Aquatic arsenic: Toxicity, speciation, transformations, a

Environment International 35, 743-759 DOI: 10.1016/j.envint.2009.01.005

Citation Report

#	Article	IF	CITATIONS
2	Treatment of arsenic-contaminated groundwater by a low cost activated alumina adsorbent prepared by partial thermal dehydration. Desalination and Water Treatment, 2009, 11, 275-282.	1.0	22
3	Sustainability and Water. , 2009, , .		3
4	Effectiveness of Potassium Ferrate (K2FeO4) for Simultaneous Removal of Heavy Metals and Natural Organic Matters from River Water. Water, Air, and Soil Pollution, 2010, 211, 313-322.	1.1	38
5	The characteristics of Escherichia coli adsorption of arsenic(III) from aqueous solution. World Journal of Microbiology and Biotechnology, 2010, 26, 249-256.	1.7	23
6	Metal Impurities in Food and Drugs. Pharmaceutical Research, 2010, 27, 750-755.	1.7	110
7	Possible treatments for arsenic removal in Latin American waters for human consumption. Environmental Pollution, 2010, 158, 1105-1118.	3.7	252
8	Determination of total arsenic in seawater by hydride generation atomic fluorescence spectrometry. Microchemical Journal, 2010, 96, 157-160.	2.3	22
9	Selective removal of arsenic(V) from a molybdate plant liquor by precipitation of magnesium arsenate. Hydrometallurgy, 2010, 104, 290-297.	1.8	33
10	Sample pre-treatment and extraction methods that are crucial to arsenic speciation in algae and aquatic plants. TrAC - Trends in Analytical Chemistry, 2010, 29, 53-69.	5.8	52
11	Distribution and chemical fractionation of arsenic in surficial sediments of the Lami coastal environment in Fiji. South Pacific Journal of Natural and Applied Sciences, 2010, 28, 78.	0.2	6
12	Effects of pH, adsorbate/adsorbent ratio, temperature and ionic strength on the adsorption of arsenate onto soil. Geochemistry: Exploration, Environment, Analysis, 2010, 10, 407-412.	0.5	9
13	Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp, Catla catla. Food and Chemical Toxicology, 2010, 48, 2848-2854.	1.8	141
14	Oxidation of nitrogen-containing pollutants by novel ferrate(VI) technology: A review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 645-667.	0.9	121
15	Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola) Tj ETQq1 1 0.78	84314 rgB 1.9	T /Qverlock
16	Arsenic release from river sediments in a gold-mining area (Anllons River basin, Spain): effect of time, pH and phosphorous concentration. European Journal of Mineralogy, 2010, 22, 665-678.	0.4	24
17	Atomic spectrometry update. Elemental speciation. Journal of Analytical Atomic Spectrometry, 2010, 25, 1185.	1.6	19
18	Arsenic (III) oxidation of water applying a combination of hydrogen peroxide and UVC radiation. Photochemical and Photobiological Sciences, 2011, 10, 1797-1803.	1.6	31
19	Arsenic in Biogenic Iron Minerals from a Contaminated Environment. Geomicrobiology Journal, 2011, 28, 242-251.	1.0	13

#	Article	IF	CITATIONS
20	Migration of As, Hg, Pb, and Zn in arroyo sediments from a semiarid coastal system influenced by the abandoned gold mining district at El Triunfo, Baja California Sur, Mexico. Journal of Environmental Monitoring, 2011, 13, 2182.	2.1	27
21	Current status of groundwater arsenic and its impacts on health and mitigation measures in the Terai basin of Nepal: An overview. Environmental Reviews, 2011, 19, 55-67.	2.1	17
22	Methodologies for the analytical determination of ferrate(VI): A Review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 453-460.	0.9	106
23	Novel Arsenic Ion-Imprinted Polymer: Simultaneous Removal As(III) and As(V) from Water. , 2011, , .		0
24	Arsenic Speciation Analysis by Ion Chromatography - A Critical Review of Principles and Applications. American Journal of Analytical Chemistry, 2011, 02, 27-45.	0.3	40
26	The Adsorption of Arsenic Ions Using Beidellite, Zeolite, and Sepiolite Clays: A Study of Kinetic, Equilibrium and Thermodynamics. Separation Science and Technology, 2011, 46, 1005-1016.	1.3	16
27	Theoretical studies of arsenite adsorption and its oxidation mechanism on a perfect TiO2 anatase (101) surface. Applied Surface Science, 2011, 258, 1192-1198.	3.1	31
28	Separation and determination of arsenic species in water by selective exchange and hybrid resins. Analytica Chimica Acta, 2011, 706, 191-198.	2.6	58
29	Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry—Last decade review. Talanta, 2011, 84, 247-261.	2.9	122
30	Taxonomic and functional prokaryote diversity in mildly arsenic-contaminated sediments. Research in Microbiology, 2011, 162, 877-887.	1.0	51
31	Development of a Test System for Homeopathic Preparations Using Impaired Duckweed (<i>Lemna) Tj ETQq0</i>	0 0 rgBT /0	verlock 10 Tf
32	Validation of a Method for Arsenic Speciation in Food by Ion Chromatography-Inductively Coupled Plasma/Mass Spectrometry After Ultrasonic-Assisted Enzymatic Extraction. Journal of AOAC INTERNATIONAL, 2011, 94, 947-958.	0.7	23
33	Arsenic Contamination of Groundwater in Nepal—An Overview. Water (Switzerland), 2011, 3, 1-20.	1.2	112
34	From an old remedy to a magic bullet: molecular mechanisms underlying the therapeutic effects of arsenic in fighting leukemia. Blood, 2011, 117, 6425-6437.	0.6	170
35	Removal of arsenic(V) from aqueous solutions using 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane functionalized silica gel adsorbent. Desalination, 2011, 278, 238-243.	4.0	49
36	Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L Environmental Pollution, 2011, 159, 3398-3405.	3.7	36
37	Artificial neural network (ANN) approach for modelling of arsenic (III) biosorption from aqueous solution by living cells of Bacillus cereus biomass. Chemical Engineering Journal, 2011, 178, 15-25.	6.6	146
38	Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. Chemosphere, 2011, 83, 211-225.	4.2	169

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
39	Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere, 2011, 83, 633-646.	4.2	310
40	Removal processes for arsenic in constructed wetlands. Chemosphere, 2011, 84, 1032-1043.	4.2	138
41	Determination of submillimolar concentration of ferrate(VI) in alkaline solutions by amperometric titration. Open Chemistry, 2011, 9, 808-812.	1.0	5
42	Determination of arsenic content of some Romanian natural mineral groundwaters. Environmental Monitoring and Assessment, 2011, 173, 79-89.	1.3	4
43	Determination of arsenic (III) and arsenic (V) in freshwater biological samples from Thailand by solvent extraction and neutron activation. Journal of Radioanalytical and Nuclear Chemistry, 2011, 287, 211-216.	0.7	14
44	Interacting Effect of pH, Phosphate and Time on the Release of Arsenic from Polluted River Sediments (Anllóns River, Spain). Aquatic Geochemistry, 2011, 17, 281-306.	1.5	40
45	Investigating Arsenic Bioavailability and Bioaccumulation by the Freshwater Oligochaete Lumbriculus variegatus. Archives of Environmental Contamination and Toxicology, 2011, 61, 426-434.	2.1	6
46	Determination of arsenic levels in the water resources of Aksaray Province, Turkey. Journal of Environmental Management, 2011, 92, 2182-2192.	3.8	31
47	The effect of waste water treatment on river metal concentrations: removal or enrichment?. Journal of Soils and Sediments, 2011, 11, 364-372.	1.5	27
48	Purification, crystallization and preliminary X-ray diffraction studies of the arsenic repressor ArsR from <i>Corynebacterium glutamicum</i> . Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1616-1618.	0.7	4
49	A Macrocyclic Ligand as Receptor and Zn ^{II} omplex Receptor for Anions in Water: Binding Properties and Crystal Structures. Chemistry - A European Journal, 2011, 17, 1670-1682.	1.7	50
50	A study of arsenic contamination by graphite furnace atomic absorption spectrometry in the Lami estuary in Fiji. Microchemical Journal, 2011, 97, 160-164.	2.3	8
51	Use of an in vitro digestion method to evaluate the bioaccessibility of arsenic in edible seaweed by inductively coupled plasma-mass spectrometry. Microchemical Journal, 2011, 98, 91-96.	2.3	45
52	Comparative phytotoxicity of methylated and inorganic arsenic- and antimony species to Lemna minor, Wolffia arrhiza and Selenastrum capricornutum. Microchemical Journal, 2011, 97, 30-37.	2.3	28
53	Oxidation of inorganic contaminants by ferrates (VI, V, and IV)–kinetics and mechanisms: A review. Journal of Environmental Management, 2011, 92, 1051-1073.	3.8	238
54	Sorption of aqueous antimony and arsenic species onto akaganeite. Journal of Colloid and Interface Science, 2011, 357, 460-465.	5.0	124
55	Water-soluble functional polymers in conjunction with membranes to remove pollutant ions from aqueous solutions. Progress in Polymer Science, 2011, 36, 294-322.	11.8	145
56	Unsuspected Diversity of Arsenite-Oxidizing Bacteria as Revealed by Widespread Distribution of the <i>aoxB</i> Gene in Prokaryotes. Applied and Environmental Microbiology, 2011, 77, 4685-4692.	1.4	84

#	Article	IF	CITATIONS
57	Density Functional Theory Calculations of Arsenic(V) Structures on Perfect TiO ₂ Anatase (1 0 1) Surface. Advanced Materials Research, 0, 233-235, 495-498.	0.3	2
58	Biosorption of Arsenic from Contaminated Water onto Solid <i>Psidium guajava</i> Leaf Surface: Equilibrium, Kinetics, Thermodynamics, and Desorption Study. Bioremediation Journal, 2012, 16, 97-112.	1.0	16
59	Objective Assessment of an Ionic Footbath (IonCleanse): Testing Its Ability to Remove Potentially Toxic Elements from the Body. Journal of Environmental and Public Health, 2012, 2012, 1-13.	0.4	2
60	Biological AsIII oxidation and arsenic sequestration onto ZVI-coated sand in an up-flow fixed-bed reactor. Water Science and Technology: Water Supply, 2012, 12, 82-89.	1.0	4
61	Multivariate Statistical Analyses on Arsenic Occurrence in Rybnik Reservoir. Archives of Environmental Protection, 2012, 38, .	1.1	0
62	Biogeochemical Behavior of Arsenic Species at ParanaguÃ; Estuarine Complex, Southern Brazil. Aquatic Geochemistry, 2012, 18, 407-420.	1.5	23
63	Arsenic speciation of geothermal waters in New Zealand. Journal of Environmental Monitoring, 2012, 14, 3192.	2.1	20
64	Optimisation and application of the voltammetric technique for speciation of chromium in the Patos Lagoon Estuary—Brazil. Environmental Monitoring and Assessment, 2012, 184, 5553-5562.	1.3	5
65	Antagonistic toxicity of arsenate and cadmium in a freshwater amphipod (Gammarus pulex). Ecotoxicology, 2012, 21, 1817-1827.	1.1	29
66	Accumulation of arsenic by aquatic plants in large-scale field conditions: Opportunities for phytoremediation and bioindication. Science of the Total Environment, 2012, 433, 390-397.	3.9	126
67	Potential release of selected trace elements (As, Cd, Cu, Mn, Pb and Zn) from sediments in Cam River-mouth (Vietnam) under influence of pH and oxidation. Science of the Total Environment, 2012, 435-436, 487-498.	3.9	79
68	Arsenic speciation in edible alga samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry. Analytica Chimica Acta, 2012, 714, 38-46.	2.6	87
69	Arsenic in freshwater systems: Influence of eutrophication on occurrence, distribution, speciation, and bioaccumulation. Applied Geochemistry, 2012, 27, 304-314.	1.4	83
70	Properties of synthetic monosulfate as a novel material for arsenic removal. Journal of Hazardous Materials, 2012, 227-228, 402-409.	6.5	16
71	Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environmental Research, 2012, 116, 118-135.	3.7	290
72	Conversion, sorption, and transport of arsenic species in geological media. Applied Geochemistry, 2012, 27, 2197-2203.	1.4	7
74	Arsenic Removal from Water by Adsorption Using Iron Oxide Minerals as Adsorbents: A Review. Mineral Processing and Extractive Metallurgy Review, 2012, 33, 301-315.	2.6	130
76	Effect of the cooking procedure on the arsenic speciation in the bioavailable (dialyzable) fraction from seaweed. Microchemical Journal, 2012, 105, 65-71.	2.3	31

#	Article	IF	CITATIONS
77	Wet-Chemical Passivation of InAs: Toward Surfaces with High Stability and Low Toxicity. Accounts of Chemical Research, 2012, 45, 1451-1459.	7.6	18
78	Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays. Applied Microbiology and Biotechnology, 2012, 95, 1343-1350.	1.7	24
80	TiO ₂ -Photocatalytic Reduction of Pentavalent and Trivalent Arsenic: Production of Elemental Arsenic and Arsine. Environmental Science & (amp; Technology, 2012, 46, 2299-2308.)	4.6	46
81	Biosorptive behaviour of mango leaf powder and rice husk for arsenic(III) from aqueous solutions. International Journal of Environmental Science and Technology, 2012, 9, 565-578.	1.8	49
82	Arsenic removal by magnetic nanocrystalline barium hexaferrite. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	18
83	Removal of Arsenic from Aqueous Solutions by Sorption onto Sewage Sludge-Based Sorbent. Water, Air, and Soil Pollution, 2012, 223, 2311-2321.	1.1	38
84	Adsorption of As (III) and As (V) from water using magnetite Fe3O4-reduced graphite oxide–MnO2 nanocomposites. Chemical Engineering Journal, 2012, 187, 45-52.	6.6	317
85	Comparison of arsenate and cadmium toxicity in a freshwater amphipod (Gammarus pulex). Environmental Pollution, 2012, 160, 66-73.	3.7	39
86	Inorganic arsenic contents in rice-based infant foods from Spain, UK, China and USA. Environmental Pollution, 2012, 163, 77-83.	3.7	121
87	Arsenate and arsenite removal by FeCl3: Effects of pH, As/Fe ratio, initial As concentration and co-existing solutes. Separation and Purification Technology, 2012, 92, 106-114.	3.9	79
88	Application of titanium dioxide in arsenic removal from water: A review. Journal of Hazardous Materials, 2012, 215-216, 1-16.	6.5	320
89	Stabilization of the As-contaminated soil from the metal mining areas in Korea. Environmental Geochemistry and Health, 2012, 34, 143-149.	1.8	24
90	A medical geology study of an arsenic-contaminated area in Kouhsorkh, NE Iran. Environmental Geochemistry and Health, 2012, 34, 171-179.	1.8	1
91	Detoxification and bioregulation are critical for long-term waterborne arsenic exposure risk assessment for tilapia. Environmental Monitoring and Assessment, 2012, 184, 561-572.	1.3	3
92	Photocatalytical removal of inorganic and organic arsenic species from aqueous solution using zinc oxide semiconductor. Photochemical and Photobiological Sciences, 2013, 12, 653-659.	1.6	41
93	Single and combined effects of cadmium and arsenate in Gammarus pulex (Crustacea, Amphipoda): Understanding the links between physiological and behavioural responses. Aquatic Toxicology, 2013, 140-141, 106-116.	1.9	49
94	Optimization of Process Parameters for Removal of Arsenic Using Activated Carbon-Based Iron-Containing Adsorbents by Response Surface Methodology. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	22
95	Biomonitoring of arsenic through mangrove oyster (Crassostrea corteziensis Hertlein, 1951) from coastal lagoons (SE Gulf of California): occurrence of arsenobetaine and other arseno-compounds. Environmental Monitoring and Assessment, 2013, 185, 7459-7468.	1.3	10

#	Article	IF	CITATIONS
96	Gold microelectrode ensembles: cheap, reusable and stable electrodes for the determination of arsenic (V) under aerobic conditions. International Journal of Environmental Analytical Chemistry, 2013, 93, 1105-1115.	1.8	16
97	Arsenic in marine hydrothermal fluids. Chemical Geology, 2013, 348, 2-14.	1.4	56
98	Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa. Environmental Science and Pollution Research, 2013, 20, 7286-7295.	2.7	79
99	Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus. Environmental Science and Pollution Research, 2013, 20, 1281-1291.	2.7	87
100	On-line speciation analysis of inorganic arsenic in complex environmental aqueous samples by pervaporation sequential injection analysis. Talanta, 2013, 117, 8-13.	2.9	15
101	A simplified analysis of dimethylarsinic acid by wavelength dispersive X-ray fluorescence spectrometry combined with a strong cation exchange disk. Journal of Hazardous Materials, 2013, 260, 24-31.	6.5	12
102	Ultra-Traces Detection by Gold-Based Electrodes in As(III) Novel Photoremediation. Electrocatalysis, 2013, 4, 306-311.	1.5	2
103	Joint effects of heavy metal binary mixtures on seed germination, root and shoot growth, bacterial bioluminescence, and gene mutation. Journal of Environmental Sciences, 2013, 25, 889-894.	3.2	12
104	Bioremediation of Arsenic-Contaminated Water: Recent Advances and Future Prospects. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	62
105	Arsenic sorption and speciation with branch-polyethyleneimine modified carbon nanotubes with detection by atomic fluorescence spectrometry. Talanta, 2013, 104, 53-57.	2.9	59
106	Treatment of wastewater containing arsenic using Rhazya stricta as a new adsorbent. Environmental Monitoring and Assessment, 2013, 185, 9669-9681.	1.3	23
107	Bifunctional resin-ZVI composites for effective removal of arsenite through simultaneous adsorption and oxidation. Water Research, 2013, 47, 6064-6074.	5.3	102
108	Speciation and Mobility of Selected Trace Metals (As, Cu, Mn, Pb and Zn) in Sediment with Depth in Cam River-Mouth, Haiphong, Vietnam. Aquatic Geochemistry, 2013, 19, 57-75.	1.5	16
109	Depth-resolved abundance and diversity of arsenite-oxidizing bacteria in the groundwater of Beimen, a blackfoot disease endemic area of southwestern Taiwan. Water Research, 2013, 47, 6983-6991.	5.3	16
110	Occurrence of arsenic in two large shallow freshwater lakes in China and a comparison to other lakes around the world. Microchemical Journal, 2013, 110, 169-177.	2.3	34
111	Differential in vitro bioaccessibility of residual As in a field-aged former smelter site and its implication for potential risk. Science of the Total Environment, 2013, 463-464, 348-354.	3.9	8
112	Arsenic and Arsenic Species in Cultured Oyster (Crassostrea gigas and C. corteziensis) from Coastal Lagoons of the SE Gulf of California, Mexico. Biological Trace Element Research, 2013, 151, 43-49.	1.9	17
113	Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Chemosphere, 2013, 92, 157-170.	4.2	270

#	Article	IF	CITATIONS
114	Ferrate(VI): A Green Chemistry Oxidant for Removal of Antibiotics in Water. ACS Symposium Series, 2013, , 31-44.	0.5	4
115	Arsenic sorption by nanocrystalline magnetite: An example of environmentally promising interface with geosphere. Journal of Hazardous Materials, 2013, 262, 1204-1212.	6.5	50
116	Removal of inorganic arsenic oxyanions using Ca–Fe(III) alginate beads. Desalination and Water Treatment, 2013, 51, 2162-2169.	1.0	6
117	α-Fe2O3 nanowires deposited diatomite: highly efficient absorbents for the removal of arsenic. Journal of Materials Chemistry A, 2013, 1, 7729.	5.2	67
118	The optimization of As(V) removal over mesoporous alumina by using response surface methodology and adsorption mechanism. Journal of Hazardous Materials, 2013, 254-255, 301-309.	6.5	94
119	Land use changes and metal mobility: Multi-approach study on tidal marsh restoration in a contaminated estuary. Science of the Total Environment, 2013, 449, 174-183.	3.9	11
120	Nanostructured iron(III)-copper(II) binary oxide: A novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Research, 2013, 47, 4022-4031.	5.3	290
121	Metal contamination in water, sediment and biota from a semi-enclosed coastal area. Environmental Monitoring and Assessment, 2013, 185, 3879-3895.	1.3	34
122	Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chemical Engineering Journal, 2013, 225, 607-615.	6.6	132
123	Removal of As(V) from aqueous solutions by iron coated rice husk. Fuel Processing Technology, 2013, 106, 511-517.	3.7	57
124	Arsenic in solution, colloidal and particulate phases of East-Hainan estuaries. Continental Shelf Research, 2013, 57, 73-81.	0.9	20
125	Distribution of inorganic arsenic species in groundwater from Central-West Part of Santa Fe Province, Argentina. Applied Geochemistry, 2013, 39, 43-48.	1.4	13
126	Arsenic Exposure Affects Embryo Development of Sea Urchin, Paracentrotus lividus (Lamarck, 1816). Bulletin of Environmental Contamination and Toxicology, 2013, 91, 565-570.	1.3	14
127	Kinetic Study of Arsenic(V) Absorption with Al ₂ O ₃ Functionalized SBA-15. Advanced Materials Research, 2013, 726-731, 2191-2197.	0.3	2
128	Biosorption of As(III) and As(V) from aqueous solutions by brown macroalga <i>Colpomenia sinuosa</i> biomass: kinetic and equilibrium studies. Desalination and Water Treatment, 2013, 51, 3224-3232.	1.0	33
129	Preconcentration of Arsenic in <i>Radix aucklandiae</i> by Sulfhydryl Cotton and Determination by Atomic Fluorescence Spectrometry. Advanced Materials Research, 0, 699, 3-6.	0.3	0
130	Leaching of Arsenic, Lead, and Antimony from Highway-Marking Glass Beads. Journal of Environmental Engineering, ASCE, 2013, 139, 1168-1177.	0.7	4
131	Uptake of Arsenic(V) with Aluminum Modified MCM-41. Advanced Materials Research, 0, 807-809, 1518-1522.	0.3	0

#	Article	IF	CITATIONS
132	Mineralogical Study of a Biologically-Based Treatment System That Removes Arsenic, Zinc and Copper from Landfill Leachate. Minerals (Basel, Switzerland), 2013, 3, 427-449.	0.8	11
133	Organometal(loid)s. Fish Physiology, 2013, 33, 141-194.	0.2	6
134	Arsenic geochemistry in a biostimulated aquifer: An aqueous speciation study. Environmental Toxicology and Chemistry, 2013, 32, 1216-1223.	2.2	27
135	Multiple Scattering Debye-Waller Factors for Arsenate. Journal of Physics: Conference Series, 2013, 430, 012086.	0.3	1
136	Influence of Pond Seepage on Groundwater Pollution by Arsenic in Hanoi, Viet Nam. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2013, 69, III_17-III_28.	0.1	3
137	Arsenic in drinking water in Northern region of Serbia. E3S Web of Conferences, 2013, 1, 24006.	0.2	2
138	Arsenic Efflux from Microcystis aeruginosa under Different Phosphate Regimes. PLoS ONE, 2014, 9, e116099.	1.1	25
139	Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand. Frontiers in Microbiology, 2014, 5, 569.	1.5	32
140	Speciation of arsenic(III) and arsenic(V) by manganese-mediated stripping voltammetry at gold microelectrode ensemble in neutral and basic medium. International Journal of Environmental Analytical Chemistry, 2014, 94, 1478-1498.	1.8	20
141	Selective extraction and preconcentration of ultra-trace amounts of arsenic(V) ions using carbon nanotubes as a novel sorbent. International Journal of Environmental Analytical Chemistry, 2014, 94, 1452-1462.	1.8	9
142	Characteristics of arsenate removal from water by metal-organic frameworks (MOFs). Water Science and Technology, 2014, 70, 1391-1397.	1.2	104
143	Liberation of Adsorbed and Co-Precipitated Arsenic from Jarosite, Schwertmannite, Ferrihydrite, and Goethite in Seawater. Minerals (Basel, Switzerland), 2014, 4, 603-620.	0.8	14
144	Removal of arsenic from drinking water by batch and continuous electrocoagulation processes using hybrid Alâ€Fe plate electrodes. Environmental Progress and Sustainable Energy, 2014, 33, 131-140.	1.3	73
145	Zeolitic Imidazolate Framework-8 with High Efficiency in Trace Arsenate Adsorption and Removal from Water. Journal of Physical Chemistry C, 2014, 118, 27382-27387.	1.5	194
146	Effects of Salinity of Porewater on Arsenic Speciations in Sediments of Bosten Lake in Xinjiang, Northwest China. Advanced Materials Research, 0, 955-959, 450-454.	0.3	1
147	Perspectives and Advances in Photocatalysis. , 2014, , 137-186.		0
148	Arsenic Adsorption onto Minerals: Connecting Experimental Observations with Density Functional Theory Calculations. Minerals (Basel, Switzerland), 2014, 4, 208-240.	0.8	58
149	The Influence of Dosing Modes of Coagulate on Arsenic Removal. Journal of Chemistry, 2014, 2014, 1-7.	0.9	0

IF

ARTICLE

Arsenic in Rice-Based Infant Foods. , 2014, , 377-391.

CITATIONS

5

151	Harmful Elements in Estuarine and Coastal Systems. , 2014, , 37-83.		11
152	Transformation of monothioarsenate by haloalkaliphilic, anoxygenic photosynthetic purple sulfur bacteria. FEMS Microbiology Ecology, 2014, 90, 858-868.	1.3	37
153	Speciation of As(III)/As(V) in water samples by a magnetic solid phase extraction based on Fe3O4/Mg–Al layered double hydroxide nano-hybrid followed by chemiluminescence detection. Talanta, 2014, 128, 147-155.	2.9	37
154	Pharmacokinetic properties of arsenic species after oral administration of Sargassum pallidum extract in rats using an HPLC-HG-AFS method. Journal of Pharmaceutical and Biomedical Analysis, 2014, 96, 213-219.	1.4	11
155	Metal and metalloid leaching from tailings into streamwater and sediments in the old Ag–Pb–Zn Terramonte mine, northern Portugal. Environmental Earth Sciences, 2014, 71, 2029-2041.	1.3	11
156	Application of a Two-Site Ideal Model for the Prediction of As–SO4–Cl Ion Exchange Equilibria. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	2
157	Bioaccumulation and toxicity of arsenic in cyanobacteria cultures separated from a eutrophic reservoir. Environmental Monitoring and Assessment, 2014, 186, 805-814.	1.3	22
158	Arsenic species analysis in freshwater using liquid chromatography combined to hydride generation atomic fluorescence spectrometry. Journal of Analytical Chemistry, 2014, 69, 83-88.	0.4	8
159	The role of humic acid in the toxicity of arsenite to the diatom Navicula sp Environmental Science and Pollution Research, 2014, 21, 4366-4375.	2.7	27
160	Modified composites based on mesostructured iron oxyhydroxide and synthetic minerals: A potential material for the treatment of various toxic heavy metals and its toxicity. Journal of Hazardous Materials, 2014, 267, 161-168.	6.5	36
161	Platinum-like Behavior of Reduced Graphene Oxide as a Cocatalyst on TiO ₂ for the Efficient Photocatalytic Oxidation of Arsenite. Environmental Science and Technology Letters, 2014, 1, 185-190.	3.9	114
162	Characterization of binary oxide photoactive material and its application for inorganic arsenic removal. Journal of Industrial and Engineering Chemistry, 2014, 20, 3658-3662.	2.9	10
163	Removal and fate of arsenic in the rhizosphere of Juncus effusus treating artificial wastewater in laboratory-scale constructed wetlands. Ecological Engineering, 2014, 69, 93-105.	1.6	30
165	Arsenic and selenium toxicity and their interactive effects in humans. Environment International, 2014, 69, 148-158.	4.8	322
166	Fate and distribution of arsenic in a process-designed pilot-scale constructed wetland treatment system. Ecological Engineering, 2014, 68, 251-259.	1.6	10
167	Arsenic species in drinking water wells in the USA with high arsenic concentrations. Water Research, 2014, 48, 156-169.	5.3	140
168	Identification of arsenolipids and their degradation products in cod-liver oil. Talanta, 2014, 118,	2.9	51

#	Article	IF	CITATIONS
169	Graphene Oxide–MnFe ₂ O ₄ Magnetic Nanohybrids for Efficient Removal of Lead and Arsenic from Water. ACS Applied Materials & Interfaces, 2014, 6, 17426-17436.	4.0	497
170	Thioarsenic Species Associated with Increased Arsenic Release during Biostimulated Subsurface Sulfate Reduction. Environmental Science & Technology, 2014, 48, 13367-13375.	4.6	55
171	Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions. Biomass and Bioenergy, 2014, 71, 299-310.	2.9	156
172	Enhanced uptake and translocation of arsenic in Cretan brake fern (Pteris cretica L.) through siderophorearsenic complex formation with an aid of rhizospheric bacterial activity. Journal of Hazardous Materials, 2014, 280, 536-543.	6.5	36
173	Speciation analysis of inorganic arsenic in river water by Amberlite IRA 910 resin immobilized in a polyacrylamide gel as a selective binding agent for As(v) in diffusive gradient thin film technique. Analyst, The, 2014, 139, 4373.	1.7	18
174	Detection of Arsenic(III) through Pulsed Laser-Induced Desorption/Ionization of Gold Nanoparticles on Cellulose Membranes. Analytical Chemistry, 2014, 86, 3167-3173.	3.2	32
175	Kinetic study of adsorption of arsenic onto New Zealand Ironsand (NZIS). Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 1474-1480.	0.9	2
176	The effect of solution parameters on the thiosulfate leaching of Zarshouran refractory gold ore. International Journal of Mineral Processing, 2014, 131, 43-50.	2.6	28
177	Removal of As(III) and As(V) by ferric salts coagulation – Implications of particle size and zeta potential of precipitates. Separation and Purification Technology, 2014, 135, 64-71.	3.9	57
178	Influence of calcination on magnetic honeycomb briquette cinders composite for the adsorptive removal of As(III) in fixed-bed column. Chemical Engineering Journal, 2014, 257, 1-9.	6.6	13
179	(Methyl)Mercury, Arsenic, and Lead Contamination of the World's Largest Wastewater Irrigation System: the Mezquital Valley (Hidalgo State—Mexico). Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	27
180	Biodegradation and speciation of roxarsone in an anaerobic granular sludge system and its impacts. Journal of Hazardous Materials, 2014, 279, 562-568.	6.5	54
181	Removal of Arsenic (III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose. Journal of Environmental Health Science & Engineering, 2014, 12, 74.	1.4	75
183	Speciation and detection of arsenic in aqueous samples: A review of recent progress in non-atomic spectrometric methods. Analytica Chimica Acta, 2014, 831, 1-23.	2.6	146
184	Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation. Journal of Contaminant Hydrology, 2014, 164, 299-307.	1.6	28
185	Biogeochemical Process-Based Design and Performance of a Pilot-Scale Constructed Wetland for Arsenic Removal from Simulated Bangladesh Groundwater. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	6
186	Acute toxicity of arsenic to Aliivibrio fischeri (Microtox® bioassay) as influenced by potential competitive–protective agents. Environmental Science and Pollution Research, 2014, 21, 8631-8644.	2.7	24
187	Adsorption ability of samples with nanoscale anatase to extract Nb(V) and Ta(V) ions from aqueous media. Crystallography Reports, 2014, 59, 430-436.	0.1	9

#	Article	IF	CITATIONS
188	Waterâ€ s oluble polymer and photocatalysis for arsenic removal. Journal of Applied Polymer Science, 2014, 131, .	1.3	13
189	Arsenite Oxidation Initiated by the UV Photolysis of Nitrite and Nitrate. Environmental Science & Technology, 2014, 48, 4030-4037.	4.6	76
190	Behavior of Heavy Metals during Fluidized Bed Combustion of Poultry Litter. Energy & Fuels, 2014, 28, 5158-5166.	2.5	14
191	Review of remediation techniques for arsenic (As) contamination: AÂnovel approach utilizing bio-organisms. Journal of Environmental Management, 2014, 134, 175-185.	3.8	97
192	Effect of arsenic on nitrification of simulated mining water. Bioresource Technology, 2014, 164, 149-154.	4.8	40
193	ls arsenic biotransformation a detoxification mechanism for microorganisms?. Aquatic Toxicology, 2014, 146, 212-219.	1.9	108
194	Acid and organic resistant nano-hydrated zirconium oxide (HZO)/polystyrene hybrid adsorbent for arsenic removal from water. Chemical Engineering Journal, 2014, 248, 290-296.	6.6	85
195	Study of the migration phenomena of specific metals in canned tomato paste before and after opening. Validation of a new quality indicator for opened cans. Food and Chemical Toxicology, 2014, 69, 25-31.	1.8	15
196	Enhanced removal of trace arsenate by magnetic nanoparticles modified with arginine and lysine. Chemical Engineering Journal, 2014, 254, 340-348.	6.6	35
197	Species- and tissue-specific bioaccumulation of arsenicals in various aquatic organisms from a highly industrialized area in the Pohang City, Korea. Environmental Pollution, 2014, 192, 27-35.	3.7	41
198	Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35). Ecotoxicology and Environmental Safety, 2014, 106, 126-135.	2.9	64
199	Naked-eye and Colorimetric Detection of Arsenic(III) Using Difluoroboron-curcumin in Aqueous and Resin Bead Support Systems. Analytical Sciences, 2014, 30, 1129-1134.	0.8	36
200	A Study on Arsenic Speciation in Korean Oyster Samples using Ion Chromatography Inductively Coupled Plasma Mass Spectrometry. Bulletin of the Korean Chemical Society, 2015, 36, 250-257.	1.0	6
202	The diversity and abundance of As(III) oxidizers on root iron plaque is critical for arsenic bioavailability to rice. Scientific Reports, 2015, 5, 13611.	1.6	55
203	Loading and dilution: arsenic, sodium and nutrients in a sectionof the River Tisza, Hungary. Open Geosciences, 2015, 7, .	0.6	1
204	Arsenic removal from groundwater by ion exchange and adsorption processes: comparison of two different materials. Water Science and Technology: Water Supply, 2015, 15, 981-989.	1.0	15
205	Optimization of microwaveâ€assisted extraction for six inorganic and organic arsenic species in chicken tissues using response surface methodology. Journal of Separation Science, 2015, 38, 3063-3070.	1.3	18
206	Bioaccumulation and oxidative stress in <i>Daphnia magna</i> exposed to arsenite and arsenate. Environmental Toxicology and Chemistry, 2015, 34, 2629-2635.	2.2	25

#	Article	IF	CITATIONS
207	Adaptation Strategies of Plants against Heavy Metal Toxicity: A Short Review. Biochemistry & Pharmacology: Open Access, 2015, 04, .	0.2	12
208	Regulation of arsenite oxidation by the phosphate two-component system PhoBR in Halomonas sp. HAL1. Frontiers in Microbiology, 2015, 6, 923.	1.5	40
209	Enhanced Adsorption of Trivalent Arsenic from Water by Functionalized Diatom Silica Shells. PLoS ONE, 2015, 10, e0123395.	1.1	29
210	Dissolved Air Flotation of arsenic adsorbent particles. Ingenieria E Investigacion, 2015, 35, 36-42.	0.2	1
211	Arsenic speciation in fish products and seafood as a prerequisite for proper risk assessment. Italian Journal of Food Safety, 2015, 4, 4577.	0.5	1
213	Mechanism of Arsenic Adsorption on Magnetite Nanoparticles from Water: Thermodynamic and Spectroscopic Studies. Environmental Science & amp; Technology, 2015, 49, 7726-7734.	4.6	314
214	Competitive adsorption of As(V) with co-existing ions on porous hematite in aqueous solutions. Journal of Environmental Chemical Engineering, 2015, 3, 1497-1503.	3.3	32
216	Structure and properties of Co-doped cryptomelane and its enhanced removal of Pb 2+ and Cr 3+ from wastewater. Journal of Environmental Sciences, 2015, 34, 77-85.	3.2	30
217	Ecotoxicological Effects of an Arsenic Remediation Method on Three Freshwater Organisms—Lemna disperma, Chlorella sp. CE-35 and Ceriodaphnia cf. dubia. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	1
218	Combined use of collision cell technique and methanol addition for the analysis of arsenic in a high-chloride-containing sample by ICP-MS. Microchemical Journal, 2015, 120, 77-81.	2.3	11
219	Hybrid Flow System for Automatic Dynamic Fractionation and Speciation of Inorganic Arsenic in Environmental Solids. Environmental Science & amp; Technology, 2015, 49, 2733-2740.	4.6	9
220	Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. Journal of Environmental Management, 2015, 151, 326-342.	3.8	480
221	Reconfiguration of DNA methylation in aging. Mechanisms of Ageing and Development, 2015, 151, 60-70.	2.2	227
222	Effects of salinity and (an)ions on arsenic behavior in sediment of Bosten Lake, Northwest China. Environmental Earth Sciences, 2015, 73, 4707-4716.	1.3	17
223	Investigations into the Speciation of Inorganic Arsenic in Weakly Alkaline Medium by Voltammetry. Electroanalysis, 2015, 27, 890-901.	1.5	7
224	Heterogeneous Catalytic Oxidation of As(III) on Nonferrous Metal Oxides in the Presence of H ₂ O ₂ . Environmental Science & Technology, 2015, 49, 3506-3513.	4.6	111
225	Variation in arsenic accumulation and translocation among wheat cultivars: The relationship between arsenic accumulation, efflux by wheat roots and arsenate tolerance of wheat seedlings. Journal of Hazardous Materials, 2015, 289, 190-196.	6.5	35
226	Improving the Reactivity of Zerovalent Iron by Taking Advantage of Its Magnetic Memory: Implications for Arsenite Removal. Environmental Science & amp; Technology, 2015, 49, 10581-10588.	4.6	59

#	Article	IF	Citations
227	Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China. Journal of Hazardous Materials, 2015, 300, 652-661.	6.5	79
228	In vitro toxicological characterisation of arsenic-containing fatty acids and three of their metabolites. Toxicology Research, 2015, 4, 1289-1296.	0.9	48
229	Modelling of optimum conditions for bioaccumulation of As(III) and As(V) by response surface methodology (RSM). Journal of Environmental Chemical Engineering, 2015, 3, 1986-2001.	3.3	9
230	Arsenic toxicity effects on microbial communities and nutrient cycling in indoor experimental channels mimicking a fluvial system. Aquatic Toxicology, 2015, 166, 72-82.	1.9	23
231	Efficient removal of arsenic from water using a granular adsorbent: Fe–Mn binary oxide impregnated chitosan bead. Bioresource Technology, 2015, 193, 243-249.	4.8	135
232	Arsenic removal from groundwater of Sivas-ÅžarkiÅŸla Plain, Turkey by electrocoagulation process: Comparing with iron plate and ball electrodes. Journal of Environmental Chemical Engineering, 2015, 3, 1096-1106.	3.3	53
233	Arsenic Contamination in Soil and Sediment in India: Sources, Effects, and Remediation. Current Pollution Reports, 2015, 1, 35-46.	3.1	119
234	X-ray Accelerated Photo-Oxidation of As(III) in Solution. Journal of Physical Chemistry A, 2015, 119, 2829-2833.	1.1	5
235	Determination of physiological, taxonomic, and molecular characteristics of a cultivable arsenic-resistant bacterial community. Environmental Science and Pollution Research, 2015, 22, 13753-13763.	2.7	12
236	Coupled techniques for arsenic speciation in food and drinking water: a review. Journal of Analytical Atomic Spectrometry, 2015, 30, 102-118.	1.6	76
237	Arsenic removal by nanoparticles: a review. Environmental Science and Pollution Research, 2015, 22, 8094-8123.	2.7	142
238	Robust Method Using Online Steric Exclusion Chromatography-Ultraviolet-Inductively Coupled Plasma Mass Spectrometry To Investigate Nanoparticle Fate and Behavior in Environmental Samples. Analytical Chemistry, 2015, 87, 10346-10353.	3.2	6
239	Multivariate optimization of photochemical vapor generation for direct determination of arsenic in seawater by inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 2015, 901, 34-40.	2.6	35
240	Development of a method for speciation of inorganic arsenic in waters using solid phase extraction and electrothermal atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 2015, 95, 1395-1411.	1.8	11
241	Magnetic graphene–carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification. Advances in Colloid and Interface Science, 2015, 225, 229-240.	7.0	147
242	Dose-dependent effects of selenite (Se4+) on arsenite (As3+)-induced apoptosis and differentiation in acute promyelocytic leukemia cells. Cell Death and Disease, 2015, 6, e1596-e1596.	2.7	21
243	Redox Processes in Water Remediation Technologies. Environmental Chemistry for A Sustainable World, 2015, , 199-253.	0.3	4
244	SD/MnFe2O4 composite, a biosorbent for As(III) and As(V) removal from wastewater: Optimization and isotherm study. Journal of Molecular Liquids, 2015, 212, 382-404.	2.3	52

#	Article	IF	CITATIONS
245	Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Journal of Environmental Management, 2015, 162, 306-325.	3.8	427
246	Catecholate-siderophore produced by As-resistant bacterium effectively dissolved FeAsO4 and promoted Pteris vittata growth. Environmental Pollution, 2015, 206, 376-381.	3.7	26
247	Voltammetric tools for trace element speciation in fresh waters: methodologies, outcomes and future perspectives. Environmental Chemistry, 2015, 12, 683.	0.7	10
248	Arsenic in freshwater ecosystems of the Bengal delta: status, sources and seasonal variability. Toxicological and Environmental Chemistry, 2015, 97, 538-551.	0.6	11
249	Adsorption characteristics of 4-hydroxy-3-aminophenylarsonic acid (HAPA) onto anaerobic granular sludge. Desalination and Water Treatment, 2015, , 1-12.	1.0	1
250	Modelling of As ³⁺ adsorption from aqueous solution using <i>Azadirachta indica</i> by artificial neural network. Desalination and Water Treatment, 2015, 56, 1839-1854.	1.0	7
251	Evaluation of ferrihydrite as amendment to restore an arsenic-polluted mine soil. Environmental Science and Pollution Research, 2015, 22, 6778-6788.	2.7	23
252	Biogeochemistry of selenium. A review. Environmental Chemistry Letters, 2015, 13, 49-58.	8.3	140
253	Natural Nanoparticles: Implications for Environment and Human Health. Critical Reviews in Environmental Science and Technology, 2015, 45, 861-904.	6.6	76
254	Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicology and Environmental Safety, 2015, 112, 247-270.	2.9	863
255	Arsenic Removal from Natural Water Using Low Cost Granulated Adsorbents: A Review. Clean - Soil, Air, Water, 2015, 43, 13-26.	0.7	81
256	Biotransformation and detoxification of inorganic arsenic in Bombay oyster Saccostrea cucullata. Aquatic Toxicology, 2015, 158, 33-40.	1.9	71
257	Capabilities of several phosphonium ionic liquids for arsenic species determination in water by liquid–liquid microextraction and electrothermal atomic absorption spectrometry. Analytical Methods, 2015, 7, 490-499.	1.3	21
258	Photocatalytic Semiconductors. , 2015, , .		65
259	Speciation of antimony and arsenic in the soils and plants in an old antimony mine. Environmental and Experimental Botany, 2015, 109, 31-39.	2.0	66
260	Adsorption/desorption of arsenic by tropical peat: influence of organic matter, iron and aluminium. Environmental Technology (United Kingdom), 2015, 36, 149-159.	1.2	26
261	Gracilaria waste biomass (sampah rumput laut) as a bioresource for selenium biosorption. Journal of Applied Phycology, 2015, 27, 611-620.	1.5	26
262	Arsenic Transfer from As-Rich Sediments to River Water in the Presence of Biofilms. Journal of Chemistry, 2016, 2016, 1-14.	0.9	5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
263	Arsenic toxicity to cladocerans isolated and associated with iron: implications for aquatic environments. Anais Da Academia Brasileira De Ciencias, 2016, 88, 539-548.		0.3	4
264	Spatio-Temporal Detection of the Thiomonas Population and the Thiomonas Arsenite Oxida in Natural Arsenite Attenuation Processes in the CarnoulÃ [°] s Acid Mine Drainage. Frontiers ir Developmental Biology, 2016, 4, 3.	se Involved Cell and	1.8	15
265	Duckweed. , 2016, , 411-429.			10
266	Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. Inte Journal of Environmental Research and Public Health, 2016, 13, 62.	rnational	1.2	320
267	Factors Affecting Elevated Arsenic and Methyl Mercury Concentrations in Small Shield Lakes Surrounding Gold Mines near the Yellowknife, NT, (Canada) Region. PLoS ONE, 2016, 11, eC	;)150960.	1.1	35
268	A new perovskite-type NdFeO ₃ adsorbent: synthesis, characterization, and As adsorption. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 0250	(V))15.	0.7	27
269	Magnetically onfined Feâ€Mn Bimetallic Oxide Encapsulation as an Efficient and Recover for Arsenic(III) Removal. Particle and Particle Systems Characterization, 2016, 33, 323-331.	able Adsorbent	1.2	22
270	Investigating the Roles of Dissolved Organic Matter on Arsenic Mobilization and Speciation Environmental Water. Clean - Soil, Air, Water, 2016, 44, 818-828.	in	0.7	13
271	Zirconia (ZrO ₂) Embedded in Carbon Nanowires via Electrospinning for Efficier Removal from Water Combined with DFT Studies. ACS Applied Materials & Interfaces, 2 18912-18921.	ıt Arsenic 2016, 8,	4.0	83
272	Impact of carbon nanotubes on the toxicity of inorganic arsenic [AS(III) and AS(V)] to <i>Damagna</i> : The role of certain arsenic species. Environmental Toxicology and Chemistry, 20 1852-1859.	phnia 16, 35,	2.2	24
273	Capture of Gas-Phase Arsenic by Ferrospheres Separated from Fly Ashes. Energy & Fuel 8746-8752.	s, 2016, 30,	2.5	28
274	Speciation analysis of inorganic arsenic in food and water samples by electrothermal atomic absorption spectrometry after magnetic solid phase extraction by a novel MOF-199/modifie nanoparticle composite. RSC Advances, 2016, 6, 113727-113736.	d magnetite	1.7	27
275	The global menace of arsenic and its conventional remediation - A critical review. Chemosph 158, 37-49.	ere, 2016,	4.2	403
276	Bioaccumulation Dynamics of Arsenate at the Base of Aquatic Food Webs. Environmental S & Technology, 2016, 50, 6556-6564.	cience	4.6	25
277	Selected Fe and Mn (nano)oxides as perspective amendments for the stabilization of As in contaminated soils. Environmental Science and Pollution Research, 2016, 23, 10841-10854		2.7	28
278	Photocatalytic oxidation and simultaneous removal of arsenite with CuO/ZnO photocatalys of Photochemistry and Photobiology A: Chemistry, 2016, 325, 97-103.	t. Journal	2.0	97
279	Supermacroporous hybrid polymeric cryogels for efficient removal of metallic contaminants microbes from water. International Journal of Polymeric Materials and Polymeric Biomaterial 65, 636-645.	and s, 2016,	1.8	16
280	Hierarchical iron containing γ-MnO 2 hollow microspheres: A facile one-step synthesis and e removal of As(III) via oxidation and adsorption. Chemical Engineering Journal, 2016, 301, 13	effective 9-148.	6.6	106

#	Article	IF	CITATIONS
281	Adsorption of As(III) and As(V) onto colloidal microparticles of commercial cross-linked polyallylamine (Sevelamer) from single and binary ion solutions. Journal of Colloid and Interface Science, 2016, 474, 137-145.	5.0	20
282	Influence of epipsammic biofilm on the biogeochemistry of arsenic in freshwater environments. Biogeochemistry, 2016, 129, 291-306.	1.7	10
283	Arsenic bioaccumulation and biotransformation in deep-sea hydrothermal vent organisms from the PACMANUS hydrothermal field, Manus Basin, PNG. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 117, 95-106.	0.6	10
284	Fe(III)–Sn(IV) mixed binary oxide-coated sand preparation and its use for the removal of As(III) and As(V) from water: Application of isotherm, kinetic and thermodynamics. Journal of Molecular Liquids, 2016, 224, 431-441.	2.3	82
285	Phytofiltration of Metal(loid)-Contaminated Water: The Potential of Native Aquatic Plants. , 2016, , 305-343.		2
286	Irrigated greywater in an urban sub-division as a potential source of metals to soil, groundwater and surface water. Journal of Environmental Management, 2016, 183, 806-817.	3.8	30
287	The immune responses and expression of metallothionein (MT) gene and heat shock protein 70 (HSP 70) in juvenile rockfish, Sebastes schlegelii , exposed to waterborne arsenic (As 3+). Environmental Toxicology and Pharmacology, 2016, 47, 136-141.	2.0	33
288	A Review and Evaluation of the Impacts of Climate Change on Geogenic Arsenic in Groundwater from Fractured Bedrock Aquifers. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	47
289	Tremendous effect of oxygen vacancy defects on the oxidation of arsenite to arsenate on cryptomelane-type manganese oxide. Chemical Engineering Journal, 2016, 306, 597-606.	6.6	43
290	Iron-loaded zein beads as a biocompatible adsorbent for arsenic(V) removal. Journal of Industrial and Engineering Chemistry, 2016, 43, 127-132.	2.9	29
291	Toxicity of Arsenic to <i>Photobacterium phosphoreum</i> , <i>Daphnia magna</i> , and <i>Danio rerio</i> at Different pH Levels. Clean - Soil, Air, Water, 2016, 44, 72-77.	0.7	7
292	Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	4
294	The impacts of As accumulation under different pH levels: Comparing Ruditapes decussatus and Ruditapes philippinarum biochemical performance. Environmental Research, 2016, 151, 653-662.	3.7	27
295	Varying responses of PML-RARA with different genetic mutations to arsenic trioxide. Blood, 2016, 127, 243-250.	0.6	26
296	The Role of Biosorbents in the Removal of Arsenic from Water. Chemical Engineering and Technology, 2016, 39, 1617-1628.	0.9	20
297	Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 272-278.	1.3	5
298	Amorphous nanosized Al–Ti–Mn trimetal hydrous oxides: synthesis, characterization and enhanced performance in arsenic removal. RSC Advances, 2016, 6, 100732-100742.	1.7	23
299	Impact of roxarsone on the UASB reactor performance and its degradation. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	3.3	14

#	Article	IF	CITATIONS
301	Total reflection X ray fluorescence in environmental and geochemical studies: unveiling solute provenance in streams during a rain episode. X-Ray Spectrometry, 2016, 45, 225-232.	0.9	9
302	Aluminum and iron doped graphene for adsorption of methylated arsenic pollutants. Applied Surface Science, 2016, 386, 84-95.	3.1	58
303	Zinc peroxide functionalized synthetic graphite: An economical and efficient adsorbent for adsorption of arsenic (III) and (V). Journal of Environmental Chemical Engineering, 2016, 4, 2964-2975.	3.3	22
304	Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash. Water Science and Technology, 2016, 73, 1954-1962.	1.2	17
305	Inorganic arsenic speciation by electroanalysis. From laboratory to field conditions: A mini-review. Electrochemistry Communications, 2016, 70, 33-38.	2.3	33
306	The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters. Microbial Ecology, 2016, 72, 25-35.	1.4	16
307	Interaction of arsenic species with tropical river aquatic humic substances enriched with aluminum and iron. Environmental Science and Pollution Research, 2016, 23, 6205-6216.	2.7	9
308	Arsenic speciation in water, suspended particles, and coastal organisms from the Taehwa River Estuary of South Korea. Marine Pollution Bulletin, 2016, 108, 155-162.	2.3	28
309	Simultaneous Measurements of Eight Oxyanions Using High-Capacity Diffusive Gradients in Thin Films (Zr-Oxide DGT) with a High-Efficiency Elution Procedure. Environmental Science & Technology, 2016, 50, 7572-7580.	4.6	56
310	Removal of arsenic from drinking water by photo atalytic oxidation on <scp>MoO_x</scp> / <scp>TiO₂</scp> and adsorption on γâ€ <scp>Al₂O₃</scp> . Journal of Chemical Technology and Biotechnology, 2016, 91. 88-95.	1.6	26
311	Sorptive removal of arsenite [As(III)] and arsenate [As(V)] by fuller's earth immobilized nanoscale zero-valent iron nanoparticles (F-nZVI): Effect of Fe 0 loading on adsorption activity. Journal of Environmental Chemical Engineering, 2016, 4, 681-694.	3.3	50
312	Effect of arsenate As (V) on the biomarkers of Myriophyllum alterniflorum in oligotrophic and eutrophic conditions. Chemosphere, 2016, 147, 131-137.	4.2	12
313	Comparison of Single and Two-Stage Ballasted Flocculation Processes for Enhanced Removal of Arsenic from Mine Water. Journal of Environmental Engineering, ASCE, 2016, 142, .	0.7	3
314	Arsenite and arsenate removal from wastewater using cationic polymer-modified waste tyre rubber. Journal of Environmental Management, 2016, 166, 574-578.	3.8	20
315	Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments. Science of the Total Environment, 2016, 543, 147-154.	3.9	13
316	Leaching potential and redox transformations of arsenic and selenium in sediment microcosms with fly ash. Applied Geochemistry, 2016, 67, 177-185.	1.4	43
317	Fast removal of high quantities of toxic arsenate via cationic p(APTMACl) microgels. Journal of Environmental Management, 2016, 166, 217-226.	3.8	28
318	Simultaneous arsenate and alkali removal from alkaline wastewater by in-situ formation of Zn–Al layered double hydroxide. Microporous and Mesoporous Materials, 2016, 227, 137-143.	2.2	11

#	Article	IF	CITATIONS
319	Zooplankton from a North Western Mediterranean area as a model of metal transfer in a marine environment. Ecological Indicators, 2016, 66, 440-451.	2.6	46
320	Changes in elemental content in fronds of <i>Azolla filiculoides</i> due to arsenic accumulation. Plant Biosystems, 2016, 150, 1332-1340.	0.8	1
321	Absorption and translocation of copper and arsenic in an aquatic macrophyte Myriophyllum alterniflorum DC. in oligotrophic and eutrophic conditions. Environmental Science and Pollution Research, 2016, 23, 11129-11136.	2.7	13
322	Response surface methodology investigation into the interactions between arsenic and humic acid in water during the coagulation process. Journal of Hazardous Materials, 2016, 312, 150-158.	6.5	43
323	A theoretical investigation of the removal of methylated arsenic pollutants with silicon doped graphene. RSC Advances, 2016, 6, 28500-28511.	1.7	19
324	Distribution of arsenic between the particulate and aqueous phases in surface water from three freshwater lakes in China. Environmental Science and Pollution Research, 2016, 23, 7452-7461.	2.7	19
325	Influence of potassium permanganate pre-oxidation on the interaction of humic acid with cadmium/arsenic. RSC Advances, 2016, 6, 3048-3057.	1.7	6
326	The effect of pH on the adsorption of arsenic(III) and arsenic(V) at the TiO 2 anatase [1 0 1] surface. Journal of Colloid and Interface Science, 2016, 462, 252-259.	5.0	111
327	Arsenic impacted the development, thyroid hormone and gene transcription of thyroid hormone receptors in bighead carp larvae (Hypophthalmichthys nobilis). Journal of Hazardous Materials, 2016, 303, 76-82.	6.5	26
328	Aqueous arsenite removal by simultaneous ultraviolet photocatalytic oxidation-coagulation of titanium sulfate. Journal of Hazardous Materials, 2016, 303, 162-170.	6.5	36
329	Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Separation and Purification Technology, 2016, 157, 141-161.	3.9	977
330	Embryo aberrations in the amphipod Monoporeia affinis as indicators of toxic pollutants in sediments: A field evaluation. Ecological Indicators, 2016, 60, 18-30.	2.6	28
331	Arsenic distribution in soils and rye plants of a cropland located in an abandoned mining area. Science of the Total Environment, 2016, 542, 238-246.	3.9	28
332	Formation of dimethyldithioarsinic acid in a simulated landfill leachate in relation to hydrosulfide concentration. Environmental Geochemistry and Health, 2016, 38, 255-263.	1.8	4
333	Simultaneous biosorption of selenium, arsenic and molybdenum with modified algal-based biochars. Journal of Environmental Management, 2016, 165, 117-123.	3.8	69
334	Elemental Trace Analysis in Studies of Food Products. , 2016, , 203-239.		3
335	Fe doped TiO 2 photocatalyst for the removal of As(III) under visible radiation and its potential application on the treatment of As-contaminated groundwater. Materials Research Bulletin, 2016, 73, 145-152.	2.7	36
337	Removal of As(III) from aqueous solutions through simultaneous photocatalytic oxidation and adsorption by TiO 2 and zero-valent iron. Catalysis Today, 2017, 280, 149-154.	2.2	50

#	Article	IF	CITATIONS
338	Migration and transformation of arsenic: Contamination control and remediation in realgar mining areas. Applied Geochemistry, 2017, 77, 44-51.	1.4	48
339	Biosorption of As(III) and As(V) on the surface of TW/MnFe2O4 composite from wastewater: kinetics, mechanistic and thermodynamics. Applied Water Science, 2017, 7, 2689-2715.	2.8	23
340	Efficient As(III) removal by magnetic CuO-Fe3O4 nanoparticles through photo-oxidation and adsorption under light irradiation. Journal of Colloid and Interface Science, 2017, 495, 168-177.	5.0	81
341	Bioaccumulation of arsenic in aquatic plants and animals near a municipal landfill. International Journal of Environmental Studies, 2017, 74, 303-314.	0.7	8
342	Chemical reactive features of novel amino acids intercalated layered double hydroxides in As(III) and As(V) adsorption. Chemosphere, 2017, 176, 57-66.	4.2	30
343	Oil and gas produced water as a growth medium for microalgae cultivation: A review and feasibility analysis. Algal Research, 2017, 24, 492-504.	2.4	36
344	Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulator Pteris vittata. Environmental Pollution, 2017, 223, 230-237.	3.7	48
345	Arsenic removal from water by photocatalytic functional Fe2O3–TiO2 porous ceramic. Journal of Porous Materials, 2017, 24, 1227-1235.	1.3	29
346	Arsenic Adsorption Using the Adsorbent Synthesised from Oyster Shell. Key Engineering Materials, 0, 728, 327-334.	0.4	4
347	Adsorptive properties of alluvial soil for arsenic(V) and its potential for protection of the shallow groundwater among Changsha, Zhuzhou, and Xiangtan cities, China. Environmental Science and Pollution Research, 2017, 24, 4018-4028.	2.7	3
348	Embryonic-only arsenic exposure in killifish (Fundulus heteroclitus) reduces growth and alters muscle IGF levels one year later. Aquatic Toxicology, 2017, 186, 1-10.	1.9	10
349	Ecotoxicity assessment of ionic As(III), As(V), In(III) and Ga(III) species potentially released from novel III-V semiconductor materials. Ecotoxicology and Environmental Safety, 2017, 140, 30-36.	2.9	21
350	Arsenic removal from water using iron-coated seaweeds. Journal of Environmental Management, 2017, 192, 224-233.	3.8	80
351	Comparison of biofilm formation and motility processes in arsenicâ€resistant <i>Thiomonas</i> spp. strains revealed divergent response to arsenite. Microbial Biotechnology, 2017, 10, 789-803.	2.0	12
352	Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay, China. Marine Pollution Bulletin, 2017, 117, 98-110.	2.3	106
354	A comparative investigation on the inhibition kinetics of bioaccumulation of As(III) and As(V) ions using Bacillus arsenicus MTCC 4380. Ecohydrology and Hydrobiology, 2017, 17, 148-163.	1.0	2
355	Polyphenylene sulfideâ€based adsorption resins: synthesis, characterization and adsorption performance for Hg(II) and As(V). Polymers for Advanced Technologies, 2017, 28, 1735-1742.	1.6	8
356	Arsenic transformation and adsorption by iron hydroxide/manganese dioxide doped straw activated carbon. Applied Surface Science, 2017, 416, 618-627.	3.1	119

#	Article	IF	CITATIONS
357	Bioremediation of As(III) and As(V) from wastewater using living cells of Bacillus arsenicus MTCC 4380. Environmental Nanotechnology, Monitoring and Management, 2017, 8, 25-47.	1.7	4
358	Enhancing Cleanup of Environmental Pollutants. , 2017, , .		12
359	Bushy sphere dendrites with husk-shaped branches axially spreading out from the core for photo-catalytic oxidation/remediation of toxins. Nanoscale, 2017, 9, 7947-7959.	2.8	36
360	Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata. Environmental Pollution, 2017, 227, 569-577.	3.7	62
361	Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO 2 -Fe 3 O 4 magnetic nanoparticles. Applied Surface Science, 2017, 416, 656-665.	3.1	68
362	Arsenic and fluoride removal by potato peel and rice husk (PPRH) ash in aqueous environments. International Journal of Phytoremediation, 2017, 19, 1029-1036.	1.7	50
363	Arsenite and arsenate removals from groundwater by electrocoagulation using iron ball anodes: Influence of operating parameters. Journal of Water Process Engineering, 2017, 18, 83-91.	2.6	25
364	Simultaneous biosorption and bioaccumulation: a novel technique for the efficient removal of arsenic. Sustainable Water Resources Management, 2017, 3, 357-389.	1.0	4
365	Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120. Environmental Pollution, 2017, 228, 111-117.	3.7	34
366	Morphology-dependent enhancement of arsenite oxidation to arsenate on birnessite-type manganese oxide. Chemical Engineering Journal, 2017, 327, 235-243.	6.6	38
367	The double influence mechanism of pH on arsenic removal by nano zero valent iron: electrostatic interactions and the corrosion of Fe ⁰ . Environmental Science: Nano, 2017, 4, 1544-1552.	2.2	78
368	Nanospherical inorganic α-Fe core-organic shell necklaces for the removal of arsenic(V) and chromium(VI) from aqueous solution. Journal of Physics and Chemistry of Solids, 2017, 109, 78-88.	1.9	53
369	Remediation of groundwater contaminated with arsenic through enhanced natural attenuation: Batch and column studies. Water Research, 2017, 122, 545-556.	5.3	20
370	Arsenic speciation in fish from Greek coastal areas. Journal of Environmental Sciences, 2017, 56, 300-312.	3.2	46
371	Facile one-pot construction of α-Fe 2 O 3 /g-C 3 N 4 heterojunction for arsenic removal by synchronous visible light catalysis oxidation and adsorption. Materials Chemistry and Physics, 2017, 194, 1-8.	2.0	46
372	Deriving water quality criteria for trivalent and pentavalent arsenic. Science of the Total Environment, 2017, 587-588, 68-74.	3.9	33
373	Calix[4]pyrrole for the removal of arsenic (III) and arsenic (V) from water. Journal of Hazardous Materials, 2017, 326, 61-68.	6.5	30
374	Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): Modelling and process optimization. Journal of Molecular Liquids, 2017, 229, 230-240.	2.3	162

		CITATION REP	ORT	
#	Article		IF	CITATIONS
375	Microband Sensor for As(III) Analysis: Reduced Matrix Interference. Electroanalysis, 2017, 29, 2332-	2339.	1.5	3
376	Significant Arsenic Reduction by Pond Sediment Microflora in the Arsenic-Affected Bengal Delta. So and Sediment Contamination, 2017, 26, 471-485.	il	1.1	2
377	Removal of Toxic Compounds from Water by Membrane Distillation (Case Study on Arsenic). Green Chemistry and Sustainable Technology, 2017, , 243-263.		0.4	0
378	Mechanism of Arsenate Adsorption by Basic Yttrium Carbonate in a Fixed-Bed Column. Environmen Engineering Science, 2017, 34, 785-791.	tal	0.8	9
379	The role of sulfide minerals in the genesis of groundwater with elevated geogenic arsenic in bedrocl aquifers from western Quebec, Canada. Chemical Geology, 2017, 474, 33-44.	٤	1.4	18
380	Detection of Chemical Warfare Agent-Related Phenylarsenic Compounds in Marine Biota Samples b LC-HESI/MS/MS. Analytical Chemistry, 2017, 89, 11129-11134.	У	3.2	26
381	First observation of labile arsenic stratification in aluminum sulfate-amended sediments using high resolution Zr-oxide DGT. Science of the Total Environment, 2017, 609, 304-310.		3.9	19
382	Contamination status of arsenic in fish and shellfish from three river basins in Ghana. Environmenta Monitoring and Assessment, 2017, 189, 400.		1.3	14
383	Acetylacetone as an efficient electron shuttle for concerted redox conversion of arsenite and nitrate in the opposite direction. Water Research, 2017, 124, 331-340.		5.3	31
384	Highly sensitive voltammetric determination of arsenite by exploiting arsenite-induced conformational change of ssDNA and the electrochemical indicator Methylene Blue. Mikrochimica Acta, 2017, 184, 4047-4054.		2.5	25
385	Solution Chemistry of Arsenic Anions in the Presence of Metal Cations. Journal of Solution Chemistry, 2017, 46, 2231-2247.		0.6	9
386	Combined effects of co-existing anions on the removal of arsenic from groundwater by electrocoagulation process: Optimization through response surface methodology. Journal of Environmental Chemical Engineering, 2017, 5, 3792-3802.		3.3	24
387	Characterization of arsenic species in the anaerobic granular sludge treating roxarsone-contaminated wastewater. Chemical Engineering Journal, 2017, 327, 162-168.		6.6	11
388	Adsorption of As(V) by boehmite and alumina of different morphologies prepared under hydrothern conditions. Chemosphere, 2017, 169, 99-106.	nal	4.2	53
389	Mobility and speciation of geogenic arsenic in bedrock groundwater from the Canadian Shield in western Quebec, Canada. Science of the Total Environment, 2017, 574, 509-519.		3.9	54
390	Tuning and Characterizing Nanocellulose Interface for Enhanced Removal of Dual-Sorbate (As ^V and Cr ^{VI}) from Water Matrices. ACS Sustainable Chemistry and Engineering, 2017, 5, 518-528.		3.2	47
391	Reactivity, vibrational spectroscopy, internal rotation and thermochemical aspects of methylarsine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 171, 383-394.		2.0	9
392	Potential of Micranthemum umbrosum for phytofiltration of organic arsenic species from oxic wate environment. International Journal of Environmental Science and Technology, 2017, 14, 285-290.	r	1.8	6

#	Article	IF	CITATIONS
393	Biological effects of gold mine tailings on the intertidal marine environment in Nova Scotia, Canada. Marine Pollution Bulletin, 2017, 114, 64-76.	2.3	7
394	ARSENIC ADSORPTION FROM WATER USING GRAPHENE-BASED MATERIALS AS ADSORBENTS: A CRITICAL REVIEW. Surface Review and Letters, 2017, 24, 1730001.	0.5	30
395	Geochemistry of arsenic in low sulfide-high carbonate coal waste rock, Elk Valley, British Columbia, Canada. Science of the Total Environment, 2017, 579, 396-408.	3.9	20
396	Influences of size-fractionated humic acids on arsenite and arsenate complexation and toxicity to Daphnia magna. Water Research, 2017, 108, 68-77.	5.3	63
397	Experimental evaluation of sampling, storage and analytical protocols for measuring arsenic speciation in sulphidic hot spring waters. Microchemical Journal, 2017, 130, 162-167.	2.3	16
398	Arsenic-hyperaccumulation and antioxidant system in the aquatic macrophyte Spirodela intermedia W. Koch (Lemnaceae). Theoretical and Experimental Plant Physiology, 2017, 29, 203-213.	1.1	20
399	Realgar transforming solution displays anticancer potential against human hepatocellular carcinoma HepG2 cells by inducing ROS. International Journal of Oncology, 2017, 50, 660-670.	1.4	22
400	Dissolved arsenic in the shallow alluvial aquifers in North Brahmaputra Plain, India: a case study in and around lower Jia Bharali River basin. Applied Water Science, 2017, 7, 2967-2974.	2.8	1
402	Direct Observation of Simultaneous Immobilization of Cadmium and Arsenate at the Brushite–Fluid Interface. Environmental Science & Technology, 2018, 52, 3493-3502.	4.6	21
403	A comparative study on subacute toxicity of arsenic trioxide and dimethylarsinic acid on antioxidant status in Crandell Rees feline kidney (CRFK), human hepatocellular carcinoma (PLC/PRF/5), and epithelioma papulosum cyprini (EPC) cell lines. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2018, 81, 333-348.	1.1	14
404	Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environmental Chemistry Letters, 2018, 16, 947-967.	8.3	254
405	Efficient oxidation and sorption of arsenite using a novel titanium(IV)-manganese(IV) binary oxide sorbent. Journal of Hazardous Materials, 2018, 353, 410-420.	6.5	59
406	Leaf-extract mediated zero-valent iron for oxidation of Arsenic (III): Preparation, characterization and kinetics. Chemical Engineering Journal, 2018, 347, 91-100.	6.6	60
407	Application of ZnO nanorods as an adsorbent material for the removal of As(III) from aqueous solution: kinetics, isotherms and thermodynamic studies. International Journal of Industrial Chemistry, 2018, 9, 17-25.	3.1	45
408	Ranking Coal Ash Materials for Their Potential to Leach Arsenic and Selenium: Relative Importance of Ash Chemistry and Site Biogeochemistry. Environmental Engineering Science, 2018, 35, 728-738.	0.8	35
409	Periphyton and abiotic factors influencing arsenic speciation in aquatic environments. Environmental Toxicology and Chemistry, 2018, 37, 903-913.	2.2	9
410	Evaluation of Treatment Technologies for Arsenic-Free Drinking Water Supply, Disposal of Backwash Water and Exhausted Media in Bihar, India. Water Science and Technology Library, 2018, , 15-25.	0.2	2
411	Arsenic residue in residential area after cleanup of pesticide illegal dumping sources in Thanh Hoa province, Central Vietnam. Environmental Forensics, 2018, 19, 66-78.	1.3	6

#	Article	IF	CITATIONS
412	Application of Box–Behnken Design in response surface methodologyÂfor adsorptive removal of arsenic from aqueous solutionÂusing CeO2/Fe2O3/graphene nanocomposite. Materials Chemistry and Physics, 2018, 207, 233-242.	2.0	51
413	Groundwater co-contaminant behavior of arsenic and selenium at a lead and zinc smelting facility. Applied Geochemistry, 2018, 89, 255-264.	1.4	22
414	Thiolated arsenic in natural systems: What is current, what is new and what needs to be known. Environment International, 2018, 115, 370-386.	4.8	45
415	Mutual interaction between arsenic and biofilm in a mining impacted river. Science of the Total Environment, 2018, 636, 985-998.	3.9	17
416	Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content. Applied Surface Science, 2018, 454, 87-100.	3.1	48
417	The Arsenic Contamination of Drinking and Groundwaters in Bangladesh: Featuring Biogeochemical Aspects and Implications on Public Health. Archives of Environmental Contamination and Toxicology, 2018, 75, 1-7.	2.1	70
418	Embryonic-only arsenic exposure alters skeletal muscle satellite cell function in killifish (Fundulus) Tj ETQq0 0	0 rgBT /Over	lock 10 Tf 50
419	Complex role of titanium dioxide nanoparticles in the trophic transfer of arsenic from Nannochloropsis maritima to Artemia salina nauplii. Aquatic Toxicology, 2018, 198, 231-239.	1.9	17
420	Effects of acclimation on arsenic bioaccumulation and biotransformation in freshwater medaka Oryzias mekongensis after chronic arsenic exposure. Environmental Pollution, 2018, 238, 17-25.	3.7	20
421	Removal of Cu(II) in water by polymer enhanced ultrafiltration: Influence of polymer nature and pH. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 33-38.	0.9	13
422	Thermodynamic parameters for the protonation and the interaction of arsenate with Mg2+, Ca2+ and Sr2+: Application to natural waters. Chemosphere, 2018, 190, 72-79.	4.2	21
423	Influence of arsanilic acid, Cu2+, PO4 3– and their interaction on anaerobic digestion of pig manure. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	6
424	Biological detoxification of As(III) and As(V) using immobilized bacterial cells in fixed-bed bio-column reactor: Prediction of kinetic parameters. Groundwater for Sustainable Development, 2018, 6, 14-42.	2.3	16
425	Arsenic distribution in a pasture area impacted by past mining activities. Ecotoxicology and Environmental Safety, 2018, 147, 228-237.	2.9	27
426	Arsenic adsorption on α-MnO2 nanofibers and the significance of (1 0 0) facet as compared with (1 1 0). Chemical Engineering Journal, 2018, 331, 492-500.	6.6	106
427	Adsorption of low-concentration arsenic from water by co-modified bentonite with manganese oxides and poly(dimethyldiallylammonium chloride). Journal of Environmental Chemical Engineering, 2018, 6, 156-168.	3.3	60
428	Electrochemical sensor for arsenite detection using graphene oxide assisted generation of prussian blue nanoparticles as enhanced signal label. Analytica Chimica Acta, 2018, 1002, 82-89.	2.6	57
420	Efficient degradation of p-arsanilic acid with arsenic adsorption by magnetic CuO-Fe3O4 nanoparticles	6.6	86

⁴²⁹ under visible light irradiation. Chemical Engineering Journal, 2018, 334, 1527-1536.

#	Article	IF	CITATIONS
430	Thermodynamic properties of an emerging chemical disinfectant, peracetic acid. Science of the Total Environment, 2018, 621, 948-959.	3.9	92
431	Speciation and bioaccessibility of arsenic in traditional Chinese medicines and assessment of its potential health risk. Science of the Total Environment, 2018, 619-620, 1088-1097.	3.9	22
432	Arsenate inhibition on kinetic characteristics of alkaline phosphatase as influenced by pH. Ecological Indicators, 2018, 85, 1101-1106.	2.6	14
433	Effect of the ionic strength and temperature on the arsenic(V) -Fe3+ and -Al3+ interactions in aqueous solution. Fluid Phase Equilibria, 2018, 458, 9-15.	1.4	10
434	A novel biodegradable arsenic adsorbent by immobilization of iron oxyhydroxide (FeOOH) on the root powder of long-root Eichhornia crassipes. Chemosphere, 2018, 192, 258-266.	4.2	46
435	Effect of food preparation using naturally-contaminated groundwater from La Pampa, Argentina: Estimation of elemental dietary intake from rice and drinking water. Food Chemistry, 2018, 246, 258-265.	4.2	10
436	Role of Plant-Microorganism Interactions in Plant Tolerance to Arsenic. , 2018, , 219-237.		2
437	Mechanism of Treatment Methods of Arsenic-Contaminated Water. , 2018, , 405-455.		3
438	Preparation and characterization of oyster shell powder-treated rice husk ash adsorbent pellet for As(III) removal. MATEC Web of Conferences, 2018, 192, 01003.	0.1	0
439	Removal of Arsenic(III) from Aqueous Solution Using Metal Organic Framework-Graphene Oxide Nanocomposite. Nanomaterials, 2018, 8, 1062.	1.9	61
440	Photoelectrocatalytic oxidation of As(III) over hematite photoanodes: A sensible indicator of the presence of highly reactive surface sites. Electrochimica Acta, 2018, 292, 828-837.	2.6	13
441	Implications of the iron(II/III)-arsenic ratio on the precipitation of iron-arsenic minerals from pH 2.5 to 10.5. Applied Geochemistry, 2018, 98, 367-376.	1.4	22
442	Novel cotton fabric adsorbent for efficient As(V) adsorption. Environmental Science and Pollution Research, 2018, 25, 34610-34622.	2.7	22
443	Co-adsorption of arsenite and arsenate on mixed-valence Fe(II,III) (hydr)oxides under reducing conditions. Applied Geochemistry, 2018, 98, 418-425.	1.4	13
444	The role of submerged macrophytes in phytoremediation of arsenic from contaminated water: A case study on Vallisneria natans (Lour.) Hara. Ecotoxicology and Environmental Safety, 2018, 165, 224-231.	2.9	40
445	Stability of hydrolytic arsenic species in aqueous solutions: As ³⁺ <i>vs.</i> As ⁵⁺ . Physical Chemistry Chemical Physics, 2018, 20, 23272-23280.	1.3	30
446	Efficient photocatalytic oxidation of arsenite from contaminated water by Fe2O3-Mn2O3 nanocomposite under UVA radiation and process optimization with experimental design. Chemosphere, 2018, 207, 303-312.	4.2	50
447	Waterborne and Dietborne Toxicity of Inorganic Arsenic to the Freshwater Zooplankton <i>Daphnia magna</i> . Environmental Science & amp; Technology, 2018, 52, 8912-8919.	4.6	27

#	Article	IF	CITATIONS
448	Surface Engineered Magnetic Biosorbents for Water Treatment. Environmental Chemistry for A Sustainable World, 2018, , 301-342.	0.3	7
449	A Comparative Study on Removal of Hazardous Anions from Water by Adsorption: A Review. International Journal of Chemical Engineering, 2018, 2018, 1-21.	1.4	70
450	Facile synthesis of ZrO2 coated BiOCl0.510.5 for photocatalytic oxidation-adsorption of As(III) under visible light irradiation. Chemosphere, 2018, 211, 934-942.	4.2	16
451	Treating Water by Degrading Oxyanions Using Metallic Nanostructures. ACS Sustainable Chemistry and Engineering, 2018, 6, 11160-11175.	3.2	56
452	Fabrication of One Dimensional MnO 2 â€īiO 2 Nanoâ€Heterostructures for Enhanced Hole Mediated Oxidation of As(III) in Potable Water. ChemCatChem, 2018, 10, 4369-4379.	1.8	10
453	Arsenate removal from aqueous solution using chitosan-coated bentonite, chitosan-coated kaolinite and chitosan-coated sand: parametric, isotherm and thermodynamic studies. Water Science and Technology, 2018, 78, 676-689.	1.2	9
454	High efficiency removal of As(III) from waters using a new and friendly adsorbent based on sugarcane bagasse and corncob husk Fe-coated biochars. Ecotoxicology and Environmental Safety, 2018, 162, 616-624.	2.9	33
455	Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Science of the Total Environment, 2018, 645, 1522-1553.	3.9	321
456	Cu-doped ZnO as efficient photocatalyst for the oxidation of arsenite to arsenate under visible light. Applied Catalysis B: Environmental, 2018, 238, 471-479.	10.8	190
457	Physiological and behavioural responses to acid and osmotic stress and effects of Mucuna extract in Guppies. Ecotoxicology and Environmental Safety, 2018, 163, 37-46.	2.9	14
458	Study on the analytical method of arsenic species in marine samples by ion chromatography coupled with mass spectrometry. Microchemical Journal, 2018, 143, 16-20.	2.3	13
459	Spatial and temporal trends of target organic and inorganic micropollutants in Lake Maggiore and Lake Lugano (Italian-Swiss water bodies): contamination in sediments and biota. Hydrobiologia, 2018, 824, 271-290.	1.0	35
460	Bioaccumulation of As, Hg, and Se in tunas Thunnus albacares and Katsuwonus pelamis from the Eastern Pacific: tissue distribution and As speciation. Environmental Science and Pollution Research, 2018, 25, 19499-19509.	2.7	21
461	Impact on growth, oxidative stress, and apoptosis-related gene transcription of zebrafish after exposure to low concentration of arsenite. Chemosphere, 2018, 211, 648-652.	4.2	30
462	Bioaccumulation of Arsenic by Engineered Escherichia coli Cells Expressing Rice Metallothionein Isoforms. Current Microbiology, 2018, 75, 1537-1542.	1.0	12
463	Differential protein expression in a marine-derived Staphylococcus sp. NIOSBK35 in response to arsenic(III). 3 Biotech, 2018, 8, 287.	1.1	8
464	The influence of Arsenic on the toxicity of carbon nanoparticles in bivalves. Journal of Hazardous Materials, 2018, 358, 484-493.	6.5	54
465	Synthetic Iron Oxides for Adsorptive Removal of Arsenic. Water, Air, and Soil Pollution, 2018, 229, 203.	1.1	37

#	Article	IF	CITATIONS
466	Synthesis of ultra-large ZrO2 nanosheets as novel adsorbents for fast and efficient removal of As(III) from aqueous solutions. Journal of Colloid and Interface Science, 2019, 533, 588-597.	5.0	32
467	The interfacial reactivity of arsenic species with green rust sulfate (GRSO4). Science of the Total Environment, 2019, 648, 1161-1170.	3.9	40
468	Efficient degradation of p-arsanilic acid with released arsenic removal by magnetic CeO2–Fe3O4 nanoparticles through photo-oxidation and adsorption. Journal of Alloys and Compounds, 2019, 808, 151689.	2.8	24
469	Arsenic Oxidation by Flavin-Derived Reactive Species under Oxic and Anoxic Conditions: Oxidant Formation and pH Dependence. Environmental Science & Technology, 2019, 53, 10897-10905.	4.6	18
470	Trace element and organic matter mobility impacted by Fe ₃ O ₄ -nanoparticle surface coating within wetland soil. Environmental Science: Nano, 2019, 6, 3049-3059.	2.2	10
471	Arsenic speciation in surface waters and lake sediments in an abandoned mine site and field observations of arsenic eco-toxicity. Journal of Geochemical Exploration, 2019, 205, 106349.	1.5	20
472	Perspectives on arsenic toxicity, carcinogenicity and its systemic remediation strategies. Environmental Technology and Innovation, 2019, 16, 100462.	3.0	91
473	Interaction of graphene oxide with co-existing arsenite and arsenate: Adsorption, transformation and combined toxicity. Environment International, 2019, 131, 104992.	4.8	38
474	Distribution and Geochemistry of Arsenic in Sediments of the World's Largest Choked Estuary: the Patos Lagoon, Brazil. Estuaries and Coasts, 2019, 42, 1896-1911.	1.0	15
475	Ex vivo and in vivo effects of arsenite on GST and ABCC2 activity and expression in the middle intestine of the rainbow trout Oncorhynchus mykiss. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 225, 108566.	1.3	9
476	Dissolved arsenic in the upper Paraguay River basin and Pantanal wetlands. Science of the Total Environment, 2019, 687, 917-928.	3.9	14
477	An improved rapid analytical method for the arsenic speciation analysis of marine environmental samples using high-performance liquid chromatography/inductively coupled plasma mass spectrometry. Environmental Monitoring and Assessment, 2019, 191, 525.	1.3	9
478	Interaction between As(III) and Simple Thioacids in Water: An Experimental and ab Initio Molecular Dynamics Investigation. Journal of Physical Chemistry B, 2019, 123, 6090-6098.	1.2	10
479	An endophytic Kocuria palustris strain harboring multiple arsenate reductase genes. Archives of Microbiology, 2019, 201, 1285-1293.	1.0	9
480	Mobilization of Metal(oid) Oxyanions through Circumneutral Mine Waste-Rock Drainage. ACS Omega, 2019, 4, 10205-10215.	1.6	22
481	Highly efficient removal of As(V) with modified electrolytic manganese residues (M-EMRs) as a novel adsorbent. Journal of Alloys and Compounds, 2019, 811, 151973.	2.8	44
482	Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Science of the Total Environment, 2019, 694, 133427.	3.9	113
483	In Search of a Speciation Method for Arsenic in Mine-Influenced Waters: Is Differential Pulse Anodic Stripping Voltammetry the Answer?. Mine Water and the Environment, 2019, 38, 837-846.	0.9	0

#	ARTICLE Designing of Functionalized MWCNTs/Anodized Stainless Steel Heterostructure Electrode for Anodic	IF	CITATIONS
485	Oxidation of Low Concentration As(III) in Drinking Water. ChemistrySelect, 2019, 4, 9367-9375. Factors controlling arsenic contamination and potential remediation measures in soil-plant systems. Groundwater for Sustainable Development, 2019, 9, 100263.	2.3	28
486	Freshwater phytoplankton: biotransformation of inorganic arsenic to methylarsenic and organoarsenic. Scientific Reports, 2019, 9, 12074.	1.6	27
487	Co-Exposure to SiO2 Nanoparticles and Arsenic Induced Augmentation of Oxidative Stress and Mitochondria-Dependent Apoptosis in Human Cells. International Journal of Environmental Research and Public Health, 2019, 16, 3199.	1.2	36
488	Metal/metalloid and phosphorus characteristics in porewater associated with manganese geochemistry: A case study in the Jiulong River Estuary, China. Environmental Pollution, 2019, 255, 113134.	3.7	26
489	A pH-responsive supramolecular draw solute that achieves high-performance in arsenic removal via forward osmosis. Water Research, 2019, 165, 114993.	5.3	26
490	Functionalization of zigzag graphene nanoribbon with DNA nucleobases-A DFT study. Applied Surface Science, 2019, 496, 143667.	3.1	7
491	Removal of As(III) from Synthetic Groundwater Using Fe-Mn Bimetal Modified Kaolin Clay: Adsorption Kinetics, Isotherm and Thermodynamics Studies. Environmental Processes, 2019, 6, 1005-1018.	1.7	9
492	Facile preparation of ionotropically crosslinked chitosan-alginate nanosorbents by water-in-oil (W/O) microemulsion technique: Optimization and study of arsenic (V) removal. Journal of Water Process Engineering, 2019, 32, 100920.	2.6	18
493	Arsenic toxicity, bioaccumulation and risk assessment: A case study in Tolimique Dam, Aguascalientes, Mexico. Cogent Environmental Science, 2019, 5, 1650630.	1.6	7
494	Arsenic species uptake and translocation in <i>Elodea canadensis</i> . International Journal of Phytoremediation, 2019, 21, 693-698.	1.7	9
495	Two-generational effects and recovery of arsenic and arsenate on Daphnia magna in the presence of nano-TiO2. Ecotoxicology and Environmental Safety, 2019, 172, 136-143.	2.9	23
496	A simple and novel method to enhance As (V) removal by zero valent iron and activated iron media through air injection at intervals. Chemosphere, 2019, 222, 415-421.	4.2	9
497	Acute and chronic toxicity to Daphnia magna of colloidal silica nanoparticles in a chemical mechanical planarization slurry after polishing a gallium arsenide wafer. NanoImpact, 2019, 13, 56-65.	2.4	6
498	Biotransformation of arsenic-containing roxarsone by an aerobic soil bacterium Enterobacter sp. CZ-1. Environmental Pollution, 2019, 247, 482-487.	3.7	28
499	Waste Valorisation and Recycling. , 2019, , .		5
500	Interaction of Arsenic Species with Organic Ligands: Competitive Removal from Water by Coagulation-Flocculation-Sedimentation (C/F/S). Molecules, 2019, 24, 1619.	1.7	13
501	Removal of arsenic with reduced graphene oxide-TiO2-enabled nanofibrous mats. Chemical Engineering Journal, 2019, 375, 122040.	6.6	40

#	Article	IF	CITATIONS
502	Increasing sustainability on the metallurgical industry by integration of membrane nanofiltration processes: Acid recovery. Separation and Purification Technology, 2019, 226, 267-277.	3.9	28
503	The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI),) Tj ETQq1 1 0. Assessment, 2019, 191, 419.	784314 rg 1.3	BT /Overlock 679
504	Study of arsenic (III) removal by monolayer protected silver nanoadsorbent and its execution on prokaryotic system. Journal of Environmental Management, 2019, 244, 440-452.	3.8	4
505	Preparation of AgCl/TNTs nanocomposites for organic dyes and inorganic heavy metal removal. Environmental Science and Pollution Research, 2019, 26, 22082-22096.	2.7	5
506	Hematite-catalysed scorodite formation as a novel arsenic immobilisation strategy under ambient conditions. Chemosphere, 2019, 233, 946-953.	4.2	79
507	Tracing the natural and anthropogenic influence on the trace elemental chemistry of estuarine macroalgae and the implications for human consumption. Science of the Total Environment, 2019, 685, 259-272.	3.9	18
508	Methylmercury, cadmium and arsenic(III)-induced toxicity, oxidative stress and apoptosis in Pacific red snapper leukocytes. Aquatic Toxicology, 2019, 213, 105223.	1.9	22
509	Properties and arsenic removal evaluation of polyvinyl alcohol nanofibers with embedded strontium hexaferrite nanoparticles. Materials Chemistry and Physics, 2019, 234, 151-157.	2.0	8
510	The dynamic changes of arsenic bioaccumulation and antioxidant responses in the marine medaka Oryzias melastigma during chronic exposure. Aquatic Toxicology, 2019, 212, 110-119.	1.9	15
511	Titanium-based nanocomposite materials for arsenic removal from water: A review. Heliyon, 2019, 5, e01577.	1.4	54
512	Review on heavy metal adsorption processes by carbon nanotubes. Journal of Cleaner Production, 2019, 230, 783-793.	4.6	312
513	Arsenic Contamination and Associated Health Risk (Brief Review). Oriental Journal of Chemistry, 2019, 35, 563-570.	0.1	2
514	A Systematic Review on Arsenic Bio-Availability in Human and Animals: Special Focus on the Rice–Human System. Reviews of Environmental Contamination and Toxicology, 2019, , 1.	0.7	4
515	Are Myriophyllum alterniflorum biomarker responses to arsenic stress differentially affected by hydrodynamic conditions?. Chemosphere, 2019, 225, 497-506.	4.2	6
516	Sampling and sample processing: Fit-for-purpose techniques. Comprehensive Analytical Chemistry, 2019, 85, 53-88.	0.7	0
517	Colorimetric Assay Conversion to Highly Sensitive Electrochemical Assay for Bimodal Detection of Arsenate Based on Cobalt Oxyhydroxide Nanozyme via Arsenate Absorption. Analytical Chemistry, 2019, 91, 6487-6497.	3.2	98
518	Removal of As(III) from aqueous solution by the oyster shell powder–treated rice husk ash composite (OS-TRHA) pellet. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2019, 42, 411-419.	0.6	1
519	Arsenic speciation in Asiatic algae: Case studies in Asiatic continent. Comprehensive Analytical Chemistry, 2019, , 199-245.	0.7	2

#	Article	IF	CITATIONS
520	Removal of anionic arsenate by a PEI-coated bacterial biosorbent prepared from fermentation biowaste. Chemosphere, 2019, 226, 67-74.	4.2	17
521	Spatial distribution of arsenic in groundwater of Iran, a review. Journal of Geochemical Exploration, 2019, 201, 88-98.	1.5	50
522	pH effects of the arsenite photocatalytic oxidation reaction on different anatase TiO2 facets. Chemosphere, 2019, 225, 434-442.	4.2	28
523	The effects of arsenic speciation on accumulation and toxicity of dietborne arsenic exposures to rainbow trout. Aquatic Toxicology, 2019, 210, 227-241.	1.9	20
524	Oxyanion-Binding in a Bioinspired Nanoparticle-Assembled Hybrid Microsphere Structure: Effective Removal of Arsenate/Chromate From Water. ACS Applied Nano Materials, 2019, 2, 1525-1532.	2.4	9
525	Arsenic and sulfur dioxide co-exposure induce renal injury via activation of the NF-κB and caspase signaling pathway. Chemosphere, 2019, 224, 280-288.	4.2	23
526	Arsenic (V) Remediation Using Adsorption-Induced Ultrafiltration Process and Management of Toxic Sludge in Glass Formation. , 2019, , 515-525.		0
527	Micro- and Nano-Hollow Spheres in Heavy Metal Removals from Water. Nanotechnology in the Life Sciences, 2019, , 421-441.	0.4	0
528	Applications of biological sulfate reduction for remediation of arsenic – A review. Chemosphere, 2019, 222, 932-944.	4.2	77
529	Photoxidation of As3+ to As5+ in the presence of TiO2 under lighting conditions of a lamp and sunlight. , 2019, , .		0
530	Characterization and Arsenic Adsorption Behaviors of Water Treatment Residuals from Waterworks for Iron and Manganese Removal. International Journal of Environmental Research and Public Health, 2019, 16, 4912.	1.2	16
531	A disposable acetylcholine esterase sensor for As(<scp>iii</scp>) determination in groundwater matrix based on 4-acetoxyphenol hydrolysis. Analytical Methods, 2019, 11, 5203-5213.	1.3	3
532	Arsenic(III) Removal by Nanostructured Dialdehyde Cellulose–Cysteine Microscale and Nanoscale Fibers. ACS Omega, 2019, 4, 22008-22020.	1.6	66
533	Arsenic Species in Cordyceps sinensis and Its Potential Health Risks. Frontiers in Pharmacology, 2019, 10, 1471.	1.6	14
534	Preparation of Cu-Y binary oxysulfide and its application in the removal of arsenic from aqueous solutions. Separation and Purification Technology, 2019, 213, 410-418.	3.9	26
535	CdSe/ZnS quantum dots coated with carboxy-PEG and modified with the terbium(III) complex of guanosine $5\hat{a}\in^2$ -monophosphate as a fluorescent nanoprobe for ratiometric determination of arsenate via its inhibition of acid phosphatase activity. Mikrochimica Acta, 2019, 186, 45.	2.5	16
536	Assessment of red mud as sorptive landfill liner for the retention of arsenic (V). Journal of Environmental Management, 2019, 232, 271-285.	3.8	36
537	Fast and efficient removal of As(III) from water by CuFe2O4 with peroxymonosulfate: Effects of oxidation and adsorption. Water Research, 2019, 150, 182-190.	5.3	156

#	Article	IF	CITATIONS
538	Long-term effectiveness of sediment dredging on controlling the contamination of arsenic, selenium, and antimony. Environmental Pollution, 2019, 245, 725-734.	3.7	24
539	Simultaneous remediation of As(III) and dibutyl phthalate (DBP) in soil by a manganese-oxidizing bacterium and its mechanisms. Chemosphere, 2019, 220, 837-844.	4.2	30
540	Effect of phosphate on amorphous iron mineral generation and arsenic behavior in paddy soils. Science of the Total Environment, 2019, 657, 644-656.	3.9	35
541	Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Current Genetics, 2019, 65, 329-338.	0.8	77
542	Redox synergistic Mn-Al-Fe and Cu-Al-Fe ternary metal oxide nano adsorbents for arsenic remediation with environmentally stable As(0) formation. Journal of Hazardous Materials, 2019, 364, 519-530.	6.5	45
543	Oxidation and reduction of redox-sensitive elements in the presence of humic substances in subsurface environments: A review. Chemosphere, 2019, 220, 86-97.	4.2	45
544	Effect of phosphorus competition on arsenic bioavailability in dry and flooded soils: comparative study using diffusive gradients in thin films and chemical extraction methods. Journal of Soils and Sediments, 2019, 19, 1830-1838.	1.5	12
545	Co-precipitation synthesis of ZnO–TiO2 nanostructure composites for arsenic photodegradation from industrial wastewater. International Journal of Environmental Science and Technology, 2019, 16, 463-468.	1.8	20
546	Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review. Journal of Hazardous Materials, 2019, 372, 3-16.	6.5	318
547	A low cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation. Separation and Purification Technology, 2019, 214, 31-39.	3.9	75
548	As(III) removal under the presence of competitive anions using the calcined ground oyster shell as the adsorbent. Separation Science and Technology, 2020, 55, 395-405.	1.3	3
549	Polyvinyl alcohol-stabilized granular Fe–Mn binary oxide as an effective adsorbent for simultaneous removal of arsenate and arsenite. Environmental Technology (United Kingdom), 2020, 41, 2564-2574.	1.2	6
550	Design and synthesis new colorimetric receptors for naked-eye detection of biologically important fluoride and acetate anions in organic and arsenite in aqueous medium based on ICT mechanism: DFT study and test strip application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectrocomy 2020, 225, 117522	2.0	14
551	The Photocatalytic Oxidation of As(III) Enhanced by Surface Alkalinized g-C3N4. Transactions of Tianjin University, 2020, 26, 40-48.	3.3	10
552	Laterite as a low-cost adsorbent in a sustainable decentralized filtration system to remove arsenic from groundwater in Vietnam. Science of the Total Environment, 2020, 699, 134267.	3.9	43
553	Waste sludge derived adsorbents for arsenate removal from water. Chemosphere, 2020, 239, 124832.	4.2	34
554	Arsenic release: Insights into appropriate disposal of arsenic-loaded algae precipitated from arsenic contaminated water. Journal of Hazardous Materials, 2020, 384, 121249.	6.5	4
555	Simultaneous removal of As(III) and Cu(II) from real bottom ash leachates by manganese-oxidizing aerobic granular sludge: Performance and mechanisms. Science of the Total Environment, 2020, 700, 134510.	3.9	18

#	Article	IF	CITATIONS
556	Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization. Journal of Hazardous Materials, 2020, 384, 121359.	6.5	46
557	Arsenic in Latin America: Part II. , 2020, , 113-182.		5
558	Ionic liquid assisted mesoporous silica-graphene oxide nanocomposite synthesis and its application for removal of heavy metal ions from water. Materials Chemistry and Physics, 2020, 239, 122028.	2.0	65
559	Removal of arsenic(III) from aqueous solution by concreteâ€based adsorbents. Canadian Journal of Chemical Engineering, 2020, 98, 353-359.	0.9	9
560	Effect of Light Intensity on the Mechanism of Inorganic Arsenic Accumulation and Patterns in the Red Macroalga, Sarcodia suiae. Biological Trace Element Research, 2020, 195, 291-300.	1.9	9
562	Mitigating the Risk of Arsenic and Fluoride Contamination of Groundwater Through a Multi-model Framework of Statistical Assessment and Natural Remediation Techniques. Springer Transactions in Civil and Environmental Engineering, 2020, , 285-300.	0.3	23
563	Spontaneous oxidation of arsenite on platinized TiO2 through activating molecular oxygen under ambient aqueous condition. Applied Catalysis B: Environmental, 2020, 260, 118146.	10.8	16
564	Self-powered peroxi-coagulation for the efficient removal of p-arsanilic acid: pH-dependent shift in the contributions of peroxidation and electrocoagulation. Chemical Engineering Journal, 2020, 391, 123495.	6.6	40
565	Extension of biotic ligand model to account for the effects of pH and phosphate in accurate prediction of arsenate toxicity. Journal of Hazardous Materials, 2020, 385, 121619.	6.5	13
566	Levels and human health risk assessments of heavy metals in fish tissue obtained from the agricultural heritage rice-fish-farming system in China. Journal of Hazardous Materials, 2020, 386, 121627.	6.5	54
567	Fabrication of thin-film nanocomposite nanofiltration membranes incorporated with aromatic amine-functionalized multiwalled carbon nanotubes. Rejection performance of inorganic pollutants from groundwater with improved acid and chlorine resistance. Chemical Engineering Journal, 2020, 384, 123348.	6.6	56
568	Influence of humic acid on arsenic bioaccumulation and biotransformation to zebrafish: A comparative study between As(III) and As(V) exposure. Environmental Pollution, 2020, 256, 113459.	3.7	13
569	Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. Journal of Molecular Liquids, 2020, 301, 112335.	2.3	153
570	<i>N</i> -Hydroxyarylamine <i>O</i> -Acetyltransferases Catalyze Acetylation of 3-Amino-4-Hydroxyphenylarsonic Acid in the 4-Hydroxy-3-Nitrobenzenearsonic Acid Transformation Pathway of <i>Enterobacter</i> sp. Strain CZ-1. Applied and Environmental Microbiology, 2020, 86, .	1.4	9
571	Arsenic remediation onto redox and photo-catalytic/electrocatalytic Mn-Al-Fe impregnated rGO: Sustainable aspects of sludge as supercapacitor. Chemical Engineering Journal, 2020, 390, 124000.	6.6	59
572	Artificial light at night alter the impact of arsenic on microbial decomposers and leaf litter decomposition in streams. Ecotoxicology and Environmental Safety, 2020, 191, 110014.	2.9	8
573	Diffusive gradients in thin films technique coupled to X-ray fluorescence spectrometry for the determination of bioavailable arsenic concentrations in soil. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 164, 105752.	1.5	5
574	Investigation of potential health risks in terms of arsenic in grapevine exposed to gallery waters of an abandoned mining area in Turkey. Environmental Technology and Innovation, 2020, 20, 101058.	3.0	12

#	Article	IF	CITATIONS
575	Agro-Waste Derived Biomass Impregnated with TiO2 as a Potential Adsorbent for Removal of As(III) from Water. Catalysts, 2020, 10, 1125.	1.6	26
576	Arsenic in shellfish: A systematic review of its dynamics and potential health risks. Marine Pollution Bulletin, 2020, 161, 111693.	2.3	30
577	Phytostabilization of arsenic and manganese in mine tailings using Pennisetum purpureum cv. Mott supplemented with cow manure and acacia wood-derived biochar. Heliyon, 2020, 6, e04552.	1.4	13
578	Highly efficient removal of As(III) from aqueous solutions using goethite/graphene oxide/chitosan nanocomposite. International Journal of Biological Macromolecules, 2020, 164, 13-26.	3.6	28
579	Cellular response of Brevibacterium casei #NIOSBA88 to arsenic and chromium—a proteomic approach. Brazilian Journal of Microbiology, 2020, 51, 1885-1895.	0.8	12
580	Binding ability of arsenate towards Cu2+ and Zn2+: thermodynamic behavior and simulation under natural water conditions. Environmental Sciences: Processes and Impacts, 2020, 22, 1731-1742.	1.7	7
581	New insights into toxic effects of arsenate on four Microcystis species under different phosphorus regimes. Environmental Science and Pollution Research, 2020, 27, 44460-44469.	2.7	9
582	Removal of Trace Arsenite through Simultaneous Photocatalytic Oxidation and Adsorption by Magnetic Fe ₃ O ₄ @PpPDA@TiO ₂ Core–Shell Nanoparticles. ACS Applied Nano Materials, 2020, 3, 8495-8504.	2.4	47
583	New insight into continuous recirculation-process for treating arsenate using bacterial biosorbent. Bioresource Technology, 2020, 316, 123961.	4.8	9
584	TiO ₂ Nanoparticles in the Marine Environment: Enhancing Bioconcentration, While Limiting Biotransformation of Arsenic in the Mussel <i>Perna viridis</i> . Environmental Science & Technology, 2020, 54, 12254-12261.	4.6	20
585	Removal of As(III) from Water Using the Adsorptive and Photocatalytic Properties of Humic Acid-Coated Magnetite Nanoparticles. Nanomaterials, 2020, 10, 1604.	1.9	8
586	Insight into the Mechanism of Arsenic(III/V) Uptake on Mesoporous Zerovalent Iron–Magnetite Nanocomposites: Adsorption and Microscopic Studies. ACS Applied Materials & Interfaces, 2020, 12, 49755-49767.	4.0	35
587	Histopathological examination and transcriptome analyses to assess the acute toxic effects of arsenite exposure on rare minnows (Gobiocypris rarus). Ecotoxicology, 2020, 29, 613-624.	1.1	2
589	Reduction in drinking water arsenic exposure and health risk through arsenic treatment among private well households in Maine and New Jersey, USA. Science of the Total Environment, 2020, 738, 139683.	3.9	13
590	Fungi and Arsenic: Tolerance and Bioaccumulation by Soil Saprotrophic Species. Applied Sciences (Switzerland), 2020, 10, 3218.	1.3	12
591	Exploring carbonaceous nanomaterials for arsenic and chromium removal from wastewater. Journal of Water Process Engineering, 2020, 36, 101276.	2.6	52
592	Arsenic immobilization by in-situ iron coating for managed aquifer rehabilitation. Water Research, 2020, 181, 115859.	5.3	10
593	Comprehensive treatment of acid effluent containing antimony and arsenic by selective reduction and evaporative crystallization. Hydrometallurgy, 2020, 195, 105366.	1.8	8

	Сітаті	on Report	
#	Article	IF	CITATIONS
594	Nanoconfined hydrous titanium oxides with excellent acid stability for selective and efficient removal of As(V) from acidic wastewater. Chemical Engineering Journal, 2020, 400, 125907.	6.6	24
595	Seafood consumption is associated with higher follicular fluid arsenic (As) and mercury (Hg) concentrations in women undergoing in vitro fertilization (IVF). Environmental Research, 2020, 188, 109753.	3.7	11
596	Magnetic solid phase extraction as a valuable tool for elemental speciation analysis. Trends in Environmental Analytical Chemistry, 2020, 27, e00097.	5.3	22
597	Selective leaching of arsenic from copper converter flue dust by Na2S and its stabilization with Fe2(SO4)3. Transactions of Nonferrous Metals Society of China, 2020, 30, 1674-1686.	1.7	19
598	Biarsenical fluorescent probes for multifunctional site-specific modification of proteins applicable in life sciences: an overview and future outlook. Metallomics, 2020, 12, 1179-1207.	1.0	4
599	Geogenic fluoride and arsenic in groundwater of Sri Lanka and its implications to community health. Groundwater for Sustainable Development, 2020, 10, 100359.	2.3	64
600	Removal of arsenic from water using iron-doped phosphorene nanoadsorbents: A theoretical DFT study with solvent effects. Journal of Molecular Liquids, 2020, 307, 112958.	2.3	23
601	TiO2 pillared montmorillonite in-situ growth of CeOx/MnOy nanoparticles for effective arsenic (III) adsorption in wastewater. Environmental Science and Pollution Research, 2020, 27, 17986-17996.	2.7	5
602	Arsenic in a groundwater environment in Bangladesh: Occurrence and mobilization. Journal of Environmental Management, 2020, 262, 110318.	3.8	96
603	Shifting the Specificity of E. coli Biosensor from Inorganic Arsenic to Phenylarsine Oxide through Genetic Engineering. Sensors, 2020, 20, 3093.	2.1	4
604	The use of Atlantic hagfish (Myxine glutinosa) as a bioindicator species for studies on effects of dumped chemical warfare agents in the Skagerrak. 1: Liver histopathology. Marine Environmental Research, 2020, 161, 105046.	1.1	5
605	Experimental studies on removal of arsenites from industrial effluents using tridodecylamine supported liquid membrane. Environmental Science and Pollution Research, 2020, 27, 11932-11943.	2.7	39
606	Sustainable Low-Concentration Arsenite [As(III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide–Biochar Nanocomposite Adsorbents—A Mechanistic Study. ACS Omega, 2020, 5, 2575-2593.	1.6	64
607	Do homegrown cage-free chickens from an old arsenic mine pose health risks to consumers?. International Journal of Environmental Analytical Chemistry, 2022, 102, 406-421.	1.8	0
608	First-principles study on adsorption behavior of as on the kaolinite (001) and (00\$\$ar {1}\$\$) surfaces. Adsorption, 2020, 26, 443-452.	1.4	7
609	Colorimetric/naked eye detection of arsenic ions in aqueous medium by mango flower extract: A facile and novel approach. Applied Surface Science, 2020, 513, 145760.	3.1	12
610	Effect of mixed Mo/W polyoxometalate modification on photoelectrocatalytic activity of CdS nanocrystals for arsenic(III) oxidation. Journal of Physics and Chemistry of Solids, 2020, 141, 109395.	1.9	14
611	Influence of surface chemistry of activated carbon electrodes on electro-assisted adsorption of arsenate. Journal of Hazardous Materials, 2020, 392, 122349.	6.5	15

#	Article	IF	CITATIONS
612	Arsenic biotransformation potential of marine phytoplankton under a salinity gradient. Algal Research, 2020, 47, 101842.	2.4	10
613	Bioaccessibility of arsenic from gastropod along the Xiangjiang River: Assessing human health risks using an in vitro digestion model. Ecotoxicology and Environmental Safety, 2020, 193, 110334.	2.9	12
614	Enhanced Thermometric Sensor for Arsenate Analysis Based on Dual Temperature Readout Signaling Strategy. Analytical Chemistry, 2020, 92, 4672-4680.	3.2	18
615	Organoarsenicals in Seafood: Occurrence, Dietary Exposure, Toxicity, and Risk Assessment Considerations – A Review. Journal of Agricultural and Food Chemistry, 2020, 68, 943-960.	2.4	78
616	A novel halloysite–CeO nanohybrid for efficient arsenic removal. Applied Clay Science, 2020, 186, 105450.	2.6	53
617	Arsenic transformation mediated by gut microbiota affects the fecundity of Caenorhabditis elegans. Environmental Pollution, 2020, 260, 113991.	3.7	8
618	Interspecific biotransformation and detoxification of arsenic compounds in marine rotifer and copepod. Journal of Hazardous Materials, 2020, 391, 122196.	6.5	27
619	Highly efficient removal of As(V) using metal–organic framework BUC-17. SN Applied Sciences, 2020, 2, 1.	1.5	13
620	Geochemical and biological controls on the ecological relevance of total, dissolved, and colloidal forms of trace elements in large boreal rivers: review and case studies. Environmental Reviews, 2020, 28, 138-163.	2.1	23
621	The bioavailability of arsenic species in rice. Analytical and Bioanalytical Chemistry, 2020, 412, 3253-3259.	1.9	7
622	Glass beads immobilized doped TiO2 NPs with enhanced adsorption efficiency for arsenic(III) from aqueous solution. SN Applied Sciences, 2020, 2, 1.	1.5	7
623	Exploring the Nature of Interaction and Stability between Water-Soluble Arsenic Pollutants and Metal–Phosphorene Hybrids: A Density Functional Theory Study. Journal of Physical Chemistry A, 2020, 124, 3662-3671.	1.1	9
624	Biotic and Abiotic Factors Influencing Arsenic Biogeochemistry and Toxicity in Fluvial Ecosystems: A Review. International Journal of Environmental Research and Public Health, 2020, 17, 2331.	1.2	37
625	Arsenic–nucleotides interactions: an experimental and computational investigation. Dalton Transactions, 2020, 49, 6302-6311.	1.6	10
626	Hollow fiber liquid phase microextraction combined with total reflection X-ray fluorescence spectrometry for the determination of trace level inorganic arsenic species in waters. Talanta, 2020, 217, 121005.	2.9	12
627	A Scientometric Analysis of Recent Literature on Arsenic Bioaccumulation and Biotransformation in Marine Ecosystems. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 551-558.	1.3	5
628	Enhanced Fenton-like Oxidation of As(III) over Ce–Ti Binary Oxide: A New Strategy to Tune Catalytic Activity via Balancing Bimolecular Adsorption Energies. Environmental Science & Technology, 2020, 54, 5893-5901.	4.6	32
629	Arsenic impact on the valorisation schemes of acidic mine waters of the Iberian Pyrite Belt: Integration of selective precipitation and spiral-wound nanofiltration processes. Journal of Hazardous Materials, 2021, 403, 123886.	6.5	15

6400In situ incubations with the Gothenburg benthic chamber landers: Applications and quality control.0.9186410Removal of toxic arsenic (As(ac)) from industrial wastewater by ultrasonic enhanced zero-valent lead6.5326421Maternal and childhood exposure to inorganic arsenic and alivay allergy âC" A 15-Year birth cohort4.8276432Maternal and childhood exposure to inorganic arsenic and alivay allergy âC" A 15-Year birth cohort4.8276433Astep forward on NETmix reactor for heterogeneous photocatalysis: Kinetic modeling of As(III)6.610644Gacodylate Sensors and their Application in the Determination of Amino Acid Levels in Biological0.706456Go-administration of zinc for treating and preventing arsenism in common carp Cyprinus carpio: An atternative to avoid physiological response of tree species (Acer pseudoplatanus, Betula) TJ ETQQ0 00 rgBJ /Overlgck 10 T rotal Environment, 2021, 752, 142062.61646Arsenic uptake, speciation and physiological response of tree species (Acer pseudoplatanus, Betula) TJ ETQQ0 00 rgBJ /Overlgck 10 T rotal Environment, 2021, 752, 142062.3.3128647Arsenic in waters, solis, sediments, and blota from Mexico: An environmental review. Science of the rotal Environment, 2021, 752, 142062.3.3128648Development and adsorption. Water Research, 2021, 188, 116495.3.3128649Development and evaluation of a DGT sampler using functionalised cross-linked polyethyleimine for the monitoring of arsenic and selenium in mine impacted wetlands. Chemosphere, 2021, 266, 128975.4.22641Arsenic contam	#	Article	IF	CITATIONS
631Removal of toxic arsenic (Asi(a,)) from industrial wastewater by ultrasonic enhanced zero-valent lead combined with CuSO4. Journal of Hazardous Materials, 2021, 408, 124464.6.532632Maternal and childhood exposure to inorganic arsenic and airway allergy &C" A 15-Year birth cohort4.827633Astep forward on NETmix reactor for heterogeneous photocatalysis: Kinetic modeling of As(III)6.610634Cacodylate Sensors and their Application in the Determination of Amino Acid Levels in Biological0.70635Co-administration of zinc for treating and preventing arsenism in common carp Cyprinus carpio: An atternative to avoid physiological and cellular damages. Aquaculture, 2021, 531, 735965.1.76636Arsenic uptake, speciation and physiological response of tree species (Acer pseudoplatanus, Betula) TJ ETQQ0 00 rgBT /OverlgCt 100 reformation and adsorption. Water Research, 2021, 158, 116495.5.3128639Active MnO2/blochar composite for efficient As(III) removal: Insight into the mechanisms of redox5.3128639Astronent residuals. Science of the Total Environment, 2021, 753, 142002.3.935640Development and evaluation of a DGT sampler using functionalisced cross-linked polyethyleimine for the monitoring of arsenic and selenium in mine impacted wetlands. Chemosphere, 2021, 266, 128975.4.22641Arsenic contamination, effects and remediation techniques: A special look onto membrane separation2.748642Astep intron-based disposable-chemical-warmer as adsorbent for as(v) removal from aqueous2.748	630	In situ incubations with the Gothenburg benthic chamber landers: Applications and quality control. Journal of Marine Systems, 2021, 214, 103475.	0.9	18
632Maternal and childhood exposure to inorganic arsenic and ainway allergy & A 15-Year birth cohort4.827633Astep forward on NETmix reactor for heterogeneous photocatalysis: Kinetic modeling of As(III)6.610634Cacodylate Sensors and their Application in the Determination of Amino Acid Levels in Biological0.70635Co-administration of Zhin Cor treating and preventing arsenism in common carp Cyprinus carpto: An alternative to avoid physiological and cellular damages. Aquaculture, 2021, 531, 735965.1.76636Arsenic uptake, speciation and physiological response of tree species (Acer pseudoplatanus, Betula) TJ ETQQO 00 rg&J /OVerlg& 10 T Total Environment, 2021, 752, 142062.1.28637Arsenic uptake, speciation and physiological response of tree species (Acer pseudoplatanus, Betula) TJ ETQQO 00 rg&J /OVerlg& 10 T Total Environment, 2021, 752, 142062.1.28638Active MnO2/biochar composite for efficient As(III) removal: Insight into the mechanisms of redox 	631	Removal of toxic arsenic (As(â¢)) from industrial wastewater by ultrasonic enhanced zero-valent lead combined with CuSO4. Journal of Hazardous Materials, 2021, 408, 124464.	6.5	32
633A step forward on NETmix reactor for heterogeneous photocatalysis: Kinetic modeling of As(ili)6.610634Cacodylate Sensors and their Application in the Determination of Amino Acid Levels in Biological Samples. Journal of AOAC INTERNATIONAL, 2021, 104, 113-121.0.70635Co-administration of zinc for treating and preventing arsenism in common carp Cyprinus carpio: An alternative to avoid physiological and cellular damages. Aquaculture, 2021, 531, 735965.1.76636Arsenic uptake, speciation and physiological response of tree species (Acer pseudoplatanus, Betula) Tj ETQq0 0 0 rgBT /Overlck 10 T Total Environment, 2021, 752, 142062.3.961637Arsenic in waters, solis, sediments, and blota from Mexico: An environmental review. Science of the transformation and adsorption. Water Research, 2021, 188, 116495.3.961639Active MnO2/blochar composite for efficient As(iii) removal: Insight into the mechanisms of redox transformation and adsorption. Water Research, 2021, 753, 142002.3.935630Development and evaluation of a DGT sampler using functionalised cross-linked polyethyleimine for the monitoring of arsenic and selenium in mine impacted wetlands. Chemosphere, 2021, 266, 128975.4.22641Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes. Chemical Engineering Research and Design, 2021, 148, 604-623.2.748	632	Maternal and childhood exposure to inorganic arsenic and airway allergy – A 15-Year birth cohort follow-up study. Environment International, 2021, 146, 106243.	4.8	27
634Cacodylate Sensors and their Application in the Determination of Amino Acid Levels in Biological0.70635Co-administration of Zinc for treating and preventing arsenism in common carp Cyprinus carpio: An alternative to avoid physiological and cellular damages. Aquaculture, 2021, 531, 735965.1.76636Arsenic uptake, speciation and physiological response of tree species (Acer pseudoplatanus, Betula) TJ ETQQO O rgBT /Overlgck 10 T Total Environment, 2021, 752, 142062.0637Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. Science of the transformation and adsorption. Water Research, 2021, 188, 116495.5.3128639Active MnO2/biochar composite for efficient As(III) removal: Insight into the mechanisms of redox 	633	A step forward on NETmix reactor for heterogeneous photocatalysis: Kinetic modeling of As(III) oxidation. Chemical Engineering Journal, 2021, 405, 126612.	6.6	10
635Co-administration of zinc for treating and preventing arsenism in common carp Cyprinus carpio: An alternative to avoid physiological and cellular damages. Aquaculture, 2021, 531, 735965.1.76636Arsenic uptake, speciation and physiological response of tree species (Acer pseudoplatanus, Betula) Tj ETQq0 0 0 rgBJ /Overlock 10 T fotal Environment, 2021, 752, 142062.3.961637Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. Science of the transformation and adsorption. Water Research, 2021, 188, 116495.3.961638Active MnO2/biochar composite for efficient As(III) removal: Insight into the mechanisms of redox transformation and adsorption. Water Research, 2021, 188, 116495.5.3128639As(V) adsorption by a novel core-shell magnetic nanoparticles prepared with Iron-containing water treatment residuals. Science of the Total Environment, 2021, 753, 142002.3.93.5640Development and evaluation of a DGT sampler using functionalised cross-linked polyethyleimine for the monitoring of arsenic and selenium in mine impacted wetlands. Chemosphere, 2021, 266, 128975.4.22641Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes. Chemical Engineering Research and Design, 2021, 148, 604-623.2.748	634	Cacodylate Sensors and their Application in the Determination of Amino Acid Levels in Biological Samples. Journal of AOAC INTERNATIONAL, 2021, 104, 113-121.	0.7	0
636Arsenic uptake, speciation and physiological response of tree species (Acer pseudoplatanus, Betula) Tj ETQq0 0 0 rgBJ /0verlg6k 10 T637Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. Science of the Total Environment, 2021, 752, 142062.3.961638Active MnO2/biochar composite for efficient As(III) removal: Insight into the mechanisms of redox transformation and adsorption. Water Research, 2021, 188, 116495.5.3128639As(V) adsorption by a novel core-shell magnetic nanoparticles prepared with Iron-containing water treatment residuals. Science of the Total Environment, 2021, 753, 142002.3.935640Development and evaluation of a DGT sampler using functionalised cross-linked polyethyleimine for the monitoring of arsenic and selenium in mine impacted wetlands. Chemosphere, 2021, 266, 128975.4.22641Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes. Chemical Engineering Research and Design, 2021, 148, 604-623.2.748642Recycling spent iron-based disposable-chemical-warmer as adsorbent for as(v) removal from aqueous5.95.9	635	Co-administration of zinc for treating and preventing arsenism in common carp Cyprinus carpio: An alternative to avoid physiological and cellular damages. Aquaculture, 2021, 531, 735965.	1.7	6
637Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. Science of the Total Environment, 2021, 752, 142062.3.961638Active MnO2/biochar composite for efficient As(III) removal: Insight into the mechanisms of redox transformation and adsorption. Water Research, 2021, 188, 116495.5.3128639As(V) adsorption by a novel core-shell magnetic nanoparticles prepared with Iron-containing water treatment residuals. Science of the Total Environment, 2021, 753, 142002.3.935640Development and evaluation of a DGT sampler using functionalised cross-linked polyethyleimine for the monitoring of arsenic and selenium in mine impacted wetlands. Chemosphere, 2021, 266, 128975.4.22641Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes. Chemical Engineering Research and Design, 2021, 148, 604-623.2.748	636	Arsenic uptake, speciation and physiological response of tree species (Acer pseudoplatanus, Betula) Tj ETQqO O C) rgBT /Ov€ 4.2	erlock 10 Tf 5
638Active MnO2/biochar composite for efficient As(III) removal: Insight into the mechanisms of redox transformation and adsorption. Water Research, 2021, 188, 116495.5.3128639As(V) adsorption by a novel core-shell magnetic nanoparticles prepared with Iron-containing water treatment residuals. Science of the Total Environment, 2021, 753, 142002.3.935640Development and evaluation of a DCT sampler using functionalised cross-linked polyethyleimine for the monitoring of arsenic and selenium in mine impacted wetlands. Chemosphere, 2021, 266, 128975.4.22641Arsenic contamination, effects and remediation techniques: A special look onto membrane separation 	637	Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. Science of the Total Environment, 2021, 752, 142062.	3.9	61
639As(V) adsorption by a novel core-shell magnetic nanoparticles prepared with Iron-containing water treatment residuals. Science of the Total Environment, 2021, 753, 142002.3.935640Development and evaluation of a DGT sampler using functionalised cross-linked polyethyleimine for the monitoring of arsenic and selenium in mine impacted wetlands. Chemosphere, 2021, 266, 128975.4.22641Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes. Chemical Engineering Research and Design, 2021, 148, 604-623.2.748642Recycling spent iron-based disposable-chemical-warmer as adsorbent for as(v) removal from aqueous5.05.0	638	Active MnO2/biochar composite for efficient As(III) removal: Insight into the mechanisms of redox transformation and adsorption. Water Research, 2021, 188, 116495.	5.3	128
640Development and evaluation of a DGT sampler using functionalised cross-linked polyethyleimine for the monitoring of arsenic and selenium in mine impacted wetlands. Chemosphere, 2021, 266, 128975.4.22641Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes. Chemical Engineering Research and Design, 2021, 148, 604-623.2.748642Recycling spent iron-based disposable-chemical-warmer as adsorbent for as(v) removal from aqueous5.95.9	639	As(V) adsorption by a novel core-shell magnetic nanoparticles prepared with Iron-containing water treatment residuals. Science of the Total Environment, 2021, 753, 142002.	3.9	35
641Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes. Chemical Engineering Research and Design, 2021, 148, 604-623.2.748642Recycling spent iron-based disposable-chemical-warmer as adsorbent for as(v) removal from aqueous5.95.9	640	Development and evaluation of a DGT sampler using functionalised cross-linked polyethyleimine for the monitoring of arsenic and selenium in mine impacted wetlands. Chemosphere, 2021, 266, 128975.	4.2	2
Recycling spent iron-based disposable-chemical-warmer as adsorbent for as(v) removal from aqueous	641	Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes. Chemical Engineering Research and Design, 2021, 148, 604-623.	2.7	48
solution. Resources, Conservation and Recycling, 2021, 168, 105284.	642	Recycling spent iron-based disposable-chemical-warmer as adsorbent for as(v) removal from aqueous solution. Resources, Conservation and Recycling, 2021, 168, 105284.	5.3	5
Acid recovery from copper metallurgical process streams polluted with arsenic by diffusion dialysis. 3.3 9 Journal of Environmental Chemical Engineering, 2021, 9, 104692.	643	Acid recovery from copper metallurgical process streams polluted with arsenic by diffusion dialysis. Journal of Environmental Chemical Engineering, 2021, 9, 104692.	3.3	9
644Combination of immobilized TiO2 and zero valent iron for efficient arsenic removal in aqueous solutions. Separation and Purification Technology, 2021, 258, 118016.3.920	644	Combination of immobilized TiO2 and zero valent iron for efficient arsenic removal in aqueous solutions. Separation and Purification Technology, 2021, 258, 118016.	3.9	20
645Study of in-situ precipitation of arsenic bearing crystalline particles during the process of copper electrorefining. Hydrometallurgy, 2021, 199, 105546.1.86	645	Study of in-situ precipitation of arsenic bearing crystalline particles during the process of copper electrorefining. Hydrometallurgy, 2021, 199, 105546.	1.8	6
 Heated column experiments: A proxy for investigating the effects of in situ thermal recovery operations on groundwater geochemistry. Journal of Contaminant Hydrology, 2021, 237, 103755. 	646	Heated column experiments: A proxy for investigating the effects of in situ thermal recovery operations on groundwater geochemistry. Journal of Contaminant Hydrology, 2021, 237, 103755.	1.6	4

647 Phytomanagement of As-contaminated matrix: Physiological and molecular basis. , 2021, , 61-79.

ARTICLE IF CITATIONS New application of lanthanum-modified bentonite (Phoslock®) for immobilization of arsenic in 648 2.7 8 sediments. Environmental Science and Pollution Research, 2021, 28, 2052-2062. Recent Advances in Functionalized Nanoporous Carbons Derived from Waste Resources and Their 649 2.7 49 Applications in Energy and Environment. Advanced Sustainable Systems, 2021, 5, . Delivering Arsenic-free Drinking Water-Made Practically Possible: Continuous Scale Electrochemical Arsenic Remediation Process Furnished, based on Experimental Studies and ANN Simulation. 650 2.7 2 Environment, Development and Sustainability, 2021, 23, 13087-13112. Highly selective and sensitive detection of arsenite ions(<scp>iii</scp>) using a novel tetraphenylimidazole-based probe. Analytical Methods, 2021, 13, 5011-5016. 1.3 Effect of solution chemistry on aqueous As(III) removal by titanium salts coagulation. Environmental 652 2.7 4 Science and Pollution Research, 2021, 28, 21823-21834. Arsenic contamination, speciation, toxicity and defense strategies in plants. Revista Brasileira De Botanica, 2021, 44, 1-10. Iron oxide coated hollow poly(methylmethacrylate) as an efficient adsorption media for removal of 654 1.7 7 arsenic from water. RSC Advances, 2021, 11, 13376-13385. Nanomaterials for Arsenic Remediation with Boosted Adsorption and Photocatalytic Properties., Removal of Arsenic from Water Using a Composite of Iron–Manganese Oxide Incorporated Active Rice 656 0.7 7 Husk Silica. Clean - Soil, Air, Water, 2021, 49, 2000233. Arsenic Content, Speciation, and Distribution in Wild Cordyceps sinensis. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-9. Arsenic Contamination of Groundwater and Its Implications for Drinking Water Quality and Human Health in Under-Developed Countries and Remote Communities—A Review. Applied Sciences 658 1.3 59 (Switzerland), 2021, 11, 1926. Influence of Humic Acid on Oxidative Stress Induced by Arsenite and Arsenate Waterborne Exposure in 1.3 Danio rerio. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 786-791. Transfer and bioavailability of inorganic and organic arsenic in sediment-water-biota microcosm. 660 1.9 11 Aquatic Toxicology, 2021, 232, 105763. Accumulation and Release of Arsenic from Cast Iron: Impact of Initial Arsenic and Orthophosphate Concentrations. Water Research, 2021, 194, 116942. 5.3 Synthesis of Fe Doped Poly p-Phenylenediamine Composite: Co-Adsorption Application on Toxic Metal 662 1.6 6 lons (Fâ[~] and As3+) and Microbial Disinfection in Aqueous Solution. Toxics, 2021, 9, 74. Kinetics and mechanism of arsenic removal using sulfide-modified nanoscale zerovalent iron. Chemical Engineering Journal, 2021, 412, 128667. Enhanced As(III) sequestration using nanoscale zero-valent iron modified by combination of loading 665 and sulfidation: characterizations, performance, kinetics and mechanism. Water Science and 1.2 5 Technology, 2021, 83, 2886-2900. Comparing arsenic(V) adsorption by two types of red soil weathered from granite and sandstone in 1.3 Hunan, China. Environmental Earth Sciences, 2021, 80, 1.

#	Article	IF	CITATIONS
667	Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. Reviews in Inorganic Chemistry, 2022, 42, 197-227.	1.8	14
668	Arsenic uptake and bioaccumulation in plants: A review on remediation and socio-economic perspective in Southeast Asia. Environmental Nanotechnology, Monitoring and Management, 2021, 15, 100430.	1.7	16
669	Synthetic Iowaite Can Effectively Remove Inorganic Arsenic from Marine Extract. Molecules, 2021, 26, 3052.	1.7	1
670	Effective adsorption of arsenate, dyes and eugenol from aqueous solutions by cationic supramolecular gel materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126238.	2.3	10
671	Pelletized adsorbent of alum sludge and bentonite for removal of arsenic. Environmental Pollution, 2021, 277, 116747.	3.7	22
672	The Use of Voltammetry for Sorption Studies of Arsenic (III) Ions by Magnetic Beads Functionalized with Nucleobase Hydrazide Derivatives. Electroanalysis, 2021, 33, 1789-1799.	1.5	4
673	Preparation of environmental samples for chemical speciation of metal/metalloids: A review of extraction techniques. Talanta, 2021, 226, 122119.	2.9	30
674	Magnetic zeolitic imidazolate frameworks composite as an efficient adsorbent for arsenic removal from aqueous solution. Journal of Hazardous Materials, 2021, 412, 125298.	6.5	28
675	Status and management of arsenic pollution in groundwater: A comprehensive appraisal of recent global scenario, human health impacts, sustainable field-scale treatment technologies. Journal of Environmental Chemical Engineering, 2021, 9, 105203.	3.3	73
676	Mitigation of arsenic induced developmental cardiotoxicity by ferulic acid in zebrafish. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 244, 109021.	1.3	5
677	Analysis and risk assessment of arsenic in rice from different regions of Brazil. Journal of Food Composition and Analysis, 2021, 99, 103853.	1.9	7
678	Recent Advances in Colorimetric Detection of Arsenic Using Metal-Based Nanoparticles. Toxics, 2021, 9, 143.	1.6	16
679	Sources, chemistry, bioremediation and social aspects of arsenic-contaminated waters: a review. Environmental Chemistry Letters, 2021, 19, 3859-3886.	8.3	31
680	An effective separation of toxic arsenic from aquatic environment using electrochemical ion exchange process. Journal of Hazardous Materials, 2021, 412, 125240.	6.5	57
681	Integration of membrane technologies to enhance the sustainability in the treatment of metal-containing acidic liquid wastes. An overview. Separation and Purification Technology, 2021, 265, 118485.	3.9	41
684	Contemporary practices in groundwater arsenic remediation and wastewater management in West Bengal, India: a systematic review. International Journal of Advanced Technology and Engineering Exploration, 2021, 8, 797-823.	0.6	14
685	Abiotic oxidation of arsenite in natural and engineered systems: Mechanisms and related controversies over the last two decades (1999–2020). Journal of Hazardous Materials, 2021, 414, 125488.	6.5	22
686	Testing of Chemically Activated Cellulose Fibers as Adsorbents for Treatment of Arsenic Contaminated Water. Materials, 2021, 14, 3731.	1.3	16

#	Article	IF	CITATIONS
687	Evaluating spatiotemporal patterns of arsenic, antimony, and lead deposition from legacy gold mine emissions using lake sediment records. Applied Geochemistry, 2021, 134, 105053.	1.4	9
688	Accumulation, transformation and subcellular distribution of arsenite associated with five carbon nanomaterials in freshwater zebrafish specific-tissues. Journal of Hazardous Materials, 2021, 415, 125579.	6.5	10
689	Mesoporous cerium oxide-anchored magnetic polyhedrons derived from MIL-100(Fe) for enhanced removal of arsenite from aqueous solution. Journal of Hazardous Materials, 2021, 415, 125709.	6.5	15
690	Recent advances in fieldâ€effect transistor sensing strategies for fast and highly efficient analysis of heavy metal ions. Electrochemical Science Advances, 2022, 2, e2100137.	1.2	10
691	Lead, zinc and arsenic contamination of pit lake waters in the Zeida abandoned mine (High Moulouya,) Tj ETQqO	0 8 rgBT /0	Overlock 10

692	Microbial controls on heavy metals and nutrients simultaneous release in a seasonally stratified reservoir. Environmental Science and Pollution Research, 2022, 29, 1937-1948.	2.7	10
693	Toxicity mechanisms of arsenic compounds in aquatic organisms. Aquatic Toxicology, 2021, 237, 105901.	1.9	63
694	Arsenic (III) and/or Antimony (III) induced disruption of calcium homeostasis and endoplasmic reticulum stress resulting in apoptosis in mice heart. Ecotoxicology and Environmental Safety, 2021, 220, 112394.	2.9	23
695	Arsenic photocatalytic oxidation over TiO2-loaded SBA-15. Journal of Environmental Chemical Engineering, 2021, 9, 106443.	3.3	21
696	Arsenic and mercury contamination and complex aquatic bioindicator responses to historical gold mining and modern watershed stressors in urban Nova Scotia, Canada. Science of the Total Environment, 2021, 787, 147374.	3.9	9
697	Hydrothermal liquefaction accelerates the toxicity and solubility of arsenic in biowaste. Journal of Hazardous Materials, 2021, 418, 126341.	6.5	16
698	Variations of arsenic forms and the role of arsenate reductase in three hydrophytes exposed to different arsenic species. Ecotoxicology and Environmental Safety, 2021, 221, 112415.	2.9	10
699	Removal of As(III) by Electrically Conducting Ultrafiltration Membranes. Water Research, 2021, 204, 117592.	5.3	15
700	Photooxidation of arsenic in pristine and mine-impacted Canadian subarctic freshwater systems. Journal of Hazardous Materials Advances, 2021, 2, 100006.	1.2	5
701	Rovibrational spectroscopic constants and anharmonic force fields of CH3AsH2 and CH2AsH3: An study. Chemical Physics Letters, 2021, 780, 138917.	1.2	1
702	In vitro toxicity of arsenic rich waters from an abandoned gold mine in northeast Portugal. Environmental Research, 2021, 202, 111683.	3.7	5
703	Metabolic and residual characteristic of different arsenic species contained in laver during mouse digestion. Science of the Total Environment, 2021, 793, 148434.	3.9	1
704	Monitoring and risk assessment of arsenic species and metals in the Taehwa River in Ulsan, the largest industrial city in South Korea. Marine Pollution Bulletin, 2021, 172, 112862.	2.3	5

#	Article	IF	CITATIONS
705	The toxicokinetic of arsenic in the edible and non-edible tissues of freshwater shellfish. Environmental Technology and Innovation, 2021, 24, 101940.	3.0	2
706	Effective removal of water-soluble methylated arsenic contaminants with phosphorene oxide nanoflakes: A DFT study. Journal of Molecular Liquids, 2021, 341, 117423.	2.3	3
707	Removal of water-soluble inorganic arsenicals with phosphorene oxide nanoadsorbents: A first-principles study. Chemical Engineering Journal, 2021, 426, 131471.	6.6	4
708	Toxicity assessment of earthworm exposed to arsenate using oxidative stress and burrowing behavior responses and an integrated biomarker index. Science of the Total Environment, 2021, 800, 149479.	3.9	18
709	In situ arsenic speciation at the soil/water interface of saline-alkaline lakes of the Pantanal, Brazil: A DGT-based approach. Science of the Total Environment, 2022, 804, 150113.	3.9	13
710	An integrated active biochar filter and capacitive deionization system for high-performance removal of arsenic from groundwater. Journal of Hazardous Materials, 2022, 423, 127084.	6.5	34
711	Sulfur-doped Fe–Cu–La trimetallic oxides as a novel magnetic adsorbent for efficient removal of As(iii) and As(v) from aqueous solution. Environmental Science: Water Research and Technology, 0, , .	1.2	3
713	Changes in Copper, Zinc, Arsenic, Mercury, and Lead Concentrations in Rat Biofluids and Tissues Induced by the "Renqing Changjue―Pill, a Traditional Tibetan Medicine. Biological Trace Element Research, 2021, 199, 4646-4656.	1.9	2
714	Mycoremediation- Effective strategy to ameliorate arsenic toxicity. , 2021, , 433-458.		2
715	Removal of arsenic from contaminated groundwater using biochar: a technical review. International Journal of Environmental Science and Technology, 2022, 19, 651-664.	1.8	25
716	Shellfish and Residual Chemical Contaminants: Hazards, Monitoring, and Health Risk Assessment Along French Coasts. Reviews of Environmental Contamination and Toxicology, 2011, 213, 55-111.	0.7	48
717	Arsenic removal by magnetic nanocrystalline barium hexaferrite. , 2012, , 163-169.		2
718	Iron Oxide Nanoparticles to Remove Arsenic from Water. Sustainable Agriculture Reviews, 2017, , 279-299.	0.6	5
719	Arsenic Behaviour in Soil-Plant System: Biogeochemical Reactions and Chemical Speciation Influences. , 2017, , 97-140.		66
720	Bioaccumulation and biotransformation of arsenic in Leptolyngbya boryana. Environmental Science and Pollution Research, 2020, 27, 29993-30000.	2.7	13
721	On the application of photocatalyst-sorbent composite materials for arsenic(III) remediation: Insights from kinetic adsorption modelling. Journal of Environmental Chemical Engineering, 2020, 8, 104033.	3.3	12
722	The use of Atlantic hagfish (Myxine glutinosa) as a bioindicator species for studies on effects of dumped chemical warfare agents in the Skagerrak. 2. Biochemical biomarkers. Marine Environmental Research, 2020, 162, 105097.	1.1	9
723	Solar photocatalytic removal of arsenic from polluted water using carbon-modified titanium oxide nanoparticles supported on activated carbon. Environmental Chemistry, 2020, 17, 568.	0.7	10

#	Article	IF	CITATIONS
724	Examination of metallic impurities of 68Ge/68Ga generators used for radioactive labeling of peptides in clinical PET applications. Nuclear Medicine Communications, 2021, 42, 81-85.	0.5	2
725	Arsenic in the environment. Arsenic in the Environment, 2012, , 1-23.	0.0	7
726	Adsorption of Arsenic from Alkaline Solutions. Kagaku Kogaku Ronbunshu, 2017, 43, 185-192.	0.1	4
727	The Use of Manganese Oxide Minerals for the Removal Arsenic and Selenium Anions from Aqueous Solutions. Energy and Environmental Engineering, 2014, 2, 103-112.	0.8	18
728	Tetraarsenictetrasulfide and Arsenic Trioxide Exert Synergistic Effects on Induction of Apoptosis and Differentiation in Acute Promyelocytic Leukemia Cells. PLoS ONE, 2015, 10, e0130343.	1.1	16
729	ARSENIC CONTAMINATED GROUNDWATER IN CHINA AND ITS TREATMENT OPTIONS, A REVIEW. Applied Ecology and Environmental Research, 2019, 17, 1655-1683.	0.2	42
732	Arsenic acute toxicity assessment on select freshwater organism species in Malaysia. AIMS Environmental Science, 2016, 3, 804-814.	0.7	1
734	Bio-accumulation of Arsenic (III) Using <i>Nelumbo Nucifera</i> Gaertn. Journal of Health and Pollution, 2019, 9, 190902.	1.8	4
735	Assessment of health risk associated with arsenic exposure from soil, groundwater, polished rice for setting target cleanup level nearby abandoned mines. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2011, 44, 38-47.	0.1	6
736	Responses of macrobenthic communities to patchy distributions of heavy metals and petroleum hydrocarbons in sediments: A study in China's Zhoushan Archipelago. Acta Oceanologica Sinica, 2021, 40, 117-125.	0.4	2
737	In situ fractionation and redox speciation of arsenic in soda lakes of Nhecolândia (Pantanal, Brazil) using the diffusive gradients in thin films (DGT) technique. Chemosphere, 2022, 288, 132592.	4.2	4
738	How temperature rise will influence the toxic impacts of 17 α-ethinylestradiol in Mytilus galloprovincialis?. Environmental Research, 2022, 204, 112279.	3.7	11
739	Effective remediation of arsenate from contaminated water by zirconium modified pomegranate peel as an anion exchanger. Journal of Environmental Chemical Engineering, 2021, 9, 106552.	3.3	15
741	Niche overlap analysis of a lizard assemblage from the Atlantic Rainforest, evaluation of arsenic toxicity in cladocerans, and molecular biology of mycoplasmas. Anais Da Academia Brasileira De Ciencias, 2016, 88, 437-438.	0.3	0
742	Applicability of Enhanced-phytoremediation for Arsenic-contaminated Soil. Journal of Soil and Groundwater Environment, 2016, 21, 40-48.	0.1	0
743	Speciation Analysis of 6 Arsenic Species in Sea Mustard Using IC-ICP-MS. Journal of the Korean Chemical Society, 2016, 60, 452-456.	0.2	0
744	Kinetics and Thermodynamic Studies of the Arsenite Oxidation by K-OMS2. International Journal of Chemical Engineering and Applications (IJCEA), 2017, 8, 189-193.	0.3	0
745	Modifiye Edilmiş Pomza Kullanılarak Sulu Ortamlardan Adsorpsiyon Prosesi ile Arsenat (V) Giderimi. Journal of Natural and Applied Sciences, 0, , 80-90.	0.1	4

#	Article		CITATIONS
746	Nanomaterials for Arsenic Remediation with Boosted Adsorption and Photocatalytic Properties. , 2020, , 1-42.		0
747	Effects of Arsenic Toxicity on the Environment and Its Remediation Techniques: A Review. Journal of Water and Environment Technology, 2020, 18, 275-289.	0.3	22
748	The determination of oxidation rates and quantum yields during the photocatalytic oxidation of As(III) over TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 424, 113628.	2.0	8
749	Dual anion colorimetric and fluorometric sensing of arsenite and cyanide ions involving MLCT and CHEF pathways. Journal of Molecular Structure, 2022, 1250, 131677.	1.8	13
751	Bifunctional Ionic Covalent Organic Networks for Enhanced Simultaneous Removal of Chromium(VI) and Arsenic(V) Oxoanions via Synergetic Ion Exchange and Redox Process. Small, 2021, 17, e2104703.	5.2	13
752	Health Risk Assessment of Heavy Metals Due to Wheat, Cabbage, and Spinach Consumption at Cold-Arid High Altitude Region. Biological Trace Element Research, 2022, 200, 4186-4198.	1.9	7
753	Electrochemical conversion pathways and existing morphology of arsenic(III) in anode-cathode separated electrolytic cells. Water Science and Technology: Water Supply, 2021, 21, 46-58.	1.0	1
754	Interactions with Arsenic: Mechanisms of Toxicity and Cellular Resistance in Eukaryotic Microorganisms. International Journal of Environmental Research and Public Health, 2021, 18, 12226.	1.2	17
755	In situ arsenic immobilisation for coastal aquifers using stimulated iron cycling: Lab-based viability assessment. Applied Geochemistry, 2022, 136, 105155.	1.4	7
756	Guanidinium-Based Ionic Covalent-Organic Nanosheets for Sequestration of Cr(VI) and As(V) Oxoanions in Water. ACS Applied Nano Materials, 2021, 4, 13319-13328.	2.4	6
757	Iron Powders as a Potential Material for Arsenic Removal in Aqueous Systems. ISIJ International, 2021, 61, 2687-2702.	0.6	8
758	Characteristics and mechanisms of aluminum salts on arsenate removal by coagulation: Significance of aluminum speciation distribution and transformation. Journal of Environmental Chemical Engineering, 2022, 10, 106805.	3.3	14
759	Geochemical cycles of arsenic in historic tin tailings from multiple ore sources: an example from Australia. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	2
760	Human health risk assessment of industry impact in Kikinda industry zone. Reciklaža I Održivi Razvoj, 2021, 14, 1-10.	0.5	0
761	Synthesis and characterization of magnetic Fe3O4@SiO2-MIL-53(Fe) metal-organic framework and its application for efficient removal of arsenate from surface and groundwater. Journal of Environmental Chemical Engineering, 2022, 10, 107144.	3.3	41
762	Transcriptome analysis of the toxicity response of green macroalga Caulerpa lentillifera J. Agardh to high dissolved arsenite. Environmental Science and Pollution Research, 2022, 29, 38591-38605.	2.7	2
763	Microinteraction Analysis between Heavy Metals and Coexisting Phases in Heavy Metal Containing Solid Wastes. ACS ES&T Engineering, 2022, 2, 547-563.	3.7	8
764	Binding of As3+ and As5+ to Fe(III) Oxyhydroxide Clusters and the Influence of Aluminum Substitution: A Molecular Perspective. Journal of Physical Chemistry A, 2022, 126, 670-684.	1.1	2

#	Article	IF	CITATIONS
765	Arsenic Accumulation and Biotransformation Affected by Nutrients (N and P) in Common Blooming-Forming Microcystis wesenbergii (Komárek) Komárek ex Komárek (Cyanobacteria). Water (Switzerland), 2022, 14, 245.	1.2	1
766	On-site separation of arsenic species using a sorbent C18 column modified with APDC followed by ICP-MS determination. Journal of Analytical Atomic Spectrometry, 2022, 37, 229-232.	1.6	7
767	Density functional theory (DFT) investigation of the oxidative degradation of NaAsO2 via hydroxyl radical. Structural Chemistry, 2022, 33, 625-630.	1.0	1
768	One-step construction of hierarchical porous channels on electrospun MOF/polymer/graphene oxide composite nanofibers for effective arsenate removal from water. Chemical Engineering Journal, 2022, 435, 134830.	6.6	44
769	Effective immobilization of arsenic in waters and sediments using novel zirconium-loaded lanthanum-modified bentonite capping. Journal of Environmental Chemical Engineering, 2022, , 107343.	3.3	2
770	Aquatic Ecological Risk of Heavy-Metal Pollution Associated with Degraded Mining Landscapes of the Southern Africa River Basins: A Review. Minerals (Basel, Switzerland), 2022, 12, 225.	0.8	16
771	Biopolymer mixture-entrapped modified graphene oxide for sustainable treatment of heavy metal contaminated real surface water. Journal of Water Process Engineering, 2022, 46, 102631.	2.6	20
772	Biological factors influencing As mobilization from an ancient mining region: In vitro studies. Environmental Challenges, 2022, 7, 100472.	2.0	0
773	<i>Sinapis alba</i> as a useful plant in bioremediation – studies of defense mechanisms and accumulation of As, Tl and PGEs. International Journal of Phytoremediation, 2022, 24, 1475-1490.	1.7	2
774	A Novel In Situ Method for Simultaneously and Selectively Measuring As ^{III} , Sb ^{III} , and Se ^{IV} in Freshwater and Soils. Analytical Chemistry, 2022, 94, 4576-4583.	3.2	9
775	Significance of Shewanella Species for the Phytoavailability and Toxicity of Arsenic—A Review. Biology, 2022, 11, 472.	1.3	6
776	Bioaccumulation of arsenic and immunotoxic effect in white shrimp (Penaeus vannamei) exposed to trivalent arsenic. Fish and Shellfish Immunology, 2022, 122, 376-385.	1.6	5
777	An emerging photocatalyst for wastewater remediation: a mini-review on CaCu3Ti4O12 photocatalysis. Environmental Science and Pollution Research, 2022, 29, 40403-40414.	2.7	8
778	Binding of Arsenic by Common Functional Groups: An Experimental and Quantum-Mechanical Study. Applied Sciences (Switzerland), 2022, 12, 3210.	1.3	3
779	Identification and Genome Analysis of an Arsenic-Metabolizing Strain of Citrobacter youngae IITK SM2 in Middle Indo-Gangetic Plain Groundwater. BioMed Research International, 2022, 2022, 1-19.	0.9	4
780	Site-specific ecological risk assessment of metal-contaminated soils based on the TRIAD approach. Journal of Hazardous Materials, 2022, 434, 128883.	6.5	3
781	Performance and mechanism of As(III/â)¤removal from aqueous solution by novel positively charged animal-derived biochar. Separation and Purification Technology, 2022, 290, 120836.	3.9	9
782	A review of heavy metals' removal from aqueous matrices by Metal-Organic Frameworks (MOFs): State-of-the art and recent advances. Journal of Environmental Chemical Engineering, 2022, 10, 107394.	3.3	51

#	Article	IF	CITATIONS
783	Arsenate and arsenite differential toxicity in Tetrahymena thermophila. Journal of Hazardous Materials, 2022, 431, 128532.	6.5	7
784	Simultaneous photocatalytic oxidation and adsorption for efficient As(III) removal by magnetic BiOI/γ-Fe2O3 core–shell nanoparticles. Materials Today Chemistry, 2022, 24, 100823.	1.7	8
785	Threshold values on environmental chemical contaminants in seafood in the European Economic Area. Food Control, 2022, 138, 108978.	2.8	9
786	Complexation of arsenate to humic acid with different molecular weight fractions in aqueous solution. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2021, 56, 1428-1434.	0.9	1
787	First Report on the Elemental Composition of the Largest Bony Fishes in the World, the Ocean Sunfish (Mola mola) from the Mediterranean Sea. Natural and Engineering Sciences, 0, , 166-177.	0.2	0
788	An Electrochemical Immunosensor Based on SPA and rGO-PEI-Ag-Nf for the Detection of Arsanilic Acid. Molecules, 2022, 27, 172.	1.7	3
789	Photocatalytic activity of CuO nanoparticles for organic and inorganic pollutants removal in wastewater remediation. Chemosphere, 2022, 300, 134623.	4.2	66
792	Arsenic contamination in food chain in Bangladesh: A review on health hazards, socioeconomic impacts and implications. , 2022, 2, 100004.		24
793	Immobilization of arsenic in wastewater from regeneration of fixed-bed adsorbent by co-precipitation with zirconium nano-sludge for disposal in landfills. Journal of Environmental Chemical Engineering, 2022, 10, 107756.	3.3	6
794	Arsenic speciation transformation in soils with high geological background: New insights from the governing role of Fe. Chemosphere, 2022, 302, 134860.	4.2	7
795	Arsenic through aquatic trophic levels: effects, transformations and biomagnification—a concise review. Geoscience Letters, 2022, 9, .	1.3	19
796	Speciation of inorganic arsenic in aqueous samples using a novel hydride generation microfluidic paper-based analytical device (µPAD). Mikrochimica Acta, 2022, 189, .	2.5	4
797	Highly efficient removal of arsenic (III/V) from groundwater using nZVI functionalized cellulose nanocrystals fabricated via a bioinspired strategy. Science of the Total Environment, 2022, 842, 156937.	3.9	33
798	Evaluating the Potential Health Risks of Selected Heavy Metals across Four Wastewater Treatment Water Works in Durban, South Africa. Toxics, 2022, 10, 340.	1.6	7
799	Influence of humic acid and fluvic acid on the altered toxicities of arsenite and arsenate toward two freshwater algae. Aquatic Toxicology, 2022, 249, 106218.	1.9	3
800	Mitochondrial Toxicity of Organic Arsenicals. Methods in Molecular Biology, 2022, , 173-184.	0.4	2
801	Rapid purification of As(III) in water using iron–manganese composite oxide coupled with sulfite: Importance of the SO5•┠radicals. Water Research, 2022, 222, 118839.	5.3	13
802	Arsenic in Caribbean bivalves in the context of Sargassum beachings: A new risk for seafood consumers. Environmental Monitoring and Assessment, 2022, 194, .	1.3	5

#	Article	IF	CITATIONS
803	Assessing the risk of human exposure to bioaccessible arsenic from total diet through market food consumption in Chengdu, China. Environmental Geochemistry and Health, 0, , .	1.8	0
804	Cable Bacteria Activity Modulates Arsenic Release From Sediments in a Seasonally Hypoxic Marine Basin. Frontiers in Microbiology, 0, 13, .	1.5	6
805	The role of tropical small-scale fisheries in trace element delivery for a Small Island Developing State community, the Seychelles. Marine Pollution Bulletin, 2022, 181, 113870.	2.3	8
806	Robust, reliable and quantitative sensing of aqueous arsenic species by Surface-enhanced Raman Spectroscopy: The crucial role of surface silver ions for good analytical practice. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 281, 121600.	2.0	4
807	A colorimetric method of As ³⁺ ion detection and quantification using hand-held Lovibond photometers Journal of Physics: Conference Series, 2022, 2315, 012031.	0.3	2
808	Development of arsenic removal unit with electrocoagulation and activated alumina sorption: Field trial at rural West Bengal, India. Journal of Water Process Engineering, 2022, 49, 103013.	2.6	10
809	Progress in Treatment of Arsenic-Containing Wastewater from Nonferrous Smelting. Metallurgical Engineering, 2022, 09, 162-169.	0.0	0
810	Photometric flow injection analysis of As(III) by using a homemade, LED-based flow-cell device and methyl orange reagent. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 283, 121713.	2.0	0
811	In-situ production of iron flocculation and reactive oxygen species by electrochemically decomposing siderite: An innovative Fe-EC route to remove trivalent arsenic. Journal of Hazardous Materials, 2023, 441, 129884.	6.5	7

ARTICLE IF CITATIONS A combined study on Vallisneria spiralis and lanthanum modified bentonite to immobilize arsenic in 821 3.7 4 sediments. Environmental Research, 2023, 216, 114689. Application of δâ€MnO₂ and biochar materials in an arsenicâ€contaminated groundwater. 1.3 Water Environment Research, 2022, 94, . Fabrication of Novel Bentonite-Anthracite@Zetag (BT-An@Zetag) Composite for the Removal of 823 1.7 3 Arsenic (V) from an Aqueous Solution. Molecules, 2022, 27, 7635. Differential susceptibility to arsenic in glutathione S-transferase omega 2 (GST-O2)-targeted 824 1.9 freshwater water flea Dáphnia magna mutants. Aquatic Toxicology, 2023, 254, 106364. Indium arsenide quantum dots: an alternative to lead-based infrared emitting nanomaterials. Chemical 825 18.7 14 Society Reviews, 2022, 51, 9861-9881. Arsenic contamination in water, health effects and phytoremediation., 2023, , 407-429. Engineering of 3D graphene hydrogel-supported MnO2â€"FeOOH nanoparticles with synergistic effect 827 of oxidation and adsorption toward highly efficient removal of arsenic. Environmental Pollution, 3.7 6 2023, 317, 120735. Absorption of three different forms of arsenic in water by three aquatic plants and their 828 0.2 bioremediation potential. Materials Express, 2022, 12, 1116-1125. A Comparison of Technologies for Remediation of Arsenic-Bearing Water: The Significance of 829 0.1 3 Constructed Wetlands. Environmental Science and Engineering, 2023, , 223-245. Arsenic in Gold Mining Wastes: An Environmental and Human Health Threat in Ghana. Environmental 0.1 Science and Engineering, 2023, , 49-83. Principle, design, strategies, and future perspectives of heavy metal ion detection using carbon nanomaterial-based electrochemical sensors: a review. Journal of the Iranian Chemical Society, 2023, 831 1.2 8 20, 775-791. The influence of gold mining wastes on the migration-transformation behavior and health risks of 0.8 arsenic in the surrounding soil of mined-area. Frontiers in Earth Science, 0, 10, . Ice-templated synthesis of tungsten oxide nanosheets and their application in arsenite oxidation. 833 3.9 0 Science of the Total Environment, 2023, 865, 161104. Effects of exogenous salicylic acid on alleviation of arsenic-induced oxidative damages in rice. Journal of Plant Nutrition, 2023, 46, 2811-2826. 834 A novel strategy for arsenic removal from acid wastewater via strong reduction processing. 835 2.7 3 Environmental Science and Pollution Research, 2023, 30, 43886-43900. A Comprehensive Exploration on Occurrence, Distribution and Risk Assessment of Potentially Toxic Elements in the Multi-Media Environment from Zhengzhou, China. Toxics, 2023, 11, 140. Risk of the development of cancers induced by the consumption of mussels accumulating metallic 837 0 trace elements. , 2023, , 39-59. Duckweeds for Phytoremediation of Polluted Water. Plants, 2023, 12, 589. 1.6

щ		IE	CITATIONS
#	ARTICLE Arsenic Adsorption and Toxicity Reduction of An Exopolysaccharide Produced by Bacillus licheniformis B3-15 of Shallow Hydrothermal Vent Origin, Journal of Marine Science and Engineering	IF 1 2	5
009	2023, 11, 325.	1.2	0
840	Növényi tápanyagforgalom, nátrium és az arzén koncentrációjának vizsgálata a Felső-Tiszán. , 20 11-24.	14, 12,	2
841	Arsenic: Chemistry, occurrence, and exposure. , 2023, , 1-49.		2
842	Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions. Chinese Journal of Chemical Engineering, 2023, 60, 26-36.	1.7	3
843	Geochemical characteristics and ecotoxicological risk of arsenic in water-level-fluctuation zone soils of the Three Gorges Reservoir, China. Science of the Total Environment, 2023, 881, 163495.	3.9	4
844	Electrochemical remediation of arsenic and fluoride from water: A review of the current state and future prospects. Environmental Technology and Innovation, 2023, 31, 103148.	3.0	5
845	Oxidative stress response of scallop Aequipecten tehuelchus from Patagonia Argentina exposed to inorganic arsenic. Regional Studies in Marine Science, 2023, 62, 102944.	0.4	0
846	Warning system for potential releases of chemical warfare agents from dumped munition in the Baltic Sea. Marine Pollution Bulletin, 2023, 191, 114930.	2.3	0
847	Spatial and seasonal variation of arsenic speciation in Pantanal soda lakes. Chemosphere, 2023, 329, 138672.	4.2	1
848	Degradation of Organic Methyl Orange (MO) Dye Using a Photocatalyzed Non-Ferrous Fenton Reaction. Nanomaterials, 2023, 13, 639.	1.9	6
849	Arsenic Contamination in Groundwater: Geochemical Basis of Treatment Technologies. ACS Environmental Au, 2023, 3, 135-152.	3.3	8
850	Performance of Dicarboxylates for the Separation of Arsenic Species by Anion Exchange Chromatography. Chromatographia, 2023, 86, 201-211.	0.7	0
851	Multifunctional Cross-Linked Shrimp Waste-Derived Chitosan/MgAl-LDH Composite for Removal of As(V) from Wastewater and Antibacterial Activity. ACS Omega, 2023, 8, 10051-10061.	1.6	10
852	A review on arsenic in the environment: contamination, mobility, sources, and exposure. RSC Advances, 2023, 13, 8803-8821.	1.7	21
853	Comparison between Different Technologies (Zerovalent Iron, Coagulation-Flocculation, Adsorption) for Arsenic Treatment at High Concentrations. Water (Switzerland), 2023, 15, 1481.	1.2	12
854	Reprocessed construction and demolition waste as an adsorbent: An appraisal. Science of the Total Environment, 2023, 882, 163340.	3.9	8
866	Speciation and element-specific detection. , 2023, , 1017-1034.		0
876	Surface-modified ultrafiltration and nanofiltration membranes for the selective removal of heavy metals and inorganic groundwater contaminants: a review. Environmental Science: Water Research and Technology, 2023, 9, 2803-2829.	1.2	1

		CITATION REPORT	
#	Article	IF	Citations
899	Detection of toxic metals using nanostructured biosensing platforms. , 2024, , 463-503.		0
902	Arsenic and iron removal by zero-valent iron and electrocoagulation. , 2024, , 69-90.		Ο
913	Analytical Tools for Arsenic Speciation in Soil, Water, and Plant: An Overview. Emerging Contaminants and Associated Treatment Technologies, 2024, , 3-25.	0.4	0