Storage of Hydrogen, Methane, and Carbon Dioxide in Frameworks for Clean Energy Applications

Journal of the American Chemical Society 131, 8875-8883 DOI: 10.1021/ja9015765

Citation Report

#	Article	IF	CITATIONS
14	Reticular Chemistry and Metal-Organic Frameworks for Clean Energy. MRS Bulletin, 2009, 34, 682-690.	1.7	75
15	Channel-forming solvates of 6-chloro-2,5-dihydroxypyridine and its solvent-free tautomer 6-chloro-5-hydroxy-2-pyridone. Acta Crystallographica Section C: Crystal Structure Communications, 2009, 65, o529-o533.	0.4	4
16	An Ab Initio Force Field for Predicting Hydrogen Storage in IRMOF Materials. Journal of Physical Chemistry C, 2009, 113, 21815-21824.	1.5	47
17	Li12Si60H60 Fullerene Composite: A Promising Hydrogen Storage Medium. ACS Nano, 2009, 3, 3294-3300.	7.3	45
18	Hydrogen Storage in Mesoporous Coordination Frameworks: Experiment and Molecular Simulation. Journal of Physical Chemistry C, 2009, 113, 15106-15109.	1.5	52
19	Hydrogen, Methane and Carbon Dioxide Adsorption in Metal-Organic Framework Materials. Topics in Current Chemistry, 2009, 293, 35-76.	4.0	110
20	Evaluation of Heterogeneous Metalâ^'Organic Framework Organocatalysts Prepared by Postsynthetic Modification. Inorganic Chemistry, 2010, 49, 8086-8091.	1.9	114
21	Comparative Study of Separation Performance of COFs and MOFs for CH ₄ /CO ₂ /H ₂ Mixtures. Industrial & Engineering Chemistry Research, 2010, 49, 2902-2906.	1.8	88
22	MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New Journal of Chemistry, 2010, 34, 2366.	1.4	1,039
23	Doping of Alkali, Alkaline-Earth, and Transition Metals in Covalent-Organic Frameworks for Enhancing CO ₂ Capture by First-Principles Calculations and Molecular Simulations. ACS Nano, 2010, 4, 4225-4237.	7.3	206
24	Control over Catenation in Metalâ^'Organic Frameworks via Rational Design of the Organic Building Block. Journal of the American Chemical Society, 2010, 132, 950-952.	6.6	344
25	Synthesis and textural characterization of covalent organic framework-1: Comparison of pore size distribution models. Materials Chemistry and Physics, 2010, 123, 5-8.	2.0	19
26	Template-free synthesis of crystalline polyimide spheres with radiate branches. Materials Letters, 2010, 64, 625-627.	1.3	3
27	Can Metal–Organic Framework Materials Play a Useful Role in Large‧cale Carbon Dioxide Separations?. ChemSusChem, 2010, 3, 879-891.	3.6	556
28	Crystallizationâ€Controlled Dynamic Selfâ€Assembly and an On/Off Switch for Equilibration Using Boronic Ester Formation. Chemistry - A European Journal, 2010, 16, 13680-13688.	1.7	23
29	Synthesis and Enhanced H ₂ Adsorption Properties of a Mesoporous Nanocrystal of MOFâ€5: Controlling Nanoâ€∤Mesostructures of MOFs To Improve Their H ₂ Heat of Adsorption. Chemistry - A European Journal, 2010, 16, 13049-13052.	1.7	69
35	Porous Organic Polymers: Distinction from Disorder?. Angewandte Chemie - International Edition, 2010, 49, 1533-1535.	7.2	156
36	Functional Materials: From Hard to Soft Porous Frameworks. Angewandte Chemie - International Edition, 2010, 49, 8328-8344.	7.2	724

ATION REPO

#	Article	IF	CITATIONS
37	A Highly Porous Metal–Organic Framework with Open Nickel Sites. Angewandte Chemie - International Edition, 2010, 49, 8489-8492.	7.2	149
38	Molecularâ€5ieve Membrane with Hydrogen Permselectivity: ZIFâ€22 in LTA Topology Prepared with 3â€Aminopropyltriethoxysilane as Covalent Linker. Angewandte Chemie - International Edition, 2010, 49, 4958-4961.	7.2	354
39	Organic Sol–Gel Synthesis: Solutionâ€Processable Microporous Organic Networks. Angewandte Chemie - International Edition, 2010, 49, 9504-9508.	7.2	79
40	In situ Selfâ€Assembly of Zigzag Polyimide Chains to Crystalline Branched Supramolecular Structures with High Surface Area. Macromolecular Chemistry and Physics, 2010, 211, 698-705.	1.1	11
41	Correlation between adsorption and thermal properties of lanthanide(III) dinicotinates. Applied Surface Science, 2010, 257, 1736-1739.	3.1	5
42	Adsorption of hydrogen in covalent organic frameworks: Comparison of simulations and experiments. Microporous and Mesoporous Materials, 2010, 133, 59-65.	2.2	58
43	Improving hydrogen storage properties of covalent organic frameworks by substitutional doping. International Journal of Hydrogen Energy, 2010, 35, 266-271.	3.8	46
44	Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing. Carbon, 2010, 48, 3760-3768.	5.4	54
45	Hydrogen adsorption sites and energies in 2D and 3D covalent organic frameworks. Chemical Physics Letters, 2010, 489, 86-91.	1.2	27
46	Structural stability and elastic properties of prototypical covalent organic frameworks. Chemical Physics Letters, 2010, 499, 103-107.	1.2	62
47	A bimetallic oxide framework, [{Cu(bpy)}2Mo4O10(O3PCH2C6H4CH2PO3)2], constructed from novel chains. Inorganic Chemistry Communication, 2010, 13, 298-301.	1.8	17
48	Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nature Chemistry, 2010, 2, 672-677.	6.6	636
49	Adsorption of Methane in Porous Materials as the Basis for the Storage of Natural Gas. , 0, , .		9
50	Crystal structure of cis-diaquabis(1,10-phenanthroline)zinc(II) bis(3-amino-4-chlorobenzensulphonate) dihydrate, [Zn(H2O)2(C12H8N2)2](H2NC6H3ClSO3)2 · 2H2O. Zeitschrift Fur Kristallographie - New Crystal Structures, 2010, 225, 410-412.	0.1	1
51	Hole-Mediated Hydrogen Spillover Mechanism in Metal-Organic Frameworks. Physical Review Letters, 2010, 104, 236101.	2.9	34
52	Synthesis, crystal structure, and fluorescence of a 2-D coordination polymer. Journal of Coordination Chemistry, 2010, 63, 1737-1743.	0.8	23
53	Hydrogen storage behavior of one-dimensional TiB _{<i>x</i>} chains. Nanotechnology, 2010, 21, 134006.	1.3	9
54	High Surface Area Conjugated Microporous Polymers: The Importance of Reaction Solvent Choice. Macromolecules, 2010, 43, 8524-8530.	2.2	195

#	Article	IF	CITATIONS
55	Technische Chemie 2009. Nachrichten Aus Der Chemie, 2010, 58, 350-361.	0.0	0
56	Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks. Energy and Environmental Science, 2010, 3, 1469.	15.6	138
57	DABCO-functionalized metal–organic framework bearing a C2h-symmetric terphenyl dicarboxylate linker. Dalton Transactions, 2010, 39, 5608.	1.6	58
58	Understanding Supramolecular Interactions Provides Clues for Building Molecules into Minerals and Materials: a Retrosynthetic Analysis of Copper-Based Solids. Australian Journal of Chemistry, 2010, 63, 565.	0.5	16
59	Volumetric hydrogen sorption capacity of monoliths prepared by mechanical densification of MOF-177. Journal of Materials Chemistry, 2010, 20, 2145.	6.7	122
60	Estimation of Framework Charges in Covalent Organic Frameworks Using Connectivity-Based Atom Contribution Method. Journal of Physical Chemistry C, 2010, 114, 9945-9951.	1.5	42
61	Adsorption Mechanism and Uptake of Methane in Covalent Organic Frameworks: Theory and Experiment. Journal of Physical Chemistry A, 2010, 114, 10824-10833.	1.1	177
62	Triptycene-Based Polymers of Intrinsic Microporosity: Organic Materials That Can Be Tailored for Gas Adsorption. Macromolecules, 2010, 43, 5287-5294.	2.2	275
63	Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation. Chemistry of Materials, 2010, 22, 5964-5972.	3.2	512
64	Towards two-dimensional nanoporous networks: crystal engineering at the solid–liquid interface. CrystEngComm, 2010, 12, 3369.	1.3	41
65	Exploitation of Intrinsic Microporosity in Polymer-Based Materials. Macromolecules, 2010, 43, 5163-5176.	2.2	725
66	Carbon Adsorbents from Polycarbonate Pyrolysis Char Residue: Hydrogen and Methane Storage Capacities. Energy & Fuels, 2010, 24, 3394-3400.	2.5	29
67	High-Capacity Hydrogen Storage in Porous Aromatic Frameworks with Diamond-like Structure. Journal of Physical Chemistry Letters, 2010, 1, 978-981.	2.1	98
68	Exceptional Thermal Stability in a Supramolecular Organic Framework: Porosity and Gas Storage. Journal of the American Chemical Society, 2010, 132, 14457-14469.	6.6	369
69	Rigid Pillars and Double Walls in a Porous Metal-Organic Framework: Single-Crystal to Single-Crystal, Controlled Uptake and Release of Iodine and Electrical Conductivity. Journal of the American Chemical Society, 2010, 132, 2561-2563.	6.6	620
70	Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 2010, 46, 7700.	2.2	707
71	Acetylene Gas Mediated Conjugated Microporous Polymers (ACMPs): First Use of Acetylene Gas as a Building Unit. Macromolecules, 2010, 43, 5508-5511.	2.2	64
72	Metalâ^'Organic Polyhedral Frameworks: High H ₂ Adsorption Capacities and Neutron Powder Diffraction Studies. Journal of the American Chemical Society, 2010, 132, 4092-4094.	6.6	281

#	ARTICLE Quantum dynamics of adsorbed normal- and para- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mtext>H</mml:mtext><mml:mn>2</mml:mn></mml:msub><</mml:mrow></mml:math 	IF	CITATIONS
73	HD, and <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mtext>D</mml:mtext><mml:mn>2</mml:mn></mml:msub>< the microporous framework MOF-74 analyzed using infrared spectroscopy. Physical Review B, 2010, 81,</mml:mrow></mml:math>	1.1	40
74	Solvothermal Synthesis and Structural Characterization of Ultralight Metal Coordination Networks. Crystal Growth and Design, 2010, 10, 709-715.	1.4	32
75	Beryllosilicate Frameworks and Zeolites. Journal of the American Chemical Society, 2010, 132, 15679-15686.	6.6	42
76	First-principles study of hydrogen adsorption in metal-doped COF-10. Journal of Chemical Physics, 2010, 133, 154706.	1.2	25
77	Designing 3D COFs with Enhanced Hydrogen Storage Capacity. Nano Letters, 2010, 10, 452-454.	4.5	144
78	Sorbents for CO2 capture from flue gas—aspects from materials and theoretical chemistry. Nanoscale, 2010, 2, 1819.	2.8	213
79	Highly energy- and time-efficient synthesis of porous triazine-based framework: microwave-enhanced ionothermal polymerization and hydrogen uptake. Journal of Materials Chemistry, 2010, 20, 6413.	6.7	99
80	Zeolitic Imidazolate Frameworks as H2 Adsorbents: Ab Initio Based Grand Canonical Monte Carlo Simulation. Journal of Physical Chemistry C, 2010, 114, 12039-12047.	1.5	57
81	High Uptakes of Methane in Li-Doped 3D Covalent Organic Frameworks. Langmuir, 2010, 26, 220-226.	1.6	99
82	Prediction of framework–guest systems using molecular docking. Chemical Communications, 2010, 46, 3318.	2.2	9
83	Dehydrated Prussian blues for CO2 storage and separation applications. CrystEngComm, 2010, 12, 4003.	1.3	35
84	Simple systematic synthesis of size-tunable covalent organophosphonitridic framework nano- and microspheres. New Journal of Chemistry, 2010, 34, 215.	1.4	21
85	Synthesis of uniform microporous polymer nanoparticles and their applications for hydrogen storage. Journal of Materials Chemistry, 2010, 20, 7444.	6.7	98
86	Targeted synthesis of an electroactive organic framework. Journal of Materials Chemistry, 2011, 21, 18208.	6.7	68
87	Molecular transition-metal phosphonates. Dalton Transactions, 2011, 40, 5394.	1.6	78
88	Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules. Journal of Materials Chemistry, 2011, 21, 13498.	6.7	146
89	A Covalent Organic Framework with 4 nm open pores. Chemical Communications, 2011, 47, 1707.	2.2	168
90	Adsorption Equilibrium and Kinetics of CO ₂ on Chromium Terephthalate MIL-101. Energy & Fuels, 2011, 25, 835-842.	2.5	149

		I KLFORT	
#	Article	IF	CITATIONS
91	Effect of Composition on Dehydrogenation of Mesoporous Silica/Ammonia Borane Nanocomposites. Industrial & Engineering Chemistry Research, 2011, 50, 10024-10028.	1.8	23
92	Enhanced Hydrolytic Stability of Self-Assembling Alkylated Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2011, 133, 13975-13983.	6.6	242
93	CO ₂ Adsorption Studies on Hydroxy Metal Carbonates M(CO ₃) _{<i>x</i>} (OH) _{<i>y</i>} (M = Zn, Zn–Mg, Mg, Mg–Cu, Cu, N	vi,) Tj ET 6Qq0	0 04ægBT /Ove
94	Kinetic Separation of Propene and Propane in Metalâ^'Organic Frameworks: Controlling Diffusion Rates in Plate-Shaped Crystals via Tuning of Pore Apertures and Crystallite Aspect Ratios. Journal of the American Chemical Society, 2011, 133, 5228-5231.	6.6	263
95	Synthesis of a porous aromatic framework for adsorbing organic pollutants application. Journal of Materials Chemistry, 2011, 21, 10348.	6.7	138
96	Spontaneous and Selective CO ₂ Sorption under Ambient Conditions in Seemingly Nonporous Molecular Crystal of Azacalix[5]arene Pentamethyl Ether. Organic Letters, 2011, 13, 490-493.	2.4	35
97	A New Strategy to Microporous Polymers: Knitting Rigid Aromatic Building Blocks by External Cross-Linker. Macromolecules, 2011, 44, 2410-2414.	2.2	530
98	Enhanced CO ₂ Binding Affinity of a High-Uptake <i>rht</i> -Type Metalâ^Organic Framework Decorated with Acylamide Groups. Journal of the American Chemical Society, 2011, 133, 748-751.	6.6	722
99	Potential Storage Materials. Green Energy and Technology, 2011, , 19-59.	0.4	7
100	Microporous carbon adsorbents with high CO2 capacities for industrial applications. Physical Chemistry Chemical Physics, 2011, 13, 16063.	1.3	53
101	Phloroglucinol Based Microporous Polymeric Organic Frameworks with â^'OH Functional Groups and High CO ₂ Capture Capacity. Chemistry of Materials, 2011, 23, 1818-1824.	3.2	233
102	Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature. Chemical Communications, 2011, 47, 6840.	2.2	166
103	Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. Journal of Materials Chemistry, 2011, 21, 5475.	6.7	302
104	Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks. Nanoscale, 2011, 3, 856.	2.8	88
105	High-Pressure Adsorption Equilibrium of CO ₂ , CH ₄ , and CO on an Impregnated Activated Carbon. Journal of Chemical & Engineering Data, 2011, 56, 390-397.	1.0	21
106	Temperature-controlled synthesis of two novel coordination polymers modeled by semi-rigid tetrapyridines. CrystEngComm, 2011, 13, 7025.	1.3	30
107	Crystalline Covalent Organic Frameworks with Hydrazone Linkages. Journal of the American Chemical Society, 2011, 133, 11478-11481.	6.6	731
108	Nanoporous copolymer networks through multiple Friedel–Crafts-alkylation—studies on hydrogen and methane storage. Journal of Materials Chemistry, 2011, 21, 2131-2135.	6.7	76

#	Article	IF	CITATIONS
109	Tailoring the pore size of hypercrosslinked polymers. Soft Matter, 2011, 7, 10910.	1.2	75
110	A mechanistic study of Lewis acid-catalyzed covalent organic framework formation. Chemical Science, 2011, 2, 1588-1593.	3.7	132
111	CO2 capture by solid adsorbents and their applications: current status and new trends. Energy and Environmental Science, 2011, 4, 42-55.	15.6	1,353
112	Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chemical Science, 2011, 2, 1173.	3.7	532
113	Light-Harvesting Metal–Organic Frameworks (MOFs): Efficient Strut-to-Strut Energy Transfer in Bodipy and Porphyrin-Based MOFs. Journal of the American Chemical Society, 2011, 133, 15858-15861.	6.6	702
114	Template-Free Synthesis of a Highly Porous Benzimidazole-Linked Polymer for CO ₂ Capture and H ₂ Storage. Chemistry of Materials, 2011, 23, 1650-1653.	3.2	390
115	Spiro(fluorene-9,9′-xanthene)-Based Porous Organic Polymers: Preparation, Porosity, and Exceptional Hydrogen Uptake at Low Pressure. Macromolecules, 2011, 44, 7987-7993.	2.2	76
116	Porphyrin-based two-dimensional covalent organic frameworks: synchronized synthetic control of macroscopic structures and pore parameters. Chemical Communications, 2011, 47, 1979.	2.2	215
117	Container Molecules Based on Imine Type Ligands. Topics in Current Chemistry, 2011, 319, 79-98.	4.0	6
118	A Porous Coordination Polymer Assembled from 8-Connected {Co ^{II} ₃ (OH)} Clusters and Isonicotinate: Multiple Active Metal Sites, Apical Ligand Substitution, H ₂ Adsorption, and Magnetism. Inorganic Chemistry, 2011, 50, 2321-2328.	1.9	101
119	Hydrogen Storage Materials. Green Energy and Technology, 2011, , .	0.4	141
120	Molecular Doping of Porous Organic Cages. Journal of the American Chemical Society, 2011, 133, 14920-14923.	6.6	196
121	Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki–Miyaura Coupling Reaction. Journal of the American Chemical Society, 2011, 133, 19816-19822.	6.6	1,942
122	Synthesis of cost-effective porous polyimides and their gas storage properties. Chemical Communications, 2011, 47, 7704.	2.2	99
124	An <i>n</i> -Channel Two-Dimensional Covalent Organic Framework. Journal of the American Chemical Society, 2011, 133, 14510-14513.	6.6	330
125	Covalent Organic Frameworks with High Charge Carrier Mobility. Chemistry of Materials, 2011, 23, 4094-4097.	3.2	659
126	A facile, modular and high yield method to assemble three-dimensional DNA structures. Chemical Communications, 2011, 47, 8925.	2.2	30
127	Microporous organic polymers for carbon dioxide capture. Energy and Environmental Science, 2011, 4, 4239.	15.6	553

ARTICLE IF CITATIONS # Synthesis and Applications of Group 14-metalated Arylboranes. Current Organic Synthesis, 2011, 8, 128 0.7 2 701-720. Effect of zeolitic imidazolate frameworks on the gas transport performance of ZIF8-poly(1,4-phenylene) Tj ETQq1 1,0,784314 rgBT /C 129 Computer Simulation of Adsorption and Separation of CO2/CH4 in Modified COF-102. Chinese Journal 130 1.7 12 of Chemical Engineering, 2011, 19, 709-716. A bimetallic oxide network constructed from oxomolybdoarsonate clusters and 1.8 copper(II)-tetrapyridylpyrazine building blocks. Inorganic Chemistry Communication, 2011, 14, 1745-1748. Naphthyridine–imidazole hybrid ligands for the construction of multinuclear architecture. 132 1.2 4 Inorganica Chimica Acta, 2011, 374, 320-326. Hydrogenation properties of the TiBx structures. International Journal of Hydrogen Energy, 2011, 36, 12268-12278. 3.8 Theoretical studies on hydrogen adsorption properties of lithium decorated diborene (B2H4Li2) and 134 3.8 17 diboryne (B2H2Li2). International Journal of Hydrogen Energy, 2011, 36, 15681-15688. Polyimine Container Molecules and Nanocapsules. Israel Journal of Chemistry, 2011, 51, 743-768. 1.0 Covalent organic frameworks for extremely high reversible CO₂uptake capacity: a 136 6.7 64 theoretical approach. Journal of Materials Chemistry, 2011, 21, 1073-1078. Linear and Hyperbranched Electronâ€Acceptor Supramolecular Oligomers. Chemistry - an Asian Journal, 1.7 2011, 6, 1848-1853. Design of Covalent Organic Frameworks for Methane Storage. Journal of Physical Chemistry A, 2011, 138 1.1 92 115, 13852-13857. A highly porous flexible Metal \hat{s} ^{\in}Organic Framework with corundum topology. Chemical 2.2 Communications, 2011, 47, 490-492. Structural diversity in coordination polymers constructed from a naphthalene-spaced dipyridyl ligand and iron(II) thiocyanate. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 140 1.6 5 381-388. Methane storage on CPO-27-Ni pellets. Journal of Porous Materials, 2011, 18, 289-296. 141 1.3 Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles. Frontiers of 142 7 2.4 Physics, 2011, 6, 214-219. Progress in improving thermodynamics and kinetics of new hydrogen storage materials. Frontiers of 143 2.4 Physics, 2011, 6, 151-161. Delamination of Layered Covalent Organic Frameworks. Small, 2011, 7, 1207-1211. 144 5.2234 Preparation of Microporous Melamineâ€based Polymer Networks in an Anhydrous Highâ€Temperature 145 Miniemulsion. Macromolecular Rapid Communications, 2011, 32, 1798-1803.

#	Article	IF	Citations
146	The Effect of Methyl Functionalization on Microporous Metalâ€Organic Frameworks' Capacity and Binding Energy for Carbon Dioxide Adsorption. Advanced Functional Materials, 2011, 21, 4754-4762.	7.8	106
147	Superior CO ₂ Adsorption Capacity on Nâ€doped, Highâ€5urfaceâ€Area, Microporous Carbons Templated from Zeolite. Advanced Energy Materials, 2011, 1, 678-683.	10.2	328
148	Adsorption of CO ₂ , CH ₄ , CO ₂ /N ₂ and CO ₂ /CH ₄ in novel activated carbon beads: Preparation, measurements and simulation. AICHE Journal, 2011, 57, 3042-3051.	1.8	96
149	Coordination Chemistry of Thiazole-Based Ligands: New Complexes Generating 3D Hydrogen-Bonded Architectures. European Journal of Inorganic Chemistry, 2011, 2011, 539-548.	1.0	23
154	Metal–Organic Frameworks with Incorporated Carbon Nanotubes: Improving Carbon Dioxide and Methane Storage Capacities by Lithium Doping. Angewandte Chemie - International Edition, 2011, 50, 491-494.	7.2	255
155	Synthesis of Metallophthalocyanine Covalent Organic Frameworks That Exhibit High Carrier Mobility and Photoconductivity. Angewandte Chemie - International Edition, 2011, 50, 1289-1293.	7.2	462
156	Selfâ€Assembled Polymeric Supramolecular Frameworks. Angewandte Chemie - International Edition, 2011, 50, 2516-2520.	7.2	39
157	A Mixedâ€ 5 pin Molecular Square with a Hybrid [2×2]Grid/Metallocyclic Architecture. Angewandte Chemie - International Edition, 2011, 50, 2820-2823.	7.2	45
158	The Structure of Layered Covalentâ€Organic Frameworks. Chemistry - A European Journal, 2011, 17, 2388-2392.	1.7	203
159	Enhancing Gas Adsorption and Separation Capacity through Ligand Functionalization of Microporous Metal–Organic Framework Structures. Chemistry - A European Journal, 2011, 17, 5101-5109.	1.7	176
160	Synthesis and characterization of porous Al(III) metal-organic framework nanoparticles as a new precursor for preparation of Al2O3 Nanoparticles. Inorganic Chemistry Communication, 2011, 14, 645-648.	1.8	30
161	Flue gas treatment via CO2 adsorption. Chemical Engineering Journal, 2011, 171, 760-774.	6.6	476
162	Doped phenol-formaldehyde resins as precursors for precombustion CO2 capture adsorbents. Energy Procedia, 2011, 4, 1222-1227.	1.8	5
163	New yttrium(III) and copper(II) coordination polymers with partially protonated cyclohexane-1,2,3,4,5,6-hexacarboxylato ligands: Synthesis, crystal structures and properties. Inorganica Chimica Acta, 2011, 370, 36-44.	1.2	6
164	Adsorption of hydrogen molecules on the alkali metal ion decorated boric acid clusters: A density functional theory investigation. International Journal of Hydrogen Energy, 2011, 36, 3922-3931.	3.8	30
165	NF/RO faujasite zeolite membrane-ammonia absorption solvent hybrid system for potential post-combustion CO2 capture application. Journal of Membrane Science, 2011, 366, 220-228.	4.1	22
166	Research Progress of Application of Porous Polymer in Energy Storage. Advanced Materials Research, 0, 621, 27-30.	0.3	2
167	Synthesis and characterization of germanium-centered three-dimensional crystalline porous aromatic framework. Journal of Materials Research, 2012, 27, 1417-1420.	1.2	8

#	Article	IF	CITATIONS
168	Pre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets. Journal of Chemical Physics, 2012, 136, 234703.	1.2	30
169	High CO ₂ uptake and selectivity by triptycene-derived benzimidazole-linked polymers. Chemical Communications, 2012, 48, 1141-1143.	2.2	217
170	(2,4,6-Trimethylphenyl)boronic acid–triphenylphosphine oxide (1/1). Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o31-o31.	0.2	1
171	Crystal structure of catena-(μ2-4,4Â ⁻ bipyridine)sil ver(I)hydrogen-bis-(5-) Tj ETQq1 1 0.784314 rgBT /Overlock C28H25AgN4O20. Zeitschrift Fur Kristallographie - New Crystal Structures, 2012, 227, 571-573.	10 Tf 50 6 0.1	27 Td (nitro- 0
172	Crystal structure of (1,10-phenanthroline) (tetrafluorophtahlato) cop - per(II) [Cu(C8F4O4)(C12H8N2)2](C8H2F4O4), C40H18CuF8N4O8. Zeitschrift Fur Kristallographie - New Crystal Structures, 2012, 227, 568-570.	0.1	1
173	Synthesis, Crystal Structures, and Properties of a Series of Coordination Polymers Employing R4-Terephthalate (R = H, F, Cl, Br) and 4,4′-Bipyridine as Bridging Ligands. Bulletin of the Chemical Society of Japan, 2012, 85, 1102-1111.	2.0	4
174	Construction of Crystalline 2D Covalent Organic Frameworks with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route. Journal of the American Chemical Society, 2012, 134, 19524-19527.	6.6	1,442
175	User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture. Journal of Materials Chemistry, 2012, 22, 15540.	6.7	130
176	Targeted Synthesis of a 3D Crystalline Porous Aromatic Framework with Luminescence Quenching Ability for Hazardous and Explosive Molecules. Journal of Physical Chemistry C, 2012, 116, 26431-26435.	1.5	36
177	Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy and Environmental Science, 2012, 5, 7323.	15.6	434
178	Synthesis of Hierarchical Porous Carbon Monoliths with Incorporated Metal–Organic Frameworks for Enhancing Volumetric Based CO ₂ Capture Capability. ACS Applied Materials & Interfaces, 2012, 4, 6125-6132.	4.0	126
179	Triptycene-Based Microporous Polymers: Synthesis and Their Gas Storage Properties. ACS Macro Letters, 2012, 1, 190-193.	2.3	135
180	Synthesis of mesoporous titania thin films (MTTFs) with two different structures as photocatalysts for generating hydrogen from water splitting. Applied Energy, 2012, 100, 75-80.	5.1	52
181	Synthesis of Superparamagnetic Nanoporous Iron Oxide Particles with Hollow Interiors by Using Prussian Blue Coordination Polymers. Chemistry of Materials, 2012, 24, 2698-2707.	3.2	163
182	Facile Approach to Preparing Microporous Organic Polymers through Benzoin Condensation. ACS Applied Materials & Interfaces, 2012, 4, 6975-6981.	4.0	54
183	Microporous Cyanate Resins: Synthesis, Porous Structure, and Correlations with Gas and Vapor Adsorptions. Macromolecules, 2012, 45, 5140-5150.	2.2	98
184	Prediction of Structure and Properties of Boron-Based Covalent Organic Frameworks by a First-Principles Derived Force Field. Journal of Physical Chemistry C, 2012, 116, 4921-4929.	1.5	52
185	Variable architectures of Zinc coordination polymers modeled by tetra-pyridine ligands with different anions. CrystEngComm, 2012, 14, 6770.	1.3	12

#	Article	IF	CITATIONS
186	Adsorption, Diffusion, and Separation of CH ₄ /H ₂ Mixtures in Covalent Organic Frameworks: Molecular Simulations and Theoretical Predictions. Journal of Physical Chemistry C, 2012, 116, 1772-1779.	1.5	67
187	Gas Adsorption Properties and Selectivity in Cull/Adeninato/Carboxylato Metal-Biomolecule Frameworks. European Journal of Inorganic Chemistry, 2012, 2012, 5921-5933.	1.0	31
188	Lewis base-directed assembly of two cobalt-based metal-organic frameworks. Inorganic Chemistry Communication, 2012, 25, 83-85.	1.8	3
189	Two novel isostructural Ln (III) 3D frameworks supported by 3,6-dibromobenzene-1,2,4,5-tetracarboxylic acid and in situ generated oxalate: Syntheses, characterization and photoluminescent property. Inorganic Chemistry Communication, 2012, 26, 51-55.	1.8	14
190	Window effect on CO2/N2 selectivity in metal organic framework materials. Chemical Physics Letters, 2012, 552, 136-140.	1.2	4
191	Synthesis, crystal structure, and spectral analysis of a 1-D Mn(II) coordination polymer. Journal of Coordination Chemistry, 2012, 65, 1518-1524.	0.8	1
192	Tuning delamination of layered covalent organic frameworks through structural design. Chemical Communications, 2012, 48, 7976.	2.2	92
193	Boronate self-assemblies with embedded Au nanoparticles: preparation, characterization and their catalytic activities for the reduction of nitroaromatic compounds. Journal of Materials Chemistry, 2012, 22, 24124.	6.7	67
194	Reversible water uptake by a stable imine-based porous organic cage. Chemical Communications, 2012, 48, 4689.	2.2	91
195	Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chemical Communications, 2012, 48, 10283.	2.2	252
196	Sensitive detection of hazardous explosives via highly fluorescent crystalline porous aromatic frameworks. Journal of Materials Chemistry, 2012, 22, 24558.	6.7	54
197	Pure and mixed gas adsorption of CH4 and N2 on the metal–organic framework Basolite® A100 and a novel copper-based 1,2,4-triazolyl isophthalate MOF. Journal of Materials Chemistry, 2012, 22, 10274.	6.7	115
198	Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling l€-electronic functions. Chemical Communications, 2012, 48, 8952.	2.2	133
199	Targeted synthesis of a porous borazine-linked covalent organic framework. Chemical Communications, 2012, 48, 8823.	2.2	200
200	Copolymer-templated nitrogen-enriched porous nanocarbons for CO2 capture. Chemical Communications, 2012, 48, 11516.	2.2	109
201	Acetylene and argon adsorption in a supramolecular organic zeolite. Physical Chemistry Chemical Physics, 2012, 14, 311-317.	1.3	20
202	Storage of hydrogen, methane, carbon dioxide in electron-rich porous aromatic framework (JUC-Z2). Adsorption, 2012, 18, 375-380.	1.4	33
203	Porous Organic Cage Nanocrystals by Solution Mixing. Journal of the American Chemical Society, 2012, 134, 588-598.	6.6	235

#	Article	IF	CITATIONS
204	Pillared Covalent Organic Frameworks with Balanced Volumetric and Gravimetric Hydrogen Uptake. Journal of Physical Chemistry C, 2012, 116, 1479-1484.	1.5	19
205	Multiscale Study of Hydrogen Adsorption, Diffusion, and Desorption on Li-Doped Phthalocyanine Covalent Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 15908-15917.	1.5	28
206	High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal–organic frameworks. Chemical Communications, 2012, 48, 7025.	2.2	174
207	Absorption of Hydrogen Bond Donors by Pyridyl Bis-Urea Crystals. Chemistry of Materials, 2012, 24, 4773-4781.	3.2	9
208	Covalent organic frameworks. Chemical Society Reviews, 2012, 41, 6010.	18.7	2,409
209	Hypothetical High-Surface-Area Carbons with Exceptional Hydrogen Storage Capacities: Open Carbon Frameworks. Journal of the American Chemical Society, 2012, 134, 15130-15137.	6.6	66
210	Diamondoid Porous Organic Salts toward Applicable Strategy for Construction of Versatile Porous Structures. Crystal Growth and Design, 2012, 12, 4600-4606.	1.4	49
211	Unprecedented crystal dynamics: reversible cascades of single-crystal-to-single-crystal transformations. Chemical Communications, 2012, 48, 10249.	2.2	44
212	Grand Canonical Monte Carlo Simulation of Low-Pressure Methane Adsorption in Nanoporous Framework Materials for Sensing Applications. Journal of Physical Chemistry C, 2012, 116, 3492-3502.	1.5	30
213	Zeolitic imidazolate framework [Zn2(IM)4·(DMF)] for UV-white light-emitting diodes. Dalton Transactions, 2012, 41, 11885.	1.6	11
214	Noble gases and microporous frameworks; from interaction to application. Microporous and Mesoporous Materials, 2012, 162, 64-68.	2.2	74
215	In situ NMR study of hydrogenation/dehydrogenation of ZrCr2 and physisorbed hydrogen. Journal of Alloys and Compounds, 2012, 540, 222-227.	2.8	11
216	Saturation properties of a supercritical gas sorbed in nanoporous materials. Physical Chemistry Chemical Physics, 2012, 14, 16544.	1.3	9
217	Bismuth–ferrocene carboxylates: synthesis and structure. Dalton Transactions, 2012, 41, 11684.	1.6	18
218	Construction and adsorption properties of microporous tetrazine-based organic frameworks. RSC Advances, 2012, 2, 408-410.	1.7	46
219	Synthesis of porous aromatic framework with tuning porosity via ionothermal reaction. Dalton Transactions, 2012, 41, 3933.	1.6	43
220	Solutionâ€Processable Molecular Cage Micropores for Hierarchically Porous Materials. Advanced Materials, 2012, 24, 5732-5737.	11.1	85
221	Hypercrosslinked Aromatic Heterocyclic Microporous Polymers: A New Class of Highly Selective CO ₂ Capturing Materials. Advanced Materials, 2012, 24, 5703-5707.	11.1	424

#	Article	IF	CITATIONS
222	Metal@COFs: Covalent Organic Frameworks as Templates for Pd Nanoparticles and Hydrogen Storage Properties of Pd@COFâ€102 Hybrid Material. Chemistry - A European Journal, 2012, 18, 10848-10856.	1.7	138
223	From Biomass Wastes to Highly Efficient CO ₂ Adsorbents: Graphitisation of Chitosan and Alginate Biopolymers. ChemSusChem, 2012, 5, 2207-2214.	3.6	93
224	A classification scheme for the stacking of two-dimensional boronate ester-linked covalent organic frameworks. Journal of Materials Chemistry, 2012, 22, 17460.	6.7	73
225	Cyclotricatechylene based porous crystalline material: Synthesis and applications in gas storage. Journal of Materials Chemistry, 2012, 22, 5369.	6.7	128
226	Storage Capacity of Metal–Organic and Covalent–Organic Frameworks by Hydrogen Spillover. Journal of Physical Chemistry C, 2012, 116, 3661-3666.	1.5	35
227	Lightweight nanoporous metal hydroxide-rich zeotypes. Nature Communications, 2012, 3, 1114.	5.8	15
228	How Water Fosters a Remarkable 5-Fold Increase in Low-Pressure CO ₂ Uptake within Mesoporous MIL-100(Fe). Journal of the American Chemical Society, 2012, 134, 10174-10181.	6.6	198
229	Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method. RSC Advances, 2012, 2, 10179.	1.7	159
230	Methane storage in advanced porous materials. Chemical Society Reviews, 2012, 41, 7761.	18.7	716
231	In situ synthesis of a Cu-BTC metal–organic framework (MOF 199) onto cellulosic fibrous substrates: cotton. Cellulose, 2012, 19, 1771-1779.	2.4	132
232	Methane and carbon dioxide adsorption on edge-functionalized graphene: A comparative DFT study. Journal of Chemical Physics, 2012, 137, 054702.	1.2	105
233	Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties. Energy and Environmental Science, 2012, 5, 6453.	15.6	169
234	Porous organic cage crystals: characterising the porous crystal surface. Chemical Communications, 2012, 48, 11948.	2.2	16
236	Adsorption of selected gases on metal-organic frameworks and covalent organic frameworks: A comparative grand canonical Monte Carlo simulation. Journal of Applied Physics, 2012, 111, 112628.	1.1	20
237	Impact of Water Coadsorption for Carbon Dioxide Capture in Microporous Polymer Sorbents. Journal of the American Chemical Society, 2012, 134, 10741-10744.	6.6	259
238	Activated carbon monoliths for gas storage at room temperature. Energy and Environmental Science, 2012, 5, 9833.	15.6	109
239	Synthesis and Characterization of Porous Benzimidazole-Linked Polymers and Their Performance in Small Gas Storage and Selective Uptake. Chemistry of Materials, 2012, 24, 1511-1517.	3.2	433
240	Highly selective CO2 capture of an agw-type metal–organic framework with inserted amides: experimental and theoretical studies. Chemical Communications, 2012, 48, 3058.	2.2	166

#	Article	IF	CITATIONS
241	Catalyzed hydrogen spillover for hydrogen storage on microporous organic polymers. International Journal of Hydrogen Energy, 2012, 37, 12813-12820.	3.8	25
242	Precombustion CO2 capture by means of phenol–formaldehyde resin-derived carbons: From equilibrium to dynamic conditions. Separation and Purification Technology, 2012, 98, 531-538.	3.9	20
243	Self-assembly, crystal structures, and properties of metal-2-sulfoterephthalate frameworks based on [M4(μ3-OH)2]6+ clusters (M = Co, Mn, Zn and Cd). Dalton Transactions, 2012, 41, 2639.	1.6	30
244	High capacity carbon dioxide adsorption by inexpensive covalent organic polymers. Journal of Materials Chemistry, 2012, 22, 8431.	6.7	187
245	Covalent-organic polymers for carbon dioxide capture. Journal of Materials Chemistry, 2012, 22, 22663.	6.7	143
246	Postsynthetic Lithium Modification of Covalent-Organic Polymers for Enhancing Hydrogen and Carbon Dioxide Storage. Journal of Physical Chemistry C, 2012, 116, 5974-5980.	1.5	95
247	Highly selective CO2/CH4 gas uptake by a halogen-decorated borazine-linked polymer. Journal of Materials Chemistry, 2012, 22, 13524.	6.7	95
248	Semiconducting and conducting transition of covalent-organic polymers induced by defects. Nanotechnology, 2012, 23, 395702.	1.3	4
249	Adsorption and separation of methane/hydrogen in octaphenylsilsesquioxane based covalently-linked organic-inorganic hybrid framework. Frontiers of Physics, 2012, 7, 453-460.	2.4	0
250	Superior Capture of CO ₂ Achieved by Introducing Extra-framework Cations into N-doped Microporous Carbon. Chemistry of Materials, 2012, 24, 4725-4734.	3.2	199
251	Novel hierarchically-packed tin dioxide sheets for fast adsorption of organic pollutant in aqueous solution. Journal of Materials Chemistry, 2012, 22, 2885-2893.	6.7	13
252	Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture. Journal of Materials Chemistry, 2012, 22, 19726.	6.7	171
253	Pyrene-directed growth of nanoporous benzimidazole-linked nanofibers and their application to selective CO2 capture and separation. Journal of Materials Chemistry, 2012, 22, 25409.	6.7	138
254	Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide. Carbon, 2012, 50, 5543-5553.	5.4	213
255	Multipoint Interactions Enhanced CO ₂ Uptake: A Zeolite-like Zinc–Tetrazole Framework with 24-Nuclear Zinc Cages. Journal of the American Chemical Society, 2012, 134, 18892-18895.	6.6	240
256	Effect of Li Doping on Diffusion and Separation of Hydrogen and Methane in Covalent Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 12591-12598.	1.5	57
257	Microporous Polycarbazole with High Specific Surface Area for Gas Storage and Separation. Journal of the American Chemical Society, 2012, 134, 6084-6087.	6.6	660
258	Mechanical, Electronic, and Adsorption Properties of Porous Aromatic Frameworks. Journal of Physical Chemistry C, 2012, 116, 22878-22884.	1.5	22

#	Article	IF	Citations
259	Novel Carbon Materials for CO2 Adsorption. , 2012, , 583-603.		5
260	A Quantum Study of Dihydrogen Binding to The Lithium Alkoxide Doped Covalent Organic Framework-105. E-Journal of Surface Science and Nanotechnology, 2012, 10, 203-206.	0.1	2
261	Organometallicâ€complexâ€grafted adamantane as novel hydrogenâ€storage material: A first principles computation. Physica Status Solidi (B): Basic Research, 2012, 249, 1431-1437.	0.7	2
262	Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 703-723.	23.0	1,085
263	Design and Preparation of Porous Polymers. Chemical Reviews, 2012, 112, 3959-4015.	23.0	1,491
264	Emerging concepts in solid-state hydrogen storage: the role of nanomaterials design. Energy and Environmental Science, 2012, 5, 5951.	15.6	130
265	Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO ₂ adsorption capacity. Chemical Communications, 2012, 48, 248-250.	2.2	244
266	Methane storage in metal organic frameworks. Journal of Materials Chemistry, 2012, 22, 16698.	6.7	153
267	Conjugated porous polymers for energy applications. Energy and Environmental Science, 2012, 5, 7819.	15.6	381
268	Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks. Chemical Reviews, 2012, 112, 836-868.	23.0	985
269	A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO ₂ Separation. Journal of the American Chemical Society, 2012, 134, 10478-10484.	6.6	408
270	Properties of IRMOF-14 and its analogues M-IRMOF-14 (M = Cd, alkaline earth metals): electronic structure, structural stability, chemical bonding, and optical properties. Physical Chemistry Chemical Physics, 2012, 14, 4713.	1.3	45
271	Highly Dispersed Pd Catalyst Locked in Knitting Aryl Network Polymers for Suzuki–Miyaura Coupling Reactions of Aryl Chlorides in Aqueous Media. Advanced Materials, 2012, 24, 3390-3395.	11.1	286
272	An Ambipolar Conducting Covalent Organic Framework with Selfâ€5orted and Periodic Electron Donorâ€Acceptor Ordering. Advanced Materials, 2012, 24, 3026-3031.	11.1	258
273	Highly Selective CO ₂ â€Capturing Polymeric Organic Network Structures. Advanced Energy Materials, 2012, 2, 225-228.	10.2	51
274	Fabrication of Soft Submicrospheres by Sequential Boronate Esterification and Their Dynamic Behavior. ChemPlusChem, 2012, 77, 201-209.	1.3	26
275	Hydrogen Storage in New Metal–Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 13143-13151.	1.5	174
276	Structural and Energetic Landscape of Fluorinated 1,4-Phenylenediboronic Acids. Crystal Growth and Design, 2012, 12, 3720-3734.	1.4	60

ARTICLE IF CITATIONS # Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon 277 144 6.6 dioxide. Chemical Engineering Journal, 2012, 191, 326-330. Effects of structure on hydrogen adsorption in zeolitic imidazolate frameworks. Chemical 278 23 Engineering Science, 2012, 71, 178-184. MOF-5 and activated carbons as adsorbents for gas storage. International Journal of Hydrogen 279 3.8 119 Energy, 2012, 37, 2370-2381. Density functional studies on the hydrogen storage capacity of boranes and alanes based cages. International Journal of Hydrogen Energy, 2012, 37, 9730-9741. 280 Adsorption of CH4 and CO2 on Zr-metal organic frameworks. Journal of Colloid and Interface 281 5.0 110 Science, 2012, 366, 120-124. Microporous polymeric microsphere via surfactant-free Suzuki coupling polymerization in a single-phase: Porosity and gas uptake. Polymer, 2012, 53, 2032-2037. 1.8 283 Nanoporous organic polymer networks. Progress in Polymer Science, 2012, 37, 530-563. 11.8 1,029 Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous 284 covalent organic framework for trace-level detection of nitroaromatic explosives. Journal of 6.5 145 Hazardous Materials, 2012, 221-222, 147-154. A [Fe(CB₆)] platform for binding of small molecules: Insights from DFT calculations. Journal of Computational Chemistry, 2012, 33, 1047-1054. 285 1.5 4 Synthesis and Characterization of [2.2] Paracyclophaneâ€Containing Conjugated Microporous Polymers. 1.1 Macromolecular Chemistry and Physics, 2012, 213, 572-579. A Combined Plasmachemical and Emulsion Templating Approach for Actuated Macroporous Scaffolds. 287 7 7.8 Advanced Functional Materials, 2012, 22, 313-322. Adsorption and diffusion properties of xylene isomers and ethylbenzene in metal–organic framework 288 1.3 39 MIL-53(Al). Journal of Porous Materials, 2013, 20, 431-440. Efficient CO₂ Capture by a 3D Porous Polymer Derived from Tröger's Base. ACS Macro 289 2.3 138 Letters, 2013, 2, 660-663. Limitations and high pressure behavior of MOF-5 for CO2 capture. Physical Chemistry Chemical 1.3 Physics, 2013, 15, 14319. Nitrogen-rich diaminotriazine-based porous organic polymers for small gas storage and selective 291 1.9 136 uptake. Polymer Chemistry, 2013, 4, 4690. Nanoporous Structure of Semirigid Alternating Copolymers via Nitrogen Sorption and Molecular 292 2.2 Simulation. Macromolecules, 2013, 46, 5968-5973. A 2D Mesoporous Imineâ€Linked Covalent Organic Framework for High Pressure Gas Storage 293 1.7 380 Applications. Chemistry - A European Journal, 2013, 19, 3324-3328. Periodic mesoporous organosilicas functionalized with a wide variety of amines for CO2 adsorption. 294 1.3 69 Physical Chemistry Chemical Physics, 2013, 15, 9792.

#	Article		IF	Citations
295	Hydrogen storage: beyond conventional methods. Chemical Communications, 2013, 49, 8735.		2.2	417
296	Nanostructured Adsorbents for Hydrogen Storage. , 2013, , 137-164.			6
297	A 3D microporous covalent organic framework with exceedingly high C3H8/CH4 and C2 hydrocarbon/CH4 selectivity. Chemical Communications, 2013, 49, 9773.		2.2	161
298	Facile preparation of porous polybenzimidazole networks and adsorption behavior of CO ₂ gas, organic and water vapors. Polymer Chemistry, 2013, 4, 961-968.		1.9	67
299	Synthesis of Triptycene-Based Organosoluble, Thermally Stable, and Fluorescent Polymers: Effic Host–Guest Complexation with Fullerene. Macromolecules, 2013, 46, 6824-6831.	sient	2.2	21
300	Preparation and thiols sensing of luminescent metal–organic framework films functionalized lanthanide ions. Microporous and Mesoporous Materials, 2013, 179, 198-204.	with	2.2	38
301	Microporous organic polymers incorporating dicarboximide units for H2 storage and remarkabl capture. Journal of Materials Chemistry A, 2013, 1, 13004.	e CO2	5.2	25
302	Synthesis of a phthalocyanine 2D covalent organic framework. CrystEngComm, 2013, 15, 7157	7.	1.3	37
303	Hollow Microporous Organic Capsules. Scientific Reports, 2013, 3, 2128.		1.6	102
304	Ca2+- and Mg2+-doped covalent organic frameworks exhibiting high hydrogen and acetylene s Structural Chemistry, 2013, 24, 691-703.	torage.	1.0	13
305	Synthesis of a phthalocyanine and porphyrin 2D covalent organic framework. CrystEngComm, 2 6892.	2013, 15,	1.3	45
306	Open carbon frameworks - a search for optimal geometry for hydrogen storage. Journal of Mole Modeling, 2013, 19, 4079-4087.	ecular	0.8	15
307	Adsorption of Polar and Nonpolar Molecules on Isolated Cationic C ₆₀ , C _{70< and Their Aggregates. ChemPlusChem, 2013, 78, 910-920.}	,	1.3	29
308	Naphthalene-Based Microporous Polyimides: Adsorption Behavior of CO ₂ and Tox Organic Vapors and Their Separation from Other Gases. Journal of Physical Chemistry C, 2013, 24428-24437.	ic 117,	1.5	59
309	Highly porous nitrogen-doped polyimine-based carbons with adjustable microstructures for CO capture. Journal of Materials Chemistry A, 2013, 1, 10951.	2	5.2	189
310	Carbon-Based Nanoporous Networks as Media for the Separation of CO ₂ /CH ₄ Mixtures: A Molecular Dynamics Approach. Journal of Physic Chemistry C, 2013, 117, 19373-19381.	cal	1.5	26
311	Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy sto Scientific Reports, 2013, 3, 1882.	rage.	1.6	31
312	The Chemistry and Applications of Metal-Organic Frameworks. Science, 2013, 341, 1230444.		6.0	12,032

		CITATION R	EPORT	
#	Article		IF	CITATIONS
313	Synthesis and properties of triptycene-based microporous polymers. Polymer, 2013, 54,	5942-6946.	1.8	31
314	Chemically Stable Multilayered Covalent Organic Nanosheets from Covalent Organic Fra Mechanical Delamination. Journal of the American Chemical Society, 2013, 135, 17853-1		6.6	717
315	Tetraphenyladamantane-based microporous polyimide for adsorption of carbon dioxide, l organic and water vapors. Chemical Communications, 2013, 49, 3321.	1ydrogen,	2.2	71
316	Single-Crystal Structure of a Covalent Organic Framework. Journal of the American Chem 2013, 135, 16336-16339.	ical Society,	6.6	392
317	Functional microporous polyimides based on sulfonated binaphthalene dianhydride for u separation of carbon dioxide and vapors. Journal of Materials Chemistry A, 2013, 1, 1036	ptake and 8.	5.2	79
318	Lanthanide coordination polymers with hexa-carboxylate ligands derived from cyclotripho as bridging linkers: synthesis, thermal and luminescent properties. CrystEngComm, 2013		1.3	24
319	A mesoporous poly-melamine-formaldehyde polymer as a solid sorbent for toxic metal rea and Environmental Science, 2013, 6, 3254.	noval. Energy	15.6	154
320	Facile synthesis of cost-effective porous aromatic materials with enhanced carbon dioxid Journal of Materials Chemistry A, 2013, 1, 13926.	e uptake.	5.2	79
321	Large pore donor–acceptor covalent organic frameworks. Chemical Science, 2013, 4, 4	ł505.	3.7	127
322	Effect of ligand geometry on selective gas-adsorption: the case of a microporous cadmiu organic framework with a V-shaped linker. Chemical Communications, 2013, 49, 7055.	m metal	2.2	31
323	A highly porous 4,4-paddlewheel-connected NbO-type metal–organic framework with a gas-uptake capacity. Dalton Transactions, 2013, 42, 11304.	a large	1.6	34
324	Triarylboron-based fluorescent conjugated microporous polymers. RSC Advances, 2013, 2	3, 21267.	1.7	32
325	Hybrid networks constructed from tetrahedral silicon-centered precursors and cubic POS building blocks via Heck reaction: porosity, gas sorption, and luminescence. Journal of Ma Chemistry A, 2013, 1, 13549.		5.2	65
326	Temperature-controlled synthesis and luminescent properties of two novel coordination modeled by hexa-carboxylate ligand derived from cyclotriphosphazene. Dalton Transactic 2588-2593.	polymers ons, 2013, 42,	1.6	33
327	Various crystal structures based on 4,4′-(diethynylanthracene-9,10-diyl) dibenzoic acio to 3D net framework. CrystEngComm, 2013, 15, 8273.	l: from OD dimer	1.3	15
328	Discrete, soluble covalent organic boronate ester rectangles. Chemical Communications, 6167.	2013, 49,	2.2	17
329	Novel lithium-loaded porous aromatic framework for efficient CO ₂ and H ₂ uptake. Journal of Materials Chemistry A, 2013, 1, 752-758.		5.2	88
330	Thiophene-based covalent organic frameworks. Proceedings of the National Academy of the United States of America, 2013, 110, 4923-4928.	Sciences of	3.3	291

#	Article	IF	CITATIONS
331	Synthesis, Structures, and Properties of New Discrete Heteroâ€ŧetranuclear Metallocycle Complexes Based on Macrocyclic Oxamide Metalloligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 592-599.	0.6	6
332	Facile synthesis of a mesoporous benzothiadiazole-COF based on a transesterification process. CrystEngComm, 2013, 15, 1500.	1.3	42
333	Mixed Linker Strategies for Organic Framework Functionalization. Chemistry - A European Journal, 2013, 19, 818-827.	1.7	103
334	Enhancement of <scp>CO₂</scp> Adsorption and <scp>CO₂/N₂/scp> Selectivity on <scp>ZIF</scp>â€8 via Postsynthetic Modification. AICHE Journal, 2013, 59, 2195-2206.</scp>	1.8	171
335	Evaluation of MIL-47(V) for CO ₂ -Related Applications. Journal of Physical Chemistry C, 2013, 117, 962-970.	1.5	42
336	Enhancement of the hydrogen storage capacity of Mg(AlH ₄) ₂ by excess electrons: a DFT study. Physical Chemistry Chemical Physics, 2013, 15, 1216-1221.	1.3	17
337	Microporous organic polymers synthesized by self-condensation of aromatic hydroxymethyl monomers. Polymer Chemistry, 2013, 4, 1126-1131.	1.9	114
338	Impact of tailored chemical and textural properties on the performance of nanoporous borazine-linked polymers in small gas uptake and selective binding. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	9
339	Interpenetration of Metal Organic Frameworks for Carbon Dioxide Capture and Hydrogen Purification: Good or Bad?. Journal of Physical Chemistry C, 2013, 117, 71-77.	1.5	38
340	Theoretical study on porphyrin based covalent organic polyhedra as a hydrogen storage. International Journal of Hydrogen Energy, 2013, 38, 6234-6240.	3.8	8
341	Unique (3,8)-connected lanthanide arenedisulfonate metal-organic frameworks containing benzimidazole-5,6-dicarboxylic acid co-ligand: Syntheses, structures and luminescence. Journal of Solid State Chemistry, 2013, 206, 85-90.	1.4	11
342	Dynamic cyclic performance of phenol-formaldehyde resin-derived carbons for pre-combustion CO2 capture: An experimental study. Energy Procedia, 2013, 37, 127-133.	1.8	4
343	Microwaveâ€Assisted Synthesis of HKUSTâ€1 and Functionalized HKUSTâ€1â€@H ₃ PW ₁₂ O ₄₀ : Selective Adsorption of Heavy Metal Ions in Water Analyzed with Synchrotron Radiation. ChemPhysChem, 2013, 14, 2825-2832.	1.0	83
344	Construction and sorption properties of pyrene-based porous aromatic frameworks. Microporous and Mesoporous Materials, 2013, 173, 92-98.	2.2	60
345	Mechanisms of dopants influence on hydrogen uptake in COF-108: A first principles study. International Journal of Hydrogen Energy, 2013, 38, 14668-14674.	3.8	9
346	Mixed matrix membranes containing MOFs for ethylene/ethane separation Part A: Membrane preparation and characterization. Journal of Membrane Science, 2013, 428, 445-453.	4.1	89
347	Ligand-tuned metal coordination polymers constructed by the linear Cd3(COO)6/8 clusters: Preparations, structures, topologies and gas adsorptive properties. Microporous and Mesoporous Materials, 2013, 181, 262-269.	2.2	10
348	Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy and Environmental Science, 2013, 6, 818.	15.6	248

#	Article	IF	CITATIONS
349	Conjugated microporous polymers consisting of tetrasubstituted [2.2]Paracyclophane junctions. Journal of Polymer Science Part A, 2013, 51, 2311-2316.	2.5	19
350	Ligand Functionalization and Its Effect on CO ₂ Adsorption in Microporous Metal–Organic Frameworks. Chemistry - an Asian Journal, 2013, 8, 778-785.	1.7	39
351	Recent Development of Hypercrosslinked Microporous Organic Polymers. Macromolecular Rapid Communications, 2013, 34, 471-484.	2.0	360
352	Covalent organic frameworks and their metal nanoparticle composites: Prospects for hydrogen storage. Physica Status Solidi (B): Basic Research, 2013, 250, 1119-1127.	0.7	43
353	Hypothetical 3D-periodic covalent organic frameworks: exploring the possibilities by a first principles derived force field. CrystEngComm, 2013, 15, 1551.	1.3	57
354	Grand canonical Monte Carlo simulation of isotherm for hydrogen adsorption on nanoporous LiBH4. Computational Materials Science, 2013, 71, 109-114.	1.4	6
355	Topology-directed design of porous organic frameworks and their advanced applications. Chemical Communications, 2013, 49, 3925.	2.2	225
356	Microporous Functionalized Triazine-Based Polyimides with High CO ₂ Capture Capacity. Chemistry of Materials, 2013, 25, 970-980.	3.2	255
357	Synthesis of Porous, Nitrogenâ€Doped Adsorption/Diffusion Carbonaceous Membranes for Efficient CO ₂ Separation. Macromolecular Rapid Communications, 2013, 34, 452-459.	2.0	46
358	Dynamically Deformable Cubeâ€like Hydrogenâ€Bonding Networks in Waterâ€Responsive Diamondoid Porous Organic Salts. Angewandte Chemie - International Edition, 2013, 52, 1709-1712.	7.2	61
359	Substituent effect on benzylic lithiation of sulfides. Synthesis of diboronic acids derived from aryl–alkyl sulfides. Tetrahedron, 2013, 69, 3159-3166.	1.0	6
360	Postsynthetic functionalization of 3D covalent organic frameworks. Chemical Communications, 2013, 49, 2457.	2.2	114
361	A porous diamond carbon framework: a new carbon allotrope with extremely high gas adsorption and mechanical properties. Journal of Materials Chemistry A, 2013, 1, 3851.	5.2	32
362	Microporous organic polymers for gas storage and separation applications. Physical Chemistry Chemical Physics, 2013, 15, 5430.	1.3	181
363	Density functional theory methods for characterization of porous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 437, 3-32.	2.3	915
364	Mechanochemical Synthesis of Chemically Stable Isoreticular Covalent Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 5328-5331.	6.6	821
365	Targeted synthesis of a mesoporous triptycene-derived covalent organic framework. CrystEngComm, 2013, 15, 1524-1527.	1.3	131
366	Imine-Linked Polymer-Derived Nitrogen-Doped Microporous Carbons with Excellent CO ₂ Capture Properties. ACS Applied Materials & Interfaces, 2013, 5, 3160-3167.	4.0	158

#	Article	IF	CITATIONS
367	Grand canonical monte carlo modeling of hydrogen adsorption on phosphorus-doped open carbon framework. Adsorption, 2013, 19, 869-877.	1.4	6
368	Carbon dioxide and nitrogen adsorption on porous copolymers of divinylbenzene and acrylic acid. Adsorption, 2013, 19, 367-372.	1.4	2
369	Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption. Applied Energy, 2013, 104, 418-433.	5.1	346
370	Threeâ€Dimensionally Ordered Macroporous Polymeric Materials by Colloidal Crystal Templating for Reversible CO ₂ Capture. Advanced Functional Materials, 2013, 23, 4720-4728.	7.8	21
371	New Li-doped fullerene-intercalated phthalocyanine covalent organic frameworks designed for hydrogen storage. Physical Chemistry Chemical Physics, 2013, 15, 8199.	1.3	35
372	Imine-Linked Porous Polymer Frameworks with High Small Gas (H ₂ , CO ₂ ,) Tj ETQq1 I Selectivity. Chemistry of Materials, 2013, 25, 1630-1635.	l 0.784314 r 3.2	gBT /Overloo 350
373	Stability and electronic properties of 3D covalent organic frameworks. Journal of Molecular Modeling, 2013, 19, 2143-2148.	0.8	36
374	Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium–sulfur batteries. Chemical Communications, 2013, 49, 4905.	2.2	103
375	Highly Porous Organic Polymer containing Free O ₂ H Groups: A Convenient Carbocatalyst for Indole CH Activation at Room Temperature. ChemCatChem, 2013, 5, 1749-1753.	1.8	47
376	Carbon Dioxide Capture by PAFs and an Efficient Strategy To Fast Screen Porous Materials for Gas Separation. Journal of Physical Chemistry C, 2013, 117, 8353-8364.	1.5	62
377	Synthesis and characterization of pyrrole-containing microporous polymeric networks. Polymer, 2013, 54, 3254-3260.	1.8	19
378	Porous covalent–organic materials: synthesis, clean energy application and design. Journal of Materials Chemistry A, 2013, 1, 2691-2718.	5.2	329
379	Mesoporous Poly(Melamine–Formaldehyde) Solid Sorbent for Carbon Dioxide Capture. ChemSusChem, 2013, 6, 1186-1190.	3.6	77
380	Organic microporous polymer from a hexaphenylbenzene based triptycene monomer: synthesis and its gas storage properties. Polymer Chemistry, 2013, 4, 3663.	1.9	41
381	Preparation of microporous polyamide networks for carbon dioxide capture and nanofiltration. Polymer, 2013, 54, 557-564.	1.8	58
382	Activated Carbon Fibers. , 2013, , 155-169.		6
383	Adsorption on Fe-MOF-74 for C1–C3 Hydrocarbon Separation. Journal of Physical Chemistry C, 2013, 117, 12648-12660.	1.5	109
384	Microporous Polyimides with Uniform Pores for Adsorption and Separation of CO ₂ Gas and Organic Vapors. Macromolecules, 2013, 46, 3058-3066.	2.2	181

# 385	ARTICLE Advances in Hydrogen Storage in Carbon Materials. , 2013, , 269-291.	IF	Citations 8
386	Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers. Polymer International, 2013, 62, 345-352.	1.6	267
387	Rationally synthesized two-dimensional polymers. Nature Chemistry, 2013, 5, 453-465.	6.6	879
388	Microporous and mesoporous materials for gas storage and separation: a review. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 618-626.	0.8	39
389	Nitrogenâ€Rich Porous Adsorbents for CO ₂ Capture and Storage. Chemistry - an Asian Journal, 2013, 8, 1680-1691.	1.7	103
390	A comparison between CO2 capturing capacities of fly ash based composites of MEA/DMA and DEA/DMA. Fuel Processing Technology, 2013, 106, 490-497.	3.7	38
391	Functionalized Nanoporous Thin Films and Fibers from Photocleavable Block Copolymers Featuring Activated Esters. Macromolecules, 2013, 46, 5195-5201.	2.2	65
392	Tailored Design of Multiple Nanoarchitectures in Metal-Cyanide Hybrid Coordination Polymers. Journal of the American Chemical Society, 2013, 135, 384-391.	6.6	228
393	Metathesis Reaction-Induced Significant Improvement in Hydrogen Storage Properties of the KF-Added Mg(NH2)2–2LiH System. Journal of Physical Chemistry C, 2013, 117, 866-875.	1.5	59
394	Multi-functional d10 metal–organic materials based on bis-pyrazole/pyridine ligands supported by a 2,6-di(3-pyrazolyl)pyridine with different spanning flexible dicarboxylate ligands: synthesis, structure, photoluminescent and catalytic properties. CrystEngComm, 2013, 15, 9135.	1.3	27
395	Solid–gas sorption behavior of a new polymorph of azacalix[5]arene pentamethyl ether as controlled by crystal architecture. CrystEngComm, 2013, 15, 1536-1544.	1.3	11
396	Facile preparation and ultra-microporous structure of melamine–resorcinol–formaldehyde polymeric microspheres. Chemical Communications, 2013, 49, 3763.	2.2	124
397	Covalent organic frameworks (COFs): from design to applications. Chemical Society Reviews, 2013, 42, 548-568.	18.7	2,945
398	Porous polyimide films obtained by using lithium chloride as pore-forming agent. Polymer International, 2013, 62, 1634-1643.	1.6	22
399	Organic sol–gel synthesis of microporous molecular networks containing spirobifluorene and tetraphenylmethane nodes. Journal of Polymer Science Part A, 2013, 51, 1758-1766.	2.5	18
400	Novel Functionalized Microporous Organic Networks Based on Triphenylphosphine. Chemistry - A European Journal, 2013, 19, 10024-10029.	1.7	48
401	Adsorption of hydrogen on neutral and charged fullerene: Experiment and theory. Journal of Chemical Physics, 2013, 138, 074311.	1.2	56
402	Crystal structure of bis(2,2'bipyridine)(tetrafluorophthalato-îºO,îºO) zink(II)tetrafluorophthalate, [Zn(C8HF4O4)(C10H8N2)2]C8HF4O4, C36H18F8N4O8Zn. Zeitschrift Fur Kristallographie - New Crystal Structures, 2013, 228, 65-66.	0.1	0

#	Article	IF	CITATIONS
403	Roleâ€Allocated Combination of Two Types of Hydrogen Bonds towards Constructing a Breathing Diamondoid Porous Organic Salt. Chemistry - A European Journal, 2013, 19, 3006-3016.	1.7	29
405	Crystal structure of aqua-bis-1,10-phenanthroline-tetrafluorophthlatonickel(II)sesquihydrate, Crystal Structures, 2013, 228, 39-40.	0.1	0
406	Crystal structure of bis(1,10-phenanthroline-κ2N,N) (tetrafluorophthalato-κO)nickel (II)-tetrafluorophtalic acid (1:1), [Ni(C8F4O4)(C12H8N2)2](C8H2F4O4), C40H18F8N4NiO8. Zeitschrift Fur Kristallographie - New Crystal Structures, 2013, 228, 305-306.	0.1	0
407	Crystal structure of 4,4'-(propane-1,3-diyl)bis(pyridin-1-ium)[4-(3,5- dicarboxyphenoxy)-3-nitrobenzoate], (C13H14N2)(C15H9NO9)2, C43H32N4O18. Zeitschrift Fur Kristallographie - New Crystal Structures, 2013, 228, 205-206.	0.1	1
408	Nonporous but yet Gas-Sorbing Molecular Crystals Formed by Macrocyclic Compounds with Nitrogen-Bridges. Nihon Kessho Gakkaishi, 2013, 55, 37-41.	0.0	11
410	Charge induced formation of crystalline network polymers. RSC Advances, 2014, 4, 59779-59784.	1.7	18
411	Anomalous composition-dependent dynamics of nanoconfined water in the interlayer of disordered calcium-silicates. Journal of Chemical Physics, 2014, 140, 054515.	1.2	121
412	Combined microcalorimetric and IR spectroscopic study on carbon dioxide adsorption in H-MCM-22. Applied Surface Science, 2014, 316, 532-536.	3.1	6
413	Substituent Effects on the Gas Sorption and Selectivity Properties of Hexaphenylbenzene and Hexabenzocoronene Based Porous Polymers. Macromolecules, 2014, 47, 8645-8652.	2.2	21
414	Theoretical study of molecular hydrogen and spiltover hydrogen storage on two-dimensional covalent-organic frameworks. Chinese Physics B, 2014, 23, 067303.	0.7	7
415	CMP Aerogels: Ultrahigh‣urfaceâ€Area Carbonâ€Based Monolithic Materials with Superb Sorption Performance. Advanced Materials, 2014, 26, 8053-8058.	11.1	125
416	Molecular Template-Directed Synthesis of Microporous Polymer Networks for Highly Selective CO ₂ Capture. ACS Applied Materials & Interfaces, 2014, 6, 20340-20349.	4.0	66
417	Chiral porous organic frameworks for asymmetric heterogeneous catalysis and gas chromatographic separation. Chemical Communications, 2014, 50, 14949-14952.	2.2	89
418	Imineâ€Linked Covalent Organic Framework on Surface for Biosensor. Chinese Journal of Chemistry, 2014, 32, 838-843.	2.6	59
419	A Covalent Organic Framework–Cadmium Sulfide Hybrid as a Prototype Photocatalyst for Visible‣ightâ€Driven Hydrogen Production. Chemistry - A European Journal, 2014, 20, 15961-15965.	1.7	217
420	Multiscale Study of Hydrogen Adsorption on Six Designed Covalent Organic Frameworks Based on Porphyrazine, Cyclobutane and Scandium. Chinese Physics Letters, 2014, 31, 097101.	1.3	1
421	Ionic Liquid-Derived Carbonaceous Adsorbents for CO2 Capture. Green Chemistry and Sustainable Technology, 2014, , 1-14.	0.4	0
422	Parametric Influence on the Physical Characterizations of Covalent Organic Framework-1. Applied Mechanics and Materials, 0, 625, 24-28.	0.2	0

#	Article	IF	CITATIONS
423	Microporous Organic Polymers for Carbon Dioxide Capture. Green Chemistry and Sustainable Technology, 2014, , 143-180.	0.4	3
424	Highly selective CO2 capture by S-doped microporous carbon materials. Carbon, 2014, 66, 320-326.	5.4	230
425	Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO ₂ + N ₂ and CH ₄ + N ₂ mixtures. Polymer Chemistry, 2014, 5, 144-152.	1.9	101
426	Functionalization of 3D covalent organic frameworks using monofunctional boronic acids. Polymer, 2014, 55, 330-334.	1.8	42
427	Lithium-doped triazine-based graphitic C3N4 sheet for hydrogen storage at ambient temperature. Computational Materials Science, 2014, 81, 275-279.	1.4	75
428	Role of sodium decoration on the methane storage properties of BC3 nanosheet. Structural Chemistry, 2014, 25, 1083-1090.	1.0	36
429	Effects of substituent groups on methane adsorption in covalent organic frameworks. RSC Advances, 2014, 4, 15542.	1.7	13
430	On the road towards electroactive covalent organic frameworks. Chemical Communications, 2014, 50, 5531-5546.	2.2	237
431	CuBTC metal-organic frameworks enmeshed in polyacrylonitrile fibrous membrane remove methyl parathion from solutions. Fibers and Polymers, 2014, 15, 200-207.	1.1	42
432	Multiscale study on hydrogen storage based on covalent organic frameworks. Structural Chemistry, 2014, 25, 503-513.	1.0	5
433	3D Microporous Baseâ€Functionalized Covalent Organic Frameworks for Sizeâ€Selective Catalysis. Angewandte Chemie - International Edition, 2014, 53, 2878-2882.	7.2	554
434	Constructing hybrid porous polymers from cubic octavinylsilsequioxane and planar halogenated benzene. Polymer Chemistry, 2014, 5, 3634-3642.	1.9	46
435	Phosphine-containing microporous networks: High selectivity toward carbon dioxide to methane. Polymer, 2014, 55, 1177-1182.	1.8	14
436	Porous Materials for Carbon Dioxide Capture. Green Chemistry and Sustainable Technology, 2014, , .	0.4	19
437	Adsorption and separation of CO2 on Fe(II)-MOF-74: Effect of the open metal coordination site. Journal of Solid State Chemistry, 2014, 213, 224-228.	1.4	36
438	POSS-based hybrid porous materials with exceptional hydrogen uptake at low pressure. Microporous and Mesoporous Materials, 2014, 193, 35-39.	2.2	22
439	Phosphoric Acid Loaded Azo (â~'Nâ•Nâ~') Based Covalent Organic Framework for Proton Conduction. Journal of the American Chemical Society, 2014, 136, 6570-6573.	6.6	562
440	Microporous Poly(Schiff Base) Constructed from Tetraphenyladamantane Units for Adsorption of Gases and Organic Vapors. Macromolecular Rapid Communications, 2014, 35, 971-975.	2.0	33

		CITATION REPORT		
#	ARTICLE Gas storage scale-up at room temperature on high density carbon materials. Carbon, 2014, 76,	123-132.	IF 5.4	Citations 33
442	Tetrahedral organic molecules as components in supramolecular architectures and in covalent assemblies, networks and polymers. RSC Advances, 2014, 4, 6886.		1.7	72
443	Synthesis and Gas Adsorption Properties of Tetraâ€Armed Microporous Organic Polymer Netwo Based on Triphenylamine. Macromolecular Rapid Communications, 2014, 35, 834-839.	orks	2.0	41
444	Metal-organic frameworks in chromatography. Journal of Chromatography A, 2014, 1348, 1-16		1.8	106
445	The directing effect of linking units on building microporous architecture in tetraphenyladmantane-based poly(Schiff base) networks. Chemical Communications, 2014, 50	, 1897.	2.2	63
446	Catechol-functionalized microporous organic polymer as supported media for Pd nanoparticles its high catalytic activity. Polymer, 2014, 55, 550-555.	and	1.8	22
447	Thermally/hydrolytically stable covalent organic frameworks from a rigid macrocyclic host. Chemical Communications, 2014, 50, 788-791.		2.2	67
448	Liquid acid-catalysed fabrication of nanoporous 1,3,5-triazine frameworks with efficient and sel CO2 uptake. Polymer Chemistry, 2014, 5, 3424.	ective	1.9	112
449	Quantum Mechanical Basis for Kinetic Diameters of Small Gaseous Molecules. Journal of Physic Chemistry A, 2014, 118, 1150-1154.	al	1.1	212
450	Structuring adsorbents and catalysts by processing of porous powders. Journal of the Europear Ceramic Society, 2014, 34, 1643-1666.		2.8	264
451	Evaluating metal–organic frameworks for natural gas storage. Chemical Science, 2014, 5, 32	-51.	3.7	1,038
452	Directing the Structural Features of N ₂ â€Phobic Nanoporous Covalent Organic Po for CO ₂ Capture and Separation. Chemistry - A European Journal, 2014, 20, 772-7		1.7	128
453	Effect of two facile synthetic strategies with alterable polymerization sequence on the perform of N-vinyl carbazole-based conjugated porous materials. RSC Advances, 2014, 4, 62525-62531	ance	1.7	14
454	Microporous Hyper-Cross-Linked Aromatic Polymers Designed for Methane and Carbon Dioxide Adsorption. Journal of Physical Chemistry C, 2014, 118, 28699-28710.		1.5	101
455	Coordination polymers derived from pyridyl carboxylate ligands having an amide backbone: an towards the selective separation of Cull cation following in situ crystallization under competitive conditions. CrystEngComm, 2014, 16, 7815-7829.	attempt 'e	1.3	6
456	Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazolo triazine groups. Chemical Communications, 2014, 50, 7933.	and	2.2	189
457	Robust tri(4-ethynylphenyl)amine-based porous aromatic frameworks for carbon dioxide captur Polymer Chemistry, 2014, 5, 2266.	e.	1.9	49
458	Fluorescent Microporous Polymeric Microsphere: Porosity, Adsorption Performance, and TNT Sensing. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 706-711.		1.2	5

#	Article	IF	Citations
459	Design of tetraphenyl silsesquioxane based covalent-organic frameworks as hydrogen storage materials. Journal of Materials Chemistry A, 2014, 2, 18554-18561.	5.2	37
460	Sorption of methane in a series of Zn-based MOFs studied by PHSC equation of state. Fluid Phase Equilibria, 2014, 381, 83-89.	1.4	10
461	Synthesis of Bioconjugated <i>sym</i> -Pentasubstituted Corannulenes: Experimental and Theoretical Investigations of Supramolecular Architectures. Bioconjugate Chemistry, 2014, 25, 115-128.	1.8	28
462	Preparation and carbon dioxide uptake capacity of N-doped porous carbon materials derived from direct carbonization of zeolitic imidazolate framework. Carbon, 2014, 79, 213-226.	5.4	144
463	Li-ion storage and gas adsorption properties of porous polyimides (PIs). RSC Advances, 2014, 4, 7506.	1.7	91
464	Multifunctional microporous organic polymers. Journal of Materials Chemistry A, 2014, 2, 11930.	5.2	157
465	Design and synthesis of novel carbazole–spacer–carbazole type conjugated microporous networks for gas storage and separation. Journal of Materials Chemistry A, 2014, 2, 1877-1885.	5.2	89
467	Straightforward synthesis of a triazine-based porous carbon with high gas-uptake capacities. Journal of Materials Chemistry A, 2014, 2, 14201.	5.2	54
468	High surface area hypercrosslinked microporous organic polymer networks based on tetraphenylethylene for CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 8054-8059.	5.2	160
469	Porosity control in mesoporous polymers using CO ₂ -swollen block copolymer micelles as templates and their use as catalyst supports. Chemical Communications, 2014, 50, 11957-11960.	2.2	16
470	Construction and adsorption properties of porous aromatic frameworks via AlCl ₃ -triggered coupling polymerization. Journal of Materials Chemistry A, 2014, 2, 11091-11098.	5.2	86
471	Optimizing nanoporous materials for gas storage. Physical Chemistry Chemical Physics, 2014, 16, 5499.	1.3	76
472	Synthesis and sorption properties of hexa-(peri)-hexabenzocoronene-based porous organic polymers. Chemical Communications, 2014, 50, 6171-6173.	2.2	27
473	Rapid synthesis of iron 1,4-naphthalenedicarboxylate by microwave irradiation with enhanced gas sorption. Dalton Transactions, 2014, 43, 1261-1266.	1.6	13
474	Exceptional CO ₂ Adsorbing Materials under Different Conditions. Chemical Record, 2014, 14, 1134-1148.	2.9	29
475	Controllable synthesis of hierarchical mesoporous/microporous nitrogen-rich polymer networks for CO ₂ and Cr(<scp>vi</scp>) ion adsorption. RSC Advances, 2014, 4, 16224-16232.	1.7	30
476	A fluorene based covalent triazine framework with high CO ₂ and H ₂ capture and storage capacities. Journal of Materials Chemistry A, 2014, 2, 5928-5936.	5.2	159
477	Computational Design of Metal–Organic Frameworks Based on Stable Zirconium Building Units for Storage and Delivery of Methane. Chemistry of Materials, 2014, 26, 5632-5639.	3.2	191

#	Article	IF	CITATIONS
478	Mesoporous nickel phosphate/phosphonate hybrid microspheres with excellent performance for adsorption and catalysis. RSC Advances, 2014, 4, 16018-16021.	1.7	32
479	Luminescent Response of One Anionic Metal–Organic Framework Based on Novel Octa-nuclear Zinc Cluster to Exchanged Cations. Crystal Growth and Design, 2014, 14, 410-413.	1.4	35
480	Facile Preparation of Dibenzoheterocycle-Functional Nanoporous Polymeric Networks with High Gas Uptake Capacities. Macromolecules, 2014, 47, 2875-2882.	2.2	108
481	Surfaceâ€Confined Singleâ€Layer Covalent Organic Framework on Singleâ€Layer Graphene Grown on Copper Foil. Angewandte Chemie - International Edition, 2014, 53, 9564-9568.	7.2	139
482	A novel azobenzene covalent organic framework. CrystEngComm, 2014, 16, 6547-6551.	1.3	62
483	Monte Carlo Modeling of Carbon Dioxide Adsorption in Porous Aromatic Frameworks. Langmuir, 2014, 30, 4147-4156.	1.6	19
484	Ultrahigh porosity in mesoporous MOFs: promises and limitations. Chemical Communications, 2014, 50, 7089.	2.2	138
485	Effect of nitrogen group on selective separation of CO2/N2 in porous polystyrene. Chemical Engineering Journal, 2014, 256, 390-397.	6.6	26
487	Tetraphenyladamantane-Based Microporous Polyimide and Its Nitro-Functionalization for Highly Efficient CO ₂ Capture. Journal of Physical Chemistry C, 2014, 118, 17585-17593.	1.5	57
488	Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nature Communications, 2014, 5, 4503.	5.8	535
489	Understanding Methane Adsorption in Porous Aromatic Frameworks: An FTIR, Raman, and Theoretical Combined Study. Journal of Physical Chemistry C, 2014, 118, 10053-10060.	1.5	17
490	Design of 3D 1,3,5,7-tetraphenyladamantane-based covalent organic frameworks as hydrogen storage materials. RSC Advances, 2014, 4, 24526-24532.	1.7	16
491	A DIH-based equation for separation of CO2–CH4 in metal–organic frameworks and covalent–organic materials. Journal of Materials Chemistry A, 2014, 2, 11341.	5.2	28
492	Rational Design and Synthesis of Porous Polymer Networks: Toward High Surface Area. Chemistry of Materials, 2014, 26, 4589-4597.	3.2	66
493	A 2D azine-linked covalent organic framework for gas storage applications. Chemical Communications, 2014, 50, 13825-13828.	2.2	351
494	Synthesis of 1,3,5,7-tetrakis(4-cyanatophenyl)adamantane and its microporous polycyanurate network for adsorption of organic vapors, hydrogen and carbon dioxide. Chemical Communications, 2014, 50, 11238.	2.2	52
495	<i>In Silico</i> Design of Three-Dimensional Porous Covalent Organic Frameworks via Known Synthesis Routes and Commercially Available Species. Journal of Physical Chemistry C, 2014, 118, 23790-23802.	1.5	40
496	Hypercrosslinked microporous organic polymer networks derived from silole-containing building blocks. Polymer, 2014, 55, 5746-5750.	1.8	36

#	Article	IF	CITATIONS
497	Exfoliation of layered double hydroxides (LDHs): a new route to mineralize atmospheric CO2. RSC Advances, 2014, 4, 46126-46132.	1.7	22
498	Micro- and mesoporous poly(Schiff-base)s constructed from different building blocks and their adsorption behaviors towards organic vapors and CO ₂ gas. Journal of Materials Chemistry A, 2014, 2, 18881-18888.	5.2	66
499	Porous coordination polymers based on functionalized Schiff base linkers: enhanced CO ₂ uptake by pore surface modification. Dalton Transactions, 2014, 43, 2272-2282.	1.6	51
500	Oriented Thin Films of a Benzodithiophene Covalent Organic Framework. ACS Nano, 2014, 8, 4042-4052.	7.3	188
501	CO2 selective 1D double chain dipyridyl-porphyrin based porous coordination polymers. Dalton Transactions, 2014, 43, 5680-5686.	1.6	19
502	Triptycene-based microporous polyimides: Synthesis and their high selectivity for CO2 capture. Polymer, 2014, 55, 3642-3647.	1.8	55
503	Tetrahedral node diamondyne frameworks for CO2 adsorption and separation. Journal of Materials Chemistry A, 2014, 2, 4899.	5.2	16
504	Nitrogen ontaining Microporous Conjugated Polymers via Carbazoleâ€Based Oxidative Coupling Polymerization: Preparation, Porosity, and Gas Uptake. Small, 2014, 10, 308-315.	5.2	145
505	Vibrational Properties of Boroxine Anhydride and Boronate Ester Materials: Model Systems for the Diagnostic Characterization of Covalent Organic Frameworks. Chemistry of Materials, 2014, 26, 3781-3795.	3.2	117
506	Revealing the structure–property relationship of covalent organic frameworks for CO ₂ capture from postcombustion gas: a multi-scale computational study. Physical Chemistry Chemical Physics, 2014, 16, 15189-15198.	1.3	69
507	Hydrogen bonding controlled catalysis of a porous organic framework containing benzimidazole moieties. New Journal of Chemistry, 2014, 38, 2292.	1.4	23
508	Formation of dilithiated bis-(1H-pyrazol-1-yl)alkanes and their application in the synthesis of diboronic acids. Tetrahedron Letters, 2014, 55, 1234-1238.	0.7	8
509	The influence of pre-adsorbed Pt on hydrogen adsorption on B2 FeTi(111). International Journal of Hydrogen Energy, 2014, 39, 8621-8630.	3.8	6
510	Twoâ€Đimensional Tetrathiafulvalene Covalent Organic Frameworks: Towards Latticed Conductive Organic Salts. Chemistry - A European Journal, 2014, 20, 14608-14613.	1.7	147
511	Hexaphenylâ€ <i>p</i> â€xylene: A Rigid Pseudoâ€Octahedral Core at the Service of Threeâ€Dimensional Porous Frameworks. ChemPlusChem, 2014, 79, 1176-1182.	1.3	8
512	Putting the Squeeze on CH ₄ and CO ₂ through Control over Interpenetration in Diamondoid Nets. Journal of the American Chemical Society, 2014, 136, 5072-5077.	6.6	106
513	Computational Study of Propylene and Propane Binding in Metal–Organic Frameworks Containing Highly Exposed Cu ⁺ or Ag ⁺ Cations. Journal of Physical Chemistry C, 2014, 118, 9086-9092.	1.5	21
514	A dual functional porous NbO-type metal–organic framework decorated with acylamide groups for selective sorption and catalysis. Inorganic Chemistry Communication, 2014, 46, 226-228.	1.8	19

#	Article	IF	CITATIONS
516	Enhanced Methane Sorption in Densified Forms of a Porous Polymer Network. Materials Sciences and Applications, 2014, 05, 387-394.	0.3	7
518	Crystal structure of tetraaqua-(4,4′-diamino-1,1′-biphenyl-2,2′-disulfonato-κN)(4,4′-bipyridyl-κN)zinc(II) trihydrate, C22H32N4O13S2Zn. Zeitschrift Fur Kristallographie - New Crystal Structures, 2015, 230, 327-329.) 0.1	0
519	Large Tripodal Spacer Ligands for the Construction of Microporous Metal–Organic Frameworks with Diverse Structures and Photocatalytic Activities. ChemPlusChem, 2015, 80, 1007-1013.	1.3	5
520	Reconstruction of Covalent Organic Frameworks by Dynamic Equilibrium. Chemistry - A European Journal, 2015, 21, 16818-16822.	1.7	51
521	Solvent Molecule Controlled Zinc(II) Metalâ€Organic Frameworks with Different Topology. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2380-2383.	0.6	12
522	Probing the Structural Stability of and Enhanced CO ₂ Storage in MOF MILâ€68(In) under High Pressures by FTIR Spectroscopy. Chemistry - A European Journal, 2015, 21, 18739-18748.	1.7	15
523	Two New Solventâ€modulated Zinc(II) Metalâ€Organic Hybrid Materials based on Rigid Tripodal Carboxylate Ligand and 2,2′â€Bipy Coâ€ligand: Crystal Structures and Luminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1781-1785.	0.6	2
524	Direct Onâ€5urface Patterning of a Crystalline Laminar Covalent Organic Framework Synthesized at Room Temperature. Chemistry - A European Journal, 2015, 21, 10666-10670.	1.7	131
525	A Metallosalenâ€based Porous Organic Polymer for Olefin Epoxidation. ChemCatChem, 2015, 7, 2340-2345.	1.8	26
526	An Azineâ€Linked Covalent Organic Framework: Synthesis, Characterization and Efficient Gas Storage. Chemistry - A European Journal, 2015, 21, 12079-12084.	1.7	197
527	Synthesis of a Sulfonated Twoâ€Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion. ChemSusChem, 2015, 8, 3208-3212.	3.6	163
528	In vitro controlled release of cisplatin from gold-carbon nanobottles via cleavable linkages. International Journal of Nanomedicine, 2015, 10, 7425.	3.3	16
529	Simulation of Binary CO ₂ /CH ₄ Mixture Breakthrough Profiles in MIL-53 (Al). Journal of Nanomaterials, 2015, 2015, 1-15.	1.5	13
530	From Plastic to Silicone: The Novelties in Porous Polymer Fabrications. Journal of Nanomaterials, 2015, 2015, 1-21.	1.5	17
531	The effect of the aliphatic carboxylate linkers on the electronic structures, chemical bonding and optical properties of the uranium-based metal–organic frameworks. RSC Advances, 2015, 5, 26735-26748.	1.7	9
532	Microporous covalent triazine polymers: efficient Friedel–Crafts synthesis and adsorption/storage of CO ₂ and CH ₄ . Journal of Materials Chemistry A, 2015, 3, 6792-6797.	5.2	160
533	Carbon- and Nitrogen-Based Organic Frameworks. Accounts of Chemical Research, 2015, 48, 1591-1600.	7.6	215
534	Highly Cost-Effective Nitrogen-Doped Porous Coconut Shell-Based CO ₂ Sorbent Synthesized by Combining Ammoxidation with KOH Activation. Environmental Science & amp; Technology 2015, 49, 7063-7070	4.6	173

#	Article	IF	CITATIONS
535	[3+3] Imine and β-ketoenamine tethered fluorescent covalent-organic frameworks for CO ₂ uptake and nitroaromatic sensing. Journal of Materials Chemistry C, 2015, 3, 7159-7171.	2.7	135
536	Efficient CO 2 capture by triptycene-based microporous organic polymer with functionalized modification. Microporous and Mesoporous Materials, 2015, 214, 181-187.	2.2	45
537	Tailor-Made Pore Surface Engineering in Covalent Organic Frameworks: Systematic Functionalization for Performance Screening. Journal of the American Chemical Society, 2015, 137, 7079-7082.	6.6	351
538	New Adducts of Triphenylboroxine and Bis-pyridines: Syntheses and Crystal Structures of (Ph3B3O3)(η) Tj ETQq1 284-289.	1 0.78431 0.5	.4 rgBT /O 4
539	Low-temperature CO oxidation using a metal organic framework with unsaturated Co2+ sites. Polyhedron, 2015, 90, 18-22.	1.0	15
540	Regulation of the pore size by shifting the coordination sites of ligands in two MOFs: enhancement of CO ₂ uptake and selective sensing of nitrobenzene. Dalton Transactions, 2015, 44, 20926-20935.	1.6	21
541	Nitrogen-Rich Covalent Triazine Frameworks as High-Performance Platforms for Selective Carbon Capture and Storage. Chemistry of Materials, 2015, 27, 8001-8010.	3.2	228
542	Unexpected Carbon Dioxide Inclusion in Waterâ€Saturated Pores of Metal–Organic Frameworks with Potential for Highly Selective Capture of CO ₂ . Chemistry - A European Journal, 2015, 21, 1125-1129.	1.7	22
543	A Kinetic Monte Carlo Study of Fullerene Adsorption within a Pc-PBBA Covalent Organic Framework and Implications for Electron Transport. Journal of Chemical Theory and Computation, 2015, 11, 1172-1180.	2.3	11
544	Patterned growth of oriented 2 <scp>D</scp> covalent organic framework thin films on singleâ€layer graphene. Journal of Polymer Science Part A, 2015, 53, 378-384.	2.5	70
545	An efficient electrocatalyst for oxygen reduction reaction derived from a Co-porphyrin-based covalent organic framework. Electrochemistry Communications, 2015, 52, 53-57.	2.3	103
546	Twoâ€Dimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channelâ€Wall Functionalization. Angewandte Chemie, 2015, 127, 3029-3033.	1.6	129
547	Multivariable linear models of structural parameters to predict methane uptake in metal–organic frameworks. Chemical Engineering Science, 2015, 124, 125-134.	1.9	47
548	Methane Uptakes in Covalent Organic Frameworks with Double Halogen Substitution. Journal of Physical Chemistry C, 2015, 119, 2010-2014.	1.5	24
549	Well-defined two dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications. Polymer Chemistry, 2015, 6, 1896-1911.	1.9	189
550	Cyclic Dehydrogenation–(Re)Hydrogenation with Hydrogenâ€Storage Materials: An Overview. Energy Technology, 2015, 3, 100-117.	1.8	39
551	Hypercrosslinked porous polycarbazoles via one-step oxidative coupling reaction and Friedel–Crafts alkylation. Polymer Chemistry, 2015, 6, 2478-2487.	1.9	96
552	Coordination polymers: Opportunities and challenges for monitoring volatile organic compounds. Progress in Polymer Science, 2015, 45, 102-118.	11.8	99

#	Article	IF	CITATIONS
553	Degradation studies of methyl parathion with CuBTC metal-organic framework. Journal of Environmental Chemical Engineering, 2015, 3, 541-547.	3.3	20
554	Facile one-pot synthesis of glycoluril-based porous organic polymers. Polymer, 2015, 60, 26-31.	1.8	10
555	From Inorganic to Organic Strategy To Design Porous Aromatic Frameworks for High-Capacity Gas Storage. Journal of Physical Chemistry C, 2015, 119, 3260-3267.	1.5	15
556	Columnar Liquid-Crystalline Metallomacrocycles. Journal of the American Chemical Society, 2015, 137, 2295-2302.	6.6	67
557	Twoâ€Dimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channelâ€Wall Functionalization. Angewandte Chemie - International Edition, 2015, 54, 2986-2990.	7.2	572
558	Spectroscopic and Crystallographic Investigations of Novel BODIPY-Derived Metal–Organic Frameworks. Inorganic Chemistry, 2015, 54, 1346-1353.	1.9	43
559	Covalent Organic Frameworks Formed with Two Types of Covalent Bonds Based on Orthogonal Reactions. Journal of the American Chemical Society, 2015, 137, 1020-1023.	6.6	276
560	Facile fabrication of cost-effective porous polymer networks for highly selective CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 3252-3256.	5.2	96
561	Novel ferrocene-based nanoporous organic polymers for clean energy application. RSC Advances, 2015, 5, 8933-8937.	1.7	40
562	A new Cd(<scp>ii</scp>)-based metal–organic framework for highly sensitive fluorescence sensing of nitrobenzene. CrystEngComm, 2015, 17, 2459-2463.	1.3	57
563	Synthetic Control of Pore Properties in Conjugated Microporous Polymers Based on Carbazole Building Blocks. Macromolecular Chemistry and Physics, 2015, 216, 504-510.	1.1	26
564	"H ₂ sponge†pressure as a means for reversible high-capacity hydrogen storage in nanoporous Ca-intercalated covalent organic frameworks. Nanoscale, 2015, 7, 6319-6324.	2.8	12
565	Fluorosurfactantsâ€Directed Preparation of Homogeneous and Hierarchicalâ€Porosity CMP Aerogels for Gas Sorption and Oil Cleanup. Advanced Science, 2015, 2, 1400006.	5.6	47
566	A 3D Cd(II) Coordination Polymer With SRA Topology. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 759-763.	0.6	0
567	Hybrid metal-organic framework nanomaterials with enhanced carbon dioxide and methane adsorption enthalpy by incorporation of carbon nanotubes. Inorganic Chemistry Communication, 2015, 58, 79-83.	1.8	40
568	3D Graphene Functionalized by Covalent Organic Framework Thin Film as Capacitive Electrode in Alkaline Media. ACS Applied Materials & Interfaces, 2015, 7, 17837-17843.	4.0	112
569	The role of density functional theory methods in the prediction of nanostructured gas-adsorbent materials. Coordination Chemistry Reviews, 2015, 300, 142-163.	9.5	36
570	Methane dual-site adsorption in organic-rich shale-gas and coalbed systems. International Journal of Coal Geology, 2015, 149, 1-8.	1.9	27

#	Article	IF	CITATIONS
571	Porphyrins as nanoreactors in the carbon dioxide capture and conversion: a review. Journal of Materials Chemistry A, 2015, 3, 19615-19637.	5.2	131
572	Metallogels and Silver Nanoparticles Generated from a Series of Transition Metal-Based Coordination Polymers Derived from a New Bis-pyridyl-bis-amide Ligand and Various Carboxylates. Crystal Growth and Design, 2015, 15, 4635-4645.	1.4	29
573	Pyrene-Based Porous Organic Polymers as Efficient Catalytic Support for the Synthesis of Biodiesels at Room Temperature. ACS Sustainable Chemistry and Engineering, 2015, 3, 1715-1723.	3.2	80
574	Sulfur-based hyper cross-linked polymers. RSC Advances, 2015, 5, 23152-23159.	1.7	6
575	The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO ₂ capacity. Chemical Communications, 2015, 51, 12178-12181.	2.2	256
576	A 2D Cd(II) Coordination Polymer Constructed From 1,3-di(4-pyridyl)propane and 2,7-naphthalenedisulfonate. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 748-752.	0.6	3
577	Fine tailoring the steric configuration of initial building blocks toÂconstruct ultramicroporous polycarbazole networks with high CO2 uptake and selectivity of CO2 over N2. Polymer, 2015, 70, 52-58.	1.8	10
578	Thermodynamics of Methane Adsorption on Copper HKUST-1 at Low Pressure. Journal of Physical Chemistry Letters, 2015, 6, 2439-2443.	2.1	23
579	Promotional effect of the electron donating functional groups on the gas sensing properties of graphene nanoflakes. RSC Advances, 2015, 5, 54535-54543.	1.7	21
580	Superior CO ₂ adsorption from waste coffee ground derived carbons. RSC Advances, 2015, 5, 29558-29562.	1.7	61
581	Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C-C couplings and CO oxidation. Scientific Reports, 2015, 5, 10876.	1.6	112
582	Removal of the CO 2 from flue gas utilizing hybrid composite adsorbent MIL-53(Al)/GNP metal-organic framework. Microporous and Mesoporous Materials, 2015, 218, 144-152.	2.2	48
583	Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nature Communications, 2015, 6, 7786.	5.8	274
584	Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation. Chemical Communications, 2015, 51, 12254-12257.	2.2	232
585	Transition metal coordination polymers based on tetrabromoterephthalic and bis(imidazole) ligands: Syntheses, structures, topological analysis and photoluminescence properties. Journal of Solid State Chemistry, 2015, 229, 49-61.	1.4	7
586	3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery. Journal of the American Chemical Society, 2015, 137, 8352-8355.	6.6	838
587	Knitting hypercrosslinked conjugated microporous polymers with external crosslinker. Polymer, 2015, 70, 336-342.	1.8	77
588	Thermo-processable covalent scaffolds with reticular hierarchical porosity and their high efficiency capture of carbon dioxide. Journal of Materials Chemistry A, 2015, 3, 14871-14875.	5.2	8

		CITATION REPORT		
#	Article		IF	CITATIONS
589	Highly selective CO2 capture by nitrogen enriched porous carbons. Carbon, 2015, 92, 2	97-304.	5.4	71
590	Expanded Porphyrins as Two-Dimensional Porous Membranes for CO ₂ Sep Applied Materials & Interfaces, 2015, 7, 13073-13079.	aration. ACS	4.0	62
591	Ionization controls for biomineralization-inspired CO ₂ chemical looping at a room temperature. Physical Chemistry Chemical Physics, 2015, 17, 10080-10085.	constant	1.3	11
592	Highly selective CO ₂ adsorption performance of carbazole based micropor RSC Advances, 2015, 5, 41745-41750.	ous polymers.	1.7	13
593	Nitrogen-doped porous carbon spheres derived from <scp>d</scp> -glucose as highly-ef CO ₂ sorbents. RSC Advances, 2015, 5, 37964-37969.	[°] icient	1.7	57
594	Nonionic amphiphile nanoarchitectonics: self-assembly into micelles and lyotropic liquid Nanotechnology, 2015, 26, 204002.	crystals.	1.3	33
595	Computational screening of covalent organic frameworks for CH4/H2, CO2/H2 and CO2 separations. Microporous and Mesoporous Materials, 2015, 210, 142-148.	2/CH4	2.2	46
596	Microporous carbonaceous adsorbents for CO ₂ separation via selective ads Advances, 2015, 5, 30310-30330.	sorption. RSC	1.7	119
597	Construction of crystalline Zn-salphen microporous polymer frameworks and their nano carbons through supramolecular assembly of 1D shape-persistent polymers. Macromole Research, 2015, 23, 309-312.		1.0	10
598	Radical Covalent Organic Frameworks: A General Strategy to Immobilize Openâ€Access for Highâ€Performance Capacitive Energy Storage. Angewandte Chemie - International 6814-6818.	ible Polyradicals Edition, 2015, 54,	7.2	342
599	Sorbent material property requirements for on-board hydrogen storage for automotive t cellÂsystems. International Journal of Hydrogen Energy, 2015, 40, 6373-6390.	⁻ uel	3.8	26
600	Novel POSS-based organic–inorganic hybrid porous materials by low cost strategies. J Materials Chemistry A, 2015, 3, 6542-6548.	ournal of	5.2	81
601	Breakthrough adsorption studies of mixed gases on mango (Mangifera indicaL.) seed sh activated carbon extrudes. Journal of Environmental Chemical Engineering, 2015, 3, 275		3.3	25
602	A triazine-based covalent organic polymer for efficient CO ₂ adsorption. Ch Communications, 2015, 51, 10050-10053.	emical	2.2	248
603	Nitrogen-doped porous carbon prepared from a liquid carbon precursor for CO _{2<, adsorption. RSC Advances, 2015, 5, 45136-45143.}	/sub>	1.7	21
604	Crystallization-Modulated Nanoporous Polymeric Materials with Hierarchical Patterned S and 3D Interpenetrated Internal Channels. ACS Applied Materials & Samp; Interfaces, 201		4.0	31
605	The Dynamic Assembly of Covalent Organic Polygons: Finding the Optimal Balance of So Functionality, and Stability. European Journal of Organic Chemistry, 2015, 2015, 2928-2		1.2	9
606	Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture. 84, 75-82.	Energy, 2015,	4.5	145

#	Article	IF	CITATIONS
607	Synthesis of conjugated microporous polymer nanotubes for polymer composites. RSC Advances, 2015, 5, 24893-24898.	1.7	24
608	High Porosity Supermacroporous Polystyrene Materials with Excellent Oil–Water Separation and Gas Permeability Properties. ACS Applied Materials & Interfaces, 2015, 7, 6745-6753.	4.0	127
609	Selective capture of trace sulfur gas by porous covalent-organic materials. Chemical Engineering Science, 2015, 135, 373-380.	1.9	25
610	Strategies to enhance CO ₂ capture and separation based on engineering absorbent materials. Journal of Materials Chemistry A, 2015, 3, 12118-12132.	5.2	98
611	Introduction to Porous Materials. Springer Briefs in Molecular Science, 2015, , 1-11.	0.1	1
612	Gas Sorption Using Porous Organic Frameworks. Springer Briefs in Molecular Science, 2015, , 57-85.	0.1	3
613	Chemical sensing in two dimensional porous covalent organic nanosheets. Chemical Science, 2015, 6, 3931-3939.	3.7	504
614	Ultrahigh hydrogen storage capacity of novel porous aromatic frameworks. Journal of Materials Chemistry A, 2015, 3, 10724-10729.	5.2	23
615	Mesoporous 2D covalent organic frameworks based on shape-persistent arylene-ethynylene macrocycles. Chemical Science, 2015, 6, 4049-4053.	3.7	118
616	Ab Initio Screening of CO ₂ -philic Groups. Journal of Physical Chemistry A, 2015, 119, 3848-3852.	1.1	28
618	Fluorescent Microporous Polyimides Based on Perylene and Triazine for Highly CO ₂ -Selective Carbon Materials. Macromolecules, 2015, 48, 2064-2073.	2.2	147
619	A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal–organic frameworks. Energy and Environmental Science, 2015, 8, 1501-1510.	15.6	84
620	Self-templated chemically stable hollow spherical covalent organic framework. Nature Communications, 2015, 6, 6786.	5.8	480
621	A triphenylene-based conjugated microporous polymer: construction, gas adsorption, and fluorescence detection properties. RSC Advances, 2015, 5, 15350-15353.	1.7	14
622	Amide functionalized metal–organic frameworks for diastereoselective nitroaldol (Henry) reaction in aqueous medium. RSC Advances, 2015, 5, 87400-87410.	1.7	43
623	Solution and air stable host/guest architectures from a single layer covalent organic framework. Chemical Communications, 2015, 51, 16510-16513.	2.2	48
624	Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture. Journal of the American Chemical Society, 2015, 137, 13301-13307.	6.6	202
625	A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nature Communications, 2015, 6, 8508.	5.8	940

#	Article	IF	CITATIONS
626	Tunable Water and CO ₂ Sorption Properties in Isostructural Azine-Based Covalent Organic Frameworks through Polarity Engineering. Chemistry of Materials, 2015, 27, 7874-7881.	3.2	192
627	Nanoporous Polymers from Cross-Linked Polymer Precursors via <i>tert</i> -Butyl Group Deprotection and Their Carbon Dioxide Capture Properties. Chemistry of Materials, 2015, 27, 7388-7394.	3.2	44
628	Structure and adsorption properties of a porous cooper hexacyanoferrate polymorph. Journal of Physics and Chemistry of Solids, 2015, 86, 65-73.	1.9	6
629	Separation of Methane/Ethylene Gas Mixtures Using Wet ZIF-8. Industrial & Engineering Chemistry Research, 2015, 54, 7890-7898.	1.8	17
630	Ten new predicted covalent organic frameworks with strong optical response in the visible and near infrared. Journal of Chemical Physics, 2015, 142, 244706.	1.2	11
631	Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination. Chemical Communications, 2015, 51, 14921-14924.	2.2	127
632	Porous imine-based networks with protonated imine linkages for carbon dioxide separation from mixtures with nitrogen and methane. Journal of Materials Chemistry A, 2015, 3, 18492-18504.	5.2	92
633	Desymmetrized Vertex Design for the Synthesis of Covalent Organic Frameworks with Periodically Heterogeneous Pore Structures. Journal of the American Chemical Society, 2015, 137, 13772-13775.	6.6	148
634	A Triptyceneâ€Based Porous Organic Polymer that Exhibited High Hydrogen and Carbon Dioxide Storage Capacities and Excellent CO ₂ /N ₂ Selectivity. Chinese Journal of Chemistry, 2015, 33, 539-544.	2.6	8
635	Preparation of microporous polymers in the form of particles and a thin film from hyperbranched polyphenylenes. Journal of Polymer Science Part A, 2015, 53, 2336-2342.	2.5	8
636	Development Trends in Porous Adsorbents for Carbon Capture. Environmental Science & Technology, 2015, 49, 12641-12661.	4.6	94
637	Water-Dispersible, Responsive, and Carbonizable Hairy Microporous Polymeric Nanospheres. Journal of the American Chemical Society, 2015, 137, 13256-13259.	6.6	81
638	A novel 3D covalent organic framework membrane grown on a porous α-Al ₂ O ₃ substrate under solvothermal conditions. Chemical Communications, 2015, 51, 15562-15565.	2.2	121
639	Synthesis of covalent triazine-based frameworks with high CO ₂ adsorption and selectivity. Polymer Chemistry, 2015, 6, 7410-7417.	1.9	108
640	Porous Materials to Store Clear EnergyÂGasesâ^—. , 2015, , 297-327.		2
641	Nitrogen–boron coordination versus OHâ⊄N hydrogen bonding in pyridoxaboroles – aza analogues of benzoxaboroles. Dalton Transactions, 2015, 44, 16534-16546.	1.6	13
642	2D Covalent Organic Frameworks with Alternating Triangular and Hexagonal Pores. Chemistry of Materials, 2015, 27, 6169-6172.	3.2	75
643	Nitrogen-rich conjugated microporous polymers: impact of building blocks on porosity and gas adsorption. Journal of Materials Chemistry A, 2015, 3, 21185-21193.	5.2	100

#	Article	IF	CITATIONS
644	Atomically homogeneous dispersed ZnO/N-doped nanoporous carbon composites with enhanced CO2 uptake capacities and high efficient organic pollutants removal from water. Carbon, 2015, 95, 113-124.	5.4	58
645	Activated carbon derived from waste coffee grounds for stable methane storage. Nanotechnology, 2015, 26, 385602.	1.3	49
646	Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs. Fuel, 2015, 160, 318-327.	3.4	99
647	Topological Analysis of Void Spaces in Tungstate Frameworks: Assessing Storage Properties for the Environmentally Important Guest Molecules and Ions: CO ₂ , UO ₂ , PuO ₂ , U, Pu, Sr ²⁺ , Cs ⁺ , CH ₄ , and H ₂ . ACS Sustainable Chemistry and Engineering, 2015, 3, 2112-2129.	3.2	2
648	Porous Graphene Oxide/Diboronic Acid Materials: Structure and Hydrogen Sorption. Journal of Physical Chemistry C, 2015, 119, 27179-27191.	1.5	49
649	Highly Selective Capture of the Greenhouse Gas CO ₂ in Polymers. ACS Sustainable Chemistry and Engineering, 2015, 3, 3077-3085.	3.2	168
650	Chemistry of Covalent Organic Frameworks. Accounts of Chemical Research, 2015, 48, 3053-3063.	7.6	1,333
651	Isoindigo-based microporous organic polymers for carbon dioxide capture. RSC Advances, 2015, 5, 100322-100329.	1.7	19
652	Facile synthesis of porous organic polymers bifunctionalized with azo and porphyrin groups. RSC Advances, 2015, 5, 98508-98513.	1.7	23
653	Catalytic behavior of metal-organic frameworks and zeolites: Rationalization and comparative analysis. Catalysis Today, 2015, 243, 2-9.	2.2	29
654	Construction of Sole Benzene Ring Porous Aromatic Frameworks and Their High Adsorption Properties. ACS Applied Materials & Interfaces, 2015, 7, 201-208.	4.0	59
655	New Zn(II) Coordination Polymers Constructed from Amino-Alcohols and Aromatic Dicarboxylic Acids: Synthesis, Structure, Photocatalytic Properties, and Solid-State Conversion to ZnO. Crystal Growth and Design, 2015, 15, 799-811.	1.4	18
656	Competitive adsorption of a binary CO ₂ –CH ₄ mixture in nanoporous carbons: effects of edge-functionalization. Nanoscale, 2015, 7, 1002-1012.	2.8	145
657	Molecular free paths in nanoscale gas flows. Microfluidics and Nanofluidics, 2015, 18, 1365-1371.	1.0	30
658	Hydrothermal preparation of highly porous carbon spheres from hemp (Cannabis sativa L.) stem hemicellulose for use in energy-related applications. Industrial Crops and Products, 2015, 65, 216-226.	2.5	121
659	Tuning CO ₂ Uptake and Reversible Iodine Adsorption in Two Isoreticular MOFs through Ligand Functionalization. Chemistry - an Asian Journal, 2015, 10, 653-660.	1.7	66
660	Charge Equilibration Based on Atomic Ionization in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 456-466.	1.5	37
661	Effect of surface chemistry and textural properties on carbon dioxide uptake in hydrothermally reduced graphene oxide. Carbon, 2015, 82, 590-598.	5.4	73

		CITATION R	REPORT	
#	Article		IF	CITATIONS
663	Great Prospects for PAF-1 and its derivatives. Materials Horizons, 2015, 2, 11-21.		6.4	75
664	Phosphine oxide-based conjugated microporous polymers with excellent CO _{2<td>ub> capture</td><td>1.4</td><td>39</td>}	ub> capture	1.4	39
665	A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthes inexpensive urea and petroleum coke. Carbon, 2015, 81, 465-473.	ized with	5.4	158
666	A rational construction of microporous imide-bridged covalent–organic polytriazines high-enthalpy small gas absorption. Journal of Materials Chemistry A, 2015, 3, 878-885		5.2	81
667	Rigid and microporous polymers for gas separation membranes. Progress in Polymer Sc 1-32.	cience, 2015, 43,	11.8	377
668	A new equation of state for studying the thermodynamic properties of real gases. Phys Chemistry of Liquids, 2015, 53, 138-145.	ics and	0.4	1
669	A journey into the process and engineering aspects of carbon capture technologies. Re Sustainable Energy Reviews, 2015, 41, 1324-1350.	newable and	8.2	163
671	Hydrogen From Water Electrolysis. , 2016, , 315-343.			23
672	Soft Photocatalysis: Organic Polymers for Solar Fuel Production. Chemistry of Materials 5191-5204.	s, 2016, 28,	3.2	208
673	Room Temperature Batch and Continuous Flow Synthesis of Water-Stable Covalent Or Frameworks (COFs). Chemistry of Materials, 2016, 28, 5095-5101.	ganic	3.2	228
674	Hypercrosslinked polymers incorporated with imidazolium salts for enhancing CO <sub 2016,="" 56,="" 573-582.<="" and="" capture.="" engineering="" polymer="" science,="" td=""><td>>2</td></sub>	>2	1.5	22
675	Facile synthesis of mesoporous melamine-formaldehyde spheres for carbon dioxide cap Advances, 2016, 6, 59619-59623.	oture. RSC	1.7	13
676	Covalent Organic Frameworks for CO2Capture. Advanced Materials, 2016, 28, 2855-2	873.	11.1	873
677	Inclusion of Methylamines with the Crystal of <i>p</i> - <i>tert</i> -Butylthiacalix[4]arer Selectivity and Its Switching by Solvent Polarity. Crystal Growth and Design, 2016, 16,		1.4	21
678	Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intr Conductivity. ACS Applied Materials & Interfaces, 2016, 8, 18505-18512.	insic Proton	4.0	259
679	Microporous polyimides with functional groups for the adsorption of carbon dioxide ar vapors. Journal of Materials Chemistry A, 2016, 4, 11453-11461.	nd organic	5.2	61
680	Organic-inorganic hybrid microporous polymers based on Octaphenylcyclotetrasiloxan carbonization and adsorption for CO 2. Microporous and Mesoporous Materials, 2016,		2.2	29
681	Bimodal Functionality in a Porous Covalent Triazine Framework by Rational Integration Electronâ€Rich and â€Deficient Pore Surface. Chemistry - A European Journal, 2016, 22		1.7	36

#	Article	IF	CITATIONS
682	Periodic Mesoporous Organosilica Nanocubes with Ultrahigh Surface Areas for Efficient CO2 Adsorption. Scientific Reports, 2016, 6, 20769.	1.6	49
684	Facile Synthesis of Fluorinated Microporous Polyaminals for Adsorption of Carbon Dioxide and Selectivities over Nitrogen and Methane. Macromolecules, 2016, 49, 2575-2581.	2.2	90
685	Nanoporous polystyrene–porphyrin nanoparticles for selective gas separation. Polymer Chemistry, 2016, 7, 3026-3033.	1.9	7
686	Role of Hydrogen Peroxide Preoxidizing on CO ₂ Adsorption of Nitrogen-Doped Carbons Produced from Coconut Shell. ACS Sustainable Chemistry and Engineering, 2016, 4, 2806-2813.	3.2	92
687	Amide linked conjugated porous polymers for effective CO2 capture and separation. Journal of CO2 Utilization, 2016, 16, 486-491.	3.3	36
688	Molecular simulation studies of hydrogen enriched methane (HEM) storage in Covalent Organic Frameworks. Microporous and Mesoporous Materials, 2016, 231, 138-146.	2.2	7
689	Synthesis and properties of tubular-shape conjugated microporous polymers with high purity. Materials Letters, 2016, 178, 5-9.	1.3	30
690	Nitrogen ligands in two-dimensional covalent organic frameworks for metal catalysis. Chinese Journal of Catalysis, 2016, 37, 468-475.	6.9	38
691	Construction of bimodal silsesquioxane-based porous materials from triphenylphosphine or triphenylphosphine oxide and their size-selective absorption for dye molecules. RSC Advances, 2016, 6, 37731-37739.	1.7	31
692	Adsorption toward Trivalent Rare Earth Element from Aqueous Solution by Zeolitic Imidazolate Frameworks. Industrial & Engineering Chemistry Research, 2016, 55, 6365-6372.	1.8	46
693	A supramolecular strategy based on molecular dipole moments for high-quality covalent organic frameworks. Chemical Communications, 2016, 52, 7986-7989.	2.2	50
694	Anion-templated 2D frameworks from hexahydroxytriphenylene. CrystEngComm, 2016, 18, 4281-4284.	1.3	7
695	Channel-wall functionalization in covalent organic frameworks for the enhancement of CO ₂ uptake and CO ₂ /N ₂ selectivity. RSC Advances, 2016, 6, 38774-38781.	1.7	71
696	A new triazine functionalized luminescent covalent organic framework for nitroaromatic sensing and CO ₂ storage. RSC Advances, 2016, 6, 28047-28054.	1.7	125
697	Understanding adsorption of CO ₂ , N ₂ , CH ₄ and their mixtures in functionalized carbon nanopipe arrays. Physical Chemistry Chemical Physics, 2016, 18, 14007-14016.	1.3	23
698	Tunable porosity of nanoporous organic polymers with hierarchical pores for enhanced CO ₂ capture. Polymer Chemistry, 2016, 7, 3416-3422.	1.9	94
699	A polycationic covalent organic framework: a robust adsorbent for anionic dye pollutants. Polymer Chemistry, 2016, 7, 3392-3397.	1.9	159
700	Preparation of N-doped activated carbons with high CO ₂ capture performance from microalgae (Chlorococcum sp.). RSC Advances, 2016, 6, 38724-38730.	1.7	21

#	Article	IF	CITATIONS
701	Preparation and engineering of oriented 2D covalent organic framework thin films. RSC Advances, 2016, 6, 39198-39203.	1.7	30
702	Advances in Metal-Containing Macromolecules. , 2016, , .		0
703	Synthesis, crystal structures and photoluminescences of silver(I) complexes with chelating carboxylic and pyrazine derivatives. Inorganic Chemistry Communication, 2016, 68, 21-28.	1.8	13
704	Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation. Journal of Chromatography A, 2016, 1445, 140-148.	1.8	94
705	"Stereoscopic―2D super-microporous phosphazene-based covalent organic framework: Design, synthesis and selective sorption towards uranium at high acidic condition. Journal of Hazardous Materials, 2016, 314, 95-104.	6.5	147
706	Target Synthesis of an Azo (Nâ•N) Based Covalent Organic Framework with High CO ₂ -over-N ₂ Selectivity and Benign Gas Storage Capability. Journal of Chemical & Engineering Data, 2016, 61, 1904-1909.	1.0	42
707	Effect of surface chemistry for CH4/CO2 adsorption in kerogen: A molecular simulation study. Journal of Natural Gas Science and Engineering, 2016, 31, 738-746.	2.1	141
708	Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction. Journal of the American Chemical Society, 2016, 138, 5897-5903.	6.6	613
709	Exploring adsorption and desorption characteristics of molecular hydrogen on neutral and charged Mg nanoclusters: A first principles study. Chemical Physics, 2016, 469-470, 123-131.	0.9	15
710	Nanovalved Adsorbents for CH ₄ Storage. Nano Letters, 2016, 16, 3309-3313.	4.5	17
711	The role of metal–organic frameworks in a carbon-neutral energy cycle. Nature Energy, 2016, 1, .	19.8	374
712	State-of-the-art catechol porphyrin COF catalyst for chemical fixation of carbon dioxide via cyclic carbonates and oxazolidinones. Catalysis Science and Technology, 2016, 6, 6152-6158.	2.1	104
713	Porosity development and the influence of pore size on the CH4 adsorption capacity of a shale oil reservoir (Upper Cretaceous) from Colombia. Role of solid bitumen. International Journal of Coal Geology, 2016, 159, 1-17.	1.9	36
714	Nitrogen-doped porous carbons with high performance for hydrogen storage. International Journal of Hydrogen Energy, 2016, 41, 8489-8497.	3.8	65
715	Immobilization of ionic liquids to covalent organic frameworks for catalyzing the formylation of amines with CO ₂ and phenylsilane. Chemical Communications, 2016, 52, 7082-7085.	2.2	175
716	Super-adsorbent material based on functional polymer particles with a multilevel porous structure. NPG Asia Materials, 2016, 8, e301-e301.	3.8	98
717	Two-dimensional dual-pore covalent organic frameworks obtained from the combination of two D _{2h} symmetrical building blocks. Chemical Communications, 2016, 52, 11704-11707.	2.2	61
718	Synthesis of Benzobisoxazole-Linked Two-Dimensional Covalent Organic Frameworks and Their Carbon Dioxide Capture Properties. ACS Macro Letters, 2016, 5, 1055-1058.	2.3	115

#	Article	IF	CITATIONS
719	Storage and Separation of Carbon Dioxide and Methane in Hydrated Covalent Organic Frameworks. Journal of Physical Chemistry C, 2016, 120, 23756-23762.	1.5	36
720	Improving the hydrogen storage properties of metal-organic framework by functionalization. Journal of Molecular Modeling, 2016, 22, 254.	0.8	21
721	Theoretical analysis of structural diversity of covalent organic framework: Stacking isomer structures thermodynamics and kinetics. Chemical Physics Letters, 2016, 664, 101-107.	1.2	13
722	Recent developments in porous materials for H2 and CH4 storage. Tetrahedron Letters, 2016, 57, 4873-4881.	0.7	37
723	Advantage of nanoporous styrene-based monolithic structure over beads when applied for methane storage. Applied Energy, 2016, 183, 1520-1527.	5.1	18
724	Electrochemically active porous organic polymers based on corannulene. Chemical Communications, 2016, 52, 12881-12884.	2.2	19
725	Manipulation of Amorphousâ€ŧo rystalline Transformation: Towards the Construction of Covalent Organic Framework Hybrid Microspheres with NIR Photothermal Conversion Ability. Angewandte Chemie - International Edition, 2016, 55, 13979-13984.	7.2	309
726	Hydrogen storage in a layered flexible [Ni2(btc)(en)2]n coordination polymer. International Journal of Hydrogen Energy, 2016, 41, 22171-22181.	3.8	13
727	Manipulation of Amorphousâ€ŧo rystalline Transformation: Towards the Construction of Covalent Organic Framework Hybrid Microspheres with NIR Photothermal Conversion Ability. Angewandte Chemie, 2016, 128, 14185-14190.	1.6	52
728	Roomâ€Temperature Synthesis of Covalent Organic Frameworks with a Boronic Ester Linkage at the Liquid/Solid Interface. Chemistry - A European Journal, 2016, 22, 18412-18418.	1.7	39
729	Design and synthesis of micro–meso–macroporous polymers with versatile active sites and excellent activities in the production of biofuels and fine chemicals. Green Chemistry, 2016, 18, 6536-6544.	4.6	30
730	Conjugated microporous polymer networks with adjustable microstructures for high CO ₂ uptake capacity and selectivity. Chemical Communications, 2016, 52, 12602-12605.	2.2	29
731	Pitch-based hyper-cross-linked polymers with high performance for gas adsorption. Journal of Materials Chemistry A, 2016, 4, 16490-16498.	5.2	110
732	Semiconducting covalent organic frameworks: a type of two-dimensional conducting polymers. Chinese Chemical Letters, 2016, 27, 1395-1404.	4.8	42
733	High-Performance Materials Based on Lithium-Containing Hydrotalcite-Bayerite Composites for Biogas Upgrade. Energy & Fuels, 2016, 30, 7474-7480.	2.5	4
734	Luminescent Covalent Organic Frameworks Containing a Homogeneous and Heterogeneous Distribution of Dehydrobenzoannulene Vertex Units. Journal of the American Chemical Society, 2016, 138, 10120-10123.	6.6	172
735	Gated Channels and Selectivity Tuning of CO ₂ over N ₂ Sorption by Postâ€Synthetic Modification of a UiOâ€66â€Type Metal–Organic Framework. Chemistry - A European Journal, 2016, 22, 12800-12807.	1.7	46
736	A novel Schiff base network-1 nanocomposite coated fiber for solid-phase microextraction of phenols from honey samples. Talanta, 2016, 161, 22-30.	2.9	91

#	Article	IF	CITATIONS
737	2D Squaraineâ€Bridged Covalent Organic Polymers with Promising CO ₂ Storage and Separation Properties. ChemistrySelect, 2016, 1, 533-538.	0.7	8
738	Characteristics of Methane Adsorption in Micro–Mesoporous Carbons at Low and Ultraâ€High Pressure. Energy Technology, 2016, 4, 1392-1400.	1.8	9
739	Low Band Gap Benzimidazole COF Supported Ni ₃ N as Highly Active OER Catalyst. Advanced Energy Materials, 2016, 6, 1601189.	10.2	182
740	Azineâ€Linked Covalent Organic Framework (COF)â€Based Mixedâ€Matrix Membranes for CO ₂ /CH ₄ Separation. Chemistry - A European Journal, 2016, 22, 14467-14470.	1.7	161
741	Postextraction Separation, On-Board Storage, and Catalytic Conversion of Methane in Natural Gas: A Review. Chemical Reviews, 2016, 116, 11436-11499.	23.0	176
742	Solution-processable hypercrosslinked polymers by low cost strategies: a promising platform for gas storage and separation. Journal of Materials Chemistry A, 2016, 4, 15072-15080.	5.2	92
743	Covalent organic frameworks as pH responsive signaling scaffolds. Chemical Communications, 2016, 52, 11088-11091.	2.2	135
744	Konjugierte Polymere: Katalysatoren für die photokatalytische Wasserstoffentwicklung. Angewandte Chemie, 2016, 128, 15940-15956.	1.6	110
745	Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 15712-15727.	7.2	703
746	Silver(I) Architectures Based on Rigid Terpyridylâ€Carboxyl Ligands: Synthesis, Crystal Structure and Electrochemical Properties. Chinese Journal of Chemistry, 2016, 34, 1027-1032.	2.6	3
747	Rationally Designed 2D Covalent Organic Framework with a Brick-Wall Topology. ACS Macro Letters, 2016, 5, 1348-1352.	2.3	59
748	Monodispersed ultramicroporous semi-cycloaliphatic polyimides for the highly efficient adsorption of CO ₂ , H ₂ and organic vapors. Polymer Chemistry, 2016, 7, 7295-7303.	1.9	36
749	Description of methane adsorption on microporous carbon adsorbents on the range of supercritical temperatures on the basis of the Dubinin–Astakhov equation. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 575-580.	0.3	16
750	Lithium doping on covalent organic framework-320 for enhancing hydrogen storage at ambient temperature. Journal of Solid State Chemistry, 2016, 244, 1-5.	1.4	29
751	Excellent Humidity Sensor Based on LiCl Loaded Hierarchically Porous Polymeric Microspheres. ACS Applied Materials & Interfaces, 2016, 8, 25529-25534.	4.0	88
752	Tunable Gravimetric and Volumetric Hydrogen Storage Capacities in Polyhedral Oligomeric Silsesquioxane Frameworks. ACS Applied Materials & Interfaces, 2016, 8, 25219-25228.	4.0	14
753	Hyperporous Carbons from Hypercrosslinked Polymers. Advanced Materials, 2016, 28, 9804-9810.	11.1	201
754	BODIPY-containing porous organic polymers for gas adsorption. New Journal of Chemistry, 2016, 40, 9415-9423.	1.4	37

#	Article	IF	CITATIONS
755	Fabrication of Densely Packed HKUST-1 Metal Organic Framework Thin Layers on a Cu Substrate through a Controlled Dissolution of Cu. Bulletin of the Chemical Society of Japan, 2016, 89, 1048-1053.	2.0	10
756	Deposition of Metal Organic Framework Layers on Skeletal Cu Prepared from Cu-Ti Amorphous Alloy and Their Enhanced Catalytic Activities. Chemistry Letters, 2016, 45, 976-978.	0.7	3
757	A Partially Fluorinated, Water-Stable Cu(II)–MOF Derived via Transmetalation: Significant Gas Adsorption with High CO ₂ Selectivity and Catalysis of Biginelli Reactions. Inorganic Chemistry, 2016, 55, 7835-7842.	1.9	71
758	Synthesis and Gas Storage Application of Hierarchically Porous Materials. Macromolecular Chemistry and Physics, 2016, 217, 1995-2003.	1.1	14
759	Theoretical Study of a Bridging-Spillover Mechanism in Covalent Organic Frameworks on Pt ₆ and Pt ₄ Cluster Models. Journal of Physical Chemistry C, 2016, 120, 17153-17164.	1.5	14
760	A comprehensive study of methane/carbon dioxide adsorptive selectivity in different bundle nanotubes. RSC Advances, 2016, 6, 69845-69854.	1.7	7
761	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	11.1	1,227
762	Single-Crystal-to-Single-Crystal Breathing and Guest Exchange in Co ^{II} Metal–Organic Frameworks. Crystal Growth and Design, 2016, 16, 5247-5259.	1.4	28
763	Recent advances of covalent organic frameworks in electronic and optical applications. Chinese Chemical Letters, 2016, 27, 1383-1394.	4.8	76
764	A Cu(<scp>ii</scp>) MOF with a flexible bifunctionalised terpyridine as an efficient catalyst for the single-pot hydrocarboxylation of cyclohexane to carboxylic acid in water/ionic liquid medium. Dalton Transactions, 2016, 45, 12779-12789.	1.6	28
765	Synthesis, properties and applications of 3D carbon nanotube–graphene junctions. Journal Physics D: Applied Physics, 2016, 49, 443001.	1.3	18
766	Hydrogen carriers. Nature Reviews Materials, 2016, 1, .	23.3	602
767	Covalent organic frameworks: a materials platform for structural and functional designs. Nature Reviews Materials, 2016, 1, .	23.3	1,383
768	Heteroatom (N or Nâ€5)â€Doping Induced Layered and Honeycomb Microstructures of Porous Carbons for CO ₂ Capture and Energy Applications. Advanced Functional Materials, 2016, 26, 8651-8661.	7.8	182
769	Metalation of a Mesoporous Three-Dimensional Covalent Organic Framework. Journal of the American Chemical Society, 2016, 138, 15134-15137.	6.6	309
770	Fluorescent Porous Organic Frameworks Containing Molecular Rotors for Size-Selective Recognition. Chemistry of Materials, 2016, 28, 7889-7897.	3.2	101
771	Three-Dimensional Covalent Organic Frameworks with Dual Linkages for Bifunctional Cascade Catalysis. Journal of the American Chemical Society, 2016, 138, 14783-14788.	6.6	260
772	Porous Metal-Organic Frameworks: Promising Materials for Methane Storage. CheM, 2016, 1, 557-580.	5.8	297

#	Article	IF	CITATIONS
773	A bifunctional cationic porous organic polymer based on a Salen-(Al) metalloligand for the cycloaddition of carbon dioxide to produce cyclic carbonates. Chemical Communications, 2016, 52, 13288-13291.	2.2	100
774	Multiscale Computational Study on the Adsorption and Separation of CO ₂ /CH ₄ and CO ₂ /H ₂ on Li ⁺ â€Doped Mixedâ€Ligand Metal–Organic Framework Zn ₂ (NDC) ₂ (diPyNI). ChemPhysChem, 2016. 17. 4124-4133.	1.0	20
775	Crystal structure of trans-1,2-bis(pyridinium-4-yl)ethylene–2-carboxy-4-methylbenzoate (1/2), C ₃₀ H ₂₆ N ₂ O ₈ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2016, 231, 31-33.	0.1	1
776	Sophisticated Design of Covalent Organic Frameworks with Controllable Bimetallic Docking for a Cascade Reaction. Chemistry - A European Journal, 2016, 22, 9087-9091.	1.7	86
777	Lowâ€Overpotential Electrocatalytic Water Splitting with Nobleâ€Metalâ€Free Nanoparticles Supported in a sp ³ Nâ€Rich Flexible COF. Advanced Energy Materials, 2016, 6, 1600110.	10.2	121
778	Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis. Chemical Communications, 2016, 52, 9212-9215.	2.2	109
779	Discrete, Hexagonal Boronate Ester-Linked Macrocycles Related to Two-Dimensional Covalent Organic Frameworks. Chemistry of Materials, 2016, 28, 4884-4888.	3.2	29
780	Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chemical Society Reviews, 2016, 45, 5635-5671.	18.7	983
781	Topological Analysis of Void Space in Phosphate Frameworks: Assessing Storage Properties for the Environmentally Important Guest Molecules and Ions: CO2, H2O, UO2, PuO2, U, Pu, Sr2+, Cs+, CH4, and H2. ACS Sustainable Chemistry and Engineering, 2016, 4, 4094-4112.	3.2	6
782	Control of Uniform and Interconnected Macroporous Structure in PolyHIPE for Enhanced CO2 Adsorption/Desorption Kinetics. Environmental Science & Technology, 2016, 50, 7879-7888.	4.6	45
783	Selective Growth of Covalent Organic Framework Ultrathin Films on Hexagonal Boron Nitride. Journal of Physical Chemistry C, 2016, 120, 14706-14711.	1.5	69
784	Catalytic decomposition of carbon-based liquid-phase chemical hydrogen storage materials for hydrogen generation under mild conditions. Applied Petrochemical Research, 2016, 6, 269-277.	1.3	5
785	Novel Nitrogen and Sulfur Rich Hyper-Cross-Linked Microporous Poly-Triazine-Thiophene Copolymer for Superior CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2016, 4, 3697-3703.	3.2	86
786	Optimal Activation of Porous Carbon for High Performance CO ₂ Capture. ChemNanoMat, 2016, 2, 528-533.	1.5	11
787	HFâ€free synthesis of MILâ€101(Cr) and its hydrogen adsorption studies. Environmental Progress and Sustainable Energy, 2016, 35, 461-468.	1.3	52
788	Phthalazinone structure-based covalent triazine frameworks and their gas adsorption and separation properties. RSC Advances, 2016, 6, 12009-12020.	1.7	49
789	Structure–Property Relationships in Amorphous Microporous Polymers. Journal of Physical Chemistry B, 2016, 120, 557-565.	1.2	16
790	Massive preparation of pitch-based organic microporous polymers for gas storage. Chemical Communications, 2016, 52, 2780-2783.	2.2	62

#	Article	IF	CITATIONS
791	Spectroscopic and Computational Investigations of The Thermodynamics of Boronate Ester and Diazaborole Self-Assembly. Journal of Organic Chemistry, 2016, 81, 969-980.	1.7	14
792	A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte. Journal of Materials Chemistry A, 2016, 4, 2682-2690.	5.2	309
793	Enhanced CO ₂ Capture Capacity of Nitrogen-Doped Biomass-Derived Porous Carbons. ACS Sustainable Chemistry and Engineering, 2016, 4, 1439-1445.	3.2	313
794	Rational design of a novel indole-based microporous organic polymer: enhanced carbon dioxide uptake via local dipole–Ĩ€ interactions. Journal of Materials Chemistry A, 2016, 4, 2517-2523.	5.2	65
795	Porous covalent organic polymers as luminescent probes for highly selective sensing of Fe3+ and chloroform: Functional group effects. Sensors and Actuators B: Chemical, 2016, 226, 273-278.	4.0	80
796	CO ₂ Capture by Porous Hyper-Cross-Linked Aromatic Polymers Synthesized Using Tetrahedral Precursors. Industrial & Engineering Chemistry Research, 2016, 55, 7917-7923.	1.8	60
797	The cost-effective synthesis of furan- and thienyl-based microporous polyaminals for adsorption of gases and organic vapors. Chemical Communications, 2016, 52, 1143-1146.	2.2	62
798	Toward the Development and Deployment of Large-Scale Carbon Dioxide Capture and Conversion Processes. Industrial & Engineering Chemistry Research, 2016, 55, 3383-3419.	1.8	205
799	A porous framework based on tetrakis(4-pyridyloxymethyl)methane fine-tuned by metal ions: synthesis, crystal structures and adsorption properties. New Journal of Chemistry, 2016, 40, 1430-1435.	1.4	3
800	A ribbon-like ultramicroporous conjugated polycarbazole network for gas storage and separation. New Journal of Chemistry, 2016, 40, 3172-3176.	1.4	7
801	"Law of the nano-wall―in nano-channel gas flows. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	21
802	Nanoscale porous triazine-based frameworks with cyanate ester linkages for efficient drug delivery. RSC Advances, 2016, 6, 20834-20842.	1.7	11
803	Predicting 1,3,5,7-tetrakis(4-aminophenyl)adamantine based covalent-organic frameworks as hydrogen storage materials. RSC Advances, 2016, 6, 21517-21525.	1.7	8
804	Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury(II). Journal of the American Chemical Society, 2016, 138, 3031-3037.	6.6	1,076
805	Role of Confinement on Adsorption and Dynamics of Ethane and an Ethane–CO ₂ Mixture in Mesoporous CPG Silica. Journal of Physical Chemistry C, 2016, 120, 4843-4853.	1.5	28
806	Adsorption of CO ₂ by Petroleum Coke Nitrogen-Doped Porous Carbons Synthesized by Combining Ammoxidation with KOH Activation. Industrial & Engineering Chemistry Research, 2016, 55, 757-765.	1.8	75
807	Porous films by the self-assembly of inorganic rod-b-coil block copolymers: mechanistic insights into the vesicle-to-pore morphological evolution. Soft Matter, 2016, 12, 3084-3092.	1.2	2
808	Interfacial self-assembly of nanoporous C ₆₀ thin films. RSC Advances, 2016, 6, 23141-23147.	1.7	5

#	Article	IF	Citations
" 809	Hyper-Cross-Linked Organic Microporous Polymers Based on Alternating Copolymerization of Bismaleimide. ACS Macro Letters, 2016, 5, 377-381.	2.3	67
810	Nanostructuring of nanoporous iron carbide spheres via thermal degradation of triple-shelled Prussian blue hollow spheres for oxygen reduction reaction. RSC Advances, 2016, 6, 10341-10351.	1.7	30
811	Preparation of mannitol-based ketal-linked porous organic polymers and their application for selective capture of carbon dioxide. Polymer, 2016, 89, 112-118.	1.8	23
812	Highly crystalline covalent organic frameworks from flexible building blocks. Chemical Communications, 2016, 52, 4706-4709.	2.2	83
813	An iron porphyrin-based conjugated network wrapped around carbon nanotubes as a noble-metal-free electrocatalyst for efficient oxygen reduction reaction. Inorganic Chemistry Frontiers, 2016, 3, 821-827.	3.0	39
815	Nanostructured coordination complexes/polymers derived from cardanol: "one-pot, two-step― solventless synthesis and characterization. RSC Advances, 2016, 6, 6607-6622.	1.7	28
816	From Highly Crystalline to Outer Surface-Functionalized Covalent Organic Frameworks—A Modulation Approach. Journal of the American Chemical Society, 2016, 138, 1234-1239.	6.6	147
817	Selective oxidation of olefins with aqueous hydrogen peroxide over phosphomolybdic acid functionalized knitting aryl network polymer. Journal of Molecular Catalysis A, 2016, 413, 32-39.	4.8	25
818	Dendrimer-like conjugated microporous polymers. Polymer Chemistry, 2016, 7, 1281-1289.	1.9	17
819	Interconnected Porous Polymers with Tunable Pore Throat Size Prepared via Pickering High Internal Phase Emulsions. Langmuir, 2016, 32, 38-45.	1.6	79
820	Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coordination Chemistry Reviews, 2016, 311, 85-124.	9.5	247
821	A facile synthesis of cost-effective triphenylamine-containing porous organic polymers using different crosslinkers. Polymer, 2016, 82, 114-120.	1.8	22
822	Metal organic frameworks for energy storage and conversion. Energy Storage Materials, 2016, 2, 35-62.	9.5	483
823	Solid poly-N-heterocyclic carbene catalyzed CO2 reduction with hydrosilanes. Journal of Catalysis, 2016, 343, 46-51.	3.1	45
824	Pd–Co ₃ [Co(CN) ₆] ₂ hybrid nanoparticles: preparation, characterization, and challenge for the Suzuki–Miyaura coupling of aryl chlorides under mild conditions. Dalton Transactions, 2016, 45, 539-544.	1.6	14
825	Comparing gas separation performance between all known zeolites and their zeolitic imidazolate framework counterparts. Dalton Transactions, 2016, 45, 216-225.	1.6	26
826	A well-defined nitro-functionalized aromatic framework (NO ₂ -PAF-1) with high CO ₂ adsorption: synthesis via the copper-mediated Ullmann homo-coupling polymerization of a nitro-containing monomer. Polymer Chemistry, 2016, 7, 770-774.	1.9	35
827	Improving CO 2 adsorption capacities and CO 2 /N 2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon. Chemical Engineering Journal, 2016, 284, 1348-1360.	6.6	110

		CITATION R	EPORT	
#	ARTICLE	16 52 571 574	IF	CITATIONS
828	Tunable porosity of 3D-networks with germanium nodes. Chemical Communications, 201	.6, 52, 571-574.	2.2	9
829	Carbon capture by physical adsorption: Materials, experimental investigations and numer and simulations $\hat{a} \in A$ review. Applied Energy, 2016, 161, 225-255.	ical modeling	5.1	498
830	Effects of ionic liquid dispersion in metal-organic frameworks and covalent organic frame CO2 capture: A computational study. Chemical Engineering Science, 2016, 140, 1-9.	works on	1.9	53
831	Effects of substituents on the H2 storage properties of COF-320. Materials Letters, 2016	, 162, 9-12.	1.3	14
832	Activated graphene-derived porous carbon with exceptional gas adsorption properties. M and Mesoporous Materials, 2016, 220, 21-27.	icroporous	2.2	75
833	Recent advances in computational studies of organometallic sheets: Magnetism, adsorpt catalysis. Computational Materials Science, 2016, 112, 492-502.	ion and	1.4	29
834	Covalent triazine polymers using a cyanuric chloride precursor via Friedel–Crafts reaction adsorption/separation. Chemical Engineering Journal, 2016, 283, 184-192.	on for CO2	6.6	102
835	Synthesis of bare and functionalized porous adsorbent materials for CO ₂ ca 7, 399-459.	pture. , 2017,		30
836	Facile Synthesis of Magnetic Covalent Organic Framework with Three-Dimensional Bouqu Structure for Enhanced Extraction of Organic Targets. ACS Applied Materials & Inter 2959-2965.		4.0	204
837	Incorporating Pd(OAc) ₂ on Imine Functionalized Microporous Covalent Org Frameworks: A Stable and Efficient Heterogeneous Catalyst for Suzukiâ€Miyaura Couplin Medium. ChemistrySelect, 2017, 2, 1063-1070.	anic g in Aqueous	0.7	25
838	Porosity-Enhanced Polymers from Hyper-Cross-Linked Polymer Precursors. Macromolecule 956-962.	es, 2017, 50,	2.2	46
839	The assembly of two isomorphous coordination compounds based on 1,4-cyclohexanedic and 2,4-diamino-6-phenyl-1,3,5-triazine. Journal of Solid State Chemistry, 2017, 246, 346		1.4	9
840	Nitrogen-rich activated carbon monoliths via ice-templating with high CO ₂ a H ₂ adsorption capacities. Journal of Materials Chemistry A, 2017, 5, 2811-28		5.2	34
841	Encapsulation of an ionic liquid into the nanopores of a 3D covalent organic framework. I Advances, 2017, 7, 1697-1700.	RSC	1.7	36
842	Construction of 2D covalent organic frameworks by taking advantage of the variable orie imine bonds. Chemical Communications, 2017, 53, 2431-2434.	ntation of	2.2	46
843	PEC encapsulated by porous triamide-linked polymers as support for solid-liquid phase ch materials for energy storage. Chemical Physics Letters, 2017, 671, 165-173.	ange	1.2	24
844	Indium-Based Heterometal–Organic Frameworks with Different Nanoscale Cages: Syntl Structures, and Gas Adsorption Properties. Crystal Growth and Design, 2017, 17, 1159-1		1.4	28
845	Synthesis and adsorption study of hyper-crosslinked styrene-based nanocomposites cont multi-walled carbon nanotubes. RSC Advances, 2017, 7, 6865-6874.	aining	1.7	31

#	Article	IF	CITATIONS
846	Unraveling Surface Basicity and Bulk Morphology Relationship on Covalent Triazine Frameworks with Unique Catalytic and Gas Adsorption Properties. Advanced Functional Materials, 2017, 27, 1605672.	7.8	72
847	Zeolites ZSM-25 and PST-20: Selective Carbon Dioxide Adsorbents at High Pressures. Journal of Physical Chemistry C, 2017, 121, 3404-3409.	1.5	46
848	Absorption competition quenching mechanism of porous covalent organic polymer as luminescent sensor for selective sensing Fe ³⁺ . ChemistrySelect, 2017, 2, 1041-1047.	0.7	49
849	Constructing Ultraporous Covalent Organic Frameworks in Seconds via an Organic Terracotta Process. Journal of the American Chemical Society, 2017, 139, 1856-1862.	6.6	432
850	Metal-organic frameworks as superior media for thermal desorption-gas chromatography application: A critical assessment of MOF-5 for the quantitation of airborne formaldehyde. Microchemical Journal, 2017, 132, 219-226.	2.3	40
851	Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries. Carbon, 2017, 116, 686-694.	5.4	260
852	Ultra-high selective capture of CO 2 on one-sided N-doped carbon nanoscrolls. Journal of CO2 Utilization, 2017, 18, 275-282.	3.3	22
853	Handâ€Ground Nanoscale Zn ^{II} â€Based Coordination Polymers Derived from NSAIDs: Cell Migration Inhibition of Human Breast Cancer Cells. Chemistry - A European Journal, 2017, 23, 5736-5747.	1.7	24
854	Morphological Properties of Methacrylate-Based Polymer Monoliths: From Gel Porosity to Macroscopic Inhomogeneities. Langmuir, 2017, 33, 2205-2214.	1.6	20
855	Two-Dimensional Covalent Organic Framework (COF) Membranes Fabricated via the Assembly of Exfoliated COF Nanosheets. ACS Applied Materials & Interfaces, 2017, 9, 8433-8436.	4.0	222
856	A facile approach for the synthesis of hydroxyl-rich microporous organic networks for efficient CO ₂ capture and H ₂ storage. Chemical Communications, 2017, 53, 2752-2755.	2.2	38
857	Effect of an acetylene bond on hydrogen adsorption in diamond-like carbon allotropes: from first principles to atomic simulation. Physical Chemistry Chemical Physics, 2017, 19, 9261-9269.	1.3	9
858	Porous materials for the sorption of emerging organic pollutants from aqueous systems: The case for conjugated microporous polymers. Journal of Water Process Engineering, 2017, 16, 223-232.	2.6	16
859	Fluorene-Based Two-Dimensional Covalent Organic Framework with Thermoelectric Properties through Doping. ACS Applied Materials & amp; Interfaces, 2017, 9, 7108-7114.	4.0	55
860	Imparting Catalytic Activity to a Covalent Organic Framework Material by Nanoparticle Encapsulation. ACS Applied Materials & Interfaces, 2017, 9, 7481-7488.	4.0	157
861	Selective dye adsorption and metal ion detection using multifunctional silsesquioxane-based tetraphenylethene-linked nanoporous polymers. Journal of Materials Chemistry A, 2017, 5, 9156-9162.	5.2	123
862	Preparation and evaluation of modified cyanobacteria-derived activated carbon for H ₂ adsorption. RSC Advances, 2017, 7, 20412-20421.	1.7	20
863	Multifunctional shape-memory foams with highly tunable properties via organo-phase cryo-polymerization. Journal of Materials Chemistry A, 2017, 5, 9793-9800.	5.2	19

#	Article	IF	CITATIONS
864	An Elastic Hydrogen-Bonded Cross-Linked Organic Framework for Effective Iodine Capture in Water. Journal of the American Chemical Society, 2017, 139, 7172-7175.	6.6	218
865	Synthesis of Bergman cyclization-based porous organic polymers and their performances in gas storage. Polymer, 2017, 118, 249-255.	1.8	5
866	The rotational dynamics of H ₂ adsorbed in covalent organic frameworks. Physical Chemistry Chemical Physics, 2017, 19, 13075-13082.	1.3	17
867	Toward Covalent Organic Frameworks Bearing Three Different Kinds of Pores: The Strategy for Construction and COF-to-COF Transformation via Heterogeneous Linker Exchange. Journal of the American Chemical Society, 2017, 139, 6736-6743.	6.6	217
868	Porous 3D polymers for high pressure methane storage and carbon dioxide capture. Journal of Materials Chemistry A, 2017, 5, 10328-10337.	5.2	60
869	Highly effective ammonia removal in a series of BrÃ,nsted acidic porous polymers: investigation of chemical and structural variations. Chemical Science, 2017, 8, 4399-4409.	3.7	89
870	An efficient 2D ¹¹ B– ¹¹ B solid-state NMR spectroscopy strategy for monitoring covalent self-assembly of boronic acid-derived compounds: the transformation and unique architecture of bortezomib molecules in the solid state. Physical Chemistry Chemical Physics, 2017, 19, 487-495.	1.3	23
871	A novel metalporphyrin-based microporous organic polymer with high CO ₂ uptake and efficient chemical conversion of CO ₂ under ambient conditions. Journal of Materials Chemistry A, 2017, 5, 1509-1515.	5.2	186
872	A computational study of LiBH4clusters and enhancement of their hydrogen storage by excess electrons. International Journal of Energy Research, 2017, 41, 747-754.	2.2	3
873	A reduced graphene oxide/covalent cobalt porphyrin framework for efficient oxygen reduction reaction. Dalton Transactions, 2017, 46, 9344-9348.	1.6	53
874	Recent progress in two-dimensional COFs for energy-related applications. Journal of Materials Chemistry A, 2017, 5, 14463-14479.	5.2	243
875	Solid-state NMR Studies of Host–Guest Interaction between UiO-67 and Light Alkane at Room Temperature. Journal of Physical Chemistry C, 2017, 121, 14261-14268.	1.5	25
876	Hyper-crosslinked aromatic polymers with improved microporosity for enhanced CO ₂ /N ₂ and CO ₂ /CH ₄ selectivity. New Journal of Chemistry, 2017, 41, 6834-6839.	1.4	27
877	Tuning the Surface Polarity of Microporous Organic Polymers for CO ₂ Capture. Chemistry - an Asian Journal, 2017, 12, 2291-2298.	1.7	14
878	Novel glucose-based adsorbents (Glc-Cs) with high CO 2 capacity and excellent CO 2 /CH 4 /N 2 adsorption selectivity. Chemical Engineering Journal, 2017, 327, 51-59.	6.6	54
879	Novel Melamine/ <i>o</i> -Phthalaldehyde Covalent Organic Frameworks Nanosheets: Enhancement Flame Retardant and Mechanical Performances of Thermoplastic Polyurethanes. ACS Applied Materials & Interfaces, 2017, 9, 23017-23026.	4.0	98
880	Highly microporous free-radically generated polymeric materials using a novel contorted monomer. Polymer, 2017, 126, 330-337.	1.8	6
881	Promotion effects of potassium on the activity and selectivity of Pt/zeolite catalysts for reverse water gas shift reaction. Applied Catalysis B: Environmental, 2017, 216, 95-105.	10.8	122

#	Article	IF	CITATIONS
882	Accurate van der Waals force field for gas adsorption in porous materials. Journal of Computational Chemistry, 2017, 38, 1991-1999.	1.5	26
883	Two 3D nonlinear optical and luminescent lanthanide-organic frameworks with multidirectional helical intersecting channels. New Journal of Chemistry, 2017, 41, 6736-6741.	1.4	7
884	Constructing two dimensional amide porous polymer to promote selective oxidation reactions. Catalysis Science and Technology, 2017, 7, 3143-3150.	2.1	16
885	Piezoelectricity in two-dimensional covalent organic frameworks. Journal of Applied Physics, 2017, 121, 225112.	1.1	0
886	Carbon capture by absorption – Path covered and ahead. Renewable and Sustainable Energy Reviews, 2017, 76, 1080-1107.	8.2	193
887	Super-hydrophobic covalent organic frameworks for chemical resistant coatings and hydrophobic paper and textile composites. Journal of Materials Chemistry A, 2017, 5, 8376-8384.	5.2	87
888	Biotemplating pores with size and shape diversity for Li-oxygen Battery Cathodes. Scientific Reports, 2017, 7, 45919.	1.6	25
889	Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. Angewandte Chemie, 2017, 129, 5064-5068.	1.6	33
890	Salen-Based Covalent Organic Framework. Journal of the American Chemical Society, 2017, 139, 6042-6045.	6.6	240
891	Amine-Functionalized Covalent Organic Framework for Efficient SO2 Capture with High Reversibility. Scientific Reports, 2017, 7, 557.	1.6	73
892	Highly porous photoluminescent diazaborole-linked polymers: synthesis, characterization, and application to selective gas adsorption. Polymer Chemistry, 2017, 8, 2509-2515.	1.9	11
893	Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. Angewandte Chemie - International Edition, 2017, 56, 4982-4986.	7.2	217
894	Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery. Chinese Chemical Letters, 2017, 28, 1135-1143.	4.8	198
895	From a flexible hyperbranched polyimide to a microporous polyimide network: Microporous architecture and carbon dioxide adsorption. Polymer, 2017, 115, 176-183.	1.8	25
896	Design of Calix-Based Cages for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2017, 56, 4502-4507.	1.8	7
897	Efficient, selective and sustainable catalysis of carbon dioxide. Green Chemistry, 2017, 19, 3707-3728.	4.6	797
898	Nucleation and growth of 2D covalent organic frameworks: polymerization and crystallization of COF monomers. Physical Chemistry Chemical Physics, 2017, 19, 9745-9754.	1.3	42
899	Design Principles for Covalent Organic Frameworks in Energy Storage Applications. ChemSusChem, 2017, 10, 2116-2129.	3.6	149

#	Article	IF	CITATIONS
900	Effect of nickel phosphide nanoparticles crystallization on hydrogen evolution reaction catalytic performance. Transactions of Nonferrous Metals Society of China, 2017, 27, 369-376.	1.7	24
901	Covalent organic frameworks as a novel fiber coating for solid-phase microextraction of volatile benzene homologues. Analytical and Bioanalytical Chemistry, 2017, 409, 3429-3439.	1.9	63
902	Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Progress in Materials Science, 2017, 88, 1-48.	16.0	526
903	Synthesis of thermochemically stable tetraphenyladamantane-based microporous polymers as gas storage materials. RSC Advances, 2017, 7, 16174-16180.	1.7	20
904	Separation characteristics as a selection criteria of CO 2 adsorbents. Journal of CO2 Utilization, 2017, 17, 69-79.	3.3	24
905	Porous Aromatic Framework 48/Gel Hybrid Material Coated Solid-Phase Microextraction Fiber for the Determination of the Migration of Styrene from Polystyrene Food Contact Materials. Analytical Chemistry, 2017, 89, 1290-1298.	3.2	38
906	Sub-micron spheres of an imine-based covalent organic framework: supramolecular functionalization and water-dispersibility. CrystEngComm, 2017, 19, 4872-4876.	1.3	16
907	Holey Graphitic Carbon Derived from Covalent Organic Polymers Impregnated with Nonprecious Metals for CO ₂ Capture from Natural Gas. Particle and Particle Systems Characterization, 2017, 34, 1600219.	1.2	6
908	COF-1-modified magnetic nanoparticles for highly selective and efficient solid-phase microextraction of paclitaxel. Talanta, 2017, 165, 188-193.	2.9	84
909	Porous Organic Materials: Strategic Design and Structure–Function Correlation. Chemical Reviews, 2017, 117, 1515-1563.	23.0	961
910	Reversible water uptake by a porous molecular crystal from metal complex of gemini surfactant. CrystEngComm, 2017, 19, 802-810.	1.3	4
911	Adsorption on a nanoporous organic polymer for clean energy applications: A multiscale modeling study using density functional tight binding approach. Computational and Theoretical Chemistry, 2017, 1102, 30-37.	1.1	4
912	Microporous polyimide networks constructed through a two-step polymerization approach, and their carbon dioxide adsorption performance. Polymer Chemistry, 2017, 8, 1298-1305.	1.9	36
913	Fullymeta-Substituted 4,4′-Biphenyldicarboxylate-Based Metal-Organic Frameworks: Synthesis, Structures, and Catalytic Activities. European Journal of Inorganic Chemistry, 2017, 2017, 1478-1487.	1.0	10
914	Perturbations and 3R in carbon management. Environmental Science and Pollution Research, 2017, 24, 4413-4432.	2.7	9
915	Recent advances in the synthesis of covalent organic frameworks for CO 2 capture. Journal of CO2 Utilization, 2017, 17, 137-161.	3.3	94
916	Determining the specific surface area of Metal Organic Frameworks based on a computational approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 526, 14-19.	2.3	2
917	Selectivity and Desorption Free Energies for Methane–Ethane Mixtures in Covalent Organic Frameworks. Journal of Physical Chemistry C, 2017, 121, 24692-24700.	1.5	11

#	Article	IF	CITATIONS
918	CO ₂ Capture Using the SIFSIX-2-Cu-i Metal–Organic Framework: A Computational Approach. Journal of Physical Chemistry C, 2017, 121, 27462-27472.	1.5	14
919	Preparation of two new polyimide bond linked porous covalent organic frameworks and their fluorescence sensing application for sensitive and selective determination of Fe ³⁺ . New Journal of Chemistry, 2017, 41, 14272-14278.	1.4	84
920	Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. Journal of Materials Chemistry A, 2017, 5, 22933-22938.	5.2	176
921	Synthesis of Ultrafine and Highly Dispersed Metal Nanoparticles Confined in a Thioether-Containing Covalent Organic Framework and Their Catalytic Applications. Journal of the American Chemical Society, 2017, 139, 17082-17088.	6.6	506
922	Synthesis and Characterization of Functional Triphenylphosphineâ€Containing Microporous Organic Polymers for Gas Storage and Separation. Macromolecular Chemistry and Physics, 2017, 218, 1700275.	1.1	8
923	Spray drying for making covalent chemistry II: synthesis of covalent–organic framework superstructures and related composites. Chemical Communications, 2017, 53, 11372-11375.	2.2	15
924	Bicarbazole-based redox-active covalent organic frameworks for ultrahigh-performance energy storage. Chemical Communications, 2017, 53, 11334-11337.	2.2	81
925	Polymer monolith containing an embedded covalent organic framework for the effective enrichment of benzophenones. New Journal of Chemistry, 2017, 41, 13043-13050.	1.4	24
926	Facile synthesis of –Cî€N– linked covalent organic frameworks under ambient conditions. Chemical Communications, 2017, 53, 11956-11959.	2.2	61
927	Radical Behavior of CO ₂ versus its Deoxygenation Promoted by Vanadium Aryloxide Complexes: How the Geometry of Intermediate CO ₂ â€Adducts Determines the Reactivity Chemistry - A European Journal, 2017, 23, 17269-17278.	1.7	13
928	Nitrogen-Doped Porous Carbons Derived from Triarylisocyanurate-Cored Polymers with High CO ₂ Adsorption Properties. Energy & Fuels, 2017, 31, 12477-12486.	2.5	24
929	Nitrogen-Rich Conjugated Microporous Polymers: Facile Synthesis, Efficient Gas Storage, and Heterogeneous Catalysis. ACS Applied Materials & Interfaces, 2017, 9, 38390-38400.	4.0	131
930	Targeted control over the porosities and functionalities of conjugated microporous polycarbazole networks for CO ₂ -selective capture and H ₂ storage. Polymer Chemistry, 2017, 8, 7240-7247.	1.9	48
931	Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity. Energy and Environmental Science, 2017, 10, 2552-2562.	15.6	154
932	Hybrid Triazine-Boron Two-Dimensional Covalent Organic Frameworks: Synthesis, Characterization, and DFT Approach to Layer Interaction Energies. ACS Applied Materials & Interfaces, 2017, 9, 31129-31141.	4.0	20
933	Spectrally Switchable Photodetection with Near-Infrared-Absorbing Covalent Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 12035-12042.	6.6	181
935	Covalent Triazine Frameworks via a Lowâ€Temperature Polycondensation Approach. Angewandte Chemie, 2017, 129, 14337-14341.	1.6	83
936	Covalent Triazine Frameworks via a Lowâ€Temperature Polycondensation Approach. Angewandte Chemie - International Edition, 2017, 56, 14149-14153.	7.2	441

#	Article	IF	CITATIONS
937	Influence of nitrogen moieties on CO2 capture by polyaminal-based porous carbon. Macromolecular Research, 2017, 25, 1035-1042.	1.0	34
938	Iron Intercalation in Covalent–Organic Frameworks: A Promising Approach for Semiconductors. Journal of Physical Chemistry C, 2017, 121, 21160-21170.	1.5	46
939	Theoretical Simulation of CH ₄ Separation from H ₂ in CAU-17 Materials. Journal of Physical Chemistry C, 2017, 121, 20197-20204.	1.5	6
940	Organo-clay hybrid hydrophobic spherical styrene divinylbenzene crosslink beads for high-performance carbon dioxide capture. New Journal of Chemistry, 2017, 41, 12326-12335.	1.4	2
941	Catalysis and CO ₂ Capture by Palladiumâ€Incorporated Covalent Organic Frameworks. ChemPlusChem, 2017, 82, 1253-1265.	1.3	46
942	CO ₂ Adsorption of Nitrogen-Doped Carbons Prepared from Nitric Acid Preoxidized Petroleum Coke. Energy & Fuels, 2017, 31, 11060-11068.	2.5	40
943	Nanocomposite of ZIF-67 metal–organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 18040-18048.	1.1	69
944	Rational skeletal rigidity of conjugated microporous polythiophenes for gas uptake. Polymer Chemistry, 2017, 8, 6733-6740.	1.9	23
945	Sustainability of microporous polymers and their applications. Science China Chemistry, 2017, 60, 1033-1055.	4.2	15
946	Tetra-armed conjugated microporous polymers for gas adsorption and photocatalytic hydrogen evolution. Science China Chemistry, 2017, 60, 1075-1083.	4.2	46
947	Microfluidic-based Synthesis of Covalent Organic Frameworks (COFs): A Tool for Continuous Production of COF Fibers and Direct Printing on a Surface. Journal of Visualized Experiments, 2017, , .	0.2	3
948	Porous Organic Polymers for Postâ€Combustion Carbon Capture. Advanced Materials, 2017, 29, 1700229.	11.1	293
949	Bulky Isopropyl Group Loaded Tetraaryl Pyrene Based Azo-Linked Covalent Organic Polymer for Nitroaromatics Sensing and CO ₂ Adsorption. ACS Omega, 2017, 2, 3572-3582.	1.6	31
950	Rapid Photochemical Synthesis of Seaâ€Urchinâ€Shaped Hierarchical Porous COFâ€5 and Its Lithographyâ€Free Patterned Growth. Advanced Functional Materials, 2017, 27, 1700925.	7.8	45
951	A covalent organic framework-based magnetic sorbent for solid phase extraction of polycyclic aromatic hydrocarbons, andÂits hyphenation to HPLC for quantitation. Mikrochimica Acta, 2017, 184, 3867-3874.	2.5	85
952	Theoretical Design of Highly Efficient CO ₂ /N ₂ Separation Membranes Based on Electric Quadrupole Distinction. Journal of Physical Chemistry C, 2017, 121, 17925-17931.	1.5	15
953	Chemically Activated Covalent Triazine Frameworks with Enhanced Textural Properties for High Capacity Gas Storage. ACS Applied Materials & Interfaces, 2017, 9, 30679-30685.	4.0	65
954	Experimental technique to measure mass under high pressure conditions using oscillatory motions of a spring-mass system. Measurement Science and Technology, 2017, 28, 065902.	1.4	2

#	Article	IF	Citations
955	Covalent triazine framework-1: A novel oxidase and peroxidase mimic. Microchemical Journal, 2017, 135, 91-99.	2.3	26
956	Porous Carbon Materials Based on Graphdiyne Basis Units by the Incorporation of the Functional Groups and Li Atoms for Superior CO ₂ Capture and Sequestration. ACS Applied Materials & Interfaces, 2017, 9, 30002-30013.	4.0	37
957	High surface area sulfur-doped microporous carbons from inverse vulcanised polymers. Journal of Materials Chemistry A, 2017, 5, 18603-18609.	5.2	47
958	Hyper-crosslinked porous polymer based on bulk rigid monomer for gas and dye absorptions. Chemical Research in Chinese Universities, 2017, 33, 479-483.	1.3	4
959	Synergistic Effects between Doped Nitrogen and Phosphorus in Metal-Free Cathode for Zinc-Air Battery from Covalent Organic Frameworks Coated CNT. ACS Applied Materials & Interfaces, 2017, 9, 44519-44528.	4.0	65
960	Thermal Conductivity of Covalent Organic Frameworks as a Function of Their Pore Size. Journal of Physical Chemistry C, 2017, 121, 27247-27252.	1.5	42
961	Triptycene-Based Microporous Cyanate Resins for Adsorption/Separations of Benzene/Cyclohexane and Carbon Dioxide Gas. ACS Applied Materials & amp; Interfaces, 2017, 9, 41618-41627.	4.0	42
962	Controlled synthesis of conjugated polycarbazole polymers via structure tuning for gas storage and separation applications. Scientific Reports, 2017, 7, 15394.	1.6	25
963	Reversible adsorption and storage of secondary explosives from water using a Tröger's base-functionalised polymer. Journal of Materials Chemistry A, 2017, 5, 25014-25024.	5.2	29
964	Efficient CO ₂ Capture by Nitrogen-Doped Biocarbons Derived from Rotten Strawberries. Industrial & Engineering Chemistry Research, 2017, 56, 14115-14122.	1.8	62
965	Creation and bioapplications of porous organic polymer materials. Journal of Materials Chemistry B, 2017, 5, 9278-9290.	2.9	82
966	High Gas Uptake and Selectivity in Hyper rosslinked Porous Polymers Knitted by Various Nitrogen ontaining Linkers. ChemistryOpen, 2017, 6, 554-561.	0.9	11
967	Electrochemical Stimuli-Driven Facile Metal-Free Hydrogen Evolution from Pyrene-Porphyrin-Based Crystalline Covalent Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 23843-23851.	4.0	179
968	Two Polymorphs of an Organicâ^'Zincophosphate Incorporating a Terephthalate Bridging Ligand in an Unusual Bonding Mode. Inorganic Chemistry, 2017, 56, 7602-7605.	1.9	12
969	Tessellated multiporous two-dimensional covalent organic frameworks. Nature Reviews Chemistry, 2017, 1, .	13.8	319
970	Oligothiophene-Bridged Conjugated Covalent Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8194-8199.	6.6	121
971	High-Crystallinity Covalent Organic Framework with Dual Fluorescence Emissions and Its Ratiometric Sensing Application. ACS Applied Materials & Interfaces, 2017, 9, 24999-25005.	4.0	224
972	Coating of \$\$hbox {C}_{60}\$\$ C 60 by para- \$\$hbox {H}_2\$\$ H 2. Journal of Mathematical Chemistry, 2017, 55, 1370-1375.	0.7	0

#	Article	IF	CITATIONS
973	Periodic Mesoporous Organosilica with a Basic Ureaâ€Derived Framework for Enhanced Carbon Dioxide Capture and Conversion Under Mild Conditions. ChemSusChem, 2017, 10, 1110-1119.	3.6	80
974	Hybrid microporous and mesoporous organosilicate covalent polymers with high porosity. Microporous and Mesoporous Materials, 2017, 240, 205-215.	2.2	6
975	Synthesis, gas adsorption and reliable pore size estimation of zeolitic imidazolate framework-7 using CO 2 and water adsorption. Chinese Journal of Chemical Engineering, 2017, 25, 595-601.	1.7	19
976	Microporous organic polymers based on hexaphenylbiadamantane: Synthesis, ultra-high stability and gas capture. Materials Letters, 2017, 187, 76-79.	1.3	11
977	Syntheses, structures and characteristics of four alkaline-earth metal-organic frameworks (MOFs) based on benzene-1,2,4,5-tetracarboxylicacid and its derivative ligand. Journal of Molecular Structure, 2017, 1130, 565-572.	1.8	13
978	Selective Molecular Sieving in Selfâ€6tanding Porous Covalentâ€Organicâ€Framework Membranes. Advanced Materials, 2017, 29, 1603945.	11.1	524
979	The HOF structures of nitrotetraphenylethene derivatives provide new insights into the nature of AIE and a way to design mechanoluminescent materials. Chemical Science, 2017, 8, 1163-1168.	3.7	110
980	Zeolite adsorbent-MOF layered nanovalves for CH4 storage. Adsorption, 2017, 23, 19-24.	1.4	22
981	A Hirshfeld surface analysis, supramolecular structure and magnetic properties of a new Cu(II) complex with the 4-amino-6-methoxypyrimidine ligand. Journal of Molecular Structure, 2017, 1130, 114-121.	1.8	5
982	Microporous Organic Polymers Based on Hyperâ€Crosslinked Coal Tar: Preparation and Application for Gas Adsorption. ChemSusChem, 2017, 10, 618-623.	3.6	30
984	Two- and Three-dimensional Covalent Organic Frameworks (COFs). , 2017, , 271-290.		0
985	Fabrication of CMC-g-PAM Superporous Polymer Monoliths via Eco-Friendly Pickering-MIPEs for Superior Adsorption of Methyl Violet and Methylene Blue. Frontiers in Chemistry, 2017, 5, 33.	1.8	20
986	Crystallization of Covalent Organic Frameworks for Gas Storage Applications. Molecules, 2017, 22, 1149.	1.7	128
987	Simple synthesis of porous melamine-formaldehyde resins by low temperature solvothermal method and its CO2 adsorption properties. EXPRESS Polymer Letters, 2017, 11, 873-884.	1.1	8
988	Novel approach to hydroxy-group-containing porous organic polymers from bisphenol A. Beilstein Journal of Organic Chemistry, 2017, 13, 2131-2137.	1.3	13
989	Vacuum-Mediated Single-Crystal-to-Single-Crystal (SCSC) Transformation in Na-MOFs: Rare to Novel Topology and Activation of Nitrogen in Triazole Moieties. Crystal Growth and Design, 2018, 18, 1287-1292.	1.4	11
990	Gel-emulsions prepared using a low-molecular-weight gelator and their use in the synthesis of porous polymers. Polymer Journal, 2018, 50, 397-406.	1.3	1
991	A fluorine-containing hydrophobic covalent triazine framework with excellent selective CO ₂ capture performance. Journal of Materials Chemistry A, 2018, 6, 6370-6375.	5.2	105

#	Article	IF	CITATIONS
992	Hydrogen Storage in Sc and Li Decorated Metal–Inorganic Framework. ACS Applied Energy Materials, 2018, 1, 1328-1336.	2.5	27
993	Postsynthetic Functionalization of Threeâ€Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie, 2018, 130, 6150-6156.	1.6	67
994	Polymer coated glass capillaries and structures for high-pressure hydrogen storage: Permeability and hydrogen tightness. International Journal of Hydrogen Energy, 2018, 43, 5637-5644.	3.8	19
995	A new electrochemically responsive 2D π-conjugated covalent organic framework as a high performance supercapacitor. Microporous and Mesoporous Materials, 2018, 266, 109-116.	2.2	84
996	Porphyrin-based porous polyimide polymer/Pd nanoparticle composites as efficient catalysts for Suzuki–Miyaura coupling reactions. Polymer Chemistry, 2018, 9, 1430-1438.	1.9	43
997	Controlling Pore Shape and Size of Interpenetrated Anion-Pillared Ultramicroporous Materials Enables Molecular Sieving of CO ₂ Combined with Ultrahigh Uptake Capacity. ACS Applied Materials & Interfaces, 2018, 10, 16628-16635.	4.0	78
998	Paddle-Wheel BODIPY–Hexaoxatriphenylene Conjugates: Participation of Redox-Active Hexaoxatriphenylene in Excited-State Charge Separation to Yield High-Energy Charge-Separated States. Journal of Physical Chemistry A, 2018, 122, 3780-3786.	1.1	10
999	Naphthyl Substitution-Induced Fine Tuning of Porosity and Gas Uptake Capacity in Microporous Hyper-Cross-Linked Amine Polymers. Macromolecules, 2018, 51, 2923-2931.	2.2	54
1000	3D Anionic Silicate Covalent Organic Framework with srs Topology. Journal of the American Chemical Society, 2018, 140, 5330-5333.	6.6	174
1001	A [4+2] Condensation Strategy to Imineâ€Linked Singleâ€Crystalline Zeoliteâ€Like Zinc Phosphate Frameworks. Chemistry - A European Journal, 2018, 24, 6178-6190.	1.7	15
1002	A Lanthanum Carboxylate Framework with Exceptional Stability and Highly Selective Adsorption of Gas and Liquid. Inorganic Chemistry, 2018, 57, 5013-5018.	1.9	23
1003	Fabrication of SiO ₂ @COF5 microspheres and their application in high performance liquid chromatography. Analytical Methods, 2018, 10, 1968-1976.	1.3	24
1004	Covalent organic framework as efficient desorption/ionization matrix for direct detection of small molecules by laser desorption/ionization mass spectrometry. Analytica Chimica Acta, 2018, 1014, 58-63.	2.6	29
1005	Highly efficient transformation of linear poly(phenylene ethynylene)s into zigzag-shaped π-conjugated microporous polymers through boron-mediated alkyne benzannulation. Materials Chemistry Frontiers, 2018, 2, 807-814.	3.2	13
1006	Postsynthetic Functionalization of Threeâ€Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie - International Edition, 2018, 57, 6042-6048.	7.2	255
1008	Ferrocene-linked porous organic polymers for carbon dioxide and hydrogen sorption. Journal of Organometallic Chemistry, 2018, 859, 117-123.	0.8	12
1009	Carbon flakes based metal organic frameworks for H2, CH4 and CO2 gas storage: a GCMC simulation study. New Journal of Chemistry, 2018, 42, 4240-4250.	1.4	11
1010	Advances in covalent organic frameworks in separation science. Journal of Chromatography A, 2018, 1542, 1-18.	1.8	213

#	Article	IF	CITATIONS
1011	Covalent Organic Framework with Frustrated Bonding Network for Enhanced Carbon Dioxide Storage. Chemistry of Materials, 2018, 30, 1762-1768.	3.2	169
1012	Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing. Chemical Communications, 2018, 54, 2349-2352.	2.2	205
1013	Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies. Topics in Catalysis, 2018, 61, 254-266.	1.3	68
1014	Hydrolytic Stability of Boronate Ester‣inked Covalent Organic Frameworks. Advanced Theory and Simulations, 2018, 1, 1700015.	1.3	57
1015	Multifunctionalities of an Azine-Linked Covalent Organic Framework: From Nanoelectronics to Nitroexplosive Detection and Conductance Switching. Journal of Physical Chemistry C, 2018, 122, 3245-3255.	1.5	27
1016	Lithium doping on 2D squaraine-bridged covalent organic polymers for enhancing adsorption properties: a theoretical study. Physical Chemistry Chemical Physics, 2018, 20, 6487-6499.	1.3	15
1017	Template-free synthesis of porous carbon from triazine based polymers and their use in iodine adsorption and CO2 capture. Scientific Reports, 2018, 8, 1867.	1.6	35
1018	Optical isotherms as a fundamental characterization method for gas sensing with luminescent MOFs by comparison of open and dense frameworks. Journal of Materials Chemistry C, 2018, 6, 2588-2595.	2.7	16
1019	Covalent organic frameworks (COFs): perspectives of industrialization. CrystEngComm, 2018, 20, 1613-1634.	1.3	108
1020	Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review. Journal of Polymer Research, 2018, 25, 1.	1.2	84
1021	Facile synthesis of oxidized activated carbons for high-selectivity and low-enthalpy CO ₂ capture from flue gas. New Journal of Chemistry, 2018, 42, 4495-4500.	1.4	7
1022	Combination Rules for Morse-Based van der Waals Force Fields. Journal of Physical Chemistry A, 2018, 122, 1672-1677.	1.1	11
1023	Enhanced CO ₂ Adsorption on Nitrogen-Doped Porous Carbons Derived from Commercial Phenolic Resin. Energy & Fuels, 2018, 32, 2081-2088.	2.5	40
1024	Theoretical design of Li-doped ILCOF-1 for high H2 uptake at moderate temperature. Computational Materials Science, 2018, 143, 360-367.	1.4	5
1025	Pt4, Pd4, Ni4, and Ti4 catalyzed hydrogen spillover on penta-graphene for hydrogen storage: The first-principles and kinetic Monte Carlo study. International Journal of Hydrogen Energy, 2018, 43, 2247-2255.	3.8	29
1026	Synthesis and mechanical exfoliation of imine-linked two-dimensional conjugated polymers. Journal of Materials Chemistry C, 2018, 6, 722-725.	2.7	18
1027	Recent Progress in MOFâ€Derived, Heteroatomâ€Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. Advanced Functional Materials, 2018, 28, 1704537.	7.8	552
1028	High-pressure CO2-CH4 selective adsorption on covalent organic polymer. Journal of Natural Gas Science and Engineering, 2018, 50, 139-146.	2.1	39

#	Article	IF	CITATIONS
1029	Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework. ACS Nano, 2018, 12, 385-391.	7.3	68
1030	Selectivity Behavior of a Robust Porous Organic Salt Based on the Pamoate Ion. Crystal Growth and Design, 2018, 18, 944-953.	1.4	12
1031	Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies. Advanced Materials, 2018, 30, 1704953.	11.1	85
1032	Hydrogen Storage in Porous Materials: Status, Milestones, and Challenges. Chemical Record, 2018, 18, 900-912.	2.9	62
1033	Highly efficient CO2 adsorption by nitrogen-doped porous carbons synthesized with low-temperature sodium amide activation. Carbon, 2018, 130, 31-40.	5.4	133
1034	Nitrogen-rich hyper-crosslinked polymers for low-pressure CO2 capture. Chemical Engineering Journal, 2018, 334, 2004-2013.	6.6	53
1035	High capacity and reversible hydrogen storage on two dimensional C 2 N monolayer membrane. International Journal of Hydrogen Energy, 2018, 43, 9895-9901.	3.8	64
1036	Exfoliation and modification of covalent organic frameworks by a green one-step strategy: Enhanced thermal, mechanical and flame retardant performances of biopolymer nanocomposite film. Composites Part A: Applied Science and Manufacturing, 2018, 110, 162-171.	3.8	30
1037	Green Approach To Synthesize Crystalline Nanoscale Zn ^{II} -Coordination Polymers: Cell Growth Inhibition and Immunofluorescence Study. Inorganic Chemistry, 2018, 57, 4050-4060.	1.9	107
1038	Benzoxazole-Linked Ultrastable Covalent Organic Frameworks for Photocatalysis. Journal of the American Chemical Society, 2018, 140, 4623-4631.	6.6	555
1039	Methane Adsorption and Separation in Slipped and Functionalized Covalent Organic Frameworks. Industrial & Engineering Chemistry Research, 2018, 57, 4767-4778.	1.8	36
1040	Robust multifunctional Zr-based metal–organic polyhedra for high proton conductivity and selective CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 7724-7730.	5.2	101
1041	Knitting polycyclic aromatic hydrocarbon-based microporous organic polymers for efficient CO ₂ capture. RSC Advances, 2018, 8, 10347-10354.	1.7	24
1042	Microporous frameworks with conjugated ï€-electron skeletons for enhanced gas and organic vapor capture. Microporous and Mesoporous Materials, 2018, 267, 80-83.	2.2	5
1043	Hierarchical porous membrane via electrospinning PIM-1 for micropollutants removal. Applied Surface Science, 2018, 443, 441-451.	3.1	27
1044	Fast, Ambient Temperature and Pressure Ionothermal Synthesis of Three-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 4494-4498.	6.6	283
1045	A ferrocene ontaining porous organic polymer linked by tetrahedral silicon entered units for gas sorption. Applied Organometallic Chemistry, 2018, 32, e3935.	1.7	22
1046	Versatile Adamantane-based porous polymers with enhanced microporosity for efficient CO2 capture and iodine removal. Chemical Engineering Journal, 2018, 334, 900-906.	6.6	120

#	Article	IF	CITATIONS
1047	Covalent organic frameworks: efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO ₂ under mild conditions. Journal of Materials Chemistry A, 2018, 6, 374-382.	5.2	238
1048	High-throughput computational screening and design of nanoporous materials for methane storage and carbon dioxide capture. Green Energy and Environment, 2018, 3, 107-119.	4.7	40
1049	Doped phosphorene for hydrogen capture: A DFT study. Applied Surface Science, 2018, 433, 249-255.	3.1	48
1050	CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell. Journal of Colloid and Interface Science, 2018, 511, 259-267.	5.0	252
1051	High and Reversible Lithium Ion Storage in Selfâ€Exfoliated Triazoleâ€Triformyl Phloroglucinolâ€Based Covalent Organic Nanosheets. Advanced Energy Materials, 2018, 8, 1702170.	10.2	174
1052	Microporous organic nanotube networks from hyper cross-linking core-shell bottlebrush copolymers for selective adsorption study. Chinese Journal of Polymer Science (English Edition), 2018, 36, 98-105.	2.0	10
1053	Sterically crowded hydrogen-bonded hexagonal network frameworks. Materials Chemistry Frontiers, 2018, 2, 338-346.	3.2	22
1054	Oriented Films of Conjugated 2D Covalent Organic Frameworks as Photocathodes for Water Splitting. Journal of the American Chemical Society, 2018, 140, 2085-2092.	6.6	320
1055	A design strategy for the construction of 2D heteropore covalent organic frameworks based on the combination of <i>C</i> _{2v} and <i>D</i> _{3h} symmetric building blocks. Polymer Chemistry, 2018, 9, 279-283.	1.9	19
1056	A thermodynamic investigation of adsorbateâ€adsorbate interactions of carbon dioxide on nanostructured carbons. AICHE Journal, 2018, 64, 1026-1033.	1.8	11
1057	Ruthenium Nanoparticle-Decorated Porous Organic Network for Direct Hydrodeoxygenation of Long-Chain Fatty Acids to Alkanes. ACS Sustainable Chemistry and Engineering, 2018, 6, 1610-1619.	3.2	48
1058	Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds. Angewandte Chemie - International Edition, 2018, 57, 4850-4878.	7.2	405
1059	Kovalente organische Netzwerke und KÃ fi gverbindungen: Design und Anwendungen von polymeren und diskreten organischen Gerüsten. Angewandte Chemie, 2018, 130, 4942-4972.	1.6	97
1060	Microextraction of polycyclic aromatic hydrocarbons by using a stainless steel fiber coated with nanoparticles made from a porous aromatic framework. Mikrochimica Acta, 2018, 185, 20.	2.5	31
1061	Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coordination Chemistry Reviews, 2018, 357, 144-172.	9.5	277
1062	An efficient CO2 adsorptive storage using MOF-5 and MOF-177. Applied Energy, 2018, 210, 317-326.	5.1	151
1063	Scalable ambient pressure synthesis of covalent organic frameworks and their colorimetric nanocomposites through dynamic imine exchange reactions. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1-7.	2.0	35
1064	Covalent Organic Frameworks: Structures, Synthesis, and Applications. Advanced Functional Materials, 2018, 28, 1705553.	7.8	892

	Cı	CITATION REPORT		
#	Article		IF	CITATIONS
1065	Structural Elucidation of Covalent Organic Polymers (COP) and Their Linker Effect on Gas Adsorption Performance via Density Functional Theory Approach. ChemistrySelect, 2018, 3, 8294-83	05.	0.7	6
1066	Enhanced lithium storage performance of V ₂ O ₅ with oxygen vacancy. RSC Advances, 2018, 8, 39371-39376.		1.7	39
1067	Synthesis and functionalisation of spherical meso-, hybrid meso/macro- and macro-porous cellular silica foam materials with regulated pore sizes for CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 23587-23601.		5.2	32
1068	Surface-Supported Boronic Acid Condensation. , 2018, , 424-435.			0
1069	Energy security and energy storage technologies. Energy Procedia, 2018, 155, 237-258.		1.8	65
1070	Synthesis of 2D Covalent Organic Frameworks at the Solid–Vapor Interface. , 2018, , 446-452.			0
1071	1. Introduction: hydrogen storage as solution for a changing energy landscape. , 2018, , 1-34.			0
1072				

#	Article	IF	Citations
1083	Functionalized Covalent Triazine Frameworks for Effective CO ₂ and SO ₂ Removal. ACS Applied Materials & Interfaces, 2018, 10, 36002-36009.	4.0	75
1084	Synthesis of Porous Carbons with High N-Content from Shrimp Shells for Efficient CO ₂ -Capture and Gas Separation. ACS Sustainable Chemistry and Engineering, 2018, 6, 15550-15559.	3.2	80
1085	Layer-by-layer preparation of 3D covalent organic framework/silica composites for chromatographic separation of position isomers. Chemical Communications, 2018, 54, 11765-11768.	2.2	67
1086	Removal of GenX and Perfluorinated Alkyl Substances from Water by Amine-Functionalized Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 12677-12681.	6.6	279
1087	Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation. Angewandte Chemie, 2018, 130, 16996-17001.	1.6	20
1088	A Crystalline Polyimide Porous Organic Framework for Selective Adsorption of Acetylene over Ethylene. Journal of the American Chemical Society, 2018, 140, 15724-15730.	6.6	207
1089	Control Interlayer Stacking and Chemical Stability of Two-Dimensional Covalent Organic Frameworks via Steric Tuning. Journal of the American Chemical Society, 2018, 140, 16124-16133.	6.6	173
1090	Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation. Angewandte Chemie - International Edition, 2018, 57, 16754-16759.	7.2	200
1091	Mixing Effect of Ligand on Carbon Dioxide Capture Behavior of Zeolitic Imidazolate Framework/Poly(amide-b-ethylene oxide) Mixed Matrix Membranes. ACS Sustainable Chemistry and Engineering, 2018, 6, 15341-15348.	3.2	22
1092	Heteropore covalent organic frameworks: a new class of porous organic polymers with well-ordered hierarchical porosities. Organic Chemistry Frontiers, 2018, 5, 3341-3356.	2.3	62
1093	Recent advances in facile synthesis and applications of covalent organic framework materials as superior adsorbents in sample pretreatment. TrAC - Trends in Analytical Chemistry, 2018, 108, 154-166.	5.8	151
1094	Magnetic covalent organic framework material: synthesis and application as a sorbent for polycyclic aromatic hydrocarbons. Analytical Methods, 2018, 10, 5014-5024.	1.3	40
1095	Ligand Isomerism in Coordination Cages. Inorganic Chemistry, 2018, 57, 12222-12231.	1.9	24
1096	Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO ₂ uptake and energy storage. Journal of Materials Chemistry A, 2018, 6, 19532-19541.	5.2	184
1097	Layer-Stacking-Driven Fluorescence in a Two-Dimensional Imine-Linked Covalent Organic Framework. Journal of the American Chemical Society, 2018, 140, 12922-12929.	6.6	147
1098	Covalent organic framework TpPa†as stationary phase for capillary electrochromatographic separation of drugs and food additives. Electrophoresis, 2018, 39, 2912-2918.	1.3	17
1099	Covalent Organic Polymers Based on Fluorinated Porphyrin as Oxygen Nanoshuttles for Tumor Hypoxia Relief and Enhanced Photodynamic Therapy. Advanced Functional Materials, 2018, 28, 1804901.	7.8	156
1100	Polyaniline/reduced graphene oxide-modified carbon fiber brush anode for high-performance microbial fuel cells. International Journal of Hydrogen Energy, 2018, 43, 17867-17872.	3.8	44

#	Article	IF	CITATIONS
1101	Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. Journal of Membrane Science, 2018, 566, 197-204.	4.1	236
1102	Efficient emissive fluorene-based p–n conjugated porous materials for near-white electroluminescence: benefits of metal-free Friedel–Crafts green polymerization. Journal of Materials Chemistry C, 2018, 6, 11968-11971.	2.7	5
1103	Computation-Ready, Experimental Covalent Organic Framework for Methane Delivery: Screening and Material Design. Journal of Physical Chemistry C, 2018, 122, 13009-13016.	1.5	44
1104	Novel Co 3 O 4 /covalent organic frameworks nanohybrids for conferring enhanced flame retardancy, smoke and CO suppression and thermal stability to polypropylene. Materials Chemistry and Physics, 2018, 215, 20-30.	2.0	25
1105	Efficient CO ₂ Adsorption on Nitrogen-Doped Porous Carbons Derived from <scp>d</scp> -Glucose. Energy & Fuels, 2018, 32, 6955-6963.	2.5	96
1106	Superprotonic Conductivity in Flexible Porous Covalent Organic Framework Membranes. Angewandte Chemie, 2018, 130, 11060-11064.	1.6	70
1107	Graphene-synergized 2D covalent organic framework for adsorption: A mutual promotion strategy to achieve stabilization and functionalization simultaneously. Journal of Hazardous Materials, 2018, 358, 273-285.	6.5	121
1108	Superprotonic Conductivity in Flexible Porous Covalent Organic Framework Membranes. Angewandte Chemie - International Edition, 2018, 57, 10894-10898.	7.2	207
1109	One step synthesis of N-doped activated carbons derived from sustainable microalgae-NaAlg composites for CO2 and CH4 adsorption. Fuel, 2018, 233, 574-581.	3.4	22
1110	Flexible porous molecular materials responsive to CO ₂ , CH ₄ and Xe stimuli. Journal of Materials Chemistry A, 2018, 6, 14231-14239.	5.2	87
1111	1,3-Diyne-Linked Conjugated Microporous Polymer for Selective CO ₂ Capture. Industrial & Engineering Chemistry Research, 2018, 57, 9254-9260.	1.8	23
1112	Mechanistic investigations into the cyclization and crystallization of benzobisoxazole-linked two-dimensional covalent organic frameworks. Chemical Science, 2018, 9, 6417-6423.	3.7	18
1113	Cooperative Gas Adsorption without a Phase Transition in Metal-Organic Frameworks. Physical Review Letters, 2018, 121, 015701.	2.9	17
1114	A Rational Design of Microporous Aerogel for Excellent CO2 Capture and Selectivities via Co-Synergistic Effects of Electrostatic In-plane and Ï€â€″Ï€ Stacking Interactions. Polymer Science - Series B, 2018, 60, 317-323.	0.3	3
1115	Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nature Communications, 2018, 9, 2998.	5.8	334
1116	Molecular Engineering of Bandgaps in Covalent Organic Frameworks. Chemistry of Materials, 2018, 30, 5743-5749.	3.2	108
1117	Fabrication and adsorption performance for CO2 capture of advanced nanoporous microspheres enriched with amino acids. Journal of Colloid and Interface Science, 2018, 532, 433-440.	5.0	9
1118	Constructing benzoxazine-containing porous organic polymers for carbon dioxide and hydrogen sorption. European Polymer Journal, 2018, 107, 89-95.	2.6	13

CITATION REPORT ARTICLE IF CITATIONS High performance carbon supercapacitor electrodes derived from a triazine-based covalent organic 43 2.6 polymer with regular porosity. Electrochimica Acta, 2018, 284, 98-107. Ionic covalent organic frameworks for highly effective catalysis. Chinese Journal of Catalysis, 2018, 6.9 39 39, 1437-1444. Cobalt Incorporated Porous Aromatic Framework for CO₂/CH₄ Separation. 1.8 14 Industrial & amp; Engineering Chemistry Research, 2018, 57, 10985-10991. Nonporous Adaptive Crystals of Pillararenes. Accounts of Chemical Research, 2018, 51, 2064-2072. 364 CO₂ interaction with violarite (FeNi₂S₄) surfaces: a 1.315 dispersion-corrected DFT study. Physical Chemistry Chemical Physics, 2018, 20, 20439-20446. Boronic acid-functionalized porous polycarbazoles: preparation, adsorption performance, and heterogeneous catalysts for selective oxidation. Journal of Materials Science, 2018, 53, 15025-15033. 1.7 Rational Design of MOF/COF Hybrid Materials for Photocatalytic H₂ Evolution in the 1.6 75 Presence of Sacrificial Electron Donors. Angewandte Chemie, 2018, 130, 12282-12286. Rational Design of MOF/COF Hybrid Materials for Photocatalytic H₂ Evolution in the Presence of Sacrificial Electron Donors. Angewandte Chemie - International Edition, 2018, 57, 7.2 508 12106-12110. Unexpected Nonresponsive Behavior of a Flexible Metal-Organic Framework under Conformational 1.6 19 Changes of a Photoresponsive Guest Molecule. ACS Omega, 2018, 3, 7630-7638. Alkyl amine functionalized triphenylamine-based covalent organic frameworks for high-efficiency CO2 1.3 24 capture and separation over N2. Materials Letters, 2018, 230, 28-31. An Integrated Design with new Metalâ€Functionalized Covalent Organic Frameworks for the Effective 1.7 45 Electroreduction of CO₂. Chemistry - A European Journal, 2018, 24, 11051-11058. Grafting of quantum dots on covalent organic frameworks via a reverse microemulsion for highly 4.0 selective and sensitive protein optosensing. Sensors and Actuators B: Chemical, 2018, 269, 340-345. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor 9.5 271 applications. Coordination Chemistry Reviews, 2018, 369, 15-38. Methane Storage in Paddlewheel-Based Porous Coordination Cages. Journal of the American Chemical Society, 2018, 140, 11153-11157. 6.6 84 An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen 1133 15.6 162 storage. Energy and Environmental Science, 2018, 11, 2784-2812. A building block exchange strategy for the rational fabrication of <i>de novo</i> unreachable amino-functionalized imine-linked covalent organic frameworks. Journal of Materials Chemistry A, 2018, 6, 17307-17311. Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Reviews, 2018, 118, 23.0 239 8655-8769.

1119

1121

1123

1125

1127

1129

1131

1134

#	Article	IF	Citations
1137	Benzimidazole linked polymers (BILPs) in mixed-matrix membranes: Influence of filler porosity on the CO2/N2 separation performance. Journal of Membrane Science, 2018, 566, 213-222.	4.1	20
1138	Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. Journal of Membrane Science, 2018, 565, 331-341.	4.1	73
1139	In Situ Synthesis of Nitrogen-Enriched Activated Carbons from <i>Procambarus clarkii</i> Shells with Enhanced CO ₂ Adsorption Performance. Energy & Fuels, 2018, 32, 9701-9710.	2.5	23
1140	Roomâ€Temperature Synthesis of Covalent Organic Framework (COF‣ZU1) Nanobars in CO ₂ /Water Solvent. ChemSusChem, 2018, 11, 3576-3580.	3.6	38
1141	Self-assembling covalent organic framework functionalized poly (styrene-divinyl) Tj ETQq0 0 0 rgBT /Overlock 10 drugs in wastewater. Journal of Chromatography A, 2018, 1571, 76-83.	Tf 50 587 1.8	Td (benzene 47
1142	Covalent organic framework based microspheres as an anode material for rechargeable sodium batteries. Journal of Materials Chemistry A, 2018, 6, 16655-16663.	5.2	113
1143	Recent Progress on Two-Dimensional Nanoflake Ensembles for Energy Storage Applications. Nano-Micro Letters, 2018, 10, 66.	14.4	71
1144	Magnetic covalent organic frameworks based on magnetic solid phase extraction for determination of six steroidal and phenolic endocrine disrupting chemicals in food samples. Microchemical Journal, 2018, 143, 350-358.	2.3	77
1145	A Bird's Eye view on process and engineering aspects of hydrogen storage. Renewable and Sustainable Energy Reviews, 2018, 91, 838-860.	8.2	91
1146	Phenyl/Perfluorophenyl Stacking Interactions Enhance Structural Order in Two-Dimensional Covalent Organic Frameworks. Crystal Growth and Design, 2018, 18, 4160-4166.	1.4	31
1147	Charged porous organic frameworks bearing heteroatoms with enhanced isosteric enthalpies of gas adsorption. RSC Advances, 2018, 8, 20434-20439.	1.7	6
1148	How silanization influences aggregation and moisture sorption behaviours of silanized silica: analysis of porosity and multilayer moisture adsorption. Royal Society Open Science, 2018, 5, 180206.	1.1	14
1149	Covalent organic frameworks as heterogeneous catalysts. Chinese Journal of Catalysis, 2018, 39, 1167-1179.	6.9	87
1150	Tuneable near white-emissive two-dimensional covalent organic frameworks. Nature Communications, 2018, 9, 2335.	5.8	230
1151	Adsorption and diffusion of CO2 and CH4 in covalent organic frameworks: an MC/MD simulation study. Molecular Simulation, 2018, 44, 1244-1251.	0.9	12
1152	In Silico Design of 2D and 3D Covalent Organic Frameworks for Methane Storage Applications. Chemistry of Materials, 2018, 30, 5069-5086.	3.2	101
1154	Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 6189-6235.	23.0	505
1155	Palladium Nanoparticles Supported on Nitrogenâ€rich Containing Melamineâ€based Microporous Covalent Triazine Polymers as Efficient Heterogeneous Catalyst for Câ^'Se Coupling Reactions. ChemCatChem, 2018, 10, 3833-3844.	1.8	27

#	Article	IF	CITATIONS
1156	Highly porous polymer dendrites of pyrrole derivatives synthesized through rapid oxidative polymerization. Polymer Journal, 2019, 51, 11-18.	1.3	11
1157	An entrapped metal-organic framework system for controlled release of ethylene. Journal of Colloid and Interface Science, 2019, 533, 207-215.	5.0	25
1158	Design and synthesis of covalent organic frameworks towards energy and environment fields. Chemical Engineering Journal, 2019, 355, 602-623.	6.6	197
1159	On-surface synthesis of one-type pore single-crystal porous covalent organic frameworks. Chemical Communications, 2019, 55, 10800-10803.	2.2	9
1160	Polyacrylonitrile-based highly porous carbon materials for exceptional hydrogen storage. International Journal of Hydrogen Energy, 2019, 44, 23210-23215.	3.8	20
1161	Significantly Enhanced Carbon Dioxide Capture by Anion-Functionalized Liquid Pillar[5]arene through Multiple-Site Interactions. Industrial & Engineering Chemistry Research, 2019, 58, 16894-16900.	1.8	12
1162	De Novo Design and Facile Synthesis of 2D Covalent Organic Frameworks: A Two-in-One Strategy. Journal of the American Chemical Society, 2019, 141, 13822-13828.	6.6	167
1163	Boosting visible-light-driven hydrogen evolution of covalent organic frameworks through compositing with MoS ₂ : a promising candidate for noble-metal-free photocatalysts. Journal of Materials Chemistry A, 2019, 7, 20193-20200.	5.2	133
1164	Combination Rules and Accurate van der Waals Force Field for Gas Uptakes in Porous Materials. Journal of Physical Chemistry A, 2019, 123, 7847-7854.	1.1	8
1165	Green synthesis of nanoscale cobalt(<scp>ii</scp>)-based MOFs: highly efficient photo-induced green catalysts for the degradation of industrially used dyes. Dalton Transactions, 2019, 48, 13869-13879.	1.6	33
1166	Trends in Solid Adsorbent Materials Development for CO ₂ Capture. ACS Applied Materials & Interfaces, 2019, 11, 34533-34559.	4.0	215
1167	Facile preparation of a cationic COF functionalized magnetic nanoparticle and its use for the determination of nine hydroxylated polycyclic aromatic hydrocarbons in smokers' urine. Analyst, The, 2019, 144, 5829-5841.	1.7	36
1168	A Microporous Organic Copolymer for Selective CO ₂ Capture under Humid Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 13941-13948.	3.2	29
1169	Micro- and Mesoporous Carbons Derived from KOH Activations of Polycyanurates with High Adsorptions for CO ₂ and Iodine. ACS Omega, 2019, 4, 12018-12027.	1.6	7
1170	Pre-mixed precursors for modulating the porosity of carbons for enhanced hydrogen storage: towards predicting the activation behaviour of carbonaceous matter. Journal of Materials Chemistry A, 2019, 7, 17466-17479.	5.2	35
1171	Rational design of functionalized covalent organic frameworks and their performance towards CO2 capture. RSC Advances, 2019, 9, 21438-21443.	1.7	19
1172	Ionic liquid gated 2D-CAP membrane for highly efficient CO2/N2 and CO2/CH4 separation. Applied Surface Science, 2019, 494, 477-483.	3.1	14
1173	Catalyst-free and efficient fabrication of highly crystalline fluorinated covalent organic frameworks for selective guest adsorption. Journal of Materials Chemistry A, 2019, 7, 18959-18970.	5.2	55

#	Article	IF	CITATIONS
1174	Critical Admission Temperature of H2 and CH4 in Nanopores of Exchanged ERI Zeolites. Nanomaterials, 2019, 9, 160.	1.9	4
1175	Engineering of the Filler/Polymer Interface in Metal–Organic Frameworkâ€Based Mixedâ€Matrix Membranes to Enhance Gas Separation. Chemistry - an Asian Journal, 2019, 14, 3502-3514.	1.7	67
1176	Construction and carbon dioxide capture of microporous polymer networks with high surface area based on cross-linkable linear polyimides. Polymer Chemistry, 2019, 10, 4611-4620.	1.9	22
1177	Exceptionally High CO2 Capture in an Amorphous Polymer with Ultramicropores Studied by Positron Annihilation. ACS Applied Materials & amp; Interfaces, 2019, 11, 30747-30755.	4.0	22
1178	Crosslinked porphyrin-based polyimides: Tunable porosity parameters and carbon dioxide adsorption. Microporous and Mesoporous Materials, 2019, 287, 246-253.	2.2	13
1179	Switching on and off Interlayer Correlations and Porosity in 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12570-12581.	6.6	130
1180	U(VI) adsorption onto covalent organic frameworks-TpPa-1. Journal of Solid State Chemistry, 2019, 277, 484-492.	1.4	76
1181	Fluorinated porous organic frameworks for improved CO ₂ and CH ₄ capture. Chemical Communications, 2019, 55, 8999-9002.	2.2	40
1182	Polydopamine-modulated covalent organic framework membranes for molecular separation. Journal of Materials Chemistry A, 2019, 7, 18063-18071.	5.2	86
1183	The Effect of Thermal Treatment on the Hydrogenâ€Storage Properties of PIMâ€1. ChemPhysChem, 2019, 20, 1613-1623.	1.0	10
1184	Fabrication of Hierarchical N-doped Carbon Nanotubes for CO ₂ Adsorption. Nano, 2019, 14, 1950072.	0.5	18
1185	Fabrication of Te@NiTe2/NiS heterostructures for electrocatalytic hydrogen evolution reaction. Electrochimica Acta, 2019, 328, 135075.	2.6	28
1186	Monolithic Covalent Organic Framework Aerogels through Framework Crystallization Induced Self-assembly: Heading towards Framework Materials Synthesis over All Length Scales. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1045-1052.	2.0	18
1187	Ultrastable Covalent Organic Frameworks via Self-Polycondensation of an A ₂ B ₂ Monomer for Heterogeneous Photocatalysis. Macromolecules, 2019, 52, 7977-7983.	2.2	84
1188	Adsorption-Induced Expansion of Graphene Oxide Frameworks: Observation by in Situ Neutron Diffraction. ACS Omega, 2019, 4, 18668-18676.	1.6	7
1189	Construction of Covalentâ€Organic Frameworks (COFs) from Amorphous Covalent Organic Polymers via Linkage Replacement. Angewandte Chemie - International Edition, 2019, 58, 17679-17683.	7.2	78
1190	Benzene-Based Hyper-Cross-Linked Polymer with Enhanced Adsorption Capacity for CO ₂ Capture. Energy & Fuels, 2019, 33, 12578-12586.	2.5	68
1191	Synthesis and Porous Structure of Addition Polymer Based on Dicyclopentadiene. Polymer Science - Series B, 2019, 61, 622-628.	0.3	2

#	Article	IF	CITATIONS
1192	Facile Single-Step Synthesis of Porous Carbons as Efficient CO ₂ Adsorbents. Energy & Fuels, 2019, 33, 11544-11551.	2.5	6
1193	CO ₂ Capture on Functionalized Calixarenes: A Computational Study. Journal of Physical Chemistry A, 2019, 123, 10116-10122.	1.1	10
1194	Nucleation of Capillary Bridges and Bubbles in Nanoconfined CO2. Langmuir, 2019, 35, 15401-15409.	1.6	8
1195	Constructing Robust Covalent Organic Frameworks via Multicomponent Reactions. Journal of the American Chemical Society, 2019, 141, 18004-18008.	6.6	183
1196	Enabling Covalent Organic Framework Nanofilms for Molecular Separation: Perforated Polymer-Assisted Transfer. ACS Applied Materials & Interfaces, 2019, 11, 44783-44791.	4.0	32
1197	Construction of Covalentâ€Organic Frameworks (COFs) from Amorphous Covalent Organic Polymers via Linkage Replacement. Angewandte Chemie, 2019, 131, 17843-17847.	1.6	13
1198	Two Ï€â€Conjugated Covalent Organic Frameworks with Longâ€Term Cyclability at High Current Density for Lithium Ion Battery. Chemistry - A European Journal, 2019, 25, 15472-15476.	1.7	31
1199	Nonvolatile integrated optical phase shifter with flash memory technology. Applied Physics Express, 2019, 12, 102005.	1.1	4
1200	Two-Dimensional Polyphenylene Networks with Tunable Micropores for Hydrogen Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 18341-18349.	3.2	4
1201	Pore surface engineering of covalent organic frameworks: structural diversity and applications. Nanoscale, 2019, 11, 21679-21708.	2.8	82
1202	Covalentâ€Organicâ€Frameworkâ€Based Li–CO ₂ Batteries. Advanced Materials, 2019, 31, e1905	58 79. 1	129
1203	Enzymeâ€Đecorated Covalent Organic Frameworks as Nanoporous Platforms for Heterogeneous Biocatalysis. Chemistry - A European Journal, 2019, 25, 15863-15870.	1.7	37
1204	An Amphiphilic Mesoporous Polymer Comprising a "builtâ€inâ€Imidazolium Ionic Liquid via Nanocasting Method as a Novel Catalyst Support with Combined Prospects. ChemistrySelect, 2019, 4, 347-356.	0.7	7
1205	Fabrication of Microporous Aminal-Linked Polymers with Tunable Porosity toward Highly Efficient Adsorption of CO ₂ , H ₂ , Organic Vapor, and Volatile Iodine. Industrial & Engineering Chemistry Research, 2019, 58, 17369-17379.	1.8	25
1206	Theory-Driven Design and Targeting Synthesis of a Highly-Conjugated Basal-Plane 2D Covalent Organic Framework for Metal-Free Electrocatalytic OER. ACS Energy Letters, 2019, 4, 2251-2258.	8.8	124
1207	Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chemical Society Reviews, 2019, 48, 5266-5302.	18.7	630
1208	Sn(OH)x-assisted synthesis of mesoporous Mn-porphyrinic frameworks and their carbon derivatives for electrocatalysis. Dalton Transactions, 2019, 48, 14678-14686.	1.6	3
1209	Preparation of Carboxy-Functionalized Covalent Organic Framework for Efficient Removal of Hg ²⁺ and Pb ²⁺ from Water. Industrial & Engineering Chemistry Research, 2019, 58, 17660-17667.	1.8	52

#	Article	IF	CITATIONS
1210	Eco-Friendly Fabrication of a Highly Selective Amide-Based Polymer for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 18160-18167.	1.8	17
1211	Ambient temperature fabrication of a covalent organic framework from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamine as a coating for use in open-tubular capillary electrochromatography of drugs and amino acids. Mikrochimica Acta, 2019, 186, 650.	2.5	30
1212	A novel crystalline azine-linked three-dimensional covalent organic framework for CO ₂ capture and conversion. Chemical Communications, 2019, 55, 12459-12462.	2.2	64
1213	Covalent organic frameworks (COFs) for environmental applications. Coordination Chemistry Reviews, 2019, 400, 213046.	9.5	387
1214	Synthesis of chitosan coated metal organic frameworks (MOFs) for increasing vancomycin bactericidal potentials against resistant S. aureus strain. Materials Science and Engineering C, 2019, 105, 110111.	3.8	61
1215	A Novel One-Dimensional Porphyrin-Based Covalent Organic Framework. Molecules, 2019, 24, 3361.	1.7	6
1216	Covalent Organic Framework with Triazine and Hydroxyl Bifunctional Groups for Efficient Removal of Lead(II) Ions. Industrial & Engineering Chemistry Research, 2019, 58, 19642-19648.	1.8	44
1217	Building a Consistent and Reproducible Database for Adsorption Evaluation in Covalent–Organic Frameworks. ACS Central Science, 2019, 5, 1663-1675.	5.3	89
1218	Tuning of adsorption energies of CO2 and CH4 in borocarbonitrides BxCyNz: A first-principles study. Journal of Molecular Graphics and Modelling, 2019, 93, 107446.	1.3	10
1219	Unveiling Electronic Properties in Metal–Phthalocyanine-Based Pyrazine-Linked Conjugated Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 16810-16816.	6.6	227
1220	Covalent Organic Framework Films through Electrophoretic Deposition—Creating Efficient Morphologies for Catalysis. Chemistry of Materials, 2019, 31, 10008-10016.	3.2	63
1221	Combining Intra- and Intermolecular Charge Transfer with Polycationic Cyclophanes To Design 2D Tessellations. Journal of the American Chemical Society, 2019, 141, 18727-18739.	6.6	36
1222	Desulfurization of Liquid Hydrocarbon Fuels with Microporous and Mesoporous Materials: Metal-Organic Frameworks, Zeolites, and Mesoporous Silicas. Industrial & Engineering Chemistry Research, 2019, 58, 19322-19352.	1.8	34
1223	Covalent Organic Frameworks for the Capture, Fixation, or Reduction of CO2. Frontiers in Energy Research, 2019, 7, .	1.2	91
1224	Recent advances in emerging nanomaterials based food sample pretreatment methods for food safety screening. TrAC - Trends in Analytical Chemistry, 2019, 121, 115669.	5.8	54
1225	Jolly green MOF: confinement and photoactivation of photosystem I in a metal–organic framework. Nanoscale Advances, 2019, 1, 94-104.	2.2	18
1226	Laser-induced synthesis of ZIF-67: a facile approach for the fabrication of crystalline MOFs with tailored size and geometry. Materials Chemistry Frontiers, 2019, 3, 1302-1309.	3.2	20
1227	A double helix of opposite charges to form channels with unique CO ₂ selectivity and dynamics. Chemical Science, 2019, 10, 730-736.	3.7	87

#	Article	IF	Citations
1228	Exfoliation of amorphous phthalocyanine conjugated polymers into ultrathin nanosheets for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2019, 7, 3112-3119.	5.2	87
1229	Fluorescent porous organic polymers. Polymer Chemistry, 2019, 10, 1168-1181.	1.9	92
1230	Ionic liquid-decorated COF and its covalent composite aerogel for selective CO ₂ adsorption and catalytic conversion. Journal of Materials Chemistry A, 2019, 7, 4689-4698.	5.2	152
1231	Novel Nitrogen-Doped Porous Carbons Derived from Graphene for Effective CO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 3349-3358.	1.8	130
1232	Structural and Dimensional Transformations between Covalent Organic Frameworks via Linker Exchange. Macromolecules, 2019, 52, 1257-1265.	2.2	67
1233	Engineering black phosphorus to porous g-C ₃ N ₄ -metal–organic framework membrane: a platform for highly boosting photocatalytic performance. Journal of Materials Chemistry A, 2019, 7, 4408-4414.	5.2	79
1234	Solventâ€Induced Selfâ€Assembly Strategy to Synthesize Wellâ€Defined Hierarchically Porous Polymers. Advanced Materials, 2019, 31, e1806254.	11.1	79
1235	A novel magnetic mesoporous resorcinol–melamine–formaldehyde resin for removal of phenols from aqueous solution. Journal of Porous Materials, 2019, 26, 1249-1258.	1.3	19
1236	Three-dimensional Salphen-based Covalent–Organic Frameworks as Catalytic Antioxidants. Journal of the American Chemical Society, 2019, 141, 2920-2924.	6.6	193
1237	In-Depth Experimental and Computational Investigations for Remarkable Gas/Vapor Sorption, Selectivity, and Affinity by a Porous Nitrogen-Rich Covalent Organic Framework. Chemistry of Materials, 2019, 31, 1584-1596.	3.2	88
1238	Effects of synthesis methodology on microporous organic hyper-cross-linked polymers with respect to structural porosity, gas uptake performance and fluorescence properties. Polymer Chemistry, 2019, 10, 1299-1311.	1.9	93
1239	Chemical sensing of water contaminants by a colloid of a fluorescent imine-linked covalent organic framework. Chemical Communications, 2019, 55, 1382-1385.	2.2	73
1241	Electrooxidation of Sesame Oil in Acid Electrolyte. , 2019, , 359-366.		0
1242	Combined Density Functional Theory and Kinetic Monte Carlo Study of Hydrogen Spillover on Fluorine-Decorating Covalent Organic Frameworks. Journal of Physical Chemistry C, 2019, 123, 15935-15943.	1.5	11
1243	Catalytically Active Imine-based Covalent Organic Frameworks for Detoxification of Nerve Agent Simulants in Aqueous Media. Materials, 2019, 12, 1974.	1.3	20
1244	SPEEK-based proton exchange membranes modified with MOF-encapsulated ionic liquid. Materials Chemistry and Physics, 2019, 236, 121792.	2.0	54
1245	Excited-State Dynamics in Fully Conjugated 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11565-11571.	6.6	89
1246	Nitrogen-Doped Porous Carbons from Lotus Leaf for CO ₂ Capture and Supercapacitor Electrodes. Energy & Fuels, 2019, 33, 6568-6576.	2.5	84

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1247	2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Letters, 2019,	4, 1687-1709.	8.8	375
1248	Covalent organic frameworks on reduced graphene oxide with enhanced electrochemic performance. Microporous and Mesoporous Materials, 2019, 287, 65-70.	cal	2.2	35
1249	Stability of amine-functionalized CO ₂ adsorbents: a multifaceted puzzle. Reviews, 2019, 48, 3320-3405.	Chemical Society	18.7	260
1250	Synthesis, Properties, and Their Potential Application of Covalent Organic Frameworks	(COFs). , 0, , .		4
1251	Boron―and nitrogenâ€doped pentaâ€graphene as a promising material for hydrogen computational study. International Journal of Energy Research, 2019, 43, 4867-4878.	storage: A	2.2	44
1252	Computational design of multilayer frameworks to achieve DOE target for on-board me Carbon, 2019, 152, 206-217.	ethane delivery.	5.4	5
1253	Research of covalent organic frame materials based on porphyrin units. Journal of Inclu Phenomena and Macrocyclic Chemistry, 2019, 95, 1-15.	sion	0.9	16
1254	Microporous Organic Polymerâ€Derived Nitrogenâ€Doped Porous Carbon Spheres for Energy Storage. ChemElectroChem, 2019, 6, 3327-3336.	Efficient Capacitive	1.7	18
1255	MOF-5 derived carbon as material for CO ₂ absorption. RSC Advances, 202	19, 9, 18527-18537.	1.7	53
1256	Design and synthesis of two-dimensional covalent organic frameworks with four-arm co prediction of remarkable ambipolar charge-transport properties. Materials Horizons, 20		6.4	62
1257	1D/2D nitrogen-doped carbon nanorod arrays/ultrathin carbon nanosheets: outstandin the highly efficient electroreduction of CO ₂ to CO. Journal of Materials Ch 2019, 7, 14895-14903.	g catalysts for 1emistry A,	5.2	46
1258	Construction and catalytic applications of an amino-functionalized covalent organic fra Transition Metal Chemistry, 2019, 44, 689-697.	imework.	0.7	8
1259	Buckling of Two-Dimensional Covalent Organic Frameworks under Thermal Stress. Indu Engineering Chemistry Research, 2019, 58, 9883-9887.	ıstrial &	1.8	30
1260	A Benzimidazole-Containing Covalent Organic Framework-Based QCM Sensor for Exce Detection of CEES. Crystal Growth and Design, 2019, 19, 3543-3550.	ptional	1.4	26
1261	Trace benzene removal from vinyl acetate with ZIFs: A computational study. Computat Theoretical Chemistry, 2019, 1158, 41-46.	ional and	1.1	4
1262	A Porous Carbon with Excellent Gas Storage Properties from Waste Polystyrene. Nanor 9, 726.	naterials, 2019,	1.9	15
1263	One-pot synthesis of melamine-based porous polyamides for CO2 capture. Microporou Mesoporous Materials, 2019, 285, 105-111.	s and	2.2	64
1264	A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism. Natu Communications, 2019, 10, 2207.	re	5.8	67

#	Article	IF	CITATIONS
1265	Controlled Growth of the Noncentrosymmetric Zn(3-ptz)2 and Zn(OH)(3-ptz) Metal–Organic Frameworks. ACS Omega, 2019, 4, 7411-7419.	1.6	9
1266	Construction of a Stable Crystalline Polyimide Porous Organic Framework for C ₂ H ₂ /C ₂ H ₄ and CO ₂ /N ₂ Separation. Chemistry - A European Journal, 2019, 25, 9045-9051.	1.7	36
1267	Mesoporous Composite Nanomaterials for Dye Removal and Other Applications. , 2019, , 265-293.		17
1268	Adamantane-Based Micro- and Ultra-Microporous Frameworks for Efficient Small Gas and Toxic Organic Vapor Adsorption. Polymers, 2019, 11, 486.	2.0	7
1269	Engineering pore surface and morphology of microporous organic polymers for improved affinity towards CO2. Chemical Engineering Journal, 2019, 373, 338-344.	6.6	16
1270	Synthesis of Telmisartan Organotin(IV) Complexes and their use as Carbon Dioxide Capture Media. Molecules, 2019, 24, 1631.	1.7	26
1271	<i>In situ</i> room-temperature fabrication of a covalent organic framework and its bonded fiber for solid-phase microextraction of polychlorinated biphenyls in aquatic products. Journal of Materials Chemistry A, 2019, 7, 13249-13255.	5.2	94
1272	Microporous Organic Polymer Nanocomposites for Adsorption Applications. , 2019, , 25-47.		1
1273	Boosting photocatalytic H ₂ evolution on g-C ₃ N ₄ by modifying covalent organic frameworks (COFs). Chemical Communications, 2019, 55, 5829-5832.	2.2	101
1274	Theoretical study of heterofullerene-linked metal–organic framework with lithium doping for CO2 capture and separation from CO2/CH4 and CO2/H2 mixtures. Microporous and Mesoporous Materials, 2019, 284, 385-392.	2.2	16
1275	Competitive adsorption of gaseous aromatic hydrocarbons in a binary mixture on nanoporous covalent organic polymers at various partial pressures. Environmental Research, 2019, 173, 1-11.	3.7	37
1276	One-pot cascade syntheses of microporous and mesoporous pyrazine-linked covalent organic frameworks as Lewis-acid catalysts. Dalton Transactions, 2019, 48, 7352-7357.	1.6	26
1277	Effect of Different Functional Groups on Photocatalytic Hydrogen Evolution in Covalentâ€Organic Frameworks. ChemCatChem, 2019, 11, 2313-2319.	1.8	145
1278	Theoretical Investigation of the Topology of Spiroborateâ€Linked Ionic Covalent Organic Frameworks (ICOFs). Chemistry - A European Journal, 2019, 25, 6569-6574.	1.7	7
1279	Fabrication of microporous polyimide networks with tunable pore size and high CO2 selectivity. Chemical Engineering Journal, 2019, 368, 618-626.	6.6	36
1280	Bio-related applications of porous organic frameworks (POFs). Journal of Materials Chemistry B, 2019, 7, 2398-2420.	2.9	34
1281	Construction of a series of Zn(II) and Cd(II) coordination polymers using a mixed-ligand approach: Structural analysis and photophysical properties. Polyhedron, 2019, 164, 159-168.	1.0	8
1282	Ultrafast and ultrahigh adsorption of furfural from aqueous solution via covalent organic framework-300. Separation and Purification Technology, 2019, 220, 283-292.	3.9	43

#	Article	IF	CITATIONS
1283	Fabrication of Hydrazone-Linked Covalent Organic Frameworks Using Alkyl Amine as Building Block for High Adsorption Capacity of Metal Ions. ACS Applied Materials & Interfaces, 2019, 11, 11706-11714.	4.0	139
1284	A Novel Strategy for the Construction of Covalent Organic Frameworks from Nonporous Covalent Organic Polymers. Angewandte Chemie, 2019, 131, 4960-4964.	1.6	22
1285	Chemically stable polyarylether-based covalent organic frameworks. Nature Chemistry, 2019, 11, 587-594.	6.6	509
1286	Triazine-Based Covalent Organic Framework: A Promising Sorbent for Efficient Elimination of the Hydrocarbon Backgrounds of Organic Sample for GC–MS and ¹ H NMR Analysis of Chemical Weapons Convention Related Compounds. ACS Applied Materials & Interfaces, 2019, 11, 16027-16039.	4.0	10
1287	On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers. Polymers, 2019, 11, 588.	2.0	19
1288	N-rich covalent organic frameworks with different pore size for high-pressure CO2 adsorption. Microporous and Mesoporous Materials, 2019, 285, 70-79.	2.2	41
1289	Supramolecular zwitterions based on a novel boronic acid–squarate dianion synthon. CrystEngComm, 2019, 21, 3186-3191.	1.3	2
1290	Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. Coordination Chemistry Reviews, 2019, 389, 119-140.	9.5	103
1293	A Highly Crystalline Fluoreneâ€Based Porous Organic Framework with High Photoluminescence Quantum Yield. Macromolecular Rapid Communications, 2019, 40, e1900060.	2.0	10
1294	Nanoscrolls Formed from Two-Dimensional Covalent Organic Frameworks. Chemistry of Materials, 2019, 31, 3265-3273.	3.2	12
1295	Intercalation of first row transition metals inside covalent-organic frameworks (COFs): a strategy to fine tune the electronic properties of porous crystalline materials. Physical Chemistry Chemical Physics, 2019, 21, 8785-8796.	1.3	28
1296	Increasing Volumetric CO 2 Uptake of Hypercrosslinked Polymers through Composite Formation. Macromolecular Materials and Engineering, 2019, 304, 1800780.	1.7	3
1297	Multiscale Grapheneâ€Based Materials for Applications in Sodium Ion Batteries. Advanced Energy Materials, 2019, 9, 1803342.	10.2	215
1299	Computer-aided prediction of structure and hydrogen storage properties of tetrakis(4-aminophenyl)silsesquioxane based covalent-organic frameworks. International Journal of Hydrogen Energy, 2019, 44, 8357-8364.	3.8	8
1300	Hollow Microspherical and Microtubular [3 + 3] Carbazole-Based Covalent Organic Frameworks and Their Gas and Energy Storage Applications. ACS Applied Materials & Interfaces, 2019, 11, 9343-9354.	4.0	178
1301	The photo-switching study of guest 2-(phenylazo)pyridine (PAP) embedded in solid host material MOF-5. Journal of Molecular Structure, 2019, 1184, 435-442.	1.8	16
1302	Preparation and characterization of RGO-incorporated hypercross-linked polymers for CO2 capture. Carbon Letters, 2019, 29, 21-30.	3.3	4
1303	Fe-doped H ₃ PMo ₁₂ O ₄₀ immobilized on covalent organic frameworks (Fe/PMA@COFs): a heterogeneous catalyst for the epoxidation of cyclooctene with H ₂ O ₂ . RSC Advances, 2019, 9, 4884-4891.	1.7	19

#	Article	IF	CITATIONS
1304	Collectively Exhaustive Electrodes Based on Covalent Organic Framework and Antagonistic Coâ€Doping for Electroactive Ionic Artificial Muscles. Advanced Functional Materials, 2019, 29, 1900161.	7.8	56
1305	A Hollow Microtubular Triazine―and Benzobisoxazoleâ€Based Covalent Organic Framework Presenting Sponge‣ike Shells That Functions as a Highâ€Performance Supercapacitor. Chemistry - an Asian Journal, 2019, 14, 1429-1435.	1.7	76
1306	Porphyrin-based porous polyimides: Synthesis, porous structure, carbon dioxide adsorption. Polymer, 2019, 169, 160-166.	1.8	30
1307	Functional π-Conjugated Two-Dimensional Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 11029-11060.	4.0	119
1308	Visible-light-induced tandem radical addition–cyclization of 2-aryl phenyl isocyanides catalysed by recyclable covalent organic frameworks. Green Chemistry, 2019, 21, 2905-2910.	4.6	84
1309	Cage Based Crystalline Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 3843-3848.	6.6	84
1310	The effect of Schiff base network on the separation performance of thin film nanocomposite forward osmosis membranes. Separation and Purification Technology, 2019, 217, 284-293.	3.9	26
1311	Triphenylene: A versatile molecular receptor. Tetrahedron Letters, 2019, 60, 872-884.	0.7	16
1312	A Novel Strategy for the Construction of Covalent Organic Frameworks from Nonporous Covalent Organic Polymers. Angewandte Chemie - International Edition, 2019, 58, 4906-4910.	7.2	76
1313	Fully Conjugated Twoâ€Dimensional sp ² â€Carbon Covalent Organic Frameworks as Artificial Photosystemâ€I with High Efficiency. Angewandte Chemie - International Edition, 2019, 58, 5376-5381.	7.2	230
1314	Porous liquids based on porous cages, metal organic frameworks and metal organic polyhedra. Coordination Chemistry Reviews, 2019, 386, 85-95.	9.5	74
1315	Sub-Doppler electronic spectrum of the benzene–D2 complex. Journal of Chemical Physics, 2019, 150, 014301.	1.2	1
1316	Fully Conjugated Twoâ€Dimensional sp ² â€Carbon Covalent Organic Frameworks as Artificial Photosystemâ€I with High Efficiency. Angewandte Chemie, 2019, 131, 5430-5435.	1.6	59
1317	A fluorescent nanoprobe for 4-ethylguaiacol based on the use of a molecularly imprinted polymer doped with a covalent organic framework grafted onto carbon nanodots. Mikrochimica Acta, 2019, 186, 182.	2.5	35
1318	lmineâ€Linked Covalent Organic Cage Porous Crystals for CO ₂ Adsorption. ChemistrySelect, 2019, 4, 12547-12555.	0.7	10
1319	Dibenzochrysene enables tightly controlled docking and stabilizes photoexcited states in dual-pore covalent organic frameworks. Nanoscale, 2019, 11, 23338-23345.	2.8	26
1320	Ambient aqueous-phase synthesis of covalent organic frameworks for degradation of organic pollutants. Chemical Science, 2019, 10, 10815-10820.	3.7	65
1321	Dual luminescent covalent organic frameworks for nitro-explosive detection. Journal of Materials Chemistry A, 2019, 7, 27148-27155.	5.2	108

#	Article	IF	CITATIONS
1322	Advancement in porous adsorbents for post-combustion CO2 capture. Microporous and Mesoporous Materials, 2019, 276, 107-132.	2.2	129
1323	Ultrasensitive analysis of heat shock protein $90\hat{l}\pm$ with antibodies orderly arrayed on a novel type of immunoprobe based on magnetic COFs. Talanta, 2019, 191, 553-560.	2.9	23
1324	A facile approach to prepare phosphorus and nitrogen containing macromolecular covalent organic nanosheets for enhancing flame retardancy and mechanical property of epoxy resin. Composites Part B: Engineering, 2019, 164, 390-399.	5.9	72
1325	A combined experimental and theoretical study on gas adsorption performance of amine and amide porous polymers. Microporous and Mesoporous Materials, 2019, 279, 61-72.	2.2	15
1326	Recyclable Magnetic Microporous Organic Polymer (MOP) Encapsulated with Palladium Nanoparticles and Co/C Nanobeads for Hydrogenation Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 2388-2399.	3.2	29
1327	Hydrogen adsorption in pyridine bridged porphyrin-covalent organic framework. International Journal of Hydrogen Energy, 2019, 44, 1782-1796.	3.8	38
1328	Membrane Separation in Organic Liquid: Technologies, Achievements, and Opportunities. Advanced Materials, 2019, 31, e1806090.	11.1	178
1329	Extremely Hydrophobic POPs to Access Highly Porous Storage Media and Capturing Agent for Organic Vapors. CheM, 2019, 5, 180-191.	5.8	42
1330	Mixed matrix membrane comprising polyimide with crystalline porous imideâ€linked covalent organic framework for N ₂ /O ₂ separation. Polymers for Advanced Technologies, 2019, 30, 417-424.	1.6	22
1331	Prediction of strain-controlled adhesion in a single-layer covalent organic framework. Carbon, 2019, 143, 172-178.	5.4	9
1332	N-doped porous carbons from low-temperature and single-step sodium amide activation of carbonized water chestnut shell with excellent CO2 capture performance. Chemical Engineering Journal, 2019, 359, 428-435.	6.6	176
1333	Integrated effect of flame retardant wrapped macromolecular covalent organic nanosheet on reduction of fire hazards of epoxy resin. Composites Part A: Applied Science and Manufacturing, 2019, 117, 23-33.	3.8	30
1334	Green Synthesis of Self Assembled Nanospherical Dysprosium MOFs: Selective and Efficient Detection of Picric Acid in Aqueous and Gas Phase. ACS Sustainable Chemistry and Engineering, 2019, 7, 819-830.	3.2	45
1335	Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation. Journal of Membrane Science, 2019, 572, 588-595.	4.1	181
1336	Opportunities of Covalent Organic Frameworks for Advanced Applications. Advanced Science, 2019, 6, 1801410.	5.6	368
1337	Porous inorganic–organic hybrid polymers derived from cyclic siloxane building blocks: Effects of substituting groups on mesoporous structures. Microporous and Mesoporous Materials, 2019, 278, 212-218.	2.2	46
1338	CelloMOF: Nanocellulose Enabled 3D Printing of Metal–Organic Frameworks. Advanced Functional Materials, 2019, 29, 1805372.	7.8	148
1339	Nitrogen enriched porous carbons from d-glucose with excellent CO2 capture performance. Chemical Engineering Journal, 2019, 362, 794-801.	6.6	140

ARTICLE IF CITATIONS A novel and efficient strategy to exfoliation of covalent organic frameworks and a significant advantage of covalent organic frameworks nanosheets as polymer nano-enhancer: High interface 1340 5.0 33 compatibility. Journal of Colloid and Interface Science, 2019, 539, 609-618. Tailoring Covalent Organic Frameworks To Capture Water Contaminants. Chemistry - A European 1341 1.7 Journal, 2019, 25, 6461-6473. Zwitterionic Systems Obtained by Condensation of Heteroarylâ€Boronic Acids and Rhodizonic Acid. 1342 1.2 4 European Journal of Organic Chemistry, 2019, 2019, 1574-1582. Facile synthesis of layered mesoporous covalent organic polymers for highly selective enrichment of 1343 N-glycopeptides. Analytica Chimica Acta, 2019, 1057, 145-151. Partial and Complete Substitution of the 1,4-Benzenedicarboxylate Linker in UiO-66 with 1,4-Naphthalenedicarboxylate: Synthesis, Characterization, and H₂-Adsorption Properties. 1344 1.9 42 Inorganic Chemistry, 2019, 58, 1607-1620. Highly Selective Adsorption for Ethylene, Propylene, and Carbon Dioxide in Silver-Ionized Microporous Polyimide. Journal of Physical Chemistry C, 2019, 123, 575-583. 1345 1.5 High-Pressure Hydrogen Adsorption on a Porous Electron-Rich Covalent Organonitridic Framework. 1346 1.6 12 ACS Omega, 2019, 4, 444-448. Flexible Ketone-bridged organic porous nanospheres: Promoting porosity utilizing intramolecular hydrogen-bonding effects for effective gas separation. Chemical Engineering Journal, 2019, 358, 1347 6.6 19 1383-1389. Ultrasensitive Determination of Tetrabromobisphenol A by Covalent Organic Framework Based Solid 1348 Phase Microextraction Coupled with Constant Flow Desorption Ionization Mass Spectrometry. 3.2 60 Analytical Chemistry, 2019, 91, 772-775. Luminescent Triazene-Based Covalent Organic Frameworks Functionalized with Imine and Azine: 1349 N₂ and H₂ Sorption and Efficient Removal of Organic Dye Pollutants. Crystal 1.4 Growth and Design, 2019, 19, 362-368. Gas Convertor and Storage. Interface Science and Technology, 2019, 27, 387-437. 1350 4 1.6 Introduction: hydrogen storage as solution for a changing energy landscape. Physical Sciences 0.8 Reviews, 2019, 4, . Metalâ€"organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide 1352 9.5 329 into cyclic carbonates. Coordination Chemistry Reviews, 2019, 378, 32-65. A novel channel-wall engineering strategy for two-dimensional cationic covalent organic frameworks: Microwave-assisted anion exchange and enhanced carbon dioxide capture. Chinese 4.8 Chemical Letters, 2020, 31, 193-196. CO₂ Adsorption on HazeInut-Shell-Derived Nitrogen-Doped Porous Carbons Synthesized 1354 by Single-Step Sodium Amide Activation. Industrial & amp; Engineering Chemistry Research, 2020, 59, 1.8 88 7046-7053. Covalent Organic Frameworks: Chemical Approaches to Designer Structures and Builtâ€In Functions. 394 Angewandte Chemie - International Edition, 2020, 59, 5050-5091. Kovalente organische Gerüstverbindungen: chemische AnsÃæe für Designerstrukturen und 1356 1.6 54 integrierte Funktionen. Angewandte Chemie, 2020, 132, 5086-5129. Recent development of covalent organic frameworks (COFs): synthesis and catalytic 291 6.4 (organic-electro-photo) applications. Materials Horizons, 2020, 7, 411-454.

#	ARTICLE Synthesis and characterization of crosslinked porphyrin-based polyimides from different terminal	IF	CITATIONS
1358	alkynyl groups for carbon dioxide adsorption and separation. Microporous and Mesoporous Materials, 2020, 292, 109739.	2.2	10
1359	CuO grafted triazine functionalized covalent organic framework as an efficient catalyst for C-C homo coupling reaction. Molecular Catalysis, 2020, 480, 110650.	1.0	33
1360	Crosslinked microporous polyimides with polar substituent group for efficient CO2 capture. Microporous and Mesoporous Materials, 2020, 293, 109809.	2.2	8
1361	The first complete mitochondrial genome of the sand dollar Sinaechinocyamus mai (Echinoidea:) Tj ETQq1 1 0.78	4314 rgBT 1.3	/Overlock 1 16
1362	Flexible nanoporous activated carbon cloth for achieving high H2, CH4, and CO2 storage capacities and selective CO2/CH4 separation. Chemical Engineering Journal, 2020, 379, 122367.	6.6	93
1363	Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous solution. Journal of Hazardous Materials, 2020, 383, 121126.	6.5	180
1364	Remarkably catalytic activity in reduction of 4-nitrophenol and methylene blue by Fe3O4@COF supported noble metal nanoparticles. Applied Catalysis B: Environmental, 2020, 260, 118142.	10.8	242
1365	Silsesquioxane-based triphenylamine functionalized porous polymer for CO2, I2 capture and nitro-aromatics detection. Polymer, 2020, 186, 122004.	1.8	23
1366	An imine based COF as a smart carrier for targeted drug delivery: From synthesis to computational studies. Microporous and Mesoporous Materials, 2020, 294, 109850.	2.2	60
1367	Supramolecularâ€Macrocycleâ€Based Crystalline Organic Materials. Advanced Materials, 2020, 32, e1904824.	11.1	110
1368	Tailored covalent organic frameworks by post-synthetic modification. Materials Chemistry Frontiers, 2020, 4, 113-127.	3.2	90
1369	Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chemical Science, 2020, 11, 786-790.	3.7	110
1370	Isoelectronic Doping and External Electric Field Regulate the Gas-Separation Performance of Graphdiyne. Journal of Physical Chemistry C, 2020, 124, 2712-2720.	1.5	14
1371	Synthesis and characterization of new spirobisindaneâ€based poly(imide)s: Structure effects on solubility, thermal behavior, and gas transport properties. Journal of Applied Polymer Science, 2020, 137, 48944.	1.3	5
1372	Acid Exfoliation of Imineâ€linked Covalent Organic Frameworks Enables Solution Processing into Crystalline Thin Films. Angewandte Chemie, 2020, 132, 5203-5209.	1.6	31
1373	Zn(<scp>ii</scp>)@TFP-DAQ COF: an efficient mesoporous catalyst for the synthesis of <i>N</i> -methylated amine and carbamate through chemical fixation of CO ₂ . New Journal of Chemistry, 2020, 44, 744-752.	1.4	34
1374	Revealing the potential application of chiral covalent organic frameworks in CO ₂ adsorption and separation. New Journal of Chemistry, 2020, 44, 95-101.	1.4	16
1375	Thickness controllable hypercrosslinked porous polymer nanofilm with high CO2 capture capacity. Journal of Colloid and Interface Science, 2020, 563, 272-280.	5.0	11

#	Article	IF	CITATIONS
1376	Microporous organic polymers for efficient removal of sulfamethoxazole from aqueous solutions. Microporous and Mesoporous Materials, 2020, 296, 109979.	2.2	37
1377	Sustainable Green Route to Synthesize Functional Nano-MOFs as Selective Sensing Probes for Cr ^{VI} Oxoanions and as Specific Sequestering Agents for Cr ₂ O ₇ ^{2–} . ACS Sustainable Chemistry and Engineering, 2020, 8, 1195-1206.	3.2	30
1378	Acid Exfoliation of Imineâ€linked Covalent Organic Frameworks Enables Solution Processing into Crystalline Thin Films. Angewandte Chemie - International Edition, 2020, 59, 5165-5171.	7.2	128
1379	Highly dispersed gold nanoparticles anchoring on post-modified covalent organic framework for catalytic application. Chemical Engineering Journal, 2020, 391, 123471.	6.6	72
1380	Design, Synthesis and Characterization of Nickelâ€Functionalized Covalent Organic Framework NiCl@RIOâ€12 for Heterogeneous Suzuki–Miyaura Catalysis. Chemistry - A European Journal, 2020, 26, 2051-2059.	1.7	18
1381	Ensemble Learning of Partition Functions for the Prediction of Thermodynamic Properties of Adsorption in Metal–Organic and Covalent Organic Frameworks. Journal of Physical Chemistry C, 2020, 124, 1907-1917.	1.5	13
1382	Application of organic–graphene hybrids in high performance photodetectors. Materials Chemistry Frontiers, 2020, 4, 354-368.	3.2	16
1383	Porous organic polymers: a promising platform for efficient photocatalysis. Materials Chemistry Frontiers, 2020, 4, 332-353.	3.2	256
1384	Synthesis of Sterically Hindered Primary Amines by Concurrent Tandem Photoredox Catalysis. Journal of the American Chemical Society, 2020, 142, 987-998.	6.6	83
1385	Cobalt-containing covalent organic frameworks for visible light-driven hydrogen evolution. Science China Chemistry, 2020, 63, 192-197.	4.2	45
1387	Contributions of metalloporphyrin linkers and Zr6 nodes in gas adsorption on a series of bioinspired zirconium-based metal-organic frameworks: A computational study. Journal of Molecular Structure, 2020, 1204, 127559.	1.8	3
1388	Facile synthesis of a core-shell structured magnetic covalent organic framework for enrichment of organophosphorus pesticides in fruits. Analytica Chimica Acta, 2020, 1101, 65-73.	2.6	61
1389	A hydrophilic covalent organic framework for photocatalytic oxidation of benzylamine in water. Chemical Communications, 2020, 56, 766-769.	2.2	75
1390	Rigid Ladder-Type Porous Polymer Networks for Entropically Favorable Gas Adsorption. , 2020, 2, 49-54.		30
1391	Europium(III) functionalized 3D covalent organic framework for quinones adsorption and sensing investigation. Journal of Hazardous Materials, 2020, 388, 121740.	6.5	37
1392	Recent Advances in Visibleâ€Lightâ€Driven Hydrogen Evolution from Water using Polymer Photocatalysts. ChemCatChem, 2020, 12, 689-704.	1.8	100
1393	Rational combination of covalent-organic framework and nano TiO2 by covalent bonds to realize dramatically enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2020, 266, 118586.	10.8	149
1394	Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. Science Advances, 2020, 6, .	4.7	168

#	Article	IF	CITATIONS
1395	Design of three-dimensional nanotube-fullerene-interconnected framework for hydrogen storage. Applied Surface Science, 2020, 534, 147606.	3.1	20
1396	Transferable Molecular Model of Woven Covalent Organic Framework Materials. ACS Applied Materials & Interfaces, 2020, 12, 48957-48968.	4.0	4
1397	Bis–Calix[4]pyrroles: Preparation, structure, complexation properties and beyond. Coordination Chemistry Reviews, 2020, 425, 213528.	9.5	45
1398	Design of higher valency in covalent organic frameworks. Science, 2020, 370, .	6.0	189
1399	Linkage Engineering by Harnessing Supramolecular Interactions to Fabricate 2D Hydrazone-Linked Covalent Organic Framework Platforms toward Advanced Catalysis. Journal of the American Chemical Society, 2020, 142, 18138-18149.	6.6	99
1400	Facile preparation of novel COFs functionalized magnetic core-shell structured nanocomposites and used for rapid detection of trace polycyclic aromatic hydrocarbons in food. Microchemical Journal, 2020, 159, 105460.	2.3	16
1401	New Mechanistic Insights into the Formation of Imine-Linked Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 18637-18644.	6.6	87
1402	Integrated nano-architectured photocatalysts for photochemical CO ₂ reduction. Nanoscale, 2020, 12, 23301-23332.	2.8	59
1403	A novel nitrogen-containing covalent organic framework adsorbent for the efficient removal of bisphenol A from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2020, 113, 204-213.	2.7	18
1404	pH stable cationic luminescence Metalâ`'Organic framework material with nitrate guests as high selective sensor for detecting 2, 4, 6-trinitrophenol. Journal of Solid State Chemistry, 2020, 290, 121583.	1.4	4
1405	Electronic Devices Using Open Framework Materials. Chemical Reviews, 2020, 120, 8581-8640.	23.0	185
1406	Covalent Organic Frameworks with Electronâ€Rich and Electronâ€Deficient Structures as Water Sensing Scaffolds. Macromolecular Rapid Communications, 2020, 41, e2000003.	2.0	29
1407	Recent Advances in Covalent Organic Framework-Based Nanosystems for Bioimaging and Therapeutic Applications. , 2020, 2, 1074-1092.		89
1408	Sequential pore wall functionalization in covalent organic frameworks and application to stable camptothecin delivery systems. Materials Science and Engineering C, 2020, 117, 111263.	3.8	15
1409	Amidoxime-Functionalized Covalent Organic Nanosheets for Sequestration of Uranium In Vivo. ACS Applied Bio Materials, 2020, 3, 8731-8738.	2.3	17
1410	A theoretical study of noxious gases storage using covalent organic frameworks (COFs). Journal of Physics: Conference Series, 2020, 1592, 012025.	0.3	1
1411	Conductive Phthalocyanineâ€Based Covalent Organic Framework for Highly Efficient Electroreduction of Carbon Dioxide. Small, 2020, 16, e2005254.	5.2	128
1412	Preparation of biomass-derived porous carbons by a facile method and application to CO2 adsorption. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116, 128-136.	2.7	46

#	Article	IF	CITATIONS
1413	Vertical two-dimensional layered conjugated porous organic network structures of poly-benzimidazobenzophenanthroline (BBL): A first-principles study. Applied Physics Letters, 2020, 117, .	1.5	16
1414	Design of Zeolite-Covalent Organic Frameworks for Methane Storage. Materials, 2020, 13, 3322.	1.3	6
1415	Two-dimensional semiconducting covalent organic frameworks for photocatalytic solar fuel production. Materials Today, 2020, 40, 160-172.	8.3	56
1416	Effect of Kerogen Maturity, Water Content for Carbon Dioxide, Methane, and Their Mixture Adsorption and Diffusion in Kerogen: A Computational Investigation. Langmuir, 2020, 36, 9756-9769.	1.6	38
1417	Crystal structure, thermal behavior, luminescence and theoretical calculation of a new Pb(II) coordination complex. Journal of Molecular Structure, 2020, 1222, 128950.	1.8	2
1418	Dense Carbon Nanoflower Pellets for Methane Storage. ACS Applied Nano Materials, 2020, 3, 8278-8285.	2.4	14
1419	Porous organic polymer material supported palladium nanoparticles. Journal of Materials Chemistry A, 2020, 8, 17360-17391.	5.2	93
1420	Covalent Organic Frameworks in Sample Preparation. Molecules, 2020, 25, 3288.	1.7	30
1421	Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review. Journal of Cleaner Production, 2020, 277, 123360.	4.6	92
1422	Hypercrosslinked porous organic polymers based on tetraphenylanthraquinone for CO2 uptake and high-performance supercapacitor. Polymer, 2020, 205, 122857.	1.8	53
1423	Modeling of Hydrogen Storage Utilizing Silsesquioxane Cages: Adsorption and Quasi-Dynamic Simulations of Encapsulation of H2 Molecule into Silsesquioxane Cages. Journal of Physical Chemistry A, 2020, 124, 6344-6351.	1.1	3
1424	De Novo Design of Covalent Organic Framework Membranes toward Ultrafast Anion Transport. Advanced Materials, 2020, 32, e2001284.	11.1	130
1425	Covalent organic frameworks: Polymer chemistry and functional design. Progress in Polymer Science, 2020, 108, 101288.	11.8	78
1426	Multifunctional Hypercrosslinked Porous Organic Polymers Based on Tetraphenylethene and Triphenylamine Derivatives for High-Performance Dye Adsorption and Supercapacitor. Polymers, 2020, 12, 2426.	2.0	36
1427	Hydrocarbon Molecules Separation using Nanoporous Materials. , 2020, , 217-264.		0
1428	Boronate Covalent and Hybrid Organic Frameworks Featuring P III and P=O Lewis Base Sites. Chemistry - A European Journal, 2020, 26, 12688-12688.	1.7	4
1429	Crystallinity and stability of covalent organic frameworks. Science China Chemistry, 2020, 63, 1367-1390.	4.2	95
1430	Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review. Trends in Food Science and Technology, 2020, 104, 102-116.	7.8	111

#	ARTICLE Computational Selection of High-Performing Covalent Organic Frameworks for Adsorption and	IF	CITATIONS
1431	Membrane-Based CO ₂ /H ₂ Separation. Journal of Physical Chemistry C, 2020, 124, 22577-22590.	1.5	36
1432	Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) with Quasiâ€3D Topologies for Rapid I ₂ Adsorption. Angewandte Chemie, 2020, 132, 22886-22894.	1.6	26
1433	Evolution of the Design of CH4 Adsorbents. Surfaces, 2020, 3, 433-466.	1.0	10
1434	Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) with Quasiâ€3D Topologies for Rapid I ₂ Adsorption. Angewandte Chemie - International Edition, 2020, 59, 22697-22705.	7.2	163
1435	Carbon Nanomaterials From Metal-Organic Frameworks: A New Material Horizon for CO2 Reduction. Frontiers in Chemistry, 2020, 8, 573797.	1.8	17
1436	Catalytic Asymmetric Synthesis of Chiral Covalent Organic Frameworks from Prochiral Monomers for Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 2020, 142, 16915-16920.	6.6	109
1437	Exploiting Hansen solubility parameters to tune porosity and function in conjugated microporous polymers. Journal of Materials Chemistry A, 2020, 8, 22657-22665.	5.2	32
1438	Thirty-minute preparation of microporous polyimides with large surface areas for ammonia adsorption. Green Chemistry, 2020, 22, 7003-7009.	4.6	22
1439	Smart covalent organic networks (CONs) with "on-off-on―light-switchable pores for molecular separation. Science Advances, 2020, 6, eabb3188.	4.7	71
1440	Dynamic Transformation between Covalent Organic Frameworks and Discrete Organic Cages. Journal of the American Chemical Society, 2020, 142, 21279-21284.	6.6	54
1441	Selective Separation of Methylfuran and Dimethylfuran by Nonporous Adaptive Crystals of Pillararenes. Journal of the American Chemical Society, 2020, 142, 19722-19730.	6.6	48
1442	Highly C2/C1-Selective Covalent Organic Frameworks Substituted with Azo Groups. ACS Applied Materials & amp; Interfaces, 2020, 12, 51517-51522.	4.0	20
1443	Colloidal three-dimensional covalent organic frameworks and their application as porous liquids. Journal of Materials Chemistry A, 2020, 8, 23455-23462.	5.2	37
1444	Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing. ACS Sensors, 2020, 5, 1474-1481.	4.0	56
1445	Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chemical Society Reviews, 2020, 49, 3565-3604.	18.7	617
1446	Post-synthetic modification of imine linkages of a covalent organic framework for its catalysis application. RSC Advances, 2020, 10, 17396-17403.	1.7	37
1447	Heat of Adsorption: A Comparative Study between the Experimental Determination and Theoretical Models Using the System CH ₄ -MOFs. Journal of Chemical & Engineering Data, 2020, 65, 3130-3145.	1.0	7
1448	Two-dimensional covalent organic frameworks with hierarchical porosity. Chemical Society Reviews, 2020, 49, 3920-3951.	18.7	302

ARTICLE IF CITATIONS Reorientable fluorinated aryl rings in triangular channel Fe-MOFs: an investigation on 1449 5.2 21 CO₂â€"matrix interactions. Journal of Materials Chemistry A, 2020, 8, 11406-11413. Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chemical 1450 18.7 Society Reviews, 2020, 49, 3981-4042. Metal-free oxidative desulfurization over a microporous triazine polymer catalyst under ambient 1451 3.7 20 conditions. Fuel Processing Technology, 2020, 207, 106469. Ferrocenyl building block constructing porous organic polymer for gas capture and methyl violet 1452 1.2 adsorption. Journal of Central South University, 2020, 27, 1247-1261. Recent advances on nitrogen-doped metal-free materials for the selective catalytic oxidation of 1453 3.2 15 hydrogen sulfide. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100361. Emerging trends in porous materials for CO₂capture and conversion. Chemical Society Reviews, 2020, 49, 4360-4404. 1454 18.7 Revealing enhancement mechanism of volumetric hydrogen storage capacity of nano-porous 1455 1.9 13 frameworks by molecular simulation. Chemical Engineering Science, 2020, 226, 115837. A porous organic polymer-coated permselective separator mitigating self-discharge of lithium–sulfur 1456 2.6 batteries. Materials Ádvances, 2020, 1, 648-657. Threeâ€Dimensional Chemically Stable Covalent Organic Frameworks through Hydrophobic 1457 1.6 13 Engineering. Angewandte Chemie, 2020, 132, 19801-19806. Boronate Covalent and Hybrid Organic Frameworks Featuring P^{III} and P=O Lewis Base 1458 1.7 Sites. Chemistry - A European Journal, 2020, 26, 12758-12768. Superior CO2 uptake on nitrogen doped carbonaceous adsorbents from commercial phenolic resin. 1459 105 3.2 Journal of Environmental Sciences, 2020, 93, 109-116. A new dual-mode SERS and RRS aptasensor for detecting trace organic molecules based on gold nanocluster-doped covalent-organic framework catalyst. Sensors and Actuators B: Chemical, 2020, 4.0 319, 128308. Polymeric carbon nitrides and related metal-free materials for energy and environmental 1461 5.2 142 applications. Journal of Materials Chemistry A, 2020, 8, 11075-11116. Dualâ€Function Fluorescent Covalent Organic Frameworks: HCl Sensing and Photocatalytic 1462 3.6 H₂ Evolution from Water. Advanced Optical Materials, 2020, 8, 2000641. Ionothermal Synthesis of Imideâ€Linked Covalent Organic Frameworks. Angewandte Chemie -1463 7.2 158 International Édition, 2020, 59, 15750-15758. Ionothermal Synthesis of Imideâ€Linked Covalent Organic Frameworks. Angewandte Chemie, 2020, 132, 1464 15880-15888. Is the H2 economy realizable in the foreseeable future? Part II: H2 storage, transportation, and 1465 3.8 129 distribution. International Journal of Hydrogen Energy, 2020, 45, 20693-20708. Porous Organic Polymers as Promising Electrode Materials for Energy Storage Devices. Advanced 1466 Materials Technologies, 2020, 5, .

#	Article	IF	CITATIONS
1467	Recent applications of covalent organic frameworks and their multifunctional composites for food contaminant analysis. Food Chemistry, 2020, 330, 127255.	4.2	58
1468	Aggregation-Induced Enhanced Emission (AIEE)-Active Conjugated Mesoporous Oligomers (CMOs) with Improved Quantum Yield and Low-Cost Detection of a Trace Amount of Nitroaromatic Explosives. ACS Applied Materials & Interfaces, 2020, 12, 31875-31886.	4.0	37
1469	Graphene pillared with hybrid fullerene and nanotube as a novel 3D framework for hydrogen storage: A DFT and GCMC study. International Journal of Hydrogen Energy, 2020, 45, 17637-17648.	3.8	31
1470	Phenanthroline Covalent Organic Framework Electrodes for High-Performance Zinc-Ion Supercapattery. ACS Energy Letters, 2020, 5, 2256-2264.	8.8	175
1471	Pd Nanoclusters Supported by Amine-Functionalized Covalent Organic Frameworks for Benzyl Alcohol Oxidation. ACS Applied Nano Materials, 2020, 3, 6416-6422.	2.4	32
1472	Two-dimensional conjugated polymer films <i>via</i> liquid-interface-assisted synthesis toward organic electronic devices. Journal of Materials Chemistry C, 2020, 8, 10696-10718.	2.7	32
1473	Synthesis of Ionic Ultramicroporous Polymers for Selective Separation of Acetylene from Ethylene. Advanced Materials, 2020, 32, e1907601.	11.1	54
1474	Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review. Mikrochimica Acta, 2020, 187, 234.	2.5	72
1475	Evolution of Nanocarrier Drug-Delivery Systems and Recent Advancements in Covalent Organic Framework–Drug Systems. ACS Applied Nano Materials, 2020, 3, 3097-3115.	2.4	117
1476	In situ fabrication of 3D COF-300 in aÂcapillary for separation of aromatic compounds by open-tubular capillary electrochromatography. Mikrochimica Acta, 2020, 187, 233.	2.5	34
1477	Multilayer WO3/BiVO4 Photoanodes for Solar-Driven Water Splitting Prepared by RF-Plasma Sputtering. Surfaces, 2020, 3, 105-115.	1.0	6
1478	Heterostructured TiO ₂ @HKUST-1 for the enhanced removal of methylene blue by integrated adsorption and photocatalytic degradation. Environmental Technology (United Kingdom), 2021, 42, 4134-4144.	1.2	18
1479	Construction of Fully Conjugated Covalent Organic Frameworks via Facile Linkage Conversion for Efficient Photoenzymatic Catalysis. Journal of the American Chemical Society, 2020, 142, 5958-5963.	6.6	177
1480	A Nickel-Doped Dehydrobenzoannulene-Based Two-Dimensional Covalent Organic Framework for the Reductive Cleavage of Inert Aryl C–S Bonds. Journal of the American Chemical Society, 2020, 142, 5521-5525.	6.6	45
1481	Porous Carbons Derived from Sustainable Biomass via a Facile One-Step Synthesis Strategy as Efficient CO ₂ Adsorbents. Industrial & Engineering Chemistry Research, 2020, 59, 6194-6201.	1.8	92
1482	Discrete boronate ester ladders from the dynamic covalent self-assembly of oligo(phenylene) Tj ETQq1 1 0.78431 1082-1094.	4 rgBT /Ov 2.3	verlock 10 6
1483	Retorting Photocorrosion and Enhanced Charge Carrier Separation at CdSe Nanocapsules by Chemically Synthesized TiO ₂ Shell for Photocatalytic Hydrogen Fuel Generation. ChemCatChem, 2020, 12, 3139-3152.	1.8	17
1484	Carbon Nanotube-Templated Covalent Organic Framework Nanosheets as an Efficient Sulfur Host for Room-Temperature Metal–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 5946-5953.	3.2	44

#	Article	IF	CITATIONS
1485	Thermal Conductivity of a 2D Covalent Organic Framework and Its Enhancement Using Fullerene 3D Self-Assembly: a Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2020, 124, 8386-8393.	1.5	17
1486	In Silico Discovery of Covalent Organic Frameworks for Carbon Capture. ACS Applied Materials & Interfaces, 2020, 12, 21559-21568.	4.0	43
1487	Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European Journal of Organic Chemistry, 2020, 2020, 4841-4877.	1.2	34
1488	Oneâ€pot synthesis of high Nâ€doped porous carbons derived from a Nâ€rich oil palm biomass residue in low temperature for CO ₂ capture. International Journal of Energy Research, 2020, 44, 4875-4887.	2.2	20
1489	Silsesquioxanes-based porous functional polymers for water purification. Journal of Materials Science, 2020, 55, 7518-7529.	1.7	21
1490	Metalâ€organic frameworkâ€based cancer theranostic nanoplatforms. View, 2020, 1, e20.	2.7	63
1491	Triazine- and Keto-Functionalized Porous Covalent Organic Framework as a Promising Anode Material for Na-Ion Batteries: A First-Principles Study. Journal of Physical Chemistry C, 2020, 124, 15870-15878.	1.5	22
1492	Fe(III)â€Functionalized Magnetic Covalent Organic Frameworks for Fast Adsorption and Removal of Phenylbutazone in Aqueous Solution. ChemistrySelect, 2020, 5, 7497-7504.	0.7	5
1493	A recyclable fluorescent covalent organic framework for exclusive detection and removal of mercury(II). Chemical Engineering Journal, 2020, 401, 126139.	6.6	71
1494	8-Hydroxyquinoline functionalized covalent organic framework as a pH sensitive carrier for drug delivery. Materials Science and Engineering C, 2020, 117, 111243.	3.8	45
1495	Ultralow Surface Tension Solvents Enable Facile COF Activation with Reduced Pore Collapse. ACS Applied Materials & amp; Interfaces, 2020, 12, 33121-33127.	4.0	61
1496	Dye-based covalent organic networks. JPhys Materials, 2020, 3, 025011.	1.8	3
1497	Room-Temperature Synthesis of Hollow Carbazole-Based Covalent Triazine Polymers with Multiactive Sites for Efficient Iodine Capture-Catalysis Cascade Application. ACS Applied Polymer Materials, 2020, 2, 3704-3713.	2.0	16
1498	Intramolecular Hydrogen Bonding-Based Topology Regulation of Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 13162-13169.	6.6	85
1499	Assembling well-arranged covalent organic frameworks on MOF-derived graphitic carbon for remarkable formaldehyde sensing. Nanoscale, 2020, 12, 15611-15619.	2.8	78
1500	Covalent-organic frameworks (COFs)-based membranes for CO2 separation. Journal of CO2 Utilization, 2020, 41, 101224.	3.3	31
1501	Interlayer Shifting in Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 12995-13002.	6.6	99
1502	Water desalination of a new three-dimensional covalent organic framework: a molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2020, 22, 16978-16984.	1.3	35

#	Article	IF	CITATIONS
1503	Comprehensive Structural and Microscopic Characterization of an Azine–Triazine-Functionalized Highly Crystalline Covalent Organic Framework and Its Selective Detection of Dichloran and 4-Nitroaniline. ACS Applied Materials & Interfaces, 2020, 12, 10224-10232.	4.0	46
1504	CO2 capturing, thermo-kinetic principles, synthesis and amine functionalization of covalent organic polymers for CO2 separation from natural gas: A review. Journal of Natural Gas Science and Engineering, 2020, 77, 103203.	2.1	68
1505	Porous Aromatic Frameworks (PAFs). Chemical Reviews, 2020, 120, 8934-8986.	23.0	389
1506	Design and applications of three dimensional covalent organic frameworks. Chemical Society Reviews, 2020, 49, 1357-1384.	18.7	509
1507	Superior performance of modified pitch-based adsorbents for cyclic methane storage. Journal of Energy Storage, 2020, 28, 101251.	3.9	16
1508	Phenylamino-, Phenoxy-, and Benzenesulfenyl-Linked Covalent Triazine Frameworks for CO ₂ Capture. ACS Applied Nano Materials, 2020, 3, 2889-2898.	2.4	33
1509	GrenzflÃ e henpolymerisation: Von der Chemie zu funktionellen Materialien. Angewandte Chemie, 2020, 132, 22024-22041.	1.6	11
1510	Interfacial Polymerization: From Chemistry to Functional Materials. Angewandte Chemie - International Edition, 2020, 59, 21840-21856.	7.2	204
1511	Fabrication of a New Corrole-Based Covalent Organic Framework as a Highly Efficient and Selective Chemosensor for Heavy Metal Ions. Chemistry of Materials, 2020, 32, 2532-2540.	3.2	76
1513	Enhancements of hydrogen adsorption energy in M-MOF-525 (M= Ti, V, Zr and Hf): A DFT study. Chinese Journal of Physics, 2020, 64, 326-332.	2.0	13
1514	Phosphineâ€Based Covalent Organic Framework for the Controlled Synthesis of Broadâ€Scope Ultrafine Nanoparticles. Small, 2020, 16, e1906005.	5.2	82
1515	Covalent Organic Frameworks: Design, Synthesis, and Functions. Chemical Reviews, 2020, 120, 8814-8933.	23.0	1,968
1516	Comparative Study between Regression and Soft Computing Models to Maximize the Methane Storage Capacity of Anthracite-Based Adsorbents. Industrial & Engineering Chemistry Research, 2020, 59, 1875-1887.	1.8	8
1517	Covalent organic frameworks for separation applications. Chemical Society Reviews, 2020, 49, 708-735.	18.7	804
1518	Covalent triazine frameworks – a sustainable perspective. Green Chemistry, 2020, 22, 1038-1071.	4.6	138
1519	Defective 2D Covalent Organic Frameworks for Postfunctionalization. Advanced Functional Materials, 2020, 30, 1909267.	7.8	103
1520	Pd@COF-QA: a phase transfer composite catalyst for aqueous Suzuki–Miyaura coupling reaction. Green Chemistry, 2020, 22, 1150-1155.	4.6	69
1521	Pillar[5]arene-Derived Microporous Polyaminal Networks with Enhanced Uptake Performance for CO ₂ and Iodine. Industrial & Engineering Chemistry Research, 2020, 59, 3269-3278.	1.8	29

#	Article	IF	CITATIONS
1522	CO ₂ Photoreduction on Metal Oxide Surface Is Driven by Transient Capture of Hot Electrons: <i>Ab Initio</i> Quantum Dynamics Simulation. Journal of the American Chemical Society, 2020, 142, 3214-3221.	6.6	63
1523	Theoretical study of hydrogen storage by spillover on porous carbon materials. International Journal of Hydrogen Energy, 2020, 45, 25900-25911.	3.8	42
1524	Thermal Activation of a Copper-Loaded Covalent Organic Framework for Near-Ambient Temperature Hydrogen Storage and Delivery. , 2020, 2, 227-232.		21
1525	Cationic covalent organic framework based all-solid-state electrolytes. Materials Chemistry Frontiers, 2020, 4, 1164-1173.	3.2	80
1526	Metal–Organic Frameworks for Biomedical Applications. Small, 2020, 16, e1906846.	5.2	480
1527	2D Covalent Organic Frameworks for Biomedical Applications. Advanced Functional Materials, 2020, 30, 2002046.	7.8	172
1528	Molecular Expansion for Constructing Porous Organic Polymers with High Surface Areas and Wellâ€Defined Nanopores. Angewandte Chemie, 2020, 132, 19655-19661.	1.6	1
1529	Molecular Expansion for Constructing Porous Organic Polymers with High Surface Areas and Wellâ€Defined Nanopores. Angewandte Chemie - International Edition, 2020, 59, 19487-19493.	7.2	38
1530	Vertical two-dimensional layered fused aromatic ladder structure. Nature Communications, 2020, 11, 2021.	5.8	29
1531	Electron Beam Irradiation as a General Approach for the Rapid Synthesis of Covalent Organic Frameworks under Ambient Conditions. Journal of the American Chemical Society, 2020, 142, 9169-9174.	6.6	90
1532	Microporous polyimides with high surface area and CO2 selectivity fabricated from cross-linkable linear polyimides. Journal of Colloid and Interface Science, 2020, 573, 328-335.	5.0	12
1533	Synthesis and characterization of a novel fluorene-based covalent triazine framework as a chemical adsorbent for highly efficient dye removal. Polymer, 2020, 195, 122430.	1.8	53
1534	2D Porous Polymers with sp ² arbon Connections and Sole sp ² arbon Skeletons. Advanced Functional Materials, 2020, 30, 2000857.	7.8	42
1535	Incorporation of photocatalytic Pt(II) complexes into imine-based layered covalent organic frameworks (COFs) through monomer truncation strategy. Applied Catalysis B: Environmental, 2020, 272, 119027.	10.8	64
1536	Starch-based activated carbon micro-spheres for adsorption of methane with superior performance in ANG technology. Journal of Environmental Chemical Engineering, 2020, 8, 103910.	3.3	18
1537	Triazatruxene-Based Ordered Porous Polymer: High Capacity CO ₂ , CH ₄ , and H ₂ Capture, Heterogeneous Suzuki〓Miyaura Catalytic Coupling, and Thermoelectric Properties. ACS Applied Energy Materials, 2020, 3, 4983-4994.	2.5	34
1538	Supramolecular assemblies tailored by dipyridyl-1,2-4-thiadiazoles: influence of the building blocks in the predictability of the final network. Supramolecular Chemistry, 2020, 32, 267-275.	1.5	4
1539	Hydrogen storage capacity on Li-decorated covalent organic framework-1: A first-principles study. Materials Research Express, 2020, 7, 035506.	0.8	19

#	Article	IF	CITATIONS
1540	Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368, 297-303.	6.0	429
1541	Recent Applications of Amorphous Alloys to Design Skeletal Catalysts. Bulletin of the Chemical Society of Japan, 2020, 93, 438-454.	2.0	15
1542	Ferrocene-Based Conjugated Microporous Polymers Derived from Yamamoto Coupling for Gas Storage and Dye Removal. Polymers, 2020, 12, 719.	2.0	33
1543	Cationic Surfactantâ€Modified Covalent Organic Frameworks for Nitrate Removal from Aqueous Solution: Synthesis by Freeâ€Radical Polymerization. ChemPlusChem, 2020, 85, 828-831.	1.3	6
1544	Porous DMN-co-GMA copolymers modified with 1-(2-hydroxyethyl)-2-pyrrolidone. Journal of Thermal Analysis and Calorimetry, 2021, 144, 699-711.	2.0	3
1545	Effects of connecting sequences of building blocks on reticular synthesis of covalent organic frameworks. Nano Research, 2021, 14, 381-386.	5.8	16
1546	Covalent Organic Frameworks for Water Treatment. Advanced Materials Interfaces, 2021, 8, .	1.9	70
1547	Covalent organic framework-graphene oxide composite: A superior adsorption material for solid phase microextraction of bisphenol A. Talanta, 2021, 222, 121501.	2.9	60
1548	Binder-free 3D printing of covalent organic framework (COF) monoliths for CO2 adsorption. Chemical Engineering Journal, 2021, 403, 126333.	6.6	78
1549	Metal-organic frameworks as a versatile platform for radionuclide management. Coordination Chemistry Reviews, 2021, 427, 213473.	9.5	74
1550	Functionalization of covalent organic frameworks by metal modification: Construction, properties and applications. Chemical Engineering Journal, 2021, 404, 127136.	6.6	66
1551	Facile synthesis of anionic porous organic polymer for ethylene purification. Journal of Colloid and Interface Science, 2021, 582, 631-637.	5.0	10
1552	Redox active covalent organic framework-based conductive nanofibers for flexible energy storage device. Carbon, 2021, 171, 248-256.	5.4	51
1553	Design and construction of ZIF(8 and 67) supported Fe3O4 composite as advanced materials of high performance supercapacitor. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114442.	1.3	32
1554	Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Research, 2021, 14, 1-28.	5.8	69
1555	Chiral porous organic frameworks and their application in enantioseparation. Analytical Methods, 2021, 13, 8-33.	1.3	32
1556	Efficient nitrogen doped porous carbonaceous CO2 adsorbents based on lotus leaf. Journal of Environmental Sciences, 2021, 103, 268-278.	3.2	92
1557	Oxygen self-sufficient photodynamic therapy. Coordination Chemistry Reviews, 2021, 432, 213714.	9.5	66

#	Article	IF	CITATIONS
1558	Confinementâ€Ðriven Enantioselectivity in 3D Porous Chiral Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 6086-6093.	7.2	48
1559	Intrinsically Porous Molecular Materials (IPMs) for Natural Gas and Benzene Derivatives Separations. Accounts of Chemical Research, 2021, 54, 155-168.	7.6	66
1560	Three-Dimensional Covalent Organic Framework with ceq Topology. Journal of the American Chemical Society, 2021, 143, 92-96.	6.6	84
1561	Construction of a highly heteroatom-functionalized covalent organic framework and its CO2 capture capacity and CO2/N2 selectivity. Materials Letters, 2021, 282, 128704.	1.3	14
1562	Development of dualâ€model classical density functional theory and its application to gas adsorption in porous materials. AICHE Journal, 2021, 67, e17120.	1.8	3
1563	Crystalline C—C and C╀ Bond-Linked Chiral Covalent Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 369-381.	6.6	117
1564	2D framework materials for energy applications. Chemical Science, 2021, 12, 1600-1619.	3.7	73
1565	Confinementâ€Driven Enantioselectivity in 3D Porous Chiral Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 6151-6158.	1.6	7
1566	Optoelectronic processes in covalent organic frameworks. Chemical Society Reviews, 2021, 50, 1813-1845.	18.7	264
1567	Rational design of porous organic molecules (POMs) based on B-heterocyclic carbenes. Molecular Systems Design and Engineering, 2021, 6, 132-138.	1.7	5
1567 1568	Rational design of porous organic molecules (POMs) based on B-heterocyclic carbenes. Molecular Systems Design and Engineering, 2021, 6, 132-138. Cationic covalent organic framework for efficient removal of PFOA substitutes from aqueous solution. Chemical Engineering Journal, 2021, 412, 127509.	1.7 6.6	5
	Systems Design and Engineering, 2021, 6, 132-138. Cationic covalent organic framework for efficient removal of PFOA substitutes from aqueous		
1568	Systems Design and Engineering, 2021, 6, 132-138. Cationic covalent organic framework for efficient removal of PFOA substitutes from aqueous solution. Chemical Engineering Journal, 2021, 412, 127509. Comparative study of the synthetic methods for perylene-based covalent triazine polyimides. Dyes and	6.6	54
1568 1569	Systems Design and Engineering, 2021, 6, 132-138. Cationic covalent organic framework for efficient removal of PFOA substitutes from aqueous solution. Chemical Engineering Journal, 2021, 412, 127509. Comparative study of the synthetic methods for perylene-based covalent triazine polyimides. Dyes and Pigments, 2021, 186, 108968. A comparative gas sorption study of dicarbazole-derived microporous hyper-crosslinked polymers.	6.6 2.0	54 12
1568 1569 1570	Systems Design and Engineering, 2021, 6, 132-138. Cationic covalent organic framework for efficient removal of PFOA substitutes from aqueous solution. Chemical Engineering Journal, 2021, 412, 127509. Comparative study of the synthetic methods for perylene-based covalent triazine polyimides. Dyes and Pigments, 2021, 186, 108968. A comparative gas sorption study of dicarbazole-derived microporous hyper-crosslinked polymers. Microporous and Mesoporous Materials, 2021, 311, 110727. Microporous polymer networks constructed from cross-linkable linear polyimides for CO2	6.6 2.0 2.2	54 12 18
1568 1569 1570 1571	Systems Design and Engineering, 2021, 6, 132-138. Cationic covalent organic framework for efficient removal of PFOA substitutes from aqueous solution. Chemical Engineering Journal, 2021, 412, 127509. Comparative study of the synthetic methods for perylene-based covalent triazine polyimides. Dyes and Pigments, 2021, 186, 108968. A comparative gas sorption study of dicarbazole-derived microporous hyper-crosslinked polymers. Microporous and Mesoporous Materials, 2021, 311, 110727. Microporous polymer networks constructed from cross-linkable linear polyimides for CO2 adsorption. Microporous and Mesoporous Materials, 2021, 311, 110708. Reticular materials for electrochemical reduction of CO2. Coordination Chemistry Reviews, 2021, 427,	6.62.02.22.2	54 12 18 12
1568 1569 1570 1571 1572	Systems Design and Engineering, 2021, 6, 132-138. Cationic covalent organic framework for efficient removal of PFOA substitutes from aqueous solution. Chemical Engineering Journal, 2021, 412, 127509. Comparative study of the synthetic methods for perylene-based covalent triazine polyimides. Dyes and Pigments, 2021, 186, 108968. A comparative gas sorption study of dicarbazole-derived microporous hyper-crosslinked polymers. Microporous and Mesoporous Materials, 2021, 311, 110727. Microporous polymer networks constructed from cross-linkable linear polyimides for CO2 adsorption. Microporous and Mesoporous Materials, 2021, 311, 110708. Reticular materials for electrochemical reduction of CO2. Coordination Chemistry Reviews, 2021, 427, 213564. A Carbocationic Triarylmethaneâ&Based Porous Covalent Organic Network. Chemistry - A European	 6.6 2.0 2.2 2.2 9.5 	 54 12 18 12 29

ARTICLE IF CITATIONS # A new hydrazone-linked covalent organic framework for Fe(<scp>iii</scp>) detection by fluorescence 1576 1.3 28 and QCM technologies. CrystEngComm, 2021, 23, 3594-3601. Exfoliated covalent organic framework nanosheets. Journal of Materials Chemistry A, 2021, 9, 5.2 7336-7365. Synthesis of sulfur-doped porous carbon from heavy coker gas oil and its application in 1578 2.6 2 CO₂ capture. Materials Advances, 2021, 2, 248-252. Facile synthesis of 3D covalent organic frameworks <i>via</i> a two-in-one strategy. Chemical 1579 2.2 Communications, 2021, 57, 2136-2139. Covalent Organic Frameworks Construct Precise Lithiophilic Sites for Uniform Lithium Deposition. 1580 5.0 73 Matter, 2021, 4, 253-264. Multifunctional Polyhedral Oligomeric Silsesquioxane (POSS) Based Hybrid Porous Materials for CO2 84 Uptake and Iodine Adsorption. Polymers, 2021, 13, 221. A self-assembling, biporous, metal-binding covalent organic framework and its application for gas 1582 2.6 3 separation. Materials Advances, 0, , . Understanding the origin of serrated stacking motifs in planar two-dimensional covalent organic 9 2.8 frameworks. Nanoscale, 2021, 13, 9339-9353. Meso/Microporous Carbons from Conjugated Hyper-Crosslinked Polymers Based on Tetraphenylethene 1584 1.7 77 for High-Performance CO2 Capture and Supercapacitor. Molecules, 2021, 26, 738. Facile synthesis of spherical covalent organic frameworks as stationary phases for short-column 2.2 liquid chromatography. Chemical Communications, 2021, 57, 7501-7504. Permeable metal-organic frameworks for fuel (gas) storage applications., 2021, , 111-126. 1586 0 Carbon dioxide as a main source of air pollution: Prospective and current trends to control., 2021,, 1587 623-688. On the correlation between Raman spectra and structural properties of activated carbons derived by 1588 1.3 6 hyper-crosslinked polymers. Research on Chemical Intermediates, 2021, 47, 419-431. Graphitic supramolecular architectures based on corannulene, fullerene, and beyond. Chemical Communications, 2021, 57, 10125-10138. 1589 2.2 Hostâ€"guest modes and supramolecular frameworks of complexes of tetramethyl cucurbit[6]uril with 1590 1.7 11 4-chloroaniline and 4,4â€2-diaminostilbene. RSC Advances, 2021, 11, 3470-3475. Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. 1591 2.8 Research, 2021, 2021, 3750689. Room-temperature growth of covalent organic frameworks as the stationary phase for open-tubular 1592 1.7 12 capillary electrochromatography. Analyst, The, 2021, 146, 6643-6649. 2D Redoxâ€Active Covalent Organic Frameworks for Supercapacitors: Design, Synthesis, and Challenges. 5.2 64 Small, 2021, 17, e2005073.

#	Article	IF	CITATIONS
1594	Recent developments in chemical energy storage. , 2021, , 447-494.		2
1595	The progress of nanomaterials for carbon dioxide capture <i>via</i> the adsorption process. Environmental Science: Nano, 2021, 8, 890-912.	2.2	28
1596	Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chemical Society Reviews, 2021, 50, 120-242.	18.7	472
1597	Postsynthetic Modification of a Covalent Organic Framework Achieved via Strain-Promoted Cycloaddition. Journal of the American Chemical Society, 2021, 143, 649-656.	6.6	40
1598	Asymmetric Organocatalysis with Chiral Covalent Organic Frameworks. Organic Materials, 2021, 03, 245-253.	1.0	5
1599	A review of covalent organic framework electrode materials for rechargeable metal-ion batteries. New Carbon Materials, 2021, 36, 1-18.	2.9	23
1600	Ferric acetylacetonate/covalent organic framework composite for high performance photocatalytic oxidation. Green Energy and Environment, 2022, 7, 1281-1288.	4.7	9
1601	Adsorbed Natural Gas Storage for Onboard Applications. Advanced Sustainable Systems, 2021, 5, 2000200.	2.7	16
1602	Recent Advances on Conductive 2D Covalent Organic Frameworks. Small, 2021, 17, e2006043.	5.2	77
1603	Water caltrop shell-derived nitrogen-doped porous carbons with high CO2 adsorption capacity. Biomass and Bioenergy, 2021, 145, 105969.	2.9	87
1604	Storage and separation of methane and carbon dioxide using platinum- decorated activated carbons treated with ammonia. Materials Research Express, 2021, 8, 025503.	0.8	7
1605	Skeleton Engineering of Isostructural 2D Covalent Organic Frameworks: Orthoquinone Redox-Active Sites Enhanced Energy Storage. CCS Chemistry, 2021, 3, 696-706.	4.6	62
1606	Selective adsorption of SF6 in covalent- and metal–organic frameworks. Chinese Journal of Chemical Engineering, 2021, 39, 88-95.	1.7	5
1607	Computational Identification of Connected MOF@COF Materials. Journal of Physical Chemistry C, 2021, 125, 5897-5903.	1.5	12
1608	N-Heterocyclic Carbene Functionalized Covalent Organic Framework for Transesterification of Glycerol with Dialkyl Carbonates. Catalysts, 2021, 11, 423.	1.6	8
1609	Covalent Organic Frameworks: Synthesis, Properties and Applications—An Overview. Polymers, 2021, 13, 970.	2.0	50
1610	Prediction of methane storage in covalent organic frameworks using big-data-mining approach. Chinese Journal of Chemical Engineering, 2021, 39, 286-296.	1.7	4
1611	Surface post-functionalization of COFs by economical strategy via multiple-component one-pot tandem reactions and their application in adsorption of pesticides. Advanced Composites and Hybrid Materials, 2022, 5, 1439-1449.	9.9	23

#	Article	IF	CITATIONS
1612	Highly Porous Cu ₂ O Photocathode via Electrochemical Reconstruction of Dense Thin Films. Journal of the Electrochemical Society, 2021, 168, 032504.	1.3	2
1613	Amino Acids and Peptides Organocatalysts: A Brief Overview on Its Evolution and Applications in Organic Asymmetric Synthesis. Current Organocatalysis, 2021, 8, 126-146.	0.3	6
1614	Pioneering lodine-125-Labeled Nanoscale Covalent Organic Frameworks for Brachytherapy. Bioconjugate Chemistry, 2021, 32, 755-762.	1.8	18
1615	Ag@MIL-101(Cr) Film Substrate with High SERS Enhancement Effect and Uniformity. Journal of Physical Chemistry C, 2021, 125, 7297-7304.	1.5	33
1616	Recent advances of covalent organic frameworks for solid-phase microextraction. TrAC - Trends in Analytical Chemistry, 2021, 137, 116208.	5.8	102
1617	Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. Journal of Membrane Science, 2021, 624, 119122.	4.1	38
1618	CO ₂ Capture by Hydroxylated Azineâ€Based Covalent Organic Frameworks. Chemistry - A European Journal, 2021, 27, 8048-8055.	1.7	21
1619	Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today, 2021, 37, 101059.	6.2	82
1620	Enhanced Methane Delivery in MIL-101(Cr) by Means of Subambient Cooling. Energy & Fuels, 2021, 35, 6898-6908.	2.5	7
1621	Comparison between conventional solvothermal and aqueous solution-based production of UiO-66-NH2: Life cycle assessment, techno-economic assessment, and implications for CO2 capture and storage. Journal of Environmental Chemical Engineering, 2021, 9, 105159.	3.3	33
1622	Structural Characteristics and Environmental Applications of Covalent Organic Frameworks. Energies, 2021, 14, 2267.	1.6	24
1624	Schiff base network-1 incorporated monolithic column for in-tube solid phase microextraction of antiepileptic drugs in human plasma. Talanta, 2021, 226, 122098.	2.9	21
1625	<scp>Spectrumâ€dependent</scp> photonic synapses based on <scp>2D</scp> imine polymers for <scp>powerâ€efficient</scp> neuromorphic computing. InformaÄnÃ-Materiály, 2021, 3, 904-916.	8.5	57
1626	Solid-State Chemical Transformations to Enhance Gas Capture in Benzoxazine-Linked Conjugated Microporous Polymers. Macromolecules, 2021, 54, 5866-5877.	2.2	109
1627	Clustering of carbon dioxide around zinc oxide cluster. Chemical Physics Letters, 2021, 771, 138499.	1.2	3
1628	Photoactive Anthraquinone-Based Host–Guest Assembly for Long-Lived Charge Separation. Journal of Physical Chemistry C, 2021, 125, 10891-10900.	1.5	6
1629	One-step synthesis of N-containing hyper-cross-linked polymers by two crosslinking strategies and their CO2 adsorption and iodine vapor capture. Separation and Purification Technology, 2021, 262, 118352.	3.9	48
1630	Alkylâ€Linked Porphyrin Porous Polymers for Gas Capture and Precious Metal Adsorption. Small Science, 2021, 1, 2000078.	5.8	14

#	Article	IF	CITATIONS
1631	Exploring the methods on improving CH4 delivery performance to surpass the Advanced Research Project Ageney-Energy target. Chinese Journal of Chemical Engineering, 2021, 33, 118-124.	1.7	0
1632	Tuning the Topology of Three-Dimensional Covalent Organic Frameworks via Steric Control: From pts to Unprecedented ljh . Journal of the American Chemical Society, 2021, 143, 7279-7284.	6.6	84
1633	Extensive Screening of Solvent‣inked Porous Polymers through Friedel–Crafts Reaction for Gas Adsorption. Advanced Energy and Sustainability Research, 2021, 2, 2100064.	2.8	8
1634	Covalent Triazine Frameworks Based on the First Pseudo-Octahedral Hexanitrile Monomer via Nitrile Trimerization: Synthesis, Porosity, and CO2 Gas Sorption Properties. Materials, 2021, 14, 3214.	1.3	9
1635	Recent progress in covalent organic frameworks as light-emitting materials. Materials Today Energy, 2021, 20, 100635.	2.5	77
1636	In situ monitoring of mechanochemical covalent organic framework formation reveals templating effect of liquid additive. CheM, 2021, 7, 1639-1652.	5.8	36
1637	Palladium Nanoparticles on Covalent Organic Framework Supports as Catalysts for Suzuki–Miyaura Cross-Coupling Reactions. ACS Applied Nano Materials, 2021, 4, 6239-6249.	2.4	29
1638	The Impact of Ionic Liquid Loading in Three-Dimensional Carbon Nanotube Networks on the Separation of CO2/CH4 Fluid Mixtures: Insights from Molecular Simulations. Journal of Physical Chemistry C, 2021, 125, 13508-13522.	1.5	2
1639	Identifying Promising Covalent-Organic Frameworks for Decarburization and Desulfurization from Biogas via Computational Screening. ACS Sustainable Chemistry and Engineering, 2021, 9, 8858-8867.	3.2	10
1640	Recent Development of Electrocatalytic CO ₂ Reduction Application to Energy Conversion. Small, 2021, 17, e2100323.	5.2	53
1641	Recent Advances on Electrocatalysis Using Pristinely Conductive Metalâ€Organic Frameworks and Covalent Organic Frameworks. ChemElectroChem, 2021, 8, 2764-2777.	1.7	19
1642	Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications. Giant, 2021, 6, 100054.	2.5	142
1643	Sorbents for the Capture of CO ₂ and Other Acid Gases: A Review. Industrial & Engineering Chemistry Research, 2021, 60, 9313-9346.	1.8	55
1644	High capacity gas capture and selectivity properties of triazatruxene-based ultramicroporous hyper-crosslinked covalent polymer. Turkish Journal of Chemistry, 2021, 45, 868-878.	0.5	2
1645	Manifestation of an Enhanced Photoreduction of CO ₂ to CO over the <i>In Situ</i> Synthesized rGO–Covalent Organic Framework under Visible Light Irradiation. ACS Applied Energy Materials, 2021, 4, 6005-6014.	2.5	30
1646	Singleâ€Phase Covalent Organic Framework Staggered Stacking Nanosheet Membrane for CO ₂ ‣elective Separation. Angewandte Chemie - International Edition, 2021, 60, 19047-19052.	7.2	109
1647	Structure Dependent Water Transport in Membranes Based on Two-Dimensional Materials. Industrial & Engineering Chemistry Research, 2021, 60, 10917-10959.	1.8	12
1648	Nickel Complexes and Carbon Dots for Efficient Lightâ€Ðriven Hydrogen Production. European Journal of Inorganic Chemistry, 2021, 2021, 3097-3103.	1.0	6

#	Article	IF	CITATIONS
1649	Truxene/triazatruxene-based conjugated microporous polymers with flexible@rigid mutualistic symbiosis for efficient CO2 storage. Journal of CO2 Utilization, 2021, 49, 101550.	3.3	14
1650	Heat Transfer Mechanisms and Tunable Thermal Conductivity Anisotropy in Two-Dimensional Covalent Organic Frameworks with Adsorbed Gases. Nano Letters, 2021, 21, 6188-6193.	4.5	35
1651	The Influence of Acetic Acid on the Properties of Microporous Metal–organic Framework MIL-88a at Microfluidic Conditions and room Temperature. Nanobiotechnology Reports, 2021, 16, 488-496.	0.2	2
1652	High-Temperature Proton Conduction in Covalent Organic Frameworks Interconnected with Nanochannels for Reverse Electrodialysis. ACS Applied Materials & Interfaces, 2021, 13, 33437-33448.	4.0	8
1653	<scp>Imineâ€based</scp> covalent organic framework as photocatalyst for <scp>visibleâ€lightâ€induced</scp> atom transfer radical polymerization. Journal of Polymer Science, 2021, 59, 2036-2044.	2.0	6
1654	Highly efficient chlorinated solvent uptake by novel covalent organic networks via thiol-ene chemistry. Polymer Bulletin, 0, , 1.	1.7	1
1655	Porphyrin- and phthalocyanine-based porous organic polymers: From synthesis to application. Coordination Chemistry Reviews, 2021, 439, 213875.	9.5	147
1656	Controllable Synthesis and Performance Modulation of 2D Covalent–Organic Frameworks. Small, 2021, 17, e2100918.	5.2	27
1657	CdS and CdSe nanoparticles activated 1D TiO2 heterostructure nanoarray photoelectrodes for enhanced photoelectrocatalytic water splitting. International Journal of Hydrogen Energy, 2021, 46, 26381-26390.	3.8	21
1658	Singleâ€Phase Covalent Organic Framework Staggered Stacking Nanosheet Membrane for CO 2 â€Selective Separation. Angewandte Chemie, 2021, 133, 19195-19200.	1.6	16
1659	Potential applications of porous organic polymers as adsorbent for the adsorption of volatile organic compounds. Journal of Environmental Sciences, 2021, 105, 184-203.	3.2	57
1660	In situ room-temperature preparation of a covalent organic framework as stationary phase for high-efficiency capillary electrochromatographic separation. Journal of Chromatography A, 2021, 1649, 462239.	1.8	19
1661	Recent Progress in Externalâ€ S timulusâ€Responsive 2D Covalent Organic Frameworks. Advanced Materials, 2022, 34, e2101175.	11.1	148
1662	The Current Status of MOF and COF Applications. Angewandte Chemie - International Edition, 2021, 60, 23975-24001.	7.2	450
1663	Covalent Organic Framework Membranes for Efficient Chemicals Separation. Small Structures, 2021, 2, 2100061.	6.9	48
1664	Recent Progress in Nanoscale Covalent Organic Frameworks for Cancer Diagnosis and Therapy. Nano-Micro Letters, 2021, 13, 176.	14.4	42
1665	Hotpots and trends of covalent organic frameworks (COFs) in the environmental and energy field: Bibliometric analysis. Science of the Total Environment, 2021, 783, 146838.	3.9	42
1666	Unveiling stimulation fluid-driven alterations in shale pore architecture through combined interpretation of TD-NMR and multi-component gas adsorption. Fuel, 2021, 297, 120744.	3.4	6

# 1667	ARTICLE Covalent organic framework-based materials: Synthesis, modification, and application in	IF 9.5	Citations 91
1668	environmental remediation. Coordination Chemistry Reviews, 2021, 441, 213989. Tetraphenyladamantane-based microporous polyaminals for efficient adsorption of CO2, H2 and organic vapors. Microporous and Mesoporous Materials, 2021, 323, 111206.	2.2	16
1669	Metalloporphyrin and Ionic Liquid-Functionalized Covalent Organic Frameworks for Catalytic CO ₂ Cycloaddition via Visible-Light-Induced Photothermal Conversion. Inorganic Chemistry, 2021, 60, 12591-12601.	1.9	43
1670	Combined GCMC, MD, and DFT Approach for Unlocking the Performances of COFs for Methane Purification. Industrial & Engineering Chemistry Research, 2021, 60, 12999-13012.	1.8	14
1671	Controllable and Rapid Synthesis of Conjugated Microporous Polymer Membranes via Interfacial Polymerization for Ultrafast Molecular Separation. Chemistry of Materials, 2021, 33, 7047-7056.	3.2	35
1672	The Magnetism of Metal–Organic Frameworks for Spintronics. Bulletin of the Korean Chemical Society, 2021, 42, 1170-1183.	1.0	18
1673	Hydrogen Economy and Role of Hythane as a Bridging Solution: A Perspective Review. Energy & Fuels, 2021, 35, 15424-15454.	2.5	33
1674	Covalent organic frameworks: Advances in synthesis and applications. Materials Today Communications, 2021, 28, 102612.	0.9	18
1675	Surfactants Mediated Synthesis of Highly Crystalline Thin Films of Imine‣inked Covalent Organic Frameworks on Water Surface. Chinese Journal of Chemistry, 0, , .	2.6	11
1676	Nitrogen and sulfur co-doped porous carbons from polyacrylonitrile fibers for CO2 adsorption. Journal of the Taiwan Institute of Chemical Engineers, 2021, 128, 148-155.	2.7	19
1677	Twoâ€dimensional Covalent Organic Frameworks for Electrochromic Switching. Chemistry - an Asian Journal, 2021, 16, 3055-3067.	1.7	12
1678	A Solventâ€Polarityâ€Induced Interface Selfâ€Assembly Strategy towards Mesoporous Triazineâ€Based Carbon Materials. Angewandte Chemie - International Edition, 2021, 60, 24299-24305.	7.2	35
1679	Covalent Organic Frameworks for Simultaneous CO2 Capture and Selective Catalytic Transformation. Catalysts, 2021, 11, 1133.	1.6	16
1680	In situ synthesis of 2D/2D MXene-COF heterostructure anchored with Ag nanoparticles for enhancing Schottky photocatalytic antibacterial efficiency under visible light. Journal of Colloid and Interface Science, 2022, 608, 735-748.	5.0	39
1681	A Solvent Polarity Induced Interface Selfâ€assembly Strategy towards Mesoporous Triazineâ€based Carbon Materials. Angewandte Chemie, 0, , .	1.6	2
1682	3D Hydrazoneâ€Functionalized Covalent Organic Frameworks as pHâ€Triggered Rotary Switches. Small, 2021, 17, e2102630.	5.2	32
1683	Synthesis of MXene/COF/Cu2O heterojunction for photocatalytic bactericidal activity and mechanism evaluation. Chemical Engineering Journal, 2022, 430, 132663.	6.6	25
1684	Covalent Organic Polymer Nanoparticle-Supported Monolithic Foams for Separation of Nitrotoluene Isomers. ACS Applied Nano Materials, 2021, 4, 10864-10876.	2.4	3

#	Article	IF	CITATIONS
1685	Interlayer Interactions as Design Tool for Large-Pore COFs. Journal of the American Chemical Society, 2021, 143, 15711-15722.	6.6	60
1686	Synthesis of Two-Dimensional C–C Bonded Truxene-Based Covalent Organic Frameworks by Irreversible BrÃ,nsted Acid-Catalyzed Aldol Cyclotrimerization. Research, 2021, 2021, 9790705.	2.8	4
1687	Electrochemical Immunosensor for Cardiac Troponin I Detection Based on Covalent Organic Framework and Enzyme-Catalyzed Signal Amplification. Analytical Chemistry, 2021, 93, 13572-13579.	3.2	68
1688	Phosphine-based covalent organic framework for highly efficient iodine capture. Microporous and Mesoporous Materials, 2021, 325, 111351.	2.2	32
1689	Two-dimensional imine covalent organic frameworks for methane and ethane separation: A GCMC simulation study. Microporous and Mesoporous Materials, 2021, 326, 111386.	2.2	5
1690	Benzothiazole-Based Covalent Organic Frameworks with Different Symmetrical Combinations for Photocatalytic CO ₂ Conversion. Chemistry of Materials, 2021, 33, 8705-8711.	3.2	38
1691	Designs and applications of multi-functional covalent organic frameworks in rechargeable batteries. Energy Storage Materials, 2021, 41, 354-379.	9.5	52
1692	Biomass based N-doped porous carbons as efficient CO2 adsorbents and high-performance supercapacitor electrodes. Separation and Purification Technology, 2021, 275, 119204.	3.9	49
1693	Covalent organic framework as an efficient fluorescence-enhanced probe to detect aluminum ion. Dyes and Pigments, 2021, 195, 109710.	2.0	29
1694	State of the art two-dimensional covalent organic frameworks: Prospects from rational design and reactions to applications for advanced energy storage technologies. Coordination Chemistry Reviews, 2021, 447, 214152.	9.5	73
1695	High-performance adsorption of chromate by hydrazone-linked guanidinium-based ionic covalent organic frameworks: Selective ion exchange. Separation and Purification Technology, 2021, 274, 118993.	3.9	35
1696	Multifunctional triphenylbenzene-based polyimide covalent organic framework with absolute eclipsed stacking models for fluorescence detecting of Fe3+ and electrochemical detecting of Pb2+. Microchemical Journal, 2021, 170, 106663.	2.3	11
1697	Density functional studies on the conversion of hydrogen cyanide to vinyl isocyanide using carbon-supported platinum catalysts. Computational and Theoretical Chemistry, 2021, 1205, 113442.	1.1	2
1698	Covalent organic frameworks constructed by flexible alkyl amines for efficient gold recovery from leaching solution of e-waste. Chemical Engineering Journal, 2021, 426, 131865.	6.6	56
1699	Design of terbium (III)-functionalized covalent organic framework as a selective and sensitive turn-on fluorescent switch for ochratoxin A monitoring. Journal of Hazardous Materials, 2022, 422, 126927.	6.5	25
1700	The sorption and separation mechanism of CO2 in covalent organic frameworks with different aligned structures: DFT and molecular dynamic simulations. Applied Surface Science, 2022, 571, 151355.	3.1	14
1701	Accelerating discovery of COFs for CO2 capture and H2 purification using structurally guided computational screening. Chemical Engineering Journal, 2022, 427, 131574.	6.6	26
1702	Surfactant-free synthesis of covalent organic framework nanospheres in water at room temperature. Journal of Colloid and Interface Science, 2022, 606, 1333-1339.	5.0	19

# 1703	ARTICLE Chelating effect between uranyl and pyridine N containing covalent organic frameworks: A combined experimental and DFT approach. Journal of Colloid and Interface Science, 2022, 606, 1617-1626.	IF 5.0	Citations
1704	Covalent organic framework-based membranes for liquid separation. Organic Chemistry Frontiers, 2021, 8, 3943-3967.	2.3	32
1705	Selective oxidation of bio-based platform molecules and their conversion products over metal nanoparticle catalysts: a review. Reaction Chemistry and Engineering, 2021, 6, 418-440.	1.9	9
1706	Covalent organic frameworks for optical applications. Aggregate, 2021, 2, e24.	5.2	41
1707	Unraveling the effect of defects, domain size, and chemical doping on photophysics and charge transport in covalent organic frameworks. Chemical Science, 2021, 12, 8373-8384.	3.7	23
1708	Flexible luminescent non-lanthanide metal–organic frameworks as small molecules sensors. Dalton Transactions, 2021, 50, 14513-14531.	1.6	22
1709	CO2 adsorption with covalent organic framework (COF). , 2021, , 53-86.		0
1710	Characterization of hypercrosslinked polymer adsorbent based on carbazole to achieve higher <scp>CO₂</scp> capture. Environmental Progress and Sustainable Energy, 2021, 40, e13586.	1.3	22
1711	Investigation of <i>ab initio</i> nonadiabatic molecular dynamics of excited carriers in condensed matter systems. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 177101.	0.2	3
1712	Synthesis and use of new porous metal complexes containing a fusidate moiety as gas storage media. Korean Journal of Chemical Engineering, 2021, 38, 179-186.	1.2	3
1713	Pitfalls in the synthesis of polyimide-linked two-dimensional covalent organic frameworks. Journal of Materials Chemistry A, 2021, 9, 15301-15309.	5.2	9
1714	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	18.7	461
1715	A Series of Metal–Organic Frameworks: Syntheses, Structures and Luminescent Detection, Gas Adsorption, Magnetic Properties. Crystal Growth and Design, 2021, 21, 869-885.	1.4	36
1716	Tunability of the Electronic Properties of Covalent Organic Frameworks. ACS Applied Electronic Materials, 2021, 3, 720-732.	2.0	26
1717	Mehr als nur ein Netzwerk: Strukturierung retikulÃ re r Materialien im Nanoâ€ , Meso―und Volumenbereich. Angewandte Chemie, 2020, 132, 22534-22556.	1.6	8
1718	Beyond Frameworks: Structuring Reticular Materials across Nanoâ€, Mesoâ€, and Bulk Regimes. Angewandte Chemie - International Edition, 2020, 59, 22350-22370.	7.2	60
1719	Threeâ€Ðimensional Chemically Stable Covalent Organic Frameworks through Hydrophobic Engineering. Angewandte Chemie - International Edition, 2020, 59, 19633-19638.	7.2	49
1720	Oneâ€pot Facile Synthesis of Multifunctional Conjugated Microporous Polymers via Suzukiâ€Miyaura Coupling Reaction. ChemistrySelect, 2020, 5, 1410-1415.	0.7	5

#	Article	IF	CITATIONS
1721	Organic Porous Polymer Materials: Design, Preparation, and Applications. Engineering Materials and Processes, 2017, , 71-150.	0.2	1
1722	Covalent Organic Frameworks for Catalysis. EnergyChem, 2020, 2, 100035.	10.1	129
1723	Remarkable isosteric heat of hydrogen adsorption on Cu(I)-exchanged SSZ-39. International Journal of Hydrogen Energy, 2020, 45, 34972-34982.	3.8	15
1724	Controlled synthesis of core-shell composites with uniform shells of a covalent organic framework. Inorganic Chemistry Communication, 2019, 101, 160-163.	1.8	28
1725	Asymmetrical Exchange of Monomers for Constructing Hollow Nanoparticles and Antifragile Monoliths. Matter, 2021, 4, 618-634.	5.0	22
1726	UiO-66 type MOFs with mixed-linkers - 1,4-Benzenedicarboxylate and 1,4-naphthalenedicarboxylate: Effect of the modulator and post-synthetic exchange. Microporous and Mesoporous Materials, 2020, 305, 110324.	2.2	33
1727	Vastly improved solar-light induced water splitting catalyzed by few-layer MoS2 on Au nanoparticles utilizing localized surface plasmon resonance. Nano Energy, 2020, 77, 105267.	8.2	23
1728	Highly Efficient Nitrogen-Doped Porous Carbonaceous CO ₂ Adsorbents Derived from Biomass. Energy & Fuels, 2021, 35, 1620-1628.	2.5	67
1729	Ultramicroporous Carbons Derived from Semi-Cycloaliphatic Polyimide with Outstanding Adsorption Properties for H ₂ , CO ₂ , and Organic Vapors. Journal of Physical Chemistry C, 2017, 121, 22753-22761.	1.5	17
1730	Novel Porous Organic Polymer for the Concurrent and Selective Removal of Hydrogen Sulfide and Carbon Dioxide from Natural Gas Streams. ACS Applied Materials & Interfaces, 2020, 12, 47984-47992.	4.0	29
1731	Novel One-Dimensional Covalent Organic Framework as a H ⁺ Fluorescent Sensor in Acidic Aqueous Solution. ACS Applied Materials & Interfaces, 2021, 13, 1145-1151.	4.0	58
1732	CO2 Capture by Adsorption Processes. RSC Energy and Environment Series, 2019, , 106-167.	0.2	2
1733	Synthesis of ordered Ca- and Li-doped mesoporous silicas for H2 and CO2 adsorption at ambient temperature and pressure. RSC Advances, 2018, 8, 35294-35305.	1.7	7
1734	Crystal structure of (2′,3,6′-trichlorobiphenyl-2-yl)boronic acid tetrahydrofuran monosolvate. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 1471-1474.	0.2	2
1736	Synthesis of amphiphilic poly(ethylene glycol)- <i>block</i> -poly(methyl methacrylate) containing trityl ether acid cleavable junction group and its self-assembly into ordered nanoporous thin films. E-Polymers, 2020, 20, 111-121.	1.3	5
1737	Computational Screening of Covalent Organic Frameworks for Hydrogen Storage. Journal of the Turkish Chemical Society, Section A: Chemistry, 2020, 7, 65-76.	0.4	3
1738	One-Pot Synthesis, Crystal Structures and Thermal Properties of Two Three-Dimensional Cobalt(II) Complexes. Bulletin of the Korean Chemical Society, 2012, 33, 1929-1933.	1.0	8
1739	New Covalent Organic Square Lattice Based on Porphyrin and Tetraphenyl Ethylene Building Blocks toward High-Performance Supercapacitive Energy Storage. Chemistry of Materials, 2021, 33, 8512-8523.	3.2	40

#	Article	IF	CITATIONS
1740	Controllable Synthesis of 1, 3, 5-tris (1H-benzo[d]imidazole-2-yl) Benzene-Based MOFs. Applied Sciences (Switzerland), 2021, 11, 9856.	1.3	9
1741	2D–2D SnS ₂ /Covalent Organic Framework Heterojunction Photocatalysts for Highly Enhanced Solar-Driven Hydrogen Evolution without Cocatalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 14238-14248.	3.2	40
1742	The interaction of hydrogen with heteroatoms (B, N)-doped porous graphene: A computational study. Chemical Papers, 2022, 76, 1009-1017.	1.0	0
1743	Tunable Cage-Based Three-Dimensional Covalent Organic Frameworks. CCS Chemistry, 2022, 4, 3095-3105.	4.6	38
1744	ZIF-8 in-situ growth on amidoximerized polyacrylonitrile beads for uranium sequestration in wastewater and seawater. Journal of Environmental Chemical Engineering, 2021, 9, 106490.	3.3	21
1745	An overview on covalent organic frameworks: synthetic reactions and miscellaneous applications. Materials Today Chemistry, 2021, 22, 100573.	1.7	10
1748	Turning Commercial Ceramic Membranes into a First Stage of Membranes for Post-Combustion CO2 Separation. Journal of Membrane Science & Technology, 2015, 05, .	0.5	0
1749	Density functional theory study of hydrogen spillover mechanism on Pd doped covalent organic frameworks COF-108. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 157302.	0.2	1
1750	Porphyrin-Based Chemistry for Carbon Capture and Sequestration. , 0, , 199-221.		0
	Crystal structure of a		

IF

ARTICLE

1761 Hydrogen storage. , 2022, , 455-486.

23

CITATIONS

1762	Atomistic insight into 2D COFs as antiviral agents against SARS-CoV-2. Materials Chemistry and Physics, 2022, 276, 125382.	2.0	3
1763	Tailoring the pore structure modified with functional groups for superior CO2 adsorption capacity and the selectivity of separation. Fuel, 2022, 309, 122175.	3.4	20
1764	(<i>E</i>)-1,2-Diphenylethene-based conjugated nanoporous polymers for a superior adsorptive removal of dyes from water. New Journal of Chemistry, 2021, 45, 21834-21843.	1.4	14
1766	Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy. Chemical Communications, 2021, 57, 12417-12435.	2.2	18
1767	Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO ₂ Valorization. Advanced Energy Materials, 2021, 11, 2102767.	10.2	35
1768	Covalent organic framework-based porous materials for harmful gas purification. Chemosphere, 2022, 291, 132795.	4.2	17
1769	Facile fabrication of hollow tubular covalent organic frameworks using decomposable monomer as building block. RSC Advances, 2021, 11, 20899-20910.	1.7	5
1770	Hydrogen Storage in Pure and Boron-Substituted Nanoporous Carbons-Numerical and Experimental Perspective. Nanomaterials, 2021, 11, .	1.9	0
1771	Applications of covalent organic framework–based nanomaterials as superior adsorbents in wastewater treatment. , 2022, , 127-159.		0
1772	Ultrafast ion-transport at hierarchically porous covalent-organic membrane interface for efficient power production. Nano Energy, 2022, 92, 106690.	8.2	10
1773	Covalently anchoring covalent organic framework on carbon nanotubes for highly efficient electrocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2022, 303, 120897.	10.8	62
1774	Photocatalytic hydrogen evolution by degradation of organic pollutants over quantum dots doped nitrogen carbide. Chemosphere, 2022, 291, 132873.	4.2	7
1775	Building Unit Extractor for Metal–Organic Frameworks. Journal of Chemical Information and Modeling, 2021, 61, 5827-5840.	2.5	7
1776	Three-Dimensional Covalent Organic Frameworks with hea Topology. Chemistry of Materials, 2021, 33, 9618-9623.	3.2	45
1777	Resistive Memory Devices Based on Reticular Materials for Electrical Information Storage. ACS Applied Materials & amp; Interfaces, 2021, 13, 56777-56792.	4.0	19
1778	Gas sorption and selectivity study of N,N,N′,N′-tetraphenyl-1,4-phenylenediamine based microporous hyper-crosslinked polymers. Microporous and Mesoporous Materials, 2022, 330, 111567.	2.2	8
1779	First-principles study on methane storage properties of porous graphene modified with Mn. Applied	1.1	3

	CITATION R	CITATION REPORT	
# 1780	ARTICLE Two-Dimensional Polymers and Polymerizations. Chemical Reviews, 2022, 122, 442-564.	IF 23.0	CITATIONS
1781	Pillararene-based molecular-scale porous materials. Chemical Communications, 2021, 57, 13429-13447.	2.2	47
1782	Synthesis methods of microporous organic polymeric adsorbents: a review. Polymer Chemistry, 2021, 12, 6962-6997.	1.9	11
1783	Covalent organic frameworks as multifunctional materials for chemical detection. Chemical Society Reviews, 2021, 50, 13498-13558.	18.7	114
1784	Chapter 2. Inorganic Materials in Drug Delivery. Inorganic Materials Series, 2021, , 14-126.	0.5	0
1785	Solvothermal depolymerization and recrystallization of imine-linked two-dimensional covalent organic frameworks. Chemical Science, 2021, 12, 16014-16022.	3.7	14
1786	Covalent Organic Frameworks. RSC Smart Materials, 2021, , 226-343.	0.1	0
1787	Covalent organic frameworks: Design and applications in electrochemical energy storage devices. InformaÄnÄ-Materiály, 2022, 4, .	8.5	31
1788	Synthesis and Characterization of Zn–Organic Frameworks Containing Chitosan as a Low-Cost Inhibitor for Sulfuric-Acid-Induced Steel Corrosion: Practical and Computational Exploration. Polymers, 2022, 14, 228.	2.0	20
1789	Tailoring morphological and chemical properties of covalent triazine frameworks for dual CO2 and H2 adsorption. International Journal of Hydrogen Energy, 2022, 47, 8434-8445.	3.8	12
1790	Hydrogen Storage in Pure and Boron-Substituted Nanoporous Carbons—Numerical and Experimental Perspective. Nanomaterials, 2021, 11, 2173.	1.9	3
1791	Porous Organic Polymers Derived from Ferrocene and Tetrahedral Silicon-Centered Monomers for Carbon Dioxide Sorption. Polymers, 2022, 14, 370.	2.0	6
1792	Hydrogen from water electrolysis. , 2022, , 559-591.		13
1793	MoS ₂ –Covalent Organic Framework Composite as a Bifunctional Supporter for the Determination of Trace Nickel by Photochemical Vapor Generation–Microplasma Optical Emission Spectrometry. Analytical Chemistry, 2022, 94, 2288-2297.	3.2	20
1794	Porous Assembly of <scp>Metallo‣upramolecule</scp> and Polyoxometalate via Ionic Complexation with Vapor Sorption Properties. Chinese Journal of Chemistry, 2022, 40, 813-818.	2.6	10
1796	2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Opticalâ€Electricalâ€Magnetic Functionalities. Advanced Materials, 2022, 34, e2102290.	11.1	96
1797	A Facile, Efficient, and General Synthetic Method to Amide-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 1138-1143.	6.6	89
1798	Light-induced switchable adsorption in azobenzene- and stilbene-based porous materials. Trends in Chemistry, 2022, 4, 32-47.	4.4	11

#	Article	IF	CITATIONS
1799	Single-Crystalline Covalent Organic Frameworks as High-Performance Liquid Chromatographic Stationary Phases for Positional Isomer Separation. ACS Applied Materials & Interfaces, 2022, 14, 9754-9762.	4.0	28
1800	Dopant-Free Main Group Elements Supported Covalent Organic–Inorganic Hybrid Conducting Polymer for Sodium-Ion Battery Application. ACS Applied Energy Materials, 2022, 5, 557-566.	2.5	8
1801	Facile construction of fully sp2-carbon conjugated two-dimensional covalent organic frameworks containing benzobisthiazole units. Nature Communications, 2022, 13, 100.	5.8	107
1802	Supramolecular Reinforcement of a Large-Pore 2D Covalent Organic Framework. Journal of the American Chemical Society, 2022, 144, 2468-2473.	6.6	24
1803	Facile Fabrication of Functional Mesoporous Polymer Nanospheres for CO2 Capture. Industrial & Engineering Chemistry Research, 2022, 61, 1140-1147.	1.8	3
1804	Construction of bifunctional electrochemical biosensors for the sensitive detection of the SARS-CoV-2 N-gene based on porphyrin porous organic polymers. Dalton Transactions, 2022, 51, 2094-2104.	1.6	21
1805	Bimetallic docked covalent organic frameworks with high catalytic performance towards coupling/oxidation cascade reactions. RSC Advances, 2022, 12, 4874-4882.	1.7	10
1806	Piperazine-Linked Covalent Organic Frameworks with High Electrical Conductivity. Journal of the American Chemical Society, 2022, 144, 2873-2878.	6.6	106
1807	Large-Area 2D Covalent Organic Framework Membranes with Tunable Single-Digit Nanopores for Predictable Mass Transport. ACS Nano, 2022, 16, 2407-2418.	7.3	65
1808	Structural design and determination of 3D covalent organic frameworks. Trends in Chemistry, 2022, 4, 437-450.	4.4	51
1809	Highly Negative Poisson's Ratio in Thermally Conductive Covalent Organic Frameworks. ACS Nano, 2022, 16, 2843-2851.	7.3	17
1810	Porous materials for hydrogen storage. CheM, 2022, 8, 693-716.	5.8	143
1811	Phase Transition and Criticality of Methane Confined in Nanopores. Langmuir, 2022, 38, 2046-2054.	1.6	14
1812	The recent research progress and application of nanoparticles and ions supporting by covalent organic frameworks. Microporous and Mesoporous Materials, 2022, 335, 111701.	2.2	10
1813	Porous organic polymers for high-performance supercapacitors. Chemical Society Reviews, 2022, 51, 3181-3225.	18.7	114
1814	An efficient factor for fast screening of high-performance two-dimensional metal–organic frameworks towards catalyzing the oxygen evolution reaction. Chemical Science, 2022, 13, 4397-4405.	3.7	11
1815	An efficient modulated synthesis of zirconium metal–organic framework UiO-66. RSC Advances, 2022, 12, 6083-6092.	1.7	13
1817	Covalent organic framework-based materials as electrocatalysts for fuel cells. , 2022, , 229-250.		1

#	Article	IF	CITATIONS
1818	Chitosan-Coated Fluoro-Functionalized Covalent Organic Framework as Adsorbent for Efficient Removal of Per- and Polyfluoroalkyl Substances from Water. SSRN Electronic Journal, 0, , .	0.4	0
1819	Research Progresses of Metal-organic Framework HKUST-1-Based Membranes in Gas Separations [※] . Acta Chimica Sinica, 2022, 80, 340.	0.5	6
1820	Nonplanar Rhombus and Kagome 2D Covalent Organic Frameworks from Distorted Aromatics for Electrical Conduction. Journal of the American Chemical Society, 2022, 144, 5042-5050.	6.6	54
1821	Structure–performance correlation guided applications of covalent organic frameworks. Materials Today, 2022, 53, 106-133.	8.3	76
1822	Oxygen-Terminated Nb ₂ CO ₂ MXene with Interfacial Self-Assembled COF as a Bifunctional Catalyst for Durable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2022, 14, 10738-10746.	4.0	22
1823	Observing polymerization in 2D dynamic covalent polymers. Nature, 2022, 603, 835-840.	13.7	48
1824	Two-dimensional Covalent Organic Frameworks: Tessellation by Synthetic Art. Chemical Research in Chinese Universities, 2022, 38, 265-274.	1.3	3
1825	Preparation of ultramicroporous volume carbon using high-speed ball-milling and its selective adsorption of CH4 in low-concentration coalbed methane. Journal of Materials Science, 2022, 57, 6914-6928.	1.7	5
1826	Covalent Organic Frameworks with Record Pore Apertures. Journal of the American Chemical Society, 2022, 144, 5145-5154.	6.6	85
1827	Syntheses of Covalent Organic Frameworks via a Oneâ€Pot Suzuki Coupling and Schiff's Base Reaction for C ₂ H ₄ /C ₃ H ₆ Separation. Angewandte Chemie, 2022, 134, .	1.6	2
1828	Sustainable building materials employing solid diamines as CO2 sorbents. Korean Journal of Chemical Engineering, 2022, 39, 1975-1980.	1.2	2
1829	A Two-dimensional Dual-pore Covalent Organic Framework for Efficient Iodine Capture. Chemical Research in Chinese Universities, 2022, 38, 472-477.	1.3	2
1830	Syntheses of Covalent Organic Frameworks via a Oneâ€Pot Suzuki Coupling and Schiff's Base Reaction for C ₂ H ₄ /C ₃ H ₆ Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
1831	Ferrocene-based hypercrosslinked polymers derived from phenolic polycondensation with unexpected H2 adsorption capacity. Materials Today Chemistry, 2022, 24, 100854.	1.7	7
1832	2D nanosheets seeding layer modulated covalent organic framework membranes for efficient desalination. Desalination, 2022, 532, 115753.	4.0	26
1833	Conductive properties of triphenylene MOFs and COFs. Coordination Chemistry Reviews, 2022, 460, 214459.	9.5	32
1834	Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy. Chemical Research in Chinese Universities, 2022, 38, 402-408.	1.3	7
1835	A Nitrogen, Sulfur co-Doped Porphyrin-based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction. Chemical Research in Chinese Universities, 2022, 38, 167-172.	1.3	11

#	Article	IF	CITATIONS
1836	Photocatalytic Hydrogen Evolution from Water Splitting Using Core-Shell Structured Cu/ZnS/COF Composites. Nanomaterials, 2021, 11, 3380.	1.9	12
1837	Microporous Carbon and Carbon/Metal Composite Materials Derived from Bio-Benzoxazine-Linked Precursor for CO2 Capture and Energy Storage Applications. International Journal of Molecular Sciences, 2022, 23, 347.	1.8	54
1838	Review of Graphitic Carbon Nitride and Its Composite Catalysts for Selective Reduction of CO ₂ . ACS Applied Nano Materials, 2021, 4, 12845-12890.	2.4	37
1839	Covalent organic frameworks as promising adsorbent paradigm for environmental pollutants from aqueous matrices: Perspective and challenges. Science of the Total Environment, 2022, 833, 155279.	3.9	35
1840	Covalent Organic Frameworks for Chemical and Biological Sensing. Molecules, 2022, 27, 2586.	1.7	22
1841	Synthesis and Characterization of a Crystalline Imine-Based Covalent Organic Framework with Triazine Node and Biphenyl Linker and Its Fluorinated Derivate for CO2/CH4 Separation. Materials, 2022, 15, 2807.	1.3	9
1842	Electrochemical performance of metal-organic framework MOF(Ni) doped graphene. International Journal of Hydrogen Energy, 2022, 47, 16741-16749.	3.8	23
1845	Chitosan Containing Nano Zn-Organic Framework: Synthesis, Characterization and Biological Activity. Polymers, 2022, 14, 1276.	2.0	3
1846	CO2 capture from the atmospheric air using nanomaterials. , 2022, , 257-278.		0
1847	A three-dimensional polycyclic aromatic hydrocarbon based covalent organic framework doped with iodine for electrical conduction. Chinese Chemical Letters, 2023, 34, 107454.	4.8	6
1848	Azo-Linked Porous Organic Polymers for Selective Carbon Dioxide Capture and Metal Ion Removal. ACS Omega, 2022, 7, 14535-14543.	1.6	13
1849	Covalent Organic Frameworks-based Nanocomposites for Oxygen reduction reaction. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102, 477-485.	0.9	2
1850	Pore Size Dictates Anisotropic Thermal Conductivity of Two-Dimensional Covalent Organic Frameworks with Adsorbed Gases. ACS Applied Materials & Interfaces, 2022, 14, 21687-21695.	4.0	16
1851	A magnetic covalent organic framework as selective adsorbent for preconcentration of multi strobilurin fungicides in foods. Food Chemistry, 2022, 392, 133190.	4.2	8
1852	Efficient N-Doped Porous Carbonaceous CO ₂ Adsorbents Derived from Commercial Urea-Formaldehyde Resin. Energy & Fuels, 2022, 36, 5825-5832.	2.5	54
1853	Kadsura-Shaped Covalent–Organic Framework Nanostructures for the Sensitive Detection and Removal of 2,4,6-Trinitrophenol. ACS Applied Nano Materials, 2022, 5, 6422-6429.	2.4	19
1854	Chitosan-coated fluoro-functionalized covalent organic framework as adsorbent for efficient removal of per- and polyfluoroalkyl substances from water. Separation and Purification Technology, 2022, 294, 121195.	3.9	18
1855	ZnO/COF S-scheme heterojunction for improved photocatalytic H2O2 production performance. Chemical Engineering Journal, 2022, 444, 136584.	6.6	94

#	Article	IF	CITATIONS
1856	Carboxymethyl Cellulose/Zn-Organic Framework Down-Regulates Proliferation and Up-Regulates Apoptosis and DNA Damage in Colon and Lung Cancer Cell Lines. Polymers, 2022, 14, 2015.	2.0	13
1857	Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective CO2 adsorbents. Journal of Environmental Sciences, 2023, 125, 533-543.	3.2	66
1858	Magnetic phenolic resin coreâ€shell structure derived carbon microspheres for ultrafast magnetic solidâ€phase extraction of triazine herbicides. Journal of Separation Science, 2022, 45, 2687-2698.	1.3	7
1859	Dibenzylidene- <i>s</i> -indacenetetraone Linked <i>n</i> -Type Semiconducting Covalent Organic Framework via Aldol Condensation. , 2022, 4, 1154-1159.		4
1860	Polyimide-Based Covalent Organic Framework as a Photocurrent Enhancer for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 25466-25477.	4.0	10
1861	Construction of a Hollow Spherical Covalent Organic Framework with Olefin and Imine Dual Linkages Based on Orthogonal Reactions. Chemistry of Materials, 2022, 34, 5249-5257.	3.2	20
1862	2d Covalent Organic Framework-Based Core-Shell Structures for High-Performance Solar-Driven Steam Generation. SSRN Electronic Journal, 0, , .	0.4	0
1863	One-Pot Synthesis of Rubber Seed Shell-Derived N-Doped Ultramicroporous Carbons for Efficient CO2 Adsorption. Nanomaterials, 2022, 12, 1889.	1.9	3
1864	Covalent Organic Frameworksâ€Based Membranes as Promising Modalities from Preparation to Separation Applications: An Overview. Chemical Record, 2022, 22, .	2.9	10
1865	Strategies for the Improvement of Hydrogen Physisorption in Metal-Organic Frameworks and Advantages of Flexibility for the Enhancement. Journal of Molecular and Engineering Materials, 2022, 10, .	0.9	2
1866	Hetero-porphyrin based channel for separation of proton isotope: A density functional theory study. Microporous and Mesoporous Materials, 2022, 339, 111995.	2.2	1
1867	Synthesis of potassium Bitartrate-derived porous carbon via a facile and Self-Activating strategy for CO2 adsorption application. Separation and Purification Technology, 2022, 296, 121368.	3.9	56
1868	A study of contemporary progress relating to COF materials for CO ₂ capture and fixation reactions. Materials Advances, 2022, 3, 5575-5597.	2.6	18
1869	Triphenylamine-containing imine-linked porous organic network for luminescent detection and adsorption of Cr(<scp>vi</scp>) in water. Dalton Transactions, 2022, 51, 10351-10356.	1.6	3
1870	Nanotechnology Research for Alternative Renewable Energy. RSC Nanoscience and Nanotechnology, 2022, , 277-298.	0.2	0
1871	Single-atom site catalysts based on high specific surface area supports. Physical Chemistry Chemical Physics, 2022, 24, 17417-17438.	1.3	11
1872	Carbonate-based hyper-cross-linked polymers with pendant versatile electron-withdrawing functional groups for CO ₂ adsorption and separation. Journal of Materials Chemistry A, 2022, 10, 15062-15073.	5.2	8
1873	Phenothiazine-Based Porous Organic Polymers with High Sensitivity and Selective Fluorescence Response to Mercury Ions. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1874	Thermal Conductivity of Two-Dimensional Benzobisoxazole-Linked Covalent Organic Frameworks with Nanopores: Implications for Thermal Management Applications. ACS Applied Nano Materials, 2022, 5, 13787-13793.	2.4	6
1875	Recent Progress in the Development of Hyper-Cross-Linked Polymers for Adsorption of Gaseous Volatile Organic Compounds. Polymer Reviews, 2023, 63, 365-393.	5.3	11
1876	Potential Difference-Modulated Synthesis of Self-Standing Covalent Organic Framework Membranes at Liquid/Liquid Interfaces. Journal of the American Chemical Society, 2022, 144, 11778-11787.	6.6	19
1877	Highly Porous Materials as Potential Components of Natural Gas Storage Systems: Part 1 (A Review). Petroleum Chemistry, 2022, 62, 561-582.	0.4	5
1878	XSnS ₃ (X = Ga, In) monolayer semiconductors as photo-catalysts for water splitting: a first principles study. Journal of Materials Chemistry C, 2022, 10, 11412-11423.	2.7	6
1879	Computational Simulation Study on Adsorption and Separation of Ch4/H2 in Five Higher-Valency Covalent Organic Frameworks. SSRN Electronic Journal, 0, , .	0.4	0
1880	First-order and gradual phase transitions of ethane confined in MCM-41. Physical Chemistry Chemical Physics, 2022, 24, 18161-18168.	1.3	3
1881	An overview of the advances in porous and hybrid materials research for air pollution mitigation. , 2022, , 17-63.		0
1882	Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chemical Society Reviews, 2022, 51, 6307-6416.	18.7	109
1883	Rationalizing Structural Hierarchy in the Design of Fuel Cell Electrode and Electrolyte Materials Derived from Metal-Organic Frameworks. Applied Sciences (Switzerland), 2022, 12, 6659.	1.3	4
1883 1884		1.3 1.2	4
	Derived from Metal-Organic Frameworks. Applied Sciences (Switzerland), 2022, 12, 6659. On-surface synthesis and characterization of nitrogen-doped covalent-organic frameworks on Ag(111)		
1884	Derived from Metal-Organic Frameworks. Applied Sciences (Switzerland), 2022, 12, 6659. On-surface synthesis and characterization of nitrogen-doped covalent-organic frameworks on Ag(111) substrate. Journal of Chemical Physics, 2022, 157, . Recent developments in <scp> CO ₂ </scp> capture, utilization, related materials, and	1.2	4
1884 1885	Derived from Metal-Organic Frameworks. Applied Sciences (Switzerland), 2022, 12, 6659. On-surface synthesis and characterization of nitrogen-doped covalent-organic frameworks on Ag(111) substrate. Journal of Chemical Physics, 2022, 157, . Recent developments in <scp> CO ₂ </scp> capture, utilization, related materials, and challenges. International Journal of Energy Research, 2022, 46, 16241-16263. The synthesis, characterization and carbon dioxide adsorption of polyimide aerogels containing Tröger's base units. High Performance Polymers, 0, , 095400832211155. Nitro-Decorated Microporous Covalent Organic Framework (TpPa-NO ₂) for Selective Separation of C ₂ H ₄ from a C ₂ H ₂ H ₂ Mixture and	1.2 2.2	4 14
1884 1885 1886	Derived from Metal-Organic Frameworks. Applied Sciences (Switzerland), 2022, 12, 6659. On-surface synthesis and characterization of nitrogen-doped covalent-organic frameworks on Ag(111) substrate. Journal of Chemical Physics, 2022, 157, . Recent developments in <scp> CO ₂ </scp> capture, utilization, related materials, and challenges. International Journal of Energy Research, 2022, 46, 16241-16263. The synthesis, characterization and carbon dioxide adsorption of polyimide aerogels containing Tröger's base units. High Performance Polymers, 0, , 095400832211155. Nitro-Decorated Microporous Covalent Organic Framework (TpPa-NO ₂) for Selective Separation of C ₂ H ₄ from a	1.2 2.2 0.8	4 14 0
1884 1885 1886 1887	Derived from Metal-Organic Frameworks. Applied Sciences (Switzerland), 2022, 12, 6659. On-surface synthesis and characterization of nitrogen-doped covalent-organic frameworks on Ag(111) substrate. Journal of Chemical Physics, 2022, 157, . Recent developments in <scp> CO ₂ </scp> capture, utilization, related materials, and challenges. International Journal of Energy Research, 2022, 46, 16241-16263. The synthesis, characterization and carbon dioxide adsorption of polyimide aerogels containing Tröger's base units. High Performance Polymers, 0, , 095400832211155. Nitro-Decorated Microporous Covalent Organic Framework (TpPa-NO ₂) for Selective Separation of C ₂ H ₄ from a C ₂ H ₄ H ₄ /CO ₂ Mixture and CO ₂ Capture. ACS Applied Materials & amp: Interfaces, 2022, 14, 32105-32111. COFâ€based single Li ⁺ solid electrolyte accelerates the ion diffusion and restrains dendrite	1.2 2.2 0.8	4 14 0 22
1884 1885 1886 1887 1888	Derived from Metal-Organic Frameworks. Applied Sciences (Switzerland), 2022, 12, 6659. On-surface synthesis and characterization of nitrogen-doped covalent-organic frameworks on Ag(111) substrate. Journal of Chemical Physics, 2022, 157, . Recent developments in <scp> CO ₂ </scp> capture, utilization, related materials, and challenges. International Journal of Energy Research, 2022, 46, 16241-16263. The synthesis, characterization and carbon dioxide adsorption of polyimide aerogels containing TrŶger〙s base units. High Performance Polymers, 0, , 095400832211155. Nitro-Decorated Microporous Covalent Organic Framework (TpPa-NO ₂) for Selective Separation of C ₂ H ₄ from a C ₂ H ₂ H ₄ /CO ₂ Mixture and CO ₂ Capture. ACS Applied Materials & amp: Interfaces, 2022, 14, 32105-32111. COFã€based single Li ⁺ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasiã€solidã€state organic batteries. , 2023, 5, . Atomic-resolution structures from polycrystalline covalent organic frameworks with enhanced	1.2 2.2 0.8 4.0	4 14 0 22 24

#	Article	IF	CITATIONS
1892	The effects of the linker length on iodine adsorption and fluorescence sensing property of the N, O, P containing covalent organic frameworks. Journal of Applied Polymer Science, 2022, 139, .	1.3	7
1893	Design and Synthesis of Stable Sp2-Carbon-Linked Two-Dimensional Conjugated Covalent Organic Framework for Efficient Capture of Radioactive Iodine. SSRN Electronic Journal, 0, , .	0.4	0
1894	Molecular simulation on hydrogen storage properties of five novel covalent organic frameworks with the higher valency. International Journal of Hydrogen Energy, 2022, 47, 29390-29398.	3.8	4
1895	Highly Porous Materials as Potential Components of Natural Gas Storage Systems: Part 2 (A Review). Petroleum Chemistry, 2022, 62, 677-713.	0.4	3
1896	Impact of ammonia treatment and platinum group or nickel metal decoration on the activated carbon storage of carbon dioxide and methane. Materials Research Express, 0, , .	0.8	0
1897	Continuum Modeling with Functional Lennard-Jones Parameters for Methane Storage inside Various Carbon Nanostructures. ACS Omega, 2022, 7, 29773-29786.	1.6	4
1898	<scp>Arylâ€aryl</scp> linked <scp>twoâ€dimensional</scp> covalent organic frameworks/cellulose composite monolith with hierarchical structure for aqueous dyes adsorption. Journal of Applied Polymer Science, 0, , .	1.3	2
1899	A Triazine-Based Cationic Covalent Organic Framework as a Robust Adsorbent for Removal of Methyl Orange. Polycyclic Aromatic Compounds, 2023, 43, 5940-5957.	1.4	2
1900	Phenothiazine-based porous organic polymers with high sensitivity and selective fluorescence response to mercury ions. Journal of Solid State Chemistry, 2022, 315, 123522.	1.4	9
1901	Microporous metal–organic frameworks: Synthesis and applications. Journal of Industrial and Engineering Chemistry, 2022, 115, 1-11.	2.9	20
1902	HiGee strategy towards largeâ€scale synthesis of soluble covalent organic frameworks. AICHE Journal, 2023, 69, .	1.8	1
1903	Phototriggered Desorption of Hydrogen, Ethylene, and Carbon Monoxide from a Cu(I)-Modified Covalent Organic Framework. Journal of Physical Chemistry C, 2022, 126, 14801-14812.	1.5	3
1904	Metal-organic frameworks in separations: A review. Analytica Chimica Acta, 2022, 1234, 340208.	2.6	20
1905	First-principles study on the design of metal-decorated N-doped γ-graphyne as a high capacity CH ₄ adsorbent. Journal of Applied Physics, 2022, 132, 065001.	1.1	0
1906	TiB2 derived nanosheets co-immobilized with triangular gold nanoparticles elicit fast and stable photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2024, 52, 20-32.	3.8	9
1907	Synthesis of Covalent Organic Frameworks (COFs)-Nanocellulose Composite and Its Thermal Degradation Studied by TGA/FTIR. Polymers, 2022, 14, 3158.	2.0	8
1908	Impact of flow-induced disturbances during synthesis on the photophysical properties of naphthalene diimide covalent organic frameworks. Microporous and Mesoporous Materials, 2022, 343, 112122.	2.2	1
1909	A critical review of covalent organic frameworks-based sorbents in extraction methods. Analytica Chimica Acta, 2022, 1224, 340207.	2.6	50

ARTICLE IF CITATIONS Highly efficient and stable catalysts-covalent organic framework-supported palladium particles for 1910 3.7 3 4-nitrophenol catalytic hydrogenation. Environmental Research, 2022, 214, 114027. Efficient Purification of 2,6-Lutidine by Nonporous Adaptive Crystals of Pillararenes. ACS Applied 4.0 Materials & amp; Interfaces, 2022, 14, 41072-41078. 2D covalent organic framework-based core-shell structures for high-performance solar-driven steam 1912 2.5 5 generation. Materials Today Energy, 2022, 29, 101135. One-pot synthesis of potassium benzoate-derived porous carbon for CO2 capture and supercapacitor 3.9 23 application. Separation and Purification Technology, 2022, 301, 122053. Computational simulation study on adsorption and separation of CH4/H2 in five higher-valency 1914 0.9 3 covalent organic frameworks. Materials Today Communications, 2022, 33, 104374. Covalent organic frameworks (COFs)-based biosensors for the assay of disease biomarkers with clinical applications. Biosensors and Bioelectronics, 2022, 217, 114668. 5.3 Lotus seed pot-derived nitrogen enriched porous carbon for CO2 capture application. Colloids and 1916 2.312 Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130226. Understanding fragility and engineering activation stability in two-dimensional covalent organic frameworks. Chemical Science, 2022, 13, 9655-9667. 3.7 Unified synthesis of multiply arylated alkanes by catalytic deoxygenative transformation of 1918 3.7 6 diarylketónes. Chemical Sciénce, 2022, 13, 10743-10751. Anchoring Highly Distributed Pt Species with a Strong Metal-Support Interaction Over Chemically Oxidized Graphitic Carbon Nitride for Photocatalytic Hydrogen Evolution: The Effect of Reducing 0.4 Agents on Photocatalytic Properties. SSRN Electronic Journal, 0, , . Polyacrylonitrile-Derived N-Doped Nanoporous Carbon Fibers for CO₂ Adsorption. ACS 1920 2.4 16 Applied Nano Materials, 2022, 5, 13473-13481. Graft Copolymers of Polysaccharide: Synthesis Methodology and Biomedical Applications in Tissue 1921 0.9 Engineering. Current Pharmaceutical Biotechnology, 2022, 23, . A comprehensive overview of carbon dioxide capture: From materials, methods to industrial status. 1922 8.3 13 Materials Today, 2022, 60, 227-270. Recent Advances and Reliable Assessment of Solidâ€State Materials for Hydrogen Storage: A Step 1923 2.7 Forward toward a Sustainable H₂ Economy. Advanced Sustainable Systems, 2022, 6, . Polyacrylonitrile-derived nitrogen enriched porous carbon fiber with high CO2 capture performance. 1924 3.9 18 Separation and Purification Technology, 2022, 303, 122299. Resource Economics and Modern Science to the Rescue. Annual Review of Resource Economics, 2022, 14, v-xvi. Constructing a metal-free 2D covalent organic framework for visible-light-driven photocatalytic 1926 reduction of CO₂: a sustainable strategy for atmospheric CO₂ utilization. 1.9 4 Reaction Chemistry and Engineering, 2023, 8, 365-376. A Bird's-Eye View on Polymer-Based Hydrogen Carriers for Mobile Applications. Polymers, 2022, 14, 4512.

#	Article	IF	CITATIONS
1928	Single-Crystalline Imine-Linked Two-Dimensional Covalent Organic Frameworks Separate Benzene and Cyclohexane Efficiently. Journal of the American Chemical Society, 2022, 144, 19813-19824.	6.6	54
1929	Piperazine-Linked Covalent Triazine Polymer as an Efficient Platform for the Removal of Toxic Mercury(II) Ions from Wastewater. ACS Applied Polymer Materials, 2022, 4, 8118-8126.	2.0	6
1930	Topology control of three-dimensional covalent organic frameworks by adjusting steric hindrance effect. Science China Chemistry, 2022, 65, 2177-2181.	4.2	9
1931	Historical Developments in Synthesis Approaches and Photocatalytic Perspectives of Metal-Organic Frameworks. , 0, , .		1
1932	Computational insights into the energy storage of ultraporous MOFs NU-1501-M (M = Al or Fe): Protonization revealing and performance improving by decoration of superalkali clusters. International Journal of Hydrogen Energy, 2022, 47, 41034-41045.	3.8	5
1933	One-Pot Synthesis of N-Rich Porous Carbon for Efficient CO2 Adsorption Performance. Molecules, 2022, 27, 6816.	1.7	16
1934	Threeâ€Đimensional Covalent Organic Frameworks: From Synthesis to Applications. Angewandte Chemie - International Edition, 2023, 62, .	7.2	36
1935	Threeâ€Ðimensional Covalent Organic Frameworks: From Synthesis to Applications. Angewandte Chemie, 2023, 135, .	1.6	2
1936	Industry-compatible covalent organic frameworks for green chemical engineering. Science China Chemistry, 2022, 65, 2144-2162.	4.2	10
1937	Scalable Mechanochemical Synthesis of <i>β</i> â€Ketoenamineâ€linked Covalent Organic Frameworks for Methane Storage. Chemistry - an Asian Journal, 2022, 17, .	1.7	8
1938	Tunable Interlayer Shifting in Two-Dimensional Covalent Organic Frameworks Triggered by CO ₂ Sorption. Journal of the American Chemical Society, 2022, 144, 20363-20371.	6.6	33
1939	Reticular Synthesis of Oneâ€Dimensional Covalent Organic Frameworks with 4â€c sql Topology for Enhanced Fluorescence Emission. Angewandte Chemie - International Edition, 2023, 62, .	7.2	23
1940	Reticular Synthesis of Oneâ€Dimensional Covalent Organic Frameworks with 4 sql Topology for Enhanced Fluorescence Emission. Angewandte Chemie, 0, , .	1.6	2
1941	Porphyrin based channel for separation of proton isotope: A density functional theory study. Journal of Physics and Chemistry of Solids, 2022, 171, 111032.	1.9	2
1942	Studies on hydrogen storage in molecules, cages, clusters, and materials: A DFT study. , 2023, , 213-235.		1
1943	Anchoring highly distributed Pt species over oxidized graphitic carbon nitride for photocatalytic hydrogen evolution: The effect of reducing agents. Applied Surface Science, 2023, 609, 155305.	3.1	6
1944	Green and facile synthesis of strontium doped Nb2O5/RGO photocatalyst: Efficacy towards H2 evolution, benzophenone-3 degradation and Cr(VI) reduction. Catalysis Communications, 2023, 173, 106560.	1.6	9
1945	Linker Engineering of 2D Imine Covalent Organic Frameworks for the Heterogeneous Palladium-Catalyzed Suzuki Coupling Reaction. ACS Applied Materials & Interfaces, 2022, 14, 50923-50931.	4.0	8

#	Article	IF	CITATIONS
1946	A Comprehensive Review on Graphitic Carbon Nitride for Carbon Dioxide Photoreduction. Small Methods, 2022, 6, .	4.6	14
1947	On-surface synthesis of disilabenzene-bridged covalent organic frameworks. Nature Chemistry, 2023, 15, 136-142.	6.6	15
1948	Analysis of the Influence of Activated Carbons' Production Conditions on the Porous Structure Formation on the Basis of Carbon Dioxide Adsorption Isotherms. Materials, 2022, 15, 7939.	1.3	4
1949	Trends in Application of SERS Substrates beyond Ag and Au, and Their Role in Bioanalysis. Biosensors, 2022, 12, 967.	2.3	10
1950	Fluorineâ€Containing Covalent Organic Frameworks: Synthesis and Application. Macromolecular Rapid Communications, 2023, 44, .	2.0	5
1951	Adsorption of sulfur into an alkynyl-based covalent organic framework for mercury removal. RSC Advances, 2022, 12, 35445-35451.	1.7	3
1952	Non-porous silica support covalent organic frameworks as stationary phases for liquid chromatography. Chemical Communications, 2023, 59, 314-317.	2.2	12
1953	MOF-on-MOF heterostructures with core–shell and core–satellite structures <i>via</i> controllable nucleation of guest MOFs. CrystEngComm, 2023, 25, 284-289.	1.3	2
1954	Mechano-catalysis boosts glycolaldehyde conversion to tetroses over a new Zn-COF catalyst. New Journal of Chemistry, 2023, 47, 558-562.	1.4	1
1955	Three-dimensional hydroxylated covalent organic frameworks for solid phase extraction of glucocorticoids in environmental water samples. Analytica Chimica Acta, 2023, 1239, 340662.	2.6	6
1956	Connecting the dots for fundamental understanding of structure–photophysics–property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chemical Science, 2023, 14, 1040-1064.	3.7	2
1957	Flexible three-dimensional covalent organic frameworks for ultra-fast and selective extraction of uranium via hydrophilic engineering. Journal of Hazardous Materials, 2023, 445, 130442.	6.5	12
1958	Design and synthesis of metal-free ethene-based covalent organic framework photocatalysts for efficient, selective, and long-term stable CO2 conversion into methane. Journal of Colloid and Interface Science, 2023, 633, 775-785.	5.0	6
1959	Design and synthesis of stable sp-carbon-linked two-dimensional conjugated covalent organic framework for efficient capture of iodine. Separation and Purification Technology, 2023, 307, 122776.	3.9	10
1960	Study on colorimetric sensing performance of covalent organic framework for highly selective and sensitive detection of Fe2+ and Fe3+ ions. Journal of Molecular Structure, 2023, 1276, 134779.	1.8	7
1961	Computer-aided Screening of High Performance Covalent-Organic Frameworks for Removal of SO2 from Flue Gases. Fluid Phase Equilibria, 2023, 567, 113710.	1.4	1
1962	Unconventional CO ₂ -Binding and Catalytic Activity of Urea-Derived Histidines. ACS Sustainable Chemistry and Engineering, 2022, 10, 15813-15823.	3.2	5
1963	Preparation of Mixed Matrix Membranes Containing COF Materials for CO _{2 } Removal from Natural Gas/Review. Key Engineering Materials, 0, 938, 151-162.	0.4	1

#	Article	IF	CITATIONS
1964	Fundamentals and Scientific Challenges in Structural Design of Cathode Materials for Zincâ€lon Hybrid Supercapacitors. Advanced Energy Materials, 2023, 13, .	10.2	56
1965	New carbazole-based conjugated frameworks for carbon dioxide capture and water purification: Insights on the adsorptive sites' chemistry. Microporous and Mesoporous Materials, 2023, 349, 112427.	2.2	1
1966	Insights into the Solvent Effect on the Synthesis of Pd@PC-COFs for Phenol Hydrogenation. Industrial & Engineering Chemistry Research, 2023, 62, 279-290.	1.8	2
1967	Structural Properties Covalent Organic Frameworks (COFs): From Dynamic Covalent Bonds to their Applications. ChemistrySelect, 2022, 7, .	0.7	8
1968	Lithium Intercalation in Covalent Organic Frameworks: A Porous Electrode Material for Lithium-Ion Batteries. ACS Applied Electronic Materials, 2022, 4, 6237-6252.	2.0	2
1969	Covalent organic frameworks. Nature Reviews Methods Primers, 2023, 3, .	11.8	99
1970	Simple Way to Fabricate Emissive Boron-Containing Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2023, 15, 4569-4579.	4.0	7
1971	Cobalt-Doped MoS ₂ -Integrated Hollow Structured Covalent Organic Framework Nanospheres for the Effective Photoreduction of CO ₂ under Visible Light. Energy & Fuels, 2023, 37, 2329-2339.	2.5	6
1972	Computer-aided design of high-connectivity covalent organic frameworks as CH4/H2 adsorption and separation media. International Journal of Hydrogen Energy, 2023, 48, 12753-12766.	3.8	0
1973	Porous framework materials for energy & environment relevant applications: A systematic review. Green Energy and Environment, 2024, 9, 217-310.	4.7	12
1974	Precise fabrication of ternary ordered covalent organic frameworks for photocatalysis. Science China Chemistry, 2023, 66, 436-442.	4.2	6
1975	A Novel Viologenâ€Derived Covalent Organic Framework Based Metal Free Catalyst for Nitrophenol Reduction. ChemCatChem, 2023, 15, .	1.8	3
1976	Covalent Organic Frameworks (COFs) as Multi-Target Multifunctional Frameworks. Polymers, 2023, 15, 267.	2.0	14
1977	Post-synthetic thiol modification of covalent organic frameworks for mercury(II) removal from water. Environmental Science and Ecotechnology, 2023, 14, 100236.	6.7	12
1978	Post-synthetic Fully π-Conjugated Three-Dimensional Covalent Organic Frameworks for High-Performance Lithium Storage. ACS Applied Materials & Interfaces, 2023, 15, 830-837.	4.0	12
1979	Covalent organic framework-functionalized Au and Ag nanoparticles: Synthesis and applications. , 2023, , 355-378.		1
1980	Deep Eutectic Solvent-Mediated Synthesis of Ni3V2O8/N-Doped RGO for Visible-Light-Driven H2 Evolution and Simultaneous Degradation of Dyes. Inorganics, 2023, 11, 67.	1.2	4
1981	Graphdiyne aerogel architecture <i>via</i> a modified Hiyama coupling reaction for gas adsorption. Chemical Communications, 2023, 59, 2165-2168.	2.2	3

#	Article	IF	CITATIONS
1982	2D Covalent Organic Frameworks Based on Heteroacene Units. Small, 2023, 19, .	5.2	11
1984	Progress on nano-scaled alloys and mixed metal oxides in solid-state hydrogen storage; an overview. Journal of Energy Storage, 2023, 61, 106722.	3.9	22
1985	Covalent organic framework films grown on spongy g-C3N4 for efficient photocatalytic hydrogen production. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 439, 114590.	2.0	2
1986	Chiral covalent organic frameworks synthesized <i>via</i> a Suzuki–Miyaura-coupling reaction: enantioselective recognition of <scp>d</scp> / <scp>l</scp> -amino acids. New Journal of Chemistry, 2023, 47, 6378-6384.	1.4	3
1987	Design, synthesis, and application of covalent organic frameworks as catalysts. New Journal of Chemistry, 2023, 47, 6765-6788.	1.4	4
1988	Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions. Chinese Journal of Catalysis, 2023, 47, 32-66.	6.9	9
1989	Enhancing photocatalytic properties of continuous few-layer MoS2 thin films for hydrogen production by water splitting through defect engineering with Ar plasma treatment. Nano Energy, 2023, 109, 108295.	8.2	7
1990	Electrochemical deposition for metal organic Frameworks: Advanced Energy, Catalysis, sensing and separation applications. Journal of Electroanalytical Chemistry, 2023, 937, 117417.	1.9	6
1991	Porous aromatic frameworks as HF resistant adsorbents for SF6 separation at elevated pressure. Separation and Purification Technology, 2023, 315, 123657.	3.9	3
1992	COF-300/PVDF adsorbents with aligned microchannels for fast removal of polycyclic aromatic hydrocarbons (PAHs). Chemical Engineering Journal, 2023, 465, 142901.	6.6	8
1993	One-pot synthesis of self S-doped porous carbon for efficient CO2 adsorption. Fuel Processing Technology, 2023, 244, 107700.	3.7	43
1994	Influence of organics and gas mixing on hydrogen/brine and methane/brine wettability using Jordanian oil shale rocks: Implications for hydrogen geological storage. Journal of Energy Storage, 2023, 62, 106865.	3.9	22
1995	Co-adsorption of hydrogen and methane can improve the energy storage capacity of Mn-modified graphene. Journal of Energy Storage, 2023, 63, 106973.	3.9	0
1996	Porous Nanomaterials for CO2 Remediation for a Sustainable Environment. , 2022, , 1-28.		0
1997	Insights into the CO ₂ Capture Capacity of Covalent Organic Frameworks. ChemPhysChem, 2023, 24, .	1.0	2
1998	Three-Dimensional Covalent Organic Frameworks with Ultra-Large Pores for Highly Efficient Photocatalysis. Journal of the American Chemical Society, 2023, 145, 3248-3254.	6.6	56
1999	Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. , 2023, 2, e9120052.		30
2000	Exploring the Potential of a Highly Scalable Metal-Organic Framework CALF-20 for Selective Gas Adsorption at Low Pressure. Polymers, 2023, 15, 760.	2.0	2

#	Article	IF	CITATIONS
2001	Covalent Organic Frameworks for Capacitive Energy Storage: Recent Progress and Technological Challenges. Advanced Materials Technologies, 2023, 8, .	3.0	7
2002	Self-Activating Approach for Synthesis of 2,6-Naphthalene Disulfonate Acid Disodium Salt-Derived Porous Carbon and CO ₂ Capture Performance. Energy & Fuels, 2023, 37, 3886-3893.	2.5	7
2003	One-Pot Synthesis of Melamine Formaldehyde Resin-Derived N-Doped Porous Carbon for CO2 Capture Application. Molecules, 2023, 28, 1772.	1.7	30
2004	Rich nitrogen atoms in an azine covalent organic framework for gas uptake. New Journal of Chemistry, 2023, 47, 5160-5163.	1.4	3
2005	Road Map for In Situ Grown Binderâ€Free MOFs and Their Derivatives as Freestanding Electrodes for Supercapacitors. Small, 2023, 19, .	5.2	19
2006	Polysulfides as Sorbents in Support of Sustainable Recycling. ACS Sustainable Chemistry and Engineering, 2023, 11, 3557-3567.	3.2	4
2007	Porous Nanomaterials for CO2 Remediation for a Sustainable Environment. , 2023, , 1-28.		0
2008	Construction of Multiform Hollowâ€Structured Covalent Organic Frameworks via a Facile and Universal Strategy for Enhanced Sonodynamic Cancer Therapy. Angewandte Chemie, 2023, 135, .	1.6	2
2009	Integration of multi-affinity sites into confined channels allows a bismuth-based metal-organic framework to sequestrate multi-component impurities from methane. Microporous and Mesoporous Materials, 2023, 354, 112530.	2.2	2
2010	Novel Carbazole-Based Porous Organic Polymer for Efficient Iodine Capture and Rhodamine B Adsorption. ACS Applied Materials & Interfaces, 0, , .	4.0	5
2011	Construction of Multiform Hollowâ€Structured Covalent Organic Frameworks via a Facile and Universal Strategy for Enhanced Sonodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
2012	Cu ₂ O/2D COFs Core/Shell Nanocubes with Antiphotocorrosion Ability for Efficient Photocatalytic Hydrogen Evolution. ACS Nano, 2023, 17, 5994-6001.	7.3	27
2013	Covalent organic frameworks (COFs): a promising CO ₂ capture candidate material. Polymer Chemistry, 2023, 14, 1293-1317.	1.9	6
2014	Development of an exogenous coreactant-free electrochemiluminescent sensor for sensing glucose. Analyst, The, 2023, 148, 1764-1769.	1.7	4
2015	Quinoid-Thiophene-Based Covalent Organic Polymers for High Iodine Uptake: When Rational Chemical Design Counterbalances the Low Surface Area and Pore Volume. ACS Applied Materials & Interfaces, 2023, 15, 15819-15831.	4.0	7
2016	ReDD-COFFEE: a ready-to-use database of covalent organic framework structures and accurate force fields to enable high-throughput screenings. Journal of Materials Chemistry A, 2023, 11, 7468-7487.	5.2	7
2017	Carbon dioxide separation and capture by adsorption: a review. Environmental Chemistry Letters, 2023, 21, 2041-2084.	8.3	21
2018	One-Pot synthesis of flavones catalyzed by an Au-mediated covalent organic framework. Journal of Colloid and Interface Science, 2023, 642, 283-291.	5.0	2

#	Article	IF	CITATIONS
2019	A "one-step―approach to the highly efficient synthesis of lactide through the confinement catalysis of covalent organic frameworks. Green Chemistry, 2023, 25, 3103-3110.	4.6	5
2020	Carbazolyleneâ€Ethynylene Macrocycle based Conductive Covalent Organic Frameworks. Angewandte Chemie, 0, , .	1.6	0
2021	Carbazolyleneâ€Ethynylene Macrocycle based Conductive Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
2022	Review on Multidimensional Adsorbents for CO ₂ Capture from Ambient Air: Recent Advances and Future Perspectives. Energy & Fuels, 2023, 37, 6365-6381.	2.5	11
2023	The synthesis of highly crystalline covalent organic frameworks via the monomer crystal induction for the photocatalytic asymmetric αâ€alkylation of aldehydes. Journal of Polymer Science, 2024, 62, 1621-1628.	2.0	0
2024	An Ionâ€Channelâ€Restructured Zwitterionic Covalent Organic Framework Solid Electrolyte for Allâ€Solidâ€State Lithiumâ€Metal Batteries. Advanced Materials, 2023, 35, .	11.1	17
2025	Hydrogen storage in North America: Status, prospects, and challenges. Journal of Environmental Chemical Engineering, 2023, 11, 109957.	3.3	13
2026	Superheterojunction covalent organic frameworks: Supramolecular synergetic charge transfer for highly efficient photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2023, 333, 122782.	10.8	12
2029	Particle Size Regulation of Single-Crystalline Covalent Organic Frameworks for High Performance of Gas Chromatography. Analytical Chemistry, 2023, 95, 8145-8149.	3.2	7
2031	Porous Nanomaterials for CO2 Remediation for a Sustainable Environment. , 2023, , 2133-2160.		Ο
2063	From conventional inorganic semiconductors to covalent organic frameworks: advances and opportunities in heterogeneous photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2023, 11, 13815-13843.	5.2	4
2069	Microporous metal-organic framework materials for efficient capture and separation of greenhouse gases. Science China Chemistry, 2023, 66, 2181-2203.	4.2	3
2086	3D Covalent Organic Frameworks. , 2023, , 213-241.		0
2090	Hydrogen storage technology. , 2024, , 165-184.		0
2092	Industrial-scale synthesis and application of covalent organic frameworks in lithium battery technology. Journal of Applied Electrochemistry, 2024, 54, 215-243.	1.5	2
2094	Polymeric adsorbents for gas adsorption. , 2024, , 205-258.		0
2095	Reticular chemistry within three-dimensional covalent organic frameworks for multiple applications. Journal of Materials Chemistry A, 2023, 11, 20368-20382.	5.2	2
2108	Metal-free 2-isocyanobiaryl-based cyclization reactions: phenanthridine framework synthesis. Molecular Diversity, 2024, 28, 419-435.	2.1	0

IF ARTICLE CITATIONS # Recent Advancements in Sensing of Silver ions by Different Host Molecules: An Overview (2018–2023). 2137 1.30 Journal of Fluorescence, 0, , . Covalent organic framework crystallization using a continuous flow packed-bed reactor. 1.3 CrystEngComm, 0, , . Design and Implementation of Oil Tank Cleaning System Using IoT., 2023,,. 2152 0 New metal–organic frameworks and other porous filler–based hybrid membranes for gas separation and wastewater treatment. , 2024, , 139-186. Non-CO₂ greenhouse gas separation using advanced porous materials. Chemical Society 2169 18.7 1 Reviews, 2024, 53, 2056-2098. Catalytic selectivity of nanorippled graphene. Nanoscale Horizons, 2024, 9, 449-455. 4.1 Porous materials as effective chemiresistive gas sensors. Chemical Society Reviews, 2024, 53, 2530-2577. 2181 18.7 0 Natural gas resources, emission, and climate change., 2024, , 19-53. Nanomaterials for carbon capture and their conversion to useful products for sustainable energy 2198 0 production., 2024,, 369-395.

CITATION REPORT