A Role for the ATP7A Copper-transporting ATPase in Ma

Journal of Biological Chemistry 284, 33949-33956 DOI: 10.1074/jbc.m109.070201

Citation Report

#	Article	IF	CITATIONS
3	Human copper homeostasis: a network of interconnected pathways. Current Opinion in Chemical Biology, 2010, 14, 211-217.	2.8	362
4	Altered microglial copper homeostasis in a mouse model of Alzheimer's disease. Journal of Neurochemistry, 2010, 114, 1630-1638.	2.1	78
5	Distinct functional roles of homologous Cu ⁺ efflux ATPases in <i>Pseudomonas aeruginosa</i> . Molecular Microbiology, 2010, 78, 1246-1258.	1.2	139
6	Metabolic crossroads of iron and copper. Nutrition Reviews, 2010, 68, 133-147.	2.6	252
7	Cytosolic Action of Phytochelatin Synthase Â. Plant Physiology, 2010, 153, 159-169.	2.3	65
8	Unexpected Role of the Copper Transporter ATP7A in PDGF-Induced Vascular Smooth Muscle Cell Migration. Circulation Research, 2010, 107, 787-799.	2.0	73
9	Wilson Disease at a Single Cell Level. Journal of Biological Chemistry, 2010, 285, 30875-30883.	1.6	95
10	Copper Homeostasis in Salmonella Is Atypical and Copper-CueP Is a Major Periplasmic Metal Complex. Journal of Biological Chemistry, 2010, 285, 25259-25268.	1.6	149
11	Copper Stress Targets the Rcs System To Induce Multiaggregative Behavior in a Copper-Sensitive Salmonella Strain. Journal of Bacteriology, 2010, 192, 6287-6290.	1.0	12
12	Mammalian copper-transporting P-type ATPases, ATP7A and ATP7B: Emerging roles. International Journal of Biochemistry and Cell Biology, 2010, 42, 206-209.	1.2	67
13	Cardiac Copper Deficiency Activates a Systemic Signaling Mechanism that Communicates with the Copper Acquisition and Storage Organs. Cell Metabolism, 2010, 11, 353-363.	7.2	145
14	Bacterial metal-sensing proteins exemplified by ArsR–SmtB family repressors. Natural Product Reports, 2010, 27, 668.	5.2	116
15	Elucidation of the Functional Metal Binding Profile of a Cd ^{II} /Pb ^{II} Sensor CmtR ^{Sc} from <i>Streptomyces coelicolor</i> . Biochemistry, 2010, 49, 6617-6626.	1.2	17
16	A Molecular Mechanism for Bacterial Susceptibility to Zinc. PLoS Pathogens, 2011, 7, e1002357.	2.1	387
17	Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics, 2011, 3, 1109.	1.0	297
18	Bacterial Transition Metal P _{1B} -ATPases: Transport Mechanism and Roles in Virulence. Biochemistry, 2011, 50, 9940-9949.	1.2	101
19	A platform for copper pumps. Nature, 2011, 475, 41-42.	13.7	8
20	Mycobacterial P1-Type ATPases Mediate Resistance to Zinc Poisoning in Human Macrophages. Cell Host and Microbe, 2011, 10, 248-259.	5.1	304

#	Article	IF	CITATIONS
21	A Targetable Fluorescent Sensor Reveals That Copper-Deficient <i>SCO1</i> and <i>SCO2</i> Patient Cells Prioritize Mitochondrial Copper Homeostasis. Journal of the American Chemical Society, 2011, 133, 8606-8616.	6.6	255
22	Host Iron Withholding Demands Siderophore Utilization for Candida glabrata to Survive Macrophage Killing. PLoS Pathogens, 2011, 7, e1001322.	2.1	85
23	Advances in the Understanding of Mammalian Copper Transporters. Advances in Nutrition, 2011, 2, 129-137.	2.9	136
24	A novel copperâ€responsive regulon in <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2011, 79, 133-148.	1.2	141
25	The combined actions of the copperâ€responsive repressor CsoR and copperâ€metallochaperone CopZ modulate CopAâ€mediated copper efflux in the intracellular pathogen <i>Listeria monocytogenes</i> . Molecular Microbiology, 2011, 81, 457-472.	1.2	76
26	Copper: An essential metal in biology. Current Biology, 2011, 21, R877-R883.	1.8	783
27	Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo. Journal of Materials Science: Materials in Medicine, 2011, 22, 2525-2535.	1.7	107
28	The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. BioMetals, 2011, 24, 467-475.	1.8	106
29	War-Fe-re: iron at the core of fungal virulence and host immunity. BioMetals, 2011, 24, 547-558.	1.8	36
30	Advantages and challenges of increased antimicrobial copper use and copper mining. Applied Microbiology and Biotechnology, 2011, 91, 237-249.	1.7	32
31	Copper resistance is essential for virulence of <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1621-1626.	3.3	286
32	Control of Copper Resistance and Inorganic Sulfur Metabolism by Paralogous Regulators in Staphylococcus aureus. Journal of Biological Chemistry, 2011, 286, 13522-13531.	1.6	91
33	ATP7A-related copper transport diseases—emerging concepts and future trends. Nature Reviews Neurology, 2011, 7, 15-29.	4.9	494
34	Metal Sensing in Salmonella. Advances in Microbial Physiology, 2011, 58, 175-232.	1.0	37
35	Copper at the Front Line of the Host-Pathogen Battle. PLoS Pathogens, 2012, 8, e1002887.	2.1	86
36	Copper redistribution in murine macrophages in response to <i>Salmonella</i> infection. Biochemical Journal, 2012, 444, 51-57.	1.7	136
37	Phenotypic Characterization of a <i>copA</i> Mutant of Neisseria gonorrhoeae Identifies a Link between Copper and Nitrosative Stress. Infection and Immunity, 2012, 80, 1065-1071.	1.0	43
38	Sur7 Promotes Plasma Membrane Organization and Is Needed for Resistance to Stressful Conditions and to the Invasive Growth and Virulence of Candida albicans. MBio, 2012, 3, .	1.8	63

#	Article	IF	CITATIONS
39	Toward a Molecular Understanding of Metal Transport by P1B-Type ATPases. Current Topics in Membranes, 2012, 69, 113-136.	0.5	55
40	Incidence and prevalence of copper deficiency following roux-en-y gastric bypass surgery. International Journal of Obesity, 2012, 36, 328-335.	1.6	99
41	Copper Homeostasis at the Host-Pathogen Interface. Journal of Biological Chemistry, 2012, 287, 13549-13555.	1.6	251
42	Cellular Iron Distribution in Bacillus anthracis. Journal of Bacteriology, 2012, 194, 932-940.	1.0	31
43	Evolution of Copper Transporting ATPases in Eukaryotic Organisms. Current Genomics, 2012, 13, 124-133.	0.7	37
44	Elemental Economy. Advances in Microbial Physiology, 2012, 60, 91-210.	1.0	180
45	Energy metabolism and rheumatic diseases: from cell to organism. Arthritis Research and Therapy, 2012, 14, 216.	1.6	37
46	Metallobiology of host–pathogen interactions: an intoxicating new insight. Trends in Microbiology, 2012, 20, 106-112.	3.5	107
47	The siderophore yersiniabactin binds copper to protect pathogens during infection. Nature Chemical Biology, 2012, 8, 731-736.	3.9	263
48	Metalloregulation of Gram-positive pathogen physiology. Current Opinion in Microbiology, 2012, 15, 169-174.	2.3	34
49	Charting the travels of copper in eukaryotes from yeast to mammals. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1580-1593.	1.9	242
50	Copper in Microbial Pathogenesis: Meddling with the Metal. Cell Host and Microbe, 2012, 11, 106-115.	5.1	241
52	Staphylococcal response to oxidative stress. Frontiers in Cellular and Infection Microbiology, 2012, 2, 33.	1.8	174
54	Interferon-inducible effector mechanisms in cell-autonomous immunity. Nature Reviews Immunology, 2012, 12, 367-382.	10.6	461
55	Nutritional immunity: transition metals at the pathogen–host interface. Nature Reviews Microbiology, 2012, 10, 525-537.	13.6	1,256
56	Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity. Seminars in Immunopathology, 2012, 34, 215-235.	2.8	115
57	Mycobacteria and the Intraphagosomal Environment: Take It With a Pinch of Salt(s)!. Traffic, 2012, 13, 1042-1052.	1.3	97
58	Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload. Tuberculosis, 2012, 92, 202-210.	0.8	105

#	Article	IF	CITATIONS
59	Role in metal homeostasis of CtpD, a Co ²⁺ transporting P _{1B4} â€ATPase of <i>Mycobacterium smegmatis</i> . Molecular Microbiology, 2012, 84, 1139-1149.	1.2	50
60	Human Macrophage ATP7A is Localized in the trans-Golgi Apparatus, Controls Intracellular Copper Levels, and Mediates Macrophage Responses to Dermal Wounds. Inflammation, 2012, 35, 167-175.	1.7	25
61	Antimicrobial functions of inflammasomes. Current Opinion in Microbiology, 2013, 16, 311-318.	2.3	36
62	Production of LPS-induced inflammatory mediators in murine peritoneal macrophages: neocuproine as a broad inhibitor and ATP7A as a selective regulator. BioMetals, 2013, 26, 415-425.	1.8	10
63	Bacterial killing in macrophages and amoeba: do they all use a brass dagger?. Future Microbiology, 2013, 8, 1257-1264.	1.0	67
64	Synchrotron radiation X-ray fluorescence analysis of biodistribution and pulmonary toxicity of nanoscale titanium dioxide in mice. Analyst, The, 2013, 138, 6511.	1.7	20
65	LECT2 protects mice against bacterial sepsis by activating macrophages via the CD209a receptor. Journal of Experimental Medicine, 2013, 210, 5-13.	4.2	111
66	Cryptococcus neoformans Copper Detoxification Machinery Is Critical for Fungal Virulence. Cell Host and Microbe, 2013, 13, 265-276.	5.1	167
67	A new structural paradigm in copper resistance in Streptococcus pneumoniae. Nature Chemical Biology, 2013, 9, 177-183.	3.9	85
69	The Copper Metallome in Prokaryotic Cells. Metal Ions in Life Sciences, 2013, 12, 417-450.	2.8	64
70	Molecular characterization of an IL-1β gene from ayu, Plecoglossus altivelis. Fish and Shellfish Immunology, 2013, 34, 1253-1259.	1.6	32
71	Antimicrobial Action of Copper Is Amplified <i>via</i> Inhibition of Heme Biosynthesis. ACS Chemical Biology, 2013, 8, 2217-2223.	1.6	62
72	Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper. Bioscience Reports, 2013, 33, .	1.1	158
73	Copper: Effects of Deficiency and Overload. Metal lons in Life Sciences, 2013, 13, 359-387.	2.8	190
74	Iron in intracellular infection: to provide or to deprive?. Frontiers in Cellular and Infection Microbiology, 2013, 3, 96.	1.8	58
75	Copper-Boosting Compounds: a Novel Concept for Antimycobacterial Drug Discovery. Antimicrobial Agents and Chemotherapy, 2013, 57, 1089-1091.	1.4	56
76	Porins Increase Copper Susceptibility of Mycobacterium tuberculosis. Journal of Bacteriology, 2013, 195, 5133-5140.	1.0	38
77	Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Frontiers in Cellular and Infection Microbiology, 2013, 3, 90.	1.8	306

	CITATION	Report	
#	Article	IF	Citations
78	Regulation of Copper Toxicity by Candida albicans <i>GPA2</i> . Eukaryotic Cell, 2013, 12, 954-961.	3.4	25
79	Copper and Anesthesia: Clinical Relevance and Management of Copper Related Disorders. Anesthesiology Research and Practice, 2013, 2013, 1-10.	0.2	10
80	Novel Role of Copper Transport Protein Antioxidant-1 in Neointimal Formation After Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 805-813.	1.1	27
81	A Novel P1B-type Mn2+-transporting ATPase Is Required for Secreted Protein Metallation in Mycobacteria. Journal of Biological Chemistry, 2013, 288, 11334-11347.	1.6	86
82	A Multicopper Oxidase Is Required for Copper Resistance in Mycobacterium tuberculosis. Journal of Bacteriology, 2013, 195, 3724-3733.	1.0	77
83	Cellular glutathione plays a key role in copper uptake mediated by human copper transporter 1. American Journal of Physiology - Cell Physiology, 2013, 304, C768-C779.	2.1	145
84	MntABC and MntH Contribute to Systemic Staphylococcus aureus Infection by Competing with Calprotectin for Nutrient Manganese. Infection and Immunity, 2013, 81, 3395-3405.	1.0	173
85	Manganese acquisition and homeostasis at the host-pathogen interface. Frontiers in Cellular and Infection Microbiology, 2013, 3, 91.	1.8	111
86	The roles of transition metals in the physiology and pathogenesis of Streptococcus pneumoniae. Frontiers in Cellular and Infection Microbiology, 2013, 3, 92.	1.8	62
87	Role of transition metal exporters in virulence: the example of Neisseria meningitidis. Frontiers in Cellular and Infection Microbiology, 2013, 3, 102.	1.8	21
88	Neuroinflammation and Copper in Alzheimer's Disease. International Journal of Alzheimer's Disease, 2013, 2013, 1-12.	1.1	47
89	Upregulated Copper Transporters in Hypoxia-Induced Pulmonary Hypertension. PLoS ONE, 2014, 9, e90544.	1.1	44
90	Substituted Hydroxyapatites with Antibacterial Properties. BioMed Research International, 2014, 2014, 1-15.	0.9	183
91	Cu(I)-mediated Allosteric Switching in a Copper-sensing Operon Repressor (CsoR). Journal of Biological Chemistry, 2014, 289, 19204-19217.	1.6	50
92	Copper Complexation Screen Reveals Compounds with Potent Antibiotic Properties against Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2014, 58, 3727-3736.	1.4	55
93	The Copper-Responsive RicR Regulon Contributes to Mycobacterium tuberculosis Virulence. MBio, 2014, 5, .	1.8	61
94	Direct ROS Scavenging Activity of CueP from Salmonella enterica serovar Typhimurium. Molecules and Cells, 2014, 37, 100-108.	1.0	19
95	Host-specific induction of <i>Escherichia coli</i> fitness genes during human urinary tract infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18327-18332.	3.3	215

#	Article	IF	CITATIONS
96	Host restriction in <i>Salmonella</i> : insights from Rab GTPases. Cellular Microbiology, 2014, 16, 1321-1328.	1.1	14
97	Reciprocal functions of Cryptococcus neoformans copper homeostasis machinery during pulmonary infection and meningoencephalitis. Nature Communications, 2014, 5, 5550.	5.8	96
98	Metal limitation and toxicity at the interface between host and pathogen. FEMS Microbiology Reviews, 2014, 38, 1235-1249.	3.9	189
99	Metal Ion Homeostasis in Listeria monocytogenes and Importance in Host–Pathogen Interactions. Advances in Microbial Physiology, 2014, 65, 83-123.	1.0	21
100	Identification of functionally important conserved transâ€membrane residues of bacterial <scp>P_{IB}</scp> â€ŧype <scp>ATPases</scp> . Molecular Microbiology, 2014, 91, 777-789.	1.2	11
101	Metallobiology of Tuberculosis. Microbiology Spectrum, 2014, 2, .	1.2	24
102	Periplasmic disulfide isomerase DsbC is involved in the reduction of copper binding protein CueP from Salmonella enterica serovar Typhimurium. Biochemical and Biophysical Research Communications, 2014, 446, 971-976.	1.0	12
103	<i>Candida albicans</i> SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5866-5871.	3.3	99
104	Iron and copper as virulence modulators in human fungal pathogens. Molecular Microbiology, 2014, 93, 10-23.	1.2	103
105	Recent developments in copper and zinc homeostasis in bacterial pathogens. Current Opinion in Chemical Biology, 2014, 19, 59-66.	2.8	111
106	Identification of disulfide bond isomerase substrates reveals bacterial virulence factors. Molecular Microbiology, 2014, 94, 926-944.	1.2	50
107	Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15373-15378.	3.3	86
108	Copper Transport and Trafficking at the Host–Bacterial Pathogen Interface. Accounts of Chemical Research, 2014, 47, 3605-3613.	7.6	106
109	Cupric Yersiniabactin Is a Virulence-Associated Superoxide Dismutase Mimic. ACS Chemical Biology, 2014, 9, 551-561.	1.6	91
110	Exploiting Innate Immune Cell Activation of a Copper-Dependent Antimicrobial Agent during Infection. Chemistry and Biology, 2014, 21, 977-987.	6.2	76
111	Manipulation of the Mononuclear Phagocyte System by Mycobacterium tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a018549-a018549.	2.9	31
112	Essential Metals in Cryptococcus neoformans: Acquisition and Regulation. Current Fungal Infection Reports, 2014, 8, 153-162.	0.9	2
113	Wilson Disease Protein ATP7B Utilizes Lysosomal Exocytosis to Maintain Copper Homeostasis. Developmental Cell, 2014, 29, 686-700.	3.1	203

#	Article	IF	CITATIONS
114	Pathogenic adaptations to host-derived antibacterial copper. Frontiers in Cellular and Infection Microbiology, 2014, 4, 3.	1.8	103
115	Tetrathiomolybdate inhibits mitochondrial complex IV and mediates degradation of hypoxia-inducible factor-11± in cancer cells. Scientific Reports, 2015, 5, 14296.	1.6	38
116	Complete sequence and detailed analysis of the first indigenous plasmid from Xanthomonas oryzae pv. oryzicola. BMC Microbiology, 2015, 15, 233.	1.3	30
117	Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria. Antibiotics, 2015, 4, 379-396.	1.5	9
118	Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus. Pathogens, 2015, 4, 826-868.	1.2	151
119	A multicopper oxidase contributes to the copper tolerance of Brucella melitensis 16M. FEMS Microbiology Letters, 2015, 362, fnv078.	0.7	9
120	Copper at the Fungal Pathogen-Host Axis. Journal of Biological Chemistry, 2015, 290, 18945-18953.	1.6	78
121	Bacterial Copper Resistance and Virulence. , 2015, , 1-19.		9
122	Bone Marrow from Blotchy Mice Is Dispensable to Regulate Blood Copper and Aortic Pathologies but Required for Inflammatory Mediator Production in LDLR-Deficient Mice during Chronic Angiotensin II Infusion. Annals of Vascular Surgery, 2015, 29, 328-340.	0.4	6
123	Role of Copper Efflux in Pneumococcal Pathogenesis and Resistance to Macrophage-Mediated Immune Clearance. Infection and Immunity, 2015, 83, 1684-1694.	1.0	80
124	Serum copper to zinc ratio: Relationship with aging and health status. Mechanisms of Ageing and Development, 2015, 151, 93-100.	2.2	159
125	Back to the metal age: battle for metals at the host–pathogen interface during urinary tract infection. Metallomics, 2015, 7, 935-942.	1.0	67
126	Copper homeostasis in Mycobacterium tuberculosis. Metallomics, 2015, 7, 929-934.	1.0	30
127	Copper tolerance and virulence in bacteria. Metallomics, 2015, 7, 957-964.	1.0	235
128	Mycobacteria, metals, and the macrophage. Immunological Reviews, 2015, 264, 249-263.	2.8	178
129	Proteomic Analysis of Drug-Resistant Mycobacteria: Co-Evolution of Copper and INH Resistance. PLoS ONE, 2015, 10, e0127788.	1.1	6
130	The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens. Journal of Biological Chemistry, 2015, 290, 18954-18961.	1.6	324
131	Copper intoxication inhibits aerobic nucleotide synthesis in Streptococcus pneumoniae. Metallomics, 2015, 7, 786-794.	1.0	53

#	Article	IF	CITATIONS
132	Copper(II)-Bis(Thiosemicarbazonato) Complexes as Antibacterial Agents: Insights into Their Mode of Action and Potential as Therapeutics. Antimicrobial Agents and Chemotherapy, 2015, 59, 6444-6453.	1.4	59
133	Microbial Copper-binding Siderophores at the Host-Pathogen Interface. Journal of Biological Chemistry, 2015, 290, 18967-18974.	1.6	56
134	The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiological Reviews, 2015, 95, 749-784.	13.1	759
135	Characterization of Three <i>Mycobacterium</i> spp. with Potential Use in Bioremediation by Genome Sequencing and Comparative Genomics. Genome Biology and Evolution, 2015, 7, 1871-1886.	1.1	17
136	Role of intragenic binding of cAMP responsive protein (CRP) in regulation of the succinate dehydrogenase genes Rv0249c-Rv0247c in TB complex mycobacteria. Nucleic Acids Research, 2015, 43, 5377-5393.	6.5	29
137	Metal selectivity by the virulence-associated yersiniabactin metallophore system. Metallomics, 2015, 7, 1011-1022.	1.0	57
138	Mycobacterium tuberculosis and Copper: A Newly Appreciated Defense against an Old Foe?. Journal of Biological Chemistry, 2015, 290, 18962-18966.	1.6	32
139	Electrostatic Occlusion and Quaternary Structural Ion Pairing Are Key Determinants of Cu(I)-Mediated Allostery in the Copper-Sensing Operon Repressor (CsoR). Biochemistry, 2015, 54, 2463-2472.	1.2	15
140	Counteract of bone marrow of blotchy mice against the increases of plasma copper levels induced by high-fat diets in LDLRâ î/â îmice. Journal of Trace Elements in Medicine and Biology, 2015, 31, 11-17.	1.5	3
141	Host-imposed manganese starvation of invading pathogens: two routes to the same destination. BioMetals, 2015, 28, 509-519.	1.8	16
142	Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Transactions, 2015, 44, 6320-6339.	1.6	332
143	Macrophage defense mechanisms against intracellular bacteria. Immunological Reviews, 2015, 264, 182-203.	2.8	724
144	<i>Candida albicans</i> adapts to host copper during infection by swapping metal cofactors for superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5336-42.	3.3	102
145	Ctr2 Regulates Mast Cell Maturation by Affecting the Storage and Expression of Tryptase and Proteoglycans. Journal of Immunology, 2015, 195, 3654-3664.	0.4	14
146	Bacterial Metabolism Shapes the Host-Pathogen Interface. , 0, , 15-41.		7
147	Menkes disease: what a multidisciplinary approach can do. Journal of Multidisciplinary Healthcare, 2016, Volume 9, 371-385.	1.1	27
148	Copper Oxidation State and Mycobacterial Infection. Mycobacterial Diseases: Tuberculosis & Leprosy, 2016, 6, .	0.1	8
149	SOD Enzymes and Microbial Pathogens: Surviving the Oxidative Storm of Infection. PLoS Pathogens, 2016.12, e1005295	2.1	107

#	Article	IF	CITATIONS
150	Copper homeostasis at the host vibrio interface: lessons from intracellular vibrio transcriptomics. Environmental Microbiology, 2016, 18, 875-888.	1.8	45
151	Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway. Nature Communications, 2016, 7, 10640.	5.8	85
152	Bacterial Metabolism Shapes the Hostâ \in "Pathogen Interface. Microbiology Spectrum, 2016, 4, .	1.2	65
153	Evolution of Cell-Autonomous Effector Mechanisms in Macrophages versus Non-Immune Cells. Microbiology Spectrum, 2016, 4, .	1.2	21
154	Mechanisms of Salmonella Typhi Host Restriction. Advances in Experimental Medicine and Biology, 2016, 915, 283-294.	0.8	21
155	The Yin and Yang of copper during infection. Journal of Biological Inorganic Chemistry, 2016, 21, 137-144.	1.1	162
156	Transition Metals and Virulence in Bacteria. Annual Review of Genetics, 2016, 50, 67-91.	3.2	328
157	Competition for Manganese at the Host–Pathogen Interface. Progress in Molecular Biology and Translational Science, 2016, 142, 1-25.	0.9	23
158	Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Research, 2016, 44, gkw530.	6.5	238
159	8-Hydroxyquinolines Are Boosting Agents of Copper-Related Toxicity in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 5765-5776.	1.4	54
162	A role for copper in protozoan grazing – two billion years selecting for bacterial copper resistance. Molecular Microbiology, 2016, 102, 628-641.	1.2	82
163	Ceruloplasmin is regulated by copper and lactational hormones in PMC42-LA mammary epithelial cell culture models. Metallomics, 2016, 8, 941-950.	1.0	5
164	Bacterial Cu ⁺ -ATPases: models for molecular structure–function studies. Metallomics, 2016, 8, 906-914.	1.0	24
165	The emerging role of lysosomes in copper homeostasis. Metallomics, 2016, 8, 853-862.	1.0	64
166	Cationic and Anionic Substitutions in Hydroxyapatite. , 2016, , 145-211.		53
167	Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems. Journal of Vascular Research, 2015, 52, 172-196.	0.6	115
168	The S2 Cu(<scp>i</scp>) site in CupA from Streptococcus pneumoniae is required for cellular copper resistance. Metallomics, 2016, 8, 61-70.	1.0	18
169	Exploration of the Innate Immune System ofStyela clava: Zn2+Binding Enhances the Antimicrobial Activity of the Tunicate Peptide Clavanin A. Biochemistry, 2017, 56, 1403-1414.	1.2	28

#	Article	IF	CITATIONS
170	Targeting Phenotypically Tolerant <i>Mycobacterium tuberculosis</i> . Microbiology Spectrum, 2017, 5,	1.2	106
171	Transition Metal Homeostasis in Streptococcus pyogenes and Streptococcus pneumoniae. Advances in Microbial Physiology, 2017, 70, 123-191.	1.0	32
172	Metal homeostasis in bacteria: the role of ArsR–SmtB family of transcriptional repressors in combating varying metal concentrations in the environment. BioMetals, 2017, 30, 459-503.	1.8	40
173	Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense. Cell Reports, 2017, 19, 1008-1021.	2.9	95
174	Fungi that Infect Humans. Microbiology Spectrum, 2017, 5, .	1.2	149
175	Antimicrobial and bone-forming activity of a copper coated implant in a rabbit model. Journal of Biomaterials Applications, 2017, 32, 139-149.	1.2	41
176	Interplay between tolerance mechanisms to copper and acid stress in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6818-6823.	3.3	57
177	Metal homeostasis and resistance in bacteria. Nature Reviews Microbiology, 2017, 15, 338-350.	13.6	568
178	Iron Efflux by PmtA Is Critical for Oxidative Stress Resistance and Contributes Significantly to Group A Streptococcus Virulence. Infection and Immunity, 2017, 85, .	1.0	34
179	Copper and Antibiotics. Advances in Microbial Physiology, 2017, 70, 193-260.	1.0	96
180	Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization. Infection and Immunity, 2017, 85, .	1.0	48
181	Bacterial Proteasomes: Mechanistic and Functional Insights. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	36
182	Copper Chaperone CupA and Zinc Control CopY Regulation of the Pneumococcal <i>cop</i> Operon. MSphere, 2017, 2, .	1.3	19
183	<i>Cryptococcus neoformans</i> Iron-Sulfur Protein Biogenesis Machinery Is a Novel Layer of Protection against Cu Stress. MBio, 2017, 8, .	1.8	41
184	Zinc'ing it out: zinc homeostasis mechanisms and their impact on the pathogenesis of human pathogen group A streptococcus. Metallomics, 2017, 9, 1693-1702.	1.0	18
185	Transcriptome analysis and identification of significantly differentially expressed genes in Holstein calves subjected to severe thermal stress. International Journal of Biometeorology, 2017, 61, 1993-2008.	1.3	36
186	Copper Acquisition and Utilization in Fungi. Annual Review of Microbiology, 2017, 71, 597-623.	2.9	75
187	Growth of <i>Pseudomonas aeruginosa</i> in zinc poor environments is promoted by a nicotianamineâ€related metallophore. Molecular Microbiology, 2017, 106, 543-561.	1.2	84

#	Article	IF	CITATIONS
188	Cytoplasmic Copper Detoxification in Salmonella Can Contribute to SodC Metalation but Is Dispensable during Systemic Infection. Journal of Bacteriology, 2017, 199, .	1.0	21
189	Copper import in Escherichia coli by the yersiniabactin metallophore system. Nature Chemical Biology, 2017, 13, 1016-1021.	3.9	112
190	The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity. Advances in Microbial Physiology, 2017, 70, 315-379.	1.0	48
191	Development of copper-enriched porous coatings on ternary Ti-Nb-Zr alloy by plasma electrolytic oxidation. International Journal of Advanced Manufacturing Technology, 2017, 89, 2953-2965.	1.5	27
192	Host and Pathogen Copper-Transporting P-Type ATPases Function Antagonistically during Salmonella Infection. Infection and Immunity, 2017, 85, .	1.0	54
193	Evolution of Cell-Autonomous Effector Mechanisms in Macrophages versus Non-Immune Cells. , 2017, , 615-635.		0
194	Targeting Phenotypically Tolerant <i>Mycobacterium tuberculosis</i> ., 0, , 317-360.		6
195	Fungi that Infect Humans. , 2017, , 811-843.		8
196	Evolution of mobile genetic element composition in an epidemic methicillin-resistant Staphylococcus aureus: temporal changes correlated with frequent loss and gain events. BMC Genomics, 2017, 18, 684.	1.2	43
197	Elemental Ingredients in the Macrophage Cocktail: Role of ZIP8 in Host Response to Mycobacterium tuberculosis. International Journal of Molecular Sciences, 2017, 18, 2375.	1.8	27
199	Comparative Proteomic Analysis of Mycobacterium tuberculosis Lineage 7 and Lineage 4 Strains Reveals Differentially Abundant Proteins Linked to Slow Growth and Virulence. Frontiers in Microbiology, 2017, 8, 795.	1.5	34
200	Modulation of Zinc Homeostasis in Acanthamoeba castellanii as a Possible Antifungal Strategy against Cryptococcus gattii. Frontiers in Microbiology, 2017, 8, 1626.	1.5	9
201	Folding of copper proteins: role of the metal?. Quarterly Reviews of Biophysics, 2018, 51, e4.	2.4	23
202	Genomeâ€wide analysis of the regulation of Cu metabolism in <i>Cryptococcus neoformans</i> . Molecular Microbiology, 2018, 108, 473-494.	1.2	34
203	Bacterial copper storage proteins. Journal of Biological Chemistry, 2018, 293, 4616-4627.	1.6	48
204	For when bacterial infections persist: Toll-like receptor-inducible direct antimicrobial pathways in macrophages. Journal of Leukocyte Biology, 2018, 103, 35-51.	1.5	63
205	Metals in fungal virulence. FEMS Microbiology Reviews, 2018, 42, .	3.9	172
206	Copper Influences the Antibacterial Outcomes of a β-Lactamase-Activated Prochelator against Drug-Resistant Bacteria. ACS Infectious Diseases, 2018, 4, 1019-1029.	1.8	39

#	Article	IF	CITATIONS
207	Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy. Redox Biology, 2018, 16, 322-331.	3.9	39
208	Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens. ACS Infectious Diseases, 2018, 4, 893-903.	1.8	28
209	A horizontally gene transferred copper resistance locus confers hyperâ€resistance to antibacterial copper toxicity and enables survival of community acquired methicillin resistant <i>Staphylococcus aureus</i> USA300 in macrophages. Environmental Microbiology, 2018, 20, 1576-1589.	1.8	48
210	Role of divalent metals in infectious disease susceptibility and outcome. Clinical Microbiology and Infection, 2018, 24, 16-23.	2.8	96
211	Copper signaling in the brain and beyond. Journal of Biological Chemistry, 2018, 293, 4628-4635.	1.6	121
212	Metabolic adaptation of intracellular bacteria and fungi to macrophages. International Journal of Medical Microbiology, 2018, 308, 215-227.	1.5	25
213	Role of Calprotectin in Withholding Zinc and Copper from Candida albicans. Infection and Immunity, 2018, 86, .	1.0	98
214	Cu ²⁺ selective chelators relieve copper-induced oxidative stress <i>in vivo</i> . Chemical Science, 2018, 9, 7916-7930.	3.7	55
215	Organâ€ʿspecific expression of the divalent ion channel proteins NCKX3, TRPV2, CTR1, ATP7A, IREG1 and HEPH in various canine organs. Molecular Medicine Reports, 2018, 18, 1773-1781.	1.1	3
216	Localization of all four ZnT zinc transporters in <i>Dictyostelium</i> and impact of ZntA and B knockout on bacteria killing. Journal of Cell Science, 2018, 131, .	1.2	22
217	Macrophage activation by IFN-γ triggers restriction of phagosomal copper from intracellular pathogens. PLoS Pathogens, 2018, 14, e1007444.	2.1	42
219	The Zebrafish as a Model Host for Invasive Fungal Infections. Journal of Fungi (Basel, Switzerland), 2018, 4, 136.	1.5	47
220	Mobile-Genetic-Element-Encoded Hypertolerance to Copper Protects Staphylococcus aureus from Killing by Host Phagocytes. MBio, 2018, 9, .	1.8	33
221	Antimicrobial Resistance in Listeria Species. , 2018, , 237-259.		2
222	Antimicrobial and anti-biofilm activity of hexadentated macrocyclic complex of copper (II) derived from thiosemicarbazide against Staphylococcus aureus. Scientific Reports, 2018, 8, 8050.	1.6	42
223	The Cu-containing TiO2 coatings with modulatory effects on macrophage polarization and bactericidal capacity prepared by micro-arc oxidation on titanium substrates. Colloids and Surfaces B: Biointerfaces, 2018, 170, 242-250.	2.5	66
224	Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e180057.	0.8	69
225	Antimicrobial Resistance in <i>Listeria</i> Species. Microbiology Spectrum, 2018, 6, .	1.2	32

#	Article	IF	CITATIONS
226	Differential Effects of Iron, Zinc, and Copper on Dictyostelium discoideum Cell Growth and Resistance to Legionella pneumophila. Frontiers in Cellular and Infection Microbiology, 2017, 7, 536.	1.8	25
227	Heavy Metal-Induced Expression of PcaA Provides Cadmium Tolerance to Aspergillus fumigatus and Supports Its Virulence in the Galleria mellonella Model. Frontiers in Microbiology, 2018, 9, 744.	1.5	26
228	Contribution of ATPase copper transporters in animal but not plant virulence of the crossover pathogen <i>Aspergillus flavus</i> . Virulence, 2018, 9, 1273-1286.	1.8	29
229	Rv0474 is a copperâ€responsive transcriptional regulator that negatively regulates expression of <scp>RNA</scp> polymerase β subunit in <i>Mycobacterium tuberculosis</i> . FEBS Journal, 2018, 285, 3849-3869.	2.2	4
230	Phagosomal Copper-Promoted Oxidative Attack on Intracellular <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2018, 4, 1623-1634.	1.8	27
231	Cu(II) EPR Reveals Two Distinct Binding Sites and Oligomerization of Innate Immune Protein Calgranulin C. Applied Magnetic Resonance, 2018, 49, 1299-1311.	0.6	4
232	A preliminary investigation of metal element profiles in the serum of patients with bloodstream infections using inductively-coupled plasma mass spectrometry (ICP-MS). Clinica Chimica Acta, 2018, 485, 323-332.	0.5	10
233	Microbial Sensing by Intestinal Myeloid Cells Controls Carcinogenesis and Epithelial Differentiation. Cell Reports, 2018, 24, 2342-2355.	2.9	13
234	Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomolecular Concepts, 2018, 9, 64-79.	1.0	357
235	The iron hand of uropathogenic <i>Escherichia coli</i> : the role of transition metal control in virulence. Future Microbiology, 2018, 13, 745-756.	1.0	77
236	Modulatory Effect of the Supplemented Copper Ion on In Vitro Activity of Bovine Lactoferrin to Murine Splenocytes and RAW264.7 Macrophages. Biological Trace Element Research, 2019, 189, 519-528.	1.9	7
237	Copper Deficiency in Liver Diseases: A Case Series and Pathophysiological Considerations. Hepatology Communications, 2019, 3, 1159-1165.	2.0	25
238	Differential Susceptibility of Mycoplasma and Ureaplasma Species to Compound-Enhanced Copper Toxicity. Frontiers in Microbiology, 2019, 10, 1720.	1.5	12
239	Direct Resonance Raman Characterization of a Peroxynitrito Copper Complex Generated from O 2 and NO and Mechanistic Insights into Metalâ€Mediated Peroxynitrite Decomposition. Angewandte Chemie, 2019, 131, 11052-11056.	1.6	1
240	The Use of Copper as an Antimicrobial Agent in Health Care, Including Obstetrics and Gynecology. Clinical Microbiology Reviews, 2019, 32, .	5.7	98
241	Adaptation to Adversity: the Intermingling of Stress Tolerance and Pathogenesis in Enterococci. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	58
242	Micronutrients and many important factors that affect the physiological functions of toll-like receptors. Bulletin of the National Research Centre, 2019, 43, .	0.7	12
243	Activating macrophages for enhanced osteogenic and bactericidal performance by Cu ion release from micro/nano-topographical coating on a titanium substrate. Acta Biomaterialia. 2019. 100. 415-426.	4.1	111

#	Article	IF	CITATIONS
244	Zinc excess increases cellular demand for iron and decreases tolerance to copper in Escherichia coli. Journal of Biological Chemistry, 2019, 294, 16978-16991.	1.6	58
245	Copper stress in <i>Staphylococcus aureus</i> leads to adaptive changes in central carbon metabolism. Metallomics, 2019, 11, 183-200.	1.0	51
246	The evaluation of the anti ancer drug elesclomol that forms a redoxâ€active copper chelate as a potential antiâ€ŧubercular drug. IUBMB Life, 2019, 71, 532-538.	1.5	21
247	Plasma membrane architecture protects Candida albicans from killing by copper. PLoS Genetics, 2019, 15, e1007911.	1.5	37
248	Comparing the Metabolic Capabilities of Bacteria in the Mycobacterium tuberculosis Complex. Microorganisms, 2019, 7, 177.	1.6	27
249	The role of copper and zinc accumulation in defense against bacterial pathogen in the fujian oyster (Crassostrea angulata). Fish and Shellfish Immunology, 2019, 92, 72-82.	1.6	23
250	Direct Resonance Raman Characterization of a Peroxynitrito Copper Complex Generated from O ₂ and NO and Mechanistic Insights into Metalâ€Mediated Peroxynitrite Decomposition. Angewandte Chemie - International Edition, 2019, 58, 10936-10940.	7.2	19
251	Non-antibiotic adjunctive therapy: A promising approach to fight tuberculosis. Pharmacological Research, 2019, 146, 104289.	3.1	14
252	Histoplasma Responses to Nutritional Immunity Imposed by Macrophage Activation. Journal of Fungi (Basel, Switzerland), 2019, 5, 45.	1.5	13
253	Metals as phagocyte antimicrobial effectors. Current Opinion in Immunology, 2019, 60, 1-9.	2.4	99
254	Copper Homeostasis in Aspergillus fumigatus: Opportunities for Therapeutic Development. Frontiers in Microbiology, 2019, 10, 774.	1.5	13
255	Copper Utilization, Regulation, and Acquisition by Aspergillus fumigatus. International Journal of Molecular Sciences, 2019, 20, 1980.	1.8	30
256	Uropathogenic <i>Escherichia coli</i> employs both evasion and resistance to subvert innate immune-mediated zinc toxicity for dissemination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6341-6350.	3.3	60
257	A surface-engineered polyetheretherketone biomaterial implant with direct and immunoregulatory antibacterial activity against methicillin-resistant Staphylococcus aureus. Biomaterials, 2019, 208, 8-20.	5.7	122
258	Multicopper oxidases: Biocatalysts in microbial pathogenesis and stress management. Microbiological Research, 2019, 222, 1-13.	2.5	44
259	Pyrazolopyrimidinones, a novel class of copper-dependent bactericidal antibiotics against multi-drug resistant <i>S. aureus</i> . Metallomics, 2019, 11, 784-798.	1.0	8
260	Alternative Enzyme Protection Assay To Overcome the Drawbacks of the Gentamicin Protection Assay for Measuring Entry and Intracellular Survival of Staphylococci. Infection and Immunity, 2019, 87, .	1.0	23
261	P-type transport ATPases inLeishmaniaandTrypanosoma. Parasite, 2019, 26, 69.	0.8	11

#	Article	IF	CITATIONS
262	Heavy Metal Resistance Determinants of the Foodborne Pathogen Listeria monocytogenes. Genes, 2019, 10, 11.	1.0	38
263	The copBL operon protects Staphylococcus aureus from copper toxicity: CopL is an extracellular membrane–associated copper-binding protein. Journal of Biological Chemistry, 2019, 294, 4027-4044.	1.6	34
264	The role of metal ions in the virulence and viability of bacterial pathogens. Biochemical Society Transactions, 2019, 47, 77-87.	1.6	83
265	The Role of Copper Homeostasis at the Host-Pathogen Axis: From Bacteria to Fungi. International Journal of Molecular Sciences, 2019, 20, 175.	1.8	82
266	Low copper availability limits Helicobacter infection in mice. FEBS Journal, 2020, 287, 2948-2960.	2.2	5
267	A Cuâ€only superoxide dismutase from stripe rust fungi functions as a virulence factor deployed for counter defense against hostâ€derived oxidative stress. Environmental Microbiology, 2020, 22, 5309-5326.	1.8	11
268	A copper-dependent compound restores ampicillin sensitivity in multidrug-resistant Staphylococcus aureus. Scientific Reports, 2020, 10, 8955.	1.6	12
269	Copper detoxification machinery of the brain-eating amoeba Naegleria fowleri involves copper-translocating ATPase and the antioxidant system. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 126-135.	1.4	9
271	The bacterial copper resistance protein CopG contains a cysteine-bridged tetranuclear copper cluster. Journal of Biological Chemistry, 2020, 295, 11364-11376.	1.6	17
272	The Role of Zinc in Copper Homeostasis of Aspergillus fumigatus. International Journal of Molecular Sciences, 2020, 21, 7665.	1.8	5
273	Metabolic Adaptation of Paracoccidioides brasiliensis in Response to in vitro Copper Deprivation. Frontiers in Microbiology, 2020, 11, 1834.	1.5	10
274	Copper primes adaptation of uropathogenic Escherichia coli to superoxide stress by activating superoxide dismutases. PLoS Pathogens, 2020, 16, e1008856.	2.1	12
275	Space-Selective Chemodynamic Therapy of CuFe ₅ O ₈ Nanocubes for Implant-Related Infections. ACS Nano, 2020, 14, 13391-13405.	7.3	120
276	Role of Glutathione in Buffering Excess Intracellular Copper in <i>Streptococcus pyogenes</i> . MBio, 2020, 11, .	1.8	40
277	In Vivo Imaging with Genetically Encoded Redox Biosensors. International Journal of Molecular Sciences, 2020, 21, 8164.	1.8	33
278	Additive effects of metal excess and superoxide, a highly toxic mixture in bacteria. Microbial Biotechnology, 2020, 13, 1515-1529.	2.0	13
279	The copperâ€responsive ScsC protein of <i>Salmonella</i> promotes intramacrophage survival and interacts with the arginine sensor ArtI. FEBS Journal, 2020, 287, 3827-3840.	2.2	6
280	Multicopper oxidase of Acinetobacter baumannii: Assessing its role in metal homeostasis, stress management and virulence. Microbial Pathogenesis, 2020, 143, 104124.	1.3	5

#	Article	IF	CITATIONS
281	Characterization of Acinetobacter baumannii Copper Resistance Reveals a Role in Virulence. Frontiers in Microbiology, 2020, 11, 16.	1.5	38
282	Rules of Expansion: an Updated Consensus Operator Site for the CopR-CopY Family of Bacterial Copper Exporter System Repressors. MSphere, 2020, 5, .	1.3	9
283	Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Frontiers in Cellular and Infection Microbiology, 2020, 10, 326.	1.8	70
284	Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nature Communications, 2020, 11, 900.	5.8	108
285	Association between serum zinc and copper concentrations and copper/zinc ratio with the prevalence of knee chondrocalcinosis: a cross-sectional study. BMC Musculoskeletal Disorders, 2020, 21, 97.	0.8	4
286	Changes in mammalian copper homeostasis during microbial infection. Metallomics, 2020, 12, 416-426.	1.0	25
287	Copper tolerance in bacteria requires the activation of multiple accessory pathways. Molecular Microbiology, 2020, 114, 377-390.	1.2	118
288	Association of Circulating and Aortic Zinc and Copper Levels with Clinical Abdominal Aortic Aneurysm: a Meta-analysis. Biological Trace Element Research, 2021, 199, 513-526.	1.9	5
289	Antimicrobial zinc toxicity in Mϕs: ZnT1 pays the toll. Journal of Leukocyte Biology, 2021, 109, 281-282.	1.5	0
290	Common Signal Transduction Molecules Activated by Bacterial Entry into a Host Cell and by Reactive Oxygen Species. Antioxidants and Redox Signaling, 2021, 34, 486-503.	2.5	2
291	<i>Staphylococcus aureus</i> lacking a functional MntABC manganese import system has increased resistance to copper. Molecular Microbiology, 2021, 115, 554-573.	1.2	20
292	The Role of Macrophages in Staphylococcus aureus Infection. Frontiers in Immunology, 2020, 11, 620339.	2.2	129
293	Dual-temporal bidirectional immunomodulation of Cu-Zn Bi-layer nanofibrous membranes for sequentially enhancing antibacterial activity and osteogenesis. Applied Materials Today, 2021, 22, 100888.	2.3	17
294	Synthetic biology approaches to copper remediation: bioleaching, accumulation and recycling. FEMS Microbiology Ecology, 2021, 97, .	1.3	11
295	Obesity, malnutrition, and trace element deficiency in the coronavirus disease (COVID-19) pandemic: An overview. Nutrition, 2021, 81, 111016.	1.1	89
296	Copper nutrition and biochemistry and human (patho)physiology. Advances in Food and Nutrition Research, 2021, 96, 311-364.	1.5	21
297	An overview of <i>Salmonella enterica</i> metal homeostasis pathways during infection. MicroLife, 2021, 2, uqab001.	1.0	9
298	Transcription factor–driven alternative localization of Cryptococcus neoformans superoxide dismutase. Journal of Biological Chemistry, 2021, 296, 100391.	1.6	7

#	Article	IF	CITATIONS
300	Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chemical Reviews, 2021, 121, 2648-2712.	23.0	55
301	Cellular metabolism in the defense against microbes. Journal of Cell Science, 2021, 134, .	1.2	17
302	Advances in Understanding of the Copper Homeostasis in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 2021, 22, 2050.	1.8	14
305	Metabolomic alterations associated with copper stress in <i>Cryptococcus neoformans</i> . Future Microbiology, 2021, 16, 305-316.	1.0	5
307	Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respiratory Research, 2021, 22, 133.	1.4	32
308	Emerging role of ferrous iron in bacterial growth and host–pathogen interaction: New tools for chemical (micro)biology and antibacterial therapy. Current Opinion in Chemical Biology, 2021, 61, 170-178.	2.8	12
309	Copper Handling in the Salmonella Cell Envelope and Its Impact on Virulence. Trends in Microbiology, 2021, 29, 384-387.	3.5	8
310	Unraveling the implications of multiple histidine residues in the potent antimicrobial peptide Gaduscidin-1. Journal of Inorganic Biochemistry, 2021, 219, 111391.	1.5	10
311	Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. EcoSal Plus, 2021, 9, eESP00142020.	2.1	18
312	Computational Investigation of the pH Dependence of Stability of Melanosome Proteins: Implication for Melanosome formation and Disease. International Journal of Molecular Sciences, 2021, 22, 8273.	1.8	2
313	Copper in infectious disease: Using both sides of the penny. Seminars in Cell and Developmental Biology, 2021, 115, 19-26.	2.3	16
315	Proteomic Analysis of Copper Toxicity in Human Fungal Pathogen Cryptococcus neoformans. Frontiers in Cellular and Infection Microbiology, 2021, 11, 662404.	1.8	5
316	Potential molecular mechanisms of zinc- and copper-mediated antiviral activity on COVID-19. Nutrition Research, 2021, 92, 109-128.	1.3	42
317	A genome-wide screen reveals the involvement of enterobactin-mediated iron acquisition in <i>Escherichia coli</i> survival during copper stress. Metallomics, 2021, 13, .	1.0	11
318	Characterization of Global Gene Expression, Regulation of Metal Ions, and Infection Outcomes in Immune-Competent 129S6 Mouse Macrophages. Infection and Immunity, 2021, 89, e0027321.	1.0	2
319	The Role of Copper in the Regulation of Ferroportin Expression in Macrophages. Cells, 2021, 10, 2259.	1.8	4
320	The effects of TiO2 nanotubes on the biocompatibility of 3D printed Cu-bearing TC4 alloy. Materials and Design, 2021, 207, 109831.	3.3	17
321	Copper Intoxication in Group B Streptococcus Triggers Transcriptional Activation of the <i>cop</i> Operon That Contributes to Enhanced Virulence during Acute Infection. Journal of Bacteriology, 2021,	1.0	12

#	Article	IF	CITATIONS
323	Transcriptional and Translational Responsiveness of the Neisseria gonorrhoeae Type IV Secretion System to Conditions of Host Infections. Infection and Immunity, 2021, 89, e0051921.	1.0	5
324	Demonstration of <i>N</i> , <i>N</i> -Dimethyldithiocarbamate as a Copper-Dependent Antibiotic against Multiple Upper Respiratory Tract Pathogens. Microbiology Spectrum, 2021, 9, e0077821.	1.2	12
325	Copper Resistance Promotes Fitness of Methicillin-Resistant Staphylococcus aureus during Urinary Tract Infection. MBio, 2021, 12, e0203821.	1.8	17
326	The impact of metal availability on immune function during infection. Trends in Endocrinology and Metabolism, 2021, 32, 916-928.	3.1	31
328	Copper and lipid metabolism: A reciprocal relationship. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129979.	1.1	26
329	Streamlined copper defenses make Bordetella pertussis reliant on custom-made operon. Communications Biology, 2021, 4, 46.	2.0	8
330	Pathogenicity and virulence of <i>Bordetella pertussis</i> and its adaptation to its strictly human host. Virulence, 2021, 12, 2608-2632.	1.8	26
331	Cationic and Anionic Substitutions in Hydroxyapatite. , 2015, , 1-68.		7
332	Copper in Prokaryotes. 2-Oxoglutarate-Dependent Oxygenases, 2014, , 461-499.	0.8	2
334	Metallobiology of Tuberculosis. , 0, , 377-387.		2
335	Conditional Knockout of the Menkes Disease Copper Transporter Demonstrates Its Critical Role in Embryogenesis. PLoS ONE, 2012, 7, e43039.	1.1	24
336	Crystal Structure of DsbA from Corynebacterium diphtheriae and Its Functional Implications for CueP in Gram-Positive Bacteria. Molecules and Cells, 2015, 38, 715-722.	1.0	7
337	Immunomodulators in Day to Day Life: A Review. Pakistan Journal of Biological Sciences, 2013, 16, 826-843.	0.2	32
338	Copper in tumors and the use of copper-based compounds in cancer treatment. Journal of Inorganic Biochemistry, 2022, 226, 111634.	1.5	109
339	Magnesium, Copper and Cobalt. , 2017, , 81-94.		0
340	Trace Element Levels, Cytokine Profile and Immune Activation Status in Plasma among Repeat Blood Donors with Asymptomatic HIV-1, HBV and HCV Infection. Journal of Biosciences and Medicines, 2017, 05, 75-94.	0.1	0
342	Low function of natural killer cells in treated classic menkes disease. Turkish Journal of Pediatrics, 2020, 62, 498.	0.3	1
344	Biosynthesis of fluopsin C, a copper-containing antibiotic from <i>Pseudomonas aeruginosa</i> . Science, 2021, 374, 1005-1009.	6.0	50

#	Article	IF	CITATIONS
345	A periplasmic cupredoxin with a green CuT1.5 center is involved in bacterial copper tolerance. Metallomics, 2021, 13, .	1.0	5
346	The <i>Yersinia</i> High-Pathogenicity Island Encodes a Siderophore-Dependent Copper Response System in Uropathogenic Escherichia coli. MBio, 2022, 13, e0239121.	1.8	13
347	Probable Reasons for Neuron Copper Deficiency in the Brain of Patients with Alzheimer's Disease: The Complex Role of Amyloid. Inorganics, 2022, 10, 6.	1.2	5
348	A novel leishmanial copper P-type ATPase plays a vital role in parasite infection and intracellular survival. Journal of Biological Chemistry, 2022, 298, 101539.	1.6	5
349	Exploring synergy and its role in antimicrobial peptide biology. Methods in Enzymology, 2022, 663, 99-130.	0.4	5
350	From Copper Tolerance to Resistance in Pseudomonas aeruginosa towards Patho-Adaptation and Hospital Success. Genes, 2022, 13, 301.	1.0	18
352	<i>N</i> , <i>N</i> -Dimethyldithiocarbamate Elicits Pneumococcal Hypersensitivity to Copper and Macrophage-Mediated Clearance. Infection and Immunity, 2022, 90, e0059721.	1.0	4
354	A review on the antimicrobial and antibiofilm activity of doped hydroxyapatite and its composites for biomedical applications. Materials Today Communications, 2022, 31, 103311.	0.9	11
355	Transcriptomic analysis of <i>Streptococcus agalactiae</i> periprosthetic joint infection. MicrobiologyOpen, 2021, 10, e1256.	1.2	3
356	The Copper Resistome of Group B Streptococcus Reveals Insight into the Genetic Basis of Cellular Survival during Metal Ion Stress. Journal of Bacteriology, 2022, 204, e0006822.	1.0	3
357	Role of horizontally transferred copper resistance genes in Staphylococcus aureus and Listeria monocytogenes. Microbiology (United Kingdom), 2022, 168, .	0.7	6
358	The aldehyde hypothesis: metabolic intermediates as antimicrobial effectors. Open Biology, 2022, 12, 220010.	1.5	6
370	CtpB Facilitates Mycobacterium tuberculosis Growth in Copper-Limited Niches. International Journal of Molecular Sciences, 2022, 23, 5713.	1.8	3
371	Acclimation to Nutritional Immunity and Metal Intoxication Requires Zinc, Manganese, and Copper Homeostasis in the Pathogenic Neisseriae. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	9
372	Periplasmic oxidized-protein repair during copper stress in E. coli: A focus on the metallochaperone CusF. PLoS Genetics, 2022, 18, e1010180.	1.5	5
373	Trace metals at the frontline of pathogen defence responses in non-hyperaccumulating plants. Journal of Experimental Botany, 2022, 73, 6516-6524.	2.4	2
374	Regulatory cross-talk supports resistance to Zn intoxication in Streptococcus. PLoS Pathogens, 2022, 18, e1010607.	2.1	4
375	Copper microenvironments in the human body define patterns of copper adaptation in pathogenic bacteria. PLoS Pathogens, 2022, 18, e1010617.	2.1	26

#	Article	IF	CITATIONS
376	A novel Zn2-Cys6 transcription factor clcAÂcontributes to copper homeostasis in Aspergillus fumigatus. Current Genetics, 2022, 68, 605-617.	0.8	2
377	Mycobacterial resistance to zinc poisoning requires assembly of P-ATPase-containing membrane metal efflux platforms. Nature Communications, 2022, 13, .	5.8	7
378	Streptococcus agalactiae cadD alleviates metal stress and promotes intracellular survival in macrophages and ascending infection during pregnancy. Nature Communications, 2022, 13, .	5.8	13
380	Metallophores: How do human pathogens withdraw metal ions from the colonized host. , 2023, , 553-574.		2
381	Contribution of Arginine Catabolic Mobile Element and Copper and Mercury Resistance Element in Methicillin-Resistant Staphylococcus aureus: A Vantage Point. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022, 2022, 1-9.	0.7	0
382	Oxidation state-specific fluorescent copper sensors reveal oncogene-driven redox changes that regulate labile copper(II) pools. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	16
383	Bacterial envelope stress responses: Essential adaptors and attractive targets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2023, 1870, 119387.	1.9	6
384	The Role of Copper Homeostasis in Brain Disease. International Journal of Molecular Sciences, 2022, 23, 13850.	1.8	30
385	Relationship between copper and immunity: The potential role of copper in tumor immunity. Frontiers in Oncology, 0, 12, .	1.3	22
386	Copper acquisition and detoxification machineries are conserved in dimorphic fungi. Fungal Biology Reviews, 2023, 44, 100296.	1.9	1
387	Antibiotic resistance and host immune system-induced metal bactericidal control are key factors for microbial persistence in the developing human preterm infant gut microbiome. Frontiers in Microbiology, 0, 13, .	1.5	0
388	Host-Mediated Copper Stress Is Not Protective against Streptococcus pneumoniae D39 Infection. Microbiology Spectrum, 2022, 10, .	1.2	3
389	Markers of immune dysregulation in response to the ageing gut: insights from aged murine gut microbiota transplants. BMC Gastroenterology, 2022, 22, .	0.8	4
390	Mutations in <i>troABCD</i> against Copper Overload in a <i>copA</i> Mutant of Streptococcus suis. Applied and Environmental Microbiology, 2023, 89, .	1.4	2
391	The role of CopA in Streptococcus pyogenes copper homeostasis and virulence. Journal of Inorganic Biochemistry, 2023, 240, 112122.	1.5	2
392	Why is manganese so valuable to bacterial pathogens?. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	1
393	Excess copper catalyzes protein disulfide bond formation in the bacterial periplasm but not in the cytoplasm. Molecular Microbiology, 2023, 119, 423-438.	1.2	5
394	Identification and Analysis of Fungal-Specific Regions in the Aspergillus fumigatus Cu Exporter CrpA That Are Essential for Cu Resistance but Not for Virulence. International Journal of Molecular Sciences, 2023, 24, 3705.	1.8	0

#	Article	IF	CITATIONS
396	Copper deficiency is an independent risk factor for mortality in patients with advanced liver disease. Hepatology Communications, 2023, 7, e0076-e0076.	2.0	2
397	Phagotrophic Protists Modulate Copper Resistance of the Bacterial Community in Soil. Environmental Science & Technology, 2023, 57, 3590-3601.	4.6	4
398	Circulating levels of micronutrients and risk of infections: a Mendelian randomization study. BMC Medicine, 2023, 21, .	2.3	16
399	A surface metal ion-modified 3D-printed Ti-6Al-4V implant with direct and immunoregulatory antibacterial and osteogenic activity. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	1
400	Copper Efflux System Required in Murine Lung Infection by Haemophilus influenzae Composed of a Canonical ATPase Gene and Tandem Chaperone Gene Copies. Infection and Immunity, 2023, 91, .	1.0	1
401	Linking Copper-Associated Signal Transduction Systems with Their Environment in Marine Bacteria. Microorganisms, 2023, 11, 1012.	1.6	0