancer stem cells and triple negative breast cancer cells. Dalton Transactions, 2022, 51, 18127-18135.	1.6	3
2097	Autotaxin in Breast Cancer: Role, Epigenetic Regulation and Clinical Implications. Cancers, 2022, 14, 5437.	1.7	6
2098	Can Natural Products Targeting EMT Serve as the Future Anticancer Therapeutics?. Molecules, 2022, 27, 7668.	1.7	10
2099	Potential Role of the Circadian Clock in the Regulation of Cancer Stem Cells and Cancer Therapy. International Journal of Molecular Sciences, 2022, 23, 14181.	1.8	4
2100	A highly potent small-molecule antagonist of exportin-1 selectively eliminates CD44+CD24- enriched breast cancer stem-like cells. Drug Resistance Updates, 2023, 66, 100903.	6.5	7
2103	Targeting chemotherapy-resistant tumour sub-populations using inorganic chemistry: Anti-cancer stem cell metal complexes. Current Opinion in Chemical Biology, 2023, 72, 102237.	2.8	7
2104	Targeting emerging cancer hallmarks by transition metal complexes: Cancer stem cells and tumor microbiome. Part I. Coordination Chemistry Reviews, 2023, 477, 214923.	9.5	2
2105	The Role and Regulation of Quiescence in Acute Lymphoblastic Leukaemia. European Medical Journal Hematology, 0, , 72-79.	0.0	1
2106	Desmoplastic small round cell tumor cancer stem cell-like cells resist chemotherapy but remain dependent on the EWSR1-WT1 oncoprotein. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
2107	Identification of a Novel Potent CYP4Z1 Inhibitor Attenuating the Stemness of Breast Cancer Cells through Lead Optimization. Journal of Medicinal Chemistry, 2022, 65, 15749-15769.	2.9	3
2108	Cofilin Acts as a Booster for Progression of Malignant Tumors Represented by Glioma. Cancer Management and Research, 0, Volume 14, 3245-3269.	0.9	4
2109	Tumor microenvironment penetrating chitosan nanoparticles for elimination of cancer relapse and minimal residual disease. Frontiers in Oncology, 0, 12 , .	1.3	6

#	Article	IF	CITATIONS
2110	Overcoming apoptotic resistance afforded by Bcl-2 in lymphoid tumor cells: a critical role for dexamethasone. Cell Death Discovery, 2022, 8, .	2.0	1
2111	Clonal transcriptomics identifies mechanisms of chemoresistance and empowers rational design of combination therapies. ELife, 0, 11 , .	2.8	4
2112	Co-delivery of gemcitabine and salinomycin in PEGylated liposomes for enhanced anticancer efficacy against colorectal cancer. Journal of Liposome Research, 2023, 33, 234-250.	1.5	4
2113	FBXL2 promotes E47 protein instability to inhibit breast cancer stemness and paclitaxel resistance. Oncogene, 2023, 42, 339-350.	2.6	3
2114	Metabolomic and Mitochondrial Fingerprinting of the Epithelial-to-Mesenchymal Transition (EMT) in Non-Tumorigenic and Tumorigenic Human Breast Cells. Cancers, 2022, 14, 6214.	1.7	2
2115	Acetylated-PPARÎ ³ expression is regulated by different P53 genotypes associated with the adipogenic differentiation of polyploid giant cancer cells with daughter cells. Cancer Biology and Medicine, 2023, 20, 56-76.	1.4	3
2117	Drug repurposing: A novel strategy to target cancer stem cells and therapeutic resistance. Genes and Diseases, 2024, 11, 148-175.	1.5	3
2118	Profiling of Circulating Tumor Cells for Screening of Selective Inhibitors of Tumorâ€Initiating Stemâ€Like Cells. Advanced Science, 2023, 10, .	5.6	4
2119	A new animal product free defined medium for 2D and 3D culturing of normal and cancer cells to study cell proliferation and migration as well as dose response to chemical treatment. Toxicology Reports, 2023, 10, 509-520.	1.6	4
2120	A role for partial epithelial-to-mesenchymal transition in enabling stemness in homeostasis and cancer. Seminars in Cancer Biology, 2023, 90, 15-28.	4.3	18
2121	Combined effect of microplastic, salinomycin and heating on Unio tumidus. Environmental Toxicology and Pharmacology, 2023, 98, 104068.	2.0	37
2122	mTOR pathway as a potential therapeutic target for cancer stem cells in canine mammary carcinoma. Frontiers in Oncology, 0, 13 , .	1.3	4
2123	Elevation of Cytoplasmic Calcium Suppresses Microtentacle Formation and Function in Breast Tumor Cells. Cancers, 2023, 15, 884.	1.7	1
2124	Cutting Off H ⁺ Leaks on the Inner Mitochondrial Membrane: A Proton Modulation Approach to Selectively Eradicate Cancer Stem Cells. Journal of the American Chemical Society, 2023, 145, 4647-4658.	6.6	3
2126	Procoxacin bidirectionally inhibits osteoblastic and osteoclastic activity in bone and suppresses bone metastasis of prostate cancer. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	3.5	3
2127	Hydrogel-Based Pre-Clinical Evaluation of Repurposed FDA-Approved Drugs for AML. International Journal of Molecular Sciences, 2023, 24, 4235.	1.8	6
2128	Preclinical and Clinical Trials of New Treatment Strategies Targeting Cancer Stem Cells in Subtypes of Breast Cancer. Cells, 2023, 12, 720.	1.8	4
2129	Photothermal Attenuation of Cancer Cell Stemness, Chemoresistance, and Migration Using CD44-Targeted MoS ₂ Nanosheets. Nano Letters, 2023, 23, 1989-1999.	4.5	9

#	Article	IF	CITATIONS
2130	Polylactic acid based biodegradable hybrid block copolymeric nanoparticle mediated co-delivery of salinomycin and doxorubicin for cancer therapy. International Journal of Pharmaceutics, 2023, 635, 122779.	2.6	4
2131	Comparative and Functional Analyses Reveal Conserved and Variable Regulatory Systems That Control Lasalocid Biosynthesis in Different <i>Streptomyces</i>) Species. Microbiology Spectrum, 2023, 11, .	1.2	0
2133	Payload Release Profile and Anti-Cancer Stem Cell Properties of Compositionally Different Polymeric Nanoparticles Containing a Copper(II) Complex. Molecules, 2023, 28, 2506.	1.7	3
2134	PDIA4 confers resistance to ferroptosis via induction of ATF4/SLC7A11 in renal cell carcinoma. Cell Death and Disease, 2023, 14, .	2.7	7
2135	An overview of the recent progress in Middle East Respiratory Syndrome Coronavirus (MERS-CoV) drug discovery. Expert Opinion on Drug Discovery, 2023, 18, 385-400.	2.5	0
2136	Sensitivity of Neuroblastoma and Induced Neural Progenitor Cells to High-Intensity THz Radiation. International Journal of Molecular Sciences, 2023, 24, 6558.	1.8	1
2137	Cancer Stem Cells in Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 2023, 24, 7030.	1.8	4
2138	Aptamers against cancer drug resistance: Small fighters switching tactics in the face of defeat. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166720.	1.8	6
2141	Therapeutic vulnerabilities of cancer stem cells and effects of natural products. Natural Product Reports, 2023, 40, 1432-1456.	5.2	2
2145	miRNAs in Cancer Stem Cells. , 2015, , 141-165.		0
2161	Plasticity of Cancer Stem Cell., 2023, , 101-117.		0
2168	Molecular Mechanisms of Tumor Cell Stemness Modulation during Formation of Spheroids. Biochemistry (Moscow), 2023, 88, 979-994.	0.7	0
2170	Antibiotics in the management of tuberculosis and cancer. , 2023, , 251-294.		0
2190	Nanomedicine Based Therapies Against Cancer Stem Cells. Recent Advances in Biotechnology, 2023, , 239-273.	0.1	0
2195	Circulating tumor cells in lung cancer: Integrating stemness and heterogeneity to improve clinical utility. International Review of Cell and Molecular Biology, 2024, , .	1.6	0
2196	Cancer Stem Cells and Advanced Novel Technologies in Oncotherapy. , 2023, , 428-456.		0
2199	Cancer Stem Cells: Current Challenges and Future Perspectives. Methods in Molecular Biology, 2024, , 1-18.	0.4	0