Highly Efficient Solar Cell Polymers Developed via Fine Electronic Properties

Journal of the American Chemical Society 131, 7792-7799

DOI: 10.1021/ja901545q

Citation Report

#	Article	IF	CITATIONS
7	Practical efficiency limits in organic photovoltaic cells: Functional dependence of fill factor and external quantum efficiency. Applied Physics Letters, 2009, 95, .	1.5	101
8	Photovoltaics literature survey (No. 72). Progress in Photovoltaics: Research and Applications, 2009, 17, 432-439.	4.4	O
9	Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nature Chemistry, 2009, 1, 657-661.	6.6	577
10	The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nature Materials, 2009, 8, 818-824.	13.3	511
11	Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics, 2009, 3, 649-653.	15.6	3,015
12	Synthesis of a Low Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2009, 131, 15586-15587.	6.6	688
13	High Open-Circuit Voltage Photovoltaic Cells with a Low Bandgap Copolymer of Isothianaphthene, Thiophene, and Benzothiadiazole Units. Journal of Physical Chemistry C, 2009, 113, 21928-21936.	1.5	21
14	Synthesis and Photovoltaic Properties of Two Benzo[1,2- <i>b</i> bb3,4- <i>b′</i> dithiophene-Based Conjugated Polymers. Journal of Physical Chemistry C, 2009, 113, 21202-21207.	1.5	80
15	A Planar Copolymer for High Efficiency Polymer Solar Cells. Journal of the American Chemical Society, 2009, 131, 14612-14613.	6.6	407
16	Benzothiadiazole-Based Linear and Star Molecules: Design, Synthesis, and Their Application in Bulk Heterojunction Organic Solar Cells. Chemistry of Materials, 2009, 21, 5327-5334.	3.2	137
17	Bandgap and Molecular Level Control of the Low-Bandgap Polymers Based on 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4- <i>c</i>)pyrrole-1,4-dione toward Highly Efficient Polymer Solar Cells. Macromolecules, 2009, 42, 6564-6571.	2.2	459
18	Visible to Near-Infrared Light Harvesting in TiO ₂ Nanotube Arrayâ^'P3HT Based Heterojunction Solar Cells. Nano Letters, 2009, 9, 4250-4257.	4.5	282
19	Poly(diketopyrrolopyrroleâ-'terthiophene) for Ambipolar Logic and Photovoltaics. Journal of the American Chemical Society, 2009, 131, 16616-16617.	6.6	721
20	Trannulenes: a new class of photoactive materials for organic photovoltaic devices. Journal of Materials Chemistry, 2009, 19, 7738.	6.7	16
21	Development of New Conjugated Polymers with Donorâ^ï∈-Bridgeâ^Acceptor Side Chains for High Performance Solar Cells. Journal of the American Chemical Society, 2009, 131, 13886-13887.	6.6	335
22	Effects of Porphyrin Substituents and Adsorption Conditions on Photovoltaic Properties of Porphyrin-Sensitized TiO ₂ Cells. Journal of Physical Chemistry C, 2009, 113, 18406-18413.	1.5	143
23	Quinoxaline-Based Donor Polymers for Organic Solar Cells. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 293-296.	0.1	7
24	Synthetic Control of Structural Order in $\langle i \rangle N \langle i \rangle$ -Alkylthieno[3,4- $\langle i \rangle c \langle i \rangle$] pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells. Journal of the American Chemical Society, 2010, 132, 7595-7597.	6.6	882

#	Article	IF	CITATIONS
25	A New Class of Semiconducting Polymers for Bulk Heterojunction Solar Cells with Exceptionally High Performance. Accounts of Chemical Research, 2010, 43, 1227-1236.	7.6	674
26	Novel Ladder Ï€â€Conjugated Materials—Silaâ€Pentathienoacenes: Synthesis, Structure, and Electronic Properties. Chemistry - an Asian Journal, 2010, 5, 2290-2296.	1.7	16
27	Charge separation and (triplet) recombination in diketopyrrolopyrrole–fullerene triads. Photochemical and Photobiological Sciences, 2010, 9, 1055-1065.	1.6	57
28	Charge carrier photogeneration and decay dynamics in the poly(2,7-carbazole) copolymer PCD181 and in bulk heterojunction composites with <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td>1.1 v><mml:n< td=""><td>117 nn>70</td></mml:n<></td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	1.1 v> <mml:n< td=""><td>117 nn>70</td></mml:n<>	117 nn>70
29	A Thieno[3,4- <i>>c</i>) pyrrole-4,6-dione-Based Copolymer for Efficient Solar Cells. Journal of the American Chemical Society, 2010, 132, 5330-5331.	6.6	747
30	The first phosphorus-containing fullerene derivative applied as an electron acceptor material in organic solar cells. Mendeleev Communications, 2010, 20, 137-139.	0.6	11
31	Controlling nanoscale morphology in polymer photovoltaic devices. Nano Today, 2010, 5, 231-242.	6.2	97
32	Organic photovoltaic materials and thin-film solar cells. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 45-60.	0.4	5
33	Broad Spectrum Light Harvesting in TiO\$_2\$ Nanotube Array – Hemicyanine Dye – P3HT Hybrid Solid-State Solar Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1573-1580.	1.9	14
34	Organic Photovoltaic Devices Using an Amorphous Molecular Material With High Hole Drift Mobility, Tris[4-(2-thienyl)phenyl]amine. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1528-1536.	1.9	3
35	Interdigitated Bulk Heterojunction Organic Photovoltaic Cells With Aligned Copper Phthalocyanine Nanorods. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1544-1551.	1.9	5
36	The Role of Morphology Control in Determining the Performance of P3HT/C-70 Bulk Heterojunction Polymer Solar Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1725-1731.	1.9	15
37	Optimization of Active Layer and Anode Electrode for High-Performance Inverted Bulk-Heterojunction Solar Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1665-1675.	1.9	28
38	Effect of Carbon Chain Length in the Substituent of PCBMâ€like Molecules on Their Photovoltaic Properties. Advanced Functional Materials, 2010, 20, 1480-1487.	7.8	137
39	The Dependence of Device Dark Current on the Active‣ayer Morphology of Solutionâ€Processed Organic Photodetectors. Advanced Functional Materials, 2010, 20, 3895-3903.	7.8	85
40	Higher Molecular Weight Leads to Improved Photoresponsivity, Charge Transport and Interfacial Ordering in a Narrow Bandgap Semiconducting Polymer. Advanced Functional Materials, 2010, 20, 3959-3965.	7.8	139
41	Selective Formation and Efficient Photocurrent Generation of [70]Fullerene–Singleâ€Walled Carbon Nanotube Composites. Advanced Materials, 2010, 22, 1767-1770.	11.1	44
42	For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Advanced Materials, 2010, 22, E135-8.	11.1	3,509

#	Article	IF	Citations
43	Polymer–Fullerene Bulkâ€Heterojunction Solar Cells. Advanced Materials, 2010, 22, 3839-3856.	11.1	1,825
44	Improved Film Morphology Reduces Charge Carrier Recombination into the Triplet Excited State in a Small Bandgap Polymerâ€Fullerene Photovoltaic Cell. Advanced Materials, 2010, 22, 4321-4324.	11.1	151
45	An Easily Synthesized Blue Polymer for Highâ€Performance Polymer Solar Cells. Advanced Materials, 2010, 22, 5240-5244.	11.1	435
46	When Function Follows Form: Effects of Donor Copolymer Side Chains on Film Morphology and BHJ Solar Cell Performance. Advanced Materials, 2010, 22, 5468-5472.	11.1	315
47	The Use of Tethered Addends to Decrease the Number of Isomers of Bisadduct Analogues of PCBM. Chemistry - A European Journal, 2010, 16, 11250-11253.	1.7	22
49	Enhanced Photovoltaic Performance of Lowâ€Bandgap Polymers with Deep LUMO Levels. Angewandte Chemie - International Edition, 2010, 49, 7992-7995.	7.2	282
50	Effects of solution processing on the photovoltaic response of poly(<i>n</i> a€vinyl carbazole) films. Journal of Applied Polymer Science, 2010, 117, 479-485.	1.3	1
51	Polythiophenes with Carbazole Side Chains: Design, Synthesis and Their Application in Organic Solar Cells. Macromolecular Chemistry and Physics, 2010, 211, 948-955.	1.1	13
52	Synthesis and Optical Properties of Ï€â€Conjugated Polymers Composed of Benzo[1,2â€b:4,5â€b′]dithiophene and Thiophenes Bearing Electronâ€Deficient Ethenyl Groups in the Side Chains. Macromolecular Chemistry and Physics, 2010, 211, 2490-2496.	1.1	6
53	Spectroelectrochemical and Photovoltaic Characterization of a Solutionâ€Processable nâ€andâ€p Type Dopable Pyrroleâ€Bearing Conjugated Polymer. Macromolecular Chemistry and Physics, 2010, 211, 2602-2610.	1.1	17
54	A Highâ€Mobility Lowâ€Bandgap Copolymer for Efficient Solar Cells. Macromolecular Chemistry and Physics, 2010, 211, 2555-2561.	1.1	48
55	Synthesis of New Conjugated CNPPV Derivatives Containing Different Lengths of Oligothiophene Units for Organic Solar Cells. Macromolecular Chemistry and Physics, 2010, 211, 2503-2509.	1.1	7
56	Organic Ambipolar Conjugated Molecules for Electronics: Synthesis and Structure–Property Relationships. Macromolecular Rapid Communications, 2010, 31, 2007-2034.	2.0	50
57	Diketopyrrolopyrroles as Acceptor Materials in Organic Photovoltaics. Macromolecular Rapid Communications, 2010, 31, 1554-1559.	2.0	81
58	Symmetrical molecules of low band gap with a central spacer connected via ether bond with terminal 4-nitro-α-cyanostilbene units: Synthesis and application for bulk heterojunction solar cells. Organic Electronics, 2010, 11, 1631-1641.	1.4	3
59	Conjugated small molecules with broad absorption containing pyridine and pyran units: Synthesis and application for bulk heterojunction solar cells. Organic Electronics, 2010, 11, 2045-2054.	1.4	14
60	Low bandgap EDOT-quinoxaline and EDOT-thiadiazol-quinoxaline conjugated polymers: Synthesis, redox, and photovoltaic device. Polymer, 2010, 51, 2313-2319.	1.8	31
61	Conjugated polymers based on benzodithiophene and arylene imides: Extended absorptions and tunable electrochemical properties. Polymer, 2010, 51, 2897-2902.	1.8	49

#	Article	IF	CITATIONS
62	Novel conjugated alternating copolymer based on 2,7-carbazole and 2,1,3-benzoselenadiazole. Polymer, 2010, 51, 3196-3202.	1.8	50
63	Tailoring side chains of low band gap polymers for high efficiency polymer solar cells. Polymer, 2010, 51, 3031-3038.	1.8	90
64	Versatile synthesis of 3,4-b diheteropentalenes. Tetrahedron Letters, 2010, 51, 2089-2091.	0.7	14
65	Polymer solar cells: Recent development and possible routes for improvement in the performance. Solar Energy Materials and Solar Cells, 2010, 94, 114-127.	3.0	440
66	Quaterthiophene-based multipods as promising materials for solution-processible organic solar cells and field effect transistors. Solar Energy Materials and Solar Cells, 2010, 94, 2064-2072.	3.0	19
67	Efficient bulk heterojunction solar cells based on low band gap bisazo dyes containing anthracene and/or pyrrole units. Solar Energy Materials and Solar Cells, 2010, 94, 2318-2327.	3.0	49
68	Organic solar cells employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer. Solar Energy Materials and Solar Cells, 2010, 94, 2332-2336.	3.0	91
69	Short-circuit current density improvement of inverted polymer solar cells using PbPc to enhance photon absorption over 600 nm. Solar Energy Materials and Solar Cells, 2010, 94, 2451-2454.	3.0	15
70	Chemisorption of a thiol-functionalized ruthenium dye on zinc oxide nanoparticles: Implications for dye-sensitized solar cells. Chemical Physics Letters, 2010, 497, 196-199.	1.2	22
71	A concise synthesis and electrochemical behavior of functionalized poly(thieno[3,4-b]thiophenes): New conjugated polymers with low bandgap. European Polymer Journal, 2010, 46, 1790-1795.	2.6	20
72	Synthesis and characterization of donor–bridge–acceptor alternating copolymers containing perylene diimide units and their application to photovoltaic cells. Journal of Polymer Science Part A, 2010, 48, 1298-1309.	2.5	30
73	Poly(4,8â€bis(2â€ethylhexyloxy)benzo[1,2â€b:4,5â€b′]dithiophene vinylene): Synthesis, optical and photovolt properties. Journal of Polymer Science Part A, 2010, 48, 1822-1829.	aic 2.5	31
74	Conjugated polymers with broad absorption: Synthesis and application in polymer solar cells. Journal of Polymer Science Part A, 2010, 48, 2571-2578.	2.5	46
75	Synthesis and applications of lowâ€bandgap conjugated polymers containing phenothiazine donor and various benzodiazole acceptors for polymer solar cells. Journal of Polymer Science Part A, 2010, 48, 4823-4834.	2.5	66
76	Carbazoleâ€based conjugated polymers incorporating push/pull organic dyes: Synthesis, characterization, and photovoltaic applications. Journal of Polymer Science Part A, 2010, 48, 5126-5134.	2.5	40
77	Synthesis and applications of 2,7â€carbazoleâ€based conjugated mainâ€chain copolymers containing electron deficient bithiazole units for organic solar cells. Journal of Polymer Science Part A, 2010, 48, 5479-5489.	2.5	40
78	Synthesis of three new 1â€(2,6â€diisopropylphenyl)â€2,5â€di(2â€thienyl) pyrroleâ€based donor polymers and th bulk heterojunction solar cell applications. Journal of Polymer Science Part A, 2010, 48, 5514-5521.	eir 2.5	28
79	Synthesis and characterization of novel lowâ€bandgap triphenylamineâ€based conjugated polymers with mainâ€chain donors and pendent acceptors for organic photovoltaics. Journal of Polymer Science Part A, 2010, 48, 5812-5823.	2.5	53

#	Article	IF	Citations
80	Improved cathode for semitransparent organic solar cells. , 2010, , .		0
81	In-situ polymerized poly(3-hexylthiophene) and TiO <inf>2</inf> nanocomposites for organic solar cells., 2010,,.		0
82	Solution-Processed Light Sensors and Photovoltaics. IEEE Photonics Journal, 2010, 2, 265-268.	1.0	3
83	Donor–acceptor alternating copolymers as donor materials for bulk-heterojunction solar cells: effects of molecular structure on film morphology and device performance. Nanotechnology, 2010, 21, 155201.	1.3	3
84	Synthesis of Thieno [3,4-b] pyrazine-Based and 2,1,3-Benzothiadiazole-Based Donorâ' Acceptor Copolymers and their Application in Photovoltaic Devices. Macromolecules, 2010, 43, 2873-2879.	2.2	105
85	Exciton Formation, Relaxation, and Decay in PCDTBT. Journal of the American Chemical Society, 2010, 132, 17459-17470.	6.6	190
86	Life-cycle assessment of organic solar cell technologies. , 2010, , .		15
87	Electronic Processes in Conjugated Diblock Oligomers Mimicking Low Band-Gap Polymers: Experimental and Theoretical Spectral Analysis. Journal of Physical Chemistry B, 2010, 114, 14505-14513.	1.2	27
88	Diketopyrrolopyrrole-Based Semiconducting Polymer for Photovoltaic Device with Photocurrent Response Wavelengths up to $1.1\hat{l}$ /4m. Macromolecules, 2010, 43, 821-826.	2.2	178
89	Band gap and molecular energy level control of perylene diimide-based donor–acceptor copolymers for all-polymer solar cells. Journal of Materials Chemistry, 2010, 20, 2362.	6.7	102
90	Marked Alkyl- vs Alkenyl-Substitutent Effects on Squaraine Dye Solid-State Structure, Carrier Mobility, and Bulk-Heterojunction Solar Cell Efficiency. Journal of the American Chemical Society, 2010, 132, 4074-4075.	6.6	186
91	Benzo[1,2-b:4,5-b′]dithiophene-dioxopyrrolothiophen copolymers for high performance solar cells. Chemical Communications, 2010, 46, 4997.	2.2	160
92	Effect of Chemical Modification of Fullerene-Based Self-Assembled Monolayers on the Performance of Inverted Polymer Solar Cells. ACS Applied Materials & Diverted Polymer Solar Cells. ACS Applied Materials & Diverted Polymer Solar Cells.	4.0	166
93	Connecting Scanning Tunneling Spectroscopy to Device Performance for Polymer:Fullerene Organic Solar Cells. ACS Nano, 2010, 4, 1385-1392.	7.3	22
94	Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer Solar Cells with an Inverted Device Structure. Journal of Physical Chemistry C, 2010, 114, 6849-6853.	1.5	198
95	Synthesis and preliminary photovoltaic behavior study of a soluble polyimide containing ruthenium complexes. Polymer Chemistry, 2010, 1, 1048.	1.9	19
96	Synthesis of Isoindigo-Based Oligothiophenes for Molecular Bulk Heterojunction Solar Cells. Organic Letters, 2010, 12, 660-663.	2.4	431
97	Polyphenylene-Based Materials for Organic Photovoltaics. Chemical Reviews, 2010, 110, 6817-6855.	23.0	617

#	ARTICLE	IF	CITATIONS
98	Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells. Journal of the American Chemical Society, 2010, 132, 15547-15549.	6.6	442
99	Fused aromatic thienopyrazines: structure, properties and function. Journal of Materials Chemistry, 2010, 20, 10568.	6.7	38
100	A Tale of Current and Voltage: Interplay of Band Gap and Energy Levels of Conjugated Polymers in Bulk Heterojunction Solar Cells. Macromolecules, 2010, 43, 10390-10396.	2.2	61
101	Synthesis, Characterization, and Photovoltaic Properties of Carbazole-Based Two-Dimensional Conjugated Polymers with Donor-Ï€-Bridge-Acceptor Side Chains. Chemistry of Materials, 2010, 22, 6444-6452.	3.2	95
102	Electronic Properties and Supramolecular Organization of Terminal Bis(alkylethynyl)-Substituted Benzodithiophenesâ€. Journal of Physical Chemistry B, 2010, 114, 14614-14620.	1.2	10
103	Effect of Solvent and Subsequent Thermal Annealing on the Performance of Phenylenevinylene Copolymer:PCBM Solar Cells. ACS Applied Materials & Emp; Interfaces, 2010, 2, 504-510.	4.0	31
104	Phenyl vs Alkyl Polythiophene: A Solar Cell Comparison Using a Vinazene Derivative as Acceptor. Chemistry of Materials, 2010, 22, 1673-1679.	3.2	125
105	Low Band Gap Polymers Based on Benzo[1,2-b:4,5-b′]dithiophene: Rational Design of Polymers Leads to High Photovoltaic Performance. Macromolecules, 2010, 43, 4609-4612.	2.2	130
106	Novel Silafluorene-Based Conjugated Polymers with Pendant Acceptor Groups for High Performance Solar Cells. Macromolecules, 2010, 43, 5262-5268.	2.2	134
107	Bulk Heterojunction Photovoltaics Using Broadly Absorbing Small Molecules Based on 2-Styryl-5-phenylazo-pyrrole. Langmuir, 2010, 26, 17739-17748.	1.6	7
108	Correlation between Exciton Lifetime Distribution and Morphology of Bulk Heterojunction Films after Solvent Annealing. Journal of Physical Chemistry C, 2010, 114, 9062-9069.	1.5	29
109	Self-Propagating Molecular Assemblies as Interlayers for Efficient Inverted Bulk-Heterojunction Solar Cells. Journal of the American Chemical Society, 2010, 132, 12528-12530.	6.6	85
110	Polymer Nanowire/Fullerene Bulk Heterojunction Solar Cells: How Nanostructure Determines Photovoltaic Properties. ACS Nano, 2010, 4, 1861-1872.	7.3	170
111	Investigation of High-Performance Air-Processed Poly(3-hexylthiophene)/Methanofullerene Bulk-Heterojunction Solar Cells. Journal of Physical Chemistry C, 2010, 114, 21873-21877.	1.5	41
112	Synthesis of a Low-Band-Gap Small Molecule Based on Acenaphthoquinoxaline for Efficient Bulk Heterojunction Solar Cells. Langmuir, 2010, 26, 12909-12916.	1.6	23
113	Quantitatively Analyzing the Influence of Side Chains on Photovoltaic Properties of Polymerâ 'Fullerene Solar Cells. Journal of Physical Chemistry C, 2010, 114, 16793-16800.	1.5	218
114	Bulk heterojunction solar cells based on a low band gap soluble bisazopyrrole and the corresponding BF2-azopyrrole complex. Journal of Materials Chemistry, 2010, 20, 6464.	6.7	16
115	Cyanated Pentaceno[2,3-c]chalcogenophenes for Potential Application in Air-Stable Ambipolar Organic Thin-Film Transistors. Journal of Physical Chemistry C, 2010, 114, 22316-22321.	1.5	71

#	Article	IF	CITATIONS
116	Synthesis and characterization of low bandgap poly(dithienosilole vinylene) derivatives. Synthetic Metals, 2010, 160, 1045-1049.	2.1	4
117	Highly efficient synthesis of thieno[3,4-b]thiophene derivatives and (opto)electrochemical properties of new low bandgap conjugated polymers. Synthetic Metals, 2010, 160, 1368-1371.	2.1	7
118	Synthesis and characterization of dithienothiophene vinylene based co-polymer for bulk heterojunction photovoltaic cells. Synthetic Metals, 2010, 160, 2128-2134.	2.1	6
119	Efficient solution processed bulk-heterojunction solar cells based a donor–acceptor oligothiophene. Journal of Materials Chemistry, 2010, 20, 2464.	6.7	103
120	Tuning the Optoelectronic Properties of Vinylene-Linked Donorâ^'Acceptor Copolymers for Organic Photovoltaics. Macromolecules, 2010, 43, 6685-6698.	2.2	86
121	Perspectives on Organic Photovoltaics. Polymer Reviews, 2010, 50, 411-419.	5.3	104
122	A Weak Donorâ^'Strong Acceptor Strategy to Design Ideal Polymers for Organic Solar Cells. ACS Applied Materials & Design Ideal Polymers for Organic Solar Cells. ACS Applied Materials & Design Ideal Polymers for Organic Solar Cells. ACS Applied Materials & Design Ideal Polymers for Organic Solar Cells. ACS Applied Materials & Design Ideal Polymers for Organic Solar Cells. ACS Applied Materials & Design Ideal Polymers for Organic Solar Cells. ACS Applied Materials & Design Ideal Polymers for Organic Solar Cells. ACS Applied Materials & Design Ideal Polymers for Organic Solar Cells. ACS Applied Materials & Design Ideal Polymers for Organic Solar Cells. ACS Applied Materials & Design Ideal Polymers for Organic Solar Cells.	4.0	265
123	A Review on the Development of the Inverted Polymer Solar Cell Architecture. Polymer Reviews, 2010, 50, 474-510.	5.3	293
125	Conjugated polymers for high-efficiency organic photovoltaics. Polymer Chemistry, 2010, 1, 409-419.	1.9	292
126	Donorâ^'Acceptor Polymers Incorporating Alkylated Dithienylbenzothiadiazole for Bulk Heterojunction Solar Cells: Pronounced Effect of Positioning Alkyl Chains. Macromolecules, 2010, 43, 811-820.	2.2	175
127	Solution-Processable Crystalline Platinum-Acetylide Oligomers with Broadband Absorption for Photovoltaic Cells. Chemistry of Materials, 2010, 22, 2325-2332.	3.2	97
128	Enhanced Performance of Bulk Heterojunction Solar Cells Using Novel Alternating Phenylenevinylene Copolymers of Low Band Gap with Cyanovinylene 4-Nitrophenyls. Macromolecules, 2010, 43, 5544-5553.	2.2	33
129	Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chemical Society Reviews, 2010, 39, 2500.	18.7	431
130	Spatial redistribution of the optical field intensity in inverted polymer solar cells. Applied Physics Letters, 2010, 96, 193304.	1.5	44
131	Structure, Dynamics, and Power Conversion Efficiency Correlations in a New Low Bandgap Polymer: PCBM Solar Cell. Journal of Physical Chemistry B, 2010, 114, 742-748.	1.2	145
132	Improvement in carrier mobility and photovoltaic performance through random distribution of segments of linear and branched side chains. Journal of Materials Chemistry, 2010, 20, 9726.	6.7	43
133	Advanced materials and processes for polymer solar cell devices. Journal of Materials Chemistry, 2010, 20, 36-60.	6.7	746
134	Synthesis and Characterization of Pyrido[3,4- <i>b</i>) pyrazine-Based Low-Bandgap Copolymers for Bulk Heterojunction Solar Cells. Macromolecules, 2010, 43, 6270-6277.	2.2	88

#	Article	IF	CITATIONS
135	Recent Progress on Highly Efficient Bulk Heterojunction Polymer Solar Cells. ACS Symposium Series, 2010, , 71-80.	0.5	11
136	Synthesis of Copolymers Based on Thiazolothiazole and Their Applications in Polymer Solar Cells. Journal of Physical Chemistry C, 2010, 114, 16843-16848.	1.5	64
137	Alternating Copolymers of Carbazole and Triphenylamine with Conjugated Side Chain Attaching Acceptor Groups: Synthesis and Photovoltaic Application. Macromolecules, 2010, 43, 9376-9383.	2.2	98
138	Development of a New s-Tetrazine-Based Copolymer for Efficient Solar Cells. Journal of the American Chemical Society, 2010, 132, 13160-13161.	6.6	141
139	Charge Separation and Recombination in Small Band Gap Oligomerâ^Fullerene Triads. Journal of Physical Chemistry B, 2010, 114, 14149-14156.	1.2	17
140	Cyclopentadithiophene based polymers—a comparison of optical, electrochemical and organic field-effect transistor characteristics. Journal of Materials Chemistry, 2010, 20, 4347.	6.7	65
141	Polycyclic Aromatics with Flanking Thiophenes: Tuning Energy Level and Band Gap of Conjugated Polymers for Bulk Heterojunction Photovoltaics. Macromolecules, 2010, 43, 797-804.	2.2	39
142	Organic Photovoltaic Cells Based on Molecular Donor-Acceptor Heterojunctions. Polymer Reviews, 2010, 50, 420-453.	5.3	51
143	Development of Semiconducting Polymers for Solar Energy Harvesting. Polymer Reviews, 2010, 50, 454-473.	5.3	110
144	Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione. Chemistry of Materials, 2010, 22, 2696-2698.	3.2	346
145	Benzodifuran-Based π-Conjugated Copolymers for Bulk Heterojunction Solar Cells. Macromolecules, 2010, 43, 8058-8062.	2.2	51
146	Precise construction of PCBM aggregates for polymer solar cellsvia multi-step controlled solvent vapor annealing. Journal of Materials Chemistry, 2010, 20, 683-688.	6.7	130
147	Solution processable donor–acceptor oligothiophenes for bulk-heterojunction solar cells. Journal of Materials Chemistry, 2010, 20, 2182.	6.7	47
148	Synthesis, characterization and photovoltaic applications of a low band gap polymer based on s-tetrazine and dithienosilole. Chemical Communications, 2010, 46, 8668.	2.2	46
149	Synthesis and Photovoltaic Properties of a Copolymer of Benzo[1,2-b:4,5-b′]dithiophene and Bithiazole. Macromolecules, 2010, 43, 8714-8717.	2.2	56
150	Synthesis and Photovoltaic Properties of Donorâ^'Acceptor Copolymers Based on 5,8-Dithien-2-yl-2,3-diphenylquinoxaline. Chemistry of Materials, 2010, 22, 4890-4895.	3.2	125
151	Design and synthesis of solution processable small molecules towards high photovoltaic performance. Journal of Materials Chemistry, 2011, 21, 2159-2168.	6.7	81
152	Naphthodithiophene-2,1,3-benzothiadiazole copolymers for bulk heterojunction solar cells. Chemical Communications, 2011, 47, 9471.	2.2	46

#	ARTICLE	IF	CITATIONS
153	Phase behavior of PCBM blends with different conjugated polymers. Physical Chemistry Chemical Physics, 2011, 13, 12285.	1.3	27
154	Conjugated rod–coil and rod–rod block copolymers for photovoltaic applications. Journal of Materials Chemistry, 2011, 21, 17039.	6.7	119
155	Broadening the absorption of conjugated polymers by "click―functionalization with phthalocyanines. Dalton Transactions, 2011, 40, 3979.	1.6	32
156	Sulfonyl: a new application of electron-withdrawing substituent in highly efficient photovoltaic polymer. Chemical Communications, 2011, 47, 8904.	2.2	147
157	Electret field enhanced organic photovoltaic cells., 2011,,.		1
158	Benzothiadiazole-Dithienopyrrole Donor–Acceptor–Donor and Acceptor–Donor–Acceptor Triads: Synthesis and Optical, Electrochemical, and Charge-Transport Properties. Journal of Physical Chemistry C, 2011, 115, 23149-23163.	1.5	90
159	Design of New Electron Acceptor Materials for Organic Photovoltaics: Synthesis, Electron Transport, Photophysics, and Photovoltaic Properties of Oligothiophene-Functionalized Naphthalene Diimides. Chemistry of Materials, 2011, 23, 4563-4577.	3.2	171
160	Low-Band-Gap Polymers That Utilize Quinoid Resonance Structure Stabilization by Thienothiophene: Fine-Tuning of HOMO Level. Macromolecules, 2011, 44, 872-877.	2.2	75
161	Influence of Alkyl Substitution Pattern on Reactivity of Thiophene-Based Monomers in Kumada Catalyst-Transfer Polycondensation. Macromolecules, 2011, 44, 2006-2015.	2.2	61
162	Synthesis and Self-Assembly of Donor–Acceptor–Donor Based Oligothiophenes and Their Optoelectronic Properties. Journal of Physical Chemistry C, 2011, 115, 14369-14376.	1.5	31
163	Organic-inorganic hybrid tandem multijunction photovoltaics with extended spectral response. Applied Physics Letters, 2011, 98, 183503.	1.5	30
165	Controlling Blend Film Morphology by Varying Alkyl Side Chain in Highly Coplanar Donor–Acceptor Copolymers for Photovoltaic Application. Macromolecules, 2011, 44, 6370-6381.	2.2	73
166	Quaterthiopheneâ€"Benzobisazole Copolymers for Photovoltaic Cells: Effect of Heteroatom Placement and Substitution on the Optical and Electronic Properties. Macromolecules, 2011, 44, 9611-9617.	2.2	40
167	Fullerene-Dependent Miscibility in the Silole-Containing Copolymer PSBTBT-08. Macromolecules, 2011, 44, 9747-9751.	2.2	59
168	Very Large Silacylic Substituent Effects on Response in Silole-Based Polymer Transistors. Chemistry of Materials, 2011, 23, 2185-2200.	3.2	38
169	Synthesis and Photovoltaic Properties of a Low-Band-Gap Copolymer of Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]thiophene and Dithienylquinoxaline. Macromolecules, 2011, 44, 1238-1241.	2.2	32
170	Efficient Solar Cells from Semi-random P3HT Analogues Incorporating Diketopyrrolopyrrole. Macromolecules, 2011, 44, 5079-5084.	2.2	114
171	Synthesis and evaluation of NLO properties of π-conjugated donor-acceptor systems bearing pyrrole and thiophene heterocycles. , 2011, , .		2

#	Article	IF	CITATIONS
172	High-mobility low-bandgap conjugated copolymers based on indacenodithiophene and thiadiazolo[3,4-c]pyridine units for thin film transistor and photovoltaic applications. Journal of Materials Chemistry, 2011, 21, 13247.	6.7	102
174	Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy and Environmental Science, 2011, 4, 4849.	15.6	169
175	Dithienopyrrole–quinoxaline/pyridopyrazine donor–acceptor polymers: synthesis and electrochemical, optical, charge-transport, and photovoltaic properties. Journal of Materials Chemistry, 2011, 21, 4971.	6.7	54
176	Fluorous Molecules for Dye-Sensitized Solar Cells: Synthesis and Photoelectrochemistry of Unsymmetrical Zinc Phthalocyanine Sensitizers with Bulky Fluorophilic Donor Groups. Journal of Physical Chemistry C, 2011, 115, 3777-3788.	1.5	35
177	Linear- and Angular-Shaped Naphthodithiophenes: Selective Synthesis, Properties, and Application to Organic Field-Effect Transistors. Journal of the American Chemical Society, 2011, 133, 5024-5035.	6.6	276
178	Graphene Oxide Interlayers for Robust, High-Efficiency Organic Photovoltaics. Journal of Physical Chemistry Letters, 2011, 2, 3006-3012.	2.1	154
179	Conjugated polymers based on C, Si and N-bridged dithiophene and thienopyrroledione units: synthesis, field-effect transistors and bulk heterojunction polymer solar cells. Journal of Materials Chemistry, 2011, 21, 3895.	6.7	110
180	On the way to biomimetic dye aggregate solar cells. Energy and Environmental Science, 2011, 4, 2366.	15.6	37
181	Side chain engineering of fused aromatic thienopyrazine based low band-gap polymers for enhanced charge carrier mobility. Journal of Materials Chemistry, 2011, 21, 1537-1543.	6.7	30
182	The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid. Journal of Physical Chemistry Letters, 2011, 2, 2241-2251.	2.1	470
183	Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers. Chemical Communications, 2011, 47, 11026.	2.2	241
184	Synthesis and photovoltaic properties of copolymers of carbazole and thiophene with conjugated side chain containing acceptor end groups. Polymer Chemistry, 2011, 2, 1678.	1.9	37
185	Ï€-Conjugated polymers with thermocleavable substituents for use as active layers in organic photovoltaics. Polymer Chemistry, 2011, 2, 175-180.	1.9	20
186	Synthesis, Characterization, Charge Transport, and Photovoltaic Properties of Dithienobenzoquinoxaline- and Dithienobenzopyridopyrazine-Based Conjugated Polymers. Macromolecules, 2011, 44, 4752-4758.	2.2	111
187	Stille Polycondensation for Synthesis of Functional Materials. Chemical Reviews, 2011, 111, 1493-1528.	23.0	647
188	YVO4:Eu3+,Bi3+ UV to visible conversion nano-films used for organic photovoltaic solar cells. Journal of Materials Chemistry, 2011, 21, 12331.	6.7	57
189	9-Alkylidene-9 <i>H</i> -Fluorene-Containing Polymer for High-Efficiency Polymer Solar Cells. Macromolecules, 2011, 44, 7617-7624.	2.2	99
190	A Copolymer of Benzodithiophene with TIPS Side Chains for Enhanced Photovoltaic Performance. Macromolecules, 2011, 44, 9173-9179.	2.2	61

#	Article	IF	Citations
191	A Facile Synthesis of Low-Band-Gap Donor–Acceptor Copolymers Based on Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]thiophene. Macromolecules, 2011, 44, 9533-9538.	2.2	31
192	Crystalline Low-Band Gap Polymers Comprising Thiophene and 2,1,3-Benzooxadiazole Units for Bulk Heterojunction Solar Cells. Macromolecules, 2011, 44, 9155-9163.	2.2	69
193	Synthesis and Characterization of Dioctyloxybenzo[1,2-⟨i⟩b⟨/i⟩:4,3-⟨i⟩b⟨/i⟩′]dithiophene-Containing Copolymers for Polymer Solar Cells. Macromolecules, 2011, 44, 7625-7631.	2.2	63
194	Facile Synthesis ofo-Xylenyl Fullerene Multiadducts for High Open Circuit Voltage and Efficient Polymer Solar Cells. Chemistry of Materials, 2011, 23, 5090-5095.	3.2	104
195	Low band gap conjugated small molecules containing benzobisthiadiazole and thienothiadiazole central units: synthesis and application for bulk heterojunction solar cells. Journal of Materials Chemistry, 2011, 21, 4679.	6.7	60
196	Synthesis and Photovoltaic Performance of Low-Bandgap Polymers on the Basis of 9,9-Dialkyl-3,6-dialkyloxysilafluorene. Macromolecules, 2011, 44, 502-511.	2.2	32
197	Halogenated 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene: applications for ambipolar air-stable organic field-effect transistors. Physical Chemistry Chemical Physics, 2011, 13, 11148.	1.3	50
198	Current trends in the optimization of low band gap polymers in bulk heterojunction photovoltaic devices. Journal of Materials Chemistry, 2011, 21, 7849.	6.7	48
199	Evolved Phase Separation toward Balanced Charge Transport and High Efficiency in Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3646-3653.	4.0	20
200	How Far Can Polymer Solar Cells Go? In Need of a Synergistic Approach. Journal of Physical Chemistry Letters, 2011, 2, 3102-3113.	2.1	136
201	Tetrathienoanthracene-Based Copolymers for Efficient Solar Cells. Journal of the American Chemical Society, 2011, 133, 3284-3287.	6.6	156
202	A multi-step simulation of electron mobility in fluorene–benzothiadiazole conjugated polymer – Case study. Computational and Theoretical Chemistry, 2011, 977, 157-162.	1.1	13
203	Examining the Effect of the Dipole Moment on Charge Separation in Donor–Acceptor Polymers for Organic Photovoltaic Applications. Journal of the American Chemical Society, 2011, 133, 20468-20475.	6.6	404
204	Organic solar cells: A new look at traditional models. Energy and Environmental Science, 2011, 4, 4410.	15.6	399
205	New conjugated polymers for plastic solar cells. Energy and Environmental Science, 2011, 4, 1225.	15.6	257
206	TiO2 nanotubes: Structure optimization for solar cells. Journal of Materials Chemistry, 2011, 21, 9406.	6.7	180
207	Diketo-pyrrolo-pyrrole-Based Medium Band Gap Copolymers for Efficient Plastic Solar Cells: Morphology, Transport, and Composition-Dependent Photovoltaic Behavior. Journal of Physical Chemistry C, 2011, 115, 11282-11292.	1.5	32
208	Alkoxy-substituted poly(arylene-ethynylene)-alt-poly(arylene-vinylene)s: synthesis, electroluminescence and photovoltaic applications. Journal of Materials Chemistry, 2011, 21, 1338-1349.	6.7	31

#	Article	IF	Citations
209	Tuning the Band Gap of Low-Band-Gap Polyselenophenes and Polythiophenes: The Effect of the Heteroatom. Chemistry of Materials, 2011, 23, 896-906.	3.2	173
210	Making Benzotrithiophene a Stronger Electron Donor. Organic Letters, 2011, 13, 6062-6065.	2.4	49
211	Synthesis, characterization and photovoltaic properties of platinum-containing poly(aryleneethynylene) polymers with phenanthrenyl-imidazole moiety. Journal of Organometallic Chemistry, 2011, 696, 4112-4120.	0.8	18
212	Synthesis of a side chain conjugated polythiophene copolymer and its photovoltaic property. Synthetic Metals, 2011, 161, 864-868.	2.1	7
213	Synthesis and photovoltaic properties of heteroaromatic low-band gap oligomers for bulk heterojunction solar cells. Synthetic Metals, 2011, 161, 1199-1206.	2.1	32
214	Synthesis of selenopheno [3,2-c] thiophene derivatives and (opto) electrochemical properties of new low bandgap conjugated polymers. Synthetic Metals, 2011, 161, 1444-1447.	2.1	13
215	1-(3-Methoxycarbonyl)propyl-2-selenyl-[6,6]-methanofullerene as a n-Type Material for Organic Solar Cells. Synthetic Metals, 2011, 161, 1264-1269.	2.1	8
216	Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chemical Society Reviews, 2011, 40, 1185-1199.	18.7	511
217	[70]Fullereneâ€Based Materials for Organic Solar Cells. ChemSusChem, 2011, 4, 119-124.	3.6	51
218	Synthesis and Donor-ï€-Acceptor Properties of Polyfluorene Derivatives Containing a Phenazasiline Moiety and an Electron Acceptor. Heterocycles, 2011, 83, 1977.	0.4	9
219	Tandem polymer photovoltaic cells—current status, challenges and future outlook. Energy and Environmental Science, 2011, 4, 1606.	15.6	190
220	Side-Chain Architectures of 2,7-Carbazole and Quinoxaline-Based Polymers for Efficient Polymer Solar Cells. Macromolecules, 2011, 44, 2067-2073.	2.2	119
221	Towards High-Efficiency Organic Solar Cells: Polymers and Devices Development. , 2011, , .		1
222	Variation of the Side Chain Branch Position Leads to Vastly Improved Molecular Weight and OPV Performance in 4,8-dialkoxybenzo[1,2-b:4,5-b′]dithiophene/2,1,3-benzothiadiazole Copolymers. Journal of Nanotechnology, 2011, 2011, 1-10.	1.5	3
223	Materials and Devices for Organic Electronics. Journal of Nanotechnology, 2011, 2011, 1-2.	1.5	5
224	Highly efficient and thermally stable NLO organic materials based on pyrrole and thiophene heterocycles. Proceedings of SPIE, 2011, , .	0.8	2
226	Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon nanotube dispersed polythiophene-fullerene blend devices. Journal of Applied Physics, 2011, 110, .	1.1	17
227	Efficiency enhancement in organic solar cells with ferroelectric polymers. Nature Materials, 2011, 10, 296-302.	13.3	482

#	Article	IF	CITATIONS
228	Efficient bulk heterojunction solar cells using an alternating phenylenevinylene copolymer with dithenyl(thienothiadiazole) segments as donor and PCBM or modified PCBM as acceptor. Solar Energy Materials and Solar Cells, 2011, 95, 3025-3035.	3.0	15
229	Transient absorption spectroscopy of polymer-based thin-film solar cells. Polymer, 2011, 52, 4397-4417.	1.8	137
230	Charge carrier mobility in conjugated organic polymers – Case studies using multi-step computational approach. Polymer, 2011, 52, 4841-4850.	1.8	13
231	New alternating copolymers of fluorene and triphenylamine bearing terthiophene and acceptor groups in the side chains: Synthesis and photovoltaic properties. Polymer, 2011, 52, 5302-5311.	1.8	7
232	A novel dialkylthio benzo[1,2-b:4,5-b′]dithiophene derivative for high open-circuit voltage in polymer solar cells. Chemical Communications, 2011, 47, 10987.	2.2	60
233	Are we there yet? Design of better conjugated polymers for polymer solar cells. Journal of Materials Chemistry, 2011, 21, 18934.	6.7	156
234	Molecular Engineering of Copolymers with Donorâ'Acceptor Structure for Bulk Heterojunction Photovoltaic Cells Toward High Photovoltaic Performance. Journal of Physical Chemistry C, 2011, 115, 2386-2397.	1.5	32
235	Molecular Design and Ordering Effects in π-Functional Materials for Transistor and Solar Cell Applications. Journal of the American Chemical Society, 2011, 133, 20009-20029.	6.6	1,338
236	Processable Low-Bandgap Polymers for Photovoltaic Applications. Chemistry of Materials, 2011, 23, 456-469.	3.2	790
237	A quantum-chemical perspective into low optical-gap polymers for highly-efficient organic solar cells. Chemical Science, 2011, 2, 1200-1218.	3.7	241
238	Improved Synthesis of Thienothiazole and Its Utility in Developing Polymers for Photovoltaics. Macromolecules, 2011, 44, 9146-9154.	2.2	15
239	Synthesis and applications of difluorobenzothiadiazole based conjugated polymers for organic photovoltaics. Journal of Materials Chemistry, 2011, 21, 3226.	6.7	127
240	Synthesis of Fluorinated Polythienothiophene- <i>co</i> -benzodithiophenes and Effect of Fluorination on the Photovoltaic Properties. Journal of the American Chemical Society, 2011, 133, 1885-1894.	6.6	548
241	Bis-EH-PFDTBT:PCBM solar cells: A compositional, thickness, and light-dependent study. Journal of Applied Physics, 2011, 110, 113106.	1.1	7
242	Origin of size effect on efficiency of organic photovoltaics. Journal of Applied Physics, 2011, 109, 074508.	1.1	59
243	Synthesis and photovoltaic properties of thiophene–imide-fused thiophene alternating copolymers with different alkyl side chains. Journal of Materials Chemistry, 2011, 21, 12454.	6.7	19
244	Thieno [3,4- <i>c</i>) pyrrole-4,6-dione-Based Donorâ^'Acceptor Conjugated Polymers for Solar Cells. Macromolecules, 2011, 44, 269-277.	2.2	127
245	Bulk Heterojunction Solar Cells Using Thieno[3,4- <i>c</i>)pyrrole-4,6-dione and Dithieno[3,2- <i>b</i>)i>:2 $\hat{\epsilon}^2$,3 $\hat{\epsilon}^2$ - <i>d</i>)Journal of the American Chemical Society, 2011, 133, 4250-4253.	6.6	1,047

#	Article	IF	CITATIONS
246	Synthesis and Characterization of New Poly(thieno[3,4- <i>d</i>) thiazole) Derivatives for Photovoltaic Applications. Macromolecules, 2011, 44, 7184-7187.	2.2	26
248	Organic Dyes Incorporating the Benzo[1,2- <i>b</i> :4,5- <i>b</i> dithiophene Moiety for Efficient Dye-Sensitized Solar Cells. Organic Letters, 2011, 13, 5424-5427.	2.4	48
249	Polymer solar cells based on diphenylmethanofullerenes with reduced sidechain length. Journal of Materials Chemistry, 2011, 21, 1382-1386.	6.7	43
251	Improved Power Conversion Efficiency in Bulk Heterojunction Organic Solar Cells with Radial Electron Contacts. ACS Nano, 2011, 5, 7986-7991.	7.3	21
252	Molecular Order in High-Efficiency Polymer/Fullerene Bulk Heterojunction Solar Cells. ACS Nano, 2011, 5, 8248-8257.	7.3	260
253	Synthesis and Characterization of Thieno[3,4- <i>b</i>)]thiophene-Based Copolymers Bearing 4-Substituted Phenyl Ester Pendants: Facile Fine-Tuning of HOMO Energy Levels. Macromolecules, 2011, 44, 6659-6662.	2.2	22
254	Synthesis of a polythieno [3,4-b] thiophene derivative with a low-lying HOMO level and its application in polymer solar cells. Chemical Communications, 2011, 47, 8850.	2.2	57
255	A Naphthodithiophene-Diketopyrrolopyrrole Donor Molecule for Efficient Solution-Processed Solar Cells. Journal of the American Chemical Society, 2011, 133, 8142-8145.	6.6	474
256	Optical and electronic properties of fluorene/thiophene/benzothiadiazole pseudorandom copolymers for photovoltaic applications. Journal of Materials Science, 2011, 46, 3960-3968.	1.7	16
257	Photovoltaic properties of bulk heterojunction solar cells incorporating 2-hydroxylethyl- and fullerene-functionalized conjugated polymers. Colloid and Polymer Science, 2011, 289, 1215-1231.	1.0	9
258	Conjugated polymer-functionalized carbon nanotubes enhance the photovoltaic properties of polymer solar cells. Colloid and Polymer Science, 2011, 289, 1633-1641.	1.0	16
259	Rapid phase segregation of P3HT:PCBM composites by thermal annealing for high-performance bulk-heterojunction solar cells. Applied Physics A: Materials Science and Processing, 2011, 105, 1003-1009.	1.1	23
260	Improved efficiency of MEH-PPV:PCBM solar cells by the use of ZnS nano-particles. Polymer Bulletin, 2011, 67, 709-718.	1.7	3
261	Synthesis and photovoltaic properties of an alternating phenylenevinylene copolymer with substituted-triphenylamine units along the backbone for bulk heterojunction and dye-sensitized solar cells. Journal of Power Sources, 2011, 196, 2364-2372.	4.0	27
262	Dimethyl-2H-benzimidazole based small molecules as donor materials for organic photovoltaics. Solar Energy Materials and Solar Cells, 2011, 95, 1838-1845.	3.0	17
263	Phenanthrene-functionalized 3,6-dithiophen-2-yl-2,5- dihydropyrrolo[3,4–c]pyrrole-1,4-diones as donor molecules for solution-processed organic photovoltaic cells. Solar Energy Materials and Solar Cells, 2011, 95, 2516-2523.	3.0	40
264	One-pot synthesis of 2-bromo-4,5-diazafluoren-9-one via a tandem oxidation–bromination-rearrangement of phenanthroline and its hammer-shaped donor–acceptor organic semiconductors. Tetrahedron, 2011, 67, 1977-1982.	1.0	31
265	Recent progress in the numerical modeling for organic thin film solar cells. Science China: Physics, Mechanics and Astronomy, 2011, 54, 375-387.	2.0	31

#	ARTICLE	IF	CITATIONS
266	Polythiophenes bearing electronâ€withdrawing groups in the side chain and their application to bulk heterojunction solar cells. Journal of Polymer Science Part A, 2011, 49, 234-241.	2.5	7
267	New conjugated copolymers based on benzo[1,2 \hat{a} \in b; 3,4 \hat{a} \in b \hat{a} \in 2]dithiophene and derivatives of benzo[g]quinoxaline for bulk heterojunction solar cells. Journal of Polymer Science Part A, 2011, 49, 662-670.	2.5	12
268	Synthesis and photovoltaic behaviors of narrowâ€bandâ€gap Ï€â€conjugated polymers composed of dialkoxybenzodithiophene―and thiopheneâ€based fused aromatic rings. Journal of Polymer Science Part A, 2011, 49, 1427-1433.	2.5	11
269	Synthesis and photovoltaic properties of functional dendritic oligothiophenes. Journal of Polymer Science Part A, 2011, 49, 1865-1873.	2.5	15
270	Synthesis and photovoltaic properties of lowâ€bandgap 4,7â€dithienâ€2â€ylâ€2,1,3â€benzothiadiazoleâ€based poly(heteroarylenevinylene)s. Journal of Polymer Science Part A, 2011, 49, 2715-2724.	2.5	26
271	Synthesis of Ï€â€conjugated copolymers composed of benzo[2,1,3]thiadiazole and thiophene units bearing various alkyl groups and their application to photovoltaic cells. Journal of Polymer Science Part A, 2011, 49, 3543-3549.	2.5	5
272	Synthesis and photovoltaic properties of copolymers based on benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> :倲]dithiophene and thiophene with electronâ€withdrawing side chains. Journal of Polymer Science Part A, 2011, 49, 3604-3614.	2.5	19
273	Siloleâ€containing polymers for highâ€efficiency polymer solar cells. Journal of Polymer Science Part A, 2011, 49, 4267-4274.	2.5	40
274	Photovoltaic response to structural modifications on a series of conjugated polymers based on 2â€arylâ€2 <i>H</i> à€benzotriazoles. Journal of Polymer Science Part A, 2011, 49, 5001-5011.	2.5	13
275	Superiority of Branched Side Chains in Spontaneous Nanowire Formation: Exemplified by Poly(3â€⊋â€methylbutylthiophene) for Highâ€Performance Solar Cells. Small, 2011, 7, 1098-1107.	5.2	57
276	Highâ∈Mobility Conjugated Polymers Based on Fusedâ€Thiophene Building Blocks. Macromolecular Chemistry and Physics, 2011, 212, 428-443.	1.1	92
277	Chain Length Dependence in Diketopyrrolopyrrole/Thiophene Oligomers. Macromolecular Chemistry and Physics, 2011, 212, 515-520.	1.1	14
278	New Alternating Copolymers of 3,6 arbazoles and Dithienylbenzothiadiazoles: Synthesis, Characterization, and Application in Photovoltaics. Macromolecular Chemistry and Physics, 2011, 212, 2127-2141.	1.1	21
279	Templateâ€Assisted Fabrication of Highly Ordered Interpenetrating Polymeric Donor/Acceptor Nanostructures for Photovoltaic Applications. Macromolecular Chemistry and Physics, 2011, 212, 2142-2150.	1.1	10
280	Bisfuranâ€sâ€Tetrazineâ€Based Conjugated Polymers: Synthesis, Characterization, and Photovoltaic Properties. Macromolecular Chemistry and Physics, 2011, 212, 2260-2267.	1.1	19
281	A Soluble High Molecular Weight Copolymer of Benzo[1,2â€b:4,5â€b′]dithiophene and Benzoxadiazole for Efficient Organic Photovoltaics. Macromolecular Rapid Communications, 2011, 32, 1163-1168.	2.0	50
282	Rational Design of Poly(2,7â€Carbazole) Derivatives for Photovoltaic Applications. Macromolecular Theory and Simulations, 2011, 20, 13-18.	0.6	31
283	Nonâ€Geminate Recombination as the Primary Determinant of Openâ€Circuit Voltage in Polythiophene:Fullerene Blend Solar Cells: an Analysis of the Influence of Device Processing Conditions. Advanced Functional Materials, 2011, 21, 2744-2753.	7.8	143

#	Article	IF	CITATIONS
284	Alternating Copolymers of Cyclopenta [2,1â€b;3,4â€b′] dithiophene and Thieno [3,4â€c] pyrroleâ€4,6â€dione for Highâ€Performance Polymer Solar Cells. Advanced Functional Materials, 2011, 21, 3331-3336.	or _{7.8}	113
285	A Metalâ€Oxide Interconnection Layer for Polymer Tandem Solar Cells with an Inverted Architecture. Advanced Materials, 2011, 23, 1282-1286.	11.1	165
286	Enhanced Performance and Air Stability of Polymer Solar Cells by Formation of a Selfâ€Assembled Buffer Layer from Fullereneâ€Endâ€Capped Poly(ethylene glycol). Advanced Materials, 2011, 23, 1782-1787.	11.1	106
287	Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. Advanced Materials, 2011, 23, 2367-2371.	11.1	1,751
288	Endâ€Capping Effect of a Narrow Bandgap Conjugated Polymer on Bulk Heterojunction Solar Cells. Advanced Materials, 2011, 23, 2430-2435.	11.1	171
289	A Porphyrin–Fullerene Dyad with a Supramolecular "Doubleâ€Cable―Structure as a Novel Electron Acceptor for Bulk Heterojunction Polymer Solar Cells. Advanced Materials, 2011, 23, 2951-2956.	11.1	83
290	Highâ€Performance Solar Cells using a Solutionâ€Processed Small Molecule Containing Benzodithiophene Unit. Advanced Materials, 2011, 23, 5387-5391.	11,1	271
291	Simultaneous Enhancement of Openâ€Circuit Voltage, Shortâ€Circuit Current Density, and Fill Factor in Polymer Solar Cells. Advanced Materials, 2011, 23, 4636-4643.	11.1	2,000
292	Controlling the Morphology and Efficiency of Hybrid ZnO:Polythiophene Solar Cells Via Side Chain Functionalization. Advanced Energy Materials, 2011, 1, 90-96.	10.2	80
293	Effect of Charge Recombination on the Fill Factor of Small Molecule Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2011, 1, 610-617.	10.2	146
294	Effects of Side Chains on Thiazolothiazoleâ€Based Copolymer Semiconductors for High Performance Solar Cells. Advanced Energy Materials, 2011, 1, 854-860.	10.2	183
295	Spinâ€Coated Small Molecules for High Performance Solar Cells. Advanced Energy Materials, 2011, 1, 771-775.	10.2	233
296	Intraâ€Molecular Donor–Acceptor Interaction Effects on Charge Dissociation, Charge Transport, and Charge Collection in Bulkâ€Heterojunction Organic Solar Cells. Advanced Energy Materials, 2011, 1, 923-929.	10.2	58
300	Allâ€Polymer Solar Cells from Perylene Diimide Based Copolymers: Material Design and Phase Separation Control. Angewandte Chemie - International Edition, 2011, 50, 2799-2803.	7.2	398
301	Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7 % Efficiency. Angewandte Chemie - International Edition, 2011, 50, 2995-2998.	7.2	1,130
302	Replacing Alkoxy Groups with Alkylthienyl Groups: A Feasible Approach To Improve the Properties of Photovoltaic Polymers. Angewandte Chemie - International Edition, 2011, 50, 9697-9702.	7.2	926
303	Synthesis of neutral stable polyradicals and their application on photovoltaic devices. European Polymer Journal, 2011, 47, 1018-1030.	2.6	10
304	Push–pull bithiophene azo-chromophores bearing thiazole and benzothiazole acceptor moieties: Synthesis and evaluation of their redox and nonlinear optical properties. Dyes and Pigments, 2011, 91, 454-465.	2.0	85

#	Article	IF	CITATIONS
305	Bulk heterojunction solar cells based on a new low-band-gap polymer: Morphology and performance. Organic Electronics, 2011, 12, 1211-1215.	1.4	32
306	Electronic structures of planar and mixed C70/CuPc heterojunctions in organic photovoltaic devices. Organic Electronics, 2011, 12, 1422-1428.	1.4	26
307	How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance. Progress in Polymer Science, 2011, 36, 1326-1414.	11.8	329
308	Synthesis of conjugated polymers with broad absorption bands and photovoltaic properties as bulk heterojuction solar cells. Polymer, 2011, 52, 2384-2390.	1.8	28
309	A crystalline low-bandgap polymer comprising dithienosilole and thieno[3,4-c]pyrrole-4,6-dione units for bulk heterojunction solar cells. Polymer, 2011, 52, 2792-2798.	1.8	24
310	Long-lived bulk heterojunction solar cells fabricated with photo-oxidation resistant polymer. Solar Energy Materials and Solar Cells, 2011, 95, 361-364.	3.0	17
311	Thermally stable organic bulk heterojunction photovoltaic cells incorporating an amorphous fullerene derivative as an electron acceptor. Solar Energy Materials and Solar Cells, 2011, 95, 432-439.	3.0	22
312	Efficient polymer solar cells based on dialkoxynaphthalene and benzo[c][1,2,5]thiadiazole: A new approach for simple donor–acceptor pair. Solar Energy Materials and Solar Cells, 2011, 95, 1678-1685.	3.0	17
313	Efficient bulk heterojunction solar cells with copolymers based on fluorene, dithienylbenzothiadiazole, and thiophene derivatives. Solar Energy Materials and Solar Cells, 2011, 95, 1756-1761.	3.0	8
314	Design of new benzothiadiazole-based linear and star molecules with different functional groups as solar cells materials: A theoretical approach. Solar Energy Materials and Solar Cells, 2011, 95, 1800-1810.	3.0	33
315	The role of the double peaked absorption spectrum in the efficiency of solar cells based on donor–acceptor–donor copolymers. Solar Energy Materials and Solar Cells, 2011, 95, 2287-2294.	3.0	33
316	Understanding the performance and loss-mechanisms in donor–acceptor polymer based solar cells: Photocurrent generation, charge separation and carrier transport. Solar Energy Materials and Solar Cells, 2011, 95, 2502-2510.	3.0	16
317	Origin of photocurrent generation and collection losses in large area organic solar cells. Applied Physics Letters, 2011, 99, 093309.	1.5	12
318	Disposable organic fluorescence biosensor for water pollution monitoring. Materials Research Society Symposia Proceedings, 2011, 1358, 50301.	0.1	0
319	Tandem Photovoltaic Cells with Amorphous Silicon Cells and Organic Photovoltaic Cells. Materials Research Society Symposia Proceedings, 2011, 1288, 1.	0.1	0
320	Functionalized pentacenes for dye-sensitized solar cells. Journal of Photonics for Energy, $2011, 1, 011106$.	0.8	11
321	Charge carrier mobility in conjugated organic polymers: simulation of an electron mobility in a carbazole-benzothiadiazole-based polymer. , 2011 , , .		1
322	Tuning of Fullerene Materials for Organic Solar Cells: A Theoretical Study on the Properties of Defect Fullerenes C\$_{59}\$ and C\$_{69}\$. Japanese Journal of Applied Physics, 2012, 51, 10NE35.	0.8	2

#	Article	IF	CITATIONS
323	Spectral aspects of cavity tuned absorption in organic photovoltaic films. Optics Express, 2012, 20, A954.	1.7	13
324	Computer simulation of heterogeneous polymer photovoltaic devices. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 035015.	0.8	39
325	Polythiophene-cellulose composites: synthesis, optical properties and homogeneous oxidative co-polymerization. Holzforschung, 2012, 66, .	0.9	17
326	Metrology and instrumentation challenges with high-rate, roll-to-roll manufacturing of flexible electronic systems. Proceedings of SPIE, 2012, , .	0.8	6
327	Isomerically Pure Anthra[2,3- <i>b</i> i>io,7- <i>b</i> i>′]-difuran (<i>anti</i> -ADF), -dithiophene (<i>anti</i> -ADF), and -diselenophene (<i anti<="" i="">-ADS): Selective Synthesis, Electronic Structures, and Application to Organic Field-Effect Transistors. Journal of Organic Chemistry, 2012, 77, 8099-8111.</i>	1.7	111
328	Donor–Acceptor-Type Low Bandgap Polymer Carrying Phenylazomethine Moiety as a Metal-Collecting Pendant Unit: Open-Circuit Voltage Modulation of Solution-Processed Organic Photovoltaic Devices Induced by Metal Complexation. ACS Macro Letters, 2012, 1, 667-671.	2.3	8
329	Polyselenopheno[3,4- <i>b</i>]selenophene for Highly Efficient Bulk Heterojunction Solar Cells. ACS Macro Letters, 2012, 1, 361-365.	2.3	120
330	Thermal Conversion of Precursor Polymer to Low Bandgap Conjugated Polymer Containing Isothianaphthene Dimer Subunits. Journal of Physical Chemistry C, 2012, 116, 1256-1264.	1.5	10
331	Synthesis of low bandgap polymers based on thienoquinodimethane units and their applications in bulk heterojunction solar cells. Journal of Materials Chemistry, 2012, 22, 24394.	6.7	17
332	Synthesis, characterization and photovoltaic properties of conjugated copolymers based on 2-alkyl-thieno[3,4-b]imidazole. Synthetic Metals, 2012, 162, 1694-1700.	2.1	5
333	High-performance polymer solar cells with moderately reduced graphene oxide as an efficient hole transporting layer. Solar Energy Materials and Solar Cells, 2012, 105, 96-102.	3.0	101
334	2-(2,3,4,5,6-Pentafluorophenyl)-1H-benzo[d]imidazole, a fluorine-rich building block for the preparation of conjugated polymer donors for organic solar cell applications. Polymer Chemistry, 2012, 3, 2236.	1.9	13
335	Phosphole modified pentathienoacene: Synthesis, electronic properties and self-assembly. Organic and Biomolecular Chemistry, 2012, 10, 1459.	1.5	13
336	Effect of Incorporated Nitrogens on the Planarity and Photovoltaic Performance of Donor–Acceptor Copolymers. Macromolecules, 2012, 45, 6415-6423.	2.2	51
337	GPUâ€accelerated computation of electron transfer. Journal of Computational Chemistry, 2012, 33, 2351-2356.	1.5	7
338	The new lowâ€band gap polymers comprising Câ€, Siâ€, or Nâ€bridged dithiophene and alkoxyâ€modified 2,1,3â€benzooxadiazole units for bulk heterojunction solar cells. Journal of Polymer Science Part A, 2012, 50, 3960-3969.	2.5	16
339	Small Molecules Based on Benzo[1,2-b:4,5-b′]dithiophene Unit for High-Performance Solution-Processed Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 16345-16351.	6.6	563
340	Polymer Photovoltaic Cells Based on Polymethacrylate Bearing Semiconducting Side Chains. Macromolecular Rapid Communications, 2012, 33, 2097-2102.	2.0	5

#	ARTICLE	IF	CITATIONS
341	Highâ€efficiency polymer solar cells based on phenylenevinylene copolymer with BF ₂ â€azopyrrole complex and CNâ€PC ₇₀ BM with solvent additive. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1612-1618.	2.4	7
342	Recent progress in the design of narrow bandgap conjugated polymers for high-efficiency organic solar cells. Progress in Polymer Science, 2012, 37, 1292-1331.	11.8	248
343	Synthesis and application of low band gap broad absorption oligomers based on 2,5-bis(2-thienyl)-N-arylpyrrole for bulk heterojunction solar cells. Current Applied Physics, 2012, 12, S124-S130.	1.1	15
344	A Spectroscopic and DFT Study of the Electronic Properties of Carbazole-Based D–A Type Copolymers. Journal of Physical Chemistry C, 2012, 116, 21255-21266.	1.5	40
345	Orthogonally Functionalized Naphthodithiophenes: Selective Protection and Borylation. Organic Letters, 2012, 14, 4718-4721.	2.4	42
346	Investigation of Poly(Cyclopentadithiophenes) as Electron Donor Materials for Organic Solar Cells. Energy Procedia, 2012, 31, 1-10.	1.8	4
347	Rare solventannealing effective benzo $(1,2-b:4,5-b\hat{a}\in ^2)$ dithiophene-based low band-gap polymer for bulk heterojunction organic photovoltaics. Chemical Communications, 2012, 48, 1012-1014.	2.2	27
348	Bridging mesoscopic blend structure and property to macroscopic device performance via in situ optoelectronic characterization. Journal of Materials Chemistry, 2012, 22, 4349.	6.7	10
349	Impact of dye end groups on acceptor–donor–acceptor type molecules for solution-processed photovoltaic cells. Journal of Materials Chemistry, 2012, 22, 9173.	6.7	69
350	A low band-gap polymer based on unsubstituted benzo[1,2-b:4,5-b′]dithiophene for high performance organic photovoltaics. Chemical Communications, 2012, 48, 6933.	2.2	66
351	Large scale two-dimensional nanobowl array high efficiency polymer solar cell. RSC Advances, 2012, 2, 1314.	1.7	15
352	Synthesis and photovoltaic properties of benzo[1,2-b:4,5-b′]dithiophene derivative-based polymers with deep HOMO levels. Journal of Materials Chemistry, 2012, 22, 17709.	6.7	31
353	Effects of π-Conjugated Bridges on Photovoltaic Properties of Donor-π-Acceptor Conjugated Copolymers. Macromolecules, 2012, 45, 1208-1216.	2.2	191
354	Enhanced and Tunable Open-Circuit Voltage using Dialkylthio Benzo[1,2-b:4,5-b′]dithiophene in Polymer Solar Cells. Chemistry of Materials, 2012, 24, 2534-2540.	3.2	104
355	Angular-shaped naphthodifurans, naphtho[1,2-b;5,6-bâ \in 2]- and naphtho[2,1-b;6,5-bâ \in 2]-difuran: are they isoelectronic with chrysene?. Chemical Communications, 2012, 48, 5671.	2.2	23
356	Fluorinated Copolymer PCPDTBT with Enhanced Open-Circuit Voltage and Reduced Recombination for Highly Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2012, 134, 14932-14944.	6.6	361
357	Quinoxaline-Based Semiconducting Polymers: Effect of Fluorination on the Photophysical, Thermal, and Charge Transport Properties. Macromolecules, 2012, 45, 6380-6389.	2.2	61
358	Three new conjugated polymers based on benzo[2,1-b:3,4-b′]dithiophene: synthesis, characterization, photoinduced charge transfer and theoretical calculation studies. Polymer Chemistry, 2012, 3, 2244.	1.9	5

#	Article	IF	CITATIONS
359	Synthesis and photovoltaic performances of conjugated copolymers with 4,7-dithien-5-yl-2,1,3-benzothiadiazole and di(p-tolyl)phenylamine side groups. Journal of Materials Chemistry, 2012, 22, 22913.	6.7	26
360	Novel naphtho[1,2-b:5,6-b′]dithiophene core linear donor–݀–acceptor conjugated small molecules with thiophene-bridged bithiazole acceptor: design, synthesis, and their application in bulk heterojunction organic solar cells. Journal of Materials Chemistry, 2012, 22, 10840.	6.7	37
361	Excitation Energy Shuttling in Oligothiophene–Diketopyrrolopyrrole–Fullerene Triads. Journal of Physical Chemistry A, 2012, 116, 1146-1150.	1.1	13
362	Competition between Singlet Fission and Charge Separation in Solution-Processed Blend Films of 6,13-Bis(triisopropylsilylethynyl)pentacene with Sterically-Encumbered Perylene-3,4:9,10-bis(dicarboximide)s. Journal of the American Chemical Society, 2012, 134, 386-397.	6.6	232
363	Synthesis and Characterization of a Novel Naphthodithiophene-Based Copolymer for Use in Polymer Solar Cells. Macromolecules, 2012, 45, 6938-6945.	2.2	48
364	Structures and properties of conjugated Donor–Acceptor copolymers for solar cell applications. Journal of Materials Chemistry, 2012, 22, 4178.	6.7	303
365	Synthesis of Ï∈-conjugated poly(thienylenearylene)s with nickel-catalyzed C–H functionalization polycondensation. Polymer Journal, 2012, 44, 1209-1213.	1.3	15
366	Photovoltaic characteristics of organic solar cells using Zn–porphyrin derivatives with controlled π-conjugation structures. Synthetic Metals, 2012, 162, 813-819.	2.1	14
367	Synthesis and characterizations of benzotriazole based donor–acceptor copolymers for organic photovoltaic applications. Synthetic Metals, 2012, 162, 1037-1045.	2.1	22
368	Synthesis and Characterization of Semi-Fluorinated Polyarylene Copolymers. ACS Symposium Series, 2012, , 29-46.	0.5	2
369	Systematic Investigation of Benzodithiophene- and Diketopyrrolopyrrole-Based Low-Bandgap Polymers Designed for Single Junction and Tandem Polymer Solar Cells. Journal of the American Chemical Society, 2012, 134, 10071-10079.	6.6	530
370	D–π–A–π–D type benzothiadiazole–triphenylamine based small molecules containing cyano on the π-bridge for solution-processed organic solar cells with high open-circuit voltage. Chemical Communications, 2012, 48, 10627.	2.2	83
371	Significant Improved Performance of Photovoltaic Cells Made from a Partially Fluorinated Cyclopentadithiophene/Benzothiadiazole Conjugated Polymer. Macromolecules, 2012, 45, 5427-5435.	2.2	186
372	Rational Design of High Performance Conjugated Polymers for Organic Solar Cells. Macromolecules, 2012, 45, 607-632.	2.2	1,398
373	Donor–Acceptor Semiconducting Polymers Containing Benzodithiophene with Bithienyl Substituents. Macromolecules, 2012, 45, 7855-7862.	2.2	44
374	Continuous flow synthesis of conjugated polymers. Chemical Communications, 2012, 48, 1598-1600.	2.2	52
375	Spectroscopic Imaging of Photopotentials and Photoinduced Potential Fluctuations in a Bulk Heterojunction Solar Cell Film. ACS Nano, 2012, 6, 9392-9401.	7.3	31
376	Adsorption and thermal decomposition of 2-octylthieno $[3,4-b]$ thiophene on Au $(1\ 1\ 1)$. Journal of Colloid and Interface Science, 2012, 384, 143-148.	5.0	2

#	Article	IF	CITATIONS
377	Performance evaluation of power management systems in microbial fuel cell-based energy harvesting applications for driving small electronic devices. Journal of Power Sources, 2012, 217, 65-71.	4.0	62
378	Degradation Mechanism of Benzodithiophene-Based Conjugated Polymers when Exposed to Light in Air. ACS Applied Materials & Degradation Mechanism of Benzodithiophene-Based Conjugated Polymers when Exposed to Light in Air. ACS Applied Materials & Degradation Mechanism of Benzodithiophene-Based Conjugated Polymers when Exposed to Light in Air. ACS Applied Materials & Degradation Mechanism of Benzodithiophene-Based Conjugated Polymers when Exposed to Light in Air. ACS Applied Materials & Degradation Mechanism of Benzodithiophene-Based Conjugated Polymers when Exposed to Light in Air. ACS Applied Materials & Degradation Mechanism of Benzodithiophene-Based Conjugated Polymers when Exposed to Light in Air. ACS Applied Materials & Degradation Mechanism of Benzodithiophene-Based Conjugated Polymers when Exposed to Light in Air. ACS Applied Materials & Degradation Mechanism of Benzodithiophene-Based Conjugated Polymers when Exposed to Light in Air. ACS Applied Materials & Degradation Mechanism of Benzodithiophene-Based Conjugated Polymers when Exposed to Degradation Mechanism of Benzodithiophene-Based Conjugated Polymers when Degradation Polymers when Degradation Mechanism of Benzodithiophene-Based Conjugated Polymers when Degradation	4.0	83
379	Insights from Transient Optoelectronic Analyses on the Open-Circuit Voltage of Organic Solar Cells. Journal of Physical Chemistry Letters, 2012, 3, 1465-1478.	2.1	237
380	Effect of branched alkyl chains attached at sp3 silicon of donor–acceptor copolymers on their morphology and photovoltaic properties. Journal of Polymer Science Part A, 2012, 50, 4829-4839.	2.5	11
381	Synthesis of novel dithienothiophene―and 2,7â€carbazoleâ€based conjugated polymers and Hâ€bonded effects on electrochromic and photovoltaic properties. Journal of Polymer Science Part A, 2012, 50, 5011-5022.	2.5	13
383	Carbon nanotubes and organic solar cells. Energy and Environmental Science, 2012, 5, 5919-5940.	15.6	158
384	Photovoltaic effect of individual polymer nanotube. Applied Physics Letters, 2012, 100, 173902.	1.5	6
385	A computational framework to investigate charge transport in heterogeneous organic photovoltaic devices. Computer Methods in Applied Mechanics and Engineering, 2012, 247-248, 113-129.	3.4	31
386	Polyviologen derivatives as an interfacial layer in polymer solar cells. Solar Energy Materials and Solar Cells, 2012, 107, 1-8.	3.0	56
387	Synthesis of seleno[3,4-c]pyrrole-4,6-dione-based polymers for polymer solar cells. Synthetic Metals, 2012, 162, 1707-1712.	2.1	9
388	Diketopyrrolopyrrole-based small molecules with simple structure for high VOC organic photovoltaics. Organic Electronics, 2012, 13, 3060-3066.	1.4	68
389	A crystalline D-π-A organic small molecule with naphtho[1,2-b:5,6-b′]dithiophene-core for solution processed organic solar cells. Organic Electronics, 2012, 13, 3183-3194.	1.4	27
390	Enhanced storage/operation stability of small molecule organic photovoltaics using graphene oxide interfacial layer. Organic Electronics, 2012, 13, 3220-3225.	1.4	16
391	Improving the performance of polymer solar cells by altering polymer side chains and optimizing film morphologies. Organic Electronics, 2012, 13, 3234-3243.	1.4	19
392	Synthesis and photovoltaic properties of two-dimensional conjugated polythiophene derivatives presenting conjugated triphenylamine/thiophene moieties. Polymer, 2012, 53, 4091-4103.	1.8	21
393	Synthesis and photovoltaic properties of a donor-acceptor polymer containing both dithieno[3,2-b:2′,3′-d]pyrrole and fluorene as donor units. Polymer, 2012, 53, 5103-5108.	1.8	9
394	Controlling band gap and hole mobility of photovoltaic donor polymers with terpolymer system. Polymer, 2012, 53, 5275-5284.	1.8	16
395	New acceptor-pended conjugated polymers based on 3,6- and 2,7-carbazole for polymer solar cells. Polymer, 2012, 53, 5675-5683.	1.8	31

#	Article	IF	CITATIONS
396	PEDOTs–PCnBMs polymer–fullerene BHJ solar cells: Quantum mechanical calculations of photovoltaic and photophysical properties. Nano Energy, 2012, 1, 608-623.	8.2	7
397	An Easily Accessible Donorâ^'Ï∈-Acceptor-Conjugated Small Molecule from a 4,8-Dialkoxybenzo[1,2- <i>b</i> i+,5- <i>b</i> i=2]dithiophene Unit for Efficient Solution-Processed Organic Solar Cells. ACS Applied Materials & Solar Cells.	4.0	34
398	High performance polymeric charge recombination layer for organic tandem solar cells. Energy and Environmental Science, 2012, 5, 9827.	15.6	183
399	Synthesis and photovoltaic properties of D–A copolymers of benzodithiophene and naphtho[2,3-c]thiophene-4,9-dione. Polymer Chemistry, 2012, 3, 99-104.	1.9	29
400	2D Multilayered π-stacked conjugated polymers based on a U-turn pseudo-geminal [2.2]paracyclophane scaffold. Polymer Chemistry, 2012, 3, 463-471.	1.9	22
401	Light Energy Conversion at Carbon Nanotubes - Organic and Inorganic Interfaces: Photovoltaics, Photodetectors and Bolometers., 2012, , 1-68.		3
402	Photo-Cross-Linkable Azide-Functionalized Polythiophene for Thermally Stable Bulk Heterojunction Solar Cells. Macromolecules, 2012, 45, 2338-2347.	2.2	85
403	Comparison of thiophene- and selenophene-bridged donor–acceptor low band-gap copolymers used in bulk-heterojunction organic photovoltaics. Journal of Materials Chemistry, 2012, 22, 21549.	6.7	84
404	Controlling Number of Indene Solubilizing Groups in Multiadduct Fullerenes for Tuning Optoelectronic Properties and Open-Circuit Voltage in Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2012, 4, 110-116.	4.0	89
405	Oligomeric Compatibilizers for Control of phase Separation in Conjugated Polymer Blend Films. Macromolecules, 2012, 45, 1468-1475.	2.2	12
406	p/n Switching of Ambipolar Bithiazole–Benzothiadiazole-Based Polymers in Photovoltaic Cells. Macromolecules, 2012, 45, 2709-2719.	2.2	44
407	Borylation on Benzo[1,2- <i>b</i> ;4,5- <i>b</i> and Naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]dichalcogenophenes: Different Chalcogene Atom Effects on Borylation Reaction Depending on Fused Ring Structure. Organic Letters, 2012, 14, 5448-5451.	2.4	18
408	Controlled Chain-Growth Kumada Catalyst Transfer Polycondensation of a Conjugated Alternating Copolymer. Macromolecules, 2012, 45, 2321-2326.	2.2	60
409	Structurally Defined High-LUMO-Level 66Ï€-[70]Fullerene Derivatives: Synthesis and Application in Organic Photovoltaic Cells. Chemistry of Materials, 2012, 24, 2572-2582.	3.2	31
410	New TIPS-substituted benzo $[1,2-b:4,5-b\hat{a}\in^2]$ dithiophene-based copolymers for application in polymer solar cells. Journal of Materials Chemistry, 2012, 22, 22224.	6.7	42
411	Synthesis and Photovoltaic Properties of Copolymers Based on Benzo[1,2-b:4,5-b′]dithiophene and Thiophene with Different Conjugated Side Groups. Macromolecules, 2012, 45, 2359-2366.	2.2	48
412	Synthesis, Properties, and Photovoltaic Performances of Donor–Acceptor Copolymers Having Dioxocycloalkene-Annelated Thiophenes As Acceptor Monomer Units. Macromolecules, 2012, 45, 4564-4571.	2.2	65
413	Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials. , 2012, , .		12

#	Article	IF	Citations
414	Enhanced Open Circuit Voltage and Efficiency of Donor–Acceptor Copolymer Solar Cells by Using Indene-C60 Bisadduct. Chemistry of Materials, 2012, 24, 1995-2001.	3.2	100
415	Ambipolar Polymer Field-Effect Transistors Based on Fluorinated Isoindigo: High Performance and Improved Ambient Stability. Journal of the American Chemical Society, 2012, 134, 20025-20028.	6.6	316
416	Molecular energy level modulation by changing the position of electron-donating side groups. Journal of Materials Chemistry, 2012, 22, 5700.	6.7	63
417	Improved thin film morphology and bulk-heterojunction solar cell performance through systematic tuning of the surface energy of conjugated polymers. Journal of Materials Chemistry, 2012, 22, 5587.	6.7	73
418	Yield of exciton dissociation in a donor–acceptor photovoltaic junction. Physical Chemistry Chemical Physics, 2012, 14, 14270.	1.3	22
419	Algal fluorescence sensor integrated into a microfluidic chip for water pollutant detection. Lab on A Chip, 2012, 12, 787-793.	3.1	111
420	Fluorous Molecules for Dye-Sensitized Solar Cells: Synthesis and Characterization of Fluorene-Bridged Donor/Acceptor Dyes with Bulky Perfluoroalkoxy Substituents. Journal of Physical Chemistry C, 2012, 116, 21190-21200.	1.5	32
421	Sideâ€chain effects on phenothiazineâ€based donor–acceptor copolymer properties in organic photovoltaic devices. Journal of Polymer Science Part A, 2012, 50, 649-658.	2.5	19
422	Recent progress and future aspects of organic solar cells. Progress in Photovoltaics: Research and Applications, 2012, 20, 377-415.	4.4	156
423	Effect of voltage sweep direction on the performance evaluation of P3HT : PCBM solar cells. Progress in Photovoltaics: Research and Applications, 2013, 21, 950-959.	4.4	3
424	3,6â€Dialkylthieno[3,2â€ <i>b</i>)]thiophene moiety as a soluble and electron donating unit preserving the coplanarity of photovoltaic low band gap copolymers. Journal of Polymer Science Part A, 2012, 50, 1861-1868.	2.5	39
425	Benzodifuranâ€containing wellâ€defined Ï€â€conjugated polymers for photovoltaic cells. Journal of Polymer Science Part A, 2012, 50, 2935-2943.	2.5	29
426	Charge carrier mobility, photovoltaic, and electroluminescent properties of anthraceneâ€based conjugated polymers bearing randomly distributed side chains. Journal of Polymer Science Part A, 2012, 50, 3425-3436.	2.5	23
427	Synthesis and Photovoltaic Properties of Thieno[3,4â€∢i>c]pyrroleâ€4,6â€dioneâ€based donor–acceptor Copolymers. Journal of Polymer Science Part A, 2012, 50, 3758-3766.	2.5	32
428	On the morphology of polymerâ€based photovoltaics. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1018-1044.	2.4	297
429	Strategies for controlling the active layer morphologies in OPVs. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1045-1056.	2.4	32
430	Incremental optimization in donor polymers for bulk heterojunction organic solar cells exhibiting high performance. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1057-1070.	2.4	29
431	Recent development of push–pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. Journal of Materials Chemistry, 2012, 22, 10416.	6.7	462

#	Article	IF	CITATIONS
432	Charge transfer state in highly efficient polymer–fullerene bulk heterojunction solar cells. Journal of Materials Chemistry, 2012, 22, 4141.	6.7	101
433	Organic Photovoltaic Cells Based on a Medium-Bandgap Phosphorescent Material and C ₆₀ . Journal of Physical Chemistry C, 2012, 116, 5887-5891.	1.5	28
434	Organic thin-film solar cells: Devices and materials. Science China Chemistry, 2012, 55, 553-578.	4.2	22
435	Organic Semiconductors and their Applications in Photovoltaic Devices. Polymer Reviews, 2012, 52, 1-37.	5.3	100
436	One-Pot Synthesis of 4,8-Dialkylbenzo[1,2-b:4,5-b']dithiophenes. Heterocycles, 2012, 85, 355.	0.4	10
437	Ultrafast Intramolecular Exciton Splitting Dynamics in Isolated Low-Band-Gap Polymers and Their Implications in Photovoltaic Materials Design. Journal of the American Chemical Society, 2012, 134, 4142-4152.	6.6	177
438	Fill factor of planar heterojunction organic solar cells with varied donor materials. Journal Physics D: Applied Physics, 2012, 45, 175101.	1.3	15
439	Synthesis and Photovoltaic Properties of Low Band Gap Polymers Containing Benzo[1,2- <i>b</i> :4,5- <i>c</i> ′]dithiophene-4,8-dione. Macromolecules, 2012, 45, 1710-1714.	2.2	48
440	Polymer solar cells. Nature Photonics, 2012, 6, 153-161.	15.6	4,041
441	Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics, 2012, 6, 180-185.	15.6	1,374
441		15.6	1,374
	2012, 6, 180-185. Cyclopentadithiophene-benzothiadiazole oligomers and polymers; synthesis, characterisation, field-effect transistor and photovoltaic characteristics. Journal of Materials Chemistry, 2012, 22,		
442	Cyclopentadithiophene-benzothiadiazole oligomers and polymers; synthesis, characterisation, field-effect transistor and photovoltaic characteristics. Journal of Materials Chemistry, 2012, 22, 381-389. Arene Trifluoromethylation: An Effective Strategy to Obtain Air-Stable n-Type Organic Semiconductors with Tunable Optoelectronic and Electron Transfer Properties. Journal of Physical	6.7	61
442 443	2012, 6, 180-185. Cyclopentadithiophene-benzothiadiazole oligomers and polymers; synthesis, characterisation, field-effect transistor and photovoltaic characteristics. Journal of Materials Chemistry, 2012, 22, 381-389. Arene Trifluoromethylation: An Effective Strategy to Obtain Air-Stable n-Type Organic Semiconductors with Tunable Optoelectronic and Electron Transfer Properties. Journal of Physical Chemistry A, 2012, 116, 8015-8022. Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties.	6.7	61 52
442 443 444	Cyclopentadithiophene-benzothiadiazole oligomers and polymers; synthesis, characterisation, field-effect transistor and photovoltaic characteristics. Journal of Materials Chemistry, 2012, 22, 381-389. Arene Trifluoromethylation: An Effective Strategy to Obtain Air-Stable n-Type Organic Semiconductors with Tunable Optoelectronic and Electron Transfer Properties. Journal of Physical Chemistry A, 2012, 116, 8015-8022. Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties. Macromolecules, 2012, 45, 6405-6414.	6.7	61 52 203
442 443 444 445	Cyclopentadithiophene-benzothiadiazole oligomers and polymers; synthesis, characterisation, field-effect transistor and photovoltaic characteristics. Journal of Materials Chemistry, 2012, 22, 381-389. Arene Trifluoromethylation: An Effective Strategy to Obtain Air-Stable n-Type Organic Semiconductors with Tunable Optoelectronic and Electron Transfer Properties. Journal of Physical Chemistry A, 2012, 116, 8015-8022. Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties. Macromolecules, 2012, 45, 6405-6414. Isothianaphtheneâ€Based Conjugated Polymers for Organic Photovoltaic Cells. Macromolecular Chemistry and Physics, 2012, 213, 1596-1603. Structureâ€Property Optimizations in Donor Polymers via Electronics, Substituents, and Side Chains	6.7 1.1 2.2	61 52 203
442 443 444 445 446	Cyclopentadithiophene-benzothiadiazole oligomers and polymers; synthesis, characterisation, field-effect transistor and photovoltaic characteristics. Journal of Materials Chemistry, 2012, 22, 381-389. Arene Trifluoromethylation: An Effective Strategy to Obtain Air-Stable n-Type Organic Semiconductors with Tunable Optoelectronic and Electron Transfer Properties. Journal of Physical Chemistry A, 2012, 116, 8015-8022. Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties. Macromolecules, 2012, 45, 6405-6414. Isothianaphtheneâ€Based Conjugated Polymers for Organic Photovoltaic Cells. Macromolecular Chemistry and Physics, 2012, 213, 1596-1603. Structureâ€Property Optimizations in Donor Polymers via Electronics, Substituents, and Side Chains Toward High Efficiency Solar Cells. Macromolecular Rapid Communications, 2012, 33, 1162-1177. Overcoming efficiency challenges in organic solar cells: rational development of conjugated	6.7 1.1 2.2 1.1 2.0	61 52 203 7 110

#	Article	IF	CITATIONS
450	Benzodithiophene and Imide-Based Copolymers for Photovoltaic Applications. Chemistry of Materials, 2012, 24, 1346-1356.	3.2	58
451	Bithiophene Imide and Benzodithiophene Copolymers for Efficient Inverted Polymer Solar Cells. Advanced Materials, 2012, 24, 2242-2248.	11.1	158
452	Electrostatically Selfâ€Assembled Nonconjugated Polyelectrolytes as an Ideal Interfacial Layer for Inverted Polymer Solar Cells. Advanced Materials, 2012, 24, 3005-3009.	11.1	274
453	Efficient Polymer Solar Cells Based on a Low Bandgap Semiâ€crystalline DPP Polymerâ€PCBM Blends. Advanced Materials, 2012, 24, 3947-3951.	11.1	209
454	Improving the Ordering and Photovoltaic Properties by Extending <i>Ï€</i> ê°Conjugated Area of Electronâ€Donating Units in Polymers with Dâ€A Structure. Advanced Materials, 2012, 24, 3383-3389.	11.1	298
455	Metal Oxide Nanoparticles as an Electronâ€Transport Layer in Highâ€Performance and Stable Inverted Polymer Solar Cells. Advanced Materials, 2012, 24, 5267-5272.	11.1	333
456	A Systematic Approach to the Design Optimization of Lightâ€Absorbing Indenofluorene Polymers for Organic Photovoltaics. Advanced Energy Materials, 2012, 2, 260-265.	10.2	48
457	Nanomorphology of PCDTBT:PC ₇₀ BM Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2012, 2, 304-308.	10.2	117
458	Nanofiberâ€Based Bulkâ€Heterojunction Organic Solar Cells Using Coaxial Electrospinning. Advanced Energy Materials, 2012, 2, 1136-1144.	10.2	70
459	Facile Synthesis of Fluorineâ€Substituted Benzothiadiazoleâ€Based Organic Semiconductors and Their Use in Solutionâ€Processed Smallâ€Molecule Organic Solar Cells. Chemistry - A European Journal, 2012, 18, 11433-11439.	1.7	64
460	Effects of Solubilizing Group Modification in Fullerene Bis-Adducts on Normal and Inverted Type Polymer Solar Cells. Chemistry of Materials, 2012, 24, 2373-2381.	3.2	166
461	Morphology evaluation of a polymer–fullerene bulk heterojunction ensemble generated by the fullerene derivatization. Journal of Materials Chemistry, 2012, 22, 15987.	6.7	29
462	Family of Diazapentalene Chromophores and Narrow-Band-Gap Polymers: Synthesis, Halochromism, Halofluorism, and Visible–Near Infrared Photodetectivity. Chemistry of Materials, 2012, 24, 2364-2372.	3.2	70
463	Highly efficient polymer solar cells based on poly(carbazole-alt-thiophene-benzofurazan). New Journal of Chemistry, 2012, 36, 2042.	1.4	42
464	Flat conjugated polymers combining a relatively low HOMO energy level and band gap: polyselenophenes versus polythiophenes. Journal of Materials Chemistry, 2012, 22, 14645.	6.7	50
465	Inverted polymer solar cells with a solution-processed zinc oxide thin film as an electron collection layer. Science China Chemistry, 2012, 55, 755-759.	4.2	14
466	Comparison between theoretical and experimental electronic properties of some popular donor polymers for bulk-heterojunction solar cells. Solar Energy Materials and Solar Cells, 2012, 97, 139-149.	3.0	18
467	Conjugated polymers based on quinoxaline for polymer solar cells. Solar Energy Materials and Solar Cells, 2012, 98, 203-207.	3.0	17

#	Article	IF	CITATIONS
468	A benzo[1,2-b:4,5-b′]dithiophene-based copolymer with deep HOMO level for efficient polymer solar cells. Solar Energy Materials and Solar Cells, 2012, 100, 239-245.	3.0	30
469	All-water-solution processed solar cells based on PPV and TiO2 nanocrystals. Solar Energy Materials and Solar Cells, 2012, 104, 75-80.	3.0	17
470	Degradation mechanisms in organic solar cells: Localized moisture encroachment and cathode reaction. Solar Energy Materials and Solar Cells, 2012, 104, 1-6.	3.0	93
471	A novel copolymer from benzodithiophene and alkylsulfanyl-bithiophene: Synthesis, characterization and application in polymer solar cells. Solar Energy Materials and Solar Cells, 2012, 104, 45-52.	3.0	30
472	Performance of spray deposited poly [N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]/[6,6]-phoacid methyl ester blend active layer based bulk heterojunction organic solar cell devices. Thin Solid Films, 2012, 520, 3111-3117.	enyl-C61-b	ut <u>y</u> rjc
473	Optimization of the side-chain density to improve the charge transport and photovoltaic performances of a low band gap copolymer. Organic Electronics, 2012, 13, 114-120.	1.4	32
474	Bulk heterojunction formation with induced concentration gradient from a bilayer structure of P3HT:CdSe/ZnS quantum dots using inter-diffusion process for developing high efficiency solar cell. Organic Electronics, 2012, 13, 710-714.	1.4	21
475	A graph-based formulation for computational characterization of bulk heterojunction morphology. Organic Electronics, 2012, 13, 1105-1113.	1.4	63
476	Synthesis of thieno[3,4-d]thiazole-based conjugated polymers and HOMO level tuning for high VOC photovoltaic cell. Organic Electronics, 2012, 13, 1322-1328.	1.4	18
477	Improved bulk-heterojunction polymer solar cell performance through optimization of the linker groupin donor–acceptor conjugated polymer. Polymer, 2012, 53, 1535-1542.	1.8	21
478	A new series of random conjugated copolymers containing 3,4-diphenyl-maleimide and thiophene units for organic photovoltaic cell applications. Polymer, 2012, 53, 2334-2346.	1.8	11
479	Enhanced Performance of Organic Photovoltaic Cells Fabricated with a Methyl Thiopheneâ€3â€Carboxylateâ€Containing Alternating Conjugated Copolymer. Macromolecular Rapid Communications, 2012, 33, 146-151.	2.0	18
480	Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ê²]dithiophene Building Block for the Synthesis of Semiconducting Polymers. Macromolecular Rapid Communications, 2012, 33, 9-20.	2.0	72
481	Synthesis and characterizations of poly(4â€alkylthiazole vinylene). Journal of Applied Polymer Science, 2012, 124, 847-854.	1.3	2
482	Cumulative energy demand for small molecule and polymer photovoltaics. Progress in Photovoltaics: Research and Applications, 2013, 21, 1541-1554.	4.4	69
483	Fine Structural Tuning of Cyanated Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]silole–Oligothiophene Copolymers: Synthesis, Characterization, and Photovoltaic Response. Macromolecules, 2013, 46, 6419-6430.	2.2	37
484	Synthesis of new broad absorption low band gap random copolymers for bulk heterojunction solar cell applications. Macromolecular Research, 2013, 21, 406-413.	1.0	13
485	A new low band gap donor–acceptor alternating copolymer containing dithienothiophene and fluorenone unit. Journal of Polymer Research, 2013, 20, 1.	1.2	8

#	Article	IF	CITATIONS
486	Efficient Polymer Solar Cells Based on Benzothiadiazole and Alkylphenyl Substituted Benzodithiophene with a Power Conversion Efficiency over 8%. Advanced Materials, 2013, 25, 4944-4949.	11.1	306
487	Tunable Low Bandgap Polyisothianaphthene via Oxidative Chemical Vapor Deposition. Macromolecules, 2013, 46, 6169-6176.	2.2	17
488	Low bandgap polymers with benzodithiophene and bisthienylacrylonitrile units for photovoltaic applications. European Polymer Journal, 2013, 49, 1634-1641.	2.6	5
489	Synthesis and photovoltaic properties of benzotriazole-based donor–acceptor copolymers. Journal of Materials Science, 2013, 48, 3177-3184.	1.7	11
490	Photocurrent Enhancement from Diketopyrrolopyrrole Polymer Solar Cells through Alkyl-Chain Branching Point Manipulation. Journal of the American Chemical Society, 2013, 135, 11537-11540.	6.6	258
492	Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics. Progress in Polymer Science, 2013, 38, 1990-2052.	11.8	252
493	Optimization and simplification of polymer–fullerene solar cells through polymer and active layer design. Polymer, 2013, 54, 5267-5298.	1.8	119
494	Photophysical Properties of Derivatives of 2-(2-Hydroxyphen-yl)-1,3,4-oxadiazole: A Theoretical Study. Journal of Physical Chemistry A, 2013, 117, 8285-8292.	1.1	6
495	Determination of Electronic Energy Levels in Type-II CdTe-Core/CdSe-Shell and CdSe-Core/CdTe-Shell Nanocrystals by Cyclic Voltammetry and Optical Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 16698-16708.	1.5	42
496	Nanocomposite approaches for enhancing the DC and photoconductivity of DNA films. Nanotechnology, 2013, 24, 335203.	1.3	3
497	Synthesis and photovoltaic properties of new donor-acceptor benzodithiophene-containing copolymers. Polymer Science - Series B, 2013, 55, 360-372.	0.3	6
498	Ruthenium(ii) containing supramolecular polymers with cyclopentadithiophene–benzothiazole conjugated bridges for photovoltaic applications. Polymer Chemistry, 2013, 4, 5701.	1.9	28
499	Synthesis and simultaneously enhanced photovoltaic property of poly $[4,4,9,9$ -tetra $(4$ -octyloxyphenyl)-2,7-indaceno $[1,2$ -b:5,6-bâ \in 2] dithiophene-alt-2,5-thieno $[3,2$ -b]thiophene]. Polymer, 2013, 54, 607-613.	1.8	19
500	ldentifying potential candidates for donor–acceptor copolymers on a series of 4H-1,2,6-thiadiazines: An electrochemical approach. Electrochimica Acta, 2013, 107, 448-453.	2.6	10
501	Synthesis and characterization of two carbazole-based alternating copolymers with 4-nitrophenylcyanovinylene pendant groups and their use as electron donors for bulk heterojunction solar cells. RSC Advances, 2013, 3, 18821.	1.7	5
502	Effect of Fullerene Tris-adducts on the Photovoltaic Performance of P3HT:Fullerene Ternary Blends. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4401-4408.	4.0	69
503	Influence of Incorporating Different Electron-Rich Thiophene-Based Units on the Photovoltaic Properties of Isoindigo-Based Conjugated Polymers: An Experimental and DFT Study. Macromolecules, 2013, 46, 8488-8499.	2.2	58
504	A Family of Donor–Acceptor Photovoltaic Polymers with Fused 4,7-Dithienyl-2,1,3-benzothiadiazole Units: Effect of Structural Fusion and Side Chains. Macromolecules, 2013, 46, 7920-7931.	2.2	58

#	Article	IF	CITATIONS
505	Two-Dimensional Polyfluorenes Bearing Thienylenevinylene π-Bridge-Acceptor Side Chains for Photovoltaic Solar Cells. Journal of Physical Chemistry C, 2013, 117, 24700-24709.	1.5	19
506	Performance of PCDTBT:PC ₇₀ BM Organic Photovoltaic Cells Fabricated Using Dipolar and Common Dopants as Processing Additives. Molecular Crystals and Liquid Crystals, 2013, 581, 18-24.	0.4	3
507	Thieno[3,4- <i>b</i>]thiophene Acceptors with Alkyl, Aryl, Perfluoroalkyl, and Perfluorophenyl Pendants for Donor–Acceptor Low Bandgap Polymers. Macromolecules, 2013, 46, 8873-8881.	2.2	46
508	Low band-gap donor–acceptor copolymers based on dioxocyclopenta[c]thiophene derivatives as acceptor units: synthesis, properties, and photovoltaic performances. Journal of Materials Chemistry A, 2013, 1, 15000.	5. 2	8
509	Structural variation of donor–acceptor copolymers containing benzodithiophene with bithienyl substituents to achieve high open circuit voltage in bulk heterojunction solar cells. Journal of Materials Chemistry A, 2013, 1, 15535.	5.2	33
510	Fine-Tuning of Fluorinated Thieno[3,4-b]thiophene Copolymer for Efficient Polymer Solar Cells. Journal of Physical Chemistry C, 2013, 117, 4358-4363.	1.5	38
511	Diketopyrrolopyrrole–Thiophene–Benzothiadiazole Random Copolymers: An Effective Strategy To Adjust Thin-Film Crystallinity for Transistor and Photovoltaic Properties. Macromolecules, 2013, 46, 9211-9219.	2.2	52
512	Tuning the Electronic Properties of Poly(thienothiophene vinylene)s via Alkylsulfanyl and Alkylsulfonyl Substituents. Macromolecules, 2013, 46, 9231-9239.	2.2	37
513	Synthesis and photovoltaic properties of a D–A copolymer of dithienosilole and fluorinated-benzotriazole. Polymer Chemistry, 2013, 4, 1467-1473.	1.9	35
514	Novel Donorâ€Acceptor Copolymers Based on Dithienosilole and Ketone Modified Thieno[3,4â€∢i>b⟨/i>]thiophene for Photovoltaic Application. Chinese Journal of Chemistry, 2013, 31, 1455-1462.	2.6	8
515	Influences of using a high mobility donor polymer on solar cell performance. Organic Electronics, 2013, 14, 3484-3492.	1.4	15
516	A facile strategy to enhance absorption coefficient and photovoltaic performance of two-dimensional benzo[1,2-b:4,5-b′]dithiophene and thieno[3,4-c]pyrrole-4,6-dione polymers via subtle chemical structure variations. Organic Electronics, 2013, 14, 2652-2661.	1.4	35
517	Engineering optoelectronically active macromolecules for polymer-based photovoltaic and thermoelectric devices. Current Opinion in Chemical Engineering, 2013, 2, 294-301.	3.8	28
518	Enhancing the Performance of Solution-Processed Bulk-Heterojunction Solar Cells Using Hydrogen-Bonding-Induced Self-Organization of Small Molecules. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13265-13274.	4.0	25
519	Side chains and backbone structures influence on 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based low-bandgap conjugated copolymers for organic photovoltaics. Frontiers of Optoelectronics, 2013, 6, 418-428.	1.9	1
520	Fullerene Derivativeâ€Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Lowâ€Bandgap Polymer (PTB7‶h) for High Performance. Advanced Materials, 2013, 25, 4766-4771.	11.1	1,162
521	New donor–acceptor conjugated polymers based on benzo[1,2-b:4,5-b′]dithiophene for photovoltaic cells. Synthetic Metals, 2013, 166, 7-13.	2.1	11
522	The investigation of donor-acceptor compatibility in bulk-heterojunction polymer systems. Applied Physics Letters, 2013, 103, .	1.5	43

#	Article	IF	CITATIONS
523	Biomimetic Dye Aggregate Solar Cells. Springer Theses, 2013, , .	0.0	9
524	A New Pentacyclic Indacenodiselenophene Arene and Its Donor–Acceptor Copolymers for Solution-Processable Polymer Solar Cells and Transistors: Synthesis, Characterization, and Investigation of Alkyl/Alkoxy Side-Chain Effect. Macromolecules, 2013, 46, 7715-7726.	2.2	59
525	Polymers for electronics and spintronics. Chemical Society Reviews, 2013, 42, 8895.	18.7	370
526	25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research. Advanced Materials, 2013, 25, 6642-6671.	11.1	1,055
527	Synthesis and photovoltaic properties of a series of bulk heterojunction solar cells based on interchain-linked conjugated polymers. Polymer Journal, 2013, 45, 744-757.	1.3	3
528	Spectral signatures of thieno[3,4-b]pyrazines: Theoretical interpretations and design of improved structures. Dyes and Pigments, 2013, 99, 972-978.	2.0	19
529	Solution-Processed High-Detectivity Near-Infrared Polymer Photodetectors Fabricated by a Novel Low-Bandgap Semiconducting Polymer. Journal of Physical Chemistry C, 2013, 117, 6537-6543.	1.5	63
530	Designing π-conjugated polymers for organic electronics. Progress in Polymer Science, 2013, 38, 1832-1908.	11.8	698
531	Enhanced charge transport and photovoltaic performance of PBDTTT-C-T/PC70BM solar cells via UVâ \in "ozone treatment. Nanoscale, 2013, 5, 10007.	2.8	49
532	Synthesis of Poly(benzothiadiazoleâ€∢i>co∢li>â€dithienobenzodithiophenes) and Effect of Thiophene Insertion for Highâ€Performance Polymer Solar Cells. Chemistry - A European Journal, 2013, 19, 13242-13248.	1.7	38
533	Synthesis, photophysical properties, and excited state dynamics of a platinum complex of tetracene imide disulfide. Chemical Communications, 2013, 49, 10394-10396.	2.2	6
534	Enhanced power conversion efficiency in bulk heterojunction polymer solar cells through dual-interface morphology modification. Wuhan University Journal of Natural Sciences, 2013, 18, 195-200.	0.2	0
535	A facile strategy to enhance the fill factor of ternary blend solar cells by increasing charge carrier mobility. New Journal of Chemistry, 2013, 37, 1728.	1.4	18
536	Synthesis and photovoltaic properties of copolymers based on benzo[1,2-b:4,5-b′]dithiophene and thiazole with different conjugated side groups. Polymer Chemistry, 2013, 4, 4737.	1.9	17
537	A facile synthesis of dithieno[3,2-b:6,7-b]fluorenes via a tandem annulation–reduction. RSC Advances, 2013, 3, 17707.	1.7	4
538	Effect of Processing Additives on PCDTBT:PC ₆₀ BM Based Organic Photovoltaic Cells. Molecular Crystals and Liquid Crystals, 2013, 586, 95-103.	0.4	2
539	Fluorine substitution enhanced photovoltaic performance of a D–A1–D–A2 copolymer. Chemical Communications, 2013, 49, 9335.	2.2	116
540	Influence of a polyelectrolyte based-fluorene interfacial layer on the performance of a polymer solar cell. Journal of Materials Chemistry A, 2013, 1, 11443.	5.2	10

#	Article	IF	CITATIONS
541	Step-by-step build-up of ordered pâ \in "n heterojunctions at nanoscale for efficient light harvesting. RSC Advances, 2013, 3, 166-171.	1.7	14
542	Side-chain effects on the solution-phase conformations and charge photogeneration dynamics of low-bandgap copolymers. Journal of Chemical Physics, 2013, 139, 124904.	1.2	25
543	Efficient small molecule bulk heterojunction solar cells with high fill factors via introduction of π-stacking moieties as end group. Journal of Materials Chemistry A, 2013, 1, 1801-1809.	5.2	96
544	Design and synthesis of benzothiadiazole–oligothiophene polymers for organic solar cell applications. Polymer Chemistry, 2013, 4, 1863.	1.9	19
545	Fluoro-functionalization of vinylene units in a polyarylenevinylene for polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 715-727.	5.2	27
546	Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Society Reviews, 2013, 42, 2824-2860.	18.7	1,105
547	Synthesis and Photovoltaic Effect in Dithieno[2,3â€ <i>d</i> à€²]Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> àê²]dithiopheneâ€Based (Advanced Materials, 2013, 25, 838-843.	Conjugated	d P oty mers.
548	Fluorinated Polymer Yields High Organic Solar Cell Performance for a Wide Range of Morphologies. Advanced Functional Materials, 2013, 23, 3463-3470.	7.8	91
549	A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications, 2013, 4, 1446.	5.8	2,612
550	Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC ₇₁ BM Solar Cells. Advanced Energy Materials, 2013, 3, 65-74.	10.2	605
551	Fast Screening of the Optimal Polymer Ratio for Organic Solar Cells Using a Spray-Coating Deposition Method for the Fullerene Mixture. Energy Technology, 2013, 1, 85-93.	1.8	2
552	Diketopyrrolopyrroleâ€based liquid crystalline conjugated donor–acceptor copolymers with reduced band gap for polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 258-266.	2.5	15
553	Ethynyleneâ€containing donor–acceptor alternating conjugated polymers: Synthesis and photovoltaic properties. Journal of Polymer Science Part A, 2013, 51, 383-393.	2.5	16
554	Synthesis and characterization of thieno[3,2â€b]thiopheneâ€isoindigoâ€based copolymers as electron donor and hole transport materials for bulkâ€heterojunction polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 424-434.	2.5	34
555	Donor–acceptor semiconducting polymers for organic solar cells. Journal of Polymer Science Part A, 2013, 51, 743-768.	2.5	206
556	Donor–acceptorâ€integrated conjugated polymers based on carbazole[3,4â€ <i>c</i> :5,6â€ <i>c</i>)bis[1,2,5]thiadiazole with tight π–π stacking for photovoltaics. Journal of Polymer Science Part A, 2013, 51, 565-574.	2.5	10
557	Synthesis and Photovoltaic Properties of Poly(5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)benzo-[c][1,2,5]-thiadiazole-9,9-dioctylfluorene). Journal of Materials Science and Technology, 2013, 29, 1214-1218.	5.6	4
558	Novel photovoltaic polymers constructed from alternative donor and acceptor units having one mother structure. Polymer, 2013, 54, 2278-2284.	1.8	9

#	Article	IF	CITATIONS
559	Control of Miscibility and Aggregation Via the Material Design and Coating Process for Highâ€Performance Polymer Blend Solar Cells. Advanced Materials, 2013, 25, 6991-6996.	11.1	197
560	Photoelectrochemical properties of doped polyaniline: Application to hydrogen photoproduction. International Journal of Hydrogen Energy, 2013, 38, 6593-6599.	3.8	50
561	Synthesis and characterization of quinoxaline-based polymers for bulk-heterojunction polymer solar cells. Thin Solid Films, 2013, 537, 231-238.	0.8	8
562	Conjugated polymer based on oligobenzo[c]thiophene with low-lying HOMO energy level as potential donor for bulk heterojunction solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 262, 34-44.	2.0	20
563	Model for the <i>J-V</i> characteristics of degraded polymer solar cells. Journal of Applied Physics, 2013, 113, .	1.1	21
564	Synthesis and characterization of porphyrinâ€based Dâ€Ï€â€A conjugated polymers for polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 2243-2251.	2.5	12
566	Naphtho[1,2-b:5,6-b′]dithiophene-based copolymers for applications to polymer solar cells. Polymer Chemistry, 2013, 4, 2132.	1.9	24
567	Modulation of the molecular geometry of carbazolebis(thiadiazole)-based conjugated polymers for photovoltaic applications. Polymer Chemistry, 2013, 4, 2480.	1.9	9
569	Conjugated random copolymers of benzodithiophene–benzooxadiazole–diketopyrrolopyrrole with full visible light absorption for bulk heterojunction solar cells. Polymer Chemistry, 2013, 4, 5321.	1.9	79
570	Application of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate in polymer heterojunction solar cells. Journal of Materials Science, 2013, 48, 3528-3534.	1.7	8
571	Self-Organized Hole Transport Layers Based on Polythiophene Diblock Copolymers for Inverted Organic Solar Cells with High Efficiency. Chemistry of Materials, 2013, 25, 897-904.	3.2	57
572	Improved efficiency of solution processed small molecules organic solar cells using thermal annealing. Organic Electronics, 2013, 14, 1562-1569.	1.4	26
573	Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors. Journal of the American Chemical Society, 2013, 135, 6724-6746.	6.6	1,280
574	Designing Polymers for Photovoltaic Applications Using ab Initio Calculations. Journal of Physical Chemistry C, 2013, 117, 7964-7972.	1.5	62
575	Synthesis and characterization of a low band gap quinoxaline based D–A copolymer and its application as a donor for bulk heterojunction polymer solar cells. Polymer Chemistry, 2013, 4, 4033.	1.9	33
576	The Role of N-Doped Multiwall Carbon Nanotubes in Achieving Highly Efficient Polymer Bulk Heterojunction Solar Cells. Nano Letters, 2013, 13, 2365-2369.	4.5	191
577	Recent trends in polymer tandem solar cells research. Progress in Polymer Science, 2013, 38, 1909-1928.	11.8	246
578	Organic photovoltaics with thick active layers ($\hat{a}^{1}/4800$ nm) using a high mobility polymer donor. Solar Energy Materials and Solar Cells, 2013, 114, 71-81.	3.0	32

#	Article	IF	CITATIONS
579	Photo-induced electron transfer in a pyrenylcarbazole containing polymer–multiwalled carbon nanotube composite. New Journal of Chemistry, 2013, 37, 1833.	1.4	9
580	Electron Affinity of Phenyl–C ₆₁ –Butyric Acid Methyl Ester (PCBM). Journal of Physical Chemistry C, 2013, 117, 14958-14964.	1.5	91
581	Synthesis and photovoltaic performance of donor–acceptor polymers containing benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> àle²]dithiophene with thienyl substituents. Journal of Polymer Science Part A, 2013, 51, 2622-2630.	2.5	16
582	Photovoltaics of donor–acceptor polymers based on benzodithiophene with lateral thiophenyl and fluorinated benzothiadiazole. Journal of Polymer Science Part A, 2013, 51, 1506-1511.	2.5	23
584	PDTâ€Sâ€T: A New Polymer with Optimized Molecular Conformation for Controlled Aggregation and ⟨i⟩Ï€⟨ i⟩â€"⟨i⟩Ï€⟨ i⟩ Stacking and Its Application in Efficient Photovoltaic Devices. Advanced Materials, 2013, 25, 3449-3455.	11.1	190
585	Synthesis of 5 <i>H</i> -Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>)pyran as an Electron-Rich Building Block for Donor–Acceptor Type Low-Bandgap Polymers. Macromolecules, 2013, 46, 4734-4734.	2.2	17
586	N-Octyl-2,7-dithia-5-azacyclopenta[a]pentalene-4,6-dione-Based Low Band Gap Polymers for Efficient Solar Cells. Macromolecules, 2013, 46, 3861-3869.	2.2	24
587	Synthesis of donor–acceptor copolymers based on anthracene derivatives for polymer solar cells. Polymer Chemistry, 2013, 4, 3949.	1.9	23
588	Chlorination as a useful method to modulate conjugated polymers: balanced and ambient-stable ambipolar high-performance field-effect transistors and inverters based on chlorinated isoindigo polymers. Chemical Science, 2013, 4, 2447.	3.7	109
589	High Open Circuit Voltage Solution-Processed Tandem Organic Photovoltaic Cells Employing a Bottom Cell Using a New Medium Band Gap Semiconducting Polymer. Chemistry of Materials, 2013, 25, 2722-2732.	3.2	83
590	Novel planar and star-shaped molecules: Synthesis, electrochemical and photophysical properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 107, 377-385.	2.0	12
591	Relating Recombination, Density of States, and Device Performance in an Efficient Polymer:Fullerene Organic Solar Cell Blend. Advanced Energy Materials, 2013, 3, 1201-1209.	10.2	89
592	Synthesis of a Low-Bandgap Fluorinated Donor–Acceptor Copolymer and Its Optoelectronic Application. ACS Applied Materials & Interfaces, 2013, 5, 6045-6053.	4.0	18
593	Small Optical Gap Molecules and Polymers: Using Theory to Design More Efficient Materials for Organic Photovoltaics. Topics in Current Chemistry, 2013, 352, 1-38.	4.0	14
594	Synthesis of new conjugated copolymers containing 4,8-bis(dodecyloxy)benzo[1,2-b:4,5-b′]dithiophene/5,7-bis(3,4-diethylthien-2-yl)-2,3-diphenylthieno[3,4-b]pyraz and 4,8-bis(dodecyloxy)benzo[1,2-b:4,5-b′]dithiophene/4,6-di(3,4-diethylthien-2-yl)-thieno[3,4-c][1,2,5]thiadiazole	zine 0 . 3	0
595	derivatives for photovoltaic applications. Polymer Science - Series B, 2013, 55, 373-381. Synthesis and photovoltaic properties of two-dimensional conjugated polymers with tunable pendant acceptor groups. Polymer Journal, 2013, 45, 571-575.	1.3	6
596	Synthesis of 5 <i>H</i> -Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyran as an Electron-Rich Building Block for Donor–Acceptor Type Low-Bandgap Polymers. Macromolecules, 2013, 46, 3384-3390.	2,2	299
597	Band Gap Control in Diketopyrrolopyrroleâ€Based Polymer Solar Cells Using Electron Donating Side Chains. Advanced Energy Materials, 2013, 3, 674-679.	10.2	33

#	Article	IF	Citations
598	Experimental Investigation and Theoretical Calculation of Molecular Architectures on Carbazole for Photovoltaics. Journal of Physical Chemistry C, 2013, 117, 9581-9589.	1.5	13
599	Naphthodithiophene–Naphthobisthiadiazole Copolymers for Solar Cells: Alkylation Drives the Polymer Backbone Flat and Promotes Efficiency. Journal of the American Chemical Society, 2013, 135, 8834-8837.	6.6	301
600	Ladder-Type Dithienonaphthalene-Based Donor–Acceptor Copolymers for Organic Solar Cells. Macromolecules, 2013, 46, 4813-4821.	2.2	40
601	Active Layer Materials for Organic Solar Cells. Green Energy and Technology, 2013, , 17-42.	0.4	34
602	Disentangling the impact of side chains and fluorine substituents of conjugated donor polymers on the performance of photovoltaic blends. Energy and Environmental Science, 2013, 6, 316-326.	15.6	153
603	Synthesis and photovoltaic characterization of D/A structure compound based on N-substituted phenothiazine and benzothiadiazole. Journal of Industrial and Engineering Chemistry, 2013, 19, 421-426.	2.9	25
604	Conjugated moiety effect on blend film phase separation and photovoltaic properties of benzo[1,2-b:4,5-b′]dithiophene-containing coplanar donor–acceptor copolymers. Solar Energy Materials and Solar Cells, 2013, 108, 136-145.	3.0	17
605	Fluorine-Induced Enhancement of the Oxidation Stability and Deep-Blue Optical Activity in Conductive Polyfluorene Derivatives. Journal of Physical Chemistry C, 2013, 117, 26760-26767.	1.5	19
606	3-Fluoro-4-hexylthiophene as a Building Block for Tuning the Electronic Properties of Conjugated Polythiophenes. Journal of Organic Chemistry, 2013, 78, 1497-1503.	1.7	36
607	Molecular orbital energy level modulation through incorporation of selenium and fluorine into conjugated polymers for organic photovoltaic cells. Journal of Materials Chemistry A, 2013, 1, 13422.	5.2	31
608	New Alkylfuranyl-Substituted Benzo[1,2- <i>b</i> :4,5- <i>b</i> 倲]dithiophene-Based Donor–Acceptor Polymers for Highly Efficient Solar Cells. Macromolecules, 2013, 46, 1368-1375.	2.2	73
609	Synthesis of a terpolymer containing fluorene, side chain conjugated thiophene and benzothiadiazole and its applications in photovoltaic devices. Journal of Applied Polymer Science, 2013, 128, 3250-3255.	1.3	8
610	Novel polythiophene derivatives functionalized with conjugated side-chain pendants comprising triphenylamine/carbazole moieties for photovoltaic cell applications. Polymer Chemistry, 2013, 4, 506-519.	1.9	30
611	Thienoisoindigo-based low-band gap polymers for organic electronic devices. Polymer Chemistry, 2013, 4, 484-494.	1.9	96
612	A thieno[3,4-f]isoindole-5,7-dione based copolymer for polymer solar cells. Polymer Chemistry, 2013, 4, 536-541.	1.9	15
613	A benzo[1,2-b:4,5-b′]difuran- and thieno-[3,4-b]thiophene-based low bandgap copolymer for photovoltaic applications. Polymer Chemistry, 2013, 4, 470-476.	1.9	35
614	Synthesis and characterization of naphthalene diimide polymers based on donor-acceptor system for polymer solar cells. EXPRESS Polymer Letters, 2013, 7, 842-851.	1.1	18
615	Synthetic Aspects and Electro-Optical Properties of Fluorinated Arylenevinylenes for Luminescence and Photovoltaics. Materials, 2013, 6, 1205-1236.	1.3	37

#	Article	IF	CITATIONS
616	The Influence of Alkoxy Substitutions on the Properties of Diketopyrrolopyrrole-Phenyl Copolymers for Solar Cells. Materials, 2013, 6, 3022-3034.	1.3	8
617	Inkjet-Printed Two-Dimensional Phased-Array Antenna on a Flexible Substrate. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 170-173.	2.4	63
618	Synthesis of Copolymer Thieno [3,4-b] Thiophene and Benzodithiophene for Application in Solar Cells. Molecular Crystals and Liquid Crystals, 2013, 578, 37-43.	0.4	0
619	Effect of PMMA and Graphene Addition on the Performances of Organic Solar Cells. Advanced Materials Research, 0, 805-806, 1235-1239.	0.3	1
620	Performance of Bulk Heterojunction Solar Cells Fabricated Using Spray-Deposited Poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]/C71 Butyric Acid Methyl Ester Blend Active Layers. International Journal of Photoenergy, 2013, 2013, 1-5.	[6,&]-Pher	nyb
621	Increasing the Openâ€Circuit Voltage in Highâ€Performance Organic Photovoltaic Devices through Conformational Twisting of an Indacenodithiopheneâ€Based Conjugated Polymer. Macromolecular Rapid Communications, 2013, 34, 1623-1628.	2.0	32
622	Study of the mechanism and rate of exciton dissociation at the donor-acceptor interface in bulk-heterojunction organic solar cells. Journal of Applied Physics, 2013, 114, .	1.1	56
623	Bromination of Isothianaphthene Derivatives towards the Application in Organic Electronics. Chinese Journal of Chemistry, 2013, 31, 1391-1396.	2.6	5
624	Polymer–nanocrystal hybrid photodetectors with planar heterojunctions designed strategically to yield a high photoconductive gain. Applied Physics Letters, 2013, 102, 193306.	1.5	21
625	Thermochromic and Photovoltaic Properties of an Alternating Copolymer of Dithieno[3,2â€∢i>b⟨ i>:2′,3′â€∢i>d⟨ i> thiophene and Thieno[3,4â€∢i>c⟨ i> pyrroleâ€4,6â€dione. Macrom Chemistry and Physics, 2013, 214, 447-452.	nolecular	6
626	Polymers for Solar Cells. , 2013, , 1-9.		0
627	Synthesis and Photovoltaic Properties of Polythiophene Incorporating with 3,4â€Difluorothiophene Units. Chinese Journal of Chemistry, 2013, 31, 1385-1390.	2.6	5
628	The Effect of Side-Chain Structure on Copolymer-Based Bulk Heterojunction Solar Cells. Molecular Crystals and Liquid Crystals, 2013, 578, 73-77.	0.4	2
629	Highly Efficient Polymer Solar Cells by using the Homogeneous Selfâ€Assembly of a Sulphydryl apped Photoactive Polymer Covalently Bound to the Anode. Energy Technology, 2013, 1, 613-616.	1.8	17
630	56Ï€-Electron Hydrofullerene Derivatives as Electron Acceptors for Organic Solar Cells. Chemistry Letters, 2013, 42, 1525-1527.	0.7	6
631	Towards high performance inverted polymer solar cells through interfacial reengineering. , 2013, , .		O
632	Low band-gap modulation of isoindigo-based copolymers toward high open-circuit voltage of polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 3477-3485.	2.5	13
633	Elucidating Interactions and Conductivity of Newly Synthesised Low Bandgap Polymer with Protic and Aprotic Ionic Liquids. PLoS ONE, 2013, 8, e68970.	1.1	16

#	Article	IF	CITATIONS
634	Integration of Organic Light Emitting Diodes and Organic Photodetectors for Lab-on-a-Chip Bio-Detection Systems. Electronics (Switzerland), 2014, 3, 43-75.	1.8	68
636	Polythiophenes Comprising Conjugated Pendants for Polymer Solar Cells: A Review. Materials, 2014, 7, 2411-2439.	1.3	56
637	The Effect of Graphene/Ag Nanoparticles Layer on the Performances of Organic Solar Cells. Advanced Materials Research, 0, 953-954, 1067-1071.	0.3	2
638	Electronic and optical excitations of the PTB7 crystal: First-principles GW-BSE calculations. Physical Review B, 2014, 90, .	1.1	18
639	Effect of doping on the short-circuit current and open-circuit voltage of polymer solar cells. Journal of Applied Physics, 2014, 116, .	1.1	19
640	Thieno[3,2-b]thiophene-substituted benzodithiophene in donor-acceptor type semiconducting copolymers: A feasible approach to improve performances of organic photovoltaic cells. Journal of Polymer Science Part A, 2014, 52, 3608-3616.	2.5	16
641	Impacts of side chain and excess energy on the charge photogeneration dynamics of low-bandgap copolymer-fullerene blends. Journal of Chemical Physics, 2014, 140, 084903.	1.2	16
642	Ultrafast energy transfer from rigid, branched side-chains into a conjugated, alternating copolymer. Journal of Chemical Physics, 2014, 140, 034903.	1.2	4
643	Tuning the Charge Transport Property of Naphthalene Diimide Derivatives by Changing the Substituted Position of Fluorine Atom on Molecular Backbone. Chinese Journal of Chemistry, 2014, 32, 1057-1064.	2.6	9
644	Low band gap disk-shaped donors for solution-processed organic solar cells. RSC Advances, 2014, 4, 64589-64595.	1.7	6
645	Theoretical calculation on relationship between molecular structure and band gap of benzo[1,2-b:4,5-b $$$ \$'\$\$ \hat{a} \$\in 2]dithiophene based homopolymer. Journal of Mathematical Chemistry, 2014, 52, 2507-2519.	0.7	3
646	Fused Thiophenes and Some Oligomers and Polymers Therefrom. Topics in Heterocyclic Chemistry, 2014, , 161-202.	0.2	6
647	Performance Optimization of Organic Solar Cells. IEEE Photonics Journal, 2014, 6, 1-26.	1.0	16
648	An improved circuit model for polymer solar cells. Progress in Photovoltaics: Research and Applications, 2014, 22, 937-948.	4.4	20
649	Guiding the Selection of Processing Additives for Increasing the Efficiency of Bulk Heterojunction Polymeric Solar Cells. Advanced Energy Materials, 2014, 4, 1300752.	10.2	43
650	Modeling and simulation of bulk heterojunction polymer solar cells. Solar Energy Materials and Solar Cells, 2014, 127, 67-86.	3.0	60
651	Photovoltaic Function and Exciton/Charge Transfer Dynamics in a Highly Efficient Semiconducting Copolymer. Advanced Functional Materials, 2014, 24, 10-26.	7.8	134
652	How to design low bandgap polymers for highly efficient organic solar cells. Materials Today, 2014, 17, 11-15.	8.3	209

#	Article	IF	CITATIONS
653	Tuning the Polarizability in Donor Polymers with a Thiophenesaccharin Unit for Organic Photovoltaic Applications. Advanced Functional Materials, 2014, 24, 3432-3437.	7.8	34
654	Cyclopenta[c]thiopheneâ€4,6â€dioneâ€Based Copolymers as Organic Photovoltaic Donor Materials. Advanced Energy Materials, 2014, 4, 1301821.	10.2	12
655	New narrow-band-gap conjugated copolymers based on benzodithiophene: Synthesis and photovoltaic properties. Polymer Science - Series B, 2014, 56, 89-108.	0.3	2
656	Influences of Alq3 as electron extraction layer instead of Ca on the photo-stability of organic solar cells. Journal of Power Sources, 2014, 250, 105-109.	4.0	15
657	Degradation of electrical properties of PTB1:PCBM solar cells under different environments. Solar Energy Materials and Solar Cells, 2014, 125, 155-163.	3.0	38
658	Recent Advances in Polymer Solar Cells: Realization of High Device Performance by Incorporating Water/Alcoholâ€Soluble Conjugated Polymers as Electrode Buffer Layer. Advanced Materials, 2014, 26, 1006-1024.	11.1	231
659	A New Architecture for Printable Photovoltaics Overcoming Conventional Module Limits. Advanced Materials, 2014, 26, 1602-1606.	11.1	11
660	Preparation and characterization of alternating copolymers containing fluorene and thiophene derivatives. European Polymer Journal, 2014, 53, 246-252.	2.6	6
661	Understanding the Morphology of PTB7:PCBM Blends in Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1301377.	10.2	203
662	Fine tuning of frontier orbital energy levels in dithieno[3,2-b:2′,3′-d]silole-based copolymers based on the substituent effect of phenyl pendants. Polymer, 2014, 55, 2139-2145.	1.8	7
665	Understanding Low Bandgap Polymer PTB7 and Optimizing Polymer Solar Cells Based on It. Advanced Materials, 2014, 26, 4413-4430.	11.1	461
666	Alkoxyâ€Functionalized Thienylâ€Vinylene Polymers for Fieldâ€Effect Transistors and Allâ€Polymer Solar Cells. Advanced Functional Materials, 2014, 24, 2782-2793.	7.8	83
667	Enhancement of the Photovoltaic Performance of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells through a Dichlorobenzeneâ€Functionalized Holeâ€Transporting Material. ChemPhysChem, 2014, 15, 2595-2603.	1.0	43
668	Electron-Deficient <i>N</i> -Alkyloyl Derivatives of Thieno[3,4- <i>c</i>)pyrrole-4,6-dione Yield Efficient Polymer Solar Cells with Open-Circuit Voltages > 1 V. Chemistry of Materials, 2014, 26, 2829-2835.	3.2	76
669	Molecular Design and Morphology Control Towards Efficient Polymer Solar Cells Processed using Nonâ€aromatic and Nonâ€chlorinated Solvents. Advanced Materials, 2014, 26, 2744-2749.	11.1	95
670	Tuning Thiophene with Phosphorus: Synthesis and Electronic Properties of Benzobisthiaphospholes. Chemistry - A European Journal, 2014, 20, 7746-7751.	1.7	48
671	Efficiency Improvement of Solutionâ€Processed Dithienopyrroleâ€Based Aâ€Dâ€A Oligothiophene Bulkâ€Heterojunction Solar Cells by Solvent Vapor Annealing. Advanced Energy Materials, 2014, 4, 1400266.	10.2	144
672	Near Infrared Organic Semiconducting Materials for Bulk Heterojunction and Dyeâ€Sensitized Solar Cells. Chemical Record, 2014, 14, 419-481.	2.9	20

#	Article	IF	CITATIONS
673	Unusual Doping of Donor–Acceptor-Type Conjugated Polymers Using Lewis Acids. Journal of the American Chemical Society, 2014, 136, 5138-5149.	6.6	61
674	Dithiophene-Fused Tetracyanonaphthoquinodimethanes (DT-TNAPs): Synthesis and Characterization of π-Extended Quinoidal Compounds for n-Channel Organic Semiconductor. Organic Letters, 2014, 16, 240-243.	2.4	24
675	Benzo[1,2-b:4,5-b′]dithiophene and benzotriazole based small molecule for solution-processed organic solar cells. Organic Electronics, 2014, 15, 405-413.	1.4	42
676	Thiazolyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic applications. Journal of Materials Chemistry C, 2014, 2, 1306-1313.	2.7	25
677	Effective nanostructred morphologies for efficient hybrid solar cells. Solar Energy, 2014, 106, 1-22.	2.9	45
678	Computational modelling of donor–acceptor conjugated polymers through engineered backbone manipulations based on a thiophene–quinoxaline alternating copolymer. Journal of Materials Chemistry A, 2014, 2, 2202-2212.	5.2	24
679	Benzo[1,2-b:4,5-b′]dithiophene-fumaronitrile-based D-A type copolymers with different π-bridges: Synthesis, characterization and photovoltaic properties. Synthetic Metals, 2014, 188, 57-65.	2.1	9
680	Impact of fluorinated end groups on the properties of acceptor–donor–acceptor type oligothiophenes for solution-processed photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 1337-1345.	2.7	19
681	Influence of Solvent and Solvent Additive on the Morphology of PTB7 Films Probed via X-ray Scattering. Journal of Physical Chemistry B, 2014, 118, 344-350.	1.2	57
682	Dithieno[2,3-d:2′,3′-d′]naphtho[1,2-b:3,4-b′]dithiophene – a novel electron-rich building block for lo band gap conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 1601.	^W 2.7	17
683	Scattering or Photoluminescence? Major Mechanism Exploration on Performance Enhancement in P3HTâ€Based Polymer Solar Cells with NaYF ₄ :2% Er ³⁺ , 18% Yb ³⁺ Upconverting Nanocrystals. Advanced Optical Materials, 2014, 2, 442-449.	3.6	16
684	Highly Conjugated Side-Chain-Substituted Benzo[1,2- <i>b</i> i>bi>4,5- <i>b</i> i>′]dithiophene-Based Conjugated Polymers for Use in Polymer Solar Cells. Macromolecules, 2014, 47, 97-105.	2.2	50
685	Photoelectrochemical scanning droplet cell microscopy for localized photovoltaic investigations on organic semiconductors. Physical Chemistry Chemical Physics, 2014, 16, 3739.	1.3	11
686	From lab to fab: how must the polymer solar cell materials design change? – an industrial perspective. Energy and Environmental Science, 2014, 7, 925.	15.6	303
687	Conjugated polymers based on benzodithiophene and fluorinated quinoxaline for bulk heterojunction solar cells: thiophene versus thieno[3,2-b]thiophene as π-conjugated spacers. Polymer Chemistry, 2014, 5, 2083.	1.9	68
688	Side Chain Structure Affects the Photovoltaic Performance of Two-Dimensional Conjugated Polymers. Macromolecules, 2014, 47, 70-78.	2.2	84
689	Charge Photogeneration in Neat Conjugated Polymers. Chemistry of Materials, 2014, 26, 561-575.	3.2	118
690	Synthesis and Characterization of Angular-Shaped Naphtho[1,2- <i>b</i> j5,6- <i>b</i> j6-di>bj6-di>bj7:00 Angular-Shaped Naphtho[1,2- <i>j2:00 Angular Shaped Angular S</i>	2.2	39

#	Article	IF	CITATIONS
691	Plasmonic effect of gold nanoparticles in organic solar cells. Solar Energy, 2014, 106, 23-37.	2.9	236
692	Benzotriazole-based donor–acceptor conjugated polymers with a broad absorption in the visible range. Polymer Chemistry, 2014, 5, 1258-1263.	1.9	26
693	Design and synthesis of triazoloquinoxaline polymers with positioning alkyl or alkoxyl chains for organic photovoltaics cells. Polymer Chemistry, 2014, 5, 1163-1172.	1.9	21
694	New conjugated alternating benzodithiophene-containing copolymers with different acceptor units: synthesis and photovoltaic application. Journal of Materials Chemistry A, 2014, 2, 155-171.	5.2	55
695	Theoretical study on the electronic structures and properties of diindolocarbazole isomers. Journal of Physical Organic Chemistry, 2014, 27, 973-980.	0.9	8
696	N-phenyl[60]fulleropyrrolidines: alternative acceptor materials to PC ₆₁ BM for high performance organic photovoltaic cells. Journal of Materials Chemistry A, 2014, 2, 20889-20895.	5.2	28
697	Triphenylamineâ€Substituted Metalloporphyrins for Solutionâ€Processed Bulk Heterojunction Solar Cells: The Effect of the Central Metal Ion on Device Performance. European Journal of Inorganic Chemistry, 2014, 2014, 4852-4857.	1.0	7
698	New building blocks for ï€-conjugated polymer semiconductors for organic thin film transistors and photovoltaics. Journal of Materials Chemistry C, 2014, 2, 8651-8661.	2.7	73
699	A water-soluble metallophthalocyanine derivative as a cathode interlayer for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 12484-12491.	5.2	54
700	Synthesis and properties of D–A copolymers based on dithienopyrrole and benzothiadiazole with various numbers of thienyl units as spacers. Polymer Chemistry, 2014, 5, 6797-6803.	1.9	22
701	Two-dimensional benzodithiophene and benzothiadiazole based solution-processed small molecular organic field-effect transistors & Samp; solar cells. Journal of Materials Chemistry C, 2014, 2, 3921.	2.7	41
702	Development of bulk heterojunction morphology by the difference of intermolecular interaction behaviors. Organic Electronics, 2014, 15, 3558-3567.	1.4	8
703	Quantifying Charge Recombination in Solar Cells Based on Donor–Acceptor P3HT Analogues. Journal of Physical Chemistry C, 2014, 118, 6650-6660.	1.5	6
704	Tuning nanoscale morphology using mixed solvents and solvent vapor treatment for high performance polymer solar cells. RSC Advances, 2014, 4, 48724-48733.	1.7	29
705	Photovoltaic devices with a PEDOT:PSS:WOx hole transport layer. RSC Advances, 2014, 4, 20242.	1.7	13
706	Design of terpolymers as electron donors for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 15252.	5.2	155
707	Tuning the thermal conductivity of solar cell polymers through side chain engineering. Physical Chemistry Chemical Physics, 2014, 16, 7764-7771.	1.3	44
708	Plasma modification of poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole) low bandgap polymer and its application in solar cells. Physical Chemistry Chemical Physics, 2014, 16, 27043-27052.	1.3	12

#	Article	IF	CITATIONS
709	Longâ€Distance Electronic Energy Transfer in Lightâ€Harvesting Supramolecular Polymers. Angewandte Chemie - International Edition, 2014, 53, 13609-13613.	7.2	91
710	Techniques for the Molecular Design of Push-Pull Polymers towards Enhanced Organic Photovoltaic Performance. ACS Symposium Series, 2014, , 71-109.	0.5	8
711	Sideâ€Chain Engineering of Benzodithiopheneâ€Fluorinated Quinoxaline Lowâ€Bandâ€Gap Coâ€polymers for Highâ€Performance Polymer Solar Cells. Chemistry - A European Journal, 2014, 20, 13259-13271.	1.7	44
712	CH ₃ NH ₃ Pbl _(3a^'x) (BF ₄) _x : molecular ion substituted hybrid perovskite. Chemical Communications, 2014, 50, 9741.	2.2	98
713	Optimizing the Performance of Conjugated Polymers in Organic Photovoltaic Cells by Traversing Group 16. Macromolecules, 2014, 47, 7253-7271.	2.2	162
714	Fluorinated Thiophenes and Their Analogues. , 2014, , 233-277.		2
715	Review on the Recent Progress in Low Band Gap Conjugated Polymers for Bulk Heteroâ€junction Polymer Solar Cells. Journal of the Chinese Chemical Society, 2014, 61, 115-126.	0.8	66
716	A high-performance photovoltaic small molecule developed by modifying the chemical structure and optimizing the morphology of the active layer. RSC Advances, 2014, 4, 31977-31980.	1.7	54
717	Sideâ€Chain Tunability via Triple Component Random Copolymerization for Better Photovoltaic Polymers. Advanced Energy Materials, 2014, 4, 1300864.	10.2	81
718	Effect of Fluorination on Electronic Properties of Polythienothiophene- <i>co</i> benzodithiophenes and Their Fullerene Complexes. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15889-15896.	4.0	13
719	Organometallic Approaches to Conjugated Polymers for Plastic Solar Cells: From Laboratory Synthesis to Industrial Production. European Journal of Organic Chemistry, 2014, 2014, 6583-6614.	1,2	63
720	Highly Stable, Solution-Processable Phenothiazine Derivative as Hole Collection Material for Organic Solar Cells. ACS Applied Materials & Solar Cells.	4.0	28
721	Simultaneous Enhancement of Solar Cell Efficiency and Photostability via Chemical Tuning of Electron Donating Units in Diketopyrrolopyrrole-Based Push–Pull Type Polymers. Macromolecules, 2014, 47, 6270-6280.	2.2	37
722	Conjugated polymers with benzothiadiazole, benzoxadiazole, and benzotriazole moieties as promising semiconductor materials for organic solar cells. Polymer Science - Series B, 2014, 56, 414-442.	0.3	13
723	Study of an improved integrated collector-storage solar water heater combined with the photovoltaic cells. Energy Conversion and Management, 2014, 86, 587-594.	4.4	31
724	Rational design on D–A conjugated P(BDT–DTBT) polymers for polymer solar cells. Polymer Chemistry, 2014, 5, 5200-5210.	1.9	94
725	Controlled Synthesis of Water-Soluble Conjugated Polyelectrolytes Leading to Excellent Hole Transport Mobility. Chemistry of Materials, 2014, 26, 1992-1998.	3.2	46
726	Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy and Environmental Science, 2014, 7, 2939.	15.6	265

#	Article	IF	CITATIONS
727	Graphene Oxide-Based Carbon Interconnecting Layer for Polymer Tandem Solar Cells. Nano Letters, 2014, 14, 1467-1471.	4.5	56
728	Synthetically controlling the optoelectronic properties of dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-alt-diketopyrrolopyrrole-conjugated polymers fefficient solar cells. Journal of Materials Chemistry A, 2014, 2, 15316-15325.	05.2	46
729	Fluorinated benzothiadiazole-based low band gap copolymers to enhance open-circuit voltage and efficiency of polymer solar cells. European Polymer Journal, 2014, 59, 25-35.	2.6	19
730	Effects of Shortened Alkyl Chains on Solutionâ€Processable Small Molecules with Oxoâ€Alkylated Nitrile Endâ€Capped Acceptors for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1400538.	10.2	79
731	Syntheses and Photovoltaic Properties of Narrow Band Gap Donor–Acceptor Copolymers with Carboxylate-Substituted Benzodithiophene as Electron Acceptor Unit. Macromolecules, 2014, 47, 4987-4993.	2.2	17
732	High Performance Organic Photovoltaics with Plasmonic-Coupled Metal Nanoparticle Clusters. ACS Nano, 2014, 8, 10305-10312.	7.3	85
733	Effects of side chain isomerism on the physical and photovoltaic properties of indacenodithieno[3,2- <i>b</i>)thiophene–quinoxaline copolymers: toward a side chain design for enhanced photovoltaic performance. Journal of Materials Chemistry A, 2014, 2, 18988-18997.	5.2	45
734	Effect of Extended Ï€â€Conjugation Structure of Donor–Acceptor Conjugated Copolymers on the Photoelectronic Properties. Chemistry - an Asian Journal, 2014, 9, 2961-2969.	1.7	9
735	Location and Number of Selenium Atoms in Two-Dimensional Conjugated Polymers Affect Their Band-Gap Energies and Photovoltaic Performance. Macromolecules, 2014, 47, 7070-7080.	2.2	75
736	Thienopyrazine or dithiadiazatrindene containing low band gap conjugated polymers for polymer solar cells. Chinese Journal of Polymer Science (English Edition), 2014, 32, 844-853.	2.0	19
737	Synthesis, thermal stability, optical and electrochemical properties of halogen terminated azo-benzothiazole mesogen containing smectic side chain liquid crystalline polymers. Journal of Polymer Research, 2014, 21, 1.	1.2	12
738	Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain. Chemistry of Materials, 2014, 26, 3603-3605.	3.2	531
739	Influence of Fluorination and Molecular Weight on the Morphology and Performance of PTB7:PC ₇₁ BM Solar Cells. Journal of Physical Chemistry C, 2014, 118, 9918-9929.	1.5	43
740	Synthesis and Search for Design Principles of New Electron Accepting Polymers for All-Polymer Solar Cells. Chemistry of Materials, 2014, 26, 3450-3459.	3.2	100
741	Effect of Fluorine Content in Thienothiophene-Benzodithiophene Copolymers on the Morphology and Performance of Polymer Solar Cells. Chemistry of Materials, 2014, 26, 3009-3017.	3.2	136
742	The effect of thiophene substituents of fulleropyrrolidine acceptors on the performance of inverted organic solar cells. Synthetic Metals, 2014, 195, 193-200.	2.1	7
743	The study of solvent additive effects in efficient polymer photovoltaics via impedance spectroscopy. Solar Energy Materials and Solar Cells, 2014, 130, 20-26.	3.0	75
744	Synthesis, optical and electrochemical properties of small molecules DMM-TPA[DTS(FBTTh3)3] and TPA[DTS(FBTTh3)3], and their application as donors for bulk heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 12368-12379.	5.2	16

#	Article	IF	Citations
745	Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy and Environmental Science, 2014, 7, 2276-2284.	15.6	493
746	Preheated solvent exposure on P3HT:PCBM thin film: A facile strategy to enhance performance in bulk heterojunction photovoltaic cells. Current Applied Physics, 2014, 14, 1443-1450.	1.1	21
747	Optimization of Solubility, Film Morphology and Photodetector Performance by Molecular Sideâ€Chain Engineering of Lowâ€Bandgap Thienothiadiazoleâ€Based Polymers. Advanced Functional Materials, 2014, 24, 7605-7612.	7.8	89
748	Optimization of molecular organization and nanoscale morphology for high performance low bandgap polymer solar cells. Nanoscale, 2014, 6, 3984.	2.8	42
749	Importance of the Donor:Fullerene Intermolecular Arrangement for High-Efficiency Organic Photovoltaics. Journal of the American Chemical Society, 2014, 136, 9608-9618.	6.6	302
750	New Insights into Morphology of High Performance BHJ Photovoltaics Revealed by High Resolution AFM. Nano Letters, 2014, 14, 5727-5732.	4.5	45
751	A comparative study of fluorine substituents for enhanced stability of flexible and ITOâ€free highâ€performance polymer solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 893-899.	2.4	35
752	Synthesis and photovoltaic properties of an alternating polymer based on benzo $[1,2-b:4,5-b\hat{a}\in^2]$ dithiophene and fluorine substituted 4,7-dithiophene-2-yl-2,1,3-benzothiadiazole. Synthetic Metals, 2014, 192, 82-86.	2.1	3
753	25th Anniversary Article: Isoindigoâ€Based Polymers and Small Molecules for Bulk Heterojunction Solar Cells and Field Effect Transistors. Advanced Materials, 2014, 26, 1801-1826.	11.1	330
754	An Easy and Effective Method to Modulate Molecular Energy Level of the Polymer Based on Benzodithiophene for the Application in Polymer Solar Cells. Advanced Materials, 2014, 26, 2089-2095.	11.1	137
755	Enhanced Photovoltaic Performance of Indacenodithiopheneâ€Quinoxaline Copolymers by Sideâ€Chain Modulation. Advanced Energy Materials, 2014, 4, 1400680.	10.2	134
756	Effects of Exciton Polarity in Charge-Transfer Polymer/PCBM Bulk Heterojunction Films. Journal of Physical Chemistry Letters, 2014, 5, 1856-1863.	2.1	33
757	Improving Structural Order for a Highâ€Performance Diketopyrrolopyrroleâ€Based Polymer Solar Cell with a Thick Active Layer. Advanced Energy Materials, 2014, 4, 1300739.	10.2	43
758	Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nature Communications, 2014, 5, 4206.	5.8	470
759	Novel Donor–Acceptor Polymer Containing 4,7â€Bis(thiophenâ€2â€yl)benzo[c][1,2,5]thiadiazole for Polymer Solar Cells with Power Conversion Efficiency of 6.21%. Macromolecular Rapid Communications, 2014, 35, 1153-1157.	2.0	33
760	Cyclopentadithiophene-functionalized Ru(II)-bipyridine sensitizers for dye-sensitized solar cells. Polyhedron, 2014, 82, 132-138.	1.0	1
761	Fabrication of efficient organic and hybrid solar cells by fine channel mist spray coating. Solar Energy Materials and Solar Cells, 2014, 127, 111-121.	3.0	23
762	Polymers and Sustainable Energy. , 2014, , 87-124.		O

#	Article	IF	CITATIONS
764	Understanding the Impact of Hierarchical Nanostructure in Ternary Organic Solar Cells. Advanced Science, 2015, 2, 1500250.	5.6	43
7 65	Small Molecule Bulk-heterojunction Solar Cells Composed of Two Discrete Organic Semiconductors. Chemistry Letters, 2015, 44, 315-317.	0.7	2
766	An Alternating Donor–Acceptor Conjugated Polymer Based on Benzodithiophene and [3,4-c]pyrrole-4,6-dione: Synthesis, Characterization, and Application in Photovoltaic Devices. Australian Journal of Chemistry, 2015, 68, 1773.	0.5	4
767	A New D-A conjugated polymer P(PTQD-BDT) with PTQD acceptor and BDT donor units for BHJ polymer solar cells application. Journal of Polymer Science Part A, 2015, 53, 2390-2398.	2.5	10
768	A Solutionâ€Processable Molecule using Thieno[3,2â€ <i>b</i>)†thiophene as Building Block for Efficient Organic Solar Cells. Chemistry - an Asian Journal, 2015, 10, 1791-1798.	1.7	16
769	D–π–A–π–A Strategy to Design Benzothiadiazole–carbazoleâ€based Conjugated Polymer with High S Cell Voltage and Enhanced Photocurrent. Macromolecular Rapid Communications, 2015, 36, 2156-2161.	olar 2.0	5
770	Side chain engineering and conjugation enhancement of benzodithiophene and phenanthrenequnioxaline based conjugated polymers for photovoltaic devices. Journal of Polymer Science Part A, 2015, 53, 1915-1926.	2.5	16
771	Enhancement of light absorption by using light scattering and emitting dyes in organic photovoltaics. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2326-2331.	0.8	2
772	Synthesis and photovoltaic properties of thieno [3,4- <i>b</i>] pyrazine or dithieno [3â \in 2,2â \in 2:3,4;2â \in 3,3â \in 3:5,6] benzo [1,2- <i>d</i>] imidazole-containing conjugated polymers. Journal of Polymer Science Part A, 2015, 53, 1067-1075.	2.5	9
773	A Largeâ∈Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance. Advanced Materials, 2015, 27, 4655-4660.	11.1	882
774	Medium Bandgap Conjugated Polymer for High Performance Polymer Solar Cells Exceeding 9% Power Conversion Efficiency. Advanced Materials, 2015, 27, 7462-7468.	11.1	82
775	A Roundabout Approach to Control Morphological Orientation and Solar ell Performance by Modulating Side hain Branching Position in Benzodithiopheneâ€Based Polymers. ChemPhysChem, 2015, 16, 1305-1314.	1.0	15
776	Orderly Nanopatterned Indium Tin Oxide Electrode Combined with Atomicâ€Layerâ€Deposited Metal Oxide Interlayer for Inverted Organic Solar Cells. Energy Technology, 2015, 3, 906-912.	1.8	4
777	Aromatic Heterocycle 1,3,4â€Oxadiazoleâ€Substituted Thieno[3,4â€ <i>b</i>)†thiophene to Build Lowâ€Bandgap Polymer for Photovoltaic Application. Macromolecular Rapid Communications, 2015, 36, 2065-2069.	2.0	12
778	Synthesis of Alternating Lowâ€Bandgap Conjugated Polymers Based on Dithieno[2,3â€ <i>d</i> :2′,3′à€ <i>d</i> ê²]naphtho[1,2â€ <i>b</i> :3,4â€ <i>b</i> ê²]dithiophene and Enha Photovoltaic Properties with Solvent Additives. Macromolecular Chemistry and Physics, 2015, 216, 733-741.	ncement	of
779	Enhanced photovoltaic performance of inverted polymer solar cells by incorporating graphene nanosheet/AgNPs nanohybrids. RSC Advances, 2015, 5, 25192-25203.	1.7	14
780	Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%. Chemical Science, 2015, 6, 4860-4866.	3.7	35
781	Resonance Raman spectroscopy and imaging of push–pull conjugated polymer–fullerene blends. Journal of Materials Chemistry C, 2015, 3, 6058-6066.	2.7	24

#	Article	IF	Citations
782	Synthesis and photovoltaic properties of dithieno $[3,2-b:2\hat{a}\in^2,3\hat{a}\in^2-d]$ silole-based conjugated copolymers. Journal of Materials Chemistry A, 2015, 3, 13794-13800.	5.2	18
783	Concentration-Dependent Pyrene-Driven Self-Assembly in Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene (BDT)–Thienothiophene (TT)–Pyrene Copolymers. Macromolecules, 2015, 48, 3509-3515.	2.2	23
784	Efficient inverted polymer solar cells employing favourable molecular orientation. Nature Photonics, 2015, 9, 403-408.	15.6	769
785	Pressure-Dependent Relaxation Dynamics of Excitons in Conjugated Polymer Film. Journal of Physical Chemistry C, 2015, 119, 13194-13199.	1.5	8
786	Molecular Design and Application of a Photovoltaic Polymer with Improved Optical Properties and Molecular Energy Levels. Macromolecules, 2015, 48, 3493-3499.	2.2	52
787	Asymmetric Electron-Donating 4-Alkyl-8-alkoxybenzo[1,2- <i>b</i> i>i+4,5- <i>b</i> i>i∈2]dithiophene Unit for Use in High-Efficiency Bulk Heterojunction Polymer Solar Cells. Macromolecules, 2015, 48, 3918-3927.	2.2	39
788	Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C/PC ₆₀ BM Photovoltaic Blends. Journal of Physical Chemistry C, 2015, 119, 13509-13515.	1.5	56
789	Molecular design strategies for voltage modulation in highly efficient polymer solar cells. Polymer International, 2015, 64, 957-962.	1.6	45
790	Organic Optoelectronic Materials. Lecture Notes in Quantum Chemistry II, 2015, , .	0.3	33
791	Influence of Regio- and Chemoselectivity on the Properties of Fluoro-Substituted Thienothiophene and Benzodithiophene Copolymers. Journal of the American Chemical Society, 2015, 137, 7616-7619.	6.6	89
792	Non-fullerene acceptors: exciton dissociation with PTCDA versus C ₆₀ . Physical Chemistry Chemical Physics, 2015, 17, 15953-15962.	1.3	9
793	Dramatic performance enhancement for large bandgap thick-film polymer solar cells introduced by a difluorinated donor unit. Nano Energy, 2015, 15, 607-615.	8.2	93
794	Conjugated Polymer Photovoltaic Materials. Lecture Notes in Quantum Chemistry II, 2015, , 195-239.	0.3	3
795	Temperature- and Energy-Dependent Separation of Charge-Transfer States in PTB7-Based Organic Solar Cells. Journal of Physical Chemistry C, 2015, 119, 28309-28318.	1.5	35
796	Effect of Polymer Side Chains on Charge Generation and Disorder in PBDTTPD Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26999-27005.	4.0	27
797	Ultrafast Singlet Fission in a Push–Pull Low-Bandgap Polymer Film. Journal of the American Chemical Society, 2015, 137, 15980-15983.	6.6	77
798	S,N-Heteropentacene based small molecules with A–D–A structure for solution processed organic bulk heterojunction solar cells. RSC Advances, 2015, 5, 102115-102125.	1.7	9
799	Solution-processable low-bandgap 3-fluorothieno [3,4-b] thiophene-2-carboxylate-based conjugated polymers for electrochromic applications. RSC Advances, 2015, 5, 96328-96335.	1.7	8

#	Article	IF	CITATIONS
800	Photon assisted conducting atomic force microscopy study of nanostructured additives in P3HT:PCBM. RSC Advances, 2015, 5, 102795-102802.	1.7	19
801	Structural and morphological tuning of dithienobenzodithiophene-core small molecules for efficient solution processed organic solar cells. Dyes and Pigments, 2015, 115, 23-34.	2.0	22
802	Low band-gap benzodithiophene-thienothiophenecopolymers: the effect of dual two-dimensional substitutions on optoelectronic properties. Science China Chemistry, 2015, 58, 267-275.	4.2	8
803	D–A ₁ –D–A ₂ Copolymers with Extended Donor Segments for Efficient Polymer Solar Cells. Macromolecules, 2015, 48, 1009-1016.	2.2	82
804	High-performance multiple-donor bulk heterojunction solar cells. Nature Photonics, 2015, 9, 190-198.	15.6	489
805	Synthesis of dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene -alt-isoindigo conjugated polynenhancement of photovoltaic property with diphenyl sulfide additives. Journal of Polymer Research, 2015, 22, 1.	ner and 1.2	12
806	Backbone orientation in semiconducting polymers. Polymer, 2015, 59, A1-A15.	1.8	156
807	Methods for Improving the Lifetime Performance of Organic Photovoltaics with Lowâ€Costing Encapsulation. ChemPhysChem, 2015, 16, 1134-1154.	1.0	72
808	Solution-processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10%. Organic Electronics, 2015, 19, 34-60.	1.4	216
809	Donor-acceptor rod-coil block copolymers comprising poly[2,7-(9,9-dihexylfluorene)- <i>alt</i> -bithiophene] and fullerene as compatibilizers for organic photovoltaic devices. Journal of Polymer Science Part A, 2015, 53, 888-903.	2.5	10
810	An alkylthieno-2-yl flanked dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-based low band gap conjugated polymer for high performance photovoltaic solar cells. RSC Advances, 2015, 5, 12879-12885.	1.7	24
811	A–D–A small molecules for solution-processed organic photovoltaic cells. Chemical Communications, 2015, 51, 4936-4950.	2.2	188
812	Synthesis and optical properties of photovoltaic materials based on the ambipolar dithienonaphthothiadiazole unit. Journal of Materials Chemistry A, 2015, 3, 4229-4238.	5.2	14
813	Enhancement of Organic Photovoltaic Efficiency via Nanomorphology Control using Conjugated Polymers Incorporating Fullerene Compatible Side-Chains. Macromolecules, 2015, 48, 337-345.	2.2	10
814	Molecular engineering of donor–acceptor co-polymers for bulk heterojunction solar cells. Computational and Theoretical Chemistry, 2015, 1055, 15-24.	1.1	8
815	Solution processed organic solar cells based on A–D—Dâ€2–D—A small molecule with benzo[1,2-b:4,5-b′]dithiophene donor (D′) unit, cyclopentadithiophene donor (D) and ethylrhodanine acceptor unit having 6% light to energy conversion efficiency. Journal of Materials Chemistry A, 2015, 3, 4892-4902.	5.2	23
816	Tuning the Isomeric Fused Heteroaromatic Core of Small Donor–Acceptor Molecules to Alter Their Crystalline Nature and Enhance Photovoltaic Performance. European Journal of Organic Chemistry, 2015, 2015, 820-827.	1.2	13
817	Hydrogen bonding in bulk heterojunction solar cells: A case study. Scientific Reports, 2014, 4, 5701.	1.6	25

#	Article	IF	CITATIONS
818	Effect of branched alkyl side chains on the performance of thin-film transistors and photovoltaic cells fabricated with isoindigo-based conjugated polymers. Journal of Polymer Science Part A, 2015, 53, 1226-1234.	2.5	23
819	Design and photovoltaic characterization of dialkylthio benzo[1,2-b:4,5-b′]dithiophene polymers with different accepting units. Physical Chemistry Chemical Physics, 2015, 17, 7848-7856.	1.3	16
820	Synthesis and Photovoltaic Properties of 2D π-Conjugated Polymers Based on Alkylbenzothiophene Substituted Benzodithiophene Donor Unit with Titanium Sub-Oxide (TiOX) as an Interlayer in the Bulk Heterojunction Device Structure. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 107-117.	1.9	2
821	Highâ€Performance Allâ€Polymer Solar Cells Via Sideâ€Chain Engineering of the Polymer Acceptor: The Importance of the Polymer Packing Structure and the Nanoscale Blend Morphology. Advanced Materials, 2015, 27, 2466-2471.	11.1	279
822	Effect of fluorine substitution on photovoltaic performance of DPP-based copolymer. Organic Electronics, 2015, 20, 125-131.	1.4	12
823	A new oligobenzodithiophene end-capped with 3-ethyl-rhodanine groups for organic solar cells with high open-circuit voltage. Science China Chemistry, 2015, 58, 339-346.	4.2	23
824	Study of thermal effects and optical properties of an innovative absorber in integrated collector storage solar water heater. Heat and Mass Transfer, 2015, 51, 1403-1411.	1.2	7
825	Benzodithiophene-based low band-gap polymers with deep HOMO levels: synthesis, characterization, and photovoltaic performance. Polymer Journal, 2015, 47, 617-623.	1.3	6
826	Side chain modification: an effective approach to modulate the energy level of benzodithiophene based polymers for high-performance solar cells. Journal of Materials Chemistry A, 2015, 3, 18115-18126.	5.2	40
827	Status and prospects for ternary organic photovoltaics. Nature Photonics, 2015, 9, 491-500.	15.6	527
828	Panchromatic polymer–polymer ternary solar cells enhanced by Förster resonance energy transfer and solvent vapor annealing. Journal of Materials Chemistry A, 2015, 3, 18611-18621.	5.2	55
829	Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chemical Reviews, 2015, 115, 12666-12731.	23.0	2,308
830	Investigation of benzo(1,2-b:4,5-b′)dithiophene as a spacer in organic dyes for high efficient dye-sensitized solar cell. Organic Electronics, 2015, 25, 245-253.	1.4	11
831	Efficient bulk heterojunction photovoltaic devices based on modified PCBM. Nanotechnology Reviews, 2015, 4, .	2.6	4
832	Semi-transparent polymer solar cells. Journal of Photonics for Energy, 2015, 5, 057212.	0.8	22
833	Efficient solution processed D1-A-D2-A-D1 small molecules bulk heterojunction solar cells based on alkoxy triphenylamine and benzo[1,2-b:4,5-b′]thiophene units. Organic Electronics, 2015, 26, 36-47.	1.4	17
834	Low band-gap polymers based on easily synthesized thioester-substituted thieno[3,4-b]thiophene for polymer solar cells. RSC Advances, 2015, 5, 62336-62342.	1.7	4
835	Pickering Emulsion Polymerization. , 2015, , 1634-1639.		0

#	Article	IF	CITATIONS
836	Understanding effects of two different acceptors in one small molecule for solution processable organic solar cells. RSC Advances, 2015, 5, 61703-61709.	1.7	0
837	Highly efficient photovoltaics and field-effect transistors based on copolymers of mono-fluorinated benzothiadiazole and quaterthiophene: synthesis and effect of the molecular weight on device performance. Polymer Chemistry, 2015, 6, 6050-6057.	1.9	15
838	Polymer Flocculants. , 2015, , 1884-1892.		0
839	Improved photovoltaic performance of star-shaped molecules with a triphenylamine core by tuning the substituted position of the carbazolyl unit at the terminal. Journal of Materials Chemistry A, 2015, 3, 10883-10889.	5.2	27
840	The effect of polymer solubilizing side-chains on solar cell stability. Physical Chemistry Chemical Physics, 2015, 17, 11884-11897.	1.3	41
841	Relation of Polymer Degradation in Air With the Charge Carrier Concentration in PTB1, PTB7, and PCBM Layers Used in High-Efficiency Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 1093-1099.	1.5	9
842	Photonic crystals for improving light absorption in organic solar cells. Journal of Applied Physics, 2015, 117, .	1.1	29
843	New D-A-D-A-D push–pull organic semiconductors with different benzo[1,2-b:4, 5-b′] dithiophene cores for solution processed bulk heterojunction solar cells. Dyes and Pigments, 2015, 120, 126-135.	2.0	23
844	Effect of side chains on solubility and morphology of poly(benzodithiohene-alt-alkylbithiophene) in organic photovoltaics. Journal of Industrial and Engineering Chemistry, 2015, 29, 120-128.	2.9	12
845	Synthesis and photovoltaic properties of the acceptor pended push–pull conjugated polymers incorporating thieno[3,2–b] thiophene in the backbone chain or side chains. Dyes and Pigments, 2015, 120, 44-51.	2.0	14
846	Fine tuning of terpolymer properties by incorporating electron-accepting difluorobenzene and diketopyrrolopyrrole units. Journal of Materials Science, 2015, 50, 5363-5370.	1.7	4
847	Donor–Acceptor Copolymers Based on Thermally Cleavable Indigo, Isoindigo, and DPP Units: Synthesis, Field Effect Transistors, and Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 9038-9051.	4.0	69
848	Fluoroâ€Substituted nâ€Type Conjugated Polymers for Additiveâ€Free Allâ€Polymer Bulk Heterojunction Solar Cells with High Power Conversion Efficiency of 6.71%. Advanced Materials, 2015, 27, 3310-3317.	11.1	421
849	Polymer:fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review. Journal of Photonics for Energy, 2015, 5, 057214.	0.8	63
850	Integrating theory, synthesis, spectroscopy and device efficiency to design and characterize donor materials for organic photovoltaics: a case study including 12 donors. Journal of Materials Chemistry A, 2015, 3, 9777-9788.	5.2	15
851	Enhancing the photovoltaic performance of triphenylamine based star-shaped molecules by tuning the moiety sequence of their arms in organic solar cells. Journal of Materials Chemistry A, 2015, 3, 13568-13576.	5.2	35
852	Thermoelectric performance of p-type nanohybrids filled polymer composites. Nano Energy, 2015, 13, 327-335.	8.2	51
853	Organic polymeric semiconductor materials for applications inÂphotovoltaic cells. , 2015, , 85-119.		1

#	Article	IF	CITATIONS
854	Low-bandgap thieno [3,4-c] pyrrole-4,6-dione-polymers for high-performance solar cells with significantly enhanced photocurrents. Journal of Materials Chemistry A, 2015, 3, 11194-11198.	5.2	35
855	Molecular design toward efficient polymer solar cells processed by green solvents. Polymer Chemistry, 2015, 6, 4089-4095.	1.9	41
856	Fluorinated conjugated polymers in organic bulk heterojunction photovoltaic solar cells. Progress in Polymer Science, 2015, 47, 70-91.	11.8	114
857	Thienothiophenes, Dithienothiophenes, and Thienoacenes: Syntheses, Oligomers, Polymers, and Properties. Chemical Reviews, 2015, 115, 3036-3140.	23.0	494
858	High fill factor and thermal stability of bilayer organic photovoltaic cells with an inverted structure. Applied Physics Letters, 2015, 106, 053305.	1.5	21
859	Influence of 4â€fluorophenyl pendants in thieno[3,4â€b]thiopheneâ€benzo[1,2â€b:4,5â€b′]dithiopheneâ€bas polymers on the performance of photovoltaics. Journal of Polymer Science Part A, 2015, 53, 1586-1593.	sed 2.5	3
860	Regioregular Low Bandgap Polymer with Controlled Thieno[3,4- <i>b</i>) Ithiophene Orientation for High-Efficiency Polymer Solar Cells. Chemistry of Materials, 2015, 27, 3102-3107.	3.2	52
861	Effect of Acceptor Strength on Optical and Electronic Properties in Conjugated Polymers for Solar Applications. Journal of the American Chemical Society, 2015, 137, 5759-5769.	6.6	35
862	Solution processed thick film organic solar cells. Polymer Chemistry, 2015, 6, 8081-8098.	1.9	86
863	Polyhedral Oligomeric Silsesquioxanes (POSS). , 2015, , 1835-1841.		O
864	Polymer-Based Sensors. , 2015, , 1938-1944.		0
865	Thienopentathiepine: a sulfur containing fused heterocycle for conjugated systems and their electrochemical polymerization. Polymer Chemistry, 2015, 6, 7658-7665.	1.9	23
866	Linear solubilizing side chain substituents enhance the photovoltaic properties of two-dimensional conjugated benzodithiophene-based polymers. Polymer, 2015, 79, 262-270.	1.8	21
867	Controlled Synthesis of an Alternating Donor–Acceptor Conjugated Polymer via Kumada Catalyst-Transfer Polycondensation. ACS Macro Letters, 2015, 4, 1254-1258.	2.3	37
868	Synthesis of π-Extended Dithienobenzodithiophene-Containing Medium Bandgap Copolymers and Their Photovoltaic Application. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 934-941.	1.2	11
869	Poly(Arylene Ethynylene)s., 2015,, 1658-1664.		124
870	Terthiophene-Based D–A Polymer with an Asymmetric Arrangement of Alkyl Chains That Enables Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2015, 137, 14149-14157.	6.6	386
871	Effect of side chain conjugation lengths on photovoltaic performance of twoâ€dimensional conjugated copolymers that contain diketopyrrolopyrrole and thiophene with side chains. Journal of Polymer Science Part A, 2015, 53, 2878-2889.	2.5	11

#	ARTICLE	IF	CITATIONS
872	Interplay of Intramolecular Noncovalent Coulomb Interactions for Semicrystalline Photovoltaic Polymers. Chemistry of Materials, 2015, 27, 5997-6007.	3.2	150
873	Simultaneous spin-coating and solvent annealing: manipulating the active layer morphology to a power conversion efficiency of 9.6% in polymer solar cells. Materials Horizons, 2015, 2, 592-597.	6.4	32
874	Enhancing the performance of polymer solar cells by tuning the drying process of blend films via changing side chains and using solvent additives. Journal of Materials Chemistry C, 2015, 3, 9670-9677.	2.7	7
875	Polyacrylonitrile (PAN). , 2015, , 1745-1750.		8
876	Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. Chemical Reviews, 2015, 115, 12633-12665.	23.0	1,029
877	Integration of fluorescence sensors using organic optoelectronic components for microfluidic platform. Sensors and Actuators B: Chemical, 2015, 221, 1314-1320.	4.0	27
878	Novel Approaches in the Design of Donor-Acceptor Oligomeric and Polymeric Materials for Photovoltaic Applications: D/A Blend versus Self-assembly of D/A by Covalent or Non-Covalent Interaction. Organic Photonics and Photovoltaics, 2015, 3, .	1.3	3
879	Benzothiadiazole based conjugated polymers for high performance polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 20195-20200.	5.2	52
880	The influence of polaron formation on exciton dissociation. Physical Chemistry Chemical Physics, 2015, 17, 11553-11559.	1.3	6
881	Synthesis and characterization of alternating and random conjugated polymers derived from dithieno $[2,3-d:2\hat{a}\in^2,3\hat{a}\in^2-d\hat{a}\in^2]$ benzo $[1,2-b:4,5-b\hat{a}\in^2]$ dithiophene and $2,1,3$ -benzothiadiazole derivatives. Polymer Journal, 2015, 47, 803-809.	1.3	8
882	Overview of high-efficiency organic photovoltaic materials and devices. Renewable and Sustainable Energy Reviews, 2015, 52, 1527-1538.	8.2	70
883	Unprecedented side reactions in Stille coupling: desired ones for Stille polycondensation. Chemical Communications, 2015, 51, 15846-15849.	2.2	8
884	Understanding structural and electronic properties of dithienyl benzothiadiazole and its complex with C70. Polymer, 2015, 75, 73-77.	1.8	8
885	Systematic Variation of Fluorinated Diketopyrrolopyrrole Low Bandgap Conjugated Polymers: Synthesis by Direct Arylation Polymerization and Characterization and Performance in Organic Photovoltaics and Organic Field-Effect Transistors. Macromolecules, 2015, 48, 6978-6986.	2.2	46
886	Polymer Catalysts. , 2015, , 1864-1871.		2
887	Photocurrent enhancement of an efficient large band gap polymer incorporating benzodithiophene and weak electron accepting pyrrolo[3,4â^2]pyrroleâ^1,3â^2dione derivatives via the insertion of a strong electron accepting thieno[3,4â^2]b]thiophene unit. Polymer, 2015, 80, 95-103.	1.8	8
888	Low band-gap weak donor–strong acceptor conjugated polymer for organic solar cell. RSC Advances, 2015, 5, 98876-98879.	1.7	7
889	The Effect of Fluorination in Manipulating the Nanomorphology in PTB7:PC ₇₁ BM Bulk Heterojunction Systems. Advanced Energy Materials, 2015, 5, 1401315.	10.2	68

#	Article	IF	CITATIONS
890	Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials. Science China Chemistry, 2015, 58, 192-209.	4.2	334
891	Effect of Pendant Functionality in Thieno[3,4- <i>b</i>]thiophene- <i>alt</i> -benzodithiophene Polymers for OPVs. Chemistry of Materials, 2015, 27, 443-449.	3.2	22
892	Unraveling the Morphology of High Efficiency Polymer Solar Cells Based on the Donor Polymer PBDTTTâ€EFT. Advanced Energy Materials, 2015, 5, 1401259.	10.2	100
893	Significantly increasing open-circuit voltage of the benzo[1,2-b:4,5-b′]dithiophene-alt-5,8-dithienyl-quinoxaline copolymers based PSCs by appending dioctyloxy chains at 6,7-positions of quinoxaline. Organic Electronics, 2015, 17, 129-137.	1.4	28
894	Understanding the effect of heteroatoms on structural and electronic properties of conjugated polymers. Polymer, 2015, 56, 293-299.	1.8	11
895	Poly(benzo[2,1-b:3,4-b′]dithiophene-alt-isoindigo): a low bandgap polymer showing a high open circuit voltage in polymer solar cells. RSC Advances, 2015, 5, 269-273.	1.7	8
896	Thieno [3,4-b] thiophene $\hat{a} \in \text{``benzo}[1,2-b:4,5-b \hat{a} \in \text{''}]$ dithiophene-based polymers bearing optically pure 2-ethylhexyl pendants: Synthesis and application in polymer solar cells. Polymer, 2015, 56, 171-177.	1.8	14
897	Spectroelectrochemical characterization of isomeric conjugated polymers containing 2,7- and 3,6-carbazole linked by vinylene and ethynylene segments. High Performance Polymers, 2015, 27, 476-485.	0.8	6
898	The effect of charge transfer state on the open-circuit voltage of small-molecular organic photovoltaic devices: A comparison between the planar and bulk heterojunctions using electroluminescence characterization. Organic Electronics, 2015, 16, 1-8.	1.4	17
899	A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%. Energy and Environmental Science, 2015, 8, 303-316.	15.6	351
900	Diketopyrrolopyrrole-based copolymers bearing highly π-extended donating units and their thin-film transistors and photovoltaic cells. Polymer Chemistry, 2015, 6, 150-159.	1.9	24
901	Tuning optical and electronic properties of poly(4,4'-triphenylamine vinylene)s by post-modification reactions. Dyes and Pigments, 2015, 113, 227-238.	2.0	10
902	Molecular Packing and Electronic Processes in Amorphous-like Polymer Bulk Heterojunction Solar Cells with Fullerene Intercalation. Scientific Reports, 2014, 4, 5211.	1.6	32
904	Impact of Backbone Fluorination on π-Conjugated Polymers in Organic Photovoltaic Devices: A Review. Polymers, 2016, 8, 11.	2.0	151
905	Synthesis and Characterization of Two-Dimensional Conjugated Polymers Incorporating Electron-Deficient Moieties for Application in Organic Photovoltaics. Polymers, 2016, 8, 382.	2.0	4
906	Impact of the Nature of the Sideâ€Chains on the Polymerâ€Fullerene Packing in the Mixed Regions of Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2016, 26, 5913-5921.	7.8	45
907	The Importance of End Groups for Solutionâ€Processed Smallâ€Molecule Bulkâ€Heterojunction Photovoltaic Cells. ChemSusChem, 2016, 9, 973-980.	3.6	8
908	Synthesis and photovoltaic properties of 2,6â€bis(2â€thienyl) benzobisazole and 4,8â€bis(thienyl)â€benzo[1,2â€ <i>B</i> BBâ€ <i>B′</i> Jdithiophene copolymers. Journal of Polymer Science F 2016, 54, 316-324.	Pa⊄\$, 	12

#	ARTICLE	IF	CITATIONS
909	Synthesis and characterization of new low band-gap polymers containing electron-accepting acenaphtho[1,2-c]thiophene-S,S-dioxide groups. Journal of Polymer Science Part A, 2016, 54, 498-506.	2.5	2
910	Achieving high performance non-fullerene organic solar cells through tuning the numbers of electron deficient building blocks of molecular acceptors. Journal of Power Sources, 2016, 324, 538-546.	4.0	38
911	Effect of fused thiazolothiazole on the photovoltaic performance of fluorene-thiazole-based conjugated polymers. Molecular Crystals and Liquid Crystals, 2016, 629, 206-211.	0.4	1
912	Evaluation of Small Molecules as Front Cell Donor Materials for Highâ€Efficiency Tandem Solar Cells. Advanced Materials, 2016, 28, 7008-7012.	11.1	43
913	Regular conjugated terpolymers comprising two different acceptors and bithiophene donor in repeating group: Effect of strong and weak acceptors on semiconducting properties. Journal of Polymer Science Part A, 2016, 54, 1339-1347.	2.5	6
914	Effects of Alkylthio and Alkoxy Side Chains in Polymer Donor Materials for Organic Solar Cells. Macromolecular Rapid Communications, 2016, 37, 287-302.	2.0	71
915			

#	Article	IF	CITATIONS
927	Regioregular D $<$ sub $>1sub>-A-D<sub>2sub>-A Terpolymer with Controlled Thieno[3,4-<i>b</i>]thiophene Orientation for High-Efficiency Polymer Solar Cells Processed with Nonhalogenated Solvents. Macromolecules, 2016, 49, 3328-3335.$	2.2	46
928	Synthesis and characterization of medium band gap polymers with phosphole [3,2-b:4,5-b′] dithiophene oxide as acceptor unit and their application for polymer photovoltaic devices. Synthetic Metals, 2016, 215, 235-242.	2.1	6
929	Trifluoromethyl-functionalized bathocuproine for polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 4640-4646.	2.7	13
930	Energyâ€Level Modulation of Smallâ€Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells. Advanced Materials, 2016, 28, 9423-9429.	11.1	1,307
931	Wide bandgap copolymers with vertical benzodithiophene dicarboxylate for high-performance polymer solar cells with an efficiency up to 7.49%. Journal of Materials Chemistry A, 2016, 4, 18792-18803.	5.2	30
932	A two-dimension medium band gap conjugated polymer based on 5,10-bis(alkylthien-2-yl)dithieno[3,2- <i>d</i> :3′,2′- <i>d</i> ꀲ]benzo[1,2- <i>b</i> :4,5-b′]dithiophene: Syand photovoltaic application. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 538-545.	nthesis	7
933	Insight into the Excited State Electronic and Structural Properties of the Organic Photovoltaic Donor Polymer Poly(thieno[3,4- <i>b</i>)thiophene benzodithiophene) by Means of <i>ab Initio</i> and Density Functional Theory. Journal of Physical Chemistry C, 2016, 120, 21818-21826.	1.5	22
934	Effect of Monofluoro Substitution on the Optoelectronic Properties of Benzo[<i>c</i>][1,2,5]thiadiazole Based Organic Semiconductors. Macromolecules, 2016, 49, 5806-5816.	2.2	22
935	Fluorinated benzothiadiazole-based small molecules for photovoltaic applications. Synthetic Metals, 2016, 220, 455-461.	2.1	17
936	High performance alternating polymers based on two-dimensional conjugated benzo[1,2-b:4,5-b′]dithiophene and fluorinated dithienylbenzothiadiazole for solar cells. RSC Advances, 2016, 6, 77525-77534.	1.7	9
937	Synthesis of Thieno $[3,4-\langle i\rangle b\langle i\rangle]$ thiophene-Based Donor Molecules with Phenyl Ester Pendants for Organic Solar Cells: Control of Photovoltaic Properties via Single Substituent Replacement. Chemistry Select, 2016, 1, 703-709.	0.7	9
938	Enhancing Organic Solar Cells with Plasmonic Nanomaterials. ChemNanoMat, 2016, 2, 19-27.	1.5	11
939	Molecular Engineering on Conjugated Side Chain for Polymer Solar Cells with Improved Efficiency and Accessibility. Chemistry of Materials, 2016, 28, 5887-5895.	3.2	65
940	Regioisomeric donor–acceptor–donor triads based on benzodithiophene and BODIPY with distinct optical properties and mobilities. RSC Advances, 2016, 6, 73645-73649.	1.7	15
941	Facile Enhancement of Open-Circuit Voltage in P3HT Analogues via Incorporation of Hexyl Thiophene-3-carboxylate. Macromolecules, 2016, 49, 6835-6845.	2.2	25
942	Controlling Energy Levels and Blend Morphology for All-Polymer Solar Cells via Fluorination of a Naphthalene Diimide-Based Copolymer Acceptor. Macromolecules, 2016, 49, 6374-6383.	2.2	66
943	Novel benzo(1,2-b:4,5-b')dithiophene-based donor–acceptor conjugated polymes for polymer solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 9920-9928.	1.1	4
945	Fluorinated p-n type copolyfluorene as polymer electret for stable nonvolatile organic transistor memory device. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1183-1195.	2.0	9

#	Article	IF	CITATIONS
946	New electron-accepting quinoxalinothiadiazole-containing heterocycles as promising building blocks for organic optoelectronic devices. Doklady Chemistry, 2016, 468, 202-207.	0.2	5
947	Side Chain Optimization of Naphthalenediimide–Bithiopheneâ€Based Polymers to Enhance the Electron Mobility and the Performance in Allâ€Polymer Solar Cells. Advanced Functional Materials, 2016, 26, 1543-1553.	7.8	155
948	Implication of Fluorine Atom on Electronic Properties, Ordering Structures, and Photovoltaic Performance in Naphthobisthiadiazole-Based Semiconducting Polymers. Journal of the American Chemical Society, 2016, 138, 10265-10275.	6.6	319
950	3D reconstruction modeling of bulk heterojunction organic photovoltaic cells: Effect of the complexity of the boundary on the morphology. Journal of the Korean Physical Society, 2016, 68, 474-481.	0.3	0
951	Integration of optical and electrochemical sensors on a microfluidic platform using organic optoelectronic components and silver nanowires. , 2016, 2016, 3002-3005.		2
952	Organic Solar Cells., 2016,, 73-136.		1
953	Dialkoxyphenyldithiophene-based small molecules with enhanced absorption for solution processed organic solar cells. RSC Advances, 2016, 6, 60595-60601.	1.7	9
954	Morphological characterization of a new low-bandgap thermocleavable polymer showing stable photovoltaic properties. Journal of Materials Chemistry A, 2016, 4, 10650-10658.	5.2	8
955	Photovoltaic properties of a new quinoxaline-based copolymer with Thieno [3,2-b] thiophene side chain for organic photovoltaic cell applications. Dyes and Pigments, 2016, 133, 324-332.	2.0	14
956	Two new fluorinated copolymers based on thieno [2,3-f] benzofuran for efficient polymer solar cells. RSC Advances, 2016, 6, 62923-62933.	1.7	12
957	Unlocking the potential of diketopyrrolopyrrole-based solar cells by a pre-solvent annealing method in all-solution processing. RSC Advances, 2016, 6, 53587-53595.	1.7	14
958	Hydrogen-bonded oligothiophene rosettes with a benzodithiophene terminal unit: self-assembly and application to bulk heterojunction solar cells. Chemical Communications, 2016, 52, 7874-7877.	2.2	25
959	Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials. Chemical Reviews, 2016, 116, 7397-7457.	23.0	998
960	Revealing optically induced dipole-dipole interaction effects on charge dissociation at donor:acceptor interfaces in organic solar cells under device-operating condition. Nano Energy, 2016, 26, 595-602.	8.2	18
961	Synthesis and Optoelectronic Properties of Benzo[1,2â \in i>b:4,5â \in i>bà \in 2]dithiopheneâ \in Based Copolymers with Conjugated 2â \in (2â \in Ethylhexyl)â \in 3,4â \in dimethoxythiophene Side Chains. Macromolecular Chemistry and Physics, 2016, 217, 1586-1599.	1.1	9
962	Enhancement of Openâ€Circuit Voltage by Using the 58â€Ï€ Silylmethyl Fullerenes in Smallâ€Molecule Organic Solar Cells. Chemistry - an Asian Journal, 2016, 11, 1268-1272.	1.7	12
963	Synthesis and photovoltaic properties of a 2D-conjugated copolymer based on benzodithiophene with alkylthio-selenophene side chain. RSC Advances, 2016, 6, 14229-14235.	1.7	6
964	Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chemical Reviews, 2016, 116, 422-518.	23.0	2,030

#	Article	IF	CITATIONS
965	Design of fluorescent blue light-emitting materials based on analyses of chemical structures and their effects. Materials Science and Engineering Reports, 2016, 99, 1-22.	14.8	70
966	Thermodynamic synthesis of solution processable ladder polymers. Chemical Science, 2016, 7, 881-889.	3.7	70
967	The incorporation of thermionic emission and work function tuning layer into intermediate connecting layer for high performance tandem organic solar cells. Nano Energy, 2016, 21, 123-132.	8.2	23
968	Enhanced Performance of Inverted Polymer Solar Cells by Combining ZnO Nanoparticles and Poly[(9,9-bis(3′-(<i>N</i> , <i>N</i> ,dimethylamino)propyl)-2,7-fluorene)- <i>as Electron Transport Layer. ACS Applied Materials & Electron Transport Layer.</i>	4.0	43
969	Synthesis, Characterization and Optoelectronic Properties of Benzodithiophene Based Copolymers for Application in Solar Cells. Journal of Fluorescence, 2016, 26, 371-376.	1.3	11
970	Progress in emerging solution-processed thin film solar cells – Part I: Polymer solar cells. Renewable and Sustainable Energy Reviews, 2016, 56, 347-361.	8.2	116
971	Donor–acceptor polymers with a regioregularly incorporated thieno[3,4-b]thiophene segment as a π-bridge for organic photovoltaic devices. Synthetic Metals, 2016, 211, 75-83.	2.1	18
972	Side chain effect on poly(beznodithiophene-co-dithienobenzoquinoxaline) and their applications for polymer solar cells. Polymer, 2016, 82, 228-237.	1.8	19
973	Syntheses, Charge Separation, and Inverted Bulk Heterojunction Solar Cell Application of Phenothiazine–Fullerene Dyads. ACS Applied Materials & Interfaces, 2016, 8, 8481-8490.	4.0	42
974	New low bandgap near-IR conjugated D–A copolymers for BHJ polymer solar cell applications. Physical Chemistry Chemical Physics, 2016, 18, 8389-8400.	1.3	18
975	Tuning Energy Levels and Film Morphology in Benzodithiophene–Thienopyrrolodione Copolymers via Nitrogen Substitutions. Macromolecules, 2016, 49, 1648-1654.	2.2	21
976	Rational design of benzodithiophene based conjugated polymers for better solar cell performance. RSC Advances, 2016, 6, 23760-23774.	1.7	24
977	Synthesis and characterization of D-A-A type regular terpolymers with narrowed band-gap and their application in high performance polymer solar cells. Organic Electronics, 2016, 32, 237-243.	1.4	25
978	Significant enhancement of photodetector performance by subtle changes in the side chains of dithienopyrrole-based polymers. RSC Advances, 2016, 6, 22494-22499.	1.7	8
979	Plasmonic Nanoparticle Enhancement of Solution-Processed Solar Cells: Practical Limits and Opportunities. ACS Photonics, 2016, 3, 158-173.	3.2	103
980	6-(2-Thienyl)-4H-thieno[3,2-b]indole based conjugated polymers with low bandgaps for organic solar cells. Synthetic Metals, 2016, 213, 25-33.	2.1	13
981	Influence of the terminal donor on the performance of 4,8-dialkoxybenzo[1,2-b:4,5′]dithiophene based small molecules for efficient solution-processed organic solar cells. New Journal of Chemistry, 2016, 40, 2063-2070.	1.4	8
982	Feasible energy level tuning in polymer solar cells based on broad band-gap polytriphenylamine derivatives. New Journal of Chemistry, 2016, 40, 402-412.	1.4	6

#	Article	IF	CITATIONS
983	Dithienothiophene–diketopyrrolopyrrole-containing copolymers with alkyl side-chain and their application to polymer solar cells. Synthetic Metals, 2016, 212, 167-173.	2.1	9
984	Effect of side chain length on the charge transport, morphology, and photovoltaic performance of conjugated polymers in bulk heterojunction solar cells. Journal of Materials Chemistry A, 2016, 4, 1855-1866.	5.2	74
985	Low bandgap semiconducting polymers for polymeric photovoltaics. Chemical Society Reviews, 2016, 45, 4825-4846.	18.7	461
986	Combining Printing, Coating, and Vacuum Deposition on the Roll-to-Roll Scale: A Hybrid Organic Photovoltaics Fabrication. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 112-125.	1.9	36
987	Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes. Chemistry of Materials, 2016, 28, 3-16.	3.2	215
988	Versatile ternary organic solar cells: a critical review. Energy and Environmental Science, 2016, 9, 281-322.	15.6	585
989	Novel dithienosilole-based conjugated copolymers and their application in bulk heterojunction solar cells. Polymer Chemistry, 2016, 7, 319-329.	1.9	9
990	Synthesis of planar fluorenimine derivative-based broad band-gap polymers for bulk heterojunction polymer solar cells. Materials Technology, 2017, 32, 16-21.	1.5	O
991	Realizing Small Energy Loss of 0.55 eV, High Openâ€Circuit Voltage >1 V and High Efficiency >10% in Fullereneâ€Free Polymer Solar Cells via Energy Driver. Advanced Materials, 2017, 29, 1605216.	11.1	230
992	Asymmetric synthesis of C–F quaternary α-fluoro-β-amino-indolin-2-ones via Mannich addition reactions; facets of reactivity, structural generality and stereochemical outcome. RSC Advances, 2017, 7, 5679-5683.	1.7	23
993	Evaluating the influence of heteroatoms on the electronic properties of aryl[3,4-c]pyrroledione based copolymers. Polymer, 2017, 109, 85-92.	1.8	4
994	Asymmetric Synthesis of Quaternary βâ€Perfluorophenylâ€Î²â€aminoâ€indolinâ€2â€ones. European Journal of Organic Chemistry, 2017, 2017, 1540-1546.	1.2	19
995	Catalytic Enantioselective Cyanoâ€Trifluoromethylation of Styrenes. ChemistrySelect, 2017, 2, 1129-1132.	0.7	17
996	Tuning photovoltaic performance of DOBT-based dyes via molecular design with ethynyl-linker and terminal electron-donating segment. Dyes and Pigments, 2017, 140, 203-211.	2.0	24
997	Enhanced open-circuit voltage in methoxyl substituted benzodithiophene-based polymer solar cells. Science China Chemistry, 2017, 60, 243-250.	4.2	15
998	Naphthobischalcogenadiazole Conjugated Polymers: Emerging Materials for Organic Electronics. Advanced Materials, 2017, 29, 1605218.	11.1	91
999	Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells. Materials Chemistry Frontiers, 2017, 1, 1389-1395.	3.2	173
1000	Synthesis and photovoltaic properties of alkylthio phenyl substituted benzodifuran (BDF)-based conjugated polymers. Synthetic Metals, 2017, 226, 31-38.	2.1	10

#	ARTICLE	IF	CITATIONS
1001	Buta-1,3-diyne-Based π-Conjugated Polymers for Organic Transistors and Solar Cells. Macromolecules, 2017, 50, 1430-1441.	2.2	43
1002	New donor polymer with tetrafluorinated blocks for enhanced performance in perylenediimide-based solar cells. Journal of Materials Chemistry A, 2017, 5, 5351-5361.	5.2	26
1003	Novel low bandgap phenothiazine functionalized DPP derivatives prepared by direct heteroarylation: Application in bulk heterojunction organic solar cells. Dyes and Pigments, 2017, 141, 169-178.	2.0	37
1004	Naphthalene substituents bonded via the \hat{l}^2 -position: an extended conjugated moiety can achieve a decent trade-off between optical band gap and open circuit voltage in symmetry-breaking benzodithiophene-based polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 9141-9147.	5.2	24
1005	Cyclic alkyl chains promote the polymer self-assembly and packing orders for solar cells. Nano Energy, 2017, 36, 110-117.	8.2	27
1006	Ï€-Conjugation Effects of Oligo(thienylenevinylene) Side Chains in Semiconducting Polymers on Photovoltaic Performance. Macromolecules, 2017, 50, 3557-3564.	2.2	6
1007	Step-by-step improvement in photovoltaic properties of fluorinated quinoxaline-based low-band-gap polymers. Organic Electronics, 2017, 47, 14-23.	1.4	28
1008	Densely Packed Random Quarterpolymers Containing Two Donor and Two Acceptor Units: Controlling Absorption Ability and Molecular Interaction to Enable Enhanced Polymer Photovoltaic Devices. Advanced Energy Materials, 2017, 7, 1700349.	10.2	22
1009	Synthesis and photovoltaic properties of carbazole-substituted fullerene derivatives. New Journal of Chemistry, 2017, 41, 4702-4706.	1.4	5
1011	A regioregular conjugated polymer for high performance thick-film organic solar cells without processing additive. Journal of Materials Chemistry A, 2017, 5, 10517-10525.	5.2	46
1012	Water- and alcohol-soluble cationic phenanthroline derivatives as efficient cathode interfacial layers for bulk-heterojunction polymer solar cells. Journal of Materials Chemistry C, 2017, 5, 4858-4866.	2.7	6
1013	High-Efficiency Organic Photovoltaics with Two-Dimensional Conjugated Benzodithiophene-Based Regioregular Polymers. Chemistry of Materials, 2017, 29, 4301-4310.	3.2	35
1014	The Effect of Fluorine Substitution on the Molecular Interactions and Performance in Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24011-24019.	4.0	39
1015	Base-catalyzed diastereoselective trimerization of trifluoroacetone. Organic and Biomolecular Chemistry, 2017, 15, 5131-5134.	1.5	1
1016	Polymer side-chain substituents elucidate thermochromism of benzodithiopheneâ€"dithiophenylacrylonitrile copolymers â€" polymer solubility correlation of thermochromism and photovoltaic performance. Polymer Chemistry, 2017, 8, 3689-3701.	1.9	9
1017	Enantiomerically Separated α-[70]PCBM for Organic Photovoltaics. Chemistry Letters, 2017, 46, 1001-1003.	0.7	10
1018	Recent advances in high performance donor-acceptor polymers for organic photovoltaics. Progress in Polymer Science, 2017, 70, 34-51.	11.8	217
1019	Thieno[3,4- <i>b</i> jthiophene-Based Novel Small-Molecule Optoelectronic Materials. Accounts of Chemical Research, 2017, 50, 1342-1350.	7.6	148

#	Article	IF	CITATIONS
1020	Theoretical studies for forecasting the power conversion efficiencies of polymerâ€based organic photovoltaic cells. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 919-927.	2.4	16
1021	A Study of the Degree of Fluorination in Regioregular Poly(3-hexylthiophene). Macromolecules, 2017, 50, 162-174.	2.2	30
1022	Molecular Engineering of Conjugated Polymers for Solar Cells: An Updated Report. Advanced Materials, 2017, 29, 1601391.	11.1	139
1023	All-polymer solar cells performance enhanced via side-chain engineering of the polymer acceptor. Journal of Materials Science: Materials in Electronics, 2017, 28, 5407-5414.	1.1	1
1024	Thienothiophene-based copolymers for high-performance solar cells, employing different orientations of the thiazole group as a π bridge. Energy and Environmental Science, 2017, 10, 614-620.	15.6	109
1025	Incorporating Fluorine Substitution into Conjugated Polymers for Solar Cells: Three Different Means, Same Results. Journal of Physical Chemistry C, 2017, 121, 2059-2068.	1.5	22
1026	Morphology-driven photocurrent enhancement in PTB7/PC71BM bulk heterojunction solar cells via the use of ternary solvent processing blends. Organic Electronics, 2017, 41, 229-236.	1.4	5
1027	Evolving molecular architectures of donor–acceptor conjugated polymers for photovoltaic applications: from one-dimensional to branched to two-dimensional structures. Journal of Materials Chemistry A, 2017, 5, 24051-24075.	5. 2	97
1028	Improved structural order by side-chain engineering of organic small molecules for photovoltaic applications. Journal of Materials Chemistry C, 2017, 5, 10794-10800.	2.7	17
1029	Unexpected Opposite Influences of Para vs Ortho Backbone Fluorination on the Photovoltaic Performance of a Wide-Bandgap Conjugated Polymer. Chemistry of Materials, 2017, 29, 9162-9170.	3.2	12
1031	The Curious Case of Fluorination of Conjugated Polymers for Solar Cells. Accounts of Chemical Research, 2017, 50, 2401-2409.	7.6	309
1032	Multiple electron transporting layers and their excellent properties based on organic solar cell. Scientific Reports, 2017, 7, 9571.	1.6	20
1033	Halide anion–fullerene π noncovalent interactions: n-doping and a halide anion migration mechanism in p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 20720-20728.	5.2	49
1034	Ternary organic solar cells incorporating zinc phthalocyanine with improved performance exceeding 8.5%. Dyes and Pigments, 2017, 146, 408-413.	2.0	23
1035	Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nature Reviews Materials, 2017, 2, .	23.3	284
1036	Conformational Changes of Methacrylate-Based Monomers at the Air–Liquid Interface Due to Bulky Substituents. Journal of Physical Chemistry C, 2017, 121, 16888-16902.	1.5	16
1037	Photovoltaic device performance of highly regioregular fluorinated poly(3-hexylthiophene). Organic Electronics, 2017, 50, 115-120.	1.4	7
1038	Soluble fluorene–benzothiadiazole polymer-grafted graphene for photovoltaic devices. RSC Advances, 2017, 7, 35950-35956.	1.7	5

#	Article	IF	CITATIONS
1039	Synthesis and properties of a series of quinoxaline-based copolymers: an example to understand the effect of the structure of the mainchain and sidechain on the charge transport ability of the polymers. Materials Chemistry Frontiers, 2017, 1, 2085-2093.	3.2	9
1040	Wide Band Gap and Highly Conjugated Copolymers Incorporating 2-(Triisopropylsilylethynyl)thiophene-Substituted Benzodithiophene for Efficient Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 28828-28837.	4.0	18
1041	Synthesis of Dithienocyclohexanones (DTCHs) as a Family of Building Blocks for π-Conjugated Compounds in Organic Electronics. ACS Omega, 2017, 2, 4347-4355.	1.6	12
1042	High photovoltaic performance of as-cast devices based on new quinoxaline-based donor–acceptor copolymers. Polymer Chemistry, 2017, 8, 5688-5697.	1.9	13
1043	Nanostructures induced light harvesting enhancement in organic photovoltaics. Nanophotonics, 2017, 7, 371-391.	2.9	32
1044	From Semi- to Full-Two-Dimensional Conjugated Side-Chain Design: A Way toward Comprehensive Solar Energy Absorption. Macromolecules, 2017, 50, 9617-9625.	2.2	19
1045	Synthesis of low bandgap small molecules containing fluorinated benzothiadiazole and phenothiazine for photovoltaic applications. Molecular Crystals and Liquid Crystals, 2017, 653, 27-32.	0.4	1
1046	Tailoring properties of the photoactive layer through blending polymers with different functional groups. Synthetic Metals, 2017, 230, 113-119.	2.1	1
1047	Fine Tuning of Open-Circuit Voltage by Chlorination in Thieno[3,4- <i>b</i>]thiophene–Benzodithiophene Terpolymers toward Enhanced Solar Energy Conversion. Macromolecules, 2017, 50, 4962-4971.	2.2	55
1048	Push–pull isomeric chromophores with vinyl- and divinylquinoxaline-2-one units as ï€-electron bridge: Synthesis, photophysical, thermal and electro-chemical properties. Dyes and Pigments, 2017, 146, 82-91.	2.0	23
1049	Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science, 2017, 488, 373-389.	5.0	163
1050	Redox trends in cyclometalated palladium(<scp>ii</scp>) complexes. Dalton Transactions, 2017, 46, 165-177.	1.6	34
1051	Influence of fluorination on the microstructure and performance of diketopyrrolopyrroleâ€based polymer solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 49-59.	2.4	7
1052	Heterocyclic Building Blocks for Organic Semiconductors. Advances in Heterocyclic Chemistry, 2017, 121, 133-171.	0.9	54
1053	Synthesis, characterization and photovoltaic properties of dithienobenzodithiophene-based conjugated polymers. Dyes and Pigments, 2017, 137, 50-57.	2.0	11
1054	Using <i>o</i>)â€Chlorobenzaldehyde as a Fast Removable Solvent Additive during Spinâ€Coating PTB7â€Based Active Layers: High Efficiency Thickâ€Film Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1601344.	10.2	45
1055	Improvement of short circuit current density by intermolecular interaction between polymer backbones for polymer solar cells. Polymer Journal, 2017, 49, 177-187.	1.3	6
1056	Carbon Dangling Bonds in Photodegraded Polymer:Fullerene Solar Cells. Advanced Energy Materials, 2017, 7, 1601420.	10.2	15

#	Article	IF	CITATIONS
1057	Toward High Efficiency Polymer Solar Cells: Influence of Local Chemical Environment and Morphology. Advanced Energy Materials, 2017, 7, 1601081.	10.2	43
1058	Recent Development on Narrow Bandgap Conjugated Polymers for Polymer Solar Cells. Polymers, 2017, 9, 39.	2.0	44
1059	Benzodichalcogenophene-based Conjugated Polymers as Photo-voltaic Materials. International Journal of Electrochemical Science, 2017, , 6315-6339.	0.5	6
1060	Regioselective decarboxylative addition of malonic acid and its mono(thio)esters to 4-trifluoromethylpyrimidin- $2(1 < i > H < / i >)$ -ones. Beilstein Journal of Organic Chemistry, 2017, 13, 2617-2625.	1.3	8
1061	The Potential of Bifacial Photovoltaics: A Global Perspective. , 2017, , .		3
1062	Catalystâ€Free, Fast, and Tunable Synthesis for Robust Covalent Polymer Network Semiconducting Thin Films. Advanced Functional Materials, 2018, 28, 1706303.	7.8	7
1063	CNT Applications in Drug and Biomolecule Delivery. , 2018, , 61-64.		12
1064	Synthesis and Chemical Modification of Graphene. , 2018, , 107-119.		0
1065	Graphene Applications in Sensors. , 2018, , 125-132.		0
1067	Medical and Pharmaceutical Applications of Graphene. , 2018, , 149-150.		2
1068	Graphene Applications in Specialized Materials. , 2018, , 151-154.		0
1069	Miscellaneous Applications of Graphene. , 2018, , 155-155.		O
1070	Basic Electrochromics of CPs. , 2018, , 251-282.		0
1071	Batteries and Energy Devices. , 2018, , 575-600.		0
1072	Brief, General Overview of Applications. , 2018, , 43-44.		0
1073	CNT Applications in Batteries and Energy Devices. , 2018, , 49-52.		1
1074	Dual emissive bodipy–benzodithiophene–bodipy TICT triad with a remarkable Stokes shift of 194 nm. Organic and Biomolecular Chemistry, 2018, 16, 2033-2038.	1.5	22
1075	Computational approach to the study of morphological properties of polymer/fullerene blends in photovoltaics. ChemistrySelect, 2018, 3, .	0.7	1

#	Article	IF	CITATIONS
1076	Photovoltaic polymers based on difluoroqinoxaline units with deep <scp>HOMO</scp> levels. Journal of Polymer Science Part A, 2018, 56, 1489-1497.	2.5	8
1077	Chlorination of Side Chains: A Strategy for Achieving a High Open Circuit Voltage Over 1.0 V in Benzo[1,2-b:4,5-b′]dithiophene-Based Non-Fullerene Solar Cells. ACS Applied Energy Materials, 2018, 1, 2365-2372.	2.5	54
1078	Thermally stable, highly efficient, ultraflexible organic photovoltaics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4589-4594.	3.3	106
1079	Synthesis and Characterization of a 2â€(1,1â€Dicyanomethylene) rhodanineâ€based Nonfullerene Acceptor for OPVs. Bulletin of the Korean Chemical Society, 2018, 39, 555-558.	1.0	1
1080	Facile Synthesis of the O-Functionalized Ladder-Type Dipyran Building Block and Its Application in Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13931-13940.	4.0	9
1081	Enhancing thermoelectric performance of the CH3NH3PbI3 polycrystalline thin films by using the excited state on photoexcitation. Organic Electronics, 2018, 55, 90-96.	1.4	24
1082	A perylenediimide dimer containing an asymmetric ï€-bridge and its fused derivative for fullerene-free organic solar cells. Journal of Materials Chemistry C, 2018, 6, 2580-2587.	2.7	34
1083	Trapâ€Fillingâ€Induced Charge Carrier Dynamics in Organic Solar Cells. Advanced Optical Materials, 2018, 6, 1800027.	3.6	10
1084	Organic electronics by design: the power of minor atomic and structural changes. Journal of Materials Chemistry C, 2018, 6, 3564-3572.	2.7	21
1085	Development of an improved synthetic route to triply linked di(perylene bisimides) with varied substituents and their performance as non-fullerene acceptors in polymer photovoltaics. Synthetic Metals, 2018, 237, 56-64.	2.1	5
1086	Bulk Heterojunction Solar Cells: Impact of Minor Structural Modifications to the Polymer Backbone on the Polymer–Fullerene Mixing and Packing and on the Fullerene–Fullerene Connecting Network. Advanced Functional Materials, 2018, 28, 1705868.	7.8	30
1087	Fluorinated Headâ€toâ€Head Dialkoxybithiophene: A New Electronâ€Donating Building Block for Highâ€Performance Polymer Semiconductors. Advanced Electronic Materials, 2018, 4, 1700519.	2.6	16
1088	Design and Synthesis of a Novel nâ€Type Polymer Based on Asymmetric Rylene Diimide for the Application in Allâ€Polymer Solar Cells. Macromolecular Rapid Communications, 2018, 39, e1700715.	2.0	27
1089	Synergistic effects of chlorination and a fully two-dimensional side-chain design on molecular energy level modulation toward non-fullerene photovoltaics. Journal of Materials Chemistry A, 2018, 6, 2942-2951.	5.2	42
1090	Highâ∈Performance Organic Bulkâ∈Heterojunction Solar Cells Based on Multipleâ∈Donor or Multipleâ∈Acceptor Components. Advanced Materials, 2018, 30, 1705706.	11.1	161
1091	Novel π-Conjugated Polymer Based on an Extended Thienoquinoid. Chemistry of Materials, 2018, 30, 319-323.	3.2	17
1092	Synthesis of Dâ€ <i>Ï€</i> â€Aâ€ <i>Ï€</i> type benzodithiopheneâ€quinoxaline copolymers by direct arylation and their application in organic solar cells. Journal of Polymer Science Part A, 2018, 56, 1457-1467.	2.5	20
1093	Photocrosslinking of low band-gap conjugated polymers using alkyl chloride sidechains: Toward high-efficiency, thermally stable polymer solar cells. Journal of Materials Research, 2018, 33, 1879-1890.	1.2	5

#	Article	IF	CITATIONS
1094	Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor. Advanced Materials, 2018, 30, e1800868.	11.1	979
1095	Molybdenum Oxide Particles Doped in Hole Transport Layer to Enhance the Efficiency of Flexible Polymer Solar Cells. Advanced Materials Research, 2018, 1145, 49-53.	0.3	O
1096	A 2-(trifluoromethyl)thieno[3,4-b]thiophene-based small-molecule electron acceptor for polymer solar cell application. Dyes and Pigments, 2018, 155, 179-185.	2.0	8
1097	Optical, film surface and photovoltaic properties of PTB7-Fx-based polymer-organic solar cells prepared in ambient conditions. Chemical Papers, 2018, 72, 1669-1676.	1.0	2
1098	Toward High Efficiency Polymer Solar Cells: Rearranging the Backbone Units into a Readily Accessible Random Tetrapolymer. Advanced Energy Materials, 2018, 8, 1701668.	10.2	32
1099	Polymer Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 45-108.	0.4	1
1100	Tailoring the second acceptor unit in easily synthesized ternary copolymers toward efficient non-fullerene polymer solar cells. Dyes and Pigments, 2018, 148, 72-80.	2.0	5
1101	Semiconducting Copolymers Based on <i>meso</i> êSubstituted BODIPY for Inverted Organic Solar Cells and Fieldâ€Effect Transistors. Advanced Electronic Materials, 2018, 4, 1700354.	2.6	18
1102	Catalytic activity of biomimetic model of cytochrome P450 in oxidation of dopamine. Talanta, 2018, 179, 401-408.	2.9	12
1103	Synergistic Effects of Selenophene and Extended Ladderâ€Type Donor Units for Efficient Polymer Solar Cells. Macromolecular Rapid Communications, 2018, 39, 1700483.	2.0	7
1104	The crucial role of a spacer material on the efficiency of charge transfer processes in organic donor–acceptor junction solar cells. Nanoscale, 2018, 10, 451-459.	2.8	5
1105	Impact of Acceptor Fluorination on the Performance of All-Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 955-969.	4.0	31
1106	Fluorination effects of A-D-A-type small molecules on physical property and the performance of organic solar cell. Organic Electronics, 2018, 52, 342-349.	1.4	18
1107	Molecular engineering of side chain architecture of conjugated polymers enhances performance of photovoltaics by tuning ternary blend structures. Nano Energy, 2018, 43, 138-148.	8.2	51
1108	High-performance ternary organic solar cells with photoresponses beyond 1000 nm. Journal of Materials Chemistry A, 2018, 6, 24210-24215.	5 . 2	31
1109	Enhanced electrochromic performances of Polythieno [3,2-b] thiophene with multicolor conversion via embedding EDOT segment. Polymer, 2018, 159, 150-156.	1.8	14
1110	Organic Solar Cell Materials toward Commercialization. Small, 2018, 14, e1801793.	5.2	253
1111	The History of Palladium-Catalyzed Cross-Couplings Should Inspire the Future of Catalyst-Transfer Polymerization. Journal of the American Chemical Society, 2018, 140, 15126-15139.	6.6	76

#	Article	IF	CITATIONS
1112	Impact of Polymer Side Chain Modification on OPV Morphology and Performance. Chemistry of Materials, 2018, 30, 7872-7884.	3.2	38
1113	Bifunctional donor polymers bearing amino pendant groups for efficient cathode interlayer-free polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 19828-19833.	5.2	4
1114	Recent development of efficient A-D-A type fused-ring electron acceptors for organic solar. Solar Energy, 2018, 174, 171-188.	2.9	50
1115	Amineâ€Substituted Diazocine Derivatives – Synthesis, Structure, and Photophysical Properties. Helvetica Chimica Acta, 2018, 101, e1800146.	1.0	2
1116	Inhomogeneity of the Ultrafast Excited State Dynamics in Organic Photovoltaic Materials Measured at Nanoscale. Journal of Physical Chemistry C, 2018, 122, 22201-22209.	1.5	6
1117	Adjusted photovoltaic performance of tetrafluorobenzene-based small molecules by tailoring with different arm of acceptor units. Dyes and Pigments, 2018, 158, 402-411.	2.0	11
1118	Immobilization Strategies for Organic Semiconducting Conjugated Polymers. Chemical Reviews, 2018, 118, 5598-5689.	23.0	119
1119	Stepwise heating in Stille polycondensation toward no batch-to-batch variations in polymer solar cell performance. Nature Communications, 2018, 9, 1867.	5.8	60
1120	Regioregular polymers containing benzodithiophene and thienothiophene segments with different electron donating side chains for high-performance polymer solar cells. Dyes and Pigments, 2018, 158, 249-258.	2.0	5
1121	Ternary Blend Strategy for Achieving Highâ€Efficiency Organic Solar Cells with Nonfullerene Acceptors Involved. Advanced Functional Materials, 2018, 28, 1802004.	7.8	85
1122	Synergistic Effects of Fluorination and Alkylthiolation on the Photovoltaic Performance of the Poly(benzodithiophene-benzothiadiazole) Copolymers. ACS Applied Energy Materials, 2018, 1, 4686-4694.	2.5	9
1123	Operando Direct Observation of Charge Accumulation and the Correlation with Performance Deterioration in PTB7 Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26434-26442.	4.0	23
1125	Enhancing Polymer Photovoltaic Performance via Optimized Intramolecular Ester-Based Noncovalent Sulfur···Oxygen Interactions. Macromolecules, 2018, 51, 3874-3885.	2.2	53
1126	Does the Electron-Donating Polymer Design Criteria Hold True for the Non-Fullerene Bulk Heterojunction Electron Acceptor Boron Subphthalocyanine? Yes. ACS Applied Energy Materials, 2018, 1, 2490-2501.	2.5	8
1127	Hole-Collecting Treated Graphene Layer and PTB7:PC ₇₁ BM-Based Bulk-Heterojunction OPV With Improved Carrier Collection and Photovoltaic Efficiency. IEEE Transactions on Electron Devices, 2018, 65, 4548-4554.	1.6	8
1128	Face-on orientation of fluorinated polymers conveyed by long alkyl chains: a prerequisite for high photovoltaic performances. Journal of Materials Chemistry A, 2018, 6, 12038-12045.	5.2	32
1129	Polymer Donors for Highâ€Performance Nonâ€Fullerene Organic Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 4442-4453.	7.2	361
1130	Elemental Nanoanalysis of Interfacial Alumina–Aryl Fluoride Interactions in Fullereneâ€Free Organic Tandem Solar Cells. Advanced Materials Interfaces, 2019, 6, 1901053.	1.9	8

#	Article	IF	Citations
1131	Approaches to Obtaining Fluorinated α-Amino Acids. Chemical Reviews, 2019, 119, 10718-10801.	23.0	192
1132	Fluorinated Photovoltaic Materials for Highâ€Performance Organic Solar Cells. Chemistry - an Asian Journal, 2019, 14, 3085-3095.	1.7	66
1133	Carbon–oxygen-bridged hexacyclic non-fullerene acceptors with chlorinated end groups. Materials Chemistry Frontiers, 2019, 3, 1859-1865.	3.2	16
1134	Synthesis by direct arylation reaction of photovoltaic D–π–A polymers based on fluorene-thiophene-fragment and fluorinated benzothiadiazole derivatives. Journal of Materials Science: Materials in Electronics, 2019, 30, 13974-13983.	1.1	6
1135	Alkylthiazole-based semicrystalline polymer donors for fullerene-free organic solar cells. Polymer Chemistry, 2019, 10, 4314-4321.	1.9	14
1136	Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells. Progress in Polymer Science, 2019, 99, 101175.	11.8	140
1137	Small Band gap Boron Dipyrromethene-Based Conjugated Polymers for All-Polymer Solar Cells: The Effect of Methyl Units. Macromolecules, 2019, 52, 8367-8373.	2.2	18
1138	Conversion of Large-Bandgap Triphenylamine–Benzothiadiazole to Low-Bandgap, Wide-Band Capturing Donor–Acceptor Systems by Tetracyanobutadiene and/or Dicyanoquinodimethane Insertion for Ultrafast Charge Separation. Journal of Physical Chemistry C, 2019, 123, 23382-23389.	1.5	34
1139	Halogenâ€Exchange Fluorination of βâ€Chlorovinyl Aldehydes – Unexpected Cascade Transformations in the Fluorination of 4â€Chloroâ€2 <i>H</i> àê€chromene and 4â€Chloroâ€2 <i>H</i> èâ€thiochromeneâ€3â€carbalde European Journal of Organic Chemistry, 2019, 2019, 6269-6277.	eh y.d es.	1
1140	Conjugated materials containing dithieno $[3,2-\langle i\rangle b\langle i\rangle:2\hat{a}\in^2,3\hat{a}\in^2-\langle i\rangle d\langle i\rangle]$ pyrrole and its derivatives for organic and hybrid solar cell applications. Journal of Materials Chemistry A, 2019, 7, 64-96.	5.2	133
1141	Increased charge transfer state separationviareduced mixed phase interface in polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 4536-4548.	5.2	26
1142	Pendant Photochromic Conjugated Polymers Incorporating a Highly Functionalizable Thieno[3,4- <i>b</i> jthiophene Switching Motif. Journal of the American Chemical Society, 2019, 141, 3146-3152.	6.6	33
1143	Functionalizing benzothiadiazole with non-conjugating ester groups as side chains in a donorâ€"acceptor polymer improves solar cell performance. New Journal of Chemistry, 2019, 43, 4242-4252.	1.4	6
1144	Mediumâ€Bandgap Conjugated Polymer Donors for Organic Photovoltaics. Macromolecular Rapid Communications, 2019, 40, e1900074.	2.0	30
1145	Exploration of the structure-property relationship of push-pull based dyads for single-molecule organic solar cells. Dyes and Pigments, 2019, 170, 107632.	2.0	12
1146	Strategic end-halogenation of π-conjugated small molecules enabling fine morphological control and enhanced performance of organic solar cells. Journal of Materials Chemistry A, 2019, 7, 14806-14815.	5.2	21
1147	The side chain effects on TPD-based copolymers: the linear chain leads to a higher jsc. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 926-932.	1.2	2
1148	CuAAC-Based Assembly and Characterization of a New Molecular Dyad for Single Material Organic Solar Cell. Metals, 2019, 9, 618.	1.0	4

#	Article	IF	CITATIONS
1149	Reconsideration of the gallium nitride: Dual functionality as an electron transporter and transparent conductor for recyclable polymer solar cell substrate applications. Solar Energy Materials and Solar Cells, 2019, 200, 109971.	3.0	0
1150	Red-shifted delayed fluorescence at the expense of photoluminescence quantum efficiency – an intramolecular charge-transfer molecule based on a benzodithiophene-4,8-dione acceptor. Physical Chemistry Chemical Physics, 2019, 21, 10580-10586.	1.3	11
1151	Divergent synthesis of 3-substituted thieno[3,4- <i>b</i>]thiophene derivatives <i>via</i> hydroxy-based transformations. Materials Chemistry Frontiers, 2019, 3, 1422-1426.	3.2	1
1152	An efficient binary cathode interlayer for large-bandgap non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 12426-12433.	5. 2	26
1153	$\langle i \rangle N \langle i \rangle$ -Alkylation $\langle i \rangle vs.$ O $\langle i \rangle$ -alkylation: influence on the performance of the photovoltaic cells based on a tetracyclic lactam polymer donor. RSC Advances, 2019, 9, 12310-12318.	1.7	2
1154	Facile Synthesis of Polycyclic Aromatic Hydrocarbon (PAH)–Based Acceptors with Fineâ€Tuned Optoelectronic Properties: Toward Efficient Additiveâ€Free Nonfullerene Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1803976.	10.2	51
1155	Recent Progress in Molecular Design of Fused Ring Electron Acceptors for Organic Solar Cells. Small, 2019, 15, e1900134.	5.2	126
1156	Implication of side-chain fluorination on electronic properties, ordering structures, and photovoltaic performance in asymmetric-indenothiophene-based semiconducting polymers. Organic Electronics, 2019, 70, 122-130.	1.4	5
1157	Efficient Polymer Solar Cells With High Fill Factor Enabled by A Furo[3,4]pyrroleâ€4,6â€dioneâ€Based Copolymer. Solar Rrl, 2019, 3, 1900012.	3.1	17
1158	The impact of fluorination on both donor polymer and non-fullerene acceptor: The more fluorine, the merrier. Nano Research, 2019, 12, 2400-2405.	5.8	28
1159	Functionalized Graphene/Ag nanoparticles Bi-layer to enhance the efficiency of polymer solar cells. IOP Conference Series: Materials Science and Engineering, 2019, 479, 012117.	0.3	0
1160	Optimization of broadband omnidirectional antireflection coatings for solar cells. Journal of Semiconductors, 2019, 40, 032702.	2.0	10
1161	Significant Effect of Fluorination on Simultaneously Improving Work Function and Transparency of Anode Interlayer for Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1803826.	10.2	21
1162	Synthesis, characterization and crystal structures of novel fluorinated di(thiazolyl)benzene derivatives. Organic Chemistry Frontiers, 2019, 6, 780-790.	2.3	10
1163	Current status, challenges and future outlook of high performance polymer semiconductors for organic photovoltaics modules. Progress in Polymer Science, 2019, 91, 51-79.	11.8	36
1164	Highâ€Performance Allâ€Polymer Solar Cells Enabled by an nâ€Type Polymer Based on a Fluorinated Imideâ€Functionalized Arene. Advanced Materials, 2019, 31, e1807220.	11.1	154
1165	1. Design Principles for Organic Semiconductors. , 2019, , 1-50.		0
1166	Non-halogenated-solvent-processed highly efficient organic solar cells with a record open circuit voltage enabled by noncovalently locked novel polymer donors. Journal of Materials Chemistry A, 2019, 7, 27394-27402.	5.2	20

#	Article	IF	Citations
1167	Polymer Donors for Highâ€Performance Nonâ€Fullerene Organic Solar Cells. Angewandte Chemie, 2019, 131, 4488-4499.	1.6	36
1168	Steady Enhancement in Photovoltaic Properties of Fluorine Functionalized Quinoxaline-Based Narrow Bandgap Polymer. Molecules, 2019, 24, 54.	1.7	4
1169	Fluorobenzotriazole (FTAZ)â€Based Polymer Donor Enables Organic Solar Cells Exceeding 12% Efficiency. Advanced Functional Materials, 2019, 29, 1808828.	7.8	61
1170	A new narrow bandgap polymer as donor material for high performance non-fullerene polymer solar cells. Organic Electronics, 2019, 64, 241-246.	1.4	5
1171	The role of data source selection in chemical hazard assessment: A case study on organic photovoltaics. Journal of Hazardous Materials, 2019, 365, 227-236.	6.5	7
1172	Regioisomeric wide-band-gap polymers with different fluorine topologies for non-fullerene organic solar cells. Polymer Chemistry, 2019, 10, 395-402.	1.9	22
1173	Cyclometalated Nickel Complexes as Key Intermediates in C(sp ²)â€"H Bond Functionalization: Synthesis, Catalysis, Electrochemical Properties, and DFT Calculations. Organometallics, 2019, 38, 1254-1263.	1.1	15
1174	Face-on oriented thermolabile Boc-isoindigo/thiophenes small molecules: From synthesis to OFET performance. Dyes and Pigments, 2020, 172, 107784.	2.0	21
1175	Manipulating nanoscale structure to control functionality in printed organic photovoltaic, transistor and bioelectronic devices. Nanotechnology, 2020, 31, 092002.	1.3	22
1176	Synthesis and Photovoltaic Investigation of 8,10-Bis(2-octyldodecyl)-8,10-dihydro-9 <i>H</i> naphtho[2,3- <i>d</i> Modesupposed Research Synthesis (2000) 1,30-4,10-Bis(10-10-10-10-10-10-10-10-10-10-10-10-10-1	2.5	10
1177	New Conjugated Polymers Based on Dithieno[2,3â€e:3′,2′â€g]lsoindoleâ€₹,9(8H)â€Dione Derivatives for Applications in Nonfullerene Polymer Solar Cells. Solar Rrl, 2020, 4, 1900475.	3.1	7
1178	Synthesis, structure, redox activity and luminescence of sterically crowded 6,8-di-(tert-butyl)-3H-phenoxazin-3-one. Tetrahedron Letters, 2020, 61, 151429.	0.7	3
1179	Green solvent-processed organic electronic devices. Journal of Materials Chemistry C, 2020, 8, 15027-15047.	2.7	38
1180	Benzodithiophene-based small molecules for vacuum-processed organic photovoltaic devices. Optical Materials, 2020, 109, 110354.	1.7	11
1181	A Green Solvent Processable Wideâ€Bandgap Conjugated Polymer for Organic Solar Cells. Solar Rrl, 2020, 4, 2000547.	3.1	13
1182	Methyl functionalization on conjugated side chains for polymer solar cells processed from non-chlorinated solvents. Journal of Materials Chemistry C, 2020, 8, 11532-11539.	2.7	14
1183	Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review. Polymers, 2020, 12, 2627.	2.0	127
1184	The development of conjugated polymers as the cornerstone of organic electronics. Polymer, 2020, 207, 122874.	1.8	63

#	Article	IF	Citations
1185	An asymmetric acceptor enabling 77.51% fill factor in organic solar cells. Science Bulletin, 2020, 65, 1876-1879.	4.3	11
1186	Organic Resonance Materials: Molecular Design, Photophysical Properties, and Optoelectronic Applications. Journal of Physical Chemistry Letters, 2020, 11, 7739-7754.	2.1	39
1187	Structure–property relationships in multi-stimuli responsive BODIPY-biphenyl-benzodithiophene TICT rigidochromic rotors exhibiting (pseudo-)Stokes shifts up to 221 nm. Physical Chemistry Chemical Physics, 2020, 22, 25514-25521.	1.3	9
1188	Recent Advances in the Synthesis of Electron Donor Conjugated Terpolymers for Solar Cell Applications. Frontiers in Materials, 2020, 7, .	1.2	9
1189	Mesoscale Simulations on Morphology Design in Conjugated Polymers and Inorganic Nanoparticles Composite for Bulk Heterojunction Solar Cells. Solar Rrl, 2020, 4, 2000352.	3.1	5
1190	A comprehensive study: Theoretical and experimental investigation of heteroatom and substituent effects on frontier orbitals and polymer solar cell performances. Journal of Polymer Science, 2020, 58, 2792-2806.	2.0	11
1191	Design of Thienothiophene-Based Copolymers with Various Side Chain-End Groups for Efficient Polymer Solar Cells. Polymers, 2020, 12, 2964.	2.0	2
1192	Benzodithiophene-Based Small-Molecule Donors for Next-Generation All-Small-Molecule Organic Photovoltaics. Matter, 2020, 3, 1403-1432.	5.0	72
1193	Near-infrared resonance stimulated Raman study of short-lived transients in PTB7 films. Vibrational Spectroscopy, 2020, 106, 103011.	1.2	2
1194	Chlorination: An Effective Strategy for Highâ€Performance Organic Solar Cells. Advanced Science, 2020, 7, 2000509.	5.6	92
1195	Two dimensional semiconducting polymers. Materials Chemistry Frontiers, 2020, 4, 3472-3486.	3.2	2
1196	Fluorination of a polymer donor through the trifluoromethyl group for high-performance polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 12149-12155.	5 . 2	12
1197	Recent Progress on Indoor Organic Photovoltaics: From Molecular Design to Production Scale. ACS Energy Letters, 2020, 5, 1186-1197.	8.8	131
1198	Asymmetric 9,9′-bifluorenylidene-based small molecules as the non-fullerene acceptors for organic photovoltaic cells. Dyes and Pigments, 2020, 177, 108233.	2.0	4
1199	Indacenodifuran-Based Non-Fullerene Electron Acceptors for Efficient Polymer Solar Cells. ACS Applied Energy Materials, 2020, 3, 6133-6138.	2.5	10
1200	Organic solar cells based on non-fullerene acceptors of nine fused-ring by modifying end groups. Organic Electronics, 2020, 81, 105662.	1.4	9
1201	2D Conjugated Polyelectrolytes Possessing Identical Backbone with Active‣ayer Polymer as Cathode Interlayer for Organic Solar Cells. Macromolecular Rapid Communications, 2020, 41, 1900624.	2.0	3
1202	Benzothiadiazole Based Cascade Material to Boost the Performance of Inverted Ternary Organic Solar Cells. Energies, 2020, 13, 450.	1.6	7

#	Article	IF	CITATIONS
1203	A Benzo[1,2â€ <i>b</i> :4,5â€ <i>c</i> ′]Dithiopheneâ€4,8â€Dioneâ€Based Polymer Donor Achieving an Efficien 16%. Advanced Materials, 2020, 32, e1907059.	cy.Qver	70
1204	Design and structural modification of narrow-bandgap small molecules based on asymmetric porphyrin-diketopyrrolopyrrole backbone for solution-processed organic solar cells. Dyes and Pigments, 2020, 176, 108211.	2.0	14
1205	Effects of Annealing Temperature on the Performance of Organic Solar Cells Based on Polymer: Non-Fullerene Using $V \le v \le $	1.2	9
1206	Nonadiabatic Dynamics of Charge-Transfer States Using the Anthracene–Tetracyanoethylene Complex as a Prototype. Journal of Physical Chemistry A, 2020, 124, 3347-3357.	1.1	13
1207	Enhanced Photovoltaic Performance by Synergistic Effect of Chlorination and Selenophene π-Bridge. Macromolecules, 2020, 53, 2893-2901.	2.2	22
1208	Mechanical properties of organic semiconductors for flexible electronics. , 2021, , 199-223.		3
1209	A highly fluorine-functionalized 2D covalent organic framework for promoting photocatalytic hydrogen evolution. Applied Surface Science, 2021, 537, 148082.	3.1	46
1210	Conjugated Polymers for Photon-to-Electron and Photon-to-Fuel Conversions. ACS Applied Polymer Materials, 2021, 3, 60-92.	2.0	43
1211	Development of conjugated polymers for organic flexible electronics., 2021,, 27-70.		4
1212	Theoretical insight on PTB7:PC71BM, PTB7-th:PC71BM and Si-PCPDTBT:PC71BM interactions governing blend nanoscale morphology for efficient solar cells. Nano Energy, 2021, 82, 105708.	8.2	7
1213	Facile synthesis and optoelectronic properties of thienopyrroledione based conjugated polymer for organic field effect transistors. Dyes and Pigments, 2021, 186, 108973.	2.0	9
1214	Progress and prospects of thick-film organic solar cells. Journal of Materials Chemistry A, 2021, 9, 3125-3150.	5.2	53
1215	Organic Semiconductors at the University of Washington: Advancements in Materials Design and Synthesis and toward Industrial Scale Production. Advanced Materials, 2021, 33, e1904239.	11.1	25
1216	Functional materials for various organic electronic devices. , 2021, , 119-165.		2
1217	Quinoidal conjugated polymers with open-shell character. Polymer Chemistry, 2021, 12, 1347-1361.	1.9	38
1218	Morphological design strategies to tailor out-of-plane charge transport in conjugated polymer systems for device applications. Physical Chemistry Chemical Physics, 2021, , .	1.3	4
1219	Progress in morphology control from fullerene to nonfullerene acceptors for scalable high-performance organic photovoltaics. Journal of Materials Chemistry A, 2021, 9, 24729-24758.	5.2	28
1220	Research on the characteristics of ternary photodetectors based on benzodithiophene polymers. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	0

#	Article	IF	Citations
1221	Precise fluorination of polymeric donors towards efficient non-fullerene organic solar cells with balanced open circuit voltage, short circuit current and fill factor. Journal of Materials Chemistry A, 2021, 9, 14752-14757.	5. 2	17
1222	The impact of TiO2 nanostructures on the physical properties and electrical performance of organic solar cells based on PTB7:PC71BM bulk heterojunctions. Materials Today: Proceedings, 2021, 42, 1921-1927.	0.9	3
1223	Recent Developments in Organic Tandem Solar Cells toward High Efficiency. Advanced Energy and Sustainability Research, 2021, 2, 2000050.	2.8	12
1224	Ï€-Extended Ladder-Type Conjugated Polymers via BN-Annulation. Organic Materials, 2021, 03, 221-227.	1.0	1
1225	Naphthalenothiophene imide-based polymer exhibiting over 17% efficiency. Joule, 2021, 5, 931-944.	11.7	63
1226	Exciton dissociation in correlated molecular photocells. Journal of Physics and Chemistry of Solids, 2021, 152, 109966.	1.9	1
1227	Control of aggregated structure of photovoltaic polymers for highâ€efficiency solar cells. Aggregate, 2021, 2, e46.	5.2	60
1228	Fluorination on electron-deficient units of benzothiadiazole-based donor-acceptor conjugated polymers for novel fullerene-based organic solar cells. Solar Energy, 2021, 220, 864-872.	2.9	7
1229	Effect of alkylthiolated hetero-aromatic rings on the photovoltaic performance of benzodithiophene-based polymer/fullerene solar cells. Synthetic Metals, 2021, 276, 116756.	2.1	4
1230	Pushing the Limits of the Donor–Acceptor Copolymer Strategy for Intramolecular Singlet Fission. Journal of Physical Chemistry Letters, 2021, 12, 7270-7277.	2.1	5
1231	Regioregular narrow bandgap copolymer with strong aggregation ability for high-performance semitransparent photovoltaics. Nano Energy, 2021, 86, 106098.	8.2	31
1232	Progress in Organic Solar Cells: Materials, Physics and Device Engineering. Chinese Journal of Chemistry, 2021, 39, 2607-2625.	2.6	62
1233	Molecular design of polymer coatings capable of photoâ€triggered stress relaxation via dynamic covalent bond exchange. Journal of Polymer Science, 2021, 59, 2719-2729.	2.0	5
1234	Solutionâ€state dopingâ€assisted molecular ordering and enhanced thermoelectric properties of an amorphous polymer. International Journal of Energy Research, 2021, 45, 21540-21551.	2.2	6
1237	Design of Optimized PEDOTâ€Based Electrodes for Enhancing Performance of Living Photovoltaics Based on Phototropic Bacteria. Advanced Materials Technologies, 2020, 5, 1900931.	3.0	23
1238	Fast Screening of the Optimal Polymer Ratio for Organic Solar Cells Using a Spray-Coating Deposition Method for the Fullerene Mixture. Energy Technology, 2013, 1, 85-93.	1.8	14
1239	CNT Applications in Microelectronics, "Nanoelectronics,―and "Nanobioelectronics― , 2018, , 65-72.		1
1240	CNT Applications in Displays and Transparent, Conductive Films/Substrates., 2018,, 73-75.		1

#	Article	IF	CITATIONS
1241	Graphene Applications in Electronics, Electrical Conductors, and Related Uses., 2018, , 141-146.		4
1242	Characterization Methods., 2018,, 403-488.		2
1243	Microwave- and Conductivity-Based Technologies. , 2018, , 655-669.		3
1244	CNT Applications in Sensors and Actuators. , 2018, , 53-60.		3
1245	Excitonic Processes in Organic Semiconductors and Their Applications in Organic Photovoltaic and Light Emitting Devices. Springer Series in Materials Science, 2015, , 229-251.	0.4	6
1246	Development and Testing of an All-Atom Force Field for Diketopyrrolopyrrole Polymers with Conjugated Substituents. Journal of Physical Chemistry B, 2020, 124, 11030-11039.	1.2	6
1247	Synthesis and photophysical properties of fullerene derivatives containing a C ₆₀ -fluorene core. New Journal of Chemistry, 2019, 43, 4356-4363.	1.4	5
1248	Solution-Processed Donors. , 2014, , 3-69.		3
1249	Solar Energy Collection on a Spherical Surface. Energy and Environmental Engineering, 2014, 2, 48-54.	0.8	3
1250	The Effect of Graphene/Ag Nanoparticles Addition on the Performances of Organic Solar Cells. Journal of Materials Science and Chemical Engineering, 2015, 03, 30-35.	0.2	2
1251	Enhanced Stability of Organic Photovoltaics by Additional ZnO Layers on Rippled ZnO Electron-collecting Layer using Atomic Layer Deposition. Bulletin of the Korean Chemical Society, 2014, 35, 353-356.	1.0	11
1252	Synthesis and Photovoltaic Properties of Alternating Conjugated Polymers Derived from Thiophene-Benzothiadiazole Block and Fluorene/Indenofluorene Units. Bulletin of the Korean Chemical Society, 2014, 35, 505-512.	1.0	3
1253	Alternative Resources for Renewable Energy: Piezoelectric and Photovoltaic Smart Structures., 0,,.		26
1254	Tuning of Fullerene Materials for Organic Solar Cells: A Theoretical Study on the Properties of Defect Fullerenes C59and C69. Japanese Journal of Applied Physics, 2012, 51, 10NE35.	0.8	1
1255	Synthesis and characterization of benzo[b]thieno[2,3-d]thiophene (BTT) derivatives as solution-processable organic semiconductors for organic field-effect transistors. Synthetic Metals, 2021, 282, 116944.	2.1	10
1256	Synthesis of Poly(fluorene-alt-thieno[3,4-b]thiophene) for Photovoltaic Devices. Bulletin of the Korean Chemical Society, 2011, 32, 3509-3512.	1.0	0
1257	Theory and Literature Survey: Application of BLH to Solar Cells. Springer Theses, 2013, , 95-116.	0.0	0
1258	Investigation on characteristics of solar cells made of MOPPV/ZnSe quantum dots composite system. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 078802.	0.2	1

#	Article	IF	CITATIONS
1259	Fabrication of bulk heterojunction solar cells by a modified spray-mist coating method. Renewable Energy and Power Quality Journal, 0, , 366-369.	0.2	0
1260	High-Performance Bulk-Heterojunction Polymer Solar Cells. Green Energy and Technology, 2014, , 167-187.	0.4	0
1261	Charge Transport Study of OPV Polymers and Their Bulk Heterojunction Blends by Admittance Spectroscopy. Topics in Applied Physics, 2015, , 43-65.	0.4	0
1262	Polymers for Solar Cells. , 2015, , 2013-2020.		0
1263	Basic Electrochemistry of CPs. , 2018, , 283-309.		0
1264	Miscellaneous CNT Applications. , 2018, , 89-90.		0
1265	CNT Applications in Specialized Materials. , 2018, , 45-48.		0
1266	Structural Aspects and Morphology of CPs. , 2018, , 389-402.		0
1267	Electronic Structure and Conduction Models of Graphene. , 2018, , 101-106.		0
1268	Electrochromics. , 2018, , 601-624.		1
1269	Classes of CPs: Part 1., 2018, , 489-507.		0
1270	Electro-Optic and Optical Devices. , 2018, , 671-684.		2
1271	Conduction Models and Electronic Structure of CNTs. , 2018, , 11-16.		0
1272	Miscellaneous Applications. , 2018, , 695-715.		O
1273	CNT Applications in the Environment and in Materials Used in Separation Science., 2018,, 81-87.		0
1274	Graphene Applications in Displays and Transparent, Conductive Films/Substrates., 2018,, 147-148.		O
1275	Classes of CPs: Part 2., 2018, , 509-545.		0
1276	Introducing Conducting Polymers (CPs). , 2018, , 159-174.		0

#	Article	IF	CITATIONS
1277	Syntheses and Processing of CPs. , 2018, , 311-388.		0
1278	Physical, Mechanical, and Thermal Properties of CNTs., 2018,, 33-36.		0
1279	CNT Applications in Electrical Conductors, "Quantum Nanowires,―and Potential Superconductors. , 2018, , 77-79.		1
1280	Toxicology of CNTs. , 2018, , 37-39.		0
1281	Synthesis, Purification, and Chemical Modification of CNTs., 2018, , 17-31.		0
1282	Introducing Graphene., 2018,, 93-99.		0
1284	Conduction Models and Electronic Structure of CPs. , 2018, , 175-249.		1
1285	Brief, General Overview of Applications. , 2018, , 123-124.		0
1286	Electrochemomechanical, Chemomechanical, and Related Devices., 2018,, 685-693.		0
1287	Displays, Including Light-Emitting Diodes (LEDs) and Conductive Films. , 2018, , 625-654.		0
1288	Evidence That Sharp Interfaces Suppress Recombination in Thick Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 56394-56403.	4.0	3
1289	Direct Observations of Uniform Bulk Heterojunctions and the Energy Level Alignments in Nonfullerene Organic Photovoltaic Active Layers. ACS Applied Materials & Diterfaces, 2021, 13, 56430-56437.	4.0	0
1290	Polymerization Reactions via Cross Coupling. , 2021, , .		0
1291	Intrachain photophysics of a donor–acceptor copolymer. Physical Chemistry Chemical Physics, 2022, 24, 1982-1992.	1.3	7
1292	Short-wave and near infrared π-conjugated polymers hosted in a biocompatible microemulsion: a pioneering approach for photoacoustic contrast agents. Journal of Materials Chemistry B, 2022, , .	2.9	1
1293	Synthesis and Photovoltaic Properties of Low Band Gap Polymer. , 2022, , .		0
1294	Pyrazole-, isoxazole- and pyrrole-ring fused derivatives of C ₆₀ : synthesis and electrochemical properties as well as morphological characterization. New Journal of Chemistry, 2022, 46, 6663-6669.	1.4	1
1296	Backbone Configuration and Electronic Property Tuning of Imideâ€Functionalized Ladderâ€Type Heteroarenesâ€Based Polymer Acceptors for Efficient Allâ€Polymer Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	12

#	Article	IF	CITATIONS
1297	Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor. Molecules, 2022, 27, 1800.	1.7	59
1298	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	4.2	349
1299	New Unsymmetrically Substituted Benzothiadiazole-Based Luminophores: Synthesis, Optical, Electrochemical Studies, Charge Transport, and Electroluminescent Characteristics. Molecules, 2021, 26, 7596.	1.7	5
1300	Amphiphilic PTB7-Based Rod-Coil Block Copolymer for Water-Processable Nanoparticles as an Active Layer for Sustainable Organic Photovoltaic: A Case Study. Polymers, 2022, 14, 1588.	2.0	5
1301	Water molecular bridge-induced selective dual polarization in crystals for stable multi-emitters. Chemical Science, 2022, 13, 6067-6073.	3.7	3
1303	Synthesis, optical and dielectric properties of polyacryloyloxy imino fluorophenyl acetamide and polyacryloyloxy imino fluorophenyl acetamide-co-polystyrene sulfonate. Journal of Polymer Research, 2022, 29, .	1.2	2
1304	Carboxylate-Containing Wide-Bandgap Polymers for High-Voltage Non-Fullerene Organic Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells.	4.0	7
1305	Effect of thin tunnel layers MnO ₃ and V ₂ O ₅ on the enhancement of single-layer organic solar cell efficiency. Journal of Physics: Conference Series, 2022, 2312, 012052.	0.3	1
1306	Heterocyclic-based photoactive materials. , 2023, , 219-296.		0
1307	Functional Organic Materials for Photovoltaics: The Synthesis as a Tool for Managing Properties for Solid State Applications. Materials, 2022, 15, 6333.	1.3	2
1308	A Polyfluoroalkylâ€Containing Nonâ€fullerene AcceptorÂEnables Selfâ€Stratification in OrganicÂSolar Cells. Angewandte Chemie, 0, , .	1.6	5
1309	A Polyfluoroalkylâ€Containing Nonâ€fullerene Acceptor Enables Selfâ€Stratification in Organic Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	31
1310	Effective Approach toward Selective Near-Infrared Dyes: Rational Design, Synthesis, and Characterization of Thieno[3,4- <i>b</i>)thiophene-Based Quinoidal Oligomers. ACS Applied Materials & Amp; Interfaces, 2022, 14, 55686-55690.	4.0	0
1311	Photovoltaic Properties of π-Conjugated Polymers Based on Fused Cyclic Imide and Amide Skeletons. Bulletin of the Chemical Society of Japan, 2023, 96, 90-94.	2.0	5
1312	A Multifluorination Strategy Toward Wide Bandgap Polymers for Highly Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
1313	Low-cost machine learning prediction of excited state properties of iridium-centered phosphors. Chemical Science, 2023, 14, 1419-1433.	3.7	6
1314	A Multifluorination Strategy Toward Wide Bandgap Polymers for Highly Efficient Organic Solar Cells. Angewandte Chemie, 2023, 135, .	1.6	2
1315	Integrated carbon nanotube and triazine-based covalent organic framework composites for high capacitance performance. Dalton Transactions, 2023, 52, 2762-2769.	1.6	6

#	Article	IF	CITATIONS
1316	Strategies Towards Enhancing Charge Collection in Polymer Photovoltaic Devices., 2012, , 445-467.		0
1317	Organic Solar Cells. , 2023, , 118-138.		0
1318	Development and Implementation of a Two-Level Inquiry- and Project-Based Modular Approach to Teaching a Second-Semester Physical Chemistry Laboratory Course. Journal of Chemical Education, 0, , .	1.1	0
1319	Precise control of conjugated polymer synthesis from step-growth polymerization to iterative synthesis. Giant, 2023, 14, 100154.	2.5	7
1320	Photoelectrochemical properties of Cu ₂ O/PANI/Si-based photocathodes for CO ₂ conversion. Emerging Materials Research, 2023, 12, 78-91.	0.4	2
1321	Pinning energies of organic semiconductors in high-efficiency organic solar cells. Journal of Semiconductors, 2023, 44, 032201.	2.0	1
1322	Side Chain Engineering of Two-Dimensional Polymeric Donors for High-Efficiency Organic Solar Cells. Energy & En	2.5	4
1325	Improving the crystallinity of imine-linked covalent organic frameworks by acetal for enhanced photocatalytic H ₂ evolution. CrystEngComm, 2023, 25, 2995-2999.	1.3	4