Excision and Skin Grafting of Thermal Burns

New England Journal of Medicine 360, 893-901 DOI: 10.1056/nejmct0804451

Citation Report

#	Article	IF	CITATIONS
1	Damage control in burn surgery. British Journal of Surgery, 2009, 96, 1227-1228.	0.1	2
2	The Reconstructive Matrix: A New Paradigm in Reconstructive Plastic Surgery. Plastic and Reconstructive Surgery, 2010, 126, 492-498.	0.7	148
3	Stem Cells and Burns: Review and Therapeutic Implications. Journal of Burn Care and Research, 2010, 31, 874-881.	0.2	68
4	Case Report: Use of a nanocrystalline silver dressing and vacuumâ€assisted closure in a severely burned dog. Journal of Veterinary Emergency and Critical Care, 2010, 20, 456-463.	0.4	28
5	Prolonged survival of GalTâ€KO swine skin on baboons. Xenotransplantation, 2010, 17, 147-152.	1.6	21
6	Introduction of human β-defensin-3 into cultured human keratinocytes and fibroblasts by infection of a recombinant adenovirus vector. Burns, 2011, 37, 109-116.	1.1	11
7	Noninvasive assessment of burn wound severity using optical technology: A review of current and future modalities. Burns, 2011, 37, 377-386.	1.1	135
8	Combination of stromal cellâ€derived factorâ€1 and collagen–glycosaminoglycan scaffold delays contraction and accelerates reepithelialization of dermal wounds in wildâ€type mice. Wound Repair and Regeneration, 2011, 19, 71-79.	1.5	34
9	The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing. Biomaterials, 2011, 32, 7096-7105.	5.7	67
10	Pattern of childhood burn injuries and their management outcome at Bugando Medical Centre in Northwestern Tanzania. BMC Research Notes, 2011, 4, 485.	0.6	29
11	Literature Review and Global Consensus on Management of Acute Radiation Syndrome Affecting Nonhematopoietic Organ Systems. Disaster Medicine and Public Health Preparedness, 2011, 5, 183-201.	0.7	78
12	Early excision and grafting for burns. The Cochrane Library, 2012, , .	1.5	2
13	Epidemiology and Outcome Analysis of Severe Extensive Burns. Journal of Burn Care and Research, 2012, 33, e128-e133.	0.2	15
14	Experience With Corrective Surgery for Postburn Contractures in Mumbai, India. Journal of Burn Care and Research, 2012, 33, e121-e127.	0.2	9
15	Les premières heures du brûlé grave. Journal Europeen Des Urgences Et De Reanimation, 2012, 24, 138-146.	0.1	3
16	Severe burn injury, burn shock, and smoke inhalation injury in small animals. Part 2: diagnosis, therapy, complications, and prognosis. Journal of Veterinary Emergency and Critical Care, 2012, 22, 187-200.	0.4	24
17	Skin Graft Vascular Maturation and Remodeling: A Multifractal Approach to Morphological Quantification. Microcirculation, 2012, 19, 652-663.	1.0	7
18	Regeneration of mature dermis by transplanted particulate acellular dermal matrix in a rat model of skin defect wound. Journal of Materials Science: Materials in Medicine, 2012, 23, 2933-2944.	1.7	21

TATION REDO

		CITATION REP	ORT	
#	Article		IF	CITATIONS
20	Nursing care of the burns patient. The Veterinary Nurse, 2012, 3, 420-430.		0.0	1
21	Skin-specifically transgenic expression of biologically active human cytoxic T-lymphocyte ass Antigen4-Immunoglobulin (hCTLA4Ig) in mice using lentiviral vector. Transgenic Research, 20 579-591.	ociated 012, 21,	1.3	3
22	A case series of thermal scald injuries in dogs exposed to hot water from garden hoses (gard	.en hose) Tj ETQq0 0 0	rgBT /Ov 0.4	verlock 10 Tf
23	Gene expression profiling of negative-pressure-treated skin graft donor site wounds. Burns, 2 687-693.	2013, 39,	1.1	40
24	Pain catastrophizing influences pain and itch symptoms within 24 hours of skin autograft. Jo Pain, 2013, 14, S95.	ournal of	0.7	1
25	An Open, Prospective, Randomized Pilot Investigation Evaluating Pain With the Use of a Sof Wound Contact Layer Vs Bridal Veil and Staples on Split Thickness Skin Grafts as a Primary I Journal of Burn Care and Research, 2013, 34, 674-681.	t Silicone Dressing.	0.2	24
26	Current Methods of Burn Reconstruction. Plastic and Reconstructive Surgery, 2013, 131, 82	?7e-836e.	0.7	60
27	Skin grafting for burns. , 0, , 649-650.			0
28	Lack of Cross-Sensitization Between α-1,3-Galactosyltransferase Knockout Porcine and Allog Grafts Permits Serial Grafting. Transplantation, 2014, 97, 1209-1215.	geneic Skin	0.5	33
29	Sandwich-type fiber scaffolds with square arrayed microwells and nanostructured cues as migrafts for skin regeneration. Biomaterials, 2014, 35, 630-641.	croskin	5.7	51
30	Clinical Applications of Skin Substitutes. Surgical Clinics of North America, 2014, 94, 839-85	0.	0.5	54
31	Design and Fabrication of Human Skin by Three-Dimensional Bioprinting. Tissue Engineering Methods, 2014, 20, 473-484.	- Part C:	1.1	599
32	A new method of microskin autografting with a Vaseline-based moisture dressing on granula tissue. Burns, 2014, 40, 337-346.	ition	1.1	5
33	A novel rapid and selective enzymatic debridement agent for burn wound management: A m RCT. Burns, 2014, 40, 466-474.	ulti-center	1.1	179
34	The Fire at Cocoanut Grove. Journal of Burn Care and Research, 2015, 36, 232-235.		0.2	6
35	Tissue-Engineered Skin Substitutes. Plastic and Reconstructive Surgery, 2015, 136, 1379-13	88.	0.7	74
36	3D printing for regenerative medicine: From bench to bedside. MRS Bulletin, 2015, 40, 145-	154.	1.7	39
37	Transgenic expression of human cytoxic T-lymphocyte associated antigen4-Immunoglobulin by porcine skin for xenogeneic skin grafting. Transgenic Research, 2015, 24, 199-211.	(hCTLA4lg)	1.3	25

#	Article	IF	CITATIONS
38	In vitro keratinocyte expansion for cell transplantation therapy is associated with differentiation and loss of basal layer derived progenitor population. Differentiation, 2015, 89, 137-145.	1.0	18
39	Burn wound healing and treatment: review and advancements. Critical Care, 2015, 19, 243.	2.5	603
40	Prospective, randomised controlled trial comparing Versajetâ,,¢ hydrosurgery and conventional debridement of partial thickness paediatric burns. Burns, 2015, 41, 700-707.	1.1	50
41	Acellular Hydrogels for Regenerative Burn Wound Healing: Translation from a Porcine Model. Journal of Investigative Dermatology, 2015, 135, 2519-2529.	0.3	72
42	Vasoconstrictor clysis in burn surgery and its impact on outcomes: Systematic review and meta-analysis. Burns, 2015, 41, 1140-1146.	1.1	17
43	Utility of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) to non-invasively diagnose burn depth in a porcine model. Burns, 2015, 41, 1242-1252.	1.1	59
44	1 Skin grafting and dermal substitute placement. , 2016, , .		0
45	Multispectral and Photoplethysmography Optical Imaging Techniques Identify Important Tissue Characteristics in an Animal Model of Tangential Burn Excision. Journal of Burn Care and Research, 2016, 37, 38-52.	0.2	28
46	Estimated Maximal Safe Dosages of Tumescent Lidocaine. Anesthesia and Analgesia, 2016, 122, 1350-1359.	1.1	116
47	Calculations for reproducible autologous skin cell-spray grafting. Burns, 2016, 42, 1756-1765.	1.1	26
48	Adipose-Derived Regenerative Cell Therapy for Burn Wound Healing: A Comparison of Two Delivery Methods. Advances in Wound Care, 2016, 5, 288-298.	2.6	31
49	Experience and efficacy of surgery for retaining viable subcutaneous tissue in extensive full-thickness burns. Burns, 2016, 42, 71-80.	1.1	3
50	A comparison between occlusive and exposure dressing in the management of burn wound. Burns, 2016, 42, 578-582.	1.1	17
51	Anesthetic Management of the Burn Patient. Current Anesthesiology Reports, 2016, 6, 16-21.	0.9	1
52	Enzymatic Versus Traditional Surgical Debridement of Severely Burned Hands. Journal of Burn Care and Research, 2017, 38, e745-e755.	0.2	68
53	In vitro skin expansion: Wound healing assessment. Wound Repair and Regeneration, 2017, 25, 398-407.	1.5	5
54	Making Sense of Implant "Profile―in Breast Augmentation. Plastic and Reconstructive Surgery - Global Open, 2017, 5, e1343.	0.3	3
55	Effectiveness of Autologous Fat Grafting in Adherent Scars: Results Obtained by a Comprehensive Scar Evaluation Protocol. Plastic and Reconstructive Surgery, 2017, 139, 212-219.	0.7	45

#	Article	IF	CITATIONS
56	Noninvasive Techniques for the Determination of Burn Severity in Real Time. Journal of Burn Care and Research, 2017, 38, e180-e191.	0.2	21
57	Enzymatic debridement of deeply burned faces: Healing and early scarring based on tissue preservation compared to traditional surgical debridement. Burns, 2017, 43, 1233-1243.	1.1	61
58	Hydrosurgical debridement versus conventional surgical debridement for acute partial-thickness burns. The Cochrane Library, 2017, , .	1.5	1
59	Prevention of Surgical Site Infections and Biofilms: Pharmacokinetics of Subcutaneous Cefazolin and Metronidazole in a Tumescent Lidocaine Solution. Plastic and Reconstructive Surgery - Global Open, 2017, 5, e1351.	0.3	1
60	Systemic and Local Management of Burn Wounds. Veterinary Clinics of North America - Small Animal Practice, 2017, 47, 1149-1163.	0.5	31
61	Maggot debridement therapy for an electrical burn injury with instructions for the use of <i>Lucilia sericata</i> larvae. Journal of Wound Care, 2017, 26, 734-741.	0.5	11
62	Our initial learning curve in the enzymatic debridement of severely burned hands—Management and pit falls of initial treatments and our development of a post debridement wound treatment algorithm. Burns, 2017, 43, 326-336.	1.1	66
63	Millimeter Wave Reflectometry and Imaging for Noninvasive Diagnosis of Skin Burn Injuries. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 77-84.	2.4	79
64	Pathophysiologic Mechanisms and Current Treatments for Cutaneous Sequelae ofÂBurnÂWounds. , 2017, 8, 371-405.		28
65	Management of coagulopathy in the severely burned patient: a place for antifibrinolytic therapy?. Minerva Anestesiologica, 2017, 83, 343-344.	0.6	1
66	Electrospun biomaterials for dermal regeneration. , 2017, , 179-231.		5
67	Approaches to cutaneous wound healing: basics and future directions. Cell and Tissue Research, 2018, 374, 217-232.	1.5	85
69	Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Advanced Drug Delivery Reviews, 2018, 129, 219-241.	6.6	83
70	Cell-spray auto-grafting technology for deep partial-thickness burns: Problems and solutions during clinical implementation. Burns, 2018, 44, 549-559.	1.1	30
71	Biochemical characterization of skin burn wound healing using ATR-FTIR. , 2018, , .		2
72	Merging of Classifiers for Enhancing Viable vs Non-Viable Tissue Discrimination on Human Injuries. , 2018, 2018, 726-729.		1
73	Mahalanobis Outier Removal for Improving the Non-Viable Detection on Human Injuries. , 2018, 2018, 698-701.		1
75	Preclinical assessment of safety and efficacy of intravenous delivery of autologous adipose-derived regenerative cells (ADRCs) in the treatment of severe thermal burns using a porcine model. Burns, 2018, 44, 1531-1542.	1.1	21

#	Article	IF	Citations
76	Burn-injured tissue detection for debridement surgery through the combination of non-invasive optical imaging techniques. Biomedical Optics Express, 2018, 9, 1809.	1.5	17
77	Advancements in Regenerative Strategies Through the Continuum of Burn Care. Frontiers in Pharmacology, 2018, 9, 672.	1.6	73
78	3D bioprinting of polysaccharides and their derivatives: From characterization to application. , 2018, , 105-141.		17
79	3D bioprinting of skin tissue: From pre-processing to final product evaluation. Advanced Drug Delivery Reviews, 2018, 132, 270-295.	6.6	122
80	Simulating image-guided in situ bioprinting of a skin graft onto a phantom burn wound bed. Additive Manufacturing, 2018, 22, 708-719.	1.7	24
81	Controlled Delivery of a Focal Adhesion Kinase Inhibitor Results in Accelerated Wound Closure with Decreased ScarÂFormation. Journal of Investigative Dermatology, 2018, 138, 2452-2460.	0.3	45
82	Long-term scar quality after hydrosurgical versus conventional debridement of deep dermal burns (HyCon trial): study protocol for a randomized controlled trial. Trials, 2018, 19, 239.	0.7	11
83	Neonatal Airway Management. Clinics in Perinatology, 2019, 46, 745-763.	0.8	33
84	Denatured acellular dermal matrix seeded with bone marrow mesenchymal stem cells for wound healing in mice. Burns, 2019, 45, 1685-1694.	1.1	15
85	North American clinical management guidelines for hidradenitis suppurativa: A publication from the United States and Canadian Hidradenitis Suppurativa Foundations. Journal of the American Academy of Dermatology, 2019, 81, 76-90.	0.6	218
86	Skin bioprinting: the future of burn wound reconstruction?. Burns and Trauma, 2019, 7, 4.	2.3	84
87	The color of skin: red diseases of the skin, nails, and mucosa. Clinics in Dermatology, 2019, 37, 548-560.	0.8	3
88	Comparative study of conventional and topical heparin treatment in second degree burn patients for burn analgesia and wound healing. Burns, 2019, 45, 379-386.	1.1	5
89	Variation in Cutaneous Patterns of Melanomagenesis According to Germline CDKN2A/CDK4 Status in Melanoma-Prone Families. Journal of Investigative Dermatology, 2020, 140, 174-181.e3.	0.3	11
90	Recombinant human ADAMTS13 treatment and anti-NET strategies enhance skin allograft survival in mice. American Journal of Transplantation, 2020, 20, 1162-1169.	2.6	11
91	Patients' satisfaction with anesthesia in enzymatic debridement from a surgical perspective. Burns, 2020, 46, 1073-1082.	1.1	8
92	Tissue-engineered dermis grafts using stromal vascular fraction cells on the nose: A retrospective case-control study. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2020, 73, 965-974.	0.5	4
93	Burn Shock and Resuscitation: Many Priorities, One Goal. , 0, , .		5

#	Article	IF	CITATIONS
94	Hydrosurgical debridement versus conventional surgical debridement for acute partial-thickness burns. The Cochrane Library, 2020, 2020, CD012826.	1.5	8
95	Vascularization is the next challenge for skin tissue engineering as a solution for burn management. Burns and Trauma, 2020, 8, tkaa022.	2.3	25
96	Total full-thickness skin grafting for treating patients with extensive facial burn injury: A 10-year experience. Burns, 2020, 47, 1389-1398.	1.1	10
98	Recommendations for burns care in mass casualty incidents: WHO Emergency Medical Teams Technical Working Group on Burns (WHO TWGB) 2017-2020. Burns, 2021, 47, 349-370.	1.1	42
99	Therapeutic Targeting of Neutrophil Extracellular Traps Improves Primary and Secondary Intention Wound Healing in Mice. Frontiers in Immunology, 2021, 12, 614347.	2.2	29
100	Imaging human skin autograft integration with optical coherence tomography. Quantitative Imaging in Medicine and Surgery, 2021, 11, 784-796.	1.1	15
101	Contemporary Aspects of Burn Care. Medicina (Lithuania), 2021, 57, 386.	0.8	5
102	Therapeutic effect of mesenchymal stem cells on histopathological, immunohistochemical, and molecular analysis in second-grade burn model. Stem Cell Research and Therapy, 2021, 12, 308.	2.4	10
103	Locally activated mitophagy contributes to a "built-in―protection against early burn-wound progression in rats. Life Sciences, 2021, 276, 119095.	2.0	7
104	3D Bioprinting Constructs to Facilitate Skin Regeneration. Advanced Functional Materials, 2022, 32, 2105080.	7.8	35
105	Clostridium Collagenase Impact on Zone of Stasis Stabilization and Transition to Healthy Tissue in Burns. International Journal of Molecular Sciences, 2021, 22, 8643.	1.8	6
106	Haruan Extract (Channa striatus) as an Effective Mediator in Promoting Wound Healing. , 0, , .		0
109	Burn Rehabilitation. , 2011, , 1403-1417.		1
111	Clinical applications of laser speckle contrast imaging: a review. Journal of Biomedical Optics, 2019, 24, 1.	1.4	179
112	Critical Issues in Successful Production of Skin Substitutes for Wound Healing. Cell Therapy and Regenerative Medicine Journal, 2016, 1, 38.	0.0	3
113	Use of the CONUT index as a predictor of integration of cutaneous grafts in burn patients. Journal of Cutaneous and Aesthetic Surgery, 2017, 10, 172.	0.2	2
114	FACTORS THAT INFLUENCE THE DEVELOPMENT OF LATE BURN COMPLICATIONS: AN ANALYSIS OF 100 CASES. Basrah Journal of Surgery, 2010, 16, 62-67.	0.0	0
119	The Difficulties of Reconstruction in The Achilles Area. Jurnal Plastik Rekonstruksi, 2012, 1, .	0.2	0

#	Article	IF	Citations
123	Epidemiological Investigation of Elderly Patients with Severe Burns at a Major Burn Center in Southwest China. Medical Science Monitor, 2020, 26, e918537.	0.5	8
124	Evaluation of burned hand function after enzymatic debridement. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2022, 75, 1048-1056.	0.5	9
125	Early excision and grafting versus delayed excision and grafting of deep thermal burns up to 40% total body surface area: a comparison of outcome. Annals of Burns and Fire Disasters, 2012, 25, 143-7.	0.3	51
126	A retrospective study of 572 patients with hand burns treated at the Department of Plastic Surgery Kosovo during the period 2000-2010. International Journal of Burns and Trauma, 2014, 4, 7-13.	0.2	6
127	Is the target of 1 day length of stay per 1% total body surface area burned actually being achieved? A review of paediatric thermal injuries in South East Scotland. International Journal of Burns and Trauma, 2014, 4, 25-30.	0.2	7
128	Ultra-Early versus Early Excision and Grafting for Thermal Burns up to 60% Total Body Surface Area; A Historical Cohort Study. Bulletin of Emergency and Trauma, 2016, 4, 197-201.	0.4	3
129	Delayed and fractional use of enzymatic debridement with nexobrid for extensive burn injury: a case report. Annals of Burns and Fire Disasters, 2018, 31, 23-30.	0.3	1
130	A 'metabolic bundle' including Oxandrolone in optimising the metabolic status of severely burn injured patients: a retrospective analysis of the first 50 patients. GMS Interdisciplinary Plastic and Reconstructive Surgery DGPW, 2019, 8, Doc17.	0.1	1
131	Epidemiology of burn injuries: 2 years' experience in a specialized hospital in Mexico City. Annals of Burns and Fire Disasters, 2019, 32, 261-266.	0.3	2
132	Perineal Diagnostic Microbial Swabs As A Predictive Parameter In Pediatric Burn Injury. Annals of Burns and Fire Disasters, 2020, 33, 224-232.	0.3	0
133	A profile of adult patients with major burns admitted to a Level 1 Trauma Centre and their functional outcomes at discharge: A retrospective review. South African Journal of Physiotherapy, 2021, 77, .	0.3	0
134	Reconstructive Surgical Repair of a Forth Degree latrogenic Burn in a Dog. Acta Scientiae Veterinariae, 2016, 44, 5.	0.2	3
135	A profile of adult patients with major burns admitted to a Level 1 Trauma Centre and their functional outcomes at discharge: A retrospective review. South African Journal of Physiotherapy, 2022, 78, 1543.	0.3	0
136	Hydrosurgical and conventional debridement of burns: randomized clinical trial. British Journal of Surgery, 2022, 109, 332-339.	0.1	4
137	Successful coverage of extensive burns using only the scalp of an identical twin as donor with modified meek micrografting technique. Asian Journal of Surgery, 2022, 45, 788-791.	0.2	0
138	Assessment and Management of Pain in Patients Sustaining Burns at Emergency Department Kenyatta National Hospital, Kenya: A Descriptive Study. Trauma Care, 2022, 2, 79-86.	0.4	3
139	Does Probiotic Consumption Enhance Wound Healing? A Systematic Review. Nutrients, 2022, 14, 111.	1.7	12
140	Burn Care in the Era of Rapid Enzymatic Debridement: Challenging the Dogma that Healing Beyond 21 Days Results in Hypertrophic Scarring. Open Dermatology Journal, 2021, 15, 66-77.	0.5	1

		Citation Report		
#	Article	IF	CITATIONS	
143	Israeli Innovations in the Field of Plastic Surgery. Seminars in Plastic Surgery, 0, , .	0.8	0	
144	Low level laser therapy versus polarized light therapy on healing of foot burn. International Journal of Health Sciences, 0, , 13053-13063.	0.0	0	
145	Efficacy of hydrosurgical excision combined with skin grafting in the treatment of deep partial-thickness and full-thickness burns: A two-year retrospective study. Burns, 2023, 49, 1087-1095.	1.1	2	
146	Preliminary Single-Center Experience of Bromelain-Based Eschar Removal in Children with Mixed Deep Dermal and Full Thickness Burns. Journal of Clinical Medicine, 2022, 11, 4800.	1.0	5	
147	Electrical Impedance Spectroscopy at mmWave for Bio-Sensing. , 2022, , .		0	
148	No statistically significant difference in long term scarring outcomes of pediatric burns patients treated surgically vs. those treated conservatively. Frontiers in Surgery, 0, 9, .	0.6	3	
149	Burn-injured skin is marked by a prolonged local acute inflammatory response of innate immune cells and pro-inflammatory cytokines. Frontiers in Immunology, 0, 13, .	2.2	13	
150	Understanding the approach to animals with thermal burns. The Veterinary Nurse, 2022, 13, 411-416.	0.0	0	
151	Full Skin Equivalent Models for Simulation of Burn Wound Healing, Exploring Skin Regeneration and Cytokine Response. Journal of Functional Biomaterials, 2023, 14, 29.	1.8	1	
152	Tissue-Engineered Dermis Graft. , 2023, , 97-126.		2	
153	Nekrosektomie. , 2022, , 103-116.		0	
155	Burns, Inhalation, and Lightning Injury. , 2023, , 411-426.		0	
165	Autologous Skin Cell Suspension for Full-Thickness Skin Defect Reconstruction: Current Evidence and Health Economic Expectations. Advances in Therapy, 2024, 41, 891-900.	1.3	0	