Supercritical Processing as a Route to High Internal Sur Microporosity in Metalâ^'Organic Framework Materials

Journal of the American Chemical Society 131, 458-460 DOI: 10.1021/ja808853q

Citation Report

#	Article	IF	CITATIONS
7	Freeze Drying Significantly Increases Permanent Porosity and Hydrogen Uptake in 4,4 onnected Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2009, 48, 9905-9908.	13.8	203
8	Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 2009, 253, 3042-3066.	18.8	1,422
9	Improving pore performance. Nature Chemistry, 2009, 1, 26-27.	13.6	68
10	Adsorption of CO2 on Coll3[CollI(CN)6]2 using DRIFTS. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 629-634.	3.9	13
11	Strategies for Characterization of Large-Pore Metal-Organic Frameworks by Combined Experimental and Computational Methods. Chemistry of Materials, 2009, 21, 4768-4777.	6.7	68
12	Metal–organic framework (MOF) aerogels with high micro- and macroporosity. Chemical Communications, 2009, , 6056.	4.1	248
13	New Prototype Isoreticular Metalâ^'Organic Framework Zn ₄ O(FMA) ₃ for Gas Storage. Inorganic Chemistry, 2009, 48, 4649-4651.	4.0	72
14	Stabilization of Metalâ``Organic Frameworks with High Surface Areas by the Incorporation of Mesocavities with Microwindows. Journal of the American Chemical Society, 2009, 131, 9186-9188.	13.7	316
15	Highly Porous Metal-Organic Framework Containing a Novel Organosilicon Linker â^' A Promising Material for Hydrogen Storage. Inorganic Chemistry, 2009, 48, 6559-6565.	4.0	60
16	Predicting microporous crystalline polyimides. CrystEngComm, 2009, 11, 1819.	2.6	32
17	A Framework for Predicting Surface Areas in Microporous Coordination Polymers. Langmuir, 2010, 26, 5808-5814.	3.5	63
18	Functionalized graphene and graphene oxide solution via polyacrylate coating. Nanoscale, 2010, 2, 2777.	5.6	71
19	Control over Catenation in Metalâ~'Organic Frameworks via Rational Design of the Organic Building Block. Journal of the American Chemical Society, 2010, 132, 950-952.	13.7	344
20	Hydrogen Storage on Carbon-Based Adsorbents and Storage at Ambient Temperature by Hydrogen Spillover. Catalysis Reviews - Science and Engineering, 2010, 52, 411-461.	12.9	139
21	[Cu4OCl6(DABCO)2]·0.5DABCO·4CH3OH ("MFU-5â€): Modular synthesis of a zeolite-like metal-organic framework constructed from tetrahedral {Cu4OCl6} secondary building units and linear organic linkers. Journal of Solid State Chemistry, 2010, 183, 208-217.	2.9	17
22	Designing Heterogeneous Catalysts by Incorporating Enzyme-Like Functionalities into MOFs. Topics in Catalysis, 2010, 53, 859-868.	2.8	73
23	Synthesis, Structure, Characterization, and Redox Properties of the Porous MILâ€68(Fe) Solid. European Journal of Inorganic Chemistry, 2010, 2010, 3789-3794.	2.0	191
24	Flexibility and Sorption Selectivity in Rigid Metal–Organic Frameworks: The Impact of Etherâ€Functionalised Linkers. Chemistry - A European Journal, 2010, 16, 14296-14306.	3.3	128

#	Article	IF	CITATIONS
27	An Isoreticular Series of Metal–Organic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gasâ€Uptake Capacity. Angewandte Chemie - International Edition, 2010, 49, 5357-5361.	13.8	677
28	A Highly Porous Metal–Organic Framework with Open Nickel Sites. Angewandte Chemie - International Edition, 2010, 49, 8489-8492.	13.8	149
29	Porosity tuning of carborane-based metal–organic frameworks (MOFs) via coordination chemistry and ligand design. Inorganica Chimica Acta, 2010, 364, 266-271.	2.4	64
30	Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes. Microporous and Mesoporous Materials, 2010, 132, 132-136.	4.4	93
31	Facile preparation of high-capacity hydrogen storage metal-organic frameworks: A combination of microwave-assisted solvothermal synthesis and supercritical activation. Chemical Engineering Science, 2010, 65, 3140-3146.	3.8	81
32	A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis. Nature Chemistry, 2010, 2, 838-846.	13.6	813
33	De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2010, 2, 944-948.	13.6	1,535
35	Methane adsorption in several series of newly synthesised metal-organic frameworks: a molecular simulation study. Molecular Simulation, 2010, 36, 682-692.	2.0	12
36	Rational Design, Synthesis, Purification, and Activation of Metalâ^'Organic Framework Materials. Accounts of Chemical Research, 2010, 43, 1166-1175.	15.6	1,259
37	Concentration-Driven Evolution of Crystal Structure, Pore Characteristics, and Hydrogen Storage Capacity of Metal Organic Framework-5s: Experimental and Computational Studies. Chemistry of Materials, 2010, 22, 6138-6145.	6.7	18
38	Structural Analysis and Thermal Behavior of Pore Networks in High-Surface-Area Metalâ`'Organic Framework. Journal of Physical Chemistry C, 2010, 114, 7014-7020.	3.1	21
39	Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks. Energy and Environmental Science, 2010, 3, 1469.	30.8	138
40	Functionalization of UiO-66 Metalâ^'Organic Framework and Highly Cross-Linked Polystyrene with Cr(CO) ₃ : In Situ Formation, Stability, and Photoreactivity. Chemistry of Materials, 2010, 22, 4602-4611.	6.7	120
41	Introduction of cavities up to 4 nm into a hierarchically-assembled metal–organic framework using an angular, tetratopic ligand. Chemical Communications, 2010, 46, 5223.	4.1	39
42	Adsorption Mechanism and Uptake of Methane in Covalent Organic Frameworks: Theory and Experiment. Journal of Physical Chemistry A, 2010, 114, 10824-10833.	2.5	177
43	Porous Coordination Polymers of Transition Metal Sulfides with PtS Topology Built on a Semirigid Tetrahedral Linker. Inorganic Chemistry, 2010, 49, 7685-7691.	4.0	48
44	Grand-Canonical Monte Carlo and Molecular-Dynamics Simulations of Carbon-Dioxide and Carbon-Monoxide Adsorption in Zeolitic Imidazolate Framework Materials. Journal of Physical Chemistry C, 2010, 114, 2171-2178.	3.1	83
45	Ultrahigh Porosity in Metal-Organic Frameworks. Science, 2010, 329, 424-428.	12.6	3,306

#	Article	IF	CITATIONS
46	Rational synthesis of a microporous metal–organic framework with PtS topology using a semi-rigid tetrahedral linker. CrystEngComm, 2010, 12, 2008.	2.6	38
47	Interaction of Molecular Hydrogen with Microporous Metal Organic Framework Materials at Room Temperature. Journal of the American Chemical Society, 2010, 132, 1654-1664.	13.7	88
48	Microporous La(III) Metalâ^'Organic Framework Using a Semirigid Tricarboxylic Ligand: Synthesis, Single-Crystal to Single-Crystal Sorption Properties, and Gas Adsorption Studies. Crystal Growth and Design, 2010, 10, 3410-3417.	3.0	68
49	Metal–organic frameworks with designed chiral recognition sites. Chemical Communications, 2010, 46, 4911.	4.1	82
50	A Porous Metalâ^'Organic Replica of α-PbO ₂ for Capture of Nerve Agent Surrogate. Journal of the American Chemical Society, 2010, 132, 17996-17999.	13.7	66
51	Predicting crystalline polyamic acids as precursors to porous polyimides. CrystEngComm, 2010, 12, 2315.	2.6	9
52	Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 2010, 22, 6632-6640.	6.7	1,547
53	Mechanochemical Synthesis of Metalâ~'Organic Frameworks: A Fast and Facile Approach toward Quantitative Yields and High Specific Surface Areas. Chemistry of Materials, 2010, 22, 5216-5221.	6.7	445
54	Metal organic gels (MOGs): a new class of sorbents for CO2 separation applications. Journal of Materials Chemistry, 2010, 20, 7623.	6.7	80
55	Gas-Induced Expansion and Contraction of a Fluorinated Metalâ^'Organic Framework. Crystal Growth and Design, 2010, 10, 1037-1039.	3.0	152
56	Topologies of Metalâ^'Organic Frameworks Based on Pyrimidine-5-carboxylate and Unexpected Gas-Sorption Selectivity for CO ₂ . Inorganic Chemistry, 2010, 49, 10833-10839.	4.0	35
57	X-ray absorption spectroscopies: useful tools to understand metallorganic frameworks structure and reactivity. Chemical Society Reviews, 2010, 39, 4885.	38.1	130
58	Architecture of europium complexes with sulfobenzenedicarboxylates. CrystEngComm, 2010, 12, 3145.	2.6	30
59	Monitoring the Activation Process of the Giant Pore MIL-100(Al) by Solid State NMR. Journal of Physical Chemistry C, 2011, 115, 17934-17944.	3.1	70
60	High-Pressure in Situ ¹²⁹ Xe NMR Spectroscopy and Computer Simulations of Breathing Transitions in the Metal–Organic Framework Ni ₂ (2,6-ndc) ₂ (dabco) (DUT-8(Ni)). Journal of the American Chemical Society, 2011, 133, 8681-8690.	13.7	113
61	A General Thermolabile Protecting Group Strategy for Organocatalytic Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2011, 133, 5806-5809.	13.7	307
62	Characterisation of porous hydrogen storage materials: carbons, zeolites, MOFs and PIMs. Faraday Discussions, 2011, 151, 75.	3.2	75
63	Porous metal–organic frameworks as platforms for functional applications. Chemical Communications, 2011, 47, 3351.	4.1	798

#	Article	IF	CITATIONS
64	Aromatic, microporous polymer networks with high surface area generated in Friedel–Crafts-type polycondensations. Polymer Chemistry, 2011, 2, 2186.	3.9	46
65	Control of catenation in CuTATB-n metal–organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. Journal of Materials Chemistry, 2011, 21, 3070.	6.7	225
66	Selective CO2 adsorption in a flexible non-interpenetrated metal–organic framework. Chemical Communications, 2011, 47, 4258.	4.1	129
67	Pore with gate: modulating hydrogen storage in metal-organic framework materials via cation exchange. Faraday Discussions, 2011, 151, 19.	3.2	48
68	Porous organic molecular solids by dynamic covalent scrambling. Nature Communications, 2011, 2, 207.	12.8	155
69	Asymmetric Catalysis with Chiral Porous Metal–Organic Frameworks: Critical Issues. Journal of Physical Chemistry Letters, 2011, 2, 1701-1709.	4.6	125
70	A non-interpenetrated porous metal–organic framework with high gas-uptake capacity. Chemical Communications, 2011, 47, 9861.	4.1	106
71	Reconciling the Discrepancies between Crystallographic Porosity and Guest Access As Exemplified by Zn-HKUST-1. Journal of the American Chemical Society, 2011, 133, 18257-18263.	13.7	195
72	The current status of hydrogen storage in metal–organic frameworks—updated. Energy and Environmental Science, 2011, 4, 2721.	30.8	429
73	Hydrogen Uptake by {H[Mg(HCOO) ₃]âŠfNHMe ₂ } _{â^ž} and Determination of Its H ₂ Adsorption Sites through Monte Carlo Simulations. Langmuir, 2011, 27, 10124-10131.	3.5	21
74	Post-Synthesis Modification of a Metal–Organic Framework To Form Metallosalen-Containing MOF Materials. Journal of the American Chemical Society, 2011, 133, 13252-13255.	13.7	243
75	Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 2011, 23, 1700-1718.	6.7	1,420
76	Complete Series of Monohalogenated Isoreticular Metal–Organic Frameworks: Synthesis and the Importance of Activation Method. Crystal Growth and Design, 2011, 11, 4309-4312.	3.0	53
77	Active-Site-Accessible, Porphyrinic Metalâ^'Organic Framework Materials. Journal of the American Chemical Society, 2011, 133, 5652-5655.	13.7	415
78	Selective Surface and Near-Surface Modification of a Noncatenated, Catalytically Active Metal-Organic Framework Material Based on Mn(salen) Struts. Inorganic Chemistry, 2011, 50, 3174-3176.	4.0	111
79	A highly porous flexible Metal–Organic Framework with corundum topology. Chemical Communications, 2011, 47, 490-492.	4.1	57
80	Synthesis of MOF having functional side group. Inorganica Chimica Acta, 2011, 370, 76-81.	2.4	14
82	Coordination Chemistry of Thiazole-Based Ligands: New Complexes Generating 3D Hydrogen-Bonded Architectures. European Journal of Inorganic Chemistry, 2011, 2011, 539-548.	2.0	23

#	Article	IF	CITATIONS
84	Metal–Organic Framework Nanospheres with Wellâ€Ordered Mesopores Synthesized in an Ionic Liquid/CO ₂ /Surfactant System. Angewandte Chemie - International Edition, 2011, 50, 636-639.	13.8	280
85	A Highly Porous Metal–Organic Framework: Structural Transformations of a Guestâ€Free MOF Depending on Activation Method and Temperature. Chemistry - A European Journal, 2011, 17, 7251-7260.	3.3	145
86	Flexible Metal–Organic Framework with Hydrophobic Pores. Chemistry - A European Journal, 2011, 17, 13653-13656.	3.3	56
87	Synthesis, structure and properties of microporous metal–organic frameworks constructed from Ni(II)/Cd(II), Tpt and H4bpta. Inorganic Chemistry Communication, 2011, 14, 1082-1085.	3.9	18
88	Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66. Microporous and Mesoporous Materials, 2011, 139, 67-73.	4.4	257
89	Solid-State NMR Spectroscopy of Metal–Organic Framework Compounds (MOFs). Materials, 2012, 5, 2537-2572.	2.9	130
90	Fine-tuning the balance between crystallization and gelation and enhancement of CO2 uptake on functionalized calcium based MOFs and metallogels. Journal of Materials Chemistry, 2012, 22, 14951.	6.7	75
91	Giant metal–organic frameworks with bulky scaffolds: from microporous to mesoporous functional materials. Dalton Transactions, 2012, 41, 5437.	3.3	42
92	Improving comparability of hydrogen storage capacities ofÂnanoporous materials. International Journal of Hydrogen Energy, 2012, 37, 2728-2736.	7.1	22
93	Oxozinc carboxylates: a predesigned platform for modelling prototypical Zn-MOFs' reactivity toward water and donor solvents. Chemical Communications, 2012, 48, 7362.	4.1	28
94	Structural diversity and properties of coordination polymers built from a semi-rigid tetradentenate carboxylic acid. CrystEngComm, 2012, 14, 824-831.	2.6	22
95	Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?. Journal of the American Chemical Society, 2012, 134, 15016-15021.	13.7	1,497
96	Tuning MOF Stability and Porosity via Adding Rigid Pillars. Inorganic Chemistry, 2012, 51, 9649-9654.	4.0	79
97	Porosity in metal–organic frameworks following thermolytic postsynthetic deprotection: gas sorption, dye uptake and covalent derivatisation. CrystEngComm, 2012, 14, 5701.	2.6	32
98	Robust Metal–Organic Framework with An Octatopic Ligand for Gas Adsorption and Separation: Combined Characterization by Experiments and Molecular Simulation. Chemistry of Materials, 2012, 24, 18-25.	6.7	88
99	Progress in adsorption-based CO ₂ capture by metal–organic frameworks. Chemical Society Reviews, 2012, 41, 2308-2322.	38.1	1,205
100	Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Advances, 2012, 2, 9437.	3.6	247
101	Comparative Study of Activation Methods on Tuning Gas Sorption Properties of a Metal–Organic Framework with Nanosized Ligands, Inorganic Chemistry, 2012, 51, 11232-11234	4.0	51

#	Article	IF	CITATIONS
103	Magnesium Nanocrystals Embedded in a Metal–Organic Framework: Hybrid Hydrogen Storage with Synergistic Effect on Physi―and Chemisorption. Angewandte Chemie - International Edition, 2012, 51, 9814-9817.	13.8	141
104	Exceptional surface area from coordination copolymers derived from two linear linkers of differing lengths. Chemical Science, 2012, 3, 2429.	7.4	63
105	Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nature Communications, 2012, 3, 604.	12.8	356
106	Photolabile protecting groups in metal–organic frameworks: preventing interpenetration and masking functional groups. Chemical Communications, 2012, 48, 1574-1576.	4.1	77
107	Designing Higher Surface Area Metal–Organic Frameworks: Are Triple Bonds Better Than Phenyls?. Journal of the American Chemical Society, 2012, 134, 9860-9863.	13.7	198
108	The effect of carboxylate and N,N′-ditopic ligand lengths on the structures of copper and zinc coordination polymers. CrystEngComm, 2012, 14, 3658.	2.6	46
109	Non-interpenetrated IRMOF-8: synthesis, activation, and gas sorption. Chemical Communications, 2012, 48, 9828.	4.1	49
110	High H ₂ Uptake in Li-, Na-, K-Metalated Covalent Organic Frameworks and Metal Organic Frameworks at 298 K. Journal of Physical Chemistry A, 2012, 116, 1621-1631.	2.5	72
111	Systematic morphology and phase control of Mg-ptcda coordination polymers by Ostwald ripening and self-templating. Journal of Materials Chemistry, 2012, 22, 8470.	6.7	23
112	Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 970-1000.	47.7	1,986
113	Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 782-835.	47.7	3,283
114	Post-Synthetic Modifications of Framework Metal Ions in Isostructural Metal–Organic Frameworks: Core–Shell Heterostructures via Selective Transmetalations. Chemistry of Materials, 2012, 24, 3065-3073.	6.7	192
115	Mesoporous metal–organic framework materials. Chemical Society Reviews, 2012, 41, 1677-1695.	38.1	830
116	Permanent Porous Materials from Discrete Organic Molecules—Towards Ultraâ€High Surface Areas. Chemistry - A European Journal, 2012, 18, 10082-10091.	3.3	201
117	A robust microporous metal–organic framework constructed from a flexible organic linker for acetylene storage at ambient temperature. Journal of Materials Chemistry, 2012, 22, 10195.	6.7	55
119	Molecular Organic Crystals: From Barely Porous to Really Porous. Angewandte Chemie - International Edition, 2012, 51, 7892-7894.	13.8	81
120	A Guestâ€Dependent Approach to Retain Permanent Pores in Flexible Metal–Organic Frameworks by Cation Exchange. Chemistry - A European Journal, 2012, 18, 7896-7902.	3.3	66
121	Vertex-directed self-assembly of a high symmetry supermolecular building block using a custom-designed porphyrin. Chemical Science, 2012, 3, 2823.	7.4	92

#	Article	IF	CITATIONS
122	Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 2012, 112, 1196-1231.	47.7	2,699
123	Structure–activity relationships of simple molecules adsorbed on CPO-27-Ni metal–organic framework: In situ experiments vs. theory. Catalysis Today, 2012, 182, 67-79.	4.4	67
124	Lithium doping on metal-organic frameworks for enhancing H2 Storage. International Journal of Hydrogen Energy, 2012, 37, 946-950.	7.1	64
125	Amino-modified MIL-68(In) with enhanced hydrogen and carbon dioxide sorption enthalpy. Microporous and Mesoporous Materials, 2012, 157, 75-81.	4.4	88
126	A porous layered metal-organic framework from π–π-stacking of layers based on a Co6 building unit. Microporous and Mesoporous Materials, 2012, 157, 24-32.	4.4	9
127	Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous and Mesoporous Materials, 2012, 157, 137-145.	4.4	305
128	Supercritical fluids in fuel cell research and development. Journal of Supercritical Fluids, 2012, 62, 1-31.	3.2	45
129	Synthesis of nanostructured materials using supercritical CO2: Part I. Physical transformations. Journal of Materials Science, 2012, 47, 2995-3025.	3.7	115
130	Hydrogen Storage in Metal-Organic Frameworks. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 270-285.	3.7	65
131	High CO ₂ apture Ability of a Porous Organic Polymer Bifunctionalized with Carboxy and Triazole Groups. Chemistry - A European Journal, 2013, 19, 11590-11597.	3.3	130
132	Carborane-Based Metal–Organic Framework with High Methane and Hydrogen Storage Capacities. Chemistry of Materials, 2013, 25, 3539-3543.	6.7	115
133	Nanostructured Adsorbents for Hydrogen Storage. , 2013, , 137-164.		6
134	Opening Metal–Organic Frameworks Vol. 2: Inserting Longer Pillars into Pillared-Paddlewheel Structures through Solvent-Assisted Linker Exchange. Chemistry of Materials, 2013, 25, 3499-3503.	6.7	109
135	Organosilicon linkers in metal organic frameworks: the tetrahedral tetrakis(4-tetrazolylphenyl)silane ligand. Dalton Transactions, 2013, 42, 13806.	3.3	16
136	Metal–Organic Frameworks as A Tunable Platform for Designing Functional Molecular Materials. Journal of the American Chemical Society, 2013, 135, 13222-13234.	13.7	801
137	Using hinged ligands to target structurally flexible copper(ii) MOFs. CrystEngComm, 2013, 15, 9663.	2.6	27
138	A Porous Metal–Organic Framework Constructed from Carboxylate–Pyrazolate Shared Heptanuclear Zinc Clusters: Synthesis, Gas Adsorption, and Guest-Dependent Luminescent Properties. Inorganic Chemistry, 2013, 52, 10368-10374.	4.0	82
139	An rht type metal–organic framework based on small cubicuboctahedron supermolecular building blocks and its gas adsorption properties. New Journal of Chemistry, 2013, 37, 3662.	2.8	21

		CITATION REPORT		
#	ARTICLE	85	IF 12.6	CITATIONS
140	Mapping of Functional Gloups in Metal-Organic Hameworks. Science, 2013, 341, 882-6		12.0	411
141	Hydrogen and methane storage in ultrahigh surface area Metal–Organic Frameworks. and Mesoporous Materials, 2013, 182, 185-190.	Microporous	4.4	36
142	Nanostructured adsorbents for hydrogen storage at ambient temperature: high-pressure measurements and factors influencing hydrogen spillover. RSC Advances, 2013, 3, 2393	5.	3.6	35
143	Activation of metal–organic framework materials. CrystEngComm, 2013, 15, 9258.		2.6	239
144	Carbothermal Reduction of Ti-Modified IRMOF-3: An Adaptable Synthetic Method to Sup Nanoparticles on Carbon. ACS Applied Materials & Interfaces, 2013, 5, 11479-1148	port Catalytic 7.	8.0	63
145	Enhanced Catalytic Activity through the Tuning of Micropore Environment and Supercrit CO ₂ Processing: Al(Porphyrin)-Based Porous Organic Polymers for the Degr Nerve Agent Simulant. Journal of the American Chemical Society, 2013, 135, 11720-117	ical adation of a 23.	13.7	147
146	Hybrid Bimetallic Metal–Organic Frameworks: Modulation of the Framework Stability a CO ₂ Uptake Capacity. Inorganic Chemistry, 2013, 52, 10869-10876.	and Ultralarge	4.0	77
147	Inclined 1D→2D polycatenation of chiral chains with large π-surfaces. CrystEngComm,	2013, 15, 8234.	2.6	29
148	Wings waving: coordinating solvent-induced structural diversity of new Cu(ii) flexible MC crystal to crystal transformation and gas sorption capability. CrystEngComm, 2013, 15,	DFs with 9513.	2.6	20
149	Significant improvement of surface area and CO2 adsorption of Cu–BTC via solvent ex activation. RSC Advances, 2013, 3, 17065.	tchange	3.6	88
150	Post-synthetic incorporation of nickel into CPO-27(Mg) to give materials with enhanced porosity. CrystEngComm, 2013, 15, 9779.	permanent	2.6	33
151	Synthesis of MOF having hydroxyl functional side groups and optimization of activation the maximization of its BET surface area. Journal of Solid State Chemistry, 2013, 197, 26	process for 1-265.	2.9	26
152	Rapid and enhanced activation of microporous coordination polymers by flowing superce Chemical Communications, 2013, 49, 1419.	ritical CO2.	4.1	63
153	A Straight Forward Route for the Development of Metal–Organic Frameworks Function Aromatic â ⁻ 'OH Groups: Synthesis, Characterization, and Gas (N ₂ , Ar, H <su 855-862</su 	halized with b>2,) Tj ETQq1 1	0.784314 4.0	rgBT/Over
154	Metal–Organic Frameworks and Self-Assembled Supramolecular Coordination Comple and Contrasting the Design, Synthesis, and Functionality of Metal–Organic Materials. Reviews, 2013, 113, 734-777.	xes: Comparing Chemical	47.7	2,588
155	Gram-scale, high-yield synthesis of a robust metal–organic framework for storing meth gases. Energy and Environmental Science, 2013, 6, 1158.	ane and other	30.8	219
156	A novel photochromic calcium-based metal–organic framework derived from a naphth chromophore. Chemical Communications, 2013, 49, 406-408.	alene diimide	4.1	173
157	Single-Crystal-to-Single-Crystal Transformation of a Novel 2-Fold Interpenetrated Cadmiu Framework with Trimesate and 1,2-Bis(4-pyridyl)ethane into the Thermally Desolvated Fo Exhibits Liquid and Gas Sorption Properties. Crystal Growth and Design, 2013, 13, 1526-	m-Organic frm Which 1534.	3.0	30

#	Article	IF	CITATIONS
158	Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques. Chemical Reviews, 2013, 113, 1736-1850.	47.7	553
159	Zn7O2(RCOO)10 Clusters and Nitro Aromatic Linkers in a Porous Metal–Organic Framework. Inorganic Chemistry, 2013, 52, 4124-4126.	4.0	24
160	Tailored crystalline microporous materials by post-synthesis modification. Chemical Society Reviews, 2013, 42, 263-290.	38.1	388
161	Stepwise Transformation of the Molecular Building Blocks in a Porphyrin-Encapsulating Metal–Organic Material. Journal of the American Chemical Society, 2013, 135, 5982-5985.	13.7	94
162	Threeâ€Dimensional Architectures Incorporating Stereoregular Donor–Acceptor Stacks. Chemistry - A European Journal, 2013, 19, 8457-8465.	3.3	28
163	Selective isolation of gold facilitated by second-sphere coordination with $\hat{l}\pm$ -cyclodextrin. Nature Communications, 2013, 4, 1855.	12.8	156
164	Exploiting High Pressures to Generate Porosity, Polymorphism, And Lattice Expansion in the Nonporous Molecular Framework Zn(CN) ₂ . Journal of the American Chemical Society, 2013, 135, 7621-7628.	13.7	74
165	Stepwise Ligand Exchange for the Preparation of a Family of Mesoporous MOFs. Journal of the American Chemical Society, 2013, 135, 11688-11691.	13.7	310
166	Porous Lanthanide–Organic Frameworks: Control over Interpenetration, Gas Adsorption, and Catalyst Properties. Crystal Growth and Design, 2013, 13, 3154-3161.	3.0	80
167	Thermochemistry of Paddle Wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1. Langmuir, 2013, 29, 8140-8145.	3.5	101
168	From discrete molecules to one-dimensional coordination polymers containing Mn(II), Zn(II) or Cd(II) pyridine-2-aldoxime building unit. Polyhedron, 2013, 60, 140-150.	2.2	26
169	Synthesis of MOFs. RSC Catalysis Series, 2013, , 9-30.	0.1	7
170	Catalysis at the Organic Ligands. RSC Catalysis Series, 2013, , 289-309.	0.1	8
171	Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4]. CrystEngComm, 2013, 15, 4684.	2.6	22
172	Highly porous metal–organic framework sustained with 12-connected nanoscopic octahedra. Dalton Transactions, 2013, 42, 1708-1714.	3.3	61
173	NMR study of small molecule adsorption in MOF-74-Mg. Journal of Chemical Physics, 2013, 138, 154704.	3.0	31
174	Polyoxometalate anion–i̇́€ interaction-directed assembly of a three-dimensional hydrogen-bonded supramolecular framework with nanoscale porosity. CrystEngComm, 2014, 16, 10530-10533.	2.6	36
175	CMP Aerogels: Ultrahigh‧urfaceâ€Area Carbonâ€Based Monolithic Materials with Superb Sorption Performance. Advanced Materials, 2014, 26, 8053-8058.	21.0	125

#	Article	IF	CITATIONS
176	Evolution of an Adenine–Copper Cluster to a Highly Porous Cuboidal Framework: Solutionâ€Phase Ripening and Gasâ€Adsorption Properties. Chemistry - A European Journal, 2014, 20, 12262-12268.	3.3	29
177	Framework-solvent interactional mechanism and effect of NMP/DMF on solvothermal synthesis of [Zn4O(BDC)3]8. Transactions of Nonferrous Metals Society of China, 2014, 24, 3722-3731.	4.2	13
179	Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, 2014, 136, 4369-4381.	13.7	2,002
180	Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chemical Society Reviews, 2014, 43, 5867-5895.	38.1	739
181	Synthesis and Characterization of Phosphine-Functionalized Metal–Organic Frameworks Based on MOF-5 and MIL-101 Topologies. Industrial & Engineering Chemistry Research, 2014, 53, 9120-9127.	3.7	35
182	Solvothermal synthesis, structures, and gas adsorption properties of two cadmium-organic frameworks. Inorganic Chemistry Communication, 2014, 39, 131-134.	3.9	12
183	Thermophysical properties of MOF-5 powders. Microporous and Mesoporous Materials, 2014, 185, 235-244.	4.4	67
184	What can pK _a and NBO charges of the ligands tell us about the water and thermal stability of metal organic frameworks?. Journal of Materials Chemistry A, 2014, 2, 16250-16267.	10.3	63
185	Supercritical carbon dioxide-assisted drug loading and release from biocompatible porous metal–organic frameworks. Journal of Materials Chemistry B, 2014, 2, 7551-7558.	5.8	45
186	A dual approach to tuning the porosity of porous organic polymers: controlling the porogen size and supercritical CO ₂ processing. Chemical Science, 2014, 5, 782-787.	7.4	28
187	Computational Design of Metal–Organic Frameworks Based on Stable Zirconium Building Units for Storage and Delivery of Methane. Chemistry of Materials, 2014, 26, 5632-5639.	6.7	191
188	Supercritical N ₂ Processing as a Route to the Clean Dehydrogenation of Porous Mg(BH ₄) ₂ . Journal of the American Chemical Society, 2014, 136, 8181-8184.	13.7	24
189	Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chemical Society Reviews, 2014, 43, 5896-5912.	38.1	721
190	Methane storage in metal–organic frameworks. Chemical Society Reviews, 2014, 43, 5657-5678.	38.1	1,449
191	Ultramicroporous MOF with High Concentration of Vacant Cu ^{II} Sites. Chemistry of Materials, 2014, 26, 4640-4646.	6.7	29
192	Are Zr ₆ -based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chemical Communications, 2014, 50, 8944.	4.1	277
193	Hydrogen storage in nanoporous materials. , 2014, , 410-450.		2
194	Enhanced Gas Sorption Properties and Unique Behavior toward Liquid Water in a Pillared-Paddlewheel Metal–Organic Framework Transmetalated with Ni(II). Inorganic Chemistry, 2014, 53, 10432-10436.	4.0	24

#	Article	IF	CITATIONS
195	Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, 2014, 43, 5561-5593.	38.1	1,792
196	Synthesis and Characterization of Functionalized Metal-organic Frameworks. Journal of Visualized Experiments, 2014, , e52094.	0.3	3
197	Supercritical Nitrogen Processing for the Purification of Reactive Porous Materials. Journal of Visualized Experiments, 2015, , e52817.	0.3	3
198	Metal″on Metathesis and Properties of Triarylboronâ€Functionalized Metal–Organic Frameworks. Chemistry - an Asian Journal, 2015, 10, 1535-1540.	3.3	10
199	Microwave-assisted large scale synthesis of lanthanide metal–organic frameworks (Ln-MOFs), having a preferred conformation and photoluminescence properties. Dalton Transactions, 2015, 44, 11954-11962.	3.3	70
200	Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. ChemElectroChem, 2015, 2, 462-474.	3.4	199
201	Using neutron powder diffraction and first-principles calculations to understand the working mechanisms of porous coordination polymer sorbents. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 648-660.	1.1	7
202	Extreme Carbon Dioxide Sorption Hysteresis in Openâ€Channel Rigid Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 2079-2083.	13.8	48
203	Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal–Organic Framework-177. Journal of the American Chemical Society, 2015, 137, 2641-2650.	13.7	339
204	Rapidly assessing the activation conditions and porosity of metal–organic frameworks using thermogravimetric analysis. Chemical Communications, 2015, 51, 4985-4988.	4.1	11
205	Hysteretic Gas and Vapor Sorption in Flexible Interpenetrated Lanthanide-Based Metal–Organic Frameworks with Coordinated Molecular Gating via Reversible Single-Crystal-to-Single-Crystal Transformation for Enhanced Selectivity. Chemistry of Materials, 2015, 27, 1502-1516.	6.7	76
206	Functionalized Defects through Solvent-Assisted Linker Exchange: Synthesis, Characterization, and Partial Postsynthesis Elaboration of a Metal–Organic Framework Containing Free Carboxylic Acid Moieties. Inorganic Chemistry, 2015, 54, 1785-1790.	4.0	58
207	Trapping virtual pores by crystal retro-engineering. Nature Chemistry, 2015, 7, 153-159.	13.6	52
208	Filling Pore Space in a Microporous Coordination Polymer to Improve Methane Storage Performance. Langmuir, 2015, 31, 2211-2217.	3.5	39
210	Iron and Porphyrin Metal–Organic Frameworks: Insight into Structural Diversity, Stability, and Porosity. Crystal Growth and Design, 2015, 15, 1819-1826.	3.0	55
211	Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. Journal of the American Chemical Society, 2015, 137, 3585-3591.	13.7	329
212	Synthesis of Zn-MOF incorporating titanium-hydrides as active sites binding H2 molecules. Journal of Solid State Chemistry, 2015, 230, 110-117.	2.9	5
213	Dual template effect of supercritical CO ₂ in ionic liquid to fabricate a highly mesoporous cobalt metal–organic framework. Chemical Communications, 2015, 51, 13197-13200.	4.1	60

#	Article	IF	CITATIONS
214	Gas–liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures. CrystEngComm, 2015, 17, 5502-5510.	2.6	68
215	Hierarchically porous organic polymers: highly enhanced gas uptake and transport through templated synthesis. Chemical Science, 2015, 6, 384-389.	7.4	68
216	A porous metal–organic framework formed by a V-shaped ligand and Zn(<scp>ii</scp>) ion with highly selective sensing for nitroaromatic explosives. Journal of Materials Chemistry A, 2015, 3, 16598-16603.	10.3	158
217	A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal–Organic Framework Materials HKUST-1 and Cu-MOF-2. Journal of the American Chemical Society, 2015, 137, 10009-10015.	13.7	199
218	Hydrogen adsorption in lithium doped MIL-101 and MIL-53(Al) at 77 and 298ÂK up to 100Âbar: effect of lithium concentration. Journal of Porous Materials, 2015, 22, 1073-1081.	2.6	11
219	Enhanced CO ₂ capture capacities and efficiencies with N-doped nanoporous carbons synthesized from solvent-modulated, pyridinedicarboxylate-containing Zn-MOFs. CrystEngComm, 2015, 17, 8015-8020.	2.6	13
220	The Role of Modulators in Controlling Layer Spacings in a Tritopic Linker Based Zirconium 2D Microporous Coordination Polymer. Inorganic Chemistry, 2015, 54, 4591-4593.	4.0	62
221	Exploring a novel preparation method of 1D metal organic frameworks based on supercritical CO ₂ . Dalton Transactions, 2015, 44, 7548-7553.	3.3	34
222	Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. Journal of Materials Chemistry A, 2015, 3, 13114-13188.	10.3	206
223	Stabilization of a highly porous metal–organic framework utilizing a carborane-based linker. Chemical Communications, 2015, 51, 6521-6523.	4.1	47
224	A Zr metal–organic framework based on tetrakis(4-carboxyphenyl) silane and factors affecting the hydrothermal stability of Zr-MOFs. Dalton Transactions, 2015, 44, 8049-8061.	3.3	77
225	Multifunctional Radical-Doped Polyoxometalate-Based Host–Guest Material: Photochromism and Photocatalytic Activity. Inorganic Chemistry, 2015, 54, 4345-4350.	4.0	133
226	Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr ₆ -Based Metal–Organic Frameworks. Inorganic Chemistry, 2015, 54, 10829-10833.	4.0	132
227	Porous Materials to Store Clear EnergyÂGasesâ^—. , 2015, , 297-327.		2
228	MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc -MOF for CH ₄ , O ₂ , and CO ₂ Storage. Journal of the American Chemical Society, 2015, 137, 13308-13318.	13.7	632
229	Room temperature hydrogen uptake in single walled carbon nanotubes incorporated MIL-101 doped with lithium: effect of lithium doping. Journal of Porous Materials, 2015, 22, 1635-1642.	2.6	13
230	Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology. Journal of the American Chemical Society, 2015, 137, 13183-13190.	13.7	149
231	A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal–organic frameworks–hydrogen peroxide system. Analyst, The, 2015, 140, 8201-8208.	3.5	37

#	Article	IF	CITATIONS
234	Chemical and Structural Stability of Zirconiumâ€based Metal–Organic Frameworks with Large Threeâ€Đimensional Pores by Linker Engineering. Angewandte Chemie - International Edition, 2015, 54, 221-226.	13.8	141
235	Turnâ€On Luminescence Sensing and Realâ€Time Detection of Traces of Water in Organic Solvents by a Flexible Metal–Organic Framework. Angewandte Chemie - International Edition, 2015, 54, 1651-1656.	13.8	277
236	Tuning the sorption properties via activation treatments of a metastable Zn-1,3,5-benzenetricarboxylate framework with dodecahedral and cubic cages. CrystEngComm, 2015, 17, 1001-1004.	2.6	4
237	Enhanced gas-sorption properties of a high surface area, ultramicroporous magnesium formate. CrystEngComm, 2015, 17, 532-539.	2.6	32
238	Direct Evidence of CO ₂ Capture under Low Partial Pressure on a Pillared Metal–Organic Framework with Improved Stabilization through Intramolecular Hydrogen Bonding. ChemPlusChem, 2016, 81, 850-856.	2.8	21
239	Extended Linkers for Ultrahigh Surface Area Metal-Organic Frameworks. , 2016, , 271-307.		1
240	Defectâ€Controlled Preparation of UiOâ€66 Metal–Organic Framework Thin Films with Molecular Sieving Capability. Chemistry - an Asian Journal, 2016, 11, 207-210.	3.3	19
241	Assembling Metal–Organic Frameworks in Ionic Liquids and Supercritical CO ₂ . Chemistry - an Asian Journal, 2016, 11, 2610-2619.	3.3	49
242	Study of the Discrepancies between Crystallographic Porosity and Guest Access into Cadmium–Imidazolate Frameworks and Tunable Luminescence Properties by Incorporation of Lanthanides. Chemistry - A European Journal, 2016, 22, 6905-6913.	3.3	26
243	Selective Sorption of Light Hydrocarbons on a Family of Metal–Organic Frameworks with Different Imidazolate Pillars. Inorganic Chemistry, 2016, 55, 3928-3932.	4.0	29
244	Direct Synthesis of Hierarchically Porous Metal–Organic Frameworks with High Stability and Strong BrÃ,nsted Acidity: The Decisive Role of Hafnium in Efficient and Selective Fructose Dehydration. Chemistry of Materials, 2016, 28, 2659-2667.	6.7	160
245	Cuboctahedron-based indium–organic frameworks for gas sorption and selective cation exchange. Chemical Communications, 2016, 52, 7978-7981.	4.1	41
246	Synthetic Methodology for the Fabrication of Porous Porphyrin Materials with Metal–Organic–Polymer Aerogels. Inorganic Chemistry, 2016, 55, 5287-5296.	4.0	30
247	Coordination polymers: Challenges and future scenarios for capture and degradation of volatile organic compounds. Nano Research, 2016, 9, 3181-3208.	10.4	56
248	Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy and Environmental Science, 2016, 9, 3279-3289.	30.8	231
249	Binary supercritical CO 2 solvent mixtures for the synthesis of 3D metal-organic frameworks. Microporous and Mesoporous Materials, 2016, 234, 155-161.	4.4	24
250	Reticular Synthesis of a Series of HKUST-like MOFs with Carbon Dioxide Capture and Separation. Inorganic Chemistry, 2016, 55, 9071-9076.	4.0	58
251	A bifunctional metal–organic framework featuring the combination of open metal sites and Lewis basic sites for selective gas adsorption and heterogeneous cascade catalysis. Journal of Materials Chemistry A, 2016, 4, 15240-15246.	10.3	120

#	Article	IF	CITATIONS
252	Layer-by-Layer Assembled Films of Perylene Diimide- and Squaraine-Containing Metal–Organic Framework-like Materials: Solar Energy Capture and Directional Energy Transfer. ACS Applied Materials & Interfaces, 2016, 8, 24983-24988.	8.0	44
253	Porous organic cages: soluble, modular and molecular pores. Nature Reviews Materials, 2016, 1, .	48.7	603
254	Toward Metal–Organic Framework-Based Solar Cells: Enhancing Directional Exciton Transport by Collapsing Three-Dimensional Film Structures. ACS Applied Materials & Interfaces, 2016, 8, 30863-30870.	8.0	88
255	Adsorption Methodology. , 0, , 575-605.		1
256	A Peryleneâ€Based Microporous Coordination Polymer Interacts Selectively with Electronâ€Poor Aromatics. Chemistry - A European Journal, 2016, 22, 5509-5513.	3.3	22
257	Highly Porous Zirconium Metal–Organic Frameworks with β-UH ₃ -like Topology Based on Elongated Tetrahedral Linkers. Journal of the American Chemical Society, 2016, 138, 8380-8383.	13.7	76
258	Molybdenum Polysulfide Anchored on Porous Zr-Metal Organic Framework To Enhance the Performance of Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2016, 120, 12539-12548.	3.1	80
259	A comparative study on conversion of porous and non-porous metal–organic frameworks (MOFs) into carbon-based composites for carbon dioxide capture. Polyhedron, 2016, 120, 30-35.	2.2	21
260	Bis(carboxyphenyl)-1,2,4-triazole Based Metal–Organic Frameworks: Impact of Metal Ion Substitution on Adsorption Performance. Inorganic Chemistry, 2016, 55, 6938-6948.	4.0	16
261	Controlling the Pyrolysis Conditions of Microporous/Mesoporous MIL-125 To Synthesize Porous, Carbon-Supported Ti Catalysts with Targeted Ti Phases for the Oxidation of Dibenzothiophene. Energy & Fuels, 2016, 30, 594-602.	5.1	44
262	Microporous Metal–Organic Framework Stabilized by Balanced Multiple Host–Couteranion Hydrogen-Bonding Interactions for High-Density CO ₂ Capture at Ambient Conditions. Inorganic Chemistry, 2016, 55, 292-299.	4.0	82
263	Amine-functionalized metal–organic frameworks: structure, synthesis and applications. RSC Advances, 2016, 6, 32598-32614.	3.6	169
264	Metal–organic frameworks with a large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125 °C. Journal of Materials Chemistry A, 2016, 4, 4062-4070.	10.3	109
265	Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 2016, 45, 2327-2367.	38.1	1,905
266	Covalent Chemistry beyond Molecules. Journal of the American Chemical Society, 2016, 138, 3255-3265.	13.7	328
267	10-Vertex closo-carborane: a unique ligand platform for porous coordination polymers. CrystEngComm, 2016, 18, 2036-2040.	2.6	20
268	Organized Aggregation Makes Insoluble Perylene Diimide Efficient for the Reduction of Aryl Halides via Consecutive Visible Light-Induced Electron-Transfer Processes. Journal of the American Chemical Society, 2016, 138, 3958-3961.	13.7	235
269	Catalytically active Pt nanoparticles immobilized inside the pores of metal organic framework using supercritical CO2 solutions. Microporous and Mesoporous Materials, 2016, 225, 26-32.	4.4	39

#	Article	IF	CITATIONS
270	Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chemical Reviews, 2016, 116, 962-1052.	47.7	1,303
271	Facile Synthesis and Direct Activation of Zirconium Based Metal–Organic Frameworks from Acetone. Industrial & Engineering Chemistry Research, 2017, 56, 1478-1484.	3.7	31
272	Comparative Stability and Sorption Study of Two <i>the</i> -type Metal–Organic Frameworks with Different Multiplicate Metal–Ligand Interactions in Secondary Building Units. Crystal Growth and Design, 2017, 17, 418-422.	3.0	7
273	Conjugated Covalent Organic Frameworks via Michael Addition–Elimination. Journal of the American Chemical Society, 2017, 139, 2421-2427.	13.7	286
274	Supercritical CO 2 for the synthesis of nanometric ZIF-8 and loading with hyperbranched aminopolymers. Applications in CO 2 capture. Journal of CO2 Utilization, 2017, 18, 147-155.	6.8	36
275	Metal–Organic Frameworks Precipitated by Reactive Crystallization in Supercritical CO ₂ . Crystal Growth and Design, 2017, 17, 2864-2872.	3.0	30
276	Activationâ€Dependent Breathing in a Flexible Metal–Organic Framework and the Effects of Repeated Sorption/Desorption Cycling. Angewandte Chemie - International Edition, 2017, 56, 8874-8878.	13.8	53
277	Solvent-dependent selective cation exchange in anionic frameworks based on cobalt(<scp>ii</scp>) and triphenylamine linkers: reactor-dependent synthesis and sorption properties. Dalton Transactions, 2017, 46, 8037-8050.	3.3	16
278	Activationâ€Dependent Breathing in a Flexible Metal–Organic Framework and the Effects of Repeated Sorption/Desorption Cycling. Angewandte Chemie, 2017, 129, 9000-9004.	2.0	6
279	A robust anionic pillared-layer framework with triphenylamine-based linkers: ion exchange and counterion-dependent sorption properties. CrystEngComm, 2017, 19, 2723-2732.	2.6	23
280	Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 33419-33428.	8.0	104
281	A robust metallomacrocyclic motif for the formation interpenetrated coordination polymers. CrystEngComm, 2017, 19, 2402-2412.	2.6	19
282	Solvent- and Pressure-Induced Phase Changes in Two 3D Copper Glutarate-Based Metal–Organic Frameworks via Glutarate (+ <i>gauche</i> â‡,, â°' <i>gauche</i>) Conformational Isomerism. Journal of the American Chemical Society, 2017, 139, 5923-5929.	13.7	38
283	Omarâ€K. Farha. Angewandte Chemie, 2017, 129, 3470-3470.	2.0	0
284	Fullymeta-Substituted 4,4′-Biphenyldicarboxylate-Based Metal-Organic Frameworks: Synthesis, Structures, and Catalytic Activities. European Journal of Inorganic Chemistry, 2017, 2017, 1478-1487.	2.0	10
285	Synthesis of a Zr-Based Metal–Organic Framework with Spirobifluorenetetrabenzoic Acid for the Effective Removal of Nerve Agent Simulants. Inorganic Chemistry, 2017, 56, 12098-12101.	4.0	44
286	Rapid Guest Exchange and Ultra‣ow Surface Tension Solvents Optimize Metal–Organic Framework Activation. Angewandte Chemie, 2017, 129, 14810-14813.	2.0	26
287	Rapid Guest Exchange and Ultra‣ow Surface Tension Solvents Optimize Metal–Organic Framework Activation. Angewandte Chemie - International Edition, 2017, 56, 14618-14621.	13.8	93

#	Article	IF	CITATIONS
288	Effect of Molecular Guest Binding on the d–d Transitions of Ni ²⁺ of CPO-27-Ni: A Combined UV–Vis, Resonant-Valence-to-Core X-ray Emission Spectroscopy, and Theoretical Study. Inorganic Chemistry, 2017, 56, 14408-14425.	4.0	22
289	Reversible structural switching of a metal–organic framework by photoirradiation. Chemical Communications, 2017, 53, 11142-11145.	4.1	41
290	Metal–organic frameworks meet scalable and sustainable synthesis. Green Chemistry, 2017, 19, 2729-2747.	9.0	327
291	Multiple Coordination Exchanges for Room-Temperature Activation of Open-Metal Sites in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 24743-24752.	8.0	69
292	CO2 sorption behavior of imidazole, benzimidazole and benzoic acid based coordination polymers. Coordination Chemistry Reviews, 2017, 332, 100-121.	18.8	55
293	Omarâ€K. Farha. Angewandte Chemie - International Edition, 2017, 56, 3420-3420.	13.8	4
294	Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 26-39.	6.7	518
295	Thermal Activation of CuBTC MOF for CO Oxidation: The Effect of Activation Atmosphere. Catalysts, 2017, 7, 106.	3.5	24
297	Solvates and Hydrates—Supramolecular Compounds â~†. , 2017, , 89-108.		1
298	Photothermal Activation of Metal–Organic Frameworks Using a UV–Vis Light Source. ACS Applied Materials & Interfaces, 2018, 10, 9555-9562.	8.0	82
299	Thermally induced migration of a polyoxometalate within a metal–organic framework and its catalytic effects. Journal of Materials Chemistry A, 2018, 6, 7389-7394.	10.3	71
300	A Chemical Role for Trichloromethane: Room-Temperature Removal of Coordinated Solvents from Open Metal Sites in the Copper-Based Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 5225-5231.	4.0	33
301	Photoexcited Naphthalene Diimide Radical Anion Linking the Nodes of a Metal–Organic Framework: A Heterogeneous Super-reductant. Chemistry of Materials, 2018, 30, 2488-2492.	6.7	37
302	Modulatorâ€Controlled Synthesis of Microporous STAâ€26, an Interpenetrated 8,3â€Connected Zirconium MOF with the <i>theâ€i</i> Topology, and its Reversible Lattice Shift. Chemistry - A European Journal, 2018, 24, 6115-6126.	3.3	23
303	Coordination Polymers Containing Metal Chelate Units. Springer Series in Materials Science, 2018, , 633-759.	0.6	2
304	Photocatalytic hydrogen generation from a visible-light responsive metal–organic framework system: the impact of nickel phosphide nanoparticles. Journal of Materials Chemistry A, 2018, 6, 2476-2481.	10.3	94
305	Metal coordination and metal activation abilities of commonly unreactive chloromethanes toward metal–organic frameworks. Chemical Communications, 2018, 54, 6458-6471.	4.1	42
306	Supercritical CO2 utilization for the crystallization of 2D metal-organic frameworks using tert-butylpyridine additive. Journal of CO2 Utilization, 2018, 24, 444-453.	6.8	14

#	Article	IF	CITATIONS
307	Overcoming double-step CO ₂ adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg ₂ (dobpdc). Chemical Science, 2018, 9, 160-174.	7.4	88
308	Features of supercritical CO2 in the delicate world of the nanopores. Journal of Supercritical Fluids, 2018, 134, 204-213.	3.2	14
309	Supercritical fluid processing for metal–organic frameworks, porous coordination polymers, and covalent organic frameworks. Journal of Supercritical Fluids, 2018, 134, 197-203.	3.2	33
310	Synthesis, crystal structures, adsorption and fluorescence properties of coordination polymers based on a semirigid octadentate ligand. Transition Metal Chemistry, 2018, 43, 9-19.	1.4	4
311	Recent Hydrophobic Metal-Organic Frameworks and Their Applications. Materials, 2018, 11, 2250.	2.9	45
312	The Metal–Organic Framework Collapse Continuum: Insights from Two-Dimensional Powder X-ray Diffraction. Chemistry of Materials, 2018, 30, 6559-6565.	6.7	64
313	A Bifunctional Anionic Metal–Organic Framework: Reversible Photochromism and Selective Adsorption of Methylene Blue. Crystal Growth and Design, 2018, 18, 5738-5744.	3.0	68
314	Molecular Modeling of Carbon Dioxide Adsorption in Metal-Organic Frameworks. , 2018, , 99-149.		6
315	Topology-Guided Stepwise Insertion of Three Secondary Linkers in Zirconium Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 7710-7715.	13.7	81
316	Porous Silsesquioxane–Imine Frameworks as Highly Efficient Adsorbents for Cooperative Iodine Capture. ACS Applied Materials & Interfaces, 2018, 10, 19964-19973.	8.0	78
317	Insight Studies on Metal-Organic Framework Nanofibrous Membrane Adsorption and Activation for Heavy Metal Ions Removal from Aqueous Solution. ACS Applied Materials & Interfaces, 2018, 10, 18619-18629.	8.0	347
318	On the temperature dependence of the α function in the cubic equation of state. Chemical Engineering Science, 2018, 192, 565-575.	3.8	28
319	Crystalline Curcumin bioMOF Obtained by Precipitation in Supercritical CO ₂ and Structural Determination by Electron Diffraction Tomography. ACS Sustainable Chemistry and Engineering, 2018, 6, 12309-12319.	6.7	36
320	Recent advancement in metal–organic framework: Synthesis, activation, functionalisation, and bulk production. Materials Science and Technology, 2018, 34, 1025-1045.	1.6	47
321	An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. Energy and Environmental Science, 2018, 11, 2784-2812.	30.8	162
322	Heterometallic In(III)–Pd(II) Porous Metal–Organic Framework with Square-Octahedron Topology Displaying High CO ₂ Uptake and Selectivity toward CH ₄ and N ₂ . Inorganic Chemistry, 2018, 57, 7244-7251.	4.0	37
323	Development of combined microstructure and structure characterization facility for <i>in situ</i> and <i>operando</i> studies at the Advanced Photon Source. Journal of Applied Crystallography, 2018, 51, 867-882.	4.5	129
324	Activation strategies of metal-organic frameworks for the sorption of reduced sulfur compounds. Chemical Engineering Journal, 2018, 350, 747-756.	12.7	27

#	Article	IF	CITATIONS
325	An entrapped metal-organic framework system for controlled release of ethylene. Journal of Colloid and Interface Science, 2019, 533, 207-215.	9.4	25
326	Diverse π–π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal–organic frameworks. Chemical Science, 2019, 10, 8558-8565.	7.4	128
327	Preserving Porosity of Mesoporous Metal–Organic Frameworks through the Introduction of Polymer Guests. Journal of the American Chemical Society, 2019, 141, 12397-12405.	13.7	68
328	Hierarchical Metal–Organic Frameworks with Macroporosity: Synthesis, Achievements, and Challenges. Nano-Micro Letters, 2019, 11, 54.	27.0	87
329	A semiconducting layered metal-organic framework magnet. Nature Communications, 2019, 10, 3260.	12.8	119
330	Switching on and off Interlayer Correlations and Porosity in 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12570-12581.	13.7	130
331	Molybdenum (VI)â€functionalized UiOâ€66 provides an efficient heterogeneous nanocatalyst in oxidation reactions. Applied Organometallic Chemistry, 2019, 33, e5225.	3.5	12
332	Three-Dimensional Printing of Hierarchical Porous Architectures. Chemistry of Materials, 2019, 31, 10017-10022.	6.7	18
333	Restricting Polyoxometalate Movement Within Metal-Organic Frameworks to Assess the Role of Residual Water in Catalytic Thioether Oxidation Using These Dynamic Composites. Frontiers in Materials, 2019, 6, .	2.4	11
334	Porous Coordination Polymers. Polymers and Polymeric Composites, 2019, , 181-223.	0.6	1
335	Cross-linked porous polyurethane materials featuring dodecaborate clusters as inorganic polyol equivalents. Chemical Communications, 2019, 55, 8852-8855.	4.1	11
336	A novel 3D AgI cationic metal–organic framework based on 1,2,4,5-tetra(4-pyridyl) benzene with selective adsorption of CO2 over CH4, H2O over C2H5OH, and trapping Cr2O72–. Journal of Molecular Structure, 2019, 1194, 73-77.	3.6	10
337	A novel 3D Ag-based metal–organic framework: Synthesis, structure and property. Inorganic Chemistry Communication, 2019, 105, 158-162.	3.9	2
338	Unidirectional rotary motion in a metal–organic framework. Nature Nanotechnology, 2019, 14, 488-494.	31.5	162
339	Construction of bifunctional 2-fold interpenetrated Zn(<scp>ii</scp>) MOFs exhibiting selective CO ₂ adsorption and aqueous-phase sensing of 2,4,6-trinitrophenol. Inorganic Chemistry Frontiers, 2019, 6, 1058-1067.	6.0	48
341	Supramolecular interactions induced distortion of BTB ligands: breaking convention to reproduce an unusual (3,4,4)-connected MOF topology. Dalton Transactions, 2019, 48, 5511-5514.	3.3	4
342	MOF-Derived FeS/C Nanosheets for High Performance Lithium Ion Batteries. Nanomaterials, 2019, 9, 492.	4.1	23
343	A Bismuth Metal–Organic Framework as a Contrast Agent for X-ray Computed Tomography. ACS Applied Bio Materials, 2019, 2, 1197-1203.	4.6	68

#		IC	CITATIONS
#	Stable radical anions generated from a porous pervlenediimide metal-organic framework for boosting	IF	CITATIONS
344	near-infrared photothermal conversion. Nature Communications, 2019, 10, 767.	12.8	247
345	A stable pillared metal–organic framework constructed by H 4 TCPP ligand as luminescent sensor for selective detection of TNP and Fe 3+ ions. Applied Organometallic Chemistry, 2019, 33, e5243.	3.5	15
346	Guest-Dependent Single-Crystal-to-Single-Crystal Phase Transitions in a Two-Dimensional Uranyl-Based Metal–Organic Framework. Crystal Growth and Design, 2019, 19, 506-512.	3.0	29
347	Fineâ€Tuning Aromatic Stacking and Singleâ€Crystal Photoluminescence Through Coordination Chemistry. European Journal of Organic Chemistry, 2019, 2019, 1778-1783.	2.4	4
348	Supercritical CO2 encapsulation of bioactive molecules in carboxylate based MOFs. Journal of CO2 Utilization, 2019, 30, 38-47.	6.8	26
349	A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification. Catalysts, 2019, 9, 52.	3.5	215
350	Porous Coordination Polymers. Polymers and Polymeric Composites, 2019, , 1-44.	0.6	2
351	Interpenetration Isomerism in Triptyceneâ€Based Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 1664-1669.	13.8	93
352	Interpenetration Isomerism in Triptyceneâ€Based Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie, 2019, 131, 1678-1683.	2.0	29
353	Design of a Highly-Stable Pillar-Layer Zinc(II) Porous Framework for Rapid, Reversible, and Multi-Responsive Luminescent Sensor in Water. Crystal Growth and Design, 2019, 19, 694-703.	3.0	142
354	Sustainable Approaches for Materials Engineering With Supercritical Carbon Dioxide. , 2020, , 395-414.		3
355	Recent Advances of Supercritical CO2 in Green Synthesis and Activation of Metal–Organic Frameworks. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 581-595.	3.7	11
356	Using Supercritical CO2 in the Preparation of Metal-Organic Frameworks: Investigating Effects on Crystallisation. Crystals, 2020, 10, 17.	2.2	9
357	Does repeat synthesis in materials chemistry obey a power law?. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 877-882.	7.1	38
358	Rapid Synthesis of High Surface Area Imineâ€Linked 2D Covalent Organic Frameworks by Avoiding Pore Collapse During Isolation. Advanced Materials, 2020, 32, e1905776.	21.0	125
359	Beyond Solution-Based Protocols: MOF Membrane Synthesis in Supercritical Environments for an Elegant Sustainability Performance Balance. , 2020, 2, 1142-1147.		16
360	Facile directions for synthesis, modification and activation of MOFs. Materials Today Chemistry, 2020, 17, 100343.	3.5	53
361	A historical overview of the activation and porosity of metal–organic frameworks. Chemical Society Reviews, 2020, 49, 7406-7427.	38.1	367

#	Article	IF	CITATIONS
362	Supramolecular Porous Assemblies of Atomically Precise Catalytically Active Cerium-Based Clusters. Chemistry of Materials, 2020, 32, 8522-8529.	6.7	23
363	Air-thermal processing of hierarchically porous metal–organic frameworks. Nanoscale, 2020, 12, 14171-14179.	5.6	7
364	Hierarchically porous monolithic MOFs: An ongoing challenge for industrial-scale effluent treatment. Chemical Engineering Journal, 2020, 393, 124765.	12.7	75
365	Ultralow Surface Tension Solvents Enable Facile COF Activation with Reduced Pore Collapse. ACS Applied Materials & amp; Interfaces, 2020, 12, 33121-33127.	8.0	61
366	Standard Practices of Reticular Chemistry. ACS Central Science, 2020, 6, 1255-1273.	11.3	142
367	Expeditious synthesis of covalent organic frameworks: a review. Journal of Materials Chemistry A, 2020, 8, 16045-16060.	10.3	97
368	Activation of a gamma–cyclodextrin–based metal–organic framework using supercritical carbon dioxide for high–efficient delivery of honokiol. Carbohydrate Polymers, 2020, 235, 115935.	10.2	43
369	Phase dependent encapsulation and release profile of ZIF-based biocomposites. Chemical Science, 2020, 11, 3397-3404.	7.4	70
370	Influence of different activation strategies on the activity and stability of MIL-53(Fe) as a dark-Fenton heterogeneous catalyst. Microporous and Mesoporous Materials, 2020, 303, 110267.	4.4	8
371	Kinetics and Mechanisms of ZnO to ZIFâ€8 Transformations in Supercritical CO 2 Revealed by Inâ€Situ Xâ€ray Diffraction. ChemSusChem, 2020, 13, 2602-2612.	6.8	11
372	Physical Supercritical Fluid Deposition: Patterning Solution Processable Materials on Curved and Flexible Surfaces. ACS Applied Materials & Interfaces, 2020, 12, 17949-17956.	8.0	5
373	Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368, 297-303.	12.6	429
374	Recent advances in naphthalenediimide-based metal-organic frameworks: Structures and applications. Coordination Chemistry Reviews, 2021, 430, 213665.	18.8	65
375	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	3.2	70
376	Tailoring adsorption induced switchability of a pillared layer MOF by crystal size engineering. CrystEngComm, 2021, 23, 538-549.	2.6	23
377	Porous flexible frameworks: origins of flexibility and applications. Materials Horizons, 2021, 8, 700-727.	12.2	48
378	Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews, 2021, 430, 213655.	18.8	56
379	Physical supercritical fluid deposition of polymer films: controlling the crystallinity with pressure. Materials Chemistry Frontiers, 2021, 5, 1428-1437.	5.9	5

#	Article	IF	CITATIONS
380	Single-Crystal Syntheses and Properties of Indium–Organic Frameworks Based on 1,1′-Ferrocenedicarboxylic Acid. Inorganic Chemistry, 2021, 60, 239-245.	4.0	9
381	Evaluating the purification and activation of metal-organic frameworks from a technical and circular economy perspective. Coordination Chemistry Reviews, 2021, 428, 213578.	18.8	28
382	Breaking the upper bound of siloxane uptake: metal–organic frameworks as an adsorbent platform. Journal of Materials Chemistry A, 2021, 9, 12711-12720.	10.3	10
383	Synthesis of Metal Organic Frameworks (MOF) and Covalent Organic Frameworks (COF). Indian Institute of Metals Series, 2021, , 503-556.	0.3	0
384	The role of solvent additive in polymer crystallinity during physical supercritical fluid deposition. New Journal of Chemistry, 2021, 45, 11786-11796.	2.8	3
385	The key role of metal nanoparticle in metal organic frameworks of UiO family (MOFs) for the application of CO2 capture and heterogeneous catalysis. , 2021, , 369-404.		1
386	MOFâ€Based Hybrids for Solar Fuel Production. Advanced Energy Materials, 2021, 11, 2003052.	19.5	58
387	Metal–organic framework. Interface Science and Technology, 2021, , 279-387.	3.3	13
388	Crystal Flexibility Design through Local and Global Motility Cooperation. Angewandte Chemie, 2021, 133, 7106-7111.	2.0	0
389	Crystal Flexibility Design through Local and Global Motility Cooperation. Angewandte Chemie - International Edition, 2021, 60, 7030-7035.	13.8	23
391	Metal–organic frameworks for biogas upgrading: Recent advancements, challenges, and future recommendations. Applied Materials Today, 2021, 22, 100925.	4.3	16
392	Manipulating solvent and solubility in the synthesis, activation, and modification of permanently porous coordination cages. Coordination Chemistry Reviews, 2021, 430, 213679.	18.8	20
393	Metal Organic Framework Functionalized Textiles as Protective Clothing for the Detection and Detoxification of Chemical Warfare Agents—A Review. Industrial & Engineering Chemistry Research, 2021, 60, 4218-4239.	3.7	36
394	CO ₂ â€Induced 2D Niâ€BDC Metal–Organic Frameworks with Enhanced Photocatalytic CO ₂ Reduction Activity. Advanced Materials Interfaces, 2021, 8, 2100205.	3.7	36
395	A Two Step Postsynthetic Modification Strategy: Appending Short Chain Polyamines to Zn-NH ₂ -BDC MOF for Enhanced CO ₂ Adsorption. Inorganic Chemistry, 2021, 60, 11720-11729.	4.0	21
396	Oxalamide-Functionalized Metal Organic Frameworks for CO ₂ Adsorption. ACS Applied Materials & amp; Interfaces, 2021, 13, 33188-33198.	8.0	35
397	An Overview of Metal–Organic Frameworks for Green Chemical Engineering. Engineering, 2021, 7, 1115-1139.	6.7	94
398	A comprehensive review on water stable metal-organic frameworks for large-scale preparation and applications in water quality management based on surveys made since 2015. Critical Reviews in Environmental Science and Technology, 2022, 52, 4038-4071.	12.8	9

#	Article	IF	CITATIONS
399	Role of supercritical carbon dioxide (scCO ₂) in fabrication of inorganic-based materials: a green and unique route. Science and Technology of Advanced Materials, 2021, 22, 695-717.	6.1	12
400	Utilizing Zirconium MOFâ€functionalized Fiber Substrates Prepared by Molecular Layer Deposition for Toxic Gas Capture and Chemical Warfare Agent Degradation. Global Challenges, 2021, 5, 2100001.	3.6	10
401	Site-directed reduction engineering within bimetal-organic frameworks for efficient size-selective catalysis. Matter, 2021, 4, 2919-2935.	10.0	36
402	Strongly co-ordinated MOF-PSF matrix for selective adsorption, separation and photodegradation of dyes. Chemical Engineering Journal, 2022, 428, 132561.	12.7	61
403	Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coordination Chemistry Reviews, 2021, 427, 213554.	18.8	197
404	The chemistry and applications of hafnium and cerium(<scp>iv</scp>) metal–organic frameworks. Chemical Society Reviews, 2021, 50, 4629-4683.	38.1	135
405	Revisiting the MIL-101 metal–organic framework: design, synthesis, modifications, advances, and recent applications. Journal of Materials Chemistry A, 2021, 9, 22159-22217.	10.3	100
406	Supercritical Carbon Dioxide (CO2) as Green Solvent. , 2019, , 173-197.		3
407	The Role of Solvents in Confined Organic and Organometallic Reactions. , 2013, , 179-187.		0
408	Supercritical Carbon Dioxide (CO2) as Green Solvent. , 2019, , 1-25.		1
409	Two mesoporous anionic metal–organic frameworks for selective and efficient adsorption of a cationic organic dye. Dalton Transactions, 2021, 50, 17603-17610.	3.3	7
410	Bis-isonicotinoyl linkers containing polyaromatic scaffolds: synthesis, structure and spectroscopic properties. Physical Chemistry Chemical Physics, 2022, 24, 1191-1201.	2.8	1
411	Discovery of spontaneous de-interpenetration through charged point-point repulsions. CheM, 2022, 8, 225-242.	11.7	11
412	Water Sorption Evolution Enabled by Reticular Construction of Zirconium Metal–Organic Frameworks Based on a Unique [2.2]Paracyclophane Scaffold. Journal of the American Chemical Society, 2022, 144, 1826-1834.	13.7	42
413	A Novel Electrically Conductive Perylene Diimideâ€Based MOFâ€74 Series Featuring Luminescence and Redox Activity. Small Structures, 2022, 3, .	12.0	12
414	Supramolecular Reinforcement of a Large-Pore 2D Covalent Organic Framework. Journal of the American Chemical Society, 2022, 144, 2468-2473.	13.7	24
415	Synthesis of MOF-5 using terephthalic acid as a ligand obtained from polyethylene terephthalate (PET) waste and its test in CO2 adsorption. Brazilian Journal of Chemical Engineering, 2022, 39, 949-959.	1.3	5
416	Influence of Metal Identity on Light-Induced Switchable Adsorption in Azobenzene-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 11192-11199.	8.0	14

#	Article	IF	CITATIONS
417	Macroscale Conjugated Microporous Polymers: Controlling Versatile Functionalities Over Several Dimensions. Advanced Materials, 2022, 34, e2104952.	21.0	65
418	A Perylenediimide-Based Zinc-Coordination Polymer for Photosensitized Singlet-Oxygen Generation. Energies, 2022, 15, 2437.	3.1	1
420	Recent advancement in bimetallic metal organic frameworks (M′MOFs): synthetic challenges and applications. Inorganic Chemistry Frontiers, 2022, 9, 3003-3033.	6.0	18
421	Effect of lipids complexes on controlling ethylene gas release from V-type starch. Carbohydrate Polymers, 2022, 291, 119556.	10.2	4
422	Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66. Journal of Chemical Theory and Computation, 2022, 18, 3593-3606.	5.3	19
423	Molecular Sieving of Propylene from Propane in Metal–Organic Framework-Derived Ultramicroporous Carbon Adsorbents. ACS Applied Materials & Interfaces, 2022, 14, 30443-30453.	8.0	18
424	A Review on Metal- Organic Frameworks (MOFS), Synthesis, Activation, Characterisation, and Application. Oriental Journal of Chemistry, 2022, 38, 490-516.	0.3	3
425	Synthesis of metal-organic framework HKUST-1 via tunable continuous flow supercritical carbon dioxide reactor. Chemical Engineering Journal, 2022, 450, 138053.	12.7	3
426	Processable Conjugated Microporous Polymer Gels and Monoliths: Fundamentals and Versatile Applications. ACS Applied Materials & amp; Interfaces, 2022, 14, 39701-39726.	8.0	11
427	Regulating the dimensionality of diphosphaperylenediimide-based polymers by coordinating the out-of-plane anisotropic ï€-framework toward Ag+. Science China Chemistry, 2022, 65, 1741-1748.	8.2	3
428	Singleâ€layer 2D Niâ€BDC MOF Obtained in Supercritical CO2â€assisted Aqueous Solution. Chemistry - A European Journal, 0, , .	3.3	4
429	Efficient adsorption separation of xylene isomers on Cu-BTC@Fe3O4 by appropriate activation methods. Journal of Solid State Chemistry, 2022, 315, 123466.	2.9	2
430	Redox-induced control of microporosity of zeolitic transition metal oxides based on ε-Keggin iron molybdate at an ultra-fine level. Inorganic Chemistry Frontiers, 2022, 9, 5305-5316.	6.0	1
431	Understanding fragility and engineering activation stability in two-dimensional covalent organic frameworks. Chemical Science, 2022, 13, 9655-9667.	7.4	15
432	Multi-topic Carboxylates as Versatile Building Blocks for the Design and Synthesis of Multifunctional MOFs Based on Alkaline Earth, Main Group and Transition Metals. Comments on Inorganic Chemistry, 2023, 43, 257-304.	5.2	1
433	Photoinduced reversible phase transition in a phenothiazine-based metal-organic framework. Cell Reports Physical Science, 2022, 3, 101074.	5.6	5
434	Sulfated Zirconium Metal–Organic Frameworks as Well-Defined Supports for Enhancing Organometallic Catalysis. Journal of the American Chemical Society, 2022, 144, 16883-16897.	13.7	10
435	Toward Ideal Metal–Organic Framework Thin-Film Growth via Automated Layer-by-Layer Deposition: Examples Based on Perylene Diimide Linkers. Chemistry of Materials, 2022, 34, 9446-9454.	6.7	8

#	ARTICLE	IF	CITATIONS
436	Solvent-Induced Incremental Pore Collapse in Two-Dimensional Covalent Organic Frameworks. , 2022, 4, 2368-2374.		4
437	Ordered Macro–Microporous ZIF-8 with Different Macropore Sizes and Their Stable Derivatives for Lipase Immobilization in Biodiesel Production. ACS Sustainable Chemistry and Engineering, 2022, 10, 14503-14514.	6.7	11
438	Superior Metalâ€Organic Framework Activation with Dimethyl Ether. Angewandte Chemie - International Edition, 2022, 61, .	13.8	3
439	Superior Metalâ€Organic Framework Activation with Dimethyl Ether. Angewandte Chemie, 0, , .	2.0	0
440	Enhancing Interfacial and Electromagnetic Interference Shielding Properties of Carbon Fiber Composites via the Hierarchical Assembly of the MWNT/MOF Interphase. Langmuir, 2022, 38, 14277-14289.	3.5	4
441	Design of metal-organic frameworks for improving pseudo-solid-state magnesium-ion electrolytes: Open metal sites, isoreticular expansion, and framework topology. Journal of Materials Science and Technology, 2023, 144, 15-27.	10.7	9
442	Green Synthesis of Robust Imine-Linked Two-Dimensional Covalent Organic Frameworks in Supercritical Carbon Dioxide. Chemistry of Materials, 2022, 34, 10584-10593.	6.7	5
443	The synthesis, activation, and adsorption capacity of metal-organic frameworks for hydrogen storage. , 0, 21, 34-41.		0
444	Back to the Basics: Developing Advanced Metal–Organic Frameworks Using Fundamental Chemistry Concepts. ACS Nanoscience Au, 2023, 3, 37-45.	4.8	18
445	Mixing ligands to enhance gas uptake in polyMOFs. Molecular Systems Design and Engineering, 0, , .	3.4	2
446	Experimental Confirmation of a Predicted Porous Hydrogenâ€Bonded Organic Framework. Angewandte Chemie - International Edition, 2023, 62, .	13.8	4
447	A Simple, Transition Metal Catalystâ€Free Method for the Design of Complex Organic Building Blocks Used to Construct Porous Metal–Organic Frameworks. Angewandte Chemie, 2023, 135, .	2.0	0
448	A Simple, Transition Metal Catalystâ€Free Method for the Design of Complex Organic Building Blocks Used to Construct Porous Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
449	Synthesis, characterization, and activation of metal organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review. Results in Chemistry, 2023, 5, 100866.	2.0	9
450	Metal-organic frameworks for fast electrochemical energy storage: Mechanisms and opportunities. CheM, 2023, 9, 798-822.	11.7	11
451	Experimental Confirmation of a Predicted Porous Hydrogenâ€bonded Organic Framework. Angewandte Chemie, 0, , .	2.0	0
452	Fluorinated linkers enable the synthesis of flexible MOFs with 1D alkaline earth SBUs and a temperature-induced phase transition. Dalton Transactions, 0, , .	3.3	0
453	Supercritical CO ₂ Directionalâ€Assisted Synthesis of Lowâ€Dimensional Materials for Functional Applications. Small, 2023, 19, .	10.0	4

#	Article	IF	CITATIONS
454	Metal–Carbodithioate-Based 3D Semiconducting Metal–Organic Framework: Porous Optoelectronic Material for Energy Conversion. ACS Applied Materials & Interfaces, 2023, 15, 28228-28239.	8.0	2
455	Stepwise Assembly of Quinary Multivariate Metal–Organic Frameworks via Diversified Linker Exchange and Installation. Journal of the American Chemical Society, 2023, 145, 13929-13937.	13.7	3
456	MOFganic Chemistry: Challenges and Opportunities for Metal–Organic Frameworks in Synthetic Organic Chemistry. Chemistry of Materials, 2023, 35, 4883-4896.	6.7	4
457	Toward Controlled Partial Desolvation of Guest-Responsive Metal–Organic Frameworks for Precise Porosity Control. Chemistry of Materials, 2023, 35, 4192-4200.	6.7	0
458	Supercritical <scp>CO₂</scp> â€assisted formation of metal–organic frameworkâ€loaded porous polystyrene membranes for dye removal. Journal of Applied Polymer Science, 2023, 140, .	2.6	2
459	In Situ Observation of Solvent Exchange Kinetics in a MOF with Coordinatively Unsaturated Sites. Journal of the American Chemical Society, 2023, 145, 18634-18641.	13.7	2
460	Greatly Intensified Guest Exchange Strategy for Highlyâ€Efficient Activation of Metal–Organic Frameworks. Small, 2023, 19, .	10.0	1
461	Stable Dicationic Covalent Organic Frameworks Manifesting Notable Structure-Enhanced CO ₂ Capture and Conversion. ACS Catalysis, 2023, 13, 13021-13033.	11.2	2
462	Balancing chemical warfare agent degradation and permeability in a zirconium-based metal-organic framework fiber composite. Cell Reports Physical Science, 2023, 4, 101608.	5.6	1
463	γ-Cyclodextrin Metal-Organic Frameworks: Do Solvents Make a Difference?. Molecules, 2023, 28, 6876.	3.8	0
464	Guest Molecules Play Tug of War in a Breathing MOF: The Stepwise Monitoring of an Elastic Framework Deformation via SC-SC Transformations. Crystal Growth and Design, 0, , .	3.0	0
465	MOF-Based Nanoarchitectonics for Lithium-Ion Batteries: A Comprehensive Review. Journal of Inorganic and Organometallic Polymers and Materials, 0, , .	3.7	0
466	Identifying pathways to metal–organic framework collapse during solvent activation with molecular simulations. Journal of Materials Chemistry A, 2023, 11, 25929-25937.	10.3	1
467	Enhanced Gas Adsorption in HKUST-1@Chitosan Aerogels, Cryogels, and Xerogels: An Evaluation Study. ACS Applied Materials & Interfaces, 2023, 15, 53395-53404.	8.0	0
468	Supercritical Processing of a Highly C ₃ H ₆ -Permselective ZIF-8 Membrane on a Tubular Porous α-Al ₂ O ₃ Substrate. Industrial & Engineering Chemistry Research, 0, , .	3.7	0
469	Metal Organic Frameworks: Current State and Analysis of Their Use as Modifiers of the Vulcanization Process and Properties of Rubber. Materials, 2023, 16, 7631.	2.9	0
470	Unlocking High Porosity: Postâ€Synthetic Solvothermal Treatment of Cuâ€Paddlewheel Based Metal–Organic Cages. Small, 0, , .	10.0	0
471	Conductive MOFs: Synthesis and Applications in Supercapacitors and Batteries. Batteries and	4.7	0

#	Article	IF	CITATIONS
472	Approaches toward the synthesis and mechanical properties of porous coordination polymers. , 2024, , 11-38.		0
473	Analysis of metal–organic framework-based photosynthetic CO2 reduction. , 2024, 3, 307-318.		0
474	The Dynamic View: Multiscale Characterisation Techniques for Flexible Frameworks. , 2024, , 145-230.		0