Large area few-layer graphene/graphite films as transpa

Applied Physics Letters 95,

DOI: 10.1063/1.3220807

Citation Report

#	Article	IF	CITATIONS
2	Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density. Nanotechnology, 2010, 21, 465705.	2.6	86
3	Biocompatibility of Graphene Oxide. Nanoscale Research Letters, 2011, 6, 8.	5.7	728
4	Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 2010, 22, 3906-3924.	21.0	8,959
5	Multilayer graphene films grown by molecular beam deposition. Solid State Communications, 2010, 150, 809-811.	1.9	35
6	Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5, 574-578.	31.5	7,294
7	Adsorption/desorption and electrically controlled flipping of ammonia molecules on graphene. New Journal of Physics, 2010, 12, 125011.	2.9	56
8	Graphene and Mobile Ions: The Key to All-Plastic, Solution-Processed Light-Emitting Devices. ACS Nano, 2010, 4, 637-642.	14.6	266
9	Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition. Applied Physics Letters, 2010, 97, .	3.3	176
10	Applications of graphene devices in RF communications. , 2010, 48, 122-128.		155
11	Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films?. ACS Nano, 2010, 4, 2713-2720.	14.6	511
12	Large Scale Pattern Graphene Electrode for High Performance in Transparent Organic Single Crystal Field-Effect Transistors. ACS Nano, 2010, 4, 3927-3932.	14.6	126
13	Layer-by-Layer Doping of Few-Layer Graphene Film. ACS Nano, 2010, 4, 4595-4600.	14.6	293
14	The evolution of graphene-based electronic devices. International Journal of Smart and Nano Materials, 2010, 1, 201-223.	4.2	40
15	Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition. Nano Letters, 2010, 10, 1645-1651.	9.1	1,103
16	Nanoscale Mapping of Electrical Resistivity and Connectivity in Graphene Strips and Networks. Nano Letters, 2011, 11, 16-22.	9.1	170
17	Transparent Electrode with a Nanostructured Coating. ACS Nano, 2011, 5, 2082-2089.	14.6	18
18	Graphene electronics for RF applications. , 2011, , .		2
19	Synthesis and Characterization of Large-Area Graphene and Graphite Films on Commercial Cu–Ni Alloy Foils. Nano Letters, 2011, 11, 3519-3525.	9.1	294

#	Article	IF	CITATIONS
20	A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 2011, 21, 3324-3334.	6.7	1,239
21	Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. ACS Nano, 2011, 5, 1321-1327.	14.6	1,167
22	Ultrafast room temperature NH3 sensing with positively gated reduced graphene oxide field-effect transistors. Chemical Communications, 2011, 47, 7761.	4.1	85
23	Synthesis of ethanol-soluble few-layer graphene nanosheets for flexible and transparent conducting composite films. Nanotechnology, 2011, 22, 295606.	2.6	51
24	Selective Deposition of CdSe Nanoparticles on Reduced Graphene Oxide to Understand Photoinduced Charge Transfer in Hybrid Nanostructures. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2703-2709.	8.0	25
25	Graphene based new energy materials. Energy and Environmental Science, 2011, 4, 1113.	30.8	1,789
26	Transport behavior and negative magnetoresistance in chemically reduced graphene oxide nanofilms. Nanotechnology, 2011, 22, 335701.	2.6	27
27	Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments. ACS Nano, 2011, 5, 321-328.	14.6	474
28	Ethanol-Assisted Graphene Oxide-Based Thin Film Formation at Pentane–Water Interface. Langmuir, 2011, 27, 9174-9181.	3.5	73
29	Local conductance measurement of graphene layer using conductive atomic force microscopy. Journal of Applied Physics, 2011, 110, .	2.5	49
30	Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. ACS Nano, 2011, 5, 6916-6924.	14.6	1,258
31	Thickness determination of graphene on metal substrate by reflection spectroscopy. Optics Express, 2011, 19, 17226.	3.4	21
32	Electrophoretic graphene for transparent counter electrodes in dye-sensitised solar cells. Electronics Letters, 2011, 47, 281.	1.0	27
33	Preparation, characterization, and electrocatalytic performance of graphene-methylene blue thin films. Nano Research, 2011, 4, 124-130.	10.4	35
34	Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication. Nanoscale Research Letters, 2011, 6, 202.	5.7	123
35	Graphene as Transparent Electrode Material for Organic Electronics. Advanced Materials, 2011, 23, 2779-2795.	21.0	708
36	Growth of graphene layers for thin films. , 2011, , 211-227.		0
37	Graphite Thin Films Consisting of Nanograins of Multilayer Graphene on Sapphire Substrates Directly Grown by Alcohol Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2011, 50, 04DH12.	1.5	26

#	ARTICLE	IF	Citations
38	Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping. Nanotechnology, 2012, 23, 365701.	2.6	122
39	Thermally reduced graphenes exhibiting a close relationship to amorphous carbon. Nanoscale, 2012, 4, 4972.	5.6	80
40	Ultrahigh conductivity of large area suspended few layer graphene films. Applied Physics Letters, 2012, 101, 263101.	3.3	22
41	Progress of graphene growth on copper by chemical vapor deposition: Growth behavior and controlled synthesis. Science Bulletin, 2012, 57, 2995-2999.	1.7	15
42	AN IMPROVED METHOD FOR TRANSFERRING GRAPHENE GROWN BY CHEMICAL VAPOR DEPOSITION. Nano, 2012, 07, 1150001.	1.0	37
43	Controlled growth of carbon nanotube–graphene hybrid materials for flexible and transparent conductors and electron field emitters. Nanoscale, 2012, 4, 632-638.	5. 6	110
44	Direct Growth Properties of Graphene Layers on Sapphire Substrate by Alcohol-Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 04DN03.	1.5	4
45	Out-of-plane growth of CNTs on graphene for supercapacitor applications. Nanotechnology, 2012, 23, 015301.	2.6	140
46	Simultaneous Transfer and Doping of CVD-Grown Graphene by Fluoropolymer for Transparent Conductive Films on Plastic. ACS Nano, 2012, 6, 1284-1290.	14.6	113
47	Low Partial Pressure Chemical Vapor Deposition of Graphene on Copper. IEEE Nanotechnology Magazine, 2012, 11, 255-260.	2.0	57
48	Coplanar-Gate Transparent Graphene Transistors and Inverters on Plastic. ACS Nano, 2012, 6, 8646-8651.	14.6	110
49	Roll-to-Roll Graphene Synthesis by Using Microwave Plasma Chemical Vapor Deposition at Low Temperature. Materials Research Society Symposia Proceedings, 2012, 1401, 20.	0.1	1
50	Photodiodes based on graphene oxide–silicon junctions. Solar Energy, 2012, 86, 2961-2966.	6.1	93
51	Facile Synthesis of Ag Interlayer Doped Graphene by Chemical Vapor Deposition Using Polystyrene As Solid Carbon Source. ACS Applied Materials & Interfaces, 2012, 4, 2041-2047.	8.0	76
52	Graphene-based flexible and stretchable thin film transistors. Nanoscale, 2012, 4, 4870.	5.6	135
53	Langmuir-Blodgett assembly of ultra-large graphene oxide films for transparent electrodes. Transactions of Nonferrous Metals Society of China, 2012, 22, 2504-2511.	4.2	27
54	Comparison of the mechanism of low defect few-layer graphene fabricated on different metals by pulsed laser deposition. Diamond and Related Materials, 2012, 25, 98-102.	3.9	52
55	Unique synthesis of graphene-based materials for clean energy and biological sensing applications. Science Bulletin, 2012, 57, 3000-3009.	1.7	23

#	ARTICLE	IF	CITATIONS
56	Preparation and Properties of PEDOT/PSS Conductive Polymer Blended with Graphene/PVDF. Advanced Materials Research, 0, 608-609, 1318-1326.	0.3	2
57	Effect of uni-axial strain on THz/far-infrared response of graphene. Applied Physics Letters, 2012, 100, .	3.3	8
58	Homogeneous bilayer graphene film based flexible transparent conductor. Nanoscale, 2012, 4, 639-644.	5.6	48
59	Electronic structure study of ordering and interfacial interaction in graphene/Cu composites. Carbon, 2012, 50, 5316-5322.	10.3	32
60	The Removal of Single Layers from Multiâ€layer Graphene by Lowâ€Energy Electron Stimulation. Small, 2012, 8, 1066-1072.	10.0	8
61	van der Waals Epitaxy of InAs Nanowires Vertically Aligned on Single-Layer Graphene. Nano Letters, 2012, 12, 1431-1436.	9.1	114
62	Detection of sulfur dioxide gas with graphene field effect transistor. Applied Physics Letters, 2012, 100, .	3.3	64
63	Synthesis of High Quality Monolayer Graphene at Reduced Temperature on Hydrogen-Enriched Evaporated Copper (111) Films. ACS Nano, 2012, 6, 2319-2325.	14.6	160
64	The effect of downstream plasma treatments on graphene surfaces. Carbon, 2012, 50, 395-403.	10.3	95
65	A simple method to synthesize continuous large area nitrogen-doped graphene. Carbon, 2012, 50, 4476-4482.	10.3	139
66	Multi-layer graphene treated by O2 plasma for transparent conductive electrode applications. Materials Letters, 2012, 73, 187-189.	2.6	13
67	Graphene/SiO ₂ /pâ€GaN Diodes: An Advanced Economical Alternative for Electrically Tunable Light Emitters. Advanced Functional Materials, 2013, 23, 4043-4048.	14.9	22
68	Boron-doped graphene and boron-doped diamond electrodes: detection of biomarkers and resistance to fouling. Analyst, The, 2013, 138, 4885.	3.5	59
69	Carbonâ€rich nanostructures: the conversion of acetylenes into materials. Journal of Physical Organic Chemistry, 2013, 26, 742-749.	1.9	68
70	Mechanical properties of free-standing graphene oxide. Diamond and Related Materials, 2013, 38, 73-78.	3.9	35
71	Carbon Nanotube Chirality Determines Efficiency of Electron Transfer to Fullerene in All-Carbon Photovoltaics. Journal of Physical Chemistry Letters, 2013, 4, 2914-2918.	4.6	46
72	Electrochemical biosensors on platforms of graphene. Chemical Communications, 2013, 49, 9526.	4.1	152
73	Lubricating graphene with a nanometer-thick perfluoropolyether. Thin Solid Films, 2013, 549, 299-305.	1.8	10

#	ARTICLE	IF	CITATIONS
74	Nanocarbon Hybrids: The Paradigm of Nanoscale Self-Ordering/Self-Assembling by Means of Charge Transfer/Doping Interactions. Journal of Physical Chemistry Letters, 2013, 4, 1489-1501.	4.6	38
75	A nitrogen-doped graphene film prepared by chemical vapor deposition of a methanol mist containing methylated melamine resin. Applied Physics A: Materials Science and Processing, 2013, 113, 645-650.	2.3	6
76	Excellent optoelectrical properties of graphene oxide thin films deposited on a flexible substrate by Langmuir–Blodgett assembly. Journal of Materials Chemistry C, 2013, 1, 6869.	5 . 5	59
77	Boron-substituted graphyne as a versatile material with high storage capacities of Li and H2: a multiscale theoretical study. Physical Chemistry Chemical Physics, 2013, 15, 16120.	2.8	96
78	Sustainable and efficient protocol for the synthesis of a RGO–VPO composite with synergetic stability and reactivity. RSC Advances, 2013, 3, 4863.	3.6	11
79	Functionalisation of graphene surfaces with downstream plasma treatments. Carbon, 2013, 54, 283-290.	10.3	77
80	Graphene coated Ni films: A protective coating. Thin Solid Films, 2013, 529, 312-316.	1.8	92
81	A simple method for graphene production based on exfoliation of graphite in water using 1-pyrenesulfonic acid sodium salt. Carbon, 2013, 53, 357-365.	10.3	151
82	Controlled water adhesion and electrowetting of conducting hydrophobic graphene/carbon nanotubes composite films on engineering materials. Journal of Materials Chemistry A, 2013, 1, 1254-1260.	10.3	63
83	Fabrication of graphene-carbon nanotubes composite-based flexible transparent conductive films and their improved durability on repetitive strain. Applied Physics A: Materials Science and Processing, 2013, 110, 29-34.	2.3	4
84	Thermal relaxation and deformation of indented graphene. Computational Materials Science, 2013, 79, 105-109.	3.0	7
85	Novel fabrication process for flexible dye sensitized solar cell using aluminum doped zinc oxide. Materials Science in Semiconductor Processing, 2013, 16, 1730-1735.	4.0	16
86	Effect of repetitive strain on the electrical durability of graphene-based, flexible, transparent, conductive films. Journal of the Korean Physical Society, 2013, 62, 263-268.	0.7	1
87	Transparent, flexible conducting graphene hybrid films with a subpercolating network of silver nanowires. Journal of Materials Chemistry C, 2013, 1, 2970.	5.5	88
88	Bioinspired Waferâ€Scale Production of Highly Stretchable Carbon Films for Transparent Conductive Electrodes. Angewandte Chemie - International Edition, 2013, 52, 5535-5538.	13.8	129
89	Synthesis and characterization of bi-functionalized graphene and expanded graphite using n-butyl lithium and their use for efficient water soluble dye adsorption. Journal of Materials Chemistry A, 2013, 1, 8144.	10.3	38
91	Simple method to transfer graphene from metallic catalytic substrates to flexible surfaces without chemical etching. Journal of Physics: Conference Series, 2013, 433, 012002.	0.4	11
92	GaN nanorod light emitting diodes with suspended graphene transparent electrodes grown by rapid chemical vapor deposition. Applied Physics Letters, 2013, 103, 222105.	3.3	14

#	Article	IF	Citations
93	Arrays of carbon nanoscrolls as deep subwavelength magnetic metamaterials. Physical Review B, 2013, 88, .	3.2	1
94	Effects of graphene thickness on the electrical properties of carbon nanotube field effect transistors with graphene contacts. Applied Physics Letters, 2013, 103, 033120.	3.3	5
95	Modeling of the self-limited growth in catalytic chemical vapor deposition of graphene. New Journal of Physics, 2013, 15, 053012.	2.9	40
96	Lowest ΖÎ* electronic transitions in linear and two-dimensional polycyclic aromatic hydrocarbons: enhanced electron density edge effect. Molecular Physics, 2014, 112, 1063-1070.	1.7	3
97	Infrared to terahertz absorption window in mono- and multi-layer graphene systems. Optics Communications, 2014, 328, 135-142.	2.1	9
98	An easy, low-cost method to transfer large-scale graphene onto polyethylene terephthalate as a transparent conductive flexible substrate. Thin Solid Films, 2014, 570, 595-598.	1.8	12
99	Enhancement of the effectiveness of graphene as a transparent conductive electrode by AgNO ₃ doping. Nanotechnology, 2014, 25, 125701.	2.6	23
100	Controllable Synthesis of Doped Graphene and Its Applications. Small, 2014, 10, 2975-2991.	10.0	58
101	Graphene oxide-based transparent conductive films. Progress in Materials Science, 2014, 64, 200-247.	32.8	263
102	Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 2014, 20, 2883-2887.	5.8	882
103	25th Anniversary Article: Carbon Nanotube―and Grapheneâ€Based Transparent Conductive Films for Optoelectronic Devices. Advanced Materials, 2014, 26, 1958-1991.	21.0	350
104	A Tough and High-Performance Transparent Electrode from a Scalable and Transfer-Free Method. ACS Nano, 2014, 8, 4782-4789.	14.6	94
105	Transparent conductors composed of nanomaterials. Nanoscale, 2014, 6, 5581-5591.	5.6	185
106	High-yield graphene production by electrochemical exfoliation of graphite: Novel ionic liquid (IL) \hat{a} e"acetonitrile electrolyte with low IL content. Carbon, 2014, 71, 58-69.	10.3	91
107	Dimers and trimers of polycyclic aromatic hydrocarbons as models of graphene bilayers and trilayers: enhanced electron density at the edges. Molecular Physics, 2014, 112, 88-96.	1.7	11
108	Graphene Properties and Application. , 2014, , 565-583.		2
109	Role of wrinkles in the corrosion of graphene domain-coated Cu surfaces. Applied Physics Letters, 2014, 104, .	3.3	52
110	Green tea polyphenol–reduced graphene oxide: derivatisation, reduction efficiency, reduction mechanism and cytotoxicity. RSC Advances, 2014, 4, 34510-34518.	3.6	32

#	Article	IF	CITATIONS
111	Electron transfer properties of chemically reduced graphene materials with different oxygen contents. Journal of Materials Chemistry A, 2014, 2, 10668-10675.	10.3	64
112	Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities. Physical Chemistry Chemical Physics, 2014, 16, 7058-7065.	2.8	14
113	Hexamethylenetetramine mediated simultaneous nitrogen doping and reduction of graphene oxide for a metal-free SERS substrate. RSC Advances, 2014, 4, 44146-44150.	3.6	17
114	Step-by-Step Fracture of Two-Layer Stacked Graphene Membranes. ACS Nano, 2014, 8, 10246-10251.	14.6	34
115	Novel Fabrication of Flexible Graphene-Based Chemical Sensors with Heaters using Soft Lithographic Patterning Method. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13319-13323.	8.0	43
116	Multilayer Graphene: A Potential Anti-oxidation Barrier in Simulated Primary Water. Journal of Materials Science and Technology, 2014, 30, 1084-1087.	10.7	17
117	Synthesis and electrical conductivity of multilayer silicene. Applied Physics Letters, 2014, 104, .	3.3	136
118	Motional Heating in a Graphene-Coated Ion Trap. Nano Letters, 2014, 14, 5712-5716.	9.1	10
119	Photosensitive Schottky-type heterojunctions prepared by the drawing of graphite films. Applied Physics Letters, 2014, 104, .	3.3	25
120	Transparent N-doped graphene films on substrates fabricated by hydroxylamine diffusion induced assembly. Materials Letters, 2014, 116, 23-26.	2.6	0
121	Chemical vapor deposition growth of few-layer graphene for transparent conductive films. RSC Advances, 2015, 5, 44142-44148.	3.6	14
122	Silver nanowires for transparent conductive electrode to GaN-based light-emitting diodes. Applied Physics Letters, 2015, 106, .	3.3	28
123	Graphene-based protein biomarker detection. Bioanalysis, 2015, 7, 725-742.	1.5	26
124	Vertical Graphene Growth from Amorphous Carbon Films Using Oxidizing Gases. Journal of Physical Chemistry C, 2015, 119, 17965-17970.	3.1	7
125	Hierarchical Graphene/Metal Grid Structures for Stable, Flexible Transparent Conductors. ACS Nano, 2015, 9, 5440-5446.	14.6	65
126	Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite. Nanoscale, 2015, 7, 11310-11320.	5.6	115
127	Graphene Composites Based Photodetectors. , 2015, , 193-222.		3
128	Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping. Small, 2015, 11, 3143-3152.	10.0	13

#	Article	IF	CITATIONS
129	Flexible transparent electrode based on PANi nanowire/nylon nanofiber reinforced cellulose acetate thin film as supercapacitor. Chemical Engineering Journal, 2015, 273, 603-609.	12.7	87
130	MoS2 oxygen sensor with gate voltage stress induced performance enhancement. Applied Physics Letters, 2015, 107, .	3.3	27
131	Graphene/h-BN/ZnO van der Waals tunneling heterostructure based ultraviolet photodetector. Optics Express, 2015, 23, 18864.	3.4	35
132	Determination of High-Frequency Dielectric Constant and Surface Potential of Graphene Oxide and Influence of Humidity by Kelvin Probe Force Microscopy. Langmuir, 2015, 31, 11339-11343.	3.5	38
133	Deoxygenation of graphene oxide using household baking soda as a reducing agent: a green approach. RSC Advances, 2015, 5, 70461-70472.	3.6	39
134	Fabrication of Graphene-Based Transparent Conducting Thin Films. , 2015, , 95-122.		4
135	Multilayer graphene as a transparent conducting electrode in silicon heterojunction solar cells. AIP Advances, 2015, 5, .	1.3	42
136	Electrical and photoresponse properties of graphene oxide:ZnO/Si photodiodes. Journal of Alloys and Compounds, 2015, 647, 259-264.	5.5	35
137	Flexible Light-Emitting Diodes Based on Vertical Nitride Nanowires. Nano Letters, 2015, 15, 6958-6964.	9.1	172
138	Large-area bilayer graphene synthesis in the hot filament chemical vapor deposition reactor. Diamond and Related Materials, 2015, 51, 34-38.	3.9	23
139	Emerging applications of graphene and its derivatives in carbon capture and conversion: Current status and future prospects. Renewable and Sustainable Energy Reviews, 2015, 41, 1515-1545.	16.4	58
140	Crystallization, mechanical performance and hydrolytic degradation of poly(butylene) Tj ETQq1 1 0.784314 rgBT Applied Science and Manufacturing, 2015, 68, 193-201.	Overlock 7.6	10 Tf 50 30 46
141	Transparent Electrodes: A Review of the Use of Carbon-Based Nanomaterials. Journal of Nanomaterials, 2016, 2016, 1-12.	2.7	48
142	Incorporation of graphene into silica-based aerogels and application for water remediation. RSC Advances, 2016, 6, 66516-66523.	3.6	30
143	Graphene Oxide Liquid Crystals: Discovery, Evolution and Applications. Advanced Materials, 2016, 28, 3045-3068.	21.0	211
144	Toward graphene chloride: chlorination of graphene and graphene oxide. RSC Advances, 2016, 6, 66884-66892.	3.6	56
145	Tubular graphene architectures at the macroscopic scale: fabrication and properties. International Journal of Higher Education Management, 2016, 2, 23-29.	1.3	4
146	Spin-filter and negative differential resistance effect in zigzag-edged bilayer graphene nanoribbon devices. AIP Advances, 2016, 6, .	1.3	5

#	Article	IF	CITATIONS
147	Nonlinear optical characterization of graphite oxide thin film by open aperture Z-scan technique. AIP Conference Proceedings, 2016 , , .	0.4	0
148	Effects of interlayer screening and temperature on dielectric functions of graphene by first-principles. Journal of Applied Physics, 2016, 120, .	2.5	7
149	Low temperature CVD growth of ultrathin carbon films. AIP Advances, 2016, 6, 055310.	1.3	7
150	Solution of reduced graphene oxide synthesized from coconut shells and its optical properties. AIP Conference Proceedings, 2016, , .	0.4	17
151	Physical investigation of electrophoretically deposited graphene oxide and reduced graphene oxide thin films. Journal of Applied Physics, 2016, 120, 195307.	2.5	29
152	Facile fabrication of properties-controllable graphene sheet. Scientific Reports, 2016, 6, 24525.	3.3	16
153	Characterization and anticorrosion properties of carbon nanotubes directly synthesized on Ni foil using ethanol. Applied Surface Science, 2016, 376, 199-208.	6.1	7
154	Microbial colonisation of transparent glass-like carbon films triggered by a reversible radiation-induced hydrophobic to hydrophilic transition. RSC Advances, 2016, 6, 50278-50287.	3.6	8
155	Effect of plasma treatment on multilayer graphene: X-ray photoelectron spectroscopy , surface morphology investigations and work function measurements. RSC Advances, 2016, 6, 48843-48850.	3.6	22
156	An insulating-conductive transition driven by partial crystallization of amorphous Zn–Sn–O alloy. Journal of Alloys and Compounds, 2016, 672, 636-642.	5 . 5	2
157	Ligancy-Driven Controlling of Covalency and Metallicity in a Ruthenium Two-Dimensional System. Chemistry of Materials, 2016, 28, 5784-5790.	6.7	3
158	Atomicâ€Layered MoS ₂ as a Tunable Optical Platform. Advanced Optical Materials, 2016, 4, 1429-1456.	7.3	54
159	Nonlinear resonant frequency of graphene/elastic/piezoelectric laminated films under active electric loading. International Journal of Mechanical Sciences, 2016, 115-116, 624-633.	6.7	9
160	Graphene and Its Hybrids as Electrode Materials for High-Performance Lithium-Ion Batteries. , 2016, , 133-152.		0
161	Edge or interface effect on bandgap openings in graphene nanostructures: A thermodynamic approach. Coordination Chemistry Reviews, 2016, 326, 1-33.	18.8	16
162	Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance. Nanoscale, 2016, 8, 16684-16693.	5.6	131
163	Illumination impact on electrical properties of Ag/0.6Âwt% nanographene oxide doped poly(vinyl) Tj ETQq0 0 0 rg	gBT Overl	ock 10 Tf 50
164	Nanostructured transparent conductive films: Fabrication, characterization and applications. Materials Science and Engineering Reports, 2016, 109, 1-101.	31.8	104

#	Article	IF	CITATIONS
165	Practical carbocatalysis by graphene oxide nanosheets in aqueous medium towards the synthesis of diversified dibenzo[1,4]diazepine scaffolds. RSC Advances, 2016, 6, 88904-88910.	3.6	40
166	Structural phase field crystal approach for modeling graphene and other two-dimensional structures. Physical Review B, 2016, 93, .	3.2	55
167	The effect of temperature and type of peroxide on graphene synthesized by improved Hummers' method. International Nano Letters, 2016, 6, 211-214.	5.0	9
168	Atomically flat nickel film grown on synthetic mica. Japanese Journal of Applied Physics, 2016, 55, 078003.	1.5	8
169	Rapid fabrication of transparent conductive films with controllable sheet resistance on glass substrates by laser annealing of diamond-like carbon films. Acta Materialia, 2016, 111, 315-320.	7.9	9
170	The development of nanostructure assisted isothermal amplification in biosensors. Chemical Society Reviews, 2016, 45, 1738-1749.	38.1	99
171	Fine tuning of graphene properties by modification with aryl halogens. Nanoscale, 2016, 8, 1493-1502.	5.6	21
172	Electrical and electrochemical properties of graphene modulated through surface functionalization. RSC Advances, 2016, 6, 27404-27415.	3.6	22
173	Synthesis of graphene. International Nano Letters, 2016, 6, 65-83.	5.0	516
174	Synthesis of 2,3-dihydroquinazolinones and quinazolin-4(3H)-ones catalyzed by graphene oxide nanosheets in an aqueous medium: "on-water―synthesis accompanied by carbocatalysis and selective C–C bond cleavage. RSC Advances, 2016, 6, 22320-22330.	3.6	57
175	The green reduction of graphene oxide. RSC Advances, 2016, 6, 27807-27828.	3.6	235
176	Progress update on failure mechanisms of advanced thermal barrier coatings: A review. Progress in Organic Coatings, 2016, 90, 54-82.	3.9	216
177	High-Speed Optical Phase Modulator Based on Graphene-Silicon Waveguide. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 76-80.	2.9	48
178	Fluorescent biosensors enabled by graphene and graphene oxide. Biosensors and Bioelectronics, 2017, 89, 96-106.	10.1	215
179	High-temperature creep of carbon nanofiber-reinforced and graphene oxide-reinforced alumina composites sintered by spark plasma sintering. Ceramics International, 2017, 43, 7136-7141.	4.8	21
180	Alignment of liquid crystals on ion beam-spurted graphene oxide thin layers. Journal of the Society for Information Display, 2017, 25, 83-89.	2.1	2
181	An investigation of growth mechanism of coal derived graphene films. Materials Today Communications, 2017, 11, 147-155.	1.9	27
182	One-step electrochemical preparation of graphene-coated pencil graphite electrodes by cyclic voltammetry and their application in vanadium redox batteries. Electrochimica Acta, 2017, 243, 239-249.	5.2	69

#	Article	IF	CITATIONS
183	Crystallization of Poly(butylene succinate) on Rapid Cooling and Heating: Toward Enhanced Nucleation by Graphene Nanosheets. Journal of Physical Chemistry C, 2017, 121, 11915-11925.	3.1	14
184	Polarization-Independent Modulator by Partly Tilted Graphene-Induced Electro-Absorption Effect. IEEE Photonics Technology Letters, 2017, 29, 23-26.	2.5	26
185	Fabrication and optimization of transparent conductive films using laser annealing and picosecond laser patterning. Applied Surface Science, 2017, 420, 886-895.	6.1	4
186	Graphite exfoliation in cellulose solutions. Nanoscale, 2017, 9, 10219-10226.	5 . 6	22
187	Carbon nanofibers replacing graphene oxide in ceramic composites as a reinforcing-phase: Is it feasible?. Journal of the European Ceramic Society, 2017, 37, 3791-3796.	5.7	16
188	Porous graphene paper for supercapacitor applications. Journal of Materials Science and Technology, 2017, 33, 793-799.	10.7	54
189	Influence of releasing graphene oxide into a clayey sand: physical and mechanical properties. RSC Advances, 2017, 7, 18060-18067.	3.6	31
190	A coarse-grained model for the mechanical behavior of graphene oxide. Carbon, 2017, 117, 476-487.	10.3	47
191	Optical and electrical smart response of chemically stabilized graphene oxide. Journal of Materials Science: Materials in Electronics, 2017, 28, 5235-5243.	2.2	23
192	Facile synthesis route of graphene-like structures from multiwall carbon nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 540-544.	2.1	8
193	Study on structural, linear and nonlinear optical properties of spin coated N doped CdO thin films for optoelectronic applications. Journal of Molecular Structure, 2017, 1150, 523-530.	3.6	47
194	Graphene-Assisted Polarization-Insensitive Electro-absorption Optical Modulator. IEEE Nanotechnology Magazine, 2017, 16, 1004-1010.	2.0	14
195	Phosphorene for energy and catalytic applicationâ€"filling the gap between graphene and 2D metal chalcogenides. 2D Materials, 2017, 4, 042006.	4.4	46
196	Modified and improved Hummer's synthesis of graphene oxide for capacitors applications. Modern Electronic Materials, 2017, 3, 110-116.	0.6	104
197	Recent advanced in energy harvesting and storage applications with two-dimensional layered materials. FlatChem, 2017, 6, 37-47.	5.6	20
198	Low-level doping of nitrogen to multilayered graphene by chemical vapor deposition of methane including melamine vapor. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	4
199	Interfacial thermal resistance across graphene/Al2O3 and graphene/metal interfaces and post-annealing effects. Carbon, 2017, 123, 18-25.	10.3	20
200	Characteristics of Thermally Reduced Graphene Oxide Thin Film as DSSC Counter Electrode. IOP Conference Series: Materials Science and Engineering, 2017, 196, 012049.	0.6	6

#	Article	IF	CITATIONS
201	Enhanced gas sensing properties to acetone vapor achieved by \hat{l} ±-Fe2O3 particles ameliorated with reduced graphene oxide sheets. Sensors and Actuators B: Chemical, 2017, 241, 904-914.	7.8	124
202	Graphene-Assisted Electroabsorption Optical Modulator Using D-Microfiber. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 89-93.	2.9	29
203	Large-scale nanometer-thickness graphite films synthesized on polycrystalline Ni foils by two-stage chemical vapor deposition process. Carbon, 2017, 113, 309-317.	10.3	18
204	Graphene and its derivatives for solar cells application. Nano Energy, 2018, 47, 51-65.	16.0	284
205	Waveguide Engineering of Graphene Optoelectronics—Modulators and Polarizers. IEEE Photonics Journal, 2018, 10, 1-17.	2.0	40
206	Graphite nanosheets - polypropylene composites from in toluene delaminated graphite using atactic polypropylene as dispersant. Composites Science and Technology, 2018, 156, 28-38.	7.8	17
207	Investigation of mechanochemical green synthesis of exfoliated graphite nano-platelets on conductivity and its nonlinear properties based on zinc oxide. Journal of Materials Science: Materials in Electronics, 2018, 29, 4345-4350.	2.2	1
208	Graphene or carbon nanofiber-reinforced zirconia composites: Are they really worthwhile for structural applications?. Journal of the European Ceramic Society, 2018, 38, 3994-4002.	5.7	25
209	Formation process of graphite film on Ni substrate with improved thickness uniformity through precipitation control. Chemical Physics Letters, 2018, 698, 157-162.	2.6	6
210	Graphene Oxide–TiO2 Nanocomposite Films for Electron Transport Applications. Journal of Electronic Materials, 2018, 47, 3749-3756.	2.2	12
211	Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11941-11949.	8.0	245
212	Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection. Biosensors and Bioelectronics, 2018, 99, 85-91.	10.1	60
213	Synthesis of hierarchical ZnO& Graphene composites with enhanced photocatalytic activity. Ceramics International, 2018, 44, 849-856.	4.8	49
214	Studies on hydrothermal synthesis of photolumniscent rare earth (Eu 3+ & D 3+) doped NG@FeMoO 4 for enhanced visible light photodegradation of methylene blue dye. Solid State Sciences, 2018, 76, 38-47.	3.2	28
215	Investigation on the Silver Nanowire/Graphene Transparent Electrode in Electrochromic Device. Journal of Nano Research, 2018, 55, 82-90.	0.8	1
216	Mechanistic Insights into the Fluorescence Quenching of Rhodamine 6G by Graphene Oxide. Chinese Journal of Chemical Physics, 2018, 31, 165-170.	1.3	8
217	Computational Investigation of the Morphology, Efficiency, and Properties of Silver Nano Wires Networks in Transparent Conductive Film. Scientific Reports, 2018, 8, 17494.	3.3	18
218	Manufacturing Transparent Conducting Films Based on Directly Exfoliated Graphene Particles via Langmuir–Blodgett Technique. Inorganic Materials: Applied Research, 2018, 9, 794-802.	0.5	1

#	Article	IF	CITATIONS
219	Analysis of graphene films grown on copper foil at 845 $\hat{A}^{\circ}C$ by intermediate pressure chemical vapor deposition. Materials Research Express, 2018, 5, 115604.	1.6	6
220	Establishment of a reliable transfer process for fabricating chemical vapor deposition-grown graphene films with advanced and repeatable electrical properties. RSC Advances, 2018, 8, 19846-19851.	3.6	2
221	Reduced graphene oxide as a water, carbon dioxide and oxygen barrier in plasticized poly(vinyl) Tj ETQq0 0 0 rgBT	Oyerlock	10 Tf 50 66
222	Extremely Foldable and Highly Transparent Nanofiber-Based Electrodes for Liquid Crystal Smart Devices. Scientific Reports, 2018, 8, 11517.	3.3	26
223	Flexible graphene supercapacitor based on the PVA electrolyte and BaTiO3/PEDOT:PSS composite separator. Journal of Materials Science: Materials in Electronics, 2018, 29, 17432-17437.	2.2	23
224	Carbon-Based Polymer Nanocomposite for Photovoltaic Devices. , 2018, , 559-584.		3
225	Enhanced room temperature sensitivity of Ag-CuO nanobrick/reduced graphene oxide composite for NO2. Journal of Alloys and Compounds, 2019, 806, 1469-1480.	5.5	31
226	High Capacitive Energy Storage of Nestâ€Like Porous Graphene Microspheres Electrode with High Mass Loading. ChemSusChem, 2019, 12, 4249-4256.	6.8	7
228	Enhanced photo-induced catalytic activity of Cu ion doped ZnO - Graphene ternary nanocomposite for degrading organic dyes. Journal of Water Process Engineering, 2019, 32, 100966.	5.6	27
229	Impact of Graphene-Based Surfaces on the Basic Biological Properties of Human Umbilical Cord Mesenchymal Stem Cells: Implications for Ex Vivo Cell Expansion Aimed at Tissue Repair. International Journal of Molecular Sciences, 2019, 20, 4561.	4.1	23
230	Viability of Neural Cells on 3D Printed Graphene Bioelectronics. Biosensors, 2019, 9, 112.	4.7	23
231	Solution processed hybrid Graphene-MoO3 hole transport layers for improved performance of organic solar cells. Organic Electronics, 2019, 67, 95-100.	2.6	18
232	Amine-terminated ionic liquid modified graphene oxide/copper nanocomposite toward efficient lubrication. Applied Surface Science, 2019, 491, 105-115.	6.1	91
233	Kaolin alleviates the toxicity of graphene oxide for mammalian cells. MedChemComm, 2019, 10, 1457-1464.	3.4	19
234	A CMOS-compatible and polarization-insensitive graphene optical modulator. Optics Communications, 2019, 450, 130-135.	2.1	8
235	A critical review on flexible Cu(In, Ga)Se2 (CIGS) solar cells. Materials Chemistry and Physics, 2019, 234, 329-344.	4.0	42
236	PVA-based supercapacitors. Ionics, 2019, 25, 2951-2963.	2.4	35
237	Copper complex of polyglycerol anchored to graphene oxide as a recyclable nanocatalyst for sonochemical green synthesis of naphthoquinones. Canadian Journal of Chemistry, 2019, 97, 728-736.	1.1	2

#	Article	IF	CITATIONS
238	Polymeric Surface Modification of Graphene. , 2019, , 305-320.		0
239	A one-dimensional Ag NW@NiCo/NiCo(OH) ₂ coreâ€"shell nanostructured electrode for a flexible and transparent asymmetric supercapacitor. Journal of Materials Chemistry A, 2019, 7, 8184-8193.	10.3	54
240	Modeling of plasma-enhanced chemical vapor deposition growth of graphene on cobalt substrates. Diamond and Related Materials, 2019, 93, 84-95.	3.9	7
241	A fabrication-friendly graphene-based polarization insensitive optical modulator. Optik, 2019, 182, 1093-1098.	2.9	15
242	Tractable Synthesis of Graphene Oxide by Electrochemical Exfoliation Method. Lecture Notes in Mechanical Engineering, 2019, , 239-248.	0.4	4
243	Electrophoretic deposition of graphene oxide on NiTi alloy for corrosion prevention. Vacuum, 2019, 161, 276-282.	3.5	22
244	Enhanced Thermal and Mechanical Performance of Functionalized Graphene Epoxy Nanocomposites: Effect of Processing Conditions, Different Grades and Loading of Graphene. Lecture Notes on Multidisciplinary Industrial Engineering, 2019, , 19-33.	0.6	1
245	Grapheneâ€Based Transparent Conductive Films: Material Systems, Preparation and Applications. Small Methods, 2019, 3, 1800199.	8.6	135
246	Graphene from discharged dry cell battery electrodes. Journal of Hazardous Materials, 2019, 366, 358-369.	12.4	45
247	Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Materials, 2019, 16, 102-125.	18.0	313
248	Variable-range hopping conduction with positive and negative magnetoresistance transformation in reduced graphene oxide mesostructures. Journal of Magnetism and Magnetic Materials, 2020, 498, 166107.	2.3	8
249	Effects of fluorination of carbon film and annealing conditions on side leakage current and current breakdown time of SiO2/graphene/Cu/Ti/SiO2/Si specimens. Vacuum, 2020, 172, 109037.	3.5	0
250	Environmental friendly approach for facile synthesis of graphene-like nanosheets for photocatalytic activity. Journal of Alloys and Compounds, 2020, 823, 153696.	5.5	9
251	Pushing the conductance and transparency limit of monolayer graphene electrodes for flexible organic light-emitting diodes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25991-25998.	7.1	28
252	Graphene Oxide Thin Films: Synthesis and Optical Characterization. ChemistrySelect, 2020, 5, 11737-11744.	1.5	15
253	Improvement of carrier collection in Si/a-Si:H nanowire solar cells by using hybrid ITO/silver nanowires contacts. Nanotechnology, 2020, 31, 435408.	2.6	4
254	The processing and analysis of graphene and the strength enhancement effect of graphene-based filler materials: A review. Materials Today Physics, 2020, 15, 100257.	6.0	37
255	A combination of hydrothermal, intercalation and electrochemical methods for the preparation of high-quality graphene: Characterization and using to prepare graphene-polyurethane nanocomposite. Journal of Alloys and Compounds, 2020, 848, 156495.	5.5	12

#	Article	IF	Citations
256	Study on Non-destructive Measurement Method of Contact Sheet Resistance for Graphene Film. , 2020, , .		0
257	Aerogels Based on Reduced Graphene Oxide/Cellulose Composites: Preparation and Vapour Sensing Abilities. Nanomaterials, 2020, 10, 1729.	4.1	9
258	Preparation of graphene in surfactant/water solution by liquid phase exfoliation. AIP Conference Proceedings, 2020, , .	0.4	0
259	Efficiency Improvement of a Capacitive Deionization (CDI) System by Modifying 3D SWCNT/RVC Electrodes Using Microwave-Irradiated Graphene Oxide (mwGO) for Effective Desalination. Journal of Nanomaterials, 2020, 2020, 1-14.	2.7	7
260	Semi-transparent graphite films growth on Ni and their double-sided polymer-free transfer. Scientific Reports, 2020, 10, 14703.	3.3	6
261	Bifacial Multilayer Graphene Float Transfer. Advanced Functional Materials, 2020, 30, 2005103.	14.9	2
262	Design of a simple and low cost electrical property tester for graphene material: a preliminary study. Journal of Physics: Conference Series, 2020, 1481, 012010.	0.4	0
263	Fabrication, structural evolutions and properties of large-area orientation reduced graphene oxide films by self-assembly at the air–water interface and thermal treatment. Materials Letters, 2020, 275, 128158.	2.6	5
264	Anionic Electrochemical Exfoliation of Few-Layer Graphene Nano-Sheets: An Emphasis on Characterization. Materials Science Forum, 0, 978, 399-406.	0.3	0
265	PEDOT:PSS in Water and Toluene for Organic Devicesâ€"Technical Approach. Polymers, 2020, 12, 565.	4.5	14
266	Synthesis of Highly Oriented Graphite Films with a Low Wrinkle Density and Near-Millimeter-Scale Lateral Grains. Chemistry of Materials, 2020, 32, 3134-3143.	6.7	9
267	Nanopumping of water via rotation of graphene nanoribbons. Nanotechnology, 2020, 31, 175704.	2.6	1
268	Recent progress and future prospects in development of advanced materials for nanofiltration. Materials Today Communications, 2020, 23, 100888.	1.9	51
269	Microstructural evolution and mechanical investigation of hot stretched graphene oxide reinforced polyacrylonitrile nanofiber yarns. Polymers for Advanced Technologies, 2020, 31, 1935-1945.	3.2	9
270	Atomic Vacancy Defect, Frenkel Defect and Transition Metals (Sc, V, Zr) Doping in Ti4N3 MXene Nanosheet: A First-Principles Investigation. Applied Sciences (Switzerland), 2020, 10, 2450.	2.5	14
271	Structure and properties of graphene. , 2020, , 5-26.		0
272	Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Progress in Materials Science, 2021, 115, 100708.	32.8	150
273	Advanced functionalized nanographene oxide as a biomedical agent for drug delivery and anti-cancerous therapy: A review. European Polymer Journal, 2021, 142, 110124.	5.4	26

#	Article	IF	CITATIONS
274	Structural evolution and thermal conductivity of flexible graphite films prepared by carboxylic graphene/polyimide. Ceramics International, 2021, 47, 1076-1085.	4.8	23
275	Temperature-dependent rheological behavior of nanofluids rich in carbon-based nanoparticles. Journal of Molecular Liquids, 2021, 325, 114659.	4.9	10
276	Electrospun Nanostructured Iron Oxide Carbon Composites for High-Performance Lithium Ion Batteries. Materials Horizons, 2021, , 235-276.	0.6	0
277	Graphene-based nanocomposite for hydrogen storage application. , 2021, , 57-78.		5
278	Optical properties of molybdenum disulfide based photonic crystal. Optical and Quantum Electronics, 2021, 53, 1.	3.3	7
279	Improvements of Organic Lightâ€Emitting Diodes Using Graphene as an Emerging and Efficient Transparent Conducting Electrode Material. Advanced Optical Materials, 2021, 9, 2002102.	7.3	17
280	Two-dimensional carbon nitride C ₆ N nanosheet with egg-comb-like structure and electronic properties of a semimetal. Nanotechnology, 2021, 32, 215702.	2.6	50
281	High-Performance and Reliable Silver Nanotube Networks for Efficient and Large-Scale Transparent Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2021, 13, 15525-15535.	8.0	41
282	Preliminary study of graphene like material fabrication from coconut shell using conventional furnace. Journal of Physics: Conference Series, 2021, 1876, 012005.	0.4	0
283	Graphene-Based Polarization-Independent Mid-Infrared Electro-Absorption Modulator Integrated in a Chalcogenide Glass Waveguide. Nanoscale Research Letters, 2021, 16, 80.	5.7	4
284	Rapid Ag Nanofiber Formation Via Pt Nanoparticle-Assisted H2-Free Reduction of Ag+-Containing Polymers. Nanoscale Research Letters, 2021, 16, 96.	5.7	2
285	Structure of Coal-Derived Metal-Supported Few-Layer Graphene Composite Materials Synthesized Using a Microwave-Assisted Catalytic Graphitization Process. Nanomaterials, 2021, 11, 1672.	4.1	8
286	Multistep Fractionation of Coal and Application for Graphene Synthesis. ACS Omega, 2021, 6, 16573-16583.	3.5	3
287	Review of performance improvement strategies for doped graphene quantum dots for fluorescence-based sensing. Synthetic Metals, 2021, 276, 116758.	3.9	24
288	Enhanced Tensile Strength of Monolithic Epoxy with Highly Dispersed TiO2-Graphene Nanocomposites. Journal of Composites Science, 2021, 5, 191.	3.0	1
289	Topological Optimization of Lung Wireless Nanosensor Network. IEEE Internet of Things Journal, 2021, 8, 11450-11462.	8.7	5
290	Hydrodynamic cavitation for scalable exfoliation of few-layered graphene nanosheets. Nanotechnology, 2021, 32, 505701.	2.6	6
291	A Heat Transfer Model for Graphene Deposition on Ni and Cu Foils in a Roll-to-Roll Plasma Chemical Vapor Deposition System. Journal of Heat Transfer, 2021, 143, .	2.1	2

#	Article	IF	CITATIONS
292	Enhancement of the adhesion energy between monolayer graphene and SiO2 by thermal annealing. Applied Surface Science, 2021, 570, 151243.	6.1	4
293	Carbon-based nanostructures and nanomaterials. , 2021, , 103-130.		1
294	Characteristics of Graphene/Reduced Graphene Oxide. Springer Series in Materials Science, 2020, , 155-177.	0.6	28
295	Fast, wafer-scale growth of a nanometer-thick graphite film on Ni foil and its structural analysis. Nanotechnology, 2020, 31, 485605.	2.6	8
296	Fabrication of three-dimensional sandwich-like silver nanowire network coated bilayer graphene nanostructures for flexible display. Applied Optics, 2020, 59, 9878.	1.8	3
297	Synthesis and Fabrication of Graphene and Graphene Oxide: A Review. Open Journal of Composite Materials, 2019, 09, 207-229.	0.8	106
298	Graphite Thin Films Consisting of Nanograins of Multilayer Graphene on Sapphire Substrates Directly Grown by Alcohol Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2011, 50, 04DH12.	1.5	31
299	Direct Growth Properties of Graphene Layers on Sapphire Substrate by Alcohol-Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 04DN03.	1.5	7
300	Two-dimensional porous graphitic carbon nitride C6N7 monolayer: First-principles calculations. Applied Physics Letters, 2021, 119, .	3.3	57
301	Low-temperature synthesis of high-quality graphene by controlling the carbon-hydrogen ratio of the precursor. Nano Express, 2022, 3, 015003.	2.4	3
302	Process in preparation of metal-catalyzed graphene. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 028201.	0.5	6
306	Microwave-Assisted Coal-Derived Few-Layer Graphene as an Anode Material for Lithium-Ion Batteries. Materials, 2021, 14, 6468.	2.9	4
307	Structure, magnetism, and electronic properties of MXene bilayer Fe2NO2H (xÂ=Â1.5, 1)/Ti2CO2 stacked heterojunction. Chemical Physics Letters, 2022, 790, 139319.	2.6	1
308	Multilayer polymeric nanocomposite thin film heater and electromagnetic interference shield. Chemical Engineering Journal, 2022, 435, 134598.	12.7	22
309	Design and synthesis of ultrathin graphene: Fundamental applications in transparent electrodes and supercapacitors., 2022,, 115-140.		0
310			

#	Article	IF	CITATIONS
313	Novel Transparent TiO ₂ /AgNWâ€"Si(NH ₂)/PET Hybrid Films for Flexible Smart Windows. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21613-21622.	8.0	17
315	Advanced Plasmonic Nanosensors for Monitoring of Environmental Pollutants. Current Analytical Chemistry, 2023, 19, 2-17.	1.2	4
316	Large-area Flexible Organic Solar Cells: Printing Technologies and Modular Design. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1522-1566.	3.8	27
317	Spectroscopic Analysis of the Dielectric Properties in Reduced Graphene Oxide Loaded Epoxy Polymer Composites. , 2022, , 221-230.		0
318	Transparent UHF RFID tags based on CVD-grown graphene films. Nanotechnology, 2022, 33, 505501.	2.6	1
319	Preparation and characterization of zinc oxide nanoparticles supported on reduced graphene oxide and using as an effective catalyst for synthesis of I,4â€dihydropyrimidinones under solvent free Designingsnanoscalefoiganiodyterconnects yjaCsp <mml:math< td=""><td>2.6</td><td>0</td></mml:math<>	2.6	0
320	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si11.svg" display="inline" id="d1e1323"> <mml:msup><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msup> /sp <mml:math <="" altimg="si12.svg" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.5</td><td>1</td></mml:math>	3.5	1
321	id="d1e1331"> <mml:msup><mml:mrow /><mml:mrow></mml:mrow></mml:mrow </mml:msup> <br Areal Density Control of Liquid-Supported Carbon Nanotube Thin Films. Langmuir, 2022, 38, 14760-14767.	3.5	1
322	Graphene-Based Touch Sensors. , 2023, , 54-70.		1
323	A Stretchable, Transparent, and Mechanically Robust Silver Nanowire–Polydimethylsiloxane Electrode for Electrochromic Devices. Polymers, 2023, 15, 2640.	4.5	2
324	Development of bio degradable nanocomposites based on PLA and functionalized graphene oxide. Polymer Testing, 2023, 124, 108066.	4.8	7
325	Facile transfer of monolayer graphene onto polyethylene via van der Waals interactions to prepare layered composite membranes. Polymer, 2023, 282, 126146.	3.8	2
326	Role of doping concentration, thickness of intrinsic layer and number of layers of graphene in Graphene-Silicon heterojunction solar cells. Materials Today: Proceedings, 2023, , .	1.8	0
327	Studying the responsivity and detectivity of GO/PSi/n-Si photo detector via drop casting technique. Journal of Optics (India), 0, , .	1.7	0
328	Understanding the chemistry of graphene oxide on redox flow lithiumâ€ion batteries with a view to enhancing the battery's highâ€density storage. Asia-Pacific Journal of Chemical Engineering, 2024, 19, .	1.5	0
329	A graphene-based material for green sustainable energy technology for hydrogen storage. Environmental Science and Pollution Research, 0, , .	5.3	1
330	Graphene oxide and reduced graphene oxide in the anisotropic media of nematic liquid crystals $4\hat{a}\in^{\mathbb{M}}$ -pentyl-4-cyano-biphenyl. Liquid Crystals, 0, , 1-13.	2.2	0
331	Nanofiltration membranes for sustainable removal of heavy metal ions from polluted water: A review and future perspective. Desalination, 2024, 578, 117441.	8.2	0

Article IF Citations