KLF Family Members Regulate Intrinsic Axon Regenera

Science 326, 298-301 DOI: 10.1126/science.1175737

Citation Report

#	Article	IF	CITATIONS
1	NFIL3 and cAMP Response Element-Binding Protein Form a Transcriptional Feedforward Loop that Controls Neuronal Regeneration-Associated Gene Expression. Journal of Neuroscience, 2009, 29, 15542-15550.	1.7	68
2	Nuclear Power for Axonal Growth. Science, 2009, 326, 238-239.	6.0	5
3	Taking Off the SOCS: Cytokine Signaling Spurs Regeneration. Neuron, 2009, 64, 591-592.	3.8	8
4	Optic Nerve Regeneration. JAMA Ophthalmology, 2010, 128, 1059.	2.6	61
5	Signaling to Transcription Networks in the Neuronal Retrograde Injury Response. Science Signaling, 2010, 3, ra53.	1.6	159
6	Krüppel-like factors: Three fingers in control. Human Genomics, 2010, 4, 263.	1.4	77
7	Neuronal intrinsic barriers for axon regeneration in the adult CNS. Current Opinion in Neurobiology, 2010, 20, 510-518.	2.0	179
8	Axon Regeneration: Electrical Silencing Is a Condition for Regrowth. Current Biology, 2010, 20, R713-R714.	1.8	5
9	<i>Caenorhabditis elegans</i> : A new model organism for studies of axon regeneration. Developmental Dynamics, 2010, 239, 1460-1464.	0.8	46
10	Biological activities of cytokine-neutralizing hyaluronic acid-antibody conjugates. Wound Repair and Regeneration, 2010, 18, 302-310.	1.5	16
11	Kinase/phosphatase overexpression reveals pathways regulating hippocampal neuron morphology. Molecular Systems Biology, 2010, 6, 391.	3.2	77
12	A Small Ubiquitin-related Modifier-interacting Motif Functions as the Transcriptional Activation Domain of KrÃ1⁄4ppel-like Factor 4. Journal of Biological Chemistry, 2010, 285, 28298-28308.	1.6	33
13	Deciphering proteins and their functions in the regenerating retina. Expert Review of Proteomics, 2010, 7, 775-795.	1.3	5
14	Mammalian Krüppel-Like Factors in Health and Diseases. Physiological Reviews, 2010, 90, 1337-1381.	13.1	824
15	A New Role for RPTPÏ f in Spinal Cord Injury: Signaling Chondroitin Sulfate Proteoglycan Inhibition. Science Signaling, 2010, 3, pe6.	1.6	31
17	Cytokine Binding by Polysaccharideâ^'Antibody Conjugates. Molecular Pharmaceutics, 2010, 7, 1769-1777.	2.3	11
18	Tuba1a gene expression is regulated by KLF6/7 and is necessary for CNS development and regeneration in zebrafish. Molecular and Cellular Neurosciences, 2010, 43, 370-383.	1.0	58
19	High content screening of cortical neurons identifies novel regulators of axon growth. Molecular and Cellular Neurosciences, 2010, 44, 43-54.	1.0	110

#	Article	IF	CITATIONS
20	Assessing Spinal Axon Regeneration and Sprouting in Nogo-, MAG-, and OMgp-Deficient Mice. Neuron, 2010, 66, 663-670.	3.8	281
21	Axon regeneration requires coordinate activation of p38 and JNK MAPK pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10738-10743.	3.3	181
22	Extrinsic and intrinsic determinants of nerve regeneration. Journal of Tissue Engineering, 2011, 2, 204173141141839.	2.3	55
23	Neuronal Intrinsic Mechanisms of Axon Regeneration. Annual Review of Neuroscience, 2011, 34, 131-152.	5.0	404
24	A Gene Network Perspective on Axonal Regeneration. Frontiers in Molecular Neuroscience, 2011, 4, 46.	1.4	56
25	Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature, 2011, 480, 372-375.	13.7	637
26	What has gene expression profiling taught us about glaucoma?. Experimental Eye Research, 2011, 93, 191-195.	1.2	9
27	Investigating regeneration and functional integration of CNS neurons: Lessons from zebrafish genetics and other fish species. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 364-380.	1.8	91
28	Transcriptional profiling of intrinsic PNS factors in the postnatal mouse. Molecular and Cellular Neurosciences, 2011, 46, 32-44.	1.0	53
29	Genome-wide gene expression and promoter binding analysis identifies NFIL3 as a repressor of C/EBP target genes in neuronal outgrowth. Molecular and Cellular Neurosciences, 2011, 46, 460-468.	1.0	44
30	Negative impact of rAAV2 mediated expression of SOCS3 on the regeneration of adult retinal ganglion cell axons. Molecular and Cellular Neurosciences, 2011, 46, 507-515.	1.0	51
31	Foxn4 is required for retinal ganglion cell distal axon patterning. Molecular and Cellular Neurosciences, 2011, 46, 731-741.	1.0	6
32	Krüppel-like transcription factors in the nervous system: Novel players in neurite outgrowth and axon regeneration. Molecular and Cellular Neurosciences, 2011, 47, 233-243.	1.0	93
33	Axon Regeneration Pathways Identified by Systematic Genetic Screening in C.Âelegans. Neuron, 2011, 71, 1043-1057.	3.8	182
34	Transcriptional Regulation of Neuronal Polarity and Morphogenesis in the Mammalian Brain. Neuron, 2011, 72, 22-40.	3.8	104
35	Mouse Conjunctival Forniceal Gene Expression during Postnatal Development and Its Regulation by Krüppel-like Factor 4. , 2011, 52, 4951.		25
37	The nuclear events guiding successful nerve regeneration. Frontiers in Molecular Neuroscience, 2011, 4, 53.	1.4	38
38	Optimization of a 96-Well Electroporation Assay for Postnatal Rat CNS Neurons Suitable for Cost–Effective Medium-Throughput Screening of Genes that Promote Neurite Outgrowth. Frontiers in Molecular Neuroscience, 2011, 4, 55.	1.4	12

#	Article	IF	CITATIONS
39	Nogo-Receptors NgR1 and NgR2 Do Not Mediate Regulation of CD4 T Helper Responses and CNS Repair in Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2011, 6, e26341.	1.1	15
40	Inflammation and axon regeneration. Current Opinion in Neurology, 2011, 24, 577-583.	1.8	207
41	Bone Marrow Mononuclear Cells Increase Retinal Ganglion Cell Survival and Axon Regeneration in the Adult Rat. Cell Transplantation, 2011, 20, 391-406.	1.2	52
42	Challenges in Small Screening Laboratories: Implementing an On-Demand Laboratory Information Management System. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 742-748.	0.6	5
43	Nanog inhibits lipopolysaccharide-induced expression of pro-inflammatory cytokines by blocking NF-κB transcriptional activity in rat primary microglial cells. Molecular Medicine Reports, 2011, 5, 842-6.	1.1	12
44	Dysbindin-1, a schizophrenia-related protein, facilitates neurite outgrowth by promoting the transcriptional activity of p53. Molecular Psychiatry, 2011, 16, 1105-1116.	4.1	49
45	Axon regeneration mechanisms: insights from C. elegans. Trends in Cell Biology, 2011, 21, 577-584.	3.6	33
46	A role for DNA methylation in regulation of EphA5 receptor expression in the mouse retina. Vision Research, 2011, 51, 260-268.	0.7	25
47	Krüppel-like factor 7 is required for olfactory bulb dopaminergic neuron development. Experimental Cell Research, 2011, 317, 464-473.	1.2	24
48	Genetic dissection of axon regeneration. Current Opinion in Neurobiology, 2011, 21, 189-196.	2.0	43
49	Regeneration and Development in Animals. Biological Theory, 2011, 6, 25-35.	0.8	24
51	Peripheral nerve graft with immunosuppression modifies gene expression in axotomized CNS neurons. Journal of Comparative Neurology, 2011, 519, 3433-3455.	0.9	2
52	Multiple transcription factor families regulate axon growth and regeneration. Developmental Neurobiology, 2011, 71, 1186-1211.	1.5	160
53	Axonal regeneration proceeds through specific axonal fusion in transected <i>C. elegans</i> neurons. Developmental Dynamics, 2011, 240, 1365-1372.	0.8	94
54	Robust CNS regeneration after complete spinal cord transection using aligned poly-l-lactic acid microfibers. Biomaterials, 2011, 32, 6068-6079.	5.7	219
55	The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain, 2011, 134, 2134-2148.	3.7	138
56	<i>C. elegans</i> as a genetic model to identify novel cellular and molecular mechanisms underlying nervous system regeneration. Cell Adhesion and Migration, 2011, 5, 387-394.	1.1	19
57	Engineering neuronal growth cones to promote axon regeneration over inhibitory molecules. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5057-5062.	3.3	127

#	Article	IF	CITATIONS
58	Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E99-107.	3.3	133
59	Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19042-19047.	3.3	92
60	In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6282-6287.	3.3	183
61	Taxol Facilitates Axon Regeneration in the Mature CNS. Journal of Neuroscience, 2011, 31, 2688-2699.	1.7	228
62	The Lipid Sulfatide Is a Novel Myelin-Associated Inhibitor of CNS Axon Outgrowth. Journal of Neuroscience, 2011, 31, 6481-6492.	1.7	82
63	Differential Regulation of Dendritic and Axonal Development by the Novel Kruppel-Like Factor Dar1. Journal of Neuroscience, 2011, 31, 3309-3319.	1.7	51
64	Stem cell therapy for glaucoma: possibilities and practicalities. Expert Review of Ophthalmology, 2011, 6, 165-174.	0.3	26
65	Dysregulation of Kruppel-like factor 4 during brain development leads to hydrocephalus in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21117-21121.	3.3	63
66	Chromosome 1p21.3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability. Journal of Medical Genetics, 2011, 48, 810-818.	1.5	146
67	Mutations in Zebrafish lrp2 Result in Adult-Onset Ocular Pathogenesis That Models Myopia and Other Risk Factors for Glaucoma. PLoS Genetics, 2011, 7, e1001310.	1.5	100
68	Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO Journal, 2012, 31, 1350-1363.	3.5	241
69	Thyroid hormone triggers the developmental loss of axonal regenerative capacity via thyroid hormone receptor α1 and krüppel-like factor 9 in Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14206-14211.	3.3	56
70	Regeneration of <i>Drosophila</i> sensory neuron axons and dendrites is regulated by the Akt pathway involving <i>Pten</i> and microRNA <i>bantam</i> . Genes and Development, 2012, 26, 1612-1625.	2.7	154
71	Optic nerve regeneration. Expert Review of Ophthalmology, 2012, 7, 533-554.	0.3	3
73	Mitochondrial Dynamics Regulate Growth Cone Motility, Guidance, and Neurite Growth Rate in Perinatal Retinal Ganglion Cells In Vitro. , 2012, 53, 7402.		51
74	Heterogeneous Nuclear Ribonucleoprotein K, an RNA-Binding Protein, Is Required for Optic Axon Regeneration in <i>Xenopus laevis</i> . Journal of Neuroscience, 2012, 32, 3563-3574.	1.7	40
75	Krüppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7517-7522.	3.3	259
76	Krüppel-like Factor 11 Differentially Couples to Histone Acetyltransferase and Histone Methyltransferase Chromatin Remodeling Pathways to Transcriptionally Regulate Dopamine D2 Receptor in Neuronal Cells. Journal of Biological Chemistry, 2012, 287, 12723-12735.	1.6	36

	CITATION	Report	
#	Article	IF	CITATIONS
77	Epigenetic regulation of axon and dendrite growth. Frontiers in Molecular Neuroscience, 2012, 5, 24.	1.4	36
78	Regeneration of Neural Tissues. , 2012, , 67-97.		3
79	Scar-mediated inhibition and CSPG receptors in the CNS. Experimental Neurology, 2012, 237, 370-378.	2.0	150
80	Role of Krüppel-Like Factor 4 in Neurogenesis and Radial Neuronal Migration in the Developing Cerebral Cortex. Molecular and Cellular Biology, 2012, 32, 4297-4305.	1.1	57
81	No simpler than mammals: axon and dendrite regeneration in Drosophila. Genes and Development, 2012, 26, 1509-1514.	2.7	15
82	Cell Therapy Modulates Expression of Tax1-Binding Protein 1 and Synaptotagmin IV in a Model of Optic Nerve Lesion. , 2012, 53, 4720.		7
83	Glaucoma 2.0: Neuroprotection, Neuroregeneration, Neuroenhancement. Ophthalmology, 2012, 119, 979-986.	2.5	256
84	Growing the growth cone: remodeling the cytoskeleton to promote axon regeneration. Trends in Neurosciences, 2012, 35, 164-174.	4.2	99
85	A chemical genetic approach identifies piperazine antipsychotics as promoters of CNS neurite growth on inhibitory substrates. Molecular and Cellular Neurosciences, 2012, 50, 125-135.	1.0	27
86	Increasing neuronal †stemness': Chromatin relaxation and the expression of reprogramming genes in post-mitotic neurons. Medical Hypotheses, 2012, 78, 553-554.	0.8	6
87	Addendum: Gamma-tocopherol, cox-2, and cancer risk. Medical Hypotheses, 2012, 78, 554.	0.8	0
88	Hyperhomocysteinemia is an indicator of oxidant stress. Medical Hypotheses, 2012, 78, 554-555.	0.8	9
89	Microglial TIR-domain-containing adapter-inducing interferon-β (TRIF) deficiency promotes retinal ganglion cell survival and axon regeneration via nuclear factor-κB. Journal of Neuroinflammation, 2012, 9, 39.	3.1	41
90	Gatekeeper Between Quiescence and Differentiation. International Review of Neurobiology, 2012, 105, 71-89.	0.9	25
91	Combinatorial Therapy Stimulates Long-Distance Regeneration, Target Reinnervation, and Partial Recovery of Vision After Optic Nerve Injury in Mice. International Review of Neurobiology, 2012, 106, 153-172.	0.9	40
92	The Role of Serotonin in Axon and Dendrite Growth. International Review of Neurobiology, 2012, 106, 105-126.	0.9	42
93	Molecular Control of Axon Growth. International Review of Neurobiology, 2012, 105, 39-70.	0.9	36
94	Cyclin-Dependent Kinase 5 in Axon Growth and Regeneration. International Review of Neurobiology, 2012, 105, 91-115.	0.9	13

#	Article	IF	CITATIONS
95	Neuron-Intrinsic Inhibitors of Axon Regeneration. International Review of Neurobiology, 2012, 105, 141-173.	0.9	29
96	Promoting optic nerve regeneration. Progress in Retinal and Eye Research, 2012, 31, 688-701.	7.3	122
97	Enhancing intrinsic growth capacity promotes adult CNS regeneration. Journal of the Neurological Sciences, 2012, 312, 1-6.	0.3	54
98	Frontiers Of Spinal Cord And Spine Repair: Experimental Approaches for Repair of Spinal Cord Injury. Advances in Experimental Medicine and Biology, 2012, 760, 1-15.	0.8	18
99	Molecular target discovery for neural repair in the functional genomics era. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 595-616.	1.0	9
100	Peripheral Nervous System Genes Expressed in Central Neurons Induce Growth on Inhibitory Substrates. PLoS ONE, 2012, 7, e38101.	1.1	22
101	Tuning the Orchestra: Transcriptional Pathways Controlling Axon Regeneration. Frontiers in Molecular Neuroscience, 2011, 4, 60.	1.4	68
102	Coordinating Gene Expression and Axon Assembly to Control Axon Growth: Potential Role of GSK3 Signaling. Frontiers in Molecular Neuroscience, 2012, 5, 3.	1.4	32
103	Axon growth and guidance. , 2012, , 105-142.		4
104	Lentiviral vectors encoding short hairpin RNAs efficiently transduce and knockdown LINGOâ€1 but induce an interferon response and cytotoxicity in central nervous system neurones. Journal of Gene Medicine, 2012, 14, 299-315.	1.4	17
105	p53-dependent pathways in neurite outgrowth and axonal regeneration. Cell and Tissue Research, 2012, 349, 87-95.	1.5	33
106	Neurotrophic factors in combinatorial approaches for spinal cord regeneration. Cell and Tissue Research, 2012, 349, 27-37.	1.5	82
107	Traumatology of the optic nerve and contribution of crystallins to axonal regeneration. Cell and Tissue Research, 2012, 349, 49-69.	1.5	20
108	Corticospinal tract transduction: a comparison of seven adeno-associated viral vector serotypes and a non-integrating lentiviral vector. Gene Therapy, 2012, 19, 49-60.	2.3	63
109	Gene therapy approaches to enhancing plasticity and regeneration after spinal cord injury. Experimental Neurology, 2012, 235, 62-69.	2.0	41
110	Transcriptional insights on the regenerative mechanics of axotomized neurons <i>in vitro</i> . Journal of Cellular and Molecular Medicine, 2012, 16, 789-811.	1.6	8
111	Isoform diversity and its importance for axon regeneration. Neuropathology, 2012, 32, 420-431.	0.7	4
112	The assessment of adenoâ€associated vectors as potential intrinsic treatments for brainstem axon regeneration. Journal of Gene Medicine, 2012, 14, 20-34.	1.4	10

#	Article	IF	CITATIONS
113	Crystallins in Retinal Ganglion Cell Survival and Regeneration. Molecular Neurobiology, 2013, 48, 819-828.	1.9	42
114	Neuronal Cell Culture. Methods in Molecular Biology, 2013, , .	0.4	12
115	Hierarchically Clustering to 1,033 Genes Differentially Expressed in Mouse Superior Colliculus in the Courses of Optic Nerve Development and Injury. Cell Biochemistry and Biophysics, 2013, 67, 753-761.	0.9	5
116	Induction of KLF4 Contributes to the Neurotoxicity of MPP + in M17 Cells: A New Implication in Parkinson's Disease. Journal of Molecular Neuroscience, 2013, 51, 109-117.	1.1	22
117	Signaling pathways that regulate axon regeneration. Neuroscience Bulletin, 2013, 29, 411-420.	1.5	21
118	Expression of proline-rich coiled-coil 2B protein in developing rat brains. Neuroscience Letters, 2013, 557, 171-176.	1.0	5
119	A Dominant Mutation in FBXO38 Causes Distal Spinal Muscular Atrophy with Calf Predominance. American Journal of Human Genetics, 2013, 93, 976-983.	2.6	42
120	Regulation of mouse lens maturation and gene expression by Krüppel-like factor 4. Experimental Eye Research, 2013, 116, 205-218.	1.2	13
121	Injury-Induced HDAC5 Nuclear Export Is Essential for Axon Regeneration. Cell, 2013, 155, 894-908.	13.5	270
122	Gene therapy approaches to enhance regeneration of the injured peripheral nerve. European Journal of Pharmacology, 2013, 719, 145-152.	1.7	14
123	Three-dimensional evaluation of retinal ganglion cell axon regeneration and pathfinding in whole mouse tissue after injury. Experimental Neurology, 2013, 247, 653-662.	2.0	136
124	The brake within: Mechanisms of intrinsic regulation of axon growth featuring the Cdh1-APC pathway. Translational Neuroscience, 2013, 4, .	0.7	0
125	Short Hairpin RNA against PTEN Enhances Regenerative Growth of Corticospinal Tract Axons after Spinal Cord Injury. Journal of Neuroscience, 2013, 33, 15350-15361.	1.7	245
126	Tissue engineering the retinal ganglion cell nerve fiber layer. Biomaterials, 2013, 34, 4242-4250.	5.7	69
127	Cyclic AMP promotes axon regeneration, lesion repair and neuronal survival in lampreys after spinal cord injury. Experimental Neurology, 2013, 250, 31-42.	2.0	48
128	Do growth-stimulated retinal ganglion cell axons find their central targets after optic nerve injury? New insights by three-dimensional imaging of the visual pathway. Experimental Neurology, 2013, 248, 254-257.	2.0	10
129	Lack of the transcription factor C/EBPδ impairs the intrinsic capacity of peripheral neurons for regeneration. Experimental Neurology, 2013, 239, 148-157.	2.0	15
130	Dorsal Root Injury for the Study of Spinal Cord Injury Repair. Neuromethods, 2013, , 109-129.	0.2	1

ARTICLE IF CITATIONS # Waking up the sleepers: shared transcriptional pathways in axonal regeneration and neurogenesis. 131 2.4 18 Cellular and Molecular Life Sciences, 2013, 70, 993-1007. Klf9 is necessary and sufficient for Purkinje cell survival in organotypic culture. Molecular and 1.0 Cellular Neurosciences, 2013, 54, 9-21. Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow?. 133 1.7 91 Biochemical Journal, 2013, 451, 353-364. Axon Growth and Branching., 2013, , 51-68. 134 JUN regulates early transcriptional responses to axonal injury in retinal ganglion cells. Experimental 135 1.2 76 Eye Research, 2013, 112, 106-117. Exploiting mTOR Signaling: A Novel Translatable Treatment Strategy for Traumatic Optic Neuropathy?. , 2013, 54, 6903. 59 Chondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury. 137 5.8 91 Nature Communications, 2013, 4, 2740. Cross-talk between KLF4 and STAT3 regulates axon regeneration. Nature Communications, 2013, 4, 2633. 138 5.8 104 MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon 139 2.7 139 regeneration. Genes and Development, 2013, 27, 1473-1483. Sumoylation of Krüppel-like Factor 4 Inhibits Pluripotency Induction but Promotes Adipocyte 140 1.6 Differentiation. Journal of Biological Chemistry, 2013, 288, 12791-12804. Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the 141 112 2.7 transparent optic nerve. Cell Death and Disease, 2013, 4, e734-e734. Intraspinal AAV Injections Immediately Rostral to a Thoracic Spinal Cord Injury Site Efficiently 2.3 Transduces Neurons in Spinal Cord and Brain. Molecular Therapy - Nucleic Acids, 2013, 2, e108. Nanog attenuates lipopolysaccharide-induced inflammatory responses by blocking nuclear factor-^î[®]B 143 0.6 4 transcriptional activity in BV-2 cells. NeuroReport, 2013, 24, 718-723. Early Phase of Plasticity-Related Gene Regulation and SRF Dependent Transcription in the Hippocampus. PLoS ONE, 2013, 8, e68078. 145 1.1 Requirement of Retinoic Acid Receptor Î² for Genipin Derivative-Induced Optic Nerve Regeneration in 146 19 1.1 Adult Rat Retina. PLoS ONE, 2013, 8, e71252. Role for Krüppel-Like Transcription Factor 11 in Mesenchymal Cell Function and Fibrosis. PLoS ONE, 1.1 24 2013, 8, e75311. Krüppel-Like Factor 6 Rendered Rat Schwann Cell More Sensitive to Apoptosis via Upregulating FAS 148 1.1 16 Expression. PLoS ONE, 2013, 8, e82449. Intraneuronal determinants of axon regeneration., 0, , 413-434.

#	Article	IF	CITATIONS
152	Spinal Cord Injury and the Neuron-Intrinsic Regeneration-Associated Gene Program. NeuroMolecular Medicine, 2014, 16, 799-813.	1.8	39
153	Regenerative Biology of the Eye. Pancreatic Islet Biology, 2014, , .	0.1	4
154	The Microtubule Minus-End-Binding Protein Patronin/PTRN-1 Is Required for Axon Regeneration in C.Âelegans. Cell Reports, 2014, 9, 874-883.	2.9	64
155	Subcellular transcriptomics—Dissection of the mRNA composition in the axonal compartment of sensory neurons. Developmental Neurobiology, 2014, 74, 365-381.	1.5	104
156	Regulation of Intrinsic Axon Growth Ability at Retinal Ganglion Cell Growth Cones. , 2014, 55, 4369.		44
157	Hypothalamic KLF4 mediates leptin's effects on food intake via AgRP. Molecular Metabolism, 2014, 3, 441-451.	3.0	21
158	Induction of Krüppel-like factor 4 expression in reactive astrocytes following ischemic injury in vitro and in vivo. Histochemistry and Cell Biology, 2014, 141, 33-42.	0.8	17
159	Jak/Stat Signaling Stimulates Zebrafish Optic Nerve Regeneration and Overcomes the Inhibitory Actions of Socs3 and Sfpq. Journal of Neuroscience, 2014, 34, 2632-2644.	1.7	106
160	microRNA-124 is down regulated in nerve-injured motor neurons and it potentially targets mRNAs for KLF6 and STAT3. Neuroscience, 2014, 256, 426-432.	1.1	32
161	The <i>miR-7</i> Identified from Collagen Biomaterial-Based Three-Dimensional Cultured Cells Regulates Neural Stem Cell Differentiation. Stem Cells and Development, 2014, 23, 393-405.	1.1	35
162	cJun promotes CNS axon growth. Molecular and Cellular Neurosciences, 2014, 59, 97-105.	1.0	44
163	Axon Regeneration Genes Identified by RNAi Screening in <i>C. elegans</i> . Journal of Neuroscience, 2014, 34, 629-645.	1.7	87
164	Pleiotropic Functions of Pituitary Adenylyl Cyclase-Activating Polypeptide on Retinal Ontogenesis: Involvement of KLF4 in the Control of Progenitor Cell Proliferation. Journal of Molecular Neuroscience, 2014, 54, 430-442.	1.1	15
165	Signaling regulations of neuronal regenerative ability. Current Opinion in Neurobiology, 2014, 27, 135-142.	2.0	102
166	Lentiviral Vector-Mediated RNA Silencing in the Central Nervous System. Human Gene Therapy Methods, 2014, 25, 14-32.	2.1	25
167	Restoring function after spinal cord injury: towards clinical translation of experimental strategies. Lancet Neurology, The, 2014, 13, 1241-1256.	4.9	236
168	The role of soluble adenylyl cyclase in neurite outgrowth. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2561-2568.	1.8	22
169	Axon plasticity in the mammalian central nervous system after injury. Trends in Neurosciences, 2014, 37, 583-593.	4.2	43

#	Article	IF	CITATIONS
170	Mechanisms of axon regeneration and its inhibition: Roles of sulfated glycans. Archives of Biochemistry and Biophysics, 2014, 558, 36-41.	1.4	25
171	Axon Growth and Regeneration. Methods in Molecular Biology, 2014, , .	0.4	5
172	Regulating Set-β's Subcellular Localization Toggles Its Function between Inhibiting and Promoting Axon Growth and Regeneration. Journal of Neuroscience, 2014, 34, 7361-7374.	1.7	36
173	ERK5/KLF4 signaling as a common mediator of the neuroprotective effects of both nerve growth factor and hydrogen peroxide preconditioning. Age, 2014, 36, 9685.	3.0	37
174	Alterations of the synapse of the inner retinal layers after chronic intraocular pressure elevation in glaucoma animal model. Molecular Brain, 2014, 7, 53.	1.3	51
175	Role of crystallins in ocular neuroprotection and axonal regeneration. Progress in Retinal and Eye Research, 2014, 42, 145-161.	7.3	59
176	Reprogramming of the chick retinal pigmented epithelium after retinal injury. BMC Biology, 2014, 12, 28.	1.7	56
177	Krüppel Mediates the Selective Rebalancing of Ion Channel Expression. Neuron, 2014, 82, 537-544.	3.8	42
178	Mutual inhibition between YAP and SRSF1 maintains long non-coding RNA, Malat1-induced tumourigenesis in liver cancer. Cellular Signalling, 2014, 26, 1048-1059.	1.7	99
179	The effect of systemic PTEN antagonist peptides on axon growth and functional recovery after spinal cord injury. Biomaterials, 2014, 35, 4610-4626.	5.7	77
180	Krüppel-like factors are effectors of nuclear receptor signaling. General and Comparative Endocrinology, 2014, 203, 49-59.	0.8	44
181	Lost in the jungle: new hurdles for optic nerve axon regeneration. Trends in Neurosciences, 2014, 37, 381-387.	4.2	84
182	Understanding the neural repair-promoting properties of olfactory ensheathing cells. Experimental Neurology, 2014, 261, 594-609.	2.0	83
183	Neuritogenic Activity of Trichostatin A in Adult Rat Retinal Ganglion Cells Through Acetylation of Histone H3 Lysine 9 and RARÎ ² Induction. Journal of Pharmacological Sciences, 2014, 124, 112-116.	1.1	8
184	Chapter 4: Recent Advances on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Regeneration and Repair. Frontiers in Nanobiomedical Research, 2014, , 125-162.	0.1	0
185	Sirtuin 1 regulates lipid metabolism associated with optic nerve regeneration. Molecular Medicine Reports, 2015, 12, 6962-6968.	1.1	29
186	Transdifferentiation of periodontal ligament-derived stem cells into retinal ganglion-like cells and its microRNA signature. Scientific Reports, 2015, 5, 16429.	1.6	47
188	What makes a RAG regeneration associated?. Frontiers in Molecular Neuroscience, 2015, 8, 43.	1.4	78

#	ARTICLE	IF	CITATIONS
189	MASH1/Ascl1a Leads to GAP43 Expression and Axon Regeneration in the Adult CNS. PLoS ONE, 2015, 10, e0118918.	1.1	29
190	Genetic Deletion of the Transcriptional Repressor NFIL3 Enhances Axon Growth In Vitro but Not Axonal Repair In Vivo. PLoS ONE, 2015, 10, e0127163.	1.1	2
191	Kruppel-Like Factor 4 Regulates Granule Cell Pax6 Expression and Cell Proliferation in Early Cerebellar Development. PLoS ONE, 2015, 10, e0134390.	1.1	9
192	Biomaterial Approaches to Enhancing Neurorestoration after Spinal Cord Injury: Strategies for Overcoming Inherent Biological Obstacles. BioMed Research International, 2015, 2015, 1-20.	0.9	32
193	Viral vector-based improvement of optic nerve regeneration: characterization of individual axons' growth patterns and synaptogenesis in a visual target. Gene Therapy, 2015, 22, 811-821.	2.3	59
194	Deciphering the Regulatory Logic of an Ancient, Ultraconserved Nuclear Receptor Enhancer Module. Molecular Endocrinology, 2015, 29, 856-872.	3.7	53
195	CCL2 Mediates Neuron–Macrophage Interactions to Drive Proregenerative Macrophage Activation Following Preconditioning Injury. Journal of Neuroscience, 2015, 35, 15934-15947.	1.7	138
196	High-Content Screening Applied to Nervous System Injury. , 2015, , 411-419.		0
197	Optic Nerve Regeneration in Lower Vertebrates and Mammals. , 2015, , 209-227.		0
198	The Intrinsic Determinants of Axon Regeneration in the Central Nervous System. , 2015, , 197-207.		0
199	Astrogliosis and Axonal Regeneration. , 2015, , 181-196.		5
200	Functional Regeneration and Remyelination in the Zebrafish Optic Nerve. , 2015, , 21-41.		1
201	Plasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury. Journal of Neuroscience, 2015, 35, 1443-1457.	1.7	61
203	Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury. Journal of Neuroscience, 2015, 35, 10429-10439.	1.7	34
204	Biomaterial bridges enable regeneration and re-entry of corticospinal tract axons into the caudal spinal cord after SCI: Association with recovery of forelimb function. Biomaterials, 2015, 65, 1-12.	5.7	61
205	The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury. Brain, 2015, 138, 1843-1862.	3.7	49
206	Rational Polypharmacology: Systematically Identifying and Engaging Multiple Drug Targets To Promote Axon Growth. ACS Chemical Biology, 2015, 10, 1939-1951.	1.6	58
207	Injury-Induced Decline of Intrinsic Regenerative Ability Revealed by Quantitative Proteomics. Neuron, 2015, 86, 1000-1014.	3.8	220

#	Article	IF	CITATIONS
208	Regulation of axon regeneration by the RNA repair and splicing pathway. Nature Neuroscience, 2015, 18, 817-825.	7.1	50
209	Activating Injury-Responsive Genes with Hypoxia Enhances Axon Regeneration through Neuronal HIF-11±. Neuron, 2015, 88, 720-734.	3.8	117
210	Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar. Journal of Neuroscience, 2015, 35, 11068-11080.	1.7	54
211	KLF17 empowers TGF-β/Smad signaling by targeting Smad3-dependent pathway to suppress tumor growth and metastasis during cancer progression. Cell Death and Disease, 2015, 6, e1681-e1681.	2.7	49
212	Transcriptomic Approaches to Neural Repair. Journal of Neuroscience, 2015, 35, 13860-13867.	1.7	28
213	Phenotypic Assays to Identify Agents That Induce Reactive Gliosis: A Counter-Screen to Prioritize Compounds for Preclinical Animal Studies. Assay and Drug Development Technologies, 2015, 13, 377-388.	0.6	9
214	Decreased thyroid hormone signaling accelerates the reinnervation of the optic tectum following optic nerve crush in adult zebrafish. Molecular and Cellular Neurosciences, 2015, 68, 92-102.	1.0	24
215	The tumor suppressor HHEX inhibits axon growth when prematurely expressed in developing central nervous system neurons. Molecular and Cellular Neurosciences, 2015, 68, 272-283.	1.0	23
216	Injured adult retinal axons with Pten and Socs3 co-deletion reform active synapses with suprachiasmatic neurons. Neurobiology of Disease, 2015, 73, 366-376.	2.1	46
218	Krüpple-like factors in the central nervous system: novel mediators in Stroke. Metabolic Brain Disease, 2015, 30, 401-410.	1.4	21
219	Characterization of brain cell nuclei with decondensed chromatin. Developmental Neurobiology, 2015, 75, 738-756.	1.5	20
220	Role of CSPG receptor LAR phosphatase in restricting axon regeneration after CNS injury. Neurobiology of Disease, 2015, 73, 36-48.	2.1	54
221	Cell type-specific Nogo-A gene ablation promotes axonal regeneration in the injured adult optic nerve. Cell Death and Differentiation, 2015, 22, 323-335.	5.0	35
222	siRNA-Mediated Knockdown of the mTOR Inhibitor RTP801 Promotes Retinal Ganglion Cell Survival and Axon Elongation by Direct and Indirect Mechanisms. , 2016, 57, 429.		35
223	Short-term Alteration of Developmental Neural Activity Enhances Neurite Outgrowth of Retinal Explants. , 2016, 57, 6496.		6
224	Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury. Neural Plasticity, 2016, 2016, 1-11.	1.0	25
225	Intrinsic Axonal Growth and the Drive for Regeneration. Frontiers in Neuroscience, 2016, 10, 486.	1.4	24
226	The Transcriptional Activator Krüppel-like Factor-6 Is Required for CNS Myelination. PLoS Biology, 2016, 14, e1002467.	2.6	31

#	Article	IF	CITATIONS
227	Novel Roles and Mechanism for Krüppel-like Factor 16 (KLF16) Regulation of Neurite Outgrowth and Ephrin Receptor A5 (EphA5) Expression in Retinal Ganglion Cells. Journal of Biological Chemistry, 2016, 291, 18084-18095.	1.6	22
228	Sphingosine 1â€phosphate receptor 1 is required for retinal ganglion cell survival after optic nerve trauma. Journal of Neurochemistry, 2016, 138, 571-586.	2.1	19
229	Neural activity promotes long-distance, target-specific regeneration of adult retinal axons. Nature Neuroscience, 2016, 19, 1073-1084.	7.1	246
230	RegenBase: a knowledge base of spinal cord injury biology for translational research. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw040.	1.4	14
231	Krüpple-like factors 7 and 6a mRNA expression in adult zebrafish central nervous system. Gene Expression Patterns, 2016, 21, 41-53.	0.3	0
232	Contrasting developmental axon regrowth and neurite sprouting of <i>Drosophila</i> mushroom body neurons reveals shared and unique molecular mechanisms. Developmental Neurobiology, 2016, 76, 262-276.	1.5	5
233	Chapter 22 Molecular and Cellular Neuromodulation for Central Nervous System Injury and Regeneration. , 2016, , 415-454.		0
234	Epigenetic profiling reveals a developmental decrease in promoter accessibility during cortical maturation in vivo. Neuroepigenetics, 2016, 8, 19-26.	2.8	28
235	tPA promotes cortical neuron survival via mTOR-dependent mechanisms. Molecular and Cellular Neurosciences, 2016, 74, 25-33.	1.0	15
236	Optogenetic Interrogation of Functional Synapse Formation by Corticospinal Tract Axons in the Injured Spinal Cord. Journal of Neuroscience, 2016, 36, 5877-5890.	1.7	44
237	Inside Out: Core Network of Transcription Factors Drives Axon Regeneration. Neuron, 2016, 89, 881-884.	3.8	4
238	Preparation of embryonic retinal explants to study CNS neurite growth. Experimental Eye Research, 2016, 146, 304-312.	1.2	8
239	Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell survival. Progress in Retinal and Eye Research, 2016, 52, 22-46.	7.3	56
240	Hyperactivated Stat3 boosts axon regeneration in the CNS. Experimental Neurology, 2016, 280, 115-120.	2.0	57
241	Intrinsic Control of Axon Regeneration. Neuron, 2016, 90, 437-451.	3.8	469
242	Sciatic nerve regeneration in KLF7-transfected acellular nerve allografts. Neurological Research, 2016, 38, 242-254.	0.6	20
243	Ethanol-induced changes in poly (ADP ribose) polymerase and neuronal developmental gene expression. Neuropharmacology, 2016, 110, 287-296.	2.0	8
244	Epigenetic regulation of axonal regenerative capacity. Epigenomics, 2016, 8, 1429-1442.	1.0	33

#	Article	IF	CITATIONS
245	Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11324-11329.	3.3	144
246	Thyroid Hormone Signaling in Oligodendrocytes: from Extracellular Transport to Intracellular Signal. Molecular Neurobiology, 2016, 53, 6568-6583.	1.9	63
247	Two PTP receptors mediate CSPG inhibition by convergent and divergent signaling pathways in neurons. Scientific Reports, 2016, 6, 37152.	1.6	44
248	Reconnecting Eye to Brain. Journal of Neuroscience, 2016, 36, 10707-10722.	1.7	73
249	Restoration of Visual Function by Enhancing Conduction in Regenerated Axons. Cell, 2016, 164, 219-232.	13.5	209
250	Discovery, Optimization, and Biological Evaluation of Sulfonamidoacetamides as an Inducer of Axon Regeneration. Journal of Medicinal Chemistry, 2016, 59, 4676-4687.	2.9	6
251	Microarray expression profile analysis of long noncoding RNAs in premature brain injury: A novel point of view. Neuroscience, 2016, 319, 123-133.	1.1	30
252	Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury. Molecular and Cellular Proteomics, 2016, 15, 394-408.	2.5	59
253	Prospects for mTOR-mediated functional repair after central nervous system trauma. Neurobiology of Disease, 2016, 85, 99-110.	2.1	55
254	Functional Recovery of Carbon Nanotube/Nafion Nanocomposite in Rat Model of Spinal Cord Injury. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 144-149.	1.9	9
255	Reaching the brain: Advances in optic nerve regeneration. Experimental Neurology, 2017, 287, 365-373.	2.0	173
256	Learning to swim, again: Axon regeneration in fish. Experimental Neurology, 2017, 287, 318-330.	2.0	62
257	In vitro models of axon regeneration. Experimental Neurology, 2017, 287, 423-434.	2.0	47
258	CNS repair and axon regeneration: Using genetic variation to determine mechanisms. Experimental Neurology, 2017, 287, 409-422.	2.0	24
259	Serotonin receptor 2C regulates neurite growth and is necessary for normal retinal processing of visual information. Developmental Neurobiology, 2017, 77, 419-437.	1.5	19
260	RhoA knockdown by cationic amphiphilic copolymer/siRhoA polyplexes enhances axonal regeneration in rat spinal cord injury model. Biomaterials, 2017, 121, 155-166.	5.7	39
261	Krüppel-like factors in mammalian stem cells and development. Development (Cambridge), 2017, 144, 737-754.	1.2	99
262	The challenge of regenerative therapies for the optic nerve in glaucoma. Experimental Eye Research, 2017, 157, 28-33.	1.2	52

#	Article	IF	CITATIONS
263	Pharmacological intervention of early neuropathy in neurodegenerative diseases. Pharmacological Research, 2017, 119, 169-177.	3.1	10
264	Nogo-A in the visual system development and in ocular diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1300-1311.	1.8	19
265	DNA methylation controls unmethylated transcription start sites in the genome in <i>trans</i> . Epigenomics, 2017, 9, 611-633.	1.0	14
266	Molecular codes for cell type specification in Brn3 retinal ganglion cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3974-E3983.	3.3	60
267	Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others. Neuron, 2017, 94, 1112-1120.e4.	3.8	151
268	Regenerating optic pathways from the eye to the brain. Science, 2017, 356, 1031-1034.	6.0	112
269	Mechanisms of axon regeneration: The significance of proteoglycans. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2435-2441.	1.1	13
270	Characterization and Spatiotemporal Expression of Klf4 in Large Yellow Croaker Larimichthys crocea. DNA and Cell Biology, 2017, 36, 655-671.	0.9	2
271	Urinary bladder extracellular matrix hydrogels and matrix-bound vesicles differentially regulate central nervous system neuron viability and axon growth and branching. Journal of Biomaterials Applications, 2017, 31, 1277-1295.	1.2	34
272	Rewiring the spinal cord: Direct and indirect strategies. Neuroscience Letters, 2017, 652, 25-34.	1.0	27
273	Selecting optimal combinations of transcription factors to promote axon regeneration: Why mechanisms matter. Neuroscience Letters, 2017, 652, 64-73.	1.0	28
274	Wnt signaling promotes axonal regeneration following optic nerve injury in the mouse. Neuroscience, 2017, 343, 372-383.	1.1	70
275	Combined chondroitinase and KLF7 expression reduce net retraction of sensory and CST axons from sites of spinal injury. Neurobiology of Disease, 2017, 99, 24-35.	2.1	32
276	Mobile zinc increases rapidly in the retina after optic nerve injury and regulates ganglion cell survival and optic nerve regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E209-E218.	3.3	111
277	Spatial and temporal arrangement of neuronal intrinsic and extrinsic mechanisms controlling axon regeneration. Current Opinion in Neurobiology, 2017, 42, 118-127.	2.0	114
278	High content analysis in amyotrophic lateral sclerosis. Molecular and Cellular Neurosciences, 2017, 80, 180-191.	1.0	10
279	Can injured adult CNS axons regenerate by recapitulating development?. Development (Cambridge), 2017, 144, 3417-3429.	1.2	106
280	KLF9 and JNK3 Interact to Suppress Axon Regeneration in the Adult CNS. Journal of Neuroscience, 2017, 37, 9632-9644.	1.7	91

	CITATION	Report	
#	Article	IF	CITATIONS
281	Lysophosphatidic acid signaling regulates the KLF9-PPARÎ ³ axis in human induced pluripotent stem cell-derived neurons. Biochemical and Biophysical Research Communications, 2017, 491, 223-227.	1.0	6
282	Optic nerve regeneration in mammals: Regenerated or spared axons?. Experimental Neurology, 2017, 296, 83-88.	2.0	38
283	Modeling Glaucoma: Retinal Ganglion Cells Generated from Induced Pluripotent Stem Cells of Patients with SIX6 Risk Allele Show Developmental Abnormalities. Stem Cells, 2017, 35, 2239-2252.	1.4	49
284	<i>In Vivo</i> Imaging of CNS Injury and Disease. Journal of Neuroscience, 2017, 37, 10808-10816.	1.7	24
285	Identification of mi RNA s involved in DRG neurite outgrowth and their putative targets. FEBS Letters, 2017, 591, 2091-2105.	1.3	25
286	The Krüppel-like factor 9 cistrome in mouse hippocampal neurons reveals predominant transcriptional repression via proximal promoter binding. BMC Genomics, 2017, 18, 299.	1.2	33
287	Effect of high fat diet on phenotype, brain transcriptome and lipidome in Alzheimer's model mice. Scientific Reports, 2017, 7, 4307.	1.6	69
288	KLF7-transfected Schwann cell graft transplantation promotes sciatic nerve regeneration. Neuroscience, 2017, 340, 319-332.	1.1	35
289	The age factor in axonal repair after spinal cord injury: A focus on neuron-intrinsic mechanisms. Neuroscience Letters, 2017, 652, 41-49.	1.0	42
290	Phenotypic screening with primary neurons to identify drug targets for regeneration and degeneration. Molecular and Cellular Neurosciences, 2017, 80, 161-169.	1.0	20
291	Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis. Developmental Biology, 2017, 426, 360-373.	0.9	20
292	Retinal regeneration mechanisms linked to multiple cancer molecules: A therapeutic conundrum. Progress in Retinal and Eye Research, 2017, 56, 19-31.	7.3	10
293	<scp>KLF</scp> 4 Knockdown Attenuates <scp>TBI</scp> â€Induced Neuronal Damage through p53 and <scp>JAK</scp> â€ <scp>STAT</scp> 3 Signaling. CNS Neuroscience and Therapeutics, 2017, 23, 106-118.	1.9	36
294	Gene Manipulation Strategies to Identify Molecular Regulators of Axon Regeneration in the Central Nervous System. Frontiers in Cellular Neuroscience, 2017, 11, 231.	1.8	20
295	The Function of FGFR1 Signalling in the Spinal Cord: Therapeutic Approaches Using FGFR1 Ligands after Spinal Cord Injury. Neural Plasticity, 2017, 2017, 1-13.	1.0	22
296	Sphingosine 1-Phosphate Receptor 1 Modulates CNTF-Induced Axonal Growth and Neuroprotection in the Mouse Visual System. Neural Plasticity, 2017, 2017, 1-11.	1.0	11
297	Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice. , 2017, 58, 1743.		22
298	Stimulation of the adenosine A3 receptor, not the A1 or A2 receptors, promote neurite outgrowth of retinal ganglion cells. Experimental Eye Research, 2018, 170, 160-168.	1.2	23

	Сіта	tion Report	
#	Article	IF	CITATIONS
299	Intrinsic mechanisms of neuronal axon regeneration. Nature Reviews Neuroscience, 2018, 19, 323-337.	4.9	383
300	The nociceptin receptor inhibits axonal regeneration and recovery from spinal cord injury. Science Signaling, 2018, 11, .	1.6	21
301	Targeting Alzheimer's disease with gene and cell therapies. Journal of Internal Medicine, 2018, 284, 2-36	b. 2.7	42
302	Functional Genome-wide Screen Identifies Pathways Restricting Central Nervous System Axonal Regeneration. Cell Reports, 2018, 23, 415-428.	2.9	43
303	Polycomb protein family member CBX7 regulates intrinsic axon growth and regeneration. Cell Death and Differentiation, 2018, 25, 1598-1611.	5.0	18
304	Kruppel-like factor 4-dependent Staufen1-mediated mRNA decay regulates cortical neurogenesis. Nature Communications, 2018, 9, 401.	5.8	32
305	Systemic administration of epothilone D improves functional recovery of walking after rat spinal cord contusion injury. Experimental Neurology, 2018, 306, 243-249.	2.0	45
306	Wnt3 and Gata4 regulate axon regeneration in adult mouse DRG neurons. Biochemical and Biophysical Research Communications, 2018, 499, 246-252.	1.0	10
307	snRPN controls the ability of neurons to regenerate axons. Restorative Neurology and Neuroscience, 2018, 36, 31-43.	0.4	3
308	Gene therapy in optic nerve disease. Current Opinion in Ophthalmology, 2018, 29, 234-238.	1.3	23
309	Genetic Deletion of Krüppel-Like Factor 11 Aggravates Ischemic Brain Injury. Molecular Neurobiology, 2018, 55, 2911-2921.	1.9	32
310	Maximizing functional axon repair in the injured central nervous system: Lessons from neuronal development. Developmental Dynamics, 2018, 247, 18-23.	0.8	8
311	Zinc chelation and Klf9 knockdown cooperatively promote axon regeneration after optic nerve injury. Experimental Neurology, 2018, 300, 22-29.	2.0	62
314	In Vitro and In Vivo Methods for Studying Retinal Ganglion Cell Survival and Optic Nerve Regeneration. Methods in Molecular Biology, 2018, 1695, 187-205.	0.4	7
315	An Image-Based miRNA Screen Identifies miRNA-135s As Regulators of CNS Axon Growth and Regeneration by Targeting Krüppel-like Factor 4. Journal of Neuroscience, 2018, 38, 613-630.	1.7	45
316	Induction of axon growth in the adult brain: A new approach to restoration in Parkinson's disease. Movement Disorders, 2018, 33, 62-70.	2.2	9
317	High Content Screening of Mammalian Primary Cortical Neurons. Methods in Molecular Biology, 2018, 1683, 293-304.	0.4	0
318	Timing of neuronal plasticity in development and aging. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e305.	5.9	6

#	Article	IF	CITATIONS
320	Retinal Ganglion Cell Replacement: A Bridge to the Brain. Fundamental Biomedical Technologies, 2018, , 193-206.	0.2	0
321	Chromatolysis: Do injured axons regenerate poorly when ribonucleases attack rough endoplasmic reticulum, ribosomes and RNA?. Developmental Neurobiology, 2018, 78, 1011-1024.	1.5	31
322	The Role of KLF4 in Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 325.	1.8	40
323	Novel engineered, membrane-localized variants of vascular endothelial growth factor (VEGF) protect retinal ganglion cells: a proof-of-concept study. Cell Death and Disease, 2018, 9, 1018.	2.7	12
324	Scaffold Ranking and Positional Scanning Identify Novel Neurite Outgrowth Promoters with Nanomolar Potency. ACS Medicinal Chemistry Letters, 2018, 9, 1057-1062.	1.3	8
325	Delineation of the 9q31 deletion syndrome: Genomic microarray characterization of two patients with overlapping deletions. American Journal of Medical Genetics, Part A, 2018, 176, 2901-2906.	0.7	4
326	Demethylation of G-Protein-Coupled Receptor 151 Promoter Facilitates the Binding of Krüppel-Like Factor 5 and Enhances Neuropathic Pain after Nerve Injury in Mice. Journal of Neuroscience, 2018, 38, 10535-10551.	1.7	41
327	Assembly and repair of eye-to-brain connections. Current Opinion in Neurobiology, 2018, 53, 198-209.	2.0	20
328	The Krüppel-Like Factor Gene Target Dusp14 Regulates Axon Growth and Regeneration. , 2018, 59, 2736.		48
329	Lentivirus-Mediated Overexpression of miR-29a Promotes Axonal Regeneration and Functional Recovery in Experimental Spinal Cord Injury via PI3K/Akt/mTOR Pathway. Neurochemical Research, 2018, 43, 2038-2046.	1.6	26
330	Lin28 Signaling Supports Mammalian PNS and CNS Axon Regeneration. Cell Reports, 2018, 24, 2540-2552.e6.	2.9	102
331	<pre><scp>D</scp>evelopmental <scp>C</scp>hromatin <scp>R</scp>estriction of <scp>P</scp>roâ€<scp>G</scp>rowth <scp>G</scp>ene <scp>N</scp>etworks <scp>A</scp>cts as an <scp>E</scp>pigenetic <scp>B</scp>arrier to <scp>A</scp>xon <scp>R</scp>egeneration in <scp>C</scp>ortical <scp>N</scp>eurons, Developmental Neurobiology, 2018, 78, 960-977.</pre>	1.5	29
332	Stimulation-dependent remodeling of the corticospinal tract requires reactivation of growth-promoting developmental signaling pathways. Experimental Neurology, 2018, 307, 133-144.	2.0	41
333	Nogo-A inactivation improves visual plasticity and recovery after retinal injury. Cell Death and Disease, 2018, 9, 727.	2.7	11
334	The extent of extra-axonal tissue damage determines the levels of CSPG upregulation and the success of experimental axon regeneration in the CNS. Scientific Reports, 2018, 8, 9839.	1.6	22
335	Axon Regeneration in the Central Nervous System: Facing the Challenges from the Inside. Annual Review of Cell and Developmental Biology, 2018, 34, 495-521.	4.0	142
336	A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury. Frontiers in Cellular Neuroscience, 2017, 11, 416.	1.8	23
337	The Virtuous Cycle of Axon Growth: Axonal Transport of Growthâ€Promoting Machinery as an Intrinsic Determinant of Axon Regeneration. Developmental Neurobiology, 2018, 78, 898-925.	1.5	28

#	Article	IF	CITATIONS
338	The Role of Axon Transport in Neuroprotection and Regeneration. Developmental Neurobiology, 2018, 78, 998-1010.	1.5	14
339	KLF6 and STAT3 co-occupy regulatory DNA and functionally synergize to promote axon growth in CNS neurons. Scientific Reports, 2018, 8, 12565.	1.6	34
340	Targeting Kruppel-like Factor 9 in Excitatory Neurons Protects against Chronic Stress-Induced Impairments in Dendritic Spines and Fear Responses. Cell Reports, 2018, 23, 3183-3196.	2.9	28
342	Optic Nerve Regeneration: Considerations on Treatment of Acute Optic Neuropathy and End-Stage Disease. Current Ophthalmology Reports, 2019, 7, 11-20.	0.5	9
343	MTP18 is a Novel Regulator of Mitochondrial Fission in CNS Neuron Development, Axonal Growth, and Injury Responses. Scientific Reports, 2019, 9, 10669.	1.6	12
344	Epigenetic Regulation Of Axon Regeneration and Glial Activation in Injury Responses. Frontiers in Genetics, 2019, 10, 640.	1.1	25
345	Human retinal ganglion cell axon regeneration by recapitulating developmental mechanisms: effects of recruitment of the mTOR pathway. Development (Cambridge), 2019, 146, .	1.2	44
346	Optic nerve regeneration: A long view. Restorative Neurology and Neuroscience, 2019, 37, 525-544.	0.4	15
347	Telomerase Reverse Transcriptase and p53 Regulate Mammalian Peripheral Nervous System and CNS Axon Regeneration Downstream of c-Myc. Journal of Neuroscience, 2019, 39, 9107-9118.	1.7	27
348	Thyroid Hormone Protects Primary Cortical Neurons Exposed to Hypoxia by Reducing DNA Methylation and Apoptosis. Endocrinology, 2019, 160, 2243-2256.	1.4	24
349	Functional Cortical Axon Tracts Generated from Human Stem Cell-Derived Neurons. Tissue Engineering - Part A, 2019, 25, 736-745.	1.6	10
350	Thrombospondin-1 Mediates Axon Regeneration in Retinal Ganglion Cells. Neuron, 2019, 103, 642-657.e7.	3.8	93
351	Calcium/calmodulinâ€dependent protein kinase II regulates mammalian axon growth by affecting Fâ€actin length in growth cone. Journal of Cellular Physiology, 2019, 234, 23053-23065.	2.0	22
352	Inhibitor of DNA binding 2 promotes axonal growth through upregulation of Neurogenin2. Experimental Neurology, 2019, 320, 112966.	2.0	13
353	Regulation of adult mammalian intrinsic axonal regeneration by NFâ€₽̂B/STAT3 signaling cascade. Journal of Cellular Physiology, 2019, 234, 22517-22528.	2.0	6
354	Elevating Growth Factor Responsiveness and Axon Regeneration by Modulating Presynaptic Inputs. Neuron, 2019, 103, 39-51.e5.	3.8	89
355	Serotonergic mechanisms in spinal cord injury. Experimental Neurology, 2019, 318, 174-191.	2.0	54
356	Long-term neuronal survival, regeneration, and transient target reconnection after optic nerve crush and mesenchymal stem cell transplantation. Stem Cell Research and Therapy, 2019, 10, 121.	2.4	24

#	Article	IF	CITATIONS
357	Activation of the BMP4/Smad1 Pathway Promotes Retinal Ganglion Cell Survival and Axon Regeneration. , 2019, 60, 1748.		30
358	Matrix-bound nanovesicles prevent ischemia-induced retinal ganglion cell axon degeneration and death and preserve visual function. Scientific Reports, 2019, 9, 3482.	1.6	41
360	Novel Therapeutic Targets for Glaucoma: Disease Modification Treatment, Neuroprotection, and Neuroregeneration. , 2019, , 147-176.		0
362	<i>De novo</i> genesis of retinal ganglion cells by targeted expression of <i>Klf4 in vivo</i> . Development (Cambridge), 2019, 146, .	1.2	18
363	Combination of biomaterial transplantation and genetic enhancement of intrinsic growth capacities to promote CNS axon regeneration after spinal cord injury. Frontiers of Medicine, 2019, 13, 131-137.	1.5	14
364	Return of function after CNS axon regeneration: Lessons from injury-responsive intrinsically photosensitive and alpha retinal ganglion cells. Progress in Retinal and Eye Research, 2019, 71, 57-67.	7.3	18
365	Direct targeting of the mouse optic nerve for therapeutic delivery. Journal of Neuroscience Methods, 2019, 313, 1-5.	1.3	9
366	Tissue Regeneration Enhancer Elements: A Way to Unlock Endogenous Healing Power. Developmental Dynamics, 2019, 248, 34-42.	0.8	26
367	Cranial Pair II: The Optic Nerves. Anatomical Record, 2019, 302, 428-445.	0.8	8
368	Promoting Axon Regeneration in Adult CNS by Targeting Liver Kinase B1. Molecular Therapy, 2019, 27, 102-117.	3.7	29
369	The Rise of Molecules Able To Regenerate the Central Nervous System. Journal of Medicinal Chemistry, 2020, 63, 490-511.	2.9	7
370	Oxidative stress-induced KLF4 activates inflammatory response through IL17RA and its downstream targets in retinal pigment epithelial cells. Free Radical Biology and Medicine, 2020, 147, 271-281.	1.3	17
371	Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration. Neuron, 2020, 105, 276-292.e5.	3.8	88
372	The role of the immune system during regeneration of the central nervous system. Journal of Immunology and Regenerative Medicine, 2020, 7, 100023.	0.2	4
373	On the Generation and Regeneration of Retinal Ganglion Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 581136.	1.8	12
374	Krüppel-Like Factors 9 and 13 Block Axon Growth by Transcriptional Repression of Key Components of the cAMP Signaling Pathway. Frontiers in Molecular Neuroscience, 2020, 13, 602638.	1.4	15
375	Protect, Repair, and Regenerate: Towards Restoring Vision in Glaucoma. Current Ophthalmology Reports, 2020, 8, 301-310.	0.5	19
376	Adult Mouse Retina Explants: From ex vivo to in vivo Model of Central Nervous System Injuries. Frontiers in Molecular Neuroscience, 2020, 13, 599948.	1.4	15

#	Article	IF	CITATIONS
377	Reprogramming to recover youthful epigenetic information and restore vision. Nature, 2020, 588, 124-129.	13.7	424
378	Dedifferentiation and neuronal repression define familial Alzheimer's disease. Science Advances, 2020, 6, .	4.7	44
379	AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury. Nature Metabolism, 2020, 2, 918-933.	5.1	30
380	Glial Metabolic Rewiring Promotes Axon Regeneration and Functional Recovery in the Central Nervous System. Cell Metabolism, 2020, 32, 767-785.e7.	7.2	64
381	Identifying Genes Associated With Autism Spectrum Disorders by Random Walk Method With Significance Tests. IEEE Access, 2020, 8, 156686-156694.	2.6	6
382	Axon growth and synaptic function: A balancing act for axonal regeneration and neuronal circuit formation in CNS trauma and disease. Developmental Neurobiology, 2020, 80, 277-301.	1.5	16
383	Axon Regeneration in the Mammalian Optic Nerve. Annual Review of Vision Science, 2020, 6, 195-213.	2.3	101
384	Enriched conditioning expands the regenerative ability of sensory neurons after spinal cord injury via neuronal intrinsic redox signaling. Nature Communications, 2020, 11, 6425.	5.8	37
385	Nogo receptor decoy promotes recovery and corticospinal growth in non-human primate spinal cord injury. Brain, 2020, 143, 1697-1713.	3.7	38
386	Longitudinal Morphological and Functional Assessment of RGC Neurodegeneration After Optic Nerve Crush in Mouse. Frontiers in Cellular Neuroscience, 2020, 14, 109.	1.8	39
387	Updates and challenges of axon regeneration in the mammalian central nervous system. Journal of Molecular Cell Biology, 2020, 12, 798-806.	1.5	34
388	Molecular Mechanisms for Krüppel-Like Factor 13 Actions in Hippocampal Neurons. Molecular Neurobiology, 2020, 57, 3785-3802.	1.9	15
389	Strategies to Promote Long-Distance Optic Nerve Regeneration. Frontiers in Cellular Neuroscience, 2020, 14, 119.	1.8	33
390	Loss of Arid1a Promotes Neuronal Survival Following Optic Nerve Injury. Frontiers in Cellular Neuroscience, 2020, 14, 131.	1.8	4
391	Restoring Cellular Energetics Promotes Axonal Regeneration and Functional Recovery after Spinal Cord Injury. Cell Metabolism, 2020, 31, 623-641.e8.	7.2	102
392	Axon regeneration. , 2020, , 201-215.		0
393	Upregulating Lin28a Promotes Axon Regeneration in Adult Mice with Optic Nerve and Spinal Cord Injury. Molecular Therapy, 2020, 28, 1902-1917.	3.7	39
394	Knocking Out Non-muscle Myosin II in Retinal Ganglion Cells Promotes Long-Distance Optic Nerve Regeneration. Cell Reports, 2020, 31, 107537.	2.9	33

#	Article	IF	CITATIONS
395	MicroRNA-19a-PTEN Axis Is Involved in the Developmental Decline of Axon Regenerative Capacity in Retinal Ganglion Cells. Molecular Therapy - Nucleic Acids, 2020, 21, 251-263.	2.3	20
396	Vimentin Coordinates Protein Turnover at the Aggresome during Neural Stem Cell Quiescence Exit. Cell Stem Cell, 2020, 26, 558-568.e9.	5.2	79
397	Impact of PTEN/SOCS3 deletion on amelioration of dendritic shrinkage of retinal ganglion cells after optic nerve injury. Experimental Eye Research, 2020, 192, 107938.	1.2	20
398	Knock down of IncRNA H19 promotes axon sprouting and functional recovery after cerebral ischemic stroke. Brain Research, 2020, 1732, 146681.	1.1	26
399	The long noncoding RNA Arrl1 inhibits neurite outgrowth by functioning as a competing endogenous RNA during neuronal regeneration in rats. Journal of Biological Chemistry, 2020, 295, 8374-8386.	1.6	28
401	Inhibition of Gamma-Secretase Promotes Axon Regeneration After a Complete Spinal Cord Injury. Frontiers in Cell and Developmental Biology, 2020, 8, 173.	1.8	13
402	Neuroprotective Strategies for Retinal Ganglion Cell Degeneration: Current Status and Challenges Ahead. International Journal of Molecular Sciences, 2020, 21, 2262.	1.8	68
403	Self-assembling multidomain peptide hydrogels accelerate peripheral nerve regeneration after crush injury. Biomaterials, 2021, 265, 120401.	5.7	49
404	The intrinsic axon regenerative properties of mature neurons after injury. Acta Biochimica Et Biophysica Sinica, 2021, 53, 1-9.	0.9	6
405	Dual Specific Phosphatase 14 Deletion Rescues Retinal Ganglion Cells and Optic Nerve Axons after Experimental Anterior Ischemic Optic Neuropathy. Current Eye Research, 2021, 46, 710-718.	0.7	5
406	Growth cone repulsion to Netrin-1 depends on lipid raft microdomains enriched in UNC5 receptors. Cellular and Molecular Life Sciences, 2021, 78, 2797-2820.	2.4	9
407	Identification of regenerative processes in neonatal spinal cord injury in the opossum (<scp><i>Monodelphis domestica</i></scp>): A transcriptomic study. Journal of Comparative Neurology, 2021, 529, 969-986.	0.9	9
409	The Mechanisms of Peripheral Nerve Preconditioning Injury on Promoting Axonal Regeneration. Neural Plasticity, 2021, 2021, 1-9.	1.0	12
410	Deletion of Krüppel-like factor-4 promotes axonal regeneration in mammals. Neural Regeneration Research, 2021, 16, 166.	1.6	13
411	Human mesenchymal stem cell therapy promotes retinal ganglion cell survival and target reconnection after optic nerve crush in adult rats. Stem Cell Research and Therapy, 2021, 12, 69.	2.4	29
412	Role of the Internal Limiting Membrane in Structural Engraftment and Topographic Spacing of Transplanted Human Stem Cell-Derived Retinal Ganglion Cells. Stem Cell Reports, 2021, 16, 149-167.	2.3	37
413	Exercise Ameliorates Spinal Cord Injury by Changing DNA Methylation. Cells, 2021, 10, 143.	1.8	14
414	Quantitative Assessment of Neurite Outgrowth Over Growth Promoting or Inhibitory Substrates. Methods in Molecular Biology, 2021, 2311, 167-175.	0.4	Ο

#	Article	IF	CITATIONS
415	CNS Disease and Regeneration: When Growing Is Not Enough. , 2021, , 31-40.		0
416	Roles of Non-coding RNAs in Central Nervous System Axon Regeneration. Frontiers in Neuroscience, 2021, 15, 630633.	1.4	11
417	Chemokine CCL5 promotes robust optic nerve regeneration and mediates many of the effects of CNTF gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
418	KLF9 regulates PRDX6 expression in hyperglycemia-aggravated bupivacaine neurotoxicity. Molecular and Cellular Biochemistry, 2021, 476, 2125-2134.	1.4	8
419	Integrative genomic analysis of early neurogenesis reveals a temporal genetic program for differentiation and specification of preplate and Cajal-Retzius neurons. PLoS Genetics, 2021, 17, e1009355.	1.5	15
421	Genetic control of retinal ganglion cell genesis. Cellular and Molecular Life Sciences, 2021, 78, 4417-4433.	2.4	16
422	Exosome-Mediated Delivery of the Neuroprotective Peptide PACAP38 Promotes Retinal Ganglion Cell Survival and Axon Regeneration in Rats With Traumatic Optic Neuropathy. Frontiers in Cell and Developmental Biology, 2021, 9, 659783.	1.8	27
423	Advances in Regeneration of Retinal Ganglion Cells and Optic Nerves. International Journal of Molecular Sciences, 2021, 22, 4616.	1.8	12
424	Non-Cell-Autonomous Regulation of Optic Nerve Regeneration by Amacrine Cells. Frontiers in Cellular Neuroscience, 2021, 15, 666798.	1.8	10
426	Promotion of corticospinal tract growth by KLF6 requires an injury stimulus and occurs within four weeks of treatment. Experimental Neurology, 2021, 339, 113644.	2.0	9
427	Co-occupancy identifies transcription factor co-operation for axon growth. Nature Communications, 2021, 12, 2555.	5.8	8
428	Retinal Ganglion Cell Transplantation: Approaches for Overcoming Challenges to Functional Integration. Cells, 2021, 10, 1426.	1.8	26
429	Krüppel-like factor 7 protects retinal ganglion cells and promotes functional preservation via activating the Akt pathway after retinal ischemia-reperfusion injury. Experimental Eye Research, 2021, 207, 108587.	1.2	12
430	Transplantation of miPSC/mESC-derived retinal ganglion cells into healthy and glaucomatous retinas. Molecular Therapy - Methods and Clinical Development, 2021, 21, 180-198.	1.8	30
431	Phenotypic Screening Following Transcriptomic Deconvolution to Identify Transcription Factors Mediating Axon Growth Induced by a Kinase Inhibitor. SLAS Discovery, 2021, 26, 247255522110262.	1.4	3
432	Genome-wide chromatin accessibility analyses provide a map for enhancing optic nerve regeneration. Scientific Reports, 2021, 11, 14924.	1.6	10
433	Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges. Biomolecules, 2021, 11, 987.	1.8	15
435	Targeting Central Nervous System Regeneration with Cell Type Specificity. Neurosurgery Clinics of North America, 2021, 32, 397-405.	0.8	7

#	Article	IF	CITATIONS
436	CREB3L2 Modulates Nerve Growth Factor-Induced Cell Differentiation. Frontiers in Molecular Neuroscience, 2021, 14, 650338.	1.4	7
437	The basic science of optic nerve regeneration. Annals of Translational Medicine, 2021, 9, 1276-1276.	0.7	15
438	Krüppel-like factor gene function in the ctenophore <i>Mnemiopsis leidyi</i> assessed by CRISPR/Cas9-mediated genome editing. Development (Cambridge), 2021, 148, .	1.2	4
439	Multi-species single-cell transcriptomic analysis of ocular compartment regulons. Nature Communications, 2021, 12, 5675.	5.8	48
440	Axon Regeneration: A Subcellular Extension in Multiple Dimensions. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040923.	2.3	9
441	Topoisomerase I inhibition and peripheral nerve injury induce DNA breaks and ATF3-associated axon regeneration in sensory neurons. Cell Reports, 2021, 36, 109666.	2.9	16
442	Klf2-Vav1-Rac1 axis promotes axon regeneration after peripheral nerve injury. Experimental Neurology, 2021, 343, 113788.	2.0	10
443	Strategies to neutralize RhoA/ROCK pathway after spinal cord injury. Experimental Neurology, 2021, 343, 113794.	2.0	14
444	MicroRNA-7 promotes motor function recovery following spinal cord injury in mice. Biochemical and Biophysical Research Communications, 2021, 573, 80-85.	1.0	5
445	Developmentally upregulated transcriptional elongation factor a like 3 suppresses axon regeneration after optic nerve injury. Neuroscience Letters, 2021, 765, 136260.	1.0	9
446	Influence of Sox protein SUMOylation on neural development and regeneration. Neural Regeneration Research, 2022, 17, 477.	1.6	2
447	Krüppel-like factor 7 attenuates hippocampal neuronal injury after traumatic brain injury. Neural Regeneration Research, 2022, 17, 661.	1.6	8
448	Blocking the Nogo-A Signaling Pathway to Promote Regeneration and Plasticity After Spinal Cord Injury and Stroke. , 2016, , 369-397.		2
449	Axon Regeneration: What Needs to Be Overcome?. Methods in Molecular Biology, 2014, 1162, 3-14.	0.4	5
450	The Use of an Adeno-Associated Viral Vector for Efficient Bicistronic Expression of Two Genes in the Central Nervous System. Methods in Molecular Biology, 2014, 1162, 189-207.	0.4	5
451	Quantitative Assessment of Neurite Outgrowth Over Growth Promoting or Inhibitory Substrates. Methods in Molecular Biology, 2013, 1078, 153-161.	0.4	2
452	Neural Transcription Factors in Disease Progression. Advances in Experimental Medicine and Biology, 2019, 1210, 437-462.	0.8	2
453	Neuroregeneration. , 2017, , 585-619.		1

#	Article	IF	CITATIONS
454	Leptin stimulates synaptogenesis in hippocampal neurons via KLF4 and SOCS3 inhibition of STAT3 signaling. Molecular and Cellular Neurosciences, 2020, 106, 103500.	1.0	17
455	Inhibition of GCK-IV kinases dissociates cell death and axon regeneration in CNS neurons. Proceedings of the United States of America, 2020, 117, 33597-33607.	3.3	19
461	Overexpression of the transcription factors OCT4 and KLF4 improves motor function after spinal cord injury. CNS Neuroscience and Therapeutics, 2020, 26, 940-951.	1.9	18
462	Novel innovations in cell and gene therapies for spinal cord injury. F1000Research, 2020, 9, 279.	0.8	33
463	Laboratory Mice and Rats. Materials and Methods, 0, 2, .	0.0	21
464	Cell Culture Media: A Review. Materials and Methods, 0, 3, .	0.0	130
465	PCR Machines. Materials and Methods, 0, 3, .	0.0	1
466	Age-Dependent Modulation of Cortical Transcriptomes in Spinal Cord Injury and Repair. PLoS ONE, 2012, 7, e49812.	1.1	16
467	Distribution of Mesenchymal Stem Cells and Effects on Neuronal Survival and Axon Regeneration after Optic Nerve Crush and Cell Therapy. PLoS ONE, 2014, 9, e110722.	1.1	84
468	The Acquisition of Target Dependence by Developing Rat Retinal Ganglion Cells. ENeuro, 2015, 2, ENEURO.0044-14.2015.	0.9	9
469	3D Visualization of Individual Regenerating Retinal Ganglion Cell Axons Reveals Surprisingly Complex Growth Paths. ENeuro, 2017, 4, ENEURO.0093-17.2017.	0.9	40
470	Krüppel-Like Factor 4 (KLF4) Is Not Required for Retinal Cell Differentiation. ENeuro, 2016, 3, ENEURO.0117-15.2016.	0.9	16
471	Nociceptor Deletion of Tsc2 Enhances Axon Regeneration by Inducing a Conditioning Injury Response in Dorsal Root Ganglia. ENeuro, 2019, 6, ENEURO.0168-19.2019.	0.9	20
472	Stress Increases Peripheral Axon Growth and Regeneration through Glucocorticoid Receptor-Dependent Transcriptional Programs. ENeuro, 2017, 4, ENEURO.0246-17.2017.	0.9	27
473	Targeted Krüppel-Like Factor 4 Gene Knock-Out in Retinal Ganglion Cells Improves Visual Function in Multiple Sclerosis Mouse Model. ENeuro, 2020, 7, ENEURO.0320-19.2020.	0.9	4
474	Neural Cadherin Plays Distinct Roles for Neuronal Survival and Axon Growth under Different Regenerative Conditions. ENeuro, 2020, 7, ENEURO.0325-20.2020.	0.9	9
475	Differential expression of microRNAs in dorsal root ganglia after sciatic nerve injury. Neural Regeneration Research, 2014, 9, 1031.	1.6	10
476	Molecular mechanisms of the suppression of axon regeneration by KLF transcription factors. Neural Regeneration Research, 2014, 9, 1418.	1.6	26

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
477	RAFting the rapids of axon regeneration signaling. Neural Regeneration Research, 2015	5, 10, 341.	1.6	3
478	Exploiting kinase polypharmacology for nerve regeneration. Neural Regeneration Resea	arch, 2016, 11, 71.	1.6	5
479	Repair, protection and regeneration of spinal cord injury. Neural Regeneration Researc	n, 2015, 10, 1953.	1.6	21
480	The progress in optic nerve regeneration, where are we?. Neural Regeneration Research	ı, 2016, 11, 32.	1.6	22
481	A growing field: The regulation of axonal regeneration by Wnt signaling. Neural Regene Research, 2018, 13, 43.	eration	1.6	68
482	Axon injury triggers EFA-6 mediated destabilization of axonal microtubules via TACC ar like kinase. ELife, 2015, 4, .	nd doublecortin	2.8	45
483	GSK3β regulates AKT-induced central nervous system axon regeneration via an elF2BÎμ mTORC1-independent pathway. ELife, 2016, 5, e11903.	ı-dependent,	2.8	67
484	The Jun-dependent axon regeneration gene program: Jun promotes regeneration over p Molecular Genetics, 2022, 31, 1242-1262.	blasticity. Human	1.4	7
486	Genes and miRNAs as Hurdles and Promoters of Corticospinal Tract Regeneration in Sp Injury. Frontiers in Cell and Developmental Biology, 2021, 9, 748911.	pinal Cord	1.8	1
488	蛋癹⁄₂/è,¹⁄₂æ‡ç³⁄4. å®žéªŒææ–™å'Œæ–¹æ³•, 0, cn2, .		0.0	0
489	Souris et Rats de Laboratoire. Materials and Methods, 0, fr2, .		0.0	0
490	实验å® å⁰é ¼å'Œå § é¼. å®žéªŒææ–™å'Œæ–¹æ³•, 0, cn2, .		0.0	0
491	Tags <code>peptidiques/protÃ</code> ©iques. Materials and Methods, 0, fr2, .		0.0	0
492	Protein/Peptide Tags. Materials and Methods, 0, 2, .		0.0	0
493	Milieu de culture: Une Revue. Materials and Methods, 0, fr3, .		0.0	0
494	细è∫žåŸ¹å»åŸŸî¼4šç»¼è¿°. å®žéªŒææ–™å'Œæ–¹æ³•, 0, cn3, .		0.0	0
496	Intrinsic Neuronal Mechanisms in Axon Regeneration After Spinal Cord Injury. , 2016, ,	399-414.		0
497	Targeting transcriptional regulators to regenerate midbrain dopaminergic axons in Par disease. Neural Regeneration Research, 2017, 12, 1814.	kinson's	1.6	0

#	Article	IF	CITATIONS
501	Novel Role of Lin28 Signaling in Regulation of Mammalian PNS and CNS Axon Regeneration. SSRN Electronic Journal, 0, , .	0.4	0
505	Emerging roles for insulin-like growth factor binding protein like protein 1. Neural Regeneration Research, 2019, 14, 258.	1.6	2
512	A Nanodiamond-Based Surface Topography Downregulates the MicroRNA miR6236 to Enhance Neuronal Development and Regeneration. ACS Applied Bio Materials, 2021, 4, 890-902.	2.3	4
513	Regeneration of Retinal Ganglion Cell Axons. , 2020, , 630-641.		Ο
514	Optic Nerve Crush in Mice to Study Retinal Ganglion Cell Survival and Regeneration. Bio-protocol, 2020, 10, .	0.2	33
518	Mitochondrial Dynamics in Retinal Ganglion Cell Axon Regeneration and Growth Cone Guidance. Journal of Ocular Biology, 2013, 1, 9.	1.5	18
519	Aging and the Krüppel-like factors. Trends in Cell & Molecular Biology, 2017, 12, 1-15.	0.5	7
520	Optic nerve regeneration in the mouse is a complex trait modulated by genetic background. Molecular Vision, 2018, 24, 174-186.	1.1	12
521	Gene silencing NMII promotes axonal regeneration against contusive spinal cord injury in rats. International Journal of Clinical and Experimental Pathology, 2017, 10, 11345-11352.	0.5	1
522	Promoting axon regeneration in the central nervous system by increasing PI3-kinase signaling. Neural Regeneration Research, 2022, 17, 1172.	1.6	16
524	Advances in Biomaterialâ€Based Spinal Cord Injury Repair. Advanced Functional Materials, 2022, 32, 2110628.	7.8	37
525	The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases. Cell and Bioscience, 2022, 12, 1.	2.1	66
526	Central nervous system regeneration. Cell, 2022, 185, 77-94.	13.5	85
527	Maf1 regulates axonal regeneration of retinal ganglion cells after injury. Experimental Neurology, 2022, 348, 113948.	2.0	6
528	Viral expression of constitutively active AKT3 induces CST axonal sprouting and regeneration, but also promotes seizures. Experimental Neurology, 2022, 349, 113961.	2.0	9
529	Transcriptome Analyses Reveal Systematic Molecular Pathology After Optic Nerve Crush. Frontiers in Cellular Neuroscience, 2021, 15, 800154.	1.8	5
530	Traumatic optic neuropathy: a review of current studies. Neurosurgical Review, 2022, 45, 1895-1913.	1.2	20
531	Transcriptional regulation of neural stem cell expansion in the adult hippocampus. ELife, 2022, 11, .	2.8	16

#	Article	IF	CITATIONS
532	Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Molecular Therapy - Oncolytics, 2022, 24, 262-287.	2.0	32
533	Inositol Polyphosphate-5-Phosphatase K (<i>Inpp5k</i>) Enhances Sprouting of Corticospinal Tract Axons after CNS Trauma. Journal of Neuroscience, 2022, 42, 2190-2204.	1.7	5
534	Long-Term Cultures of Spinal Cord Interneurons. Frontiers in Cellular Neuroscience, 2022, 16, 827628.	1.8	3
535	Loss-of-function variants in KLF4 underlie autosomal dominant palmoplantar keratoderma. Genetics in Medicine, 2022, 24, 1085-1095.	1.1	3
536	Translational perspective. , 2022, , 537-573.		0
537	Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives. Cells, 2022, 11, 806.	1.8	3
539	Quantitative transportomics identifies Kif5a as a major regulator of neurodegeneration. ELife, 2022, 11,	2.8	10
540	Quantitative BONCAT Allows Identification of Newly Synthesized Proteins after Optic Nerve Injury. Journal of Neuroscience, 2022, 42, 4042-4052.	1.7	6
541	Current challenges of retinal ganglion cell regeneration. Regenerative Medicine, 2022, 17, 199-201.	0.8	4
542	Rabphilin3A reduces integrin-dependent growth cone signaling to restrict axon regeneration after trauma. Experimental Neurology, 2022, 353, 114070.	2.0	5
543	Krüppel-like factors in bone biology. Cellular Signalling, 2022, 93, 110308.	1.7	7
544	Unfolded protein response-induced expression of long noncoding RNA Ngrl1 supports peripheral axon regeneration by activating the PI3K-Akt pathway. Experimental Neurology, 2022, 352, 114025.	2.0	5
570	Synergistic gene regulation by thyroid hormone and glucocorticoid in the hippocampus. Vitamins and Hormones, 2022, 118, 35-81.	0.7	2
571	Co-targeting B-RAF and PTEN Enables Sensory Axons to Regenerate Across and Beyond the Spinal Cord Injury. Frontiers in Molecular Neuroscience, 2022, 15, 891463.	1.4	2
572	Neuronal Redevelopment and the Regeneration of Neuromodulatory Axons in the Adult Mammalian Central Nervous System. Frontiers in Cellular Neuroscience, 2022, 16, 872501.	1.8	23
573	Reprogramming neurons for regeneration: The fountain of youth. Progress in Neurobiology, 2022, 214, 102284.	2.8	17
575	miR-146a/KLF4 axis in epileptic mice: A novel regulator of synaptic plasticity involving STAT3 signaling. Brain Research, 2022, 1790, 147988.	1.1	3
576	Optic nerve repair and regeneration in vertebrates. Scientia Sinica Vitae, 2022, 52, 988-1005.	0.1	0

#	Article	IF	CITATIONS
577	Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells. Neuron, 2022, 110, 2607-2624.e8.	3.8	45
578	è§†ç¥žç»æŸä¼⋬Žå†ç"Ÿçš"ç"究进展. Scientia Sinica Vitae, 2022, , .	0.1	0
579	Bioinformatics analysis of KLF2 as a potential prognostic factor in ccRCC and association with epithelial‑mesenchymal transition. Experimental and Therapeutic Medicine, 2022, 24, .	0.8	1
580	Subtype-specific survival and regeneration of retinal ganglion cells in response to injury. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	10
582	KLF5 governs sphingolipid metabolism and barrier function of the skin. Genes and Development, 2022, 36, 822-842.	2.7	5
583	Single-Cell Transcriptional Profiling and Gene Regulatory Network Modeling in Tg2576 Mice Reveal Gender-Dependent Molecular Features Preceding Alzheimer-Like Pathologies. Molecular Neurobiology, 2024, 61, 541-566.	1.9	5
584	The immune microenvironment and tissue engineering strategies for spinal cord regeneration. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	11
585	Intrinsic regulation of axon regeneration after spinal cord injury: Recent advances and remaining challenges. Experimental Neurology, 2022, 357, 114198.	2.0	5
586	DUSP2 deletion with CRISPR/Cas9 promotes Mauthner cell axonal regeneration at the early stage of zebrafish. Neural Regeneration Research, 2023, 18, 577.	1.6	3
587	Transcription factors are potential therapeutic targets in epilepsy. Journal of Cellular and Molecular Medicine, 2022, 26, 4875-4885.	1.6	6
588	Inhibiting Intestinal Krüppel-Like Factor 5 Impairs the Beneficial Role of Renal Denervation in Gut Microbiota in Rats with Heart Failure. Microbiology Spectrum, 2022, 10, .	1.2	1
589	N6-methyladenosine modification: A potential regulatory mechanism in spinal cord injury. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	5
590	Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Injury: Role of Inflammation and Other Factors. International Journal of Molecular Sciences, 2022, 23, 10179.	1.8	17
591	Transcriptional Control of Peripheral Nerve Regeneration. Molecular Neurobiology, 2023, 60, 329-341.	1.9	12
592	Elk-1 regulates retinal ganglion cell axon regeneration after injury. Scientific Reports, 2022, 12, .	1.6	9
593	Inhibition of microRNA-19a-3p alleviates the neuropathic pain (NP) in rats after chronic constriction injury (CCI) via targeting KLF7. Transplant Immunology, 2023, 76, 101735.	0.6	1
594	Integrated analyses reveal evolutionarily conserved and specific injury response genes in dorsal root ganglion. Scientific Data, 2022, 9, .	2.4	1
595	Cellular and subcellular optogenetic approaches towards neuroprotection and vision restoration. Progress in Retinal and Eye Research, 2022, , 101153.	7.3	1

#	Article	IF	CITATIONS
596	Downregulation of UBE4B promotes CNS axon regrowth and functional recovery after stroke. IScience, 2023, 26, 105885.	1.9	0
597	Axonal Regeneration: Underlying Molecular Mechanisms and Potential Therapeutic Targets. Biomedicines, 2022, 10, 3186.	1.4	12
599	Regulation of axonal regeneration after mammalian spinal cord injury. Nature Reviews Molecular Cell Biology, 2023, 24, 396-413.	16.1	40
600	Activation of MAP2K signaling by genetic engineering or HF-rTMS promotes corticospinal axon sprouting and functional regeneration. Science Translational Medicine, 2023, 15, .	5.8	4
601	Optic Nerve Regeneration in Diabetic Retinopathy: Potentials and Challenges Ahead. International Journal of Molecular Sciences, 2023, 24, 1447.	1.8	2
602	Assaying Optic Nerve Regeneration in Larval Zebrafish. Methods in Molecular Biology, 2023, , 191-203.	0.4	0
603	Pten inhibition dedifferentiates long-distance axon-regenerating intrinsically photosensitive retinal ganglion cells and upregulates mitochondria-associated Dynlt1a and Lars2. Development (Cambridge), 2023, 150, .	1.2	6
604	Green tea extract enhances retinal ganglion cell survival and axonal regeneration in rats with optic nerve injury. Journal of Nutritional Biochemistry, 2023, 117, 109333.	1.9	2
605	Experimental gene expression of developmentally downregulated Crmp1, Crmp4, and Crmp5 promotes axon regeneration and retinal ganglion cell survival after optic nerve injury. Brain Research, 2023, 1809, 148368.	1.1	1
607	Biomarkers in the Rat Hippocampus and Peripheral Blood for an Early Stage of Mental Disorders Induced by Water Immersion Stress. International Journal of Molecular Sciences, 2023, 24, 3153.	1.8	0
608	Acute Transcriptomic and Epigenetic Alterations at T12 After Rat T10 Spinal Cord Contusive Injury. Molecular Neurobiology, 2023, 60, 2937-2953.	1.9	1
610	Kif5a Regulates Mitochondrial Transport in Developing Retinal Ganglion Cells In Vitro. , 2023, 64, 4.		0
611	Genomic regulation of Krüppel-like-factor family members by corticosteroid receptors in the rat brain. Neurobiology of Stress, 2023, 23, 100532.	1.9	6
612	Erinacine S from Hericium erinaceus mycelium promotes neuronal regeneration by inducing neurosteroids accumulation. Journal of Food and Drug Analysis, 2023, 31, 32-54.	0.9	1
613	Post-injury born oligodendrocytes incorporate into the glial scar and contribute to the inhibition of axon regeneration. Development (Cambridge), 2023, 150, .	1.2	8
614	Advances in research to restore vision. Journal of Animal Reproduciton and Biotechnology, 2014, 38, 2-9.	0.3	0
615	Molecular function of Krüppel-like factor 7 in biology. Acta Biochimica Et Biophysica Sinica, 2023, , .	0.9	0
616	Aldose reductase inhibition decelerates optic nerve degeneration by alleviating retinal microglia activation. Scientific Reports, 2023, 13, .	1.6	7

#	Article	IF	CITATIONS
617	The RSK2-RPS6 axis promotes axonal regeneration in the peripheral and central nervous systems. PLoS Biology, 2023, 21, e3002044.	2.6	5
618	Stem cell-based organoid cultures as innovative approaches for ocular repair and regeneration. , 2023, , 1-41.		Ο
621	Neuro-regeneration and stem-cell therapies. , 2023, , 415-427.		0
645	Cerebrospinal fluid proteomics in patients with Alzheimer's disease reveals five molecular subtypes with distinct genetic risk profiles. Nature Aging, 2024, 4, 33-47.	5.3	5