The Ectopic Expression of Pax4 in the Mouse Pancreas (Subsequently \hat{I}^2 Cells

Cell 138, 449-462

DOI: 10.1016/j.cell.2009.05.035

Citation Report

#	Article	IF	CITATIONS
1	Neurogenin3: A master regulator of pancreatic islet differentiation and regeneration. Islets, 2009, 1, 177-184.	0.9	109
3	Adult Pancreatic Alpha-Cells: A New Source of Cells for Beta-Cell Regeneration. Review of Diabetic Studies, 2010, 7, 124-131.	0.5	34
4	Regenerating pancreatic β-cells: plasticity of adult pancreatic cells and the feasibility of in-vivo neogenesis. Current Opinion in Organ Transplantation, 2010, 15, 79-85.	0.8	47
5	A new paradigm in cell therapy for diabetes: Turning pancreatic αâ€cells into βâ€cells. BioEssays, 2010, 32, 881-884.	1.2	13
6	Pancreatic Î ² -Cell Neogenesis by Direct Conversion from Mature α-Cells. Stem Cells, 2010, 28, 1630-1638.	1.4	158
7	Germ layer differentiation during early hindgut and cloaca formation in rabbit and pig embryos. Journal of Anatomy, 2010, 217, 665-678.	0.9	8
8	Conversion of adult pancreatic \hat{I} ±-cells to \hat{I} ² -cells after extreme \hat{I} ² -cell loss. Nature, 2010, 464, 1149-1154.	13.7	987
9	Grand Challenge Commentary: Chemical transdifferentiation and regenerative medicine. Nature Chemical Biology, 2010, 6, 877-879.	3.9	7
12	Overexpression of Peroxiredoxin 4 Protects Against High-Dose Streptozotocin-Induced Diabetes by Suppressing Oxidative Stress and Cytokines in Transgenic Mice. Antioxidants and Redox Signaling, 2010, 13, 1477-1490.	2.5	83
13	The Use of Animal Models to Study Stem Cell Therapies for Diabetes Mellitus. ILAR Journal, 2010, 51, 74-81.	1.8	10
14	Non-β-cell progenitors of β-cells in pregnant mice. Organogenesis, 2010, 6, 125-133.	0.4	37
15	Precursor Cells in Mouse Islets Generate New β-Cells in Vivo during Aging and after Islet Injury. Endocrinology, 2010, 151, 520-528.	1.4	23
16	Glucagon Deficiency Reduces Hepatic Glucose Production and Improves Glucose Tolerance In Adult Mice. Molecular Endocrinology, 2010, 24, 1605-1614.	3.7	79
17	Stem cell approaches for the treatment of type 1 diabetes mellitus. Translational Research, 2010, 156, 169-179.	2.2	29
18	β-Cell Growth and Regeneration: Replication Is Only Part of the Story. Diabetes, 2010, 59, 2340-2348.	0.3	212
19	α Cell–Specific Men1 Ablation Triggers the Transdifferentiation of Glucagon-Expressing Cells and Insulinoma Development. Gastroenterology, 2010, 138, 1954-1965.e8.	0.6	120
20	Reprogramming into pancreatic endocrine cells based on developmental cues. Molecular and Cellular Endocrinology, 2010, 315, 11-18.	1.6	19
21	Endocrine-committed progenitor cells retain their differentiation potential in the absence of neurogenin-3 expression. Biochemical and Biophysical Research Communications, 2010, 396, 1036-1041.	1.0	9

#	Article	IF	CITATIONS
22	Emerging roles for the TGFβ family in pancreatic β-cell homeostasis. Trends in Endocrinology and Metabolism, 2010, 21, 441-448.	3.1	54
23	Pancreatic beta-cells: From generation to regeneration. Seminars in Cell and Developmental Biology, 2010, 21, 838-844.	2.3	40
24	Small-molecule inducers of insulin expression in pancreatic $\hat{1}$ ±-cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15099-15104.	3.3	62
25	Harnessing the Pancreatic Stem Cell. Endocrinology and Metabolism Clinics of North America, 2010, 39, 763-776.	1.2	5
26	Stem cell approaches for diabetes: towards beta cell replacement. Genome Medicine, 2011, 3, 61.	3.6	45
27	Le rÃ1e du glucagon dans la physiopathologie du diabète. Medecine Des Maladies Metaboliques, 2011, 5, 129-137.	0.1	2
28	Normal Glucagon Signaling and β-Cell Function After Near-Total α-Cell Ablation in Adult Mice. Diabetes, 2011, 60, 2872-2882.	0.3	100
29	Historical Perspective: Beginnings of the β-Cell. Diabetes, 2011, 60, 364-376.	0.3	66
30	Derivation of Insulin Producing Cells From Human Endometrial Stromal Stem Cells and Use in the Treatment of Murine Diabetes. Molecular Therapy, 2011, 19, 2065-2071.	3.7	113
31	Reprogramming Towards Pancreatic β-Cells. , 2011, , 177-191.		1
32	Pancreatic Plasticity and Reprogramming: Novel Directions Towards Disease Therapy. , 2011, , 193-215.		1
33	Duct Cells Contribute to Regeneration of Endocrine and Acinar Cells Following Pancreatic Damage in Adult Mice. Gastroenterology, 2011, 141, 1451-1462.e6.	0.6	124
34	Pancreatic β Cell Identity Is Maintained by DNA Methylation-Mediated Repression of Arx. Developmental Cell, 2011, 20, 419-429.	3.1	234
35	LUMENating Blood Vessels. Developmental Cell, 2011, 20, 412-414.	3.1	3
36	Removing the Brakes on Cell Identity. Developmental Cell, 2011, 20, 411-412.	3.1	5
37	Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nature Biotechnology, 2011, 29, 750-756.	9.4	300
38	β-Cell regeneration: the pancreatic intrinsic faculty. Trends in Endocrinology and Metabolism, 2011, 22, 34-43.	3.1	86
39	Pax genes during neural development and their potential role in neuroregeneration. Progress in Neurobiology, 2011, 95, 334-351.	2.8	48

ARTICLE IF CITATIONS # New role for alpha cells as a source for new beta cells. Journal of Diabetes Investigation, 2011, 2, 1.1 2 40 43-44. \hat{l}^2 -Cell Generation: Can Rodent Studies Be Translated to Humans?. Journal of Transplantation, 2011, 2011, 0.3 1-15. Predicting Pancreas Cell Fate Decisions and Reprogramming with a Hierarchical Multi-Attractor 42 1.1 63 Model. PLoS ONE, 2011, 6, e14752. Pancreatic Neuroendocrine Tumors in Glucagon Receptor-Deficient Mice. PLoS ONE, 2011, 6, e23397. 1.1 59 Spontaneous In Vivo Differentiation of Embryonic Stem Cell-Derived Pancreatic Endoderm-Like Cells 0.5 44 22 Corrects Hyperglycemia in Diabetic Mice. Transplantation, 2011, 91, 11-20. Stem Cell-Based Immunomodulation in Type 1 Diabetes: Beyond the Regenerative Approach. Current Pharmaceutical Design, 2011, 17, 3229-3242. Transcriptional regulation of $\langle i \rangle \hat{i} \pm \langle i \rangle \hat{i} \in cell$ differentiation. Diabetes, Obesity and Metabolism, 2011, 13, 46 2.2 49 13-20. <i>In vivo</i> conversion of adult <i>î±</i>â€cells into <i>î²</i>â€like cells: a new research avenue in the context of type 1 diabetes. Diabetes, Obesity and Metabolism, 2011, 13, 47-52. Reprogramming gut and pancreas endocrine cells to treat diabetes. Diabetes, Obesity and Metabolism, 2011, 13, 53-59. 48 2.2 6 Coâ€orthology of <i> <scp>P</scp>ax4</i> and <i> <scp>P</scp>ax6</i> to the fly<i> eyeless</i> gene: molecular phylogenetic, comparative genomic, and embryological analyses. Evolution & Development, 1.1 2011, 13, 448-459. Turning straw into gold: directing cell fate for regenerative medicine. Nature Reviews Genetics, 2011, 50 7.7253 12, 243-252. Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial 0.9 epithelial–mesenchymal transition via Bmp2. Developmental Biology, 2011, 360, 381-390. In vivo genetic engineering of murine pancreatic beta cells mediated by single-stranded 52 2.9 51 adeno-associated viral vectors of serotypes 6, 8 and 9. Diabetologia, 2011, 54, 1075-1086. Stromal cell-derived factor-1 (SDF-1)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis activation induces intra-islet glucagon-like peptide-1 (GLP-1) production and enhances beta cell survival. Diabetologia, 2011, 54, 2067-2076. Potential Pathways to Restore Î²-Cell Mass: Pluripotent Stem Cells, Reprogramming, and Endogenous 17 54 1.7 Regeneration. Current Diabetes Reports, 2011, 11, 392-401. Arx and Nkx2.2 compound deficiency redirects pancreatic alpha- and beta-cell differentiation to a 33 somatostatin/ghrelin co-expressing cell lineage. BMC Developmental Biology, 2011, 11, 52. Pancreas organogenesis: From bud to plexus to gland. Developmental Dynamics, 2011, 240, 530-565. 56 0.8 498 Pituitary Stem Cell Update and Potential Implications for Treating Hypopituitarism. Endocrine Reviews, 2011, 32, 453-471.

#	Article	IF	CITATIONS
58	Transgenic Overexpression of the Transcription Factor Nkx6.1 in β-Cells of Mice Does Not Increase β-Cell Proliferation, β-Cell Mass, or Improve Glucose Clearance. Molecular Endocrinology, 2011, 25, 1904-1914.	3.7	25
59	Production of Functional Glucagon-Secreting α-Cells From Human Embryonic Stem Cells. Diabetes, 2011, 60, 239-247.	0.3	183
60	Antigen-Based Immune Therapeutics for Type 1 Diabetes: Magic Bullets or Ordinary Blanks?. Clinical and Developmental Immunology, 2011, 2011, 1-15.	3.3	29
61	Islet-1 Regulates Arx Transcription during Pancreatic Islet α-Cell Development. Journal of Biological Chemistry, 2011, 286, 15352-15360.	1.6	41
62	In Vivo Conditional Pax4 Overexpression in Mature Islet β-Cells Prevents Stress-Induced Hyperglycemia in Mice. Diabetes, 2011, 60, 1705-1715.	0.3	45
63	Context-specific α-to-β-cell reprogramming by forced Pdx1 expression. Genes and Development, 2011, 25, 1680-1685.	2.7	178
64	Stem cell-based strategies for the treatment of type 1 diabetes mellitus. Expert Opinion on Biological Therapy, 2011, 11, 41-53.	1.4	25
65	Intermittent Fasting Modulation of the Diabetic Syndrome in Streptozotocin-Injected Rats. International Journal of Endocrinology, 2012, 2012, 1-12.	0.6	35
66	Maintenance of \hat{I}^2 -Cell Maturity and Plasticity in the Adult Pancreas. Diabetes, 2012, 61, 1365-1371.	0.3	64
67	Restoring insulin production for type 1 diabetes. Journal of Diabetes, 2012, 4, 319-331.	0.8	17
68	β-cell preservation and regeneration for diabetes treatment: where are we now?. Diabetes Management, 2012, 2, 213-222.	0.5	3
69	Concise Review: Pancreas Regeneration: Recent Advances and Perspectives. Stem Cells Translational Medicine, 2012, 1, 150-159.	1.6	64
70	Deconstructing Pancreas Developmental Biology. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012401-a012401.	2.3	77
71	Development and Regeneration in the Endocrine Pancreas. Isrn Endocrinology, 2012, 2012, 1-12.	2.0	14
72	Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5364-5369.	3.3	53
73	Guiding Differentiation of Stem Cells in Vivo by Tetracycline-Controlled Expression of Key Transcription Factors. Cell Transplantation, 2012, 21, 2537-2554.	1.2	3
74	Generation of beta cells from human pluripotent stem cells: Potential for regenerative medicine. Seminars in Cell and Developmental Biology, 2012, 23, 701-710.	2.3	92
75	Adenosine kinase inhibition selectively promotes rodent and porcine islet β-cell replication. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3915-3920.	3.3	120

#	Article	IF	Citations
76	Generation of animals allowing the conditional inactivation of the Pax4 gene. Transgenic Research, 2012, 21, 1215-1220.	1.3	3
77	Making \hat{I}^2 cells from adult tissues. Trends in Endocrinology and Metabolism, 2012, 23, 278-285.	3.1	27
78	Basics and applications of stem cells in the pancreas. Journal of Hepato-Biliary-Pancreatic Sciences, 2012, 19, 594-599.	1.4	5
79	\hat{I}_{\pm} -cell role in \hat{I}^2 -cell generation and regeneration. Islets, 2012, 4, 188-198.	0.9	59
80	Lineage Tracing of Pancreatic Stem Cells and Beta Cell Regeneration. , 2012, 933, 303-315.		3
81	Differentiation of Human Embryonic Stem Cells into Pancreatic Endocrine Cells. Stem Cells and Cancer Stem Cells, 2012, , 191-206.	0.1	3
82	Human β Cell Transcriptome Analysis Uncovers IncRNAs That Are Tissue-Specific, Dynamically Regulated, and Abnormally Expressed in Type 2 Diabetes. Cell Metabolism, 2012, 16, 435-448.	7.2	410
83	Epigenetic regulation of pancreas development and function. Seminars in Cell and Developmental Biology, 2012, 23, 693-700.	2.3	31
84	Lineage determinants in early endocrine development. Seminars in Cell and Developmental Biology, 2012, 23, 673-684.	2.3	48
85	Embryologic development of the liver, biliary tract, and pancreas. , 2012, , 18-30.e3.		0
86	Nuclear Reprogramming and Stem Cells. , 2012, , .		1
87	TCF7L2 promotes beta cell regeneration in human and mouse pancreas. Diabetologia, 2012, 55, 3296-3307.	2.9	40
88	Regeneration of Digestive, Respiratory and Urinary Tissues. , 2012, , 99-126.		3
90	Pax4 is not essential for beta-cell differentiation in zebrafish embryos but modulates alpha-cell generation by repressing arx gene expression. BMC Developmental Biology, 2012, 12, 37.	2.1	24
91	Animal Models in Diabetes Research. Methods in Molecular Biology, 2012, , .	0.4	17
92	GW8510 Increases Insulin Expression in Pancreatic Alpha Cells through Activation of p53 Transcriptional Activity. PLoS ONE, 2012, 7, e28808.	1.1	14
93	The Homeodomain-Containing Transcription Factors Arx and Pax4 Control Enteroendocrine Subtype Specification in Mice. PLoS ONE, 2012, 7, e36449.	1.1	75
94	Urocortin 3 Marks Mature Human Primary and Embryonic Stem Cell-Derived Pancreatic Alpha and Beta Cells. PLoS ONE, 2012, 7, e52181.	1.1	92

#	Article	IF	CITATIONS
95	Small Molecule-induced Beta-cell Regeneration from Alternate Cell Sources. Current Tissue Engineering, 2012, 1, 83-90.	0.2	1
96	Islet <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="bold-italic">Ĵ²</mml:mi </mml:mrow></mml:math> -Cell Mass Preservation and Regeneration in Diabetes Mellitus: Four Factors with Potential Therapeutic Interest. Journal of Transplantation. 2012. 2012. 1-9.	0.3	19
97	Mutations and Binding Sites of Human Transcription Factors. Frontiers in Genetics, 2012, 3, 100.	1.1	11
98	Peroxiredoxin 4 : Critical Roles in Inflammatory Diseases. Journal of UOEH, 2012, 34, 27-39.	0.3	27
99	Trisomy for Synaptojanin1 in Down syndrome is functionally linked to the enlargement of early endosomes. Human Molecular Genetics, 2012, 21, 3156-3172.	1.4	92
100	Understanding cancer stem cell heterogeneity and plasticity. Cell Research, 2012, 22, 457-472.	5.7	473
101	â€~Hearts and bones': the ups and downs of â€~plasticity' in stem cell biology. EMBO Molecular Medicine, 2012, 4, 353-361.	3.3	28
102	Roles of activin family in pancreatic development and homeostasis. Molecular and Cellular Endocrinology, 2012, 359, 23-29.	1.6	20
103	Ongoing Notch signaling maintains phenotypic fidelity in the adult exocrine pancreas. Developmental Biology, 2012, 362, 57-64.	0.9	76
104	Transient expression of Ngn3 in <i>Xenopus</i> endoderm promotes early and ectopic development of pancreatic beta and delta cells. Genesis, 2012, 50, 271-285.	0.8	14
105	Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas. Diabetologia, 2012, 55, 372-381.	2.9	146
106	Making Î ² Cells from Adult Cells Within the Pancreas. Current Diabetes Reports, 2013, 13, 695-703.	1.7	45
107	Adult Duct-Lining Cells Can Reprogram into β-like Cells Able to Counter Repeated Cycles of Toxin-Induced Diabetes. Developmental Cell, 2013, 26, 86-100.	3.1	173
108	Conversion of Mature Human \hat{l}^2 -Cells Into Glucagon-Producing \hat{l}_2 -Cells. Diabetes, 2013, 62, 2471-2480.	0.3	115
109	Pancreas Organogenesis: From Lineage Determination to Morphogenesis. Annual Review of Cell and Developmental Biology, 2013, 29, 81-105.	4.0	260
110	The Plastic Pancreas. Developmental Cell, 2013, 26, 3-7.	3.1	82
111	The use of stem cells for pancreatic regeneration in diabetes mellitus. Nature Reviews Endocrinology, 2013, 9, 598-606.	4.3	76
112	Reprogramming Adult Human Dermal Fibroblasts to Islet-Like Cells by Epigenetic Modification Coupled to Transcription Factor Modulation. Stem Cells and Development, 2013, 22, 2551-2560.	1.1	29

#	Article	IF	CITATIONS
113	The required beta cell research for improving treatment of type 2 diabetes. Journal of Internal Medicine, 2013, 274, 203-214.	2.7	21
114	The role of FOXO1 in β-cell failure and type 2 diabetes mellitus. Nature Reviews Endocrinology, 2013, 9, 615-623.	4.3	173
115	Reprogrammed pancreatic progenitor-like intermediate state of hepatic cells is more susceptible to pancreatic beta cell differentiation. Journal of Cell Science, 2013, 126, 3638-48.	1.2	5
116	MicroRNAs as pharmacological targets in diabetes. Pharmacological Research, 2013, 75, 37-47.	3.1	70
117	VHL-mediated disruption of Sox9 activity compromises β-cell identity and results in diabetes mellitus. Genes and Development, 2013, 27, 2563-2575.	2.7	60
118	How to make a functional β-cell. Development (Cambridge), 2013, 140, 2472-2483.	1.2	200
119	<i>β</i> ell differentiation and regeneration in type 1 diabetes. Diabetes, Obesity and Metabolism, 2013, 15, 98-104.	2.2	21
120	The conditional expression of KRASG12D in mouse pancreas induces disorganization of endocrine islets prior the onset of ductal pre-cancerous lesions. Pancreatology, 2013, 13, 191-195.	0.5	4
121	From pancreatic islet formation to beta-cell regeneration. Diabetes Research and Clinical Practice, 2013, 101, 1-9.	1.1	22
122	Alpha cells come of age. Trends in Endocrinology and Metabolism, 2013, 24, 153-163.	3.1	53
123	Gene Regulatory Networks Governing Pancreas Development. Developmental Cell, 2013, 25, 5-13.	3.1	148
124	Current status of regeneration of pancreatic βâ€cells. Journal of Diabetes Investigation, 2013, 4, 131-141.	1.1	10
125	Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes. Cellular and Molecular Life Sciences, 2013, 70, 1575-1595.	2.4	39
126	Differentiation and Lineage Commitment of Murine Embryonic Stem Cells into Insulin Producing Cells. Methods in Molecular Biology, 2013, 1029, 93-108.	0.4	10
127	Embryonic Stem Cell Immunobiology. Methods in Molecular Biology, 2013, , .	0.4	3
128	Generating insulin-producing cells for diabetic therapy: Existing strategies and new development. Ageing Research Reviews, 2013, 12, 469-478.	5.0	19
129	Pancreatic Regeneration in the Face of Diabetes. , 2013, , 169-201.		0
130	Current Progress in Stem Cell Research and its Potential for Islet Cell Transplantation. Current Molecular Medicine, 2013, 13, 109-125.	0.6	11

#	Article	lF	CITATIONS
131	Induction of multiple cycles of pancreatic \hat{l}^2 -cell replacement. Cell Cycle, 2013, 12, 3243-3244.	1.3	10
132	α-Cells are dispensable in postnatal morphogenesis and maturation of mouse pancreatic islets. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E1030-E1040.	1.8	32
133	The Inactivation of Arx in Pancreatic α-Cells Triggers Their Neogenesis and Conversion into Functional β-Like Cells. PLoS Genetics, 2013, 9, e1003934.	1.5	214
134	Nkx6.1 Controls a Gene Regulatory Network Required for Establishing and Maintaining Pancreatic Beta Cell Identity. PLoS Genetics, 2013, 9, e1003274.	1.5	212
135	New findings in pancreatic and intestinal endocrine development to advance regenerative medicine. Current Opinion in Endocrinology, Diabetes and Obesity, 2013, 20, 1-7.	1.2	14
136	Recent progress in generation of human surrogate β cells. Current Opinion in Endocrinology, Diabetes and Obesity, 2013, 20, 259-264.	1.2	4
137	Epigenomic plasticity enables human pancreatic α to β cell reprogramming. Journal of Clinical Investigation, 2013, 123, 1275-1284.	3.9	365
138	From Pancreas Morphogenesis to β-Cell Regeneration. Current Topics in Developmental Biology, 2013, 106, 217-238.	1.0	14
139	Retinoblastoma tumor suppressor protein in pancreatic progenitors controls α- and β-cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14723-14728.	3.3	17
140	Liver-Specific Disruption of the Murine Glucagon Receptor Produces α-Cell Hyperplasia. Diabetes, 2013, 62, 1196-1205.	0.3	162
143	Reversal of Hyperglycemia by Insulin-Secreting Rat Bone Marrow- and Blastocyst-Derived Hypoblast Stem Cell-Like Cells. PLoS ONE, 2013, 8, e63491.	1.1	9
144	Both PAX4 and MAFA Are Expressed in a Substantial Proportion of Normal Human Pancreatic Alpha Cells and Deregulated in Patients with Type 2 Diabetes. PLoS ONE, 2013, 8, e72194.	1.1	20
145	Pancreatic α-Cell Specific Deletion of Mouse Arx Leads to α-Cell Identity Loss. PLoS ONE, 2013, 8, e66214.	1.1	68
146	Normal Pancreatic Development. , 2014, , 2216-2228.		1
147	In Vivo Generation of Immature Inner Hair Cells in Neonatal Mouse Cochleae by Ectopic Atoh1 Expression. PLoS ONE, 2014, 9, e89377.	1.1	99
148	Quantitative-Proteomic Comparison of Alpha and Beta Cells to Uncover Novel Targets for Lineage Reprogramming. PLoS ONE, 2014, 9, e95194.	1.1	27
149	Pax4 and Arx Represent Crucial Regulators of the Development of the Endocrine Pancreas. New Journal of Science, 2014, 2014, 1-6.	1.0	5
150	Murine Insulinoma Cell-Conditioned Medium with Î'ETA2/Neurod1 Transduction Efficiently Induces the Differentiation of Adipose-Derived Mesenchymal Stem Cells into β-Like Cells both In Vitro and In Vivo. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	1

D

		CITATION REPORT		
#	Article		IF	CITATIONS
151	Overexpression of PAX4 reduces glucagon expression in differentiating hESCs. Islets, 2014, 6, e29	236.	0.9	24
152	Successful β cells islet regeneration in streptozotocin-induced diabetic baboons using ultrasound-targeted microbubble gene therapy with cyclinD2/CDK4/GLP1. Cell Cycle, 2014, 13, 11	45-1151.	1.3	34
153	VMAT2 identified as a regulator of late-stage β-cell differentiation. Nature Chemical Biology, 2014, 141-148.	10,	3.9	63
154	Stem Cell Transcriptional Networks. Methods in Molecular Biology, 2014, , .		0.4	6
155	Pancreatic Islet Regeneration. , 2014, , 609-625.			0
156	Grg3/TLE3 and Grg1/TLE1 Induce Monohormonal Pancreatic Î ² -Cells While Repressing α-Cell Funct Diabetes, 2014, 63, 1804-1816.	ions.	0.3	22
157	Angiotensin II type 2 receptor regulates the development of pancreatic endocrine cells in mouse embryos. Developmental Dynamics, 2014, 243, 415-427.		0.8	15
158	Islets of Langerhans from prohormone convertaseâ€2 knockout mice show αâ€cell hyperplasia an tumorigenesis with elevated αâ€cell neogenesis. International Journal of Experimental Pathology, 2 95, 29-48.	d 2014,	0.6	15
159	Gastrin induces ductal cell dedifferentiation and β-cell neogenesis after 90% pancreatectomy. Jour of Endocrinology, 2014, 223, 67-78.	nal	1.2	29
160	R-spondin1 Deficiency Enhances β-Cell Neogenesis in a Murine Model of Diabetes. Pancreas, 2014 93-102.	43,	0.5	4
161	Stem cells for pancreatic Î ² -cell replacement in diabetes mellitus. Current Opinion in Organ Transplantation, 2014, 19, 162-168.		0.8	23
162	Discrete Gene Network Models for Understanding Multicellularity and Cell Reprogramming: From Network Structure to Attractor Landscapes Landscape. , 2014, , 241-276.			5
163	A genetic mouse model for progressive ablation and regeneration of insulin producing beta-cells. C Cycle, 2014, 13, 3948-3957.	ell	1.3	9
164	Revealing transcription factors during human pancreatic Î ² cell development. Trends in Endocrinolo and Metabolism, 2014, 25, 407-414.	gy	3.1	62
165	Targeting the pancreatic Î ² -cell to treat diabetes. Nature Reviews Drug Discovery, 2014, 13, 278-28	39.	21.5	228
166	Islet cell plasticity and regeneration. Molecular Metabolism, 2014, 3, 268-274.		3.0	48
167	Transcriptional and epigenetic regulation in human islets. Diabetologia, 2014, 57, 451-454.		2.9	12
168	Adult tissue sources for new \hat{l}^2 cells. Translational Research, 2014, 163, 418-431.		2.2	11

#	Article	IF	CITATIONS
169	Cyclin-Dependent Kinase 6 Is a Chromatin-Bound Cofactor for NF-κB-Dependent Gene Expression. Molecular Cell, 2014, 53, 193-208.	4.5	129
170	Reprogramming Somatic Cells to a Kidney Fate. Seminars in Nephrology, 2014, 34, 462-480.	0.6	7
171	Partial Duct Ligation: Î ² -Cell Proliferation and Beyond. Diabetes, 2014, 63, 2567-2577.	0.3	29
172	Pharmacological induction of pancreatic islet cell transdifferentiation: relevance to type I diabetes. Cell Death and Disease, 2014, 5, e1357-e1357.	2.7	51
173	Loss of Fbw7 Reprograms Adult Pancreatic Ductal Cells into α, δ, and β Cells. Cell Stem Cell, 2014, 15, 139-153.	5.2	118
174	IL-6-dependent proliferation of alpha cells in mice with partial pancreatic-duct ligation. Diabetologia, 2014, 57, 1420-1427.	2.9	11
175	Cellular reprogramming for pancreatic βâ€cell regeneration: clinical potential of small molecule control. Clinical and Translational Medicine, 2014, 3, 6.	1.7	15
176	From Beta Cell Replacement to Beta Cell Regeneration. Journal of Diabetes Science and Technology, 2014, 8, 1221-1226.	1.3	6
177	The regulation of pre- and post-maturational plasticity of mammalian islet cell mass. Diabetologia, 2014, 57, 1291-1303.	2.9	37
178	Could microRNAs contribute to the maintenance of $\hat{1}^2$ cell identity?. Trends in Endocrinology and Metabolism, 2014, 25, 285-292.	3.1	39
179	Transcriptional control of mammalian pancreas organogenesis. Cellular and Molecular Life Sciences, 2014, 71, 2383-2402.	2.4	58
180	Pdx1 Maintains \hat{I}^2 Cell Identity and Function by Repressing an $\hat{I}\pm$ Cell Program. Cell Metabolism, 2014, 19, 259-271.	7.2	325
181	PAX4 Defines an Expandable β-Cell Subpopulation in the Adult Pancreatic Islet. Scientific Reports, 2015, 5, 15672.	1.6	38
182	Pax6 Inactivation in the Adult Pancreas Reveals Chrelin as Endocrine Cell Maturation Marker. PLoS ONE, 2015, 10, e0144597.	1.1	25
183	Developing Therapies with Functional Beta Cells to Treat Diabetes. International Journal of Translational Science, 2015, 2015, 41-66.	0.2	1
184	Development of the endocrine pancreas and novel strategies for β-cell mass restoration and diabetes therapy. Brazilian Journal of Medical and Biological Research, 2015, 48, 765-776.	0.7	22
185	The Role of ARX in Human Pancreatic Endocrine Specification. PLoS ONE, 2015, 10, e0144100.	1.1	32
186	The Current Status of Directed Differentiation Technology. Hanyang Medical Reviews, 2015, 35, 215.	0.4	1

#	Article	IF	CITATIONS
187	Cellular Mechanisms of CCL22-Mediated Attenuation of Autoimmune Diabetes. Journal of Immunology, 2015, 194, 3054-3064.	0.4	28
188	From substitution of insulin to replacement of insulin producing cells: New therapeutic opportunities from research on pancreas development and stem cell differentiation. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 815-820.	2.2	1
189	Evolving function and potential of pancreatic alpha cells. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 859-871.	2.2	35
190	Cellular therapies based on stem cells and their insulin-producing surrogates: a 2015 reality check. Pediatric Diabetes, 2015, 16, 151-163.	1.2	4
191	Epigenetic-Mediated Reprogramming of Pancreatic Endocrine Cells. Antioxidants and Redox Signaling, 2015, 22, 1483-1495.	2.5	2
192	Combination immunotherapies for type 1 diabetes mellitus. Nature Reviews Endocrinology, 2015, 11, 289-297.	4.3	72
193	A systems view of epigenetic networks regulating pancreas development and β ell function. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 1-11.	6.6	19
194	Direct Reprogramming for Pancreatic Beta-Cells Using Key Developmental Genes. Current Pathobiology Reports, 2015, 3, 57-65.	1.6	11
195	Lack of glucagon receptor signaling and its implications beyond glucose homeostasis. Journal of Endocrinology, 2015, 224, R123-R130.	1.2	50
196	Gene Therapy for Diabetes. , 2015, , 115-128.		0
197	Alpha-, Delta- and PP-cells. Journal of Histochemistry and Cytochemistry, 2015, 63, 575-591.	1.3	147
198	Activins A and B Regulate Fate-Determining Gene Expression in Islet Cell Lines and Islet Cells From Male Mice. Endocrinology, 2015, 156, 2440-2450.	1.4	13
198 199	Activins A and B Regulate Fate-Determining Gene Expression in Islet Cell Lines and Islet Cells From Male Mice. Endocrinology, 2015, 156, 2440-2450. Cell therapy in diabetes: current progress and future prospects. Science Bulletin, 2015, 60, 1744-1751.	1.4 4.3	13 4
	Mice. Endocrinology, 2015, 156, 2440-2450.		
199	Mice. Endocrinology, 2015, 156, 2440-2450. Cell therapy in diabetes: current progress and future prospects. Science Bulletin, 2015, 60, 1744-1751. REST represses a subset of the pancreatic endocrine differentiation program. Developmental Biology,	4.3	4
199 200	Mice. Endocrinology, 2015, 156, 2440-2450. Cell therapy in diabetes: current progress and future prospects. Science Bulletin, 2015, 60, 1744-1751. REST represses a subset of the pancreatic endocrine differentiation program. Developmental Biology, 2015, 405, 316-327.	4.3 0.9	4 23
199 200 201	 Mice. Endocrinology, 2015, 156, 2440-2450. Cell therapy in diabetes: current progress and future prospects. Science Bulletin, 2015, 60, 1744-1751. REST represses a subset of the pancreatic endocrine differentiation program. Developmental Biology, 2015, 405, 316-327. Using stem cells to produce insulin. Expert Opinion on Biological Therapy, 2015, 15, 1469-1489. Pax4 Expression does not Transduce Pancreatic Alpha Cells to Beta Cells. Cellular Physiology and 	4.3 0.9 1.4	4 23 19

#	Article	IF	CITATIONS
205	Epigenetic modifications and long noncoding RNAs influence pancreas development and function. Trends in Genetics, 2015, 31, 290-299.	2.9	45
206	<i>glucagon</i> is essential for alpha cell transdifferentiation and beta cell neogenesis. Development (Cambridge), 2015, 142, 1407-1417.	1.2	108
207	Islet α cells and glucagon—critical regulators of energy homeostasis. Nature Reviews Endocrinology, 2015, 11, 329-338.	4.3	213
208	Minireview: Directed Differentiation and Encapsulation of Islet β-Cells—Recent Advances and Future Considerations. Molecular Endocrinology, 2015, 29, 1388-1399.	3.7	12
209	Activation of GLP-1 and gastrin signalling induces in vivo reprogramming of pancreatic exocrine cells into beta cells in mice. Diabetologia, 2015, 58, 2582-2591.	2.9	26
210	β-Cell Identity in Type 2 Diabetes: Lost or Found?: Figure 1. Diabetes, 2015, 64, 2698-2700.	0.3	9
211	Copy number variants in patients with intellectual disability affect the regulation of ARX transcription factor gene. Human Genetics, 2015, 134, 1163-1182.	1.8	14
212	Pax4 acts as a key player in pancreas development and plasticity. Seminars in Cell and Developmental Biology, 2015, 44, 107-114.	2.3	53
213	THERAPY OF ENDOCRINE DISEASE: Islet transplantation for type 1 diabetes: so close and yet so far away. European Journal of Endocrinology, 2015, 173, R165-R183.	1.9	43
214	Glucagon Couples Hepatic Amino Acid Catabolism to mTOR-Dependent Regulation of α-Cell Mass. Cell Reports, 2015, 12, 495-510.	2.9	145
215	MafA is critical for maintenance of the mature beta cell phenotype in mice. Diabetologia, 2015, 58, 566-574.	2.9	102
216	Regulation of Pancreatic Islet Formation. , 2015, , 109-128.		3
217	Translational implications of the β-cell epigenome in diabetes mellitus. Translational Research, 2015, 165, 91-101.	2.2	10
218	Plasticity and Dedifferentiation within the Pancreas: Development, Homeostasis, and Disease. Cell Stem Cell, 2015, 16, 18-31.	5.2	139
219	In vitro reprogramming of pancreatic alpha cells towards a beta cell phenotype following ectopic HNF4α expression. Molecular and Cellular Endocrinology, 2015, 399, 50-59.	1.6	25
221	An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells. PLoS ONE, 2016, 11, e0164457.	1.1	21
222	Pancreatic Î ² Cell Mass Death. Frontiers in Pharmacology, 2016, 7, 83.	1.6	57
223	Report from IPITA-TTS Opinion Leaders Meeting on the Future of Î ² -Cell Replacement. Transplantation, 2016, 100, S1-S44.	0.5	66

#	Article	IF	CITATIONS
224	Progenitor cell niches in the human pancreatic duct system and associated pancreatic duct glands: an anatomical and immunophenotyping study. Journal of Anatomy, 2016, 228, 474-486.	0.9	42
225	Developmental Molecular Biology of the Pancreas. , 2016, , 1-57.		1
226	<scp>IGFBP</scp> 1 increases βâ€cell regeneration by promoting α―to βâ€cell transdifferentiation. EMBO Journal, 2016, 35, 2026-2044.	3.5	62
227	Singleâ€cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Reports, 2016, 17, 178-187.	2.0	206
228	The mammal-specific <i>Pdx1</i> Area II enhancer has multiple essential functions in early endocrine-cell specification and postnatal β-cell maturation. Development (Cambridge), 2017, 144, 248-257.	1.2	10
230	Redifferentiation of expanded human islet Î ² cells by inhibition of ARX. Scientific Reports, 2016, 6, 20698.	1.6	18
231	Assignment of Functional Relevance to Genes at Type 2 Diabetes-Associated Loci Through Investigation of Î ² -Cell Mass Deficits. Molecular Endocrinology, 2016, 30, 429-445.	3.7	17
232	Activin Enhances α- to β-Cell Transdifferentiation as a Source For β-Cells In Male FSTL3 Knockout Mice. Endocrinology, 2016, 157, 1043-1054.	1.4	17
233	Endogenous GIP ameliorates impairment of insulin secretion in proglucagon-deficient mice under moderate beta cell damage induced by streptozotocin. Diabetologia, 2016, 59, 1533-1541.	2.9	15
234	A synopsis of factors regulating beta cell development and beta cell mass. Cellular and Molecular Life Sciences, 2016, 73, 3623-3637.	2.4	9
235	Five stages of progressive β-cell dysfunction in the laboratory Nile rat model of type 2 diabetes. Journal of Endocrinology, 2016, 229, 343-356.	1.2	28
236	Single-Cell Mass Cytometry Analysis of the Human Endocrine Pancreas. Cell Metabolism, 2016, 24, 616-626.	7.2	126
237	β ell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas. Journal of Diabetes Investigation, 2016, 7, 286-296.	1.1	36
238	Impact of islet architecture on β-cell heterogeneity, plasticity and function. Nature Reviews Endocrinology, 2016, 12, 695-709.	4.3	150
239	βâ€ $ε$ ell differentiation status in type 2 diabetes. Diabetes, Obesity and Metabolism, 2016, 18, 1167-1175.	2.2	25
240	β-cell replacement sources for type 1 diabetes: a focus on pancreatic ductal cells. Therapeutic Advances in Endocrinology and Metabolism, 2016, 7, 182-199.	1.4	22
241	InÂVivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells. Neuron, 2016, 91, 728-738.	3.8	131
242	βâ€Cell replacement as a treatment for type 1 diabetes: an overview of possible cell sources and current axes of research. Diabetes, Obesity and Metabolism, 2016, 18, 137-143.	2.2	13

	ΟΙΤΑΤΙΟ	CITATION REPORT	
#	Article	IF	CITATIONS
243	Stressâ€induced adaptive islet cell identity changes. Diabetes, Obesity and Metabolism, 2016, 18, 87-96.	2.2	40
244	Dopamine D2 Receptor-Mediated Regulation of Pancreatic Î ² Cell Mass. Stem Cell Reports, 2016, 7, 95-109.	2.3	24
245	Targeting insulin-producing beta cells for regenerative therapy. Diabetologia, 2016, 59, 1838-1842.	2.9	4
246	Organoids from adult liver and pancreas: Stem cell biology and biomedical utility. Developmental Biology, 2016, 420, 251-261.	0.9	55
247	Stereological analyses of the whole human pancreas. Scientific Reports, 2016, 6, 34049.	1.6	30
248	Epigenetic Regulation of Islet Development and Regeneration. Pancreatic Islet Biology, 2016, , 83-109.	0.1	0
249	PAR2 regulates regeneration, transdifferentiation, and death. Cell Death and Disease, 2016, 7, e2452-e2452.	2.7	16
250	Synthetic Morphogenesis. Cold Spring Harbor Perspectives in Biology, 2016, 8, a023929.	2.3	84
251	A combination of cytokines EGF and CNTF protects the functional beta cell mass in mice with short-term hyperglycaemia. Diabetologia, 2016, 59, 1948-1958.	2.9	14
252	Autonomous interconversion between adult pancreatic α-cells and β-cells after differential metabolic challenges. Molecular Metabolism, 2016, 5, 437-448.	3.0	14
253	Regeneration of pancreatic insulin-producing cells by in situ adaptive cell conversion. Current Opinion in Genetics and Development, 2016, 40, 1-10.	1.5	23
254	Single-Cell Transcriptomics of the Human Endocrine Pancreas. Diabetes, 2016, 65, 3028-3038.	0.3	346
255	Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Molecular Metabolism, 2016, 5, 233-244.	3.0	233
256	Chromatin Regulators in Pancreas Development and Diabetes. Trends in Endocrinology and Metabolism, 2016, 27, 142-152.	3.1	24
257	Lineage Reprogramming: A Promising Road for Pancreatic β Cell Regeneration. Trends in Endocrinology and Metabolism, 2016, 27, 163-176.	3.1	27
258	New Insights into Diabetes Cell Therapy. Current Diabetes Reports, 2016, 16, 38.	1.7	17
259	Research Resource: Genetic Labeling of Human Islet Alpha Cells. Molecular Endocrinology, 2016, 30, 248-253.	3.7	6
260	Relative stability of network states in Boolean network models of gene regulation in development. BioSystems, 2016, 142-143, 15-24.	0.9	45

#	Article	IF	CITATIONS
261	Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice. Diabetologia, 2016, 59, 522-532.	2.9	27
262	Transcription factor regulation of pancreatic organogenesis, differentiation and maturation. Islets, 2016, 8, 13-34.	0.9	62
263	PAX4 Gene Transfer Induces α-to-β Cell Phenotypic Conversion and Confers Therapeutic Benefits for Diabetes Treatment. Molecular Therapy, 2016, 24, 251-260.	3.7	42
264	Reprogramming to Kidney. , 2016, , 447-461.		0
265	GABA Signaling Stimulates \hat{I}^2 Cell Regeneration in Diabetic Mice. Cell, 2017, 168, 7-9.	13.5	21
266	The molecular and morphogenetic basis of pancreas organogenesis. Seminars in Cell and Developmental Biology, 2017, 66, 51-68.	2.3	119
267	Mafa Enables Pdx1 to Effectively Convert Pancreatic Islet Progenitors and Committed Islet α-Cells Into β-Cells In Vivo. Diabetes, 2017, 66, 1293-1300.	0.3	52
268	Embryologic development of the liver, biliary tract, and pancreas. , 2017, , 17-31.e4.		1
269	Stem cells to restore insulin production and cure diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 2017, 27, 583-600.	1.1	26
270	Converting Adult Pancreatic Islet $\hat{I}\pm$ Cells into \hat{I}^2 Cells by Targeting Both Dnmt1 and Arx. Cell Metabolism, 2017, 25, 622-634.	7.2	165
271	GABA signaling: A route to new pancreatic \hat{I}^2 cells. Cell Research, 2017, 27, 309-310.	5.7	11
272	Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model. Journal of Nutritional Biochemistry, 2017, 43, 78-87.	1.9	27
273	Multi-site Neurogenin3 Phosphorylation Controls Pancreatic Endocrine Differentiation. Developmental Cell, 2017, 41, 274-286.e5.	3.1	67
274	Long-Term GABA Administration Induces Alpha Cell-Mediated Beta-like Cell Neogenesis. Cell, 2017, 168, 73-85.e11.	13.5	259
275	Artemisinins Target GABAA Receptor Signaling and Impair α Cell Identity. Cell, 2017, 168, 86-100.e15.	13.5	330
276	Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetology and Metabolic Syndrome, 2017, 9, 36.	1.2	82
277	Repression of Interstitial Identity in Nephron Progenitor Cells by Pax2 Establishes the Nephron-Interstitium Boundary during Kidney Development. Developmental Cell, 2017, 41, 349-365.e3.	3.1	61
278	Virgin Beta Cells Persist throughout Life at a Neogenic Niche within Pancreatic Islets. Cell Metabolism, 2017, 25, 911-926.e6.	7.2	172

#	Article	IF	CITATIONS
279	Hypothalamic growth hormone receptor (GHR)Âcontrols hepatic glucose production in nutrient-sensing leptin receptor (LepRb) expressing neurons. Molecular Metabolism, 2017, 6, 393-405.	3.0	38
280	GABA triggers pancreatic β-like cell neogenesis. Cell Cycle, 2017, 16, 727-728.	1.3	4
281	Emerging role of Hippo signalling in pancreatic biology: YAP re-expression and plausible link to islet cell apoptosis and replication. Biochimie, 2017, 133, 56-65.	1.3	14
282	Ectopic expression of <i>Pax4</i> in pancreatic δ cells results in β-like cell neogenesis. Journal of Cell Biology, 2017, 216, 4299-4311.	2.3	27
283	Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Molecular Metabolism, 2017, 6, 974-990.	3.0	95
284	Cellular and molecular mechanisms coordinating pancreas development. Development (Cambridge), 2017, 144, 2873-2888.	1.2	129
285	Regenerative medicine and cell-based approaches to restore pancreatic function. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 612-628.	8.2	72
286	Towards a personalized assessment of pancreatic function in diabetes. Expert Review of Precision Medicine and Drug Development, 2017, 2, 275-285.	0.4	0
287	In Vivo Reprogramming for Regenerating Insulin-Secreting Cells. Pancreatic Islet Biology, 2017, , 11-29.	0.1	0
288	GABA signaling stimulates α-cell-mediated β-like cell neogenesis. Communicative and Integrative Biology, 2017, 10, e1300215.	0.6	5
289	Rodent Models of Diabetes. , 2017, , 215-238.		0
290	Lineage conversion of mouse fibroblasts to pancreatic α-cells. Experimental and Molecular Medicine, 2017, 49, e350-e350.	3.2	2
291	Pancreatic β-cell regeneration: Facultative or dedicated progenitors?. Molecular and Cellular Endocrinology, 2017, 445, 85-94.	1.6	29
292	Targeting pancreatic expressed PAX genes for the treatment of diabetes mellitus and pancreatic neuroendocrine tumors. Expert Opinion on Therapeutic Targets, 2017, 21, 77-89.	1.5	15
293	How to make insulin-producing pancreatic β cells for diabetes treatment. Science China Life Sciences, 2017, 60, 239-248.	2.3	31
294	In Vivo Reprogramming in Regenerative Medicine. Pancreatic Islet Biology, 2017, , .	0.1	0
295	Transcriptional regulation of pancreas development and β-cell function [Review]. Endocrine Journal, 2017, 64, 477-486.	0.7	29
296	The Diabetes-Linked Transcription Factor PAX4: From Gene to Functional Consequences. Genes, 2017, 8, 101.	1.0	32

#	Article	IF	CITATIONS
297	Evidence for Loss in Identity, De-Differentiation, and Trans-Differentiation of Islet Î ² -Cells in Type 2 Diabetes. Frontiers in Genetics, 2017, 8, 35.	1.1	70
298	Analysis of Purified Pancreatic Islet Beta and Alpha Cell Transcriptomes Reveals 11β-Hydroxysteroid Dehydrogenase (Hsd11b1) as a Novel Disallowed Gene. Frontiers in Genetics, 2017, 08, 41.	1.1	60
299	A distal intergenic region controls pancreatic endocrine differentiation by acting as a transcriptional enhancer and as a polycomb response element. PLoS ONE, 2017, 12, e0171508.	1.1	12
300	Combinatorial effects of zinc deficiency and arsenic exposure on zebrafish (Danio rerio) development. PLoS ONE, 2017, 12, e0183831.	1.1	31
301	Human pluripotent stem cell differentiation to functional pancreatic cells for diabetes therapies: Innovations, challenges and future directions. Journal of Biological Engineering, 2017, 11, 21.	2.0	29
302	Regeneration of Kidney From Human Reprogrammed Stem Cells. , 2017, , 937-955.		0
303	Three-Dimensional Analysis of the Human Pancreas. Endocrinology, 2018, 159, 1393-1400.	1.4	36
304	S6K1 controls epigenetic plasticity for the expression of pancreatic α/β cell marker genes. Journal of Cellular Biochemistry, 2018, 119, 6674-6683.	1.2	7
305	Isl1β Overexpression With Key β Cell Transcription Factors Enhances Glucose-Responsive Hepatic Insulin Production and Secretion. Endocrinology, 2018, 159, 869-882.	1.4	10
306	Endogenous Reprogramming of Alpha Cells into Beta Cells, Induced by Viral Gene Therapy, Reverses Autoimmune Diabetes. Cell Stem Cell, 2018, 22, 78-90.e4.	5.2	138
307	Alpha to Beta Cell Reprogramming: Stepping toward a New Treatment for Diabetes. Cell Stem Cell, 2018, 22, 12-13.	5.2	11
308	Flumazenil reduces respiratory complications during anesthesia emergence in children with preoperative upper respiratory tract infections. Medicine (United States), 2018, 97, e0516.	0.4	2
309	Insulin acts as a repressive factor to inhibit the ability of PAR2 to induce islet cell transdifferentiation. Islets, 2018, 10, 201-212.	0.9	6
310	Developmental Molecular Biology of the Pancreas. , 2018, , 89-145.		3
311	The potential and challenges of alternative sources of Î ² cells for the cure of type 1 diabetes. Endocrine Connections, 2018, 7, R114-R125.	0.8	36
312	Pathways governing development of stem cellâ€derived pancreatic β cells: lessons from embryogenesis. Biological Reviews, 2018, 93, 364-389.	4.7	37
313	Artemether Does Not Turn Î \pm Cells into Î ² Cells. Cell Metabolism, 2018, 27, 218-225.e4.	7.2	83
314	Pancreatic Î ² Cell Regeneration as a Possible Therapy for Diabetes. Cell Metabolism, 2018, 27, 57-67.	7.2	172

#	Article	IF	CITATIONS
315	Lineage Plasticity in Cancer Progression and Treatment. Annual Review of Cancer Biology, 2018, 2, 271-289.	2.3	66
316	Regenerating β cells of the pancreas – potential developments in diabetes treatment. Expert Opinion on Biological Therapy, 2018, 18, 175-185.	1.4	11
317	Agent-Based Modeling of Immune Response to Study the Effects of Regulatory T Cells in Type 1 Diabetes. Processes, 2018, 6, 141.	1.3	2
318	Epigenetic Control of Endocrine Pancreas Differentiation in vitro: Current Knowledge and Future Perspectives. Frontiers in Cell and Developmental Biology, 2018, 6, 141.	1.8	13
319	Evidence for a Neogenic Niche at the Periphery of Pancreatic Islets. BioEssays, 2018, 40, e1800119.	1.2	13
320	Regenerative Medicine and Diabetes: Targeting the Extracellular Matrix Beyond the Stem Cell Approach and Encapsulation Technology. Frontiers in Endocrinology, 2018, 9, 445.	1.5	19
321	Epigenetic Control of Pancreatic Regeneration in Diabetes. Genes, 2018, 9, 448.	1.0	5
322	The Polycomb-Dependent Epigenome Controls β Cell Dysfunction, Dedifferentiation, and Diabetes. Cell Metabolism, 2018, 27, 1294-1308.e7.	7.2	109
323	Pancreas regeneration. Nature, 2018, 557, 351-358.	13.7	256
324	(Re)generating Human Beta Cells: Status, Pitfalls, and Perspectives. Physiological Reviews, 2018, 98, 1143-1167.	13.1	32
325	GABA and Artesunate Do Not Induce Pancreatic α-to-β Cell Transdifferentiation InÂVivo. Cell Metabolism, 2018, 28, 787-792.e3.	7.2	85
326	Therapeutic potential of pancreatic PAX4-regulated pathways in treating diabetes mellitus. Current Opinion in Pharmacology, 2018, 43, 1-10.	1.7	15
327	Heterogeneity of SOX9 and HNF1Î ² in Pancreatic Ducts Is Dynamic. Stem Cell Reports, 2018, 10, 725-738.	2.3	27
328	Insulin regulates glucagon-like peptide-1 secretion by pancreatic alpha cells. Endocrine, 2018, 62, 394-403.	1.1	11
329	Epithelial to mesenchymal transition in human endocrine islet cells. PLoS ONE, 2018, 13, e0191104.	1.1	15
330	Recapitulating and Deciphering Human Pancreas Development From Human Pluripotent Stem Cells in a Dish. Current Topics in Developmental Biology, 2018, 129, 143-190.	1.0	41
331	Alterations in Beta Cell Identity in Type 1 and Type 2 Diabetes. Current Diabetes Reports, 2019, 19, 83.	1.7	88
332	PAX proteins and their role in pancreas. Diabetes Research and Clinical Practice, 2019, 155, 107792.	1.1	23

	Сітатіо	N REPORT	
#	Article	IF	CITATIONS
333	How, When, and Where Do Human β-Cells Regenerate?. Current Diabetes Reports, 2019, 19, 48.	1.7	23
334	Antagonistic Glucagon Receptor Antibody Promotes α-Cell Proliferation and Increases β-Cell Mass in Diabetic Mice. IScience, 2019, 16, 326-339.	1.9	30
335	Reprogramming Cells to Make Insulin. Journal of the Endocrine Society, 2019, 3, 1214-1226.	0.1	19
336	Epigenetic Mechanisms in Liver and Pancreas Generation and Regeneration. , 2019, , 231-257.		2
337	Massive single-cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis. Development (Cambridge), 2019, 146, .	1.2	145
338	β-Cell Fate in Human Insulin Resistance and Type 2 Diabetes: A Perspective on Islet Plasticity. Diabetes, 2019, 68, 1121-1129.	0.3	87
339	Therapeutic Application of Perinatal Mesenchymal Stem Cells in Diabetes Mellitus. , 2019, , 93-110.		0
340	Perinatal Stem Cells. , 2019, , .		2
341	In Vivo Cell Conversion as aÂNew Cell Therapy. Current Human Cell Research and Applications, 2019, , 169-190.	0.1	0
342	DPP4 inhibitor induces beta cell regeneration and DDR-1 protein expression as an endocrine progenitor cell marker in neonatal STZ-diabetic rats. Pharmacological Reports, 2019, 71, 721-731.	1.5	8
343	Medical Applications of iPS Cells. Current Human Cell Research and Applications, 2019, , .	0.1	0
344	Endogenous Pancreatic β Cell Regeneration: A Potential Strategy for the Recovery of β Cell Deficiency in Diabetes. Frontiers in Endocrinology, 2019, 10, 101.	1.5	65
345	Present status and expectation of aristaless-related homeobox (ARX) in endocrine pancreas. International Journal of Developmental Biology, 2019, 63, 579-587.	0.3	5
346	Pancreatic plasticity: epigenetic mechanisms and connections to neoplasia. Journal of Pancreatology, 2019, 2, 131-141.	0.3	1
347	Molecular Modelling of Islet β-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus. International Journal of Molecular Sciences, 2019, 20, 6171.	1.8	19
348	Hyaluronic Acid Promotes Differentiation of Mesenchymal Stem Cells from Different Sources toward Pancreatic Progenitors within Three-Dimensional Alginate Matrixes. Molecular Pharmaceutics, 2019, 16, 834-845.	2.3	15
349	Targeting Type 1 Diabetes: Selective Approaches for New Therapies. Biochemistry, 2019, 58, 214-233.	1.2	16
350	Neurog3-Independent Methylation Is the Earliest Detectable Mark Distinguishing Pancreatic Progenitor Identity. Developmental Cell, 2019, 48, 49-63.e7.	3.1	36

#	Article	IF	CITATIONS
351	Adaptive β-Cell Neogenesis in the Adult Mouse in Response to Glucocorticoid-Induced Insulin Resistance. Diabetes, 2019, 68, 95-108.	0.3	24
352	Pancreatic \hat{I}^2 cell regeneration: to \hat{I}^2 or not to \hat{I}^2 . Current Opinion in Physiology, 2020, 14, 13-20.	0.9	15
353	Volume changes of the pancreatic head remnant after distal pancreatectomy. Surgery, 2020, 167, 455-467.	1.0	6
354	Endocrine, nutritional, and metabolic diseases. , 2020, , 121-218.		1
355	The De-, Re-, and trans-differentiation of \hat{l}^2 -cells: Regulation and function. Seminars in Cell and Developmental Biology, 2020, 103, 68-75.	2.3	18
356	Time for a paradigm shift in treating type 1 diabetes mellitus: coupling inflammation to islet regeneration. Metabolism: Clinical and Experimental, 2020, 104, 154137.	1.5	18
357	FCoR-Foxo1 Axis Regulates α-Cell Mass through Repression of Arx Expression. IScience, 2020, 23, 100798.	1.9	9
358	Pancreas progenitors. , 2020, , 347-357.		0
359	Ductal cell reprograming to insulin-producing cells as a potential beta cell replacement source for islet auto-transplant recipients. , 2020, , 397-405.		2
360	Therapeutic potential of mesenchymal stem cells in treating both types of diabetes mellitus and associated diseases. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1979-1993.	0.8	3
361	Antidiabetic drug therapy alleviates type 1 diabetes in mice by promoting pancreatic α-cell transdifferentiation. Biochemical Pharmacology, 2020, 182, 114216.	2.0	14
362	Pax4 Gene Delivery Improves Islet Transplantation Efficacy by Promoting β Cell Survival and α-to-β Cell Transdifferentiation. Cell Transplantation, 2020, 29, 096368972095865.	1.2	6
363	Diabetes Mellitus Is a Chronic Disease that Can Benefit from Therapy with Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2020, 21, 8685.	1.8	13
364	The Potential Roles of Artemisinin and Its Derivatives in the Treatment of Type 2 Diabetes Mellitus. Frontiers in Pharmacology, 2020, 11, 585487.	1.6	23
365	Reversal of autoimmunity by mixed chimerism enables reactivation of Î ² cells and transdifferentiation of α cells in diabetic NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31219-31230.	3.3	11
366	β-Cell specific transcription factors in the context of diabetes mellitus and β-cell regeneration. Mechanisms of Development, 2020, 163, 103634.	1.7	15
368	Beneficial actions of a longâ€acting apelin analogue in diabetes are related to positive effects on islet cell turnover and transdifferentiation. Diabetes, Obesity and Metabolism, 2020, 22, 2468-2478.	2.2	17
369	Single-cell RNA-seq with spike-in cells enables accurate quantification of cell-specific drug effects in pancreatic islets. Genome Biology, 2020, 21, 106.	3.8	30

#	Article	IF	CITATIONS
370	In utero exposure to dexamethasone programs the development of the pancreatic β- and α-cells during early postnatal life. Life Sciences, 2020, 255, 117810.	2.0	11
371	Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids. BMC Developmental Biology, 2020, 20, 4.	2.1	67
372	Dapagliflozin exerts positive effects on beta cells, decreases glucagon and does not alter beta- to alpha-cell transdifferentiation in mouse models of diabetes and insulin resistance. Biochemical Pharmacology, 2020, 177, 114009.	2.0	18
373	Small Molecule-Induced Pancreatic β-Like Cell Development: Mechanistic Approaches and Available Strategies. International Journal of Molecular Sciences, 2020, 21, 2388.	1.8	17
374	Enzymatically stable analogue of the gutâ€derived peptide xenin on betaâ€cell transdifferentiation in high fat fed and insulinâ€deficient <i>Ins1^{Cre/+};Rosa26â€eYFP mice</i> . Diabetes/Metabolism Research and Reviews, 2021, 37, e3384.	1.7	7
375	Increased alpha and beta cell mass during mouse pregnancy is not dependent on transdifferentiation. Experimental Biology and Medicine, 2021, 246, 617-628.	1.1	6
376	The Landscape of microRNAs in βCell: Between Phenotype Maintenance and Protection. International Journal of Molecular Sciences, 2021, 22, 803.	1.8	11
377	Pancreatic \hat{I}^2 cell regeneration induced by clinical and preclinical agents. World Journal of Stem Cells, 2021, 13, 64-77.	1.3	12
379	Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. International Review of Cell and Molecular Biology, 2021, 359, 139-256.	1.6	7
380	FSTL3-Neutralizing Antibodies Enhance Glucose-Responsive Insulin Secretion in Dysfunctional Male Mouse and Human Islets. Endocrinology, 2021, 162, .	1.4	2
381	Positive Effects of NPY1 Receptor Activation on Islet Structure Are Driven by Pancreatic Alpha- and Beta-Cell Transdifferentiation in Diabetic Mice. Frontiers in Endocrinology, 2021, 12, 633625.	1.5	12
382	DNA methylation status correlates with adult \hat{I}^2 -cell regeneration capacity. Npj Regenerative Medicine, 2021, 6, 7.	2.5	5
383	GLP-1 receptor signaling increases PCSK1 and \hat{I}^2 cell features in human $\hat{I}\pm$ cells. JCI Insight, 2021, 6, .	2.3	24
384	Endocrine Pancreas Development and Dysfunction Through the Lens of Single-Cell RNA-Sequencing. Frontiers in Cell and Developmental Biology, 2021, 9, 629212.	1.8	8
385	The Plasticity of Pancreatic Î ² -Cells. Metabolites, 2021, 11, 218.	1.3	11
386	Harnessing the Endogenous Plasticity of Pancreatic Islets: A Feasible Regenerative Medicine Therapy for Diabetes?. International Journal of Molecular Sciences, 2021, 22, 4239.	1.8	3
387	The Human Islet: Mini-Organ With Mega-Impact. Endocrine Reviews, 2021, 42, 605-657.	8.9	44
388	Pancreatic β-cell heterogeneity in health and diabetes: classes, sources, and subtypes. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E716-E731.	1.8	21

#	Article	IF	CITATIONS
389	Stem Cells as a Source of Pancreatic Cells for Production of 3D Bioprinted Bionic Pancreas in the Treatment of Type 1 Diabetes. Cells, 2021, 10, 1544.	1.8	11
390	Effects of first-line diabetes therapy with biguanides, sulphonylurea and thiazolidinediones on the differentiation, proliferation and apoptosis of islet cell populations. Journal of Endocrinological Investigation, 2022, 45, 95-103.	1.8	8
391	Tissue Engineering Strategies for Improving Beta Cell Transplantation Outcome. Current Transplantation Reports, 2021, 8, 205-219.	0.9	6
392	Possible mechanisms of the hypoglycaemic effect of artesunate: Gender implication. Metabolism Open, 2021, 10, 100087.	1.4	2
393	Exploiting Single-Cell Tools in Gene and Cell Therapy. Frontiers in Immunology, 2021, 12, 702636.	2.2	21
394	Preproglucagon Products and Their Respective Roles Regulating Insulin Secretion. Endocrinology, 2021, 162, .	1.4	1
395	Debates in Pancreatic Beta Cell Biology: Proliferation Versus Progenitor Differentiation and Transdifferentiation in Restoring β Cell Mass. Frontiers in Endocrinology, 2021, 12, 722250.	1.5	17
396	Stage-specific transcriptomic changes in pancreatic α-cells after massive β-cell loss. BMC Genomics, 2021, 22, 585.	1.2	8
397	Targeting β-cell dedifferentiation and transdifferentiation: opportunities and challenges. Endocrine Connections, 2021, 10, R213-R228.	0.8	20
398	Engineering islets from stem cells for advanced therapies of diabetes. Nature Reviews Drug Discovery, 2021, 20, 920-940.	21.5	61
399	Photoreceptor cKO of OTX2 Enhances OTX2 Intercellular Transfer in the Retina and Causes Photophobia. ENeuro, 2021, 8, ENEURO.0229-21.2021.	0.9	5
400	Stem/progenitor cells in normal physiology and disease of the pancreas. Molecular and Cellular Endocrinology, 2021, 538, 111459.	1.6	6
401	Insights from single cell studies of human pancreatic islets and stem cell-derived islet cells to guide functional beta cell maturation in vitro. Vitamins and Hormones, 2021, 116, 193-233.	0.7	2
402	Protein Kinases Signaling in Pancreatic Beta-cells Death and Type 2 Diabetes. Advances in Experimental Medicine and Biology, 2021, 1275, 195-227.	0.8	2
403	Effects of sustained GABA releasing implants on pancreatic islets in mice. Drug Delivery and Translational Research, 2021, 11, 2198-2208.	3.0	4
404	Direct Lineage Conversion of Pancreatic Exocrine to Endocrine Beta Cells In Vivo with Defined Factors. Methods in Molecular Biology, 2014, 1150, 247-262.	0.4	13
405	Wnt Signaling in Pancreatic Islets. , 2014, , 1-31.		1
406	Direct cell reprogramming: approaches, mechanisms and progress. Nature Reviews Molecular Cell Biology, 2021, 22, 410-424.	16.1	178

#	Article	IF	CITATIONS
407	Pancreatic alpha-cells from female mice undergo morphofunctional changes during compensatory adaptations of the endocrine pancreas to diet-induced obesity. Scientific Reports, 2015, 5, 11622.	1.6	32
408	Using a barcoded AAV capsid library to select for clinically relevant gene therapy vectors. JCI Insight, 2019, 4, .	2.3	64
409	Human duct cells contribute to \hat{I}^2 cell compensation in insulin resistance. JCI Insight, 2019, 4, .	2.3	43
410	Creating new \hat{l}^2 cells: cellular transmutation by genomic alchemy. Journal of Clinical Investigation, 2013, 123, 1007-1010.	3.9	1
411	Advances in β cell replacement and regeneration strategies for treating diabetes. Journal of Clinical Investigation, 2016, 126, 3651-3660.	3.9	44
412	A cullin 4B-RING E3 ligase complex fine-tunes pancreatic \hat{I}' cell paracrine interactions. Journal of Clinical Investigation, 2017, 127, 2631-2646.	3.9	28
413	Cdk4 Regulates Recruitment of Quiescent β-Cells and Ductal Epithelial Progenitors to Reconstitute β-Cell Mass. PLoS ONE, 2010, 5, e8653.	1.1	30
414	Contribution of a Non-β-Cell Source to β-Cell Mass during Pregnancy. PLoS ONE, 2014, 9, e100398.	1.1	23
415	The Quest for Tissue Stem Cells in the Pancreas and Other Organs, and their Application in Beta-Cell Replacement. Review of Diabetic Studies, 2010, 7, 112-123.	0.5	15
416	Islet Neogenesis: A Possible Pathway for Beta-Cell Replenishment. Review of Diabetic Studies, 2012, 9, 407-416.	0.5	49
417	Ductal Cell Reprogramming to Insulin-Producing Beta-Like Cells as a Potential Beta Cell Replacement Source for Chronic Pancreatitis. Current Stem Cell Research and Therapy, 2019, 14, 65-74.	0.6	12
418	Stem Cells in the Treatment of InsulinDependent Diabetes Mellitus. Acta Naturae, 2016, 8, 31-43.	1.7	9
419	Streptozotocin-induced expression of Ngn3 and Pax4 in neonatal rat pancreatic α-cells. World Journal of Gastroenterology, 2011, 17, 2812-20.	1.4	23
420	Transdifferentiation of pancreatic α-cells into insulin-secreting cells: From experimental models to underlying mechanisms. World Journal of Diabetes, 2014, 5, 847.	1.3	15
421	Present Accomplishments and Future Prospects of Cell-Based Therapies for Type 1 Diabetes Mellitus. , 0, , .		3
422	β-Cell Ontogenesis and the Insulin Production Apparatus. , 2011, , 73-81.		0
423	The Enigma of β-Cell Regeneration in the Adult Pancreas: Self-Renewal Versus Neogenesis. , O, , .		0
424	Deregulation of Developmental Genes in Pancreatic Malignancies. Pancreatic Disorders & Therapy, 2012, 02, .	0.3	0

#	Article	IF	CITATIONS
425	Progenitors of Islet Cells. , 2013, , 271-281.		0
426	The roles of micro RNA in pancreas development and regeneration. Biomedical Reviews, 2014, 24, 57.	0.6	1
427	Regulation of Pancreatic Islet Formation. , 2014, , 1-19.		0
428	Wnt Signaling in Pancreatic Islets. , 2015, , 707-741.		1
429	Rodent Models of Diabetes. , 2016, , 1-25.		0
431	Regenerative Medicine for Diabetes Treatment: New \hat{I}^2 -Cell Sources. , 2018, , 197-220.		0
434	Reviewing Major Mechanisms of \hat{l}^2 -Cell Regeneration: A Prospective Treatment for Diabetes Mellitus. Georgetown Medical Review, 2020, 4, .	0.1	1
439	Stem Cells in the Treatment of Insulin-Dependent Diabetes Mellitus. Acta Naturae, 2016, 8, 31-43.	1.7	4
440	L-Methionine prevents Î ² -cell damage by modulating the expression of Arx, MafA and regulation of FOXO1 in type 1 diabetic rats. Acta Histochemica, 2022, 124, 151820.	0.9	8
442	Regenerative Medicine for Diabetes. , 2022, , 2068-2071.		0
443	Hepatocyte Nuclear Factor 4-α (HNF4α) controls the insulin resistance-induced pancreatic β-cell mass expansion. Life Sciences, 2022, 289, 120213.	2.0	3
444	LINEAGE: Label-free identification of endogenous informative single-cell mitochondrial RNA mutation for lineage analysis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
445	Inhibition of SGLT2 Preserves Function and Promotes Proliferation of Human Islets Cells In Vivo in Diabetic Mice. Biomedicines, 2022, 10, 203.	1.4	4
446	Artemether and aspterric acid induce pancreatic alpha cells to transdifferentiate into beta cells in zebrafish. British Journal of Pharmacology, 2021, , .	2.7	7
447	MYCL-mediated reprogramming expands pancreatic insulin-producing cells. Nature Metabolism, 2022, 4, 254-268.	5.1	7
448	Regeneration of β cells from cell phenotype conversion among the pancreatic endocrine cells. Chronic Diseases and Translational Medicine, 2022, 8, 1-4.	0.9	1
449	Transcriptional control of pancreatic \hat{l}^2 -cell identity and plasticity during the pathogenesis of type 2 diabetes. Journal of Genetics and Genomics, 2022, 49, 316-328.	1.7	6
450	GABA and insulin but not nicotinamide augment α- to β-cell transdifferentiation in insulin-deficient diabetic mice. Biochemical Pharmacology, 2022, 199, 115019.	2.0	11

#	ARTICLE	IF	CITATIONS
451	Alpha-to-beta cell trans-differentiation for treatment of diabetes. Biochemical Society Transactions, 2021, 49, 2539-2548.	1.6	8
452	Conversion of Gastrointestinal Somatostatin-Expressing D Cells Into Insulin-Producing Beta-Like Cells Upon Pax4 Misexpression. Frontiers in Endocrinology, 2022, 13, 861922.	1.5	3
453	èf°å²›ç±»å™"å®~ç"究进展. Scientia Sinica Vitae, 2022, , .	0.1	0
454	Glucagon-receptor-antagonism-mediated \hat{l}^2 -cell regeneration as an effective anti-diabetic therapy. Cell Reports, 2022, 39, 110872.	2.9	10
455	Pro-α-cell-derived β-cells contribute to β-cell neogenesis induced by antagonistic glucagon receptor antibody in type 2 diabetic mice. IScience, 2022, 25, 104567.	1.9	11
456	βÂcell regeneration and novel strategies for treatment of diabetes (Review). Biomedical Reports, 2022, 17,	0.9	3
457	Direct Reprogramming of Different Cell Lineages into Pancreatic β-Like Cells. Cellular Reprogramming, 2022, 24, 252-258.	0.5	2
458	Alpha-cell paracrine signaling in the regulation of beta-cell insulin secretion. Frontiers in Endocrinology, 0, 13, .	1.5	14
459	Heterogeneity and altered β-cell identity in the TallyHo model of early-onset type 2 diabetes. Acta Histochemica, 2022, 124, 151940.	0.9	0
460	SMNDC1 links chromatin remodeling and splicing to regulate pancreatic hormone expression. Cell Reports, 2022, 40, 111288.	2.9	4
461	Reprogramming—Evolving Path to Functional Surrogate β-Cells. Cells, 2022, 11, 2813.	1.8	1
463	Harnessing gut cells for functional insulin production: Strategies and challenges. Biotechnology Notes, 2023, 4, 7-13.	0.7	0
464	Direct Reprogramming of Somatic Cells into Induced β-Cells: An Overview. Advances in Experimental Medicine and Biology, 2022, , .	0.8	2
465	Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus. Stem Cell Reviews and Reports, 2023, 19, 601-624.	1.7	7
466	Exploring the Effects of Metabolism-Disrupting Chemicals on Pancreatic α-Cell Viability, Gene Expression and Function: A Screening Testing Approach. International Journal of Molecular Sciences, 2023, 24, 1044.	1.8	3
467	Artemether treatment improves islet function and metabolic homeostasis in diabetic nonhuman primates. Journal of Diabetes, 0, , .	0.8	1
468	Biomedical importance of the ubiquitin–proteasome system in diabetes and metabolic transdifferentiation of pancreatic duct epithelial cells into β-cells. Gene, 2023, 858, 147191.	1.0	0
469	PAR2: The Cornerstone of Pancreatic Diseases. Physiological Research, 0, , 583-596.	0.4	4

		CITATION REPORT		
#	Article		IF	CITATIONS
470	Wnt Pathway in Pancreatic Development and Pathophysiology. Cells, 2023, 12, 565.		1.8	3
471	EpiCRISPR targeted methylation of Arx gene initiates transient switch of mouse pancre insulin-producing cells. Frontiers in Endocrinology, 0, 14, .	eatic alpha to	1.5	1
477	An Insight into Vital Genes Responsible for β-cell Formation. Advances in Experimental Medicine and Biology, 2023, , .		0.8	1
479	Reversing pancreatic β-cell dedifferentiation in the treatment of type 2 diabetes. Exper Molecular Medicine, 2023, 55, 1652-1658.	rimental and	3.2	10