A Quantitative Comparison of Stochastic Mortality Mod Wales and the United States

North American Actuarial Journal

13, 1-35

DOI: 10.1080/10920277.2009.10597538

Citation Report

#	Article	IF	CITATIONS
1	Probability and Statistics Journal of the American Statistical Association, 1978, 73, 218.	1.8	205
2	The Birth of the Life Market. Asia-Pacific Journal of Risk and Insurance, 2008, 3, .	0.2	40
3	Financial Innovation and the Hedging of Longevity Risk. Asia-Pacific Journal of Risk and Insurance, 2008, 3, .	0.2	9
4	Modelling and Management of Mortality Risk: A Review. SSRN Electronic Journal, 0, , .	0.4	20
5	Mortality Density Forecasts: An Analysis of Six Stochastic Mortality Models. SSRN Electronic Journal, 2008, , .	0.4	33
6	Life tables and selection. , 0, , 41-72.		0
7	Multiple state models. , 0, , 230-289.		0
8	Emerging costs for traditional life insurance. , 0, , 353-373.		0
9	Emerging costs for equity-linked insurance. , 0, , 374-400.		0
10	Mortality-Linked Securities and Derivatives. SSRN Electronic Journal, 2009, , .	0.4	31
11	The Impact of Longevity Risk on the Optimal Contribution Rate and Asset Allocation for Defined Contribution Pension Plans. Geneva Papers on Risk and Insurance: Issues and Practice, 2009, 34, 660-681.	1.1	20
13	Longevity: A â€~Simple' Stochastic Modelling of Mortality. British Actuarial Journal, 2009, 15, 249-265.	0.2	2
14	On age-period-cohort parametric mortality rate projections. Insurance: Mathematics and Economics, 2009, 45, 255-270.	0.7	69
15	Facing up to uncertain life expectancy: The longevity fan charts. Demography, 2010, 47, 67-78.	1.2	50
16	Deterministic shock vs. stochastic value-at-risk — anÂanalysisÂofÂtheÂSolvencyÂII standard model approac toÂlongevity risk. BlÃ ¤ ter Der DGFVM, 2010, 31, 225-259.	:h 1.4	59
17	Securitizing and tranching longevity exposures. Insurance: Mathematics and Economics, 2010, 46, 186-197.	0.7	48
18	Modeling longevity risks using a principal component approach: A comparison with existing stochastic mortality models. Insurance: Mathematics and Economics, 2010, 46, 254-270.	0.7	52
19	Longevity risk and capital markets: The 2008–2009 update. Insurance: Mathematics and Economics, 2010, 46, 135-138.	0.7	9

TION RE

#	Article	IF	CITATIONS
20	Pricing longevity risk with the parametric bootstrap: A maximum entropy approach. Insurance: Mathematics and Economics, 2010, 47, 176-186.	0.7	38
21	Evaluating the goodness of fit of stochastic mortality models. Insurance: Mathematics and Economics, 2010, 47, 255-265.	0.7	108
24	Investigating Mortality Uncertainty Using the Block Bootstrap. Journal of Probability and Statistics, 2010, 2010, 1-15.	0.3	7
25	One-Year Value-at-Risk for Longevity and Mortality. SSRN Electronic Journal, 2010, , .	0.4	4
26	An Alternative Way of Forecasting the Cohort Effect. SSRN Electronic Journal, 2010, , .	0.4	0
27	Backtesting Stochastic Mortality Models. North American Actuarial Journal, 2010, 14, 281-298.	0.8	108
28	Measuring Basis Risk in Longevity Hedges. North American Actuarial Journal, 2011, 15, 177-200.	0.8	187
29	Structural Changes in the Lee-Carter Mortality Indexes. North American Actuarial Journal, 2011, 15, 13-31.	0.8	66
30	Longevity Risk and Capital Markets. North American Actuarial Journal, 2011, 15, 141-149.	0.8	7
31	A Computationally Efficient Algorithm for Estimating the Distribution of Future Annuity Values Under Interest-Rate and Longevity Risks. North American Actuarial Journal, 2011, 15, 237-247.	0.8	33
32	Explaining Mortality Dynamics. North American Actuarial Journal, 2011, 15, 290-314.	0.8	63
33	Generalized linear time series regression. Biometrika, 2011, 98, 1007-1014.	1.3	2
34	Longevity Hedge Effectiveness: A Decomposition. SSRN Electronic Journal, 2011, , .	0.4	1
35	Longevity Risks and Capital Markets: The 2010-2011 Update. SSRN Electronic Journal, 0, , .	0.4	1
37	The mortality of the Italian population: Smoothing techniques on the Lee–Carter model. Annals of Applied Statistics, 2011, 5, .	0.5	24
38	Longevity Risk and Capital Markets: The 2010–2011 Update. Geneva Papers on Risk and Insurance: Issues and Practice, 2011, 36, 489-500.	1.1	7
39	<scp>Canonical Valuation of Mortality‣inked Securities</scp> . Journal of Risk and Insurance, 2011, 78, 853-884.	1.0	26
40	One-year Value-at-Risk for longevity and mortality. Insurance: Mathematics and Economics, 2011, 49, 462-470.	0.7	40

#	Article	IF	CITATIONS
41	A dynamic parameterization modeling for the age–period–cohort mortality. Insurance: Mathematics and Economics, 2011, 49, 155-174.	0.7	26
42	A recursive approach to mortality-linked derivative pricing. Insurance: Mathematics and Economics, 2011, 49, 240-248.	0.7	16
43	Modelling and management of longevity risk: Approximations to survivor functions and dynamic hedging. Insurance: Mathematics and Economics, 2011, 49, 438-453.	0.7	38
44	Analysis of Finnish and Swedish mortality data with stochastic mortality models. European Actuarial Journal, 2011, 1, 259-289.	0.5	18
45	On the calibration of mortality forward curves. Journal of Futures Markets, 2011, 31, 947-970.	0.9	5
46	A comparative study of parametric mortality projection models. Insurance: Mathematics and Economics, 2011, 48, 35-55.	0.7	128
47	Mortality density forecasts: An analysis of six stochastic mortality models. Insurance: Mathematics and Economics, 2011, 48, 355-367.	0.7	213
48	Economic Pricing of Mortality-linked Securities in the Presence of Population Basis Risk. Geneva Papers on Risk and Insurance: Issues and Practice, 2011, 36, 544-566.	1.1	22
49	A Quantitative Comparison of the Lee-Carter Model under Different Types of Non-Gaussian Innovations. Geneva Papers on Risk and Insurance: Issues and Practice, 2011, 36, 675-696.	1.1	30
50	A Gravity Model of Mortality Rates for Two Related Populations. North American Actuarial Journal, 2011, 15, 334-356.	0.8	133
51	Smoothing dispersed counts with applications to mortality data. Annals of Actuarial Science, 2011, 5, 33-52.	1.0	14
52	The Usefulness of Stochastic Mortality Modelling. Annals of Actuarial Science, 2011, 5, 139-141.	1.0	2
53	A Trend-Change Extension of the Cairns-Blake-Dowd Model. Annals of Actuarial Science, 2011, 5, 143-162.	1.0	42
54	IFRS Convergence: The Role of Stochastic Mortality Models in the Disclosure of Longevity Risk for Defined Benefit Plans. Asia-Pacific Journal of Risk and Insurance, 2011, 5, .	0.2	1
55	Folded and log-folded- <i>t</i> distributions as models for insurance loss data. Scandinavian Actuarial Journal, 2011, 2011, 59-74.	1.0	39
56	Economic capital for defined benefit pension schemes: An application to the UK Universities Superannuation Scheme. Journal of Pension Economics and Finance, 2012, 11, 471-499.	0.6	3
57	Understanding, modelling and managing longevity risk: key issues and main challenges. Scandinavian Actuarial Journal, 2012, 2012, 203-231.	1.0	96
58	Actuarial assessment of damages in personal injury litigation: how precise are we?. Law, Probability and Risk, 2012, 11, 25-39.	1.2	2

#	Article	IF	CITATIONS
59	Modified Logistic Model for Mortality Forecasting and the Application of Mortality-Linked Securities. Asia-Pacific Journal of Risk and Insurance, 2012, 6, .	0.2	0
60	The impact of natural hedging on a life insurer's risk situation. Journal of Risk Finance, 2012, 13, 396-423.	3.6	29
61	Explaining young mortality. Insurance: Mathematics and Economics, 2012, 50, 12-25.	0.7	53
62	On the valuation of reverse mortgages with regular tenure payments. Insurance: Mathematics and Economics, 2012, 51, 430-441.	0.7	36
63	Parametric mortality improvement rate modelling and projecting. Insurance: Mathematics and Economics, 2012, 50, 309-333.	0.7	64
64	Managing longevity and disability risks in life annuities with long term care. Insurance: Mathematics and Economics, 2012, 50, 391-401.	0.7	35
65	Computerised detection and stochastic forecast of age, period and cohort effects. Zeitschrift Fur Die Gesamte Versicherungswissenschaft, 2013, 102, 577-595.	1.2	0
66	Annuity Uncertainty with Stochastic Mortality and Interest Rates. North American Actuarial Journal, 2013, 17, 136-152.	0.8	8
67	Pricing and securitization of multi-country longevity risk with mortality dependence. Insurance: Mathematics and Economics, 2013, 52, 157-169.	0.7	56
68	Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data. Insurance: Mathematics and Economics, 2013, 52, 320-337.	0.7	43
69	A feasible natural hedging strategy for insurance companies. Insurance: Mathematics and Economics, 2013, 52, 532-541.	0.7	8
70	A Poisson common factor model for projecting mortality and life expectancy jointly for females and males. Population Studies, 2013, 67, 111-126.	1.1	77
71	Smoothing constrained generalized linear models with an application to the Lee-Carter model. Statistical Modelling, 2013, 13, 69-93.	0.5	31
72	Pricing Survivor Derivatives With Cohort Mortality Dependence Under the Lee–Carter Framework. Journal of Risk and Insurance, 2013, 80, 1027-1056.	1.0	22
73	Stochastic life table forecasting: A time-simultaneous fan chart application. Mathematics and Computers in Simulation, 2013, 93, 98-107.	2.4	2
74	Analysis of the Residual Structure of the Lee–Carter Model: The Case of Japanese Mortality. Asia-Pacific Journal of Risk and Insurance, 2013, 7, .	0.2	1
75	Pricing Standardized Mortality Securitizations: A Twoâ€Population Model With Transitory Jump Effects. Journal of Risk and Insurance, 2013, 80, 733-774.	1.0	55
76	Mortality Modeling With Nonâ€Gaussian Innovations and Applications to the Valuation of Longevity Swaps. Journal of Risk and Insurance, 2013, 80, 775-798.	1.0	28

		CITATION REPOR	RT	
#	Article	IF		Citations
77	Robust Hedging of Longevity Risk. Journal of Risk and Insurance, 2013, 80, 621-648.	1.0	0	70
79	A Dynamic Factor Approach to Mortality Modeling. Journal of Forecasting, 2013, 32, 587-59	99. 1.6	6	17
80	The New Life Market. Journal of Risk and Insurance, 2013, 80, 501-558.	1.0	0	98
81	A cautionary note on pricing longevity index swaps. Scandinavian Actuarial Journal, 2013, 2	013, 1-23. 1.0	0	12
82	Modeling and Management of Longevity Risk. SSRN Electronic Journal, 0, , .	0.4	.4	7
83	Modeling Risk-Based Pension Insurance Premiums. SSRN Electronic Journal, 0, , .	0	.4	2
86	Identification and Forecasting in Mortality Models. Scientific World Journal, The, 2014, 201	4, 1-24. 0.4	.8	50
87	Models of Mortality - Analysing the Residuals. SSRN Electronic Journal, 2014, , .	0.4	.4	0
88	The Choice of Sample Size for Mortality Forecasting: A Bayesian Learning Approach. SSRN E Journal, 0, , .	lectronic 0.4	.4	2
89	Robust Longevity Risk Management. SSRN Electronic Journal, 2014, , .	0.4	.4	1
90	The Impact of Multiple Structural Changes on Mortality Predictions. SSRN Electronic Journa	l, 2014, , . 0	.4	6
91	Robust Longevity Risk Management. SSRN Electronic Journal, 0, , .	0.4	.4	1
92	A Semiparametric Panel Approach to Mortality Modeling. SSRN Electronic Journal, 0, , .	0.4	.4	1
93	Parametric mortality indexes: From index construction to hedging strategies. Insurance: Ma and Economics, 2014, 59, 285-299.	thematics 0.1	7	18
94	Modeling Period Effects in Multi-Population Mortality Models: Applications to Solvency II. N American Actuarial Journal, 2014, 18, 150-167.	orth 0.4	.8	63
95	On the Modeling and Forecasting of Socioeconomic Mortality Differentials: An Application 1 Deprivation and Mortality in England. North American Actuarial Journal, 2014, 18, 168-193.	co	.8	85
96	Selecting stochastic mortality models for the Italian population. Decisions in Economics and 2014, 37, 255-286.	l Finance, 1.1	1	3
97	Rethinking age-period-cohort mortality trend models. Scandinavian Actuarial Journal, 2014, 208-227.	2014,	0	23

#	Article	IF	CITATIONS
99	Mortality Risk and Its Effect on Shortfall and Risk Management in Life Insurance. Journal of Risk and Insurance, 2014, 81, 57-90.	1.0	20
100	Measuring Longevity Risk: An Application to the Royal Canadian Mounted Police Pension Plan. Risk Management and Insurance Review, 2014, 17, 37-59.	0.4	3
101	A Value-at-Risk framework for longevity trend risk. British Actuarial Journal, 2014, 19, 116-139.	0.2	29
102	The Longevity Prospects of Australian Seniors: An Evaluation of Forecast Method and Outcome. Asia-Pacific Journal of Risk and Insurance, 2014, 8, 259-292.	0.2	10
103	Beyond the Gompertz law: exploring the late-life mortality deceleration phenomenon. Scandinavian Actuarial Journal, 2014, 2014, 189-207.	1.0	19
104	A General Procedure for Constructing Mortality Models. North American Actuarial Journal, 2014, 18, 116-138.	0.8	73
105	Coherent mortality forecasting with generalized linear models: A modified time-transformation approach. Insurance: Mathematics and Economics, 2014, 59, 194-221.	0.7	16
106	Longevity Risk and Capital Markets: The 2012–2013 Update. North American Actuarial Journal, 2014, 18, 1-13.	0.8	15
107	Sharing Longevity Risk: Why Governments Should Issue Longevity Bonds. North American Actuarial Journal, 2014, 18, 258-277.	0.8	46
108	Modeling and Pricing Longevity Derivatives Using Stochastic Mortality Rates and the Esscher Transform. North American Actuarial Journal, 2014, 18, 22-37.	0.8	18
109	The CBD Mortality Indexes: Modeling and Applications. North American Actuarial Journal, 2014, 18, 38-58.	0.8	46
110	Longevity hedge effectiveness: a decomposition. Quantitative Finance, 2014, 14, 217-235.	0.9	68
111	Factor risk quantification in annuity models. Insurance: Mathematics and Economics, 2014, 58, 34-45.	0.7	8
112	Mortality, Health, and Marriage: A Study Based on Taiwan's Population Data. North American Actuarial Journal, 2015, 19, 187-199.	0.8	6
113	Forecasting Longevity Gains Using a Seemingly Unrelated Time Series Model. Journal of Forecasting, 2015, 34, 661-674.	1.6	0
114	A Simple Linear Regression Approach to Modeling and Forecasting Mortality Rates. Journal of Forecasting, 2015, 34, 543-559.	1.6	6
115	A Flexible Functional Form Approach to Mortality Modeling. SSRN Electronic Journal, 0, , .	0.4	3
116	Two-Dimensional Kernel Smoothing of Mortality Surface: An Evaluation of Cohort Strength. SSRN Electronic Journal, 0, , .	0.4	1

ARTICLE IF CITATIONS # Modeling Multi-Country Longevity Risk with Mortality Dependence: A LLvy Subordinated Hierarchical 117 0.4 0 Archimedean Copulas (LSHAC) Approach. SSRN Electronic Journal, 2015, , . StMoMo: An R Package for Stochastic Mortality Modelling. SSRN Electronic Journal, 0, , . 118 0.4 54 119 Mortality Forecast: Local or Global?. SSRN Electronic Journal, 0, , . 0.4 2 A Linear Regression Approach to Modeling Mortality Rates of Different Forms. North American Actuarial Journal, 2015, 19, 1-23. Robustness and convergence in the Leeâ€"Carter model with cohort effects. Insurance: Mathematics 121 0.7 51 and Economics, 2015, 64, 186-202. A step-by-step guide to building two-population stochastic mortality models. Insurance: Mathematics and Economics, 2015, 63, 121-134. Using bootstrapping to incorporate model error for risk-neutral pricing of longevity risk. Insurance: 123 0.7 14 Mathematics and Economics, 2015, 62, 16-27. Statistically tested comparisons of the accuracy of forecasting methods for age-specific and 194 1.1 sex-specific mortality and life expectancy. Population Studies, 2015, 69, 317-335. Forecasting Mortality using Imputed Data: The Case of Taiwan. Asia-Pacific Journal of Risk and 125 0.2 0 Insurance, 2016, 10, 1-20. A semiparametric panel approach to mortality modeling. Insurance: Mathematics and Economics, 2015, 61, 264-270. Role of the Pension Protection Fund in financial risk management of UK defined benefit pension 127 2 1.0 sector: a multi-period economic capital study. Annals of Actuarial Science, 2015, 9, 134-166. Mortality modelling with regime-switching for the valuation of a guaranteed annuity option. 129 Insurance: Mathematics and Economics, 2015, 63, 108-120. The choice of sample size for mortality forecasting: A Bayesian learning approach. Insurance: 130 0.7 24 Mathematics and Economics, 2015, 63, 153-168. Swiss coherent mortality model as a basis for developing longevity de-risking solutions for Swiss pension funds: A practical approach. Insurance: Mathematics and Economics, 2015, 63, 66-75. Modelling longevity bonds: Analysing the Swiss Re Kortis bond. Insurance: Mathematics and 132 0.7 41 Economics, 2015, 63, 12-29. Forecasting mortality in subpopulations using Lee–Carter type models: A comparison. Insurance: Mathematics and Economics, 2015, 62, 151-161. Bayesian Poisson log-bilinear models for mortality projections with multiple populations. European 134 0.5 37 Actuarial Journal, 2015, 5, 245-281. Multivariate time series modeling, estimation and prediction of mortalities. Insurance: Mathematics and Economics, 2015, 65, 156-171.

ARTICLE IF CITATIONS # The Cost of Counterparty Risk and Collateralization in Longevity Swaps. Journal of Risk and 136 1.0 36 Insurance, 2016, 83, 387-419. Predicting Human Mortality: Quantitative Evaluation of Four Stochastic Models. Risks, 2016, 4, 45. 1.3 On a Class of Premium Calculation Principles Based on the Multivariate Weighted Distribution. SSRN 139 0.4 2 Electronic Journal, 2016, , . Retirement Planning in the Light of Changing Demographics. SSRN Electronic Journal, 2016, , . 140 A Unified Pricing of Variable Annuity Guarantees under the Optimal Stochastic Control Framework. 141 1.3 19 Risks, 2016, 4, 22. Mortality Projections for Non-Converging Groups of Populations. SSRN Electronic Journal, 0, , . 0.4 143 Gaussian Process Models for Mortality Rates and Improvement Factors. SSRN Electronic Journal, 0, , . 0.4 0 Does the Impact of the Tobacco Epidemic Explain Structural Changes in the Decline of Mortality? 144 1.1 European Journal of Population, 2016, 32, 687-702. MODELING LONGEVITY RISK WITH GENERALIZED DYNAMIC FACTOR MODELS AND VINE-COPULAE. ASTIN 145 0.7 11 Bulletin, 2016, 46, 165-190. Cohort extensions of the Poisson common factor model for modelling both genders jointly. 146 1.0 Scandinavian Actuarial Journal, 2016, 2016, 93-112. Stochastic modelling of the hybrid survival curve. Journal of Population Research, 2016, 33, 307-331. 147 0.6 1 Valuing inflation-linked death benefits under a stochastic volatility framework. Insurance: 148 Mathematics and Economics, 2016, 69, 45-58. Securitization of longevity risk – survivor swap perspective. China Finance Review International, 2016, 149 4.1 1 6, 322-341. Phantoms Never Die: Living with Unreliable Population Data. Journal of the Royal Statistical Society 0.6 Series A: Statistics in Society, 2016, 179, 975-1005. A Flexible Functional Form Approach To Mortality Modeling: Do We Need Additional Cohort Dummies?. 151 1.6 8 Journal of Forecasting, 2017, 36, 357-367. Twoâ€Dimensional Kernel Smoothing of Mortality Surface: An Evaluation of Cohort Strength. Journal of Forecasting, 2016, 35, 553-563. On fitting generalized linear and non-linear models of mortality. Scandinavian Actuarial Journal, 153 1.0 84 2016, 2016, 356-383. 154 On the valuation of reverse mortgage insurance. Scandinavian Actuarial Journal, 2016, 2016, 293-318. 19

		Citation R	EPORT	
#	Article		IF	CITATIONS
155	Case study of Swiss mortality using Bayesian modeling. European Actuarial Journal, 20	16, 6, 25-59.	0.5	0
156	Statistical emulators for pricing and hedging longevity risk products. Insurance: Mathe Economics, 2016, 68, 45-60.	matics and	0.7	10
157	Partial splitting of longevity and financial risks: The longevity nominal choosing swaptic Insurance: Mathematics and Economics, 2016, 68, 61-72.	ons.	0.7	0
158	Retirement planning in the light of changing demographics. Economic Modelling, 2016	5, 52, 749-763.	1.8	15
159	Pricing <i>q</i> -forward contracts: an evaluation of estimation window and pricing me different mortality models. Scandinavian Actuarial Journal, 2016, 2016, 146-166.	thod under	1.0	17
160	The impact of multiple structural changes on mortality predictions. Scandinavian Actua 2016, 2016, 581-603.	arial Journal,	1.0	51
161	Multi-population mortality models: fitting, forecasting and comparisons. Scandinavian Journal, 2017, 2017, 319-342.	Actuarial	1.0	59
162	Modelling mortality: are we heading in the right direction?. Applied Economics, 2017, 4	1 9, 170-187.	1.2	4
163	Managing Longevity Risk by Implementing Sustainable Full Retirement Age Policies. Jou Insurance, 2017, 84, 1203-1230.	urnal of Risk and	1.0	12
164	A Bühlmann Credibility Approach to Modeling Mortality Rates. North American Actu 2017, 21, 204-227.	arial Journal,	0.8	16
165	Mortality effects of temperature changes in the United Kingdom. Journal of Forecasting 824-841.	g, 2017, 36,	1.6	9
166	Small population bias and sampling effects in stochastic mortality modelling. Europear Journal, 2017, 7, 193-230.	n Actuarial	0.5	12
167	Stochastic Mortality Modeling: Key Drivers and Dependent Residuals. North American Journal, 2017, 21, 343-368.	Actuarial	0.8	6
168	A unified approach to mortality modelling using state-space framework: characterisatic identification, estimation and forecasting. Annals of Actuarial Science, 2017, 11, 343-3	on, 89.	1.0	31
169	Mortality forecasting using a modified Continuous Mortality Investigation Mortality Pr Model for China I: methodology and country-level results. Annals of Actuarial Science, 2	ojections 2017, 11, 20-45.	1.0	10
170	A quantitative comparison of stochastic mortality models on Italian population data. C Statistics and Data Analysis, 2017, 112, 198-214.	omputational	0.7	12
171	Models of mortality rates – analysing the residuals. Applied Economics, 2017, 49, 53	:09-5323.	1.2	9
172	Demographic risk in deep-deferred annuity valuation. Annals of Actuarial Science, 2017	7, 11, 286-314.	1.0	5

# 173	ARTICLE Modeling Multicountry Longevity Risk With Mortality Dependence: A Lévy Subordinated Hierarchical Archimedean Copulas Approach. Journal of Risk and Insurance, 2017, 84, 477-493.	IF 1.0	CITATIONS 23
174	COHERENT FORECASTING OF MORTALITY RATES: A SPARSE VECTOR-AUTOREGRESSION APPROACH. ASTIN Bulletin, 2017, 47, 563-600.	0.7	44
175	Basis risk modelling: a cointegration-based approach. Statistics, 2017, 51, 205-221.	0.3	12
176	Parameter risk in time-series mortality forecasts. Scandinavian Actuarial Journal, 2017, 2017, 804-828.	1.0	13
177	THE LOCALLY LINEAR CAIRNS–BLAKE–DOWD MODEL: A NOTE ON DELTA–NUGA HEDGING OF LONGEVITY RISK. ASTIN Bulletin, 2017, 47, 79-151.	0.7	18
178	Producing the Dutch and Belgian mortality projections: a stochastic multi-population standard. European Actuarial Journal, 2017, 7, 297-336.	0.5	18
179	Semi-parametric extensions of the Cairns–Blake–Dowd model: A one-dimensional kernel smoothing approach. Insurance: Mathematics and Economics, 2017, 77, 166-176.	0.7	10
180	Forecasting mortality rate by multivariate singular spectrum analysis. Applied Stochastic Models in Business and Industry, 2017, 33, 717-732.	0.9	16
181	A COMPARATIVE STUDY OF TWO-POPULATION MODELS FOR THE ASSESSMENT OF BASIS RISK IN LONGEVITY HEDGES. ASTIN Bulletin, 2017, 47, 631-679.	0.7	53
182	A class of random field memory models for mortality forecasting. Insurance: Mathematics and Economics, 2017, 77, 97-110.	0.7	12
183	Mortality and Longevity Risk. , 2017, , 269-297.		0
184	The Palgrave Handbook of Unconventional Risk Transfer. , 2017, , .		4
185	Identifiability issues of age–period and age–period–cohort models of the Lee–Carter type. Insurance: Mathematics and Economics, 2017, 75, 117-125.	0.7	9
186	Machine learning techniques for mortality modeling. European Actuarial Journal, 2017, 7, 337-352.	0.5	42
187	Semicoherent Multipopulation Mortality Modeling: The Impact on Longevity Risk Securitization. Journal of Risk and Insurance, 2017, 84, 1025-1065.	1.0	29
188	A BAYESIAN JOINT MODEL FOR POPULATION AND PORTFOLIO-SPECIFIC MORTALITY. ASTIN Bulletin, 2017, 47, 681-713.	0.7	6
189	The Impact of Systematic Trend and Uncertainty on Mortality and Disability in a Multistate Latent Factor Model for Transition Rates. North American Actuarial Journal, 2017, 21, 594-610.	0.8	21
190	Maximum Market Price of Longevity Risk under Solvency Regimes: The Case of Solvency II. Risks, 2017, 5, 29.	1.3	10

<u> </u>	 D	
$(T \wedge T \rangle$	NEDC	NDT.
CITAL	NLFC	

#	Article	IF	CITATIONS
191	Backtesting the Lee–Carter and the Cairns–Blake–Dowd Stochastic Mortality Models on Italian Death Rates. Risks, 2017, 5, 34.	1.3	8
192	Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components. Risks, 2017, 5, 42.	1.3	9
193	Machine Learning Techniques for Mortality Modeling. SSRN Electronic Journal, 0, , .	0.4	0
194	Actuarial Applications and Estimation of Extended CreditRisk+. Risks, 2017, 5, 23.	1.3	7
195	Mortality Effects of Economic Fluctuations in the Selected Eurozone Countries. SSRN Electronic Journal, O, , .	0.4	0
196	Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principle Components. SSRN Electronic Journal, 2017, , .	0.4	0
197	One Size Fits All? Drawdown Structures in Australia and the Netherlands. SSRN Electronic Journal, 0,	0.4	0
198	PARSIMONIOUS PARAMETERIZATION OF AGE-PERIOD-COHORT MODELS BY BAYESIAN SHRINKAGE. ASTIN Bulletin, 2018, 48, 89-110.	0.7	17
199	A proposition of generalized stochastic Milevsky–Promislov mortality models. Scandinavian Actuarial Journal, 2018, 2018, 706-726.	1.0	9
200	Corrective factors for longevity projections in a dynamic context. European Actuarial Journal, 2018, 8, 53-68.	0.5	0
201	De-risking strategy: Longevity spread buy-in. Insurance: Mathematics and Economics, 2018, 79, 124-136.	0.7	11
202	Sex-specific mortality forecasting for UK countries: a coherent approach. European Actuarial Journal, 2018, 8, 69-95.	0.5	17
203	Longevity risk and capital markets: The 2015–16 update. Insurance: Mathematics and Economics, 2018, 78, 157-173.	0.7	8
204	NATURAL HEDGING IN LONG-TERM CARE INSURANCE. ASTIN Bulletin, 2018, 48, 233-274.	0.7	9
205	Using Taiwan National Health Insurance Database to model cancer incidence and mortality rates. Insurance: Mathematics and Economics, 2018, 78, 316-324.	0.7	11
206	A strategy for hedging risks associated with period and cohort effects using q-forwards. Insurance: Mathematics and Economics, 2018, 78, 267-285.	0.7	6
207	Identifiability, cointegration and the gravity model. Insurance: Mathematics and Economics, 2018, 78, 360-368.	0.7	13
208	An efficient algorithm for the valuation of a guaranteed annuity option with correlated financial and mortality risks. Insurance: Mathematics and Economics, 2018, 78, 1-12.	0.7	5

ARTICLE IF CITATIONS ROBUST AND EFFICIENT FITTING OF SEVERITY MODELS AND THE METHOD OF WINSORIZED MOMENTS. ASTIN 209 0.7 14 Bulletin, 2018, 48, 275-309. Projecting delay and compression of mortality. Genus, 2018, 74, . 1.0 Multivariate Long Memory Cohort Mortality Models. SSRN Electronic Journal, 0, , . 0.4 1 Still Living With Mortality: The Longevity Risk Transfer Market After One Decade. SSRN Electronic 0.4 Journal, 2018, , . Mortality Forecasting for Multiple Populations: An Augmented Common Factor Model with a 213 Penalized Log-Likelihood. Communications in Statistics Case Studies Data Analysis and Applications, 0.3 4 2018, 4, 118-141. Advances in mortality forecasting: introduction. Genus, 2018, 74, 21. 1.0 Cohort Effects in Mortality Modelling: A Bayesian State-Space Approach. SSRN Electronic Journal, 215 0.4 1 2018,,. Mortality forecasting in Colombia from abridged life tables by sex. Genus, 2018, 74, 15. 1.0 216 Evaluation of simple methods for regional mortality forecasts. Genus, 2018, 74, 14. 1.0 17 Model confidence sets and forecast combination: an application to age-specific mortality. Genus, 2018, 1.0 74, 19. GAUSSIAN PROCESS MODELS FOR MORTALITY RATES AND IMPROVEMENT FACTORS. ASTIN Bulletin, 2018, 48, 0.7 19 1307-1347. Incidence, Dependence Structure of Disease, and Rate Making for Health Insurance. Mathematical 0.6 Problems in Engineering, 2018, 2018, 1-13. An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The 221 1.3 12 Case of Greece with Applications to Insurance Pricing. Risks, 2018, 6, 44. Longevity: a new asset class. Journal of Asset Management, 2018, 19, 278-300. 0.7 A comparative study of pricing approaches for longevity instruments. Insurance: Mathematics and 223 0.7 14 Economics, 2018, 82, 95-116. Projecting UK Mortality by Using Bayesian Generalized Additive Models. Journal of the Royal 224 Statistical Society Series Ć: Applied Statistics, 2019, 68, 29-49. Assessing basis risk in index-based longevity swap transactions. Annals of Actuarial Science, 2019, 13, 225 1.0 17 166-197. Cohort effects in mortality modelling: a Bayesian state-space approach. Annals of Actuarial Science,

CITATION REPORT

2019, 13, 109-144.

#

211

217

#	Article	IF	CITATIONS
227	Modelling multi-state health transitions in China: a generalised linear model with time trends. Annals of Actuarial Science, 2019, 13, 145-165.	1.0	13
228	Mortality projections for non-converging groups of populations. European Actuarial Journal, 2019, 9, 483-518.	0.5	1
229	MODELLING SOCIO-ECONOMIC DIFFERENCES IN MORTALITY USING A NEW AFFLUENCE INDEX. ASTIN Bulletin, 2019, 49, 555-590.	0.7	26
230	Forecasting mortality rate improvements with a high-dimensional VAR. Insurance: Mathematics and Economics, 2019, 88, 255-272.	0.7	16
231	Application of Machine Learning to Mortality Modeling and Forecasting. Risks, 2019, 7, 26.	1.3	31
232	Agricultural Insurance Ratemaking: Development of a New Premium Principle. North American Actuarial Journal, 2019, 23, 512-534.	0.8	12
233	The valuation of no-negative equity guarantees and equity release mortgages. Economics Letters, 2019, 184, 108669.	0.9	10
234	Still living with mortality: the longevity risk transfer market after one decade. British Actuarial Journal, 2019, 24, .	0.2	32
235	Mortality Projections for Small Populations: An Application to the Maltese Elderly. Risks, 2019, 7, 35.	1.3	1
236	Predictive Modeling of Obesity Prevalence for the U.S. Population. North American Actuarial Journal, 2019, 23, 64-81.	0.8	5
237	Revisiting Calibration of the Solvency II Standard Formula for Mortality Risk: Does the Standard Stress Scenario Provide an Adequate Approximation of Value-at-Risk?. Risks, 2019, 7, 58.	1.3	3
238	Actuarial Modeling and Analysis of the Hong Kong Life Annuity Scheme. Asia-Pacific Journal of Risk and Insurance, 2019, 14, .	0.2	1
239	A stochastic implementation of the APCI model for mortality projections. British Actuarial Journal, 2019, 24, .	0.2	7
240	One size fits all? Drawdown structures in Australia and The Netherlands. Journal of the Economics of Ageing, 2019, 13, 14-27.	0.6	3
241	Experience Prospective Life-Tables for the Algerian Retirees. Risks, 2019, 7, 38.	1.3	1
242	Forecasting Causes of Death by Using Compositional Data Analysis: The Case of Cancer Deaths. Journal of the Royal Statistical Society Series C: Applied Statistics, 2019, 68, 1351-1370.	0.5	12
243	A Bayesian Approach to Developing a Stochastic Mortality Model for China. Journal of the Royal Statistical Society Series A: Statistics in Society, 2019, 182, 1523-1560.	0.6	12
244	Improving the Forecast of Longevity by Combining Models. North American Actuarial Journal, 2019, 23, 298-319.	0.8	7

		CITATION RE	PORT	
#	Article		IF	CITATIONS
245	Mortality Forecasting: How Far Back Should We Look in Time?. Risks, 2019, 7, 22.		1.3	2
246	Periodic or generational actuarial tables: which one to choose?. European Actuarial Jour 519-554.	nal, 2019, 9,	0.5	1
247	Systematic Mortality Improvement Trends and Mortality Heterogeneity: Insights from Ir HRS Data. North American Actuarial Journal, 2019, 23, 197-219.	ıdividual-Level	0.8	2
248	Credible Regression Approaches to Forecast Mortality for Populations with Limited Data 7, 27.	a. Risks, 2019,	1.3	5
249	Social Security Benefit Valuation, Risk, and Optimal Retirement. Risks, 2019, 7, 124.		1.3	0
250	The Cairns-Blake-Dowd model to forecast Indonesian mortality rates. AIP Conference Pr 2019, , .	oceedings,	0.3	0
251	Multivariate weighted premium principle for determining crop insurance premium. AIP C Proceedings, 2019, , .	Conference	0.3	0
252	Forecasting mortality rates of elderly in Indonesia using the first generalized Cairns-Blak model. AIP Conference Proceedings, 2019, , .	e-Dowd	0.3	0
253	Mortality effects of economic fluctuations in selected eurozone countries. Journal of Fo 2019, 38, 39-62.	recasting,	1.6	13
254	A logistic two-population mortality projection model for modelling mortality at advance both sexes. Scandinavian Actuarial Journal, 2019, 2019, 97-112.	d ages for	1.0	5
255	Delta-hedging longevity risk under the M7–M5 model: The impact of cohort effect un population basis risk. Insurance: Mathematics and Economics, 2019, 84, 1-21.	certainty and	0.7	5
256	Dynamic principal component regression for forecasting functional time series in a grou Scandinavian Actuarial Journal, 2020, 2020, 307-322.	ıp structure.	1.0	5
257	A Hermite-spline model of post-retirement mortality. Scandinavian Actuarial Journal, 202 110-127.	20, 2020,	1.0	19
258	Incorporating hierarchical credibility theory into modelling of multi-country mortality rat Insurance: Mathematics and Economics, 2020, 91, 37-54.	tes.	0.7	4
259	The impact of economic growth in mortality modelling forÂselected OECD countries. Jo Forecasting, 2020, 39, 533-550.	urnal of	1.6	5
260	MULTIVARIATE LONG-MEMORY COHORT MORTALITY MODELS. ASTIN Bulletin, 2020, 5	0, 223-263.	0.7	10
261	Continuous-time multi-cohort mortality modelling with affine processes. Scandinavian A Journal, 2020, 2020, 526-552.	Actuarial	1.0	15
262	A Comparison of Forecasting Mortality Models Using Resampling Methods. Mathematic	cs, 2020, 8, 1550.	1.1	16

		CITATION REPORT		
#	Article		IF	CITATIONS
264	WAVELET-BASED FEATURE EXTRACTION FOR MORTALITY PROJECTION. ASTIN Bulletin	, 2020, 50, 675-707.	0.7	11
265	Modeling County-Level Spatio-Temporal Mortality Rates Using Dynamic Linear Models. 117.	. Risks, 2020, 8,	1.3	1
266	Retiree Mortality Forecasting: A Partial Age-Range or a Full Age-Range Model?. Risks, 24	020, 8, 69.	1.3	3
267	Longevity risk and capital markets: the 2018–19 update. Annals of Actuarial Science	, 2020, 14, 219-261.	1.0	9
268	Constructing dynamic life tables with a single-factor model. Decisions in Economics an 2020, 43, 787-825.	ıd Finance,	1.1	6
269	How profitable are Equity Release Mortgages?. Economics Letters, 2020, 197, 109651		0.9	3
270	Time-consistent and market-consistent actuarial valuation of the participating pension Scandinavian Actuarial Journal, 2020, , 1-29.	contract.	1.0	5
271	The Impact of Model Uncertainty on Index-Based Longevity Hedging and Measurement Basis Risk. Risks, 2020, 8, 80.	t of Longevity	1.3	1
272	Constraints, the identifiability problem and the forecasting of mortality. Annals of Actu 2020, 14, 537-566.	uarial Science,	1.0	8
273	Mortality data reliability in an internal model. Annals of Actuarial Science, 2020, 14, 42	20-444.	1.0	2
274	Smoking epidemic in Europe in the 21st century. Tobacco Control, 2021, 30, 523-529.		1.8	24
275	Past and Future Alcohol-Attributable Mortality in Europe. International Journal of Enviro Research and Public Health, 2020, 17, 9024.	onmental	1.2	6
276	A multi-country comparison of stochastic models of breast cancer mortality with P-spli smoothing approach. BMC Medical Research Methodology, 2020, 20, 299.	nes	1.4	6
277	A DSA Algorithm for Mortality Forecasting. North American Actuarial Journal, 2020, , 1	-21.	0.8	2
278	Identifiability in age/period/cohort mortality models. Annals of Actuarial Science, 2020	, 14, 500-536.	1.0	17
279	CBDX: a workhorse mortality model from the Cairns–Blake–Dowd family. Annals c 2020, 14, 445-460.	of Actuarial Science,	1.0	16
280	Identifiability in age/period mortality models. Annals of Actuarial Science, 2020, 14, 46	1-499.	1.0	13
281	Drivers of Mortality Dynamics: Identifying Age/Period/Cohort Components of Historica Improvements. North American Actuarial Journal, 2020, 24, 228-250.	l U.S. Mortality	0.8	6

#	Article	IF	CITATIONS
282	Trends in Canadian Mortality by Pension Level: Evidence from the CPP and QPP. North American Actuarial Journal, 2020, 24, 533-561.	0.8	10
283	Longevity Forecasting by Socio-Economic Groups Using Compositional Data Analysis. Journal of the Royal Statistical Society Series A: Statistics in Society, 2020, 183, 1167-1187.	0.6	7
284	Trends and Projections in Breast Cancer Mortality among four Asian countries (1990–2017): Evidence from five Stochastic Mortality Models. Scientific Reports, 2020, 10, 5480.	1.6	27
285	Multi-population mortality forecasting using tensor decomposition. Scandinavian Actuarial Journal, 2020, 2020, 754-775.	1.0	19
286	Living longer in high longevity risk. Journal of Demographic Economics, 2020, 86, 47-86.	1.2	2
287	An age-at-death distribution approach to forecast cohort mortality. Insurance: Mathematics and Economics, 2020, 91, 129-143.	0.7	6
288	De-risking long-term care insurance. Soft Computing, 2020, 24, 8627-8641.	2.1	2
289	Introducing and Evaluating a New Multiple-Component Stochastic Mortality Model. North American Actuarial Journal, 2020, 24, 393-445.	0.8	2
290	The heat wave model for constructing two-dimensional mortality improvement scales with measures of uncertainty. Insurance: Mathematics and Economics, 2020, 93, 1-26.	0.7	2
291	A Quantitative Comparison of Multiple Population Mortality Model on Some East Asian Countries and Regions. Mathematical Problems in Engineering, 2020, 2020, 1-8.	0.6	0
292	A modified common factor model for modelling mortality jointly for both sexes. Journal of Population Research, 2020, 37, 181-212.	0.6	4
293	Improving HMD Mortality Estimates with HFD Fertility Data. North American Actuarial Journal, 2021, 25, S255-S279.	0.8	6
294	Forward Mortality Rates in Discrete Time I: Calibration and Securities Pricing. North American Actuarial Journal, 2021, 25, S482-S507.	0.8	5
295	Killing off cohorts: Forecasting mortality of non-extinct cohorts with the penalized composite link model. International Journal of Forecasting, 2021, 37, 95-104.	3.9	8
296	A Bayesian Approach to Modeling and Projecting Cohort Effects. North American Actuarial Journal, 2021, 25, S235-S254.	0.8	10
297	An Analysis of Period and Cohort Mortality Shocks in International Data. North American Actuarial Journal, 2021, 25, S385-S409.	0.8	5
298	On the Structure and Classification of Mortality Models. North American Actuarial Journal, 2021, 25, S215-S234.	0.8	32
299	80 will be the new 70: Oldâ€age mortality postponement in the United States and its likely effect on the finances of the OASI program. Journal of Risk and Insurance, 2021, 88, 381-412.	1.0	5

#	Article	IF	CITATIONS
300	Quantifying longevity gaps using microâ€level lifetime data. Journal of the Royal Statistical Society Series A: Statistics in Society, 2021, 184, 548-570.	0.6	3
301	Market pricing of longevity-linked securities. Scandinavian Actuarial Journal, 2021, 2021, 408-436.	1.0	1
302	Getting life expectancy estimates right for pension policy: period versus cohort approach. Journal of Pension Economics and Finance, 2021, 20, 212-231.	0.6	35
303	Future Alcohol-Attributable Mortality in France Using a Novel Generalizable Age-Period-Cohort Projection Methodology. Alcohol and Alcoholism, 2021, 56, 325-333.	0.9	3
304	Identifying subgroups of age and cohort effects in obesity prevalence. Biometrical Journal, 2021, 63, 168-186.	0.6	6
305	Life expectancy and lifespan disparity forecasting: a long short-term memory approach. Scandinavian Actuarial Journal, 2021, 2021, 110-133.	1.0	21
306	Stochastic modelling and projection of mortality improvements using a hybrid parametric/semi-parametric age–period–cohort model. Scandinavian Actuarial Journal, 2021, 2021, 134-155.	1.0	6
307	A Synthesis Mortality Model for the Elderly. North American Actuarial Journal, 2021, 25, S457-S481.	0.8	1
308	An Efficient Method for Mitigating Longevity Value-at-Risk. North American Actuarial Journal, 2021, 25, S309-S340.	0.8	6
309	Forecasting the Retirement Age: A Bayesian Model Ensemble Approach. Advances in Intelligent Systems and Computing, 2021, , 123-135.	0.5	13
311	A Study on Link Functions for Modelling and Forecasting Old-Age Survival Probabilities of Australia and New Zealand. Risks, 2021, 9, 11.	1.3	1
312	Performance evaluation of the Bühlmann credibility approach in predicting mortality rates. Journal of Physics: Conference Series, 2021, 1725, 012095.	0.3	1
313	Actuarial (Mathematical) Modeling of Mortality and Survival Curves. , 2021, , 1559-1591.		0
314	Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model. International Journal of Environmental Research and Public Health, 2021, 18, 2204.	1.2	2
315	Mortality models incorporating long memory for life table estimation: a comprehensive analysis. Annals of Actuarial Science, 0, , 1-38.	1.0	6
316	Longevity Risk and Capital Markets: The 2017–2018 Update. North American Actuarial Journal, 2021, 25, S280-S308.	0.8	0
317	Backcasting Mortality in England and Wales, 1600–1840. North American Actuarial Journal, 0, , 1-21.	0.8	0
318	Time-series forecasting of mortality rates using deep learning. Scandinavian Actuarial Journal, 2021, 2021, 572-598.	1.0	41

#	Article	IF	CITATIONS
319	A DOUBLE COMMON FACTOR MODEL FOR MORTALITY PROJECTION USING BEST-PERFORMANCE MORTALITY RATES AS REFERENCE. ASTIN Bulletin, 2021, 51, 349-374.	0.7	1
320	Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model. Risks, 2021, 9, 45.	1.3	9
321	Suitability of stochastic models for mortality projection in Korea: a follow-up discussion. Communications for Statistical Applications and Methods, 2021, 28, 171-188.	0.1	1
322	Coherent Mortality Forecasting for the Algerian Population. Assurances Et Gestion Des Risques, 0, 87, 209-231.	0.0	0
323	Life Expectancy Heterogeneity and Pension Fairness: An Italian North-South Divide. Risks, 2021, 9, 57.	1.3	7
324	Mandatory annuitization and money's worth: evidence from Singapore. Journal of Pension Economics and Finance, 0, , 1-20.	0.6	0
325	Bayesian Mixture Modelling for Mortality Projection. Risks, 2021, 9, 76.	1.3	1
326	NEIGHBOURING PREDICTION FOR MORTALITY. ASTIN Bulletin, 2021, 51, 689-718.	0.7	15
327	Pricing participating longevity-linked life annuities: a Bayesian Model Ensemble approach. European Actuarial Journal, 2022, 12, 125-159.	0.5	14
328	Automatic Indexation of the Pension Age to Life Expectancy: When Policy Design Matters. Risks, 2021, 9, 96.	1.3	24
329	Mortality forecasting using factor models: Time-varying or time-invariant factor loadings?. Insurance: Mathematics and Economics, 2021, 98, 14-34.	0.7	4
330	Discounting the Discounted Projection Approach. North American Actuarial Journal, 0, , 1-16.	0.8	1
331	Impact of the choice of risk assessment time horizons on defined benefit pension schemes. Annals of Actuarial Science, 0, , 1-29.	1.0	0
332	Future life expectancy in Europe taking into account the impact of smoking, obesity, and alcohol. ELife, 2021, 10, .	2.8	17
333	Longevity risk and capital markets: The 2019-20 update. Insurance: Mathematics and Economics, 2021, 99, 395-439.	0.7	11
334	Cause of death specific cohort effects in U.S. mortality. Insurance: Mathematics and Economics, 2021, 99, 190-199.	0.7	1
335	Incorporating statistical clustering methods into mortality models to improve forecasting performances. Insurance: Mathematics and Economics, 2021, 99, 42-62.	0.7	5
336	Gompertz law revisited: Forecasting mortality with a multi-factor exponential model. Insurance: Mathematics and Economics, 2021, 99, 268-281.	0.7	4

#	ARTICLE	IF	CITATIONS
337	Mortality data correction in the absence of monthly fertility records. Insurance: Mathematics and Economics, 2021, 99, 486-508.	0.7	0
338	Addressing the life expectancy gap in pension policy. Insurance: Mathematics and Economics, 2021, 99, 200-221.	0.7	24
339	Pooling mortality risk in Eurozone state pension liabilities: An application of a Bayesian coherent multi-population cohort-based mortality model. Insurance: Mathematics and Economics, 2021, 99, 459-485.	0.7	1
340	Recent declines in life expectancy: Implication on longevity risk hedging. Insurance: Mathematics and Economics, 2021, 99, 376-394.	0.7	2
341	Modelling mortality dependence: An application of dynamic vine copula. Insurance: Mathematics and Economics, 2021, 99, 241-255.	0.7	4
342	Coherent Mortality Forecasting for Less Developed Countries. Risks, 2021, 9, 151.	1.3	4
343	Markov (Set) chains application to predict mortality rates using extended Milevsky–Promislov generalized mortality models. Journal of Applied Statistics, 2022, 49, 3868-3888.	0.6	2
344	Recent Challenges in Actuarial Science. Annual Review of Statistics and Its Application, 2022, 9, 119-140.	4.1	11
345	Bayesian Value-at-Risk backtesting: The case of annuity pricing. European Journal of Operational Research, 2021, 293, 786-801.	3.5	6
346	Probabilistic Projection of Subnational Life Expectancy. Journal of Official Statistics, 2021, 37, 591-610.	0.1	3
347	Modelling Frontier Mortality Using Bayesian Generalised Additive Models. Journal of Official Statistics, 2021, 37, 569-589.	0.1	1
348	Mortality Forecasting Using Stacked Regression Ensembles. SSRN Electronic Journal, 0, , .	0.4	3
349	A behavioural gap in survival beliefs. SSRN Electronic Journal, 0, , .	0.4	1
350	Longevity Risk and Hedging Solutions. , 2013, , 997-1035.		4
351	Application of the Model with a Non-Gaussian Linear Scalar Filters to Determine Life Expectancy, Taking into Account the Cause of Death. Lecture Notes in Computer Science, 2019, , 435-449.	1.0	4
352	A Three-Component Approach to Model and Forecast Age-at-Death Distributions. The Plenum Series on Demographic Methods and Population Analysis, 2020, , 105-129.	0.6	2
356	Comparison of Lee Carter Model and Cairns, Blake and Dowd Model in Forecasting Malaysian Higher Age Mortality. Matematika, 0, , 65-77.	0.0	2
357	StMoMo : An <i>R</i> Package for Stochastic Mortality Modeling. Journal of Statistical Software, 2018, 84, .	1.8	72

#	Article	IF	CITATIONS
358	Integrating Financial and Demographic Longevity Risk Models: An Australian Model for Financial Applications. SSRN Electronic Journal, 0, , .	0.4	3
359	Securitizing and Tranching Longevity Exposures. SSRN Electronic Journal, 0, , .	0.4	3
360	Longevity Risk and Capital Markets: The 2008-2009 Update. SSRN Electronic Journal, 0, , .	0.4	5
361	The Cost of Counterparty Risk and Collateralization in Longevity Swaps. SSRN Electronic Journal, 0, , .	0.4	12
362	Evolution of Coupled Lives' Dependency Across Generations and Pricing Impact. SSRN Electronic Journal, 0, , .	0.4	1
363	Identifying Structural Breaks in Stochastic Mortality Models. SSRN Electronic Journal, 0, , .	0.4	8
364	Cohort Mortality Risk or Adverse Selection in the UK Annuity Market?. SSRN Electronic Journal, 0, , .	0.4	6
365	Structural Changes in Mortality Rates with an Application to Dutch and Belgian Data. SSRN Electronic Journal, 0, , .	0.4	5
366	Structural Breaks in Mortality Models: An International Comparison. SSRN Electronic Journal, 0, , .	0.4	1
367	The IA BE 2015 Mortality Projection for the Belgian Population. SSRN Electronic Journal, 0, , .	0.4	1
368	Longevity Risk and Capital Markets: The 2013-14 Update SSRN Electronic Journal, 0, , .	0.4	4
369	The Application of Affine Processes in Multi-Cohort Mortality Model. SSRN Electronic Journal, 0, , .	0.4	5
370	Modelling Annuity Portfolios and Longevity Risk with Extended CreditRiskPlus. SSRN Electronic Journal, O, , .	0.4	6
371	Phantoms Never Die: Living with Unreliable Population Data. SSRN Electronic Journal, 0, , .	0.4	2
372	Mortality Heterogeneity and Systematic Mortality Improvement. SSRN Electronic Journal, 0, , .	0.4	2
373	Crunching Mortality and Annuity Portfolios with Extended Creditrisk. SSRN Electronic Journal, 0, , .	0.4	1
374	Longevity Risk and Capital Markets: The 2013-14 Update. SSRN Electronic Journal, 0, , .	0.4	2
375	Cohort Effects in Mortality Modelling: A Bayesian State-Space Approach. SSRN Electronic Journal, 0, , .	0.4	6

		CITATION REI	PORT	
#	Article		IF	CITATIONS
376	Using Interest Rate Models to Improve Mortality Forecast. SSRN Electronic Journal, 0, , .		0.4	2
377	Gompertz Law Revisited: Forecasting Mortality with a Multi-factor Exponential Model. SSRN Electronic Journal, 0, , .		0.4	2
378	Basis Risk and Pensions Schemes: A Relative Modelling Approach SSRN Electronic Journal,	0, , .	0.4	1
379	Bayesian Stochastic Mortality Modelling for Two Populations. , 0, .			21
380	Modelling Adult Mortality in Small Populations: The Saint Model. , 0, .			8
381	A stochastic mortality model for annuities to calibrate longevity risk. The Journal of Risk Management, 2018, 29, 1-32.		0.0	1
382	The Convergence and Robustness of Cohort Extensions of Mortality Models. MaRBLe, 0, 1,		0.0	1
383	Impact of different mortality forecasting methods and explicit assumptions on projected fu expectancy: The case of the Netherlands. Demographic Research, 0, 29, 323-354.	ture life	2.0	63
384	Gompertz, Makeham, and Siler models explain Taylor's law in human mortality data. Demog Research, 0, 38, 773-842.	raphic	2.0	13
385	Smooth constrained mortality forecasting. Demographic Research, 0, 41, 1091-1130.		2.0	22
386	The impact of the choice of life table statistics when forecasting mortality. Demographic Re 41, 1235-1268.	search, 0,	2.0	9
387	Les modèles factoriels et la gestion du risque de longévité. L'Actualité économiqu	ıe, 0, 91, 531-565.	0.1	1
388	Dispersion modelling of mortality for both sexes with Tweedie distributions. Scandinavian A Journal, 0, , 1-19.	ctuarial	1.0	1
389	The Birth of the Life Market. SSRN Electronic Journal, 0, , .		0.4	4
391	Explaining Young Mortality. SSRN Electronic Journal, 0, , .		0.4	8
392	Time-Simultaneous Fan Charts: Applications to stochastic life table forecasting. , 0, , .			0
393	Essays in Modelling Mortality Rates. SSRN Electronic Journal, 0, , .		0.4	1
394	A Study on the Valuation Mortality Rate Guaranteed Annuity Conversion Option. The Journa Management, 2012, 23, 173-200.	al of Risk	0.0	0

#	Article	IF	CITATIONS
395	A study on the Cost of Longevity Bonds to manage longevity Risk and the Financial Effect on the Insurers. The Journal of Risk Management, 2013, 24, 69-97.	0.0	0
396	Comparison of Mortality Estimate and Prediction by the Period of Time Series Data Used. Ungyong T'onggye Yon'gu = the Korean Journal of Applied Statistics, 2013, 26, 1019-1032.	0.0	0
397	Analysis of the Stochasticity of Mortality Using Variance Decomposition. Diabetes Therapy, 2014, , 199-222.	1.2	2
398	Structural Breaks in Mortality Models and their Consequences. , 2014, , .		0
399	A General Procedure for Constructing Mortality Models. SSRN Electronic Journal, 0, , .	0.4	1
400	A Bayesian Joint Model for Population and Portfolio-Specific Mortality. SSRN Electronic Journal, 0, , .	0.4	0
401	Modeling and projection life expectancy. The case of the EU countries. Econometrics, 2015, , .	0.1	0
402	Bayesian Poisson Log-Bilinear Models for Mortality Projections with Multiple Populations. SSRN Electronic Journal, 0, , .	0.4	0
403	A Two Factor Model with Mean Reverting Process for Stochastic Mortality. Ungyong T'onggye Yon'gu = the Korean Journal of Applied Statistics, 2015, 28, 393-406.	0.0	1
404	Estimating the Benefit-Cost Ratios by Applying Life-Expectancies of National Pension Old-Age Pensioners. Ungyong T'onggye Yon'gu = the Korean Journal of Applied Statistics, 2015, 28, 621-641.	0.0	0
405	Longevity Bond Pricing by a Cohort-based Stochastic Mortality. Ungyong T'onggye Yon'gu = the Korean Journal of Applied Statistics, 2015, 28, 703-719.	0.0	0
406	Mortality Effects of Temperature Changes in the United Kingdom. SSRN Electronic Journal, 0, , .	0.4	0
407	A Unified Pricing of Variable Annuity Guarantees Under the Optimal Stochastic Control Framework. SSRN Electronic Journal, 0, , .	0.4	1
408	The Impact of Systematic Trend and Uncertainty on Mortality and Disability in a Multi-State Latent Factor Model for Transition Rates. SSRN Electronic Journal, 0, , .	0.4	1
409	The Performance Evaluation on the General Procedure for Forecasting Mortality. Journal of Insurance and Finance, 2016, 27, 107-133.	0.0	0
410	The Bayesian Estimation on Korean Male Mortality Rates Using Poisson Log-Bilinear Model and its Application. Journal of Insurance and Finance, 2016, 27, 23-49.	0.0	2
411	Software User Guide. , 2016, , 123-164.		1
412	Modeling Multi-State Health Transitions in China: A Generalized Linear Model with Time Trends. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	Citations
413	Longevity Risk and Capital Markets: The 2015-16 Update. SSRN Electronic Journal, 0, , .	0.4	0
414	Periodic or Generational Actuarial Tables: Which One to Choose?. SSRN Electronic Journal, 0, , .	0.4	0
415	A Note on Patterns in Period and Cohort Mortality Shocks in International Data. SSRN Electronic Journal, 0, , .	0.4	0
416	Fuzzy Approaches in Forecasting Mortality Rates. Advances in Intelligent Systems and Computing, 2018, , 136-147.	0.5	1
417	Longevity: A New Asset Class. SSRN Electronic Journal, 0, , .	0.4	0
418	Improving Lee-Carter Forecasting: Methodology and Some Results. , 2018, , 57-61.		0
419	Comparison of Stochastic Mortality Model for Wider Age Range. Matematika, 0, , 227-233.	0.0	0
420	Bayesian Value-at-Risk Backtesting: The Case of Annuity Pricing. SSRN Electronic Journal, 0, , .	0.4	1
421	Modelling Socio-Economic Differences in Mortality Using a New Affl uence Index. SSRN Electronic Journal, 0, , .	0.4	2
422	Actuarial (Mathematical) Modeling of Mortality and Survival Curves. , 2019, , 1-33.		0
423	What Are the Socio-Economic Predictors of Mortality in a Society?. Journal of Financial Risk Management, 2019, 08, 248-259.	0.2	0
424	The Application of Affine Processes in Cohort Mortality Risk Models. SSRN Electronic Journal, 0, , .	0.4	3
425	Proyección de mortalidad en España mediante mixturas de modelos y análisis del impacto económico del riesgo de longevidad. Estudios De Economia Aplicada (discontinued), 2017, 35, 341-366.	0.2	0
452	A Comparison of Generalized Stochastic Milevsky-Promislov Mortality Models with Continuous Non-Gaussian Filters. Lecture Notes in Computer Science, 2020, , 348-362.	1.0	1
453	A DSA Algorithm for Mortality Forecasting. SSRN Electronic Journal, 0, , .	0.4	0
454	Chemical Waste Management in Hospital; Impact on Environment and Health. Journal Wetenskap Health, 2020, 1, 36-41.	0.0	0
455	Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect. Risks, 2021, 9, 5.	1.3	4
456	WHY DOES A HUMAN DIE? A STRUCTURAL APPROACH TO COHORT-WISE MORTALITY PREDICTION UNDER SURVIVAL ENERGY HYPOTHESIS. ASTIN Bulletin, 2021, 51, 191-219.	0.7	2

# 457	ARTICLE Intergenerational Actuarial Fairness When Longevity Increases: Amending the Retirement Age. SSRN Electronic Journal. O	IF 0.4	CITATIONS 3
458	A value-at-risk approach to mis-estimation risk. British Actuarial Journal, 2021, 26, .	0.2	2
459	Mortality forecasting using stacked regression ensembles. Scandinavian Actuarial Journal, 2022, 2022, 591-626.	1.0	6
460	A GROUP REGULARISATION APPROACH FOR CONSTRUCTING GENERALISED AGE-PERIOD-COHORT MORTALITY PROJECTION MODELS. ASTIN Bulletin, 0, , 1-43.	0.7	5
461	POINT AND INTERVAL FORECASTS OF DEATH RATES USING NEURAL NETWORKS. ASTIN Bulletin, 2022, 52, 333-360.	0.7	13
463	Forecasting: theory and practice. International Journal of Forecasting, 2022, 38, 705-871.	3.9	256
464	Assessing the Impact of the COVID-19 Shock on a Stochastic Multi-Population Mortality Model. Risks, 2022, 10, 26.	1.3	1
465	THE SAINT MODEL: A DECADE LATER. ASTIN Bulletin, 2022, 52, 483-517.	0.7	3
466	On the integration of deterministic opinions into mortality smoothing and forecasting. Annals of Actuarial Science, 2022, 16, 384-400.	1.0	2
467	Projecting Mortality Rates to Extreme Old Age with the CBDX Model. Forecasting, 2022, 4, 208-218.	1.6	0
468	Longevity risk analysis: applications to the Italian regional data. Quantitative Finance and Economics, 2022, 6, 138-157.	1.4	2
469	CALIBRATING THE LEE-CARTER AND THE POISSON LEE-CARTER MODELS VIA NEURAL NETWORKS. ASTIN Bulletin, 2022, 52, 519-561.	0.7	11
470	Machine-Learning-Based Functional Time Series Forecasting: Application to Age-Specific Mortality Rates. Forecasting, 2022, 4, 394-408.	1.6	3
471	Bayesian model averaging for mortality forecasting using leave-future-out validation. International Journal of Forecasting, 2022, , .	3.9	5
472	Projecting Mortality Rates Using a Markov Chain. Mathematics, 2022, 10, 1162.	1.1	2
473	Linking Pensions to Life Expectancy: Tackling Conceptual Uncertainty through Bayesian Model Averaging. Mathematics, 2021, 9, 3307.	1.1	7
474	Optimal Neighborhood Selection for AR-ARCH Random Fields with Application to Mortality. Stats, 2022, 5, 26-51.	0.5	0
476	A Neural Approach to Improve the Lee-Carter Mortality Density Forecasts. North American Actuarial Journal, 2023, 27, 148-165.	0.8	9

#	Article	IF	CITATIONS
477	On a stochastic nonlocal system with discrete diffusion modeling life tables. Stochastics and Dynamics, 0, , .	0.6	0
479	A Comparative Analysis of the Forecasted Mortality Rate under Normal Conditions and the COVID-19 Excess Mortality Rate in Malaysia. Journal of Mathematics, 2022, 2022, 1-12.	0.5	0
480	TREE-BASED MACHINE LEARNING METHODS FOR MODELING AND FORECASTING MORTALITY. ASTIN Bulletin, 2022, 52, 765-787.	0.7	4
483	Survival Energy Models for Mortality Prediction and the Future Prospects: Sem Project. SSRN Electronic Journal, 0, , .	0.4	1
484	Extensions on the Hatzopoulos–Sagianou Multiple-Components Stochastic Mortality Model. Risks, 2022, 10, 131.	1.3	0
485	Variable annuities valuation under a mixed fractional Brownian motion environment with jumps considering mortality risk. Applied Stochastic Models in Business and Industry, 2022, 38, 1019-1038.	0.9	1
486	COVID-19 accelerated mortality shocks and the impact on life insurance: the Italian situation. Annals of Actuarial Science, 2022, 16, 478-497.	1.0	3
487	Stochastic mortality dynamics driven by mixed fractional Brownian motion. Insurance: Mathematics and Economics, 2022, 106, 218-238.	0.7	1
488	Model mortality rates using property and casualty insurance reserving methods. Insurance: Mathematics and Economics, 2022, , .	0.7	0
489	The slowdown in mortality improvement rates 2011–2017: a multi-country analysis. European Actuarial Journal, 2022, 12, 839-878.	0.5	10
490	Green Nested Simulation via Likelihood Ratio: Applications to Longevity Risk Management. Insurance: Mathematics and Economics, 2022, , .	0.7	0
491	Evaluation of the forecasting accuracy of stochastic mortality models: An analysis of developed and developing countries. Communications in Statistics Case Studies Data Analysis and Applications, 2022, 8, 434-462.	0.3	1
492	A New Fourier Approach under the Lee-Carter Model for Incorporating Time-Varying Age Patterns of Structural Changes. Risks, 2022, 10, 147.	1.3	0
493	On the evolution of the gender gap in life expectancy at normal retirement age for OECD countries. Genus, 2022, 78, .	1.0	3
494	Backtesting stochastic mortality models by prediction interval-based metrics. Quality and Quantity, 2023, 57, 3825-3847.	2.0	3
495	A Model Stacking Approach for Forecasting Mortality. North American Actuarial Journal, 2023, 27, 530-545.	0.8	1
496	Modelling USA Age-Cohort Mortality: A Comparison of Multi-Factor Affine Mortality Models. Risks, 2022, 10, 183.	1.3	2
497	EXTENDING THE LEE–CARTER MODEL WITH VARIATIONAL AUTOENCODER: A FUSION OF NEURAL NETWORK AND BAYESIAN APPROACH. ASTIN Bulletin, 2022, 52, 789-812.	0.7	3

#	Article	IF	CITATIONS
498	A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting. Risks, 2022, 10, 191.	1.3	2
499	A Hermite spline approach for modelling population mortality. Annals of Actuarial Science, 2023, 17, 243-284.	1.0	1
500	Forecasting mortality rates with a coherent ensemble averaging approach. ASTIN Bulletin, 2023, 53, 2-28.	0.7	3
501	Sustainability of pensions in Asian countries. Communications for Statistical Applications and Methods, 2022, 29, 679-694.	0.1	Ο
502	Thirty years on: A review of the Lee–Carter method for forecasting mortality. International Journal of Forecasting, 2023, 39, 1033-1049.	3.9	10
503	Measurement and Impact of Longevity Risk in Portfolios of Pension Annuity: The Case in Sub Saharan Africa. , 2023, 2, 48-67.		2
504	Dependence Modelling of Lifetimes in Egyptian Families. Risks, 2023, 11, 18.	1.3	0
505	Survival energy models for mortality prediction and future prospects. ASTIN Bulletin, 0, , 1-15.	0.7	0
506	Enhancing Mortality Forecasting through Bivariate Model–Based Ensemble. North American Actuarial Journal, 0, , 1-20.	0.8	0
507	Bayesian model comparison for mortality forecasting. Journal of the Royal Statistical Society Series C: Applied Statistics, 2023, 72, 566-586.	0.5	1
508	Bayesian Poisson common factor model with overdispersion for mortality forecasting in multiple populations. Communications in Statistics Part B: Simulation and Computation, 0, , 1-28.	0.6	0
529	An analysis of cohort-based mortality model with ARIMA model. AIP Conference Proceedings, 2024, , .	0.3	0
530	Modelling new mortality rates with income inequality variable. AIP Conference Proceedings, 2024, , .	0.3	0