Phosphate Starvation Responses and Gibberellic Acid B MYB62 Transcription Factor in Arabidopsis

Molecular Plant 2, 43-58 DOI: 10.1093/mp/ssn081

Citation Report

#	Article	IF	CITATIONS
1	The WRKY6 Transcription Factor Modulates <i>PHOSPHATE1</i> Expression in Response to Low Pi Stress in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 3554-3566.	3.1	366
2	Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiologia Plantarum, 2010, 139, 129-143.	2.6	122
3	A Central Regulatory System Largely Controls Transcriptional Activation and Repression Responses to Phosphate Starvation in Arabidopsis. PLoS Genetics, 2010, 6, e1001102.	1.5	583
4	A Glutathione <i>S</i> -Transferase Regulated by Light and Hormones Participates in the Modulation of Arabidopsis Seedling Development. Plant Physiology, 2010, 154, 1646-1658.	2.3	107
5	Roles of Arabidopsis Patatin-Related Phospholipases A in Root Development Are Related to Auxin Responses and Phosphate Deficiency. Molecular Plant, 2010, 3, 524-538.	3.9	97
6	Regulation of Phosphate Starvation Responses in Plants: Signaling Players and Cross-Talks. Molecular Plant, 2010, 3, 288-299.	3.9	334
7	Regulation of phosphate starvation responses in higher plants. Annals of Botany, 2010, 105, 513-526.	1.4	142
8	MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010, 15, 573-581.	4.3	2,987
9	Comprehensive Sequence and Whole-Life-Cycle Expression Profile Analysis of the Phosphate Transporter Gene Family in Rice. Molecular Plant, 2011, 4, 1105-1122.	3.9	134
10	Sensing and Signaling of PO 4 3â [~] . Signaling and Communication in Plants, 2011, , 191-224.	0.5	1
11	Phosphate import in plants: focus on the PHT1 transporters. Frontiers in Plant Science, 2011, 2, 83.	1.7	427
12	Signaling Network in Sensing Phosphate Availability in Plants. Annual Review of Plant Biology, 2011, 62, 185-206.	8.6	682
13	Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in Arabidopsis. Plant Journal, 2011, 65, 557-570.	2.8	130
14	Control of root hair development in <i>Arabidopsis thaliana</i> by an endoplasmic reticulum anchored member of the R2R3â€MYB transcription factor family. Plant Journal, 2011, 67, 395-405.	2.8	40
15	Ethylene signalling is involved in regulation of phosphate starvationâ€induced gene expression and production of acid phosphatases and anthocyanin in <i>Arabidopsis</i> . New Phytologist, 2011, 189, 1084-1095.	3.5	172
16	Identification of two conserved <i>cis</i> â€acting elements, MYCS and P1BS, involved in the regulation of mycorrhizaâ€activated phosphate transporters in eudicot species. New Phytologist, 2011, 189, 1157-1169.	3.5	114
17	The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. BMC Plant Biology, 2011, 11, 19.	1.6	112
18	Development of gene-based markers from functional Arabidopsis thaliana genes involved in phosphorus homeostasis and mapping in Brassica napus. Euphytica, 2011, 181, 305.	0.6	12

CITATION REPORT

#	Article	IF	CITATIONS
19	Real-time RT-PCR profiling of transcription factors including 34 MYBs and signaling components in white lupin reveals their P status dependent and organ-specific expression. Plant and Soil, 2011, 342, 481-493.	1.8	10
20	The Role of the miR399-PHO2 Module in the Regulation of Flowering Time in Response to Different Ambient Temperatures in Arabidopsis thaliana. Molecules and Cells, 2011, 32, 83-88.	1.0	113
21	Transcriptional Regulatory Components Responding to Macronutrient Limitation. Journal of Plant Biology, 2011, 54, 286-293.	0.9	17
22	Molecular mechanisms regulating Pi-signaling and Pi homeostasis under OsPHR2, a central Pi-signaling regulator, in rice. Frontiers in Biology, 2011, 6, 242-245.	0.7	14
23	MAX4 gene is involved in the regulation of low inorganic phosphate stress responses in Arabidopsis thaliana. Acta Physiologiae Plantarum, 2011, 33, 867-875.	1.0	2
24	Root architecture remodeling induced by phosphate starvation. Plant Signaling and Behavior, 2011, 6, 1122-1126.	1.2	33
25	Phosphate Deprivation in Maize: Genetics and Genomics. Plant Physiology, 2011, 156, 1067-1077.	2.3	83
26	Sugar Signaling in Root Responses to Low Phosphorus Availability. Plant Physiology, 2011, 156, 1033-1040.	2.3	154
27	The Arabidopsis gene HYPERSENSITIVE TO PHOSPHATE STARVATION 3 encodes ETHYLENE OVERPRODUCTION 1. Plant and Cell Physiology, 2012, 53, 1093-1105.	1.5	46
28	Functional analysis of the Arabidopsis PLDZ2 promoter reveals an evolutionarily conserved low-Pi-responsive transcriptional enhancer element. Journal of Experimental Botany, 2012, 63, 2189-2202.	2.4	36
29	<i>OsMYB2P-1</i> , an R2R3 MYB Transcription Factor, Is Involved in the Regulation of Phosphate-Starvation Responses and Root Architecture in Rice Â. Plant Physiology, 2012, 159, 169-183.	2.3	231
30	Water Deficit Affected Flavonoid Accumulation by Regulating Hormone Metabolism in Scutellaria baicalensis Georgi Roots. PLoS ONE, 2012, 7, e42946.	1.1	80
31	Regulation of <i>miR399f</i> Transcription by AtMYB2 Affects Phosphate Starvation Responses in Arabidopsis Â. Plant Physiology, 2012, 161, 362-373.	2.3	146
32	Brassica napus PHR1 Gene Encoding a MYB-Like Protein Functions in Response to Phosphate Starvation. PLoS ONE, 2012, 7, e44005.	1.1	80
33	Transcriptional regulation of phosphate acquisition by higher plants. Cellular and Molecular Life Sciences, 2012, 69, 3207-3224.	2.4	77
34	A Novel Rice Gene, NRR Responds to Macronutrient Deficiency and Regulates Root Growth. Molecular Plant, 2012, 5, 63-72.	3.9	31
35	Functional characterization of the rice <i>SPXâ€MFS</i> family reveals a key role of <i>OsSPXâ€MFS1</i> in controlling phosphate homeostasis in leaves. New Phytologist, 2012, 196, 139-148.	3.5	139
36	Overexpression of a wheat MYB transcription factor gene, TaMYB56-B, enhances tolerances to freezing and salt stresses in transgenic Arabidopsis. Gene, 2012, 505, 100-107.	1.0	41

#	Article	IF	CITATIONS
37	A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. Journal of Experimental Botany, 2012, 63, 5873-5885.	2.4	142
40	Regulation of Shoot and Root Development through Mutual Signaling. Molecular Plant, 2012, 5, 974-983.	3.9	78
41	Overexpression of a Maize Transcription Factor ZmPHR1 Improves Shoot Inorganic Phosphate Content and Growth of Arabidopsis under Low-Phosphate Conditions. Plant Molecular Biology Reporter, 2013, 31, 665-677.	1.0	33
42	MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants, 2013, 19, 307-321.	1.4	750
43	CandidatusLiberibacter americanus induces significant reprogramming of the transcriptome of the susceptible citrus genotype. BMC Genomics, 2013, 14, 247.	1.2	82
44	Common bean (Phaseolus vulgarisL.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency. BMC Plant Biology, 2013, 13, 26.	1.6	48
45	The Rice â€`Nutrition Response and Root Growth' (NRR) Gene Regulates Heading Date. Molecular Plant, 2013, 6, 585-588.	3.9	9
46	The R2R3-MYB–Like Regulatory Factor EOBI, Acting Downstream of EOBII, Regulates Scent Production by Activating <i>ODO1</i> and Structural Scent-Related Genes in Petunia Â. Plant Cell, 2013, 24, 5089-5105.	3.1	114
47	Loss of the R2R3 MYB, AtMyb73, causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis. Journal of Plant Physiology, 2013, 170, 1461-1465.	1.6	129
48	Two Common Bean Genotypes with Contrasting Response to Phosphorus Deficiency Show Variations in the microRNA 399-Mediated PvPHO2 Regulation within the PvPHR1 Signaling Pathway. International Journal of Molecular Sciences, 2013, 14, 8328-8344.	1.8	37
49	An RNA-Seq Transcriptome Analysis of Orthophosphate-Deficient White Lupin Reveals Novel Insights into Phosphorus Acclimation in Plants Â. Plant Physiology, 2013, 161, 705-724.	2.3	184
50	Altered expression of <i><scp>C</scp>m<scp>NRR</scp>a</i> changes flowering time of <i><scp>C</scp>hrysanthemum morifolium</i> . Plant Biotechnology Journal, 2013, 11, 373-379.	4.1	5
51	Physiological, biochemical and molecular responses to a combination of drought and ozone in <i>Medicago truncatula</i> . Plant, Cell and Environment, 2013, 36, 706-720.	2.8	88
53	The Scutellaria baicalensis R2R3-MYB Transcription Factors Modulates Flavonoid Biosynthesis by Regulating GA Metabolism in Transgenic Tobacco Plants. PLoS ONE, 2013, 8, e77275.	1.1	26
54	Root Development and Abiotic Stress Adaptation. , 0, , .		17
55	Sequence and Ionomic Analysis of Divergent Strains of Maize Inbred Line B73 with an Altered Growth Phenotype. PLoS ONE, 2014, 9, e96782.	1.1	13
56	Arabidopsis WRKY45 Transcription Factor Activates <i>PHOSPHATE TRANSPORTER1;1</i> Expression in Response to Phosphate Starvation Â. Plant Physiology, 2014, 164, 2020-2029.	2.3	226
57	<i>ETHYLENE RESPONSE FACTOR070</i> Regulates Root Development and Phosphate Starvation-Mediated Responses Â. Plant Physiology, 2014, 164, 1484-1498.	2.3	51

#	Article	IF	CITATIONS
58	Activation of <scp>MKK</scp> 9â€ <scp>MPK</scp> 3/ <scp>MPK</scp> 6 enhances phosphate acquisition in <i>Arabidopsis thaliana</i> . New Phytologist, 2014, 203, 1146-1160.	3.5	53
59	GmPHR1, a Novel Homolog of the AtPHR1 Transcription Factor, Plays a Role in Plant Tolerance to Phosphate Starvation. Journal of Integrative Agriculture, 2014, 13, 2584-2593.	1.7	10
60	Phosphate Nutrition: Improving Low-Phosphate Tolerance in Crops. Annual Review of Plant Biology, 2014, 65, 95-123.	8.6	634
61	Root associated iron oxidizing bacteria increase phosphate nutrition and influence root to shoot partitioning of iron in tolerant plant Typha angustifolia. Plant and Soil, 2014, 381, 279-295.	1.8	19
62	Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?. Annals of Botany, 2014, 113, 19-33.	1.4	127
63	MicroRNA-mediated surveillance of phosphate transporters on the move. Trends in Plant Science, 2014, 19, 647-655.	4.3	59
64	Phosphoproteome and proteome analyses reveal low-phosphate mediated plasticity of root developmental and metabolic regulation in maize (Zea mays L.). Plant Physiology and Biochemistry, 2014, 83, 232-242.	2.8	16
65	Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. Journal of Experimental Botany, 2014, 65, 5725-5741.	2.4	109
66	Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. Journal of Integrative Plant Biology, 2014, 56, 192-220.	4.1	328
67	Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in Salvia miltiorrhiza. BMC Genomics, 2014, 15, 277.	1.2	92
68	Overexpression of OsMYB4P, an R2R3-type MYB transcriptional activator, increases phosphate acquisition in rice. Plant Physiology and Biochemistry, 2014, 80, 259-267.	2.8	66
69	Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches. Critical Reviews in Biotechnology, 2014, 34, 16-30.	5.1	88
70	Identification of Candidate Genes Associated with Leaf Senescence in Cultivated Sunflower (Helianthus annuus L.). PLoS ONE, 2014, 9, e104379.	1.1	20
71	Identification and Characterization of 40 Isolated Rehmannia glutinosa MYB Family Genes and Their Expression Profiles in Response to Shading and Continuous Cropping. International Journal of Molecular Sciences, 2015, 16, 15009-15030.	1.8	19
72	Strigolactone Regulates Anthocyanin Accumulation, Acid Phosphatases Production and Plant Growth under Low Phosphate Condition in Arabidopsis. PLoS ONE, 2015, 10, e0119724.	1.1	50
73	Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Frontiers in Plant Science, 2015, 06, 290.	1.7	189
74	WRKY42 Modulates Phosphate Homeostasis through Regulating Phosphate Translocation and Acquisition in Arabidopsis Â. Plant Physiology, 2015, 167, 1579-1591.	2.3	153
75	Transcription factors involved in acid stress responses in plants. Nucleus (India), 2015, 58, 191-197.	0.9	9

#	Article	IF	CITATIONS
76	An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis. Plant, Cell and Environment, 2015, 38, 1591-1612.	2.8	53
77	A novel repressor of floral transition, MEE3, an abiotic stress regulated protein, functions as an activator of FLC by binding to its promoter in Arabidopsis. Environmental and Experimental Botany, 2015, 113, 1-10.	2.0	19
78	The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation. Journal of Experimental Botany, 2015, 66, 1907-1918.	2.4	146
79	miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis. Plant Science, 2015, 238, 273-285.	1.7	33
80	A new insight into root responses to external cues: Paradigm shift in nutrient sensing. Plant Signaling and Behavior, 2015, 10, e1049791.	1.2	7
81	Transcriptomic insights into antagonistic effects of gibberellin and abscisic acid on petal growth in Gerbera hybrida. Frontiers in Plant Science, 2015, 6, 168.	1.7	35
82	Arabidopsis RING E3 ubiquitin ligase AtATL80 is negatively involved inÂphosphate mobilization and cold stress response in sufficient phosphate growth conditions. Biochemical and Biophysical Research Communications, 2015, 463, 793-799.	1.0	41
86	Interaction between carbon metabolism and phosphate accumulation is revealed by a mutation of a cellulose synthase-like protein, CSLF6. Journal of Experimental Botany, 2015, 66, 2557-2567.	2.4	16
87	Linking phosphorus availability with photo-oxidative stress in plants. Journal of Experimental Botany, 2015, 66, 2889-2900.	2.4	115
88	Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotechnology Advances, 2015, 33, 303-316.	6.0	53
89	MYB transcription factors, active players in abiotic stress signaling. Environmental and Experimental Botany, 2015, 114, 80-91.	2.0	243
90	BOTRYTIS-INDUCED KINASE1, a plasma membrane-localized receptor-like protein kinase, is a negative regulator of phosphate homeostasis in Arabidopsis thaliana. BMC Plant Biology, 2016, 16, 152.	1.6	14
91	Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress. Frontiers in Plant Science, 2016, 7, 180.	1.7	94
92	Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission. Scientific Reports, 2016, 6, 32006.	1.6	27
93	Regulation of phosphorus uptake and utilization: transitioning from current knowledge to practical strategies. Cellular and Molecular Biology Letters, 2016, 21, 7.	2.7	51
94	Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii. Scientific Reports, 2016, 6, 22980.	1.6	103
95	Arabidopsis MYB-Related HHO2 Exerts a Regulatory Influence on a Subset of Root Traits and Genes Governing Phosphate Homeostasis. Plant and Cell Physiology, 2016, 57, 1142-1152.	1.5	38
96	Identification, isolation and expression analysis of eight stress-related R2R3-MYB genes in tartary buckwheat (Fagopyrum tataricum). Plant Cell Reports, 2016, 35, 1385-1396.	2.8	37

#	Article	IF	CITATIONS
97	Responses of miRNAs and their target genes to nitrogen- or phosphorus-deficiency in grafted cucumber seedlings. Horticulture Environment and Biotechnology, 2016, 57, 97-112.	0.7	8
98	Soybean SPX1 is an important component of the response to phosphate deficiency for phosphorus homeostasis. Plant Science, 2016, 248, 82-91.	1.7	43
99	Pi sensing and signalling: from prokaryotic to eukaryotic cells. Biochemical Society Transactions, 2016, 44, 766-773.	1.6	20
100	Systematic characterization of novel lncRNAs responding to phosphate starvation in Arabidopsis thaliana. BMC Genomics, 2016, 17, 655.	1.2	113
101	Proteomic analyses provide new insights into the responses of <i>Pinus massoniana</i> seedlings to phosphorus deficiency. Proteomics, 2016, 16, 504-515.	1.3	22
102	<i>TaZAT8</i> , a C2H2â€ZFP type transcription factor gene in wheat, plays critical roles in mediating tolerance to Pi deprivation through regulating P acquisition, ROS homeostasis and root system establishment. Physiologia Plantarum, 2016, 158, 297-311.	2.6	48
103	Characterization of theAtSPX3Promoter Elucidates its Complex Regulation in Response to Phosphorus Deficiency. Plant and Cell Physiology, 2016, 57, 1767-1778.	1.5	11
104	Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica, 2016, 207, 1-22.	0.6	171
105	<i>OsWRKY74</i> , a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. Journal of Experimental Botany, 2016, 67, 947-960.	2.4	223
106	Genome-Wide Identification, Evolution and Functional Divergence of MYB Transcription Factors in Chinese White Pear (<i>Pyrus bretschneideri</i>). Plant and Cell Physiology, 2016, 57, 824-847.	1.5	89
107	Complex Regulation of Plant Phosphate Transporters and the Gap between Molecular Mechanisms and Practical Application: What Is Missing?. Molecular Plant, 2016, 9, 396-416.	3.9	218
108	Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat. Critical Reviews in Biotechnology, 2017, 37, 898-910.	5.1	53
109	Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice. Plant Molecular Biology, 2017, 93, 327-340.	2.0	68
110	Role of Plant Hormones and Small Signalling Molecules in Nodulation Under P Stress. , 2017, , 153-167.		0
111	Overexpression of SmMYB9b enhances tanshinone concentration in Salvia miltiorrhiza hairy roots. Plant Cell Reports, 2017, 36, 1297-1309.	2.8	67
112	Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice. Journal of Experimental Botany, 2017, 68, 3603-3615.	2.4	71
113	StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. Journal of Experimental Botany, 2017, 68, 1265-1281.	2.4	78
114	Phosphate Signaling in Plants: Biochemical and Molecular Approach. , 2017, , 83-110.		4

#	Article	IF	CITATIONS
115	Roles, Regulation, and Agricultural Application of Plant Phosphate Transporters. Frontiers in Plant Science, 2017, 8, 817.	1.7	147
116	Defense-Related Transcriptional Reprogramming in Vitamin E-Deficient Arabidopsis Mutants Exposed to Contrasting Phosphate Availability. Frontiers in Plant Science, 2017, 8, 1396.	1.7	14
117	Transgenic approaches for improving phosphorus use efficiency in plants. , 2017, , 323-338.		3
118	Macronutrient sensing and signaling in plants. , 2017, , 45-64.		5
119	Functional Characterization of the Versatile MYB Gene Family Uncovered Their Important Roles in Plant Development and Responses to Drought and Waterlogging in Sesame. Genes, 2017, 8, 362.	1.0	61
120	Identifying the Genes Regulated by AtWRKY6 Using Comparative Transcript and Proteomic Analysis under Phosphorus Deficiency. International Journal of Molecular Sciences, 2017, 18, 1046.	1.8	15
121	Piriformospora indica Reprograms Gene Expression in Arabidopsis Phosphate Metabolism Mutants But Does Not Compensate for Phosphate Limitation. Frontiers in Microbiology, 2017, 8, 1262.	1.5	29
122	Functional Characterization of Cotton GaMYB62L, a Novel R2R3 TF in Transgenic Arabidopsis. PLoS ONE, 2017, 12, e0170578.	1.1	23
123	Transcriptomic responses to biotic stresses in Malus x domestica: a meta-analysis study. Scientific Reports, 2018, 8, 1970.	1.6	37
124	Molecular mechanisms of phosphate transport and signaling in higher plants. Seminars in Cell and Developmental Biology, 2018, 74, 114-122.	2.3	122
125	Members of R2R3-type MYB transcription factors from subgroups 20 and 22 are involved in abiotic stress response in tea plants. Biotechnology and Biotechnological Equipment, 2018, 32, 1141-1153.	0.5	4
129	Unraveling the Initial Plant Hormone Signaling, Metabolic Mechanisms and Plant Defense Triggering the Endomycorrhizal Symbiosis Behavior. Frontiers in Plant Science, 2018, 9, 1800.	1.7	91
130	Salvia castanea Hairy Roots are More Tolerant to Phosphate Deficiency than Salvia miltiorrhiza Hairy Roots Based on the Secondary Metabolism and Antioxidant Defenses. Molecules, 2018, 23, 1132.	1.7	14
131	Effects of vitro sucrose on quality components of tea plants (Camellia sinensis) based on transcriptomic and metabolic analysis. BMC Plant Biology, 2018, 18, 121.	1.6	29
132	The ARF7 and ARF19 Transcription Factors Positively Regulate <i>PHOSPHATE STARVATION RESPONSE1</i> in Arabidopsis Roots. Plant Physiology, 2018, 178, 413-427.	2.3	96
133	Genome-wide association study dissects yield components associated with low-phosphorus stress tolerance in maize. Theoretical and Applied Genetics, 2018, 131, 1699-1714.	1.8	53
134	Overexpression of a Phosphate Starvation Response AP2/ERF Gene From Physic Nut in Arabidopsis Alters Root Morphological Traits and Phosphate Starvation-Induced Anthocyanin Accumulation. Frontiers in Plant Science, 2018, 9, 1186.	1.7	36
135	TaMIR1139: a wheat miRNA responsive to Pi-starvation, acts a critical mediator in modulating plant tolerance to Pi deprivation. Plant Cell Reports, 2018, 37, 1293-1309.	2.8	13

#	Article	IF	CITATIONS
136	Histone acetyltransferase GCN5-mediated regulation of long non-coding RNA At4 contributes to phosphate starvation response in Arabidopsis. Journal of Experimental Botany, 2019, 70, 6337-6348.	2.4	30
137	Systematic Analysis of MYB Family Genes in Potato and Their Multiple Roles in Development and Stress Responses. Biomolecules, 2019, 9, 317.	1.8	58
138	The Role of PHT1 Family Transporters in the Acquisition and Redistribution of Phosphorus in Plants. Critical Reviews in Plant Sciences, 2019, 38, 171-198.	2.7	70
139	Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghum. BMC Plant Biology, 2019, 19, 306.	1.6	34
140	SPX4 Acts on PHR1-Dependent and -Independent Regulation of Shoot Phosphorus Status in Arabidopsis. Plant Physiology, 2019, 181, 332-352.	2.3	54
141	Regulatory Sequences of Pear. Compendium of Plant Genomes, 2019, , 153-177.	0.3	0
142	Mining MYB transcription factors from the genomes of orchids (Phalaenopsis and Dendrobium) and characterization of an orchid R2R3-MYB gene involved in water-soluble polysaccharide biosynthesis. Scientific Reports, 2019, 9, 13818.	1.6	27
143	AtMBD4: A methylated DNA binding protein negatively regulates a subset of phosphate starvation genes. Journal of Biosciences, 2019, 44, 1.	0.5	6
144	The constitutive expression of alfalfa MsMYB2L enhances salinity and drought tolerance of Arabidopsis thaliana. Plant Physiology and Biochemistry, 2019, 141, 300-305.	2.8	12
145	Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2019, 50, 132-139.	3.5	70
146	Expression Patterns of MYB (V-myb Myeloblastosis Viral Oncogene Homolog) Gene Family in Resistant and Susceptible Tung Trees Responding to Fusarium Wilt Disease. Forests, 2019, 10, 193.	0.9	3
147	Regulation of Gene Expression of Methionine Sulfoxide Reductases and Their New Putative Roles in Plants. International Journal of Molecular Sciences, 2019, 20, 1309.	1.8	5
148	Auxin and GA signaling play important roles in the maize response to phosphate deficiency. Plant Science, 2019, 283, 177-188.	1.7	30
149	The potential application of genome editing by using CRISPR/Cas9, and its engineered and ortholog variants for studying the transcription factors involved in the maintenance of phosphate homeostasis in model plants. Seminars in Cell and Developmental Biology, 2019, 96, 77-90.	2.3	14
150	Gibberellins play dual roles in response to phosphate starvation of tomato seedlings, negatively in shoots but positively in roots. Journal of Plant Physiology, 2019, 234-235, 145-153.	1.6	22
151	Genomeâ€Wide Association Study of 13 Traits in Maize Seedlings under Low Phosphorus Stress. Plant Genome, 2019, 12, 1-13.	1.6	36
152	Structural insights into target DNA recognition by R2R3-MYB transcription factors. Nucleic Acids Research, 2020, 48, 460-471.	6.5	35
153	The FvPHR1 transcription factor control phosphate homeostasis by transcriptionally regulating miR399a in woodland strawberry. Plant Science, 2019, 280, 258-268.	1.7	25

		CITATION REPORT	
#	Article	IF	CITATIONS
154	Transcriptome-wide identification and expression profiling of Pinus massoniana MYB transcription factors responding to phosphorus deficiency. Journal of Forestry Research, 2020, 31, 909-919.	1.7	15
155	SmMYB98b positive regulation to tanshinones in Salvia miltiorrhiza Bunge hairy roots. Plant Cell, Tissue and Organ Culture, 2020, 140, 459-467.	1.2	14
156	Functional identification of apple MdMYB2 gene in phosphate-starvation response. Journal of Plant Physiology, 2020, 244, 153089.	1.6	15
157	Transcriptomic analysis of flower opening response to relatively low temperatures in Osmanthus fragrans. BMC Plant Biology, 2020, 20, 337.	1.6	8
158	Genome-Wide Association Analysis for Phosphorus Use Efficiency Traits in Mungbean (Vigna radiat	a L.) Tj ETQq0 0 0.rgBT /(Overlock 10

159	Genome-wide identification of R2R3-MYB family in wheat and functional characteristics of the abiotic stress responsive gene TaMYB344. BMC Genomics, 2020, 21, 792.	1.2	45
160	Mutation of Arabidopsis Copper-Containing Amine Oxidase Gene AtCuAOδAlters Polyamines, Reduces Gibberellin Content and Affects Development. International Journal of Molecular Sciences, 2020, 21, 7789.	1.8	8
161	A curated list of genes that affect the plant ionome. Plant Direct, 2020, 4, e00272.	0.8	23
162	Integrating transcriptomics and metabolomics to studies key metabolism, pathways and candidate genes associated with drought-tolerance in Carthamus tinctorius L. Under drought stress. Industrial Crops and Products, 2020, 151, 112465.	2.5	40
163	Structure, Function, Regulation and Phylogenetic Relationship of ZIP Family Transporters of Plants. Frontiers in Plant Science, 2020, 11, 662.	1.7	110
164	Global Survey and Expressions of the Phosphate Transporter Gene Families in Brassica napus and Their Roles in Phosphorus Response. International Journal of Molecular Sciences, 2020, 21, 1752.	1.8	14
165	Blue Light Regulates Phosphate Deficiency-Dependent Primary Root Growth Inhibition in Arabidopsis. Frontiers in Plant Science, 2019, 10, 1803.	1.7	12
166	Cloning, Characterization and Expression Analysis of the Phosphate Starvation Response Gene, ClPHR1, from Chinese Fir. Forests, 2020, 11, 104.	0.9	4
167	Tanshinone and salvianolic acid biosynthesis are regulated by SmMYB98 in Salvia miltiorrhiza hairy roots. Journal of Advanced Research, 2020, 23, 1-12.	4.4	118
168	Ectopic Expression of AhGLK1b (GOLDEN2-like Transcription Factor) in Arabidopsis Confers Dual Resistance to Fungal and Bacterial Pathogens. Genes, 2020, 11, 343.	1.0	16
169	Overexpression of MdPHR1 Enhanced Tolerance to Phosphorus Deficiency by Increasing MdPAP10 Transcription in Apple (Malus ×  Domestica). Journal of Plant Growth Regulation, 2021, 40, 1753-1763.	2.8	3
170	Molecular mechanisms for magnesium-deficiency-induced leaf vein lignification, enlargement and cracking in <i>Citrus sinensis</i> revealed by RNA-Seq. Tree Physiology, 2021, 41, 280-301.	1.4	13
171	OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation through maintaining the constitutive expression of <i>OsPHT1;1</i> under phosphateâ€replete conditions. New Phytologist, 2021, 229, 1598-1614.	3.5	39

#	Article	IF	CITATIONS
172	Gene Expression Responses to Sequential Nutrient Deficiency Stresses in Soybean. International Journal of Molecular Sciences, 2021, 22, 1252.	1.8	6
174	A multifaceted module of BRI1 ETHYLMETHANE SULFONATE SUPRESSOR1 (BES1)-MYB88Âin growth and stress tolerance of apple. Plant Physiology, 2021, 185, 1903-1923.	2.3	18
175	Environmental Control of Phosphorus Acquisition: A Piece of the Molecular Framework Underlying Nutritional Homeostasis. Plant and Cell Physiology, 2021, 62, 573-581.	1.5	15
176	Role of ethylene in the regulatory mechanism underlying the abortion of ovules after fertilization in Xanthoceras sorbifolium. Plant Molecular Biology, 2021, 106, 67-84.	2.0	11
177	Genome-wide association studies reveal the coordinated regulatory networks underlying photosynthesis and wood formation in <i>Populus</i> . Journal of Experimental Botany, 2021, 72, 5372-5389.	2.4	12
178	Small RNA sequencing provides candidate miRNA-target pairs for revealing the mechanism of apomixis in Zanthoxylum bungeanum. BMC Plant Biology, 2021, 21, 178.	1.6	5
179	Transcriptome Analysis of Sophora davidii Leaves in Response to Low-Phosphorus Stress. Journal of Plant Growth Regulation, 2022, 41, 1241-1253.	2.8	4
180	Downregulation of GeBP-like $\hat{I}\pm$ factor by MiR827 suggests their involvement in senescence and phosphate homeostasis. BMC Biology, 2021, 19, 90.	1.7	7
181	Genome-Wide Identification, Classification and Expression Analysis of the MYB Transcription Factor Family in Petunia. International Journal of Molecular Sciences, 2021, 22, 4838.	1.8	18
182	Seasonal variation of sepal-petaloidy in F1 progenies of double-flowered cyclamen. Acta Horticulturae, 2021, , 59-66.	0.1	0
183	Prickle morphogenesis in rose is coupled with secondary metabolite accumulation and governed by canonical MBW transcriptional complex. Plant Direct, 2021, 5, e00325.	0.8	13
184	Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance. BMC Plant Biology, 2021, 21, 282.	1.6	28
185	Response of growth characteristics and endogenous hormones of Sophora davidii to low-phosphorus stress. Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	5
186	Arabidopsis G-Protein β Subunit AGB1 Negatively Regulates DNA Binding of MYB62, a Suppressor in the Gibberellin Pathway. International Journal of Molecular Sciences, 2021, 22, 8270.	1.8	11
187	Differential degradation of RNA species by autophagy-related pathways in Arabidopsis. Journal of Experimental Botany, 2021, 72, 6867-6881.	2.4	5
188	Genetic Dissection of Phosphorous Uptake and Utilization Efficiency Traits Using GWAS in Mungbean. Agronomy, 2021, 11, 1401.	1.3	11
189	Genome-wide expression analysis reveals contrasting regulation of phosphate starvation response (PSR) in root and shoot of Arabidopsis and its association with biotic stress. Environmental and Experimental Botany, 2021, 188, 104483.	2.0	5
190	Gm6PGDH1, a Cytosolic 6-Phosphogluconate Dehydrogenase, Enhanced Tolerance to Phosphate Starvation by Improving Root System Development and Modifying the Antioxidant System in Soybean. Frontiers in Plant Science, 2021, 12, 704983.	1.7	4

#	Article	IF	CITATIONS
191	Overexpression of OsPHR3 improves growth traits and facilitates nitrogen use efficiency under low phosphate condition. Plant Physiology and Biochemistry, 2021, 166, 712-722.	2.8	5
192	Systemic Signaling in the Maintenance of Phosphate Homeostasis. Signaling and Communication in Plants, 2013, , 149-166.	0.5	3
196	Genome-Wide Analysis of Citrus R2R3MYB Genes and Their Spatiotemporal Expression under Stresses and Hormone Treatments. PLoS ONE, 2014, 9, e113971.	1.1	20
197	Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast. PLoS ONE, 2015, 10, e0141044.	1.1	60
198	Cross-talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants. Molecules and Cells, 2017, 40, 697-705.	1.0	55
199	AtMyb56 Regulates Anthocyanin Levels via the Modulation of Expression in Response to Sucrose in. Molecules and Cells, 2018, 41, 351-361.	1.0	16
200	Genetic study and molecular breeding for high phosphorus use efficiency in maize. Frontiers of Agricultural Science and Engineering, 2019, 6, 366.	0.9	2
201	Functional Assessment of an Overexpressed Arabidopsis Purple Acid Phosphatase Gene (Atpap26) in Tobacco Plants. Iranian Journal of Biotechnology, 2018, 16, 31-41.	0.3	10
202	Effect of Low Phosphorus Stress on Endogenous Hormone Levels of Different Maize Genotypes in Seedling Stage. Journal of Biological Sciences, 2012, 12, 308-314.	0.1	4
203	Growth, quality, and yield characteristics of transgenic potato (Solanum tuberosum L.) overexpressing StMyb1R-1 under water deficit. Journal of Plant Biotechnology, 2012, 39, 154-162.	0.1	4
204	Abiotic Stress - Plant Responses and Applications in Agriculture. , 2013, , .		54
205	Genome-wide characterization and expression analyses of the <i>MYB</i> superfamily genes during developmental stages in Chinese jujube. PeerJ, 2019, 7, e6353.	0.9	29
206	Genome-wide identification and expression analyses of R2R3-MYB transcription factor genes from two Orchid species. PeerJ, 2020, 8, e9781.	0.9	14
208	Gene Expression Regulation in Salvia miltiorrhiza. Compendium of Plant Genomes, 2019, , 97-112.	0.3	0
211	Phosphate-Dependent Regulation of Growth and Stresses Management in Plants. Frontiers in Plant Science, 2021, 12, 679916.	1.7	67
212	Transcription factors and their roles in phosphorus stress tolerance in crop plants. , 2020, , 201-224.		2
213	An R2R3-type myeloblastosis transcription factor MYB103 is involved in phosphorus remobilization. Food Production Processing and Nutrition, 2020, 2, .	1.1	0
215	Molecular Networking of Regulated Transcription Factors under Salt Stress in Wild Barley (H.) Tj ETQq1 1 0.7843	814 rgBT /	Ovgrlock 10

#	Article	IF	CITATIONS
216	Biological Function and Stress Response Mechanism of MYB Transcription Factor Family Genes. Journal of Plant Growth Regulation, 2023, 42, 83-95.	2.8	18
217	Improving phosphate use efficiency in the aquatic crop watercress (<i>Nasturtium officinale</i>). Horticulture Research, 2022, 9, .	2.9	5
218	The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Progress in Lipid Research, 2022, 86, 101158.	5.3	52
219	AtMBD4: A methylated DNA binding protein negatively regulates a subset of phosphate starvation genes. Journal of Biosciences, 2019, 44, .	0.5	2
220	The Ubiquitin E3 Ligase PRU2 Modulates Phosphate Uptake in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 2273.	1.8	1
221	The Genetic Basis of Phosphorus Utilization Efficiency in Plants Provide New Insight into Woody Perennial Plants Improvement. International Journal of Molecular Sciences, 2022, 23, 2353.	1.8	10
222	Genome-wide evolution and expression analysis of the <i>MYB-CC</i> gene family in <i>Brassica</i> spp PeerJ, 2022, 10, e12882.	0.9	2
223	Genome-Wide Identification and Expression Analysis of the R2R3-MYB Transcription Factor Family Revealed Their Potential Roles in the Flowering Process in Longan (Dimocarpus longan). Frontiers in Plant Science, 2022, 13, 820439.	1.7	8
224	Plant phosphate nutrition: sensing the stress. Stress Biology, 0, , 1.	1.5	4
225	Functional Genomic Analysis of the SPL9 Gene in Arabidopsis thaliana under Low Phosphate Conditions. Russian Journal of Plant Physiology, 2022, 69, 1.	0.5	2
226	Transcriptome analysis of a near-isogenic line and its recurrent parent reveals the role of Pup1 QTL in phosphorus deficiency tolerance of rice at tillering stage. Plant Molecular Biology, 2022, 109, 29-50.	2.0	8
227	ATL8, a RING E3 ligase, modulates root growth and phosphate homeostasis in Arabidopsis. Plant Physiology and Biochemistry, 2022, 179, 90-99.	2.8	9
249	Identification and Analysis of MYB Gene Family for Discovering Potential Regulators Responding to Abiotic Stresses in Curcuma wenyujin. Frontiers in Genetics, 2022, 13, 894928.	1.1	2
250	Two high hierarchical regulators, PuMYB40 and PuWRKY75, control the low phosphorus driven adventitious root formation in <i>Populus ussuriensis</i> . Plant Biotechnology Journal, 2022, 20, 1561-1577.	4.1	14
251	Prospects of genetics and breeding for low-phosphate tolerance: an integrated approach from soil to cell. Theoretical and Applied Genetics, 2022, 135, 4125-4150.	1.8	10
252	Abscisic acid facilitates phosphate acquisition through the transcription factor <scp>ABA INSENSITIVE5</scp> in Arabidopsis. Plant Journal, 2022, 111, 269-281.	2.8	15
253	Fine-tuning the transcriptional regulatory model of adaptation response to phosphate stress in maize (Zea mays L.). Physiology and Molecular Biology of Plants, 2022, 28, 885-898.	1.4	3
254	Evolution and functional diversification of R2R3-MYB transcription factors in plants. Horticulture Research, 2022, 9, uhac058.	2.9	53

#	Article	IF	CITATIONS
255	Phosphate transporter PHT1;1 is a key determinant of phosphorus acquisition in Arabidopsis natural accessions. Plant Physiology, 2022, 190, 682-697.	2.3	12
256	The CaMYB340 transcription factor induces chilling injury in postâ€harvest bell pepper by inhibiting fatty acid desaturation. Plant Journal, 0, , .	2.8	4
257	Genome Editing Targets for Improving Nutrient Use Efficiency and Nutrient Stress Adaptation. Frontiers in Genetics, 0, 13, .	1.1	14
260	Characterizations of MYB Transcription Factors in Camellia oleifera Reveal the Key Regulators Involved in Oil Biosynthesis. Horticulturae, 2022, 8, 742.	1.2	3
261	MYB Transcription Factors Becoming Mainstream in Plant Roots. International Journal of Molecular Sciences, 2022, 23, 9262.	1.8	8
262	Low phosphorus induces differential metabolic responses in eucalyptus species improving nutrient use efficiency. Frontiers in Plant Science, 0, 13, .	1.7	1
263	Silencing of SIMYB50 affects tolerance to drought and salt stress in tomato. Plant Physiology and Biochemistry, 2022, 193, 139-152.	2.8	6
264	High-resolution transcriptome and volatile assays provide insights into flower development and aroma formation in single- and double-petal jasmines (Jasminum sambac). Industrial Crops and Products, 2022, 189, 115846.	2.5	2
267	Adaptive Responses of Crop Species Against Phosphorus Deficiency. Sustainable Agriculture Reviews, 2023, , 69-91.	0.6	1
268	A Novel R2R3-MYB Transcription Factor SbMYB12 Positively Regulates Baicalin Biosynthesis in Scutellaria baicalensis Georgi. International Journal of Molecular Sciences, 2022, 23, 15452.	1.8	7
269	Identification of a DEAD-box RNA Helicase BnRH6 Reveals Its Involvement in Salt Stress Response in Rapeseed (Brassica napus). International Journal of Molecular Sciences, 2023, 24, 2.	1.8	10
270	SbMYB3 transcription factor promotes root-specific flavone biosynthesis in <i>Scutellaria baicalensis</i> . Horticulture Research, 2023, 10, .	2.9	7
272	Responses of roots and rhizosphere of female papaya to the exogenous application of GA3. BMC Plant Biology, 2023, 23, .	1.6	3
273	Elucidating the unknown transcriptional responses and PHR1-mediated biotic and abiotic stress tolerance during phosphorus limitation. Journal of Experimental Botany, 2023, 74, 2083-2111.	2.4	2
274	Transcription factor GLK1 promotes anthocyanin biosynthesis via an MBW complexâ€dependent pathway in <i>Arabidopsis thaliana</i> . Journal of Integrative Plant Biology, 2023, 65, 1521-1535.	4.1	7
275	Transcriptome analysis reveals the crucial function of hyperoside in inhibiting anthocyanin accumulation in grape (Vitis vinifera L.) fruits by inducing VvMYB62. Frontiers in Plant Science, 0, 14, .	1.7	0
276	Phenotypes and Molecular Mechanisms Underlying the Root Response to Phosphate Deprivation in Plants. International Journal of Molecular Sciences, 2023, 24, 5107.	1.8	1
277	Transcription factors GmERF1 and GmWRKY6 synergistically regulate low phosphorus tolerance in soybean. Plant Physiology, 2023, 192, 1099-1114.	2.3	5

#	Article	IF	CITATIONS
278	The eTM–miR858– <i>MYB62â€like</i> module regulates anthocyanin biosynthesis under lowâ€nitrogen conditions in <i>Malus spectabilis</i> . New Phytologist, 2023, 238, 2524-2544.	3.5	10
279	INDETERMINATE1 autonomously regulates phosphate homeostasis upstream of the miR399- <i>ZmPHO2</i> signaling module in maize. Plant Cell, 2023, 35, 2208-2231.	3.1	1
280	Genome-Wide Identification and Expression Analysis of the R2R3-MYB Gene Family in Rubber Trees. Forests, 2023, 14, 710.	0.9	1
281	Genome-wide analysis of the R2R3-MYB transcription factor gene family expressed in Juglans regia under abiotic and biotic stresses. Industrial Crops and Products, 2023, 198, 116709.	2.5	1