Making Graphene Luminescent by Oxygen Plasma Trea

ACS Nano 3, 3963-3968 DOI: 10.1021/nn9012753

Citation Report

#	Article	IF	CITATIONS
1	Chemically Derived Graphene Oxide: Towards Largeâ€Area Thinâ€Film Electronics and Optoelectronics. Advanced Materials, 2010, 22, 2392-2415.	11.1	2,018
3	Luminescent Carbon Nanodots: Emergent Nanolights. Angewandte Chemie - International Edition, 2010, 49, 6726-6744.	7.2	4,109
4	The chemical modification of graphene antidot lattices. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 33-39.	1.3	3
5	Characterization of boron-doped diamond-like carbon prepared by radio frequency sputtering. Thin Solid Films, 2010, 519, 521-526.	0.8	40
6	Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010, 2, 1015-1024.	6.6	2,966
7	Graphene photonics and optoelectronics. Nature Photonics, 2010, 4, 611-622.	15.6	6,719
8	LCD Motion Blur Blind Modeling and Analysis. , 2010, , .		0
9	Fluorescence of laser-created electron-hole plasma in graphene. Physical Review B, 2010, 82, .	1.1	72
10	Graphene Mode-Locked Ultrafast Laser. ACS Nano, 2010, 4, 803-810.	7.3	1,795
11	Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. Analyst, The, 2010, 135, 2790.	1.7	150
12	Ultrafast Photoluminescence from Graphene. Physical Review Letters, 2010, 105, 127404.	2.9	403
13	Some Novel Attributes of Graphene. Journal of Physical Chemistry Letters, 2010, 1, 572-580.	2.1	362
14	Modified, semiconducting graphene in contact with a metal: Characterization of the Schottky diode. Applied Physics Letters, 2010, 97, .	1.5	25
15	Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene. Nano Letters, 2010, 10, 3360-3366.	4.5	297
16	Magnetism in graphene oxide. New Journal of Physics, 2010, 12, 083040.	1.2	69
17	Photoluminescence from nanocrystalline graphite monofluoride. Applied Physics Letters, 2010, 97, .	1.5	31
18	First-Principles Prediction of Doped Graphane as a High-Temperature Electron-Phonon Superconductor. Physical Review Letters, 2010, 105, 037002.	2.9	178
19	Bandgap opening in oxygen plasma-treated graphene. Nanotechnology, 2010, 21, 435203.	1.3	289

		CITATION REPORT		
#	Article		IF	Citations
20	Surface-Enhanced Raman Spectroscopy of Graphene. ACS Nano, 2010, 4, 5617-5626.		7.3	433
21	Photoluminescence, white light emitting properties and related aspects of ZnO nanopartic with graphene and GaN. Nanotechnology, 2010, 21, 385701.	cles admixed	1.3	85
22	Strong Charge-Transfer Excitonic Effects and the Bose-Einstein Exciton Condensate in Gra Physical Review Letters, 2010, 104, 226804.	phane.	2.9	180
23	Methanol derived large scale chemical synthesis of brightly fluorescent graphene. Journal o Materials Chemistry, 2011, 21, 6506.	of	6.7	10
24	High-order graphene oxide nanoarchitectures. Nanoscale, 2011, 3, 3076.		2.8	5
25	Synthesis of few-layered graphene by H2O2 plasma etching of graphite. Applied Physics Le	etters, 2011, 98,	1.5	59
26	Photocatalytic Patterning and Modification of Graphene. Journal of the American Chemica 2011, 133, 2706-2713.	l Society,	6.6	168
27	Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Ch Communications, 2011, 47, 6858.	emical	2.2	1,458
28	Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and elec transport measurements. New Journal of Physics, 2011, 13, 025008.	tronic	1.2	211
29	Blue fluorescent carbon thin films fabricated from dodecylamine-capped carbon nanoparti Journal of Materials Chemistry, 2011, 21, 3565.	cles.	6.7	55
30	A highly efficient graphene oxide absorber for <i>Q</i> -switched Nd:GdVO ₄ la Nanotechnology, 2011, 22, 455203.	sers.	1.3	77
31	Optical Bifunctionality of Europium-Complexed Luminescent Graphene Nanosheets. Nano 11, 5227-5233.	Letters, 2011,	4.5	88
32	Quasi-Molecular Fluorescence from Graphene Oxide. Scientific Reports, 2011, 1, 85.		1.6	253
33	Reversible Electrical Reduction and Oxidation of Graphene Oxide. ACS Nano, 2011, 5, 247	5-2482.	7.3	161
34	Graphene Nano-Flakes and Nano-Dots: Theory, Experiment and Applications. , 0, , .			5
35	Single Layer vs Bilayer Graphene: A Comparative Study of the Effects of Oxygen Plasma Tr Their Electronic and Optical Properties. Journal of Physical Chemistry C, 2011, 115, 16619	eatment on -16624.	1.5	60
36	Ultrafast Relaxation Dynamics in Graphene Oxide: Evidence of Electron Trapping. Journal o Chemistry C, 2011, 115, 19110-19116.	f Physical	1.5	95
37	Graphene-based hybrid materials and devices for biosensing. Advanced Drug Delivery Revie 1352-1360.	ews, 2011, 63,	6.6	267

	CITATION RE	PORT	
#	ARTICLE Functionalization of graphene oxide towards thermoâ€sensitive nanocomposites via moderate <i>in</i>	IF	CITATIONS
38	situ> SETâ€LRP. Journal of Polymer Science Part A, 2011, 49, 4747-4755.	2.5	75
39	Carbogenic Nanodots: Photoluminescence and Roomâ€Temperature Ferromagnetism. ChemPhysChem, 2011, 12, 2624-2632.	1.0	50
40	Graphene based materials: Past, present and future. Progress in Materials Science, 2011, 56, 1178-1271.	16.0	3,063
41	Nanosecond UV laser graphitization and delamination of thin tetrahedral amorphous carbon films with different sp3/sp2 content. Thin Solid Films, 2011, 519, 3756-3761.	0.8	20
42	Correlating magnetotransport and diamagnetism of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:mi>s </mml:mi> <mml:msup> <mml:mi>p </mml:mi> <mml:mn> <!--<br-->carbon networks through the metal-insulator transition. Physical Review B, 2011, 84, .</mml:mn></mml:msup></mml:mrow></mml:math 	mmi:msu	p>∛/mml:mro
43	Transition from Metallic to Semiconducting Behavior in Oxygen Plasma-treated Single-layer Graphene. Materials Research Society Symposia Proceedings, 2011, 1336, 20701.	0.1	Ο
44	Synthesis, electromechanical characterization, and applications of graphene nanostructures. Journal of Nanophotonics, 2012, 6, 064501.	0.4	10
45	Size-dependent radiative decay processes in graphene quantum dots. Applied Physics Letters, 2012, 101, .	1.5	27
46	Experimental Review of Graphene. , 2012, 2012, 1-56.		404
47	Graphene Photonics and Optoelectroncs. , 2012, , .		28
48	Self-spreading of Supported Lipid Bilayer on SiO2 Surface Bearing Graphene Oxide. Chemistry Letters, 2012, 41, 1259-1261.	0.7	20
49	Î-Bond maximization of graphene in hydrogen addition reactions. Nanoscale, 2012, 4, 1171-1176.	2.8	13
50	One-pot hydrothermal synthesis of graphenequantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New Journal of Chemistry, 2012, 36, 97-101.	1.4	460
51	Uniform Graphene Quantum Dots Patterned from Self-Assembled Silica Nanodots. Nano Letters, 2012, 12, 6078-6083.	4.5	186
52	Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7, 699-712.	15.6	13,346
53	Novel blue light emitting graphene oxide nanosheets fabricated by surface functionalization. Journal of Materials Chemistry, 2012, 22, 2929-2934.	6.7	94
54	Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. Journal of Materials Chemistry, 2012, 22, 7461.	6.7	667
56	Structure and luminescence properties of 10-BN sheets. Nanoscale, 2012, 4, 6951.	2.8	11

#	Article	IF	CITATIONS
57	Self-assembly of metallopolymer guided by graphene nanoribbons. Journal of Materials Chemistry, 2012, 22, 15689.	6.7	13
58	Optical Spectroscopy Investigation of the Structural and Electrical Evolution of Controllably Oxidized Graphene by a Solution Method. Journal of Physical Chemistry C, 2012, 116, 10702-10707.	1.5	25
59	Si-Compatible Cleaning Process for Graphene Using Low-Density Inductively Coupled Plasma. ACS Nano, 2012, 6, 4410-4417.	7.3	85
60	Layer-dependent fluorination and doping of graphene via plasma treatment. Nanotechnology, 2012, 23, 115706.	1.3	54
61	Epoxy to Carbonyl Group Conversion in Graphene Oxide Thin Films: Effect on Structural and Luminescent Characteristics. Journal of Physical Chemistry C, 2012, 116, 19010-19017.	1.5	83
62	Enhanced fluorescent intensity of graphene oxide–methyl cellulose hybrid in acidic medium: Sensing of nitro-aromatics. Journal of Materials Chemistry, 2012, 22, 8139.	6.7	62
63	Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Advances, 2012, 2, 2717.	1.7	370
64	Surface modification of diamond-like carbon films to graphene under low energy ion beam irradiation. Applied Surface Science, 2012, 258, 2931-2934.	3.1	27
65	Fingerprinting photoluminescence of functional groups in graphene oxide. Journal of Materials Chemistry, 2012, 22, 23374.	6.7	198
66	Graphene: An Emerging Electronic Material. Advanced Materials, 2012, 24, 5782-5825.	11.1	718
67	Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment. Nanoscale Research Letters, 2012, 7, 268.	3.1	24
67 68	Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment. Nanoscale Research Letters, 2012, 7, 268. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications, 2012, 48, 3686.	3.1 2.2	24 1,845
67 68 69	Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment. Nanoscale Research Letters, 2012, 7, 268. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications, 2012, 48, 3686. Ultrafast hot-carrier-dominated photocurrent in graphene. Nature Nanotechnology, 2012, 7, 114-118.	3.1 2.2 15.6	24 1,845 362
67 68 69 70	Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment. Nanoscale Research Letters, 2012, 7, 268. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications, 2012, 48, 3686. Ultrafast hot-carrier-dominated photocurrent in graphene. Nature Nanotechnology, 2012, 7, 114-118. Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 2012, 22, 24230.	3.1 2.2 15.6 6.7	24 1,845 362 2,339
67 68 69 70 71	Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment. Nanoscale Research Letters, 2012, 7, 268.Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications, 2012, 48, 3686.Ultrafast hot-carrier-dominated photocurrent in graphene. Nature Nanotechnology, 2012, 7, 114-118.Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 2012, 22, 24230.Synthesis and properties of graphene oxide/graphene nanostructures. Journal of the Korean Physical Society, 2012, 60, 1789-1793.	 3.1 2.2 15.6 6.7 0.3 	24 1,845 362 2,339 19
67 68 69 70 71 72	Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment. Nanoscale Research Letters, 2012, 7, 268.Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications, 2012, 48, 3686.Ultrafast hot-carrier-dominated photocurrent in graphene. Nature Nanotechnology, 2012, 7, 114-118.Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 2012, 22, 24230.Synthesis and properties of graphene oxide/graphene nanostructures. Journal of the Korean Physical society, 2012, 60, 1789-1793.Functionalization of Craphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 2012, 112, 6156-6214.	 3.1 2.2 15.6 6.7 0.3 23.0 	24 1,845 362 2,339 19 3,531
 67 68 69 70 71 72 73 	Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment. Nanoscale Research Letters, 2012, 7, 268.Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications, 2012, 48, 3686.Ultrafast hot-carrier-dominated photocurrent in graphene. Nature Nanotechnology, 2012, 7, 114-118.Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 2012, 22, 24230.Synthesis and properties of graphene oxide/graphene nanostructures. Journal of the Korean Physical Society, 2012, 60, 1789-1793.Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 2012, 112, 6156-6214.Defect-related luminescent materials: synthesis, emission properties and applications. Chemical Society Reviews, 2012, 41, 7938.	 3.1 2.2 15.6 6.7 0.3 23.0 18.7 	24 1,845 362 2,339 19 3,531 244

#	Article	IF	CITATIONS
75	Nitrogen-Functionalized Graphene Nanoflakes (GNFs:N): Tunable Photoluminescence and Electronic Structures. Journal of Physical Chemistry C, 2012, 116, 16251-16258.	1.5	51
76	The Origin of Fluorescence from Graphene Oxide. Scientific Reports, 2012, 2, 792.	1.6	505
77	SHG/2PF microscopy of single and multi-layer graphene. , 2012, , .		2
78	Near-infrared enhanced carbon nanodots by thermally assisted growth. Applied Physics Letters, 2012, 101, .	1.5	33
79	Unzipped Multiwalled Carbon Nanotube Oxide/Multiwalled Carbon Nanotube Hybrids for Polymer Reinforcement. ACS Applied Materials & Interfaces, 2012, 4, 5956-5965.	4.0	48
80	Nonlinear optical properties of graphene-based materials. Science Bulletin, 2012, 57, 2971-2982.	1.7	144
81	Extraordinary Physical Properties of Functionalized Graphene. Small, 2012, 8, 2138-2151.	5.2	196
82	Control the size and surface chemistry of graphene for the rising fluorescent materials. Chemical Communications, 2012, 48, 4527.	2.2	384
83	Preparation of graphene oxide by solvent-free mechanochemical oxidation of graphite. Journal of Materials Chemistry, 2012, 22, 12465.	6.7	73
84	Investigation of charge-transfer complexes formation between photoluminescent graphene oxide and organic molecules. Nanoscale, 2012, 4, 405-407.	2.8	12
85	Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Upâ€Conversion Bioimaging Applications. Advanced Functional Materials, 2012, 22, 4732-4740.	7.8	1,019
86	Optically Tunable Aminoâ€Functionalized Graphene Quantum Dots. Advanced Materials, 2012, 24, 5333-5338.	11.1	756
88	Tunable Photoluminescence from Graphene Oxide. Angewandte Chemie - International Edition, 2012, 51, 6662-6666.	7.2	584
89	Excitonic properties of graphene-based materials. Nanoscale, 2012, 4, 1044-1050.	2.8	14
90	Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Applied Catalysis B: Environmental, 2012, 123-124, 241-256.	10.8	270
91	Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine. Biosensors and Bioelectronics, 2012, 31, 205-211.	5.3	116
92	Tunable photoluminescence of graphene oxide from near-ultraviolet to blue. Materials Letters, 2012, 74, 71-73.	1.3	62
93	Investigation of Raman and photoluminescence studies of reduced graphene oxide sheets. Applied Physics A: Materials Science and Processing, 2012, 106, 501-506.	1.1	279

	Сітатіо	CITATION REPORT	
# 94	ARTICLE Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulk-heterojunction organic solar cells. Energy and Environmental Science, 2013, 6, 3000.	lF 15.6	Citations
95	Sizeâ€Dependent Structural and Optical Characteristics of Glucoseâ€Derived Graphene Quantum Dots. Particle and Particle Systems Characterization, 2013, 30, 523-531.	1.2	175
96	Luminescent graphene quantum dots fabricated by pulsed laser synthesis. Carbon, 2013, 64, 341-350.	5.4	134
97	Raman scattering efficiency of graphene. Physical Review B, 2013, 87, .	1.1	82
98	Applications of Nanomaterials in Sensors and Diagnostics. Springer Series on Chemical Sensors and Biosensors, 2013, , .	0.5	37
99	Elementary processes of H2 plasma-graphene interaction: A combined molecular dynamics and density functional theory study. Journal of Applied Physics, 2013, 113, 114302.	1.1	35
100	Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods and Applications in Fluorescence, 2013, 1, 042001.	1.1	138
101	Properties and applications of chemically functionalized graphene. Journal of Physics Condensed Matter, 2013, 25, 423201.	0.7	85
102	High yield of graphene by dispersant-free liquid exfoliation of mechanochemically delaminated graphite. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	46
103	One-Step Preparation of Fluorographene: A Highly Efficient, Low-Cost, and Large-Scale Approach of Exfoliating Fluorographite. ACS Applied Materials & Interfaces, 2013, 5, 13478-13483.	4.0	61
104	Single-Particle Spectroscopic Measurements of Fluorescent Graphene Quantum Dots. ACS Nano, 2013, 7, 10654-10661.	7.3	148
105	Direct Observation of Spatially Heterogeneous Single-Layer Graphene Oxide Reduction Kinetics. Nano Letters, 2013, 13, 5777-5784.	4.5	40
106	Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance. Journal of Alloys and Compounds, 2013, 569, 102-110.	2.8	92
107	A review of optical imaging and therapy using nanosized graphene and graphene oxide. Biomaterials, 2013, 34, 9519-9534.	5.7	160
108	Electron-beam-induced direct etching of graphene. Carbon, 2013, 64, 84-91.	5.4	36
109	Photoelectrochemical Properties of Graphene and Its Derivatives. Nanomaterials, 2013, 3, 325-356.	1.9	104
110	Photoinduced luminescent carbon nanostructures with ultra-broadly tailored size ranges. Nanoscale, 2013, 5, 12092.	2.8	19
111	Transient absorption microscopy studies of energy relaxation in graphene oxide thin film. Journal of Physics Condensed Matter, 2013, 25, 144203.	0.7	12

#	Article	IF	Citations
112	Plasma oxidation of thermally grown graphenes and their characterization. Vacuum, 2013, 87, 200-204.	1.6	6
113	Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 2013, 5, 4015.	2.8	1,295
114	Functionalisation of graphene surfaces with downstream plasma treatments. Carbon, 2013, 54, 283-290.	5.4	77
115	Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale, 2013, 5, 1353.	2.8	158
116	Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Society Reviews, 2013, 42, 2824-2860.	18.7	1,105
117	Realization of lasing emission from graphene quantum dots using titanium dioxide nanoparticles as light scatterers. Nanoscale, 2013, 5, 1797.	2.8	52
118	Enhanced Hot-Carrier Luminescence in Multilayer Reduced Graphene Oxide Nanospheres. Scientific Reports, 2013, 3, 2315.	1.6	14
119	Quantum chemical investigation of epoxide and ether groups in graphene oxide and their vibrational spectra. Physical Chemistry Chemical Physics, 2013, 15, 3725.	1.3	42
120	Identifying the fluorescence of graphene oxide. Journal of Materials Chemistry C, 2013, 1, 338-342.	2.7	112
121	Graphene Quantum Dots Combined with Europium Ions as Photoluminescent Probes for Phosphate Sensing. Chemistry - A European Journal, 2013, 19, 3822-3826.	1.7	159
122	Intrinsic and Extrinsic Fluorescence in Carbon Nanodots: Ultrafast Timeâ€Resolved Fluorescence and Carrier Dynamics. Advanced Optical Materials, 2013, 1, 173-178.	3.6	156
123	Graphene ultracapacitors: structural impacts. Physical Chemistry Chemical Physics, 2013, 15, 4799.	1.3	57
124	Graphene oxide/N-methyl-2-pyrrolidone charge-transfer complexes for molecular detection. Sensors and Actuators B: Chemical, 2013, 176, 81-85.	4.0	8
125	Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 2013, 8, 235-246.	15.6	5,652
126	Photoâ€induced Free Radical Modification of Graphene. Small, 2013, 9, 1134-1143.	5.2	29
127	Graphene-Based Chemical and Biosensors. Springer Series on Chemical Sensors and Biosensors, 2013, , 103-141.	0.5	9
128	Single―and Double‧ided Chemical Functionalization of Bilayer Graphene. Small, 2013, 9, 631-639.	5.2	49
129	Ultrasound-free preparation of graphene oxide from mechanochemically oxidized graphite. Journal of Materials Chemistry A, 2013, 1, 6658.	5.2	34

#	Article	IF	CITATIONS
130	Janus graphene from asymmetric two-dimensional chemistry. Nature Communications, 2013, 4, 1443.	5.8	231
131	Extreme Monolayer-Selectivity of Hydrogen-Plasma Reactions with Graphene. ACS Nano, 2013, 7, 1324-1332.	7.3	98
132	Ultrafast Spectral Migration of Photoluminescence in Graphene Oxide. Nano Letters, 2013, 13, 344-349.	4.5	60
133	Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids. Advances in Physics, 2013, 62, 113-224.	35.9	486
134	Ultrafast collinear scattering and carrier multiplication in graphene. Nature Communications, 2013, 4, 1987.	5.8	446
135	Low temperature crystallization of diamond-like carbon films to graphene. Applied Surface Science, 2013, 280, 512-517.	3.1	6
136	Nanosecond laser treatment of graphene. Applied Surface Science, 2013, 276, 133-137.	3.1	47
137	Facile Synthetic Method for Pristine Graphene Quantum Dots and Graphene Oxide Quantum Dots: Origin of Blue and Green Luminescence. Advanced Materials, 2013, 25, 3657-3662.	11.1	549
138	Recent advances in graphene quantum dots for sensing. Materials Today, 2013, 16, 433-442.	8.3	659
139	Photoluminescence Properties of Graphene versus Other Carbon Nanomaterials. Accounts of Chemical Research, 2013, 46, 171-180.	7.6	693
140	Immobilization of diamond nanocrystals on graphene. Materials Research Society Symposia Proceedings, 2013, 1597, 1.	0.1	0
141	Controlled modification of mono- and bilayer graphene in O ₂ , H ₂ and CF ₄ plasmas. Nanotechnology, 2013, 24, 355705.	1.3	89
142	Graphene-Based Materials in Gas Sensors. , 2013, , 91-132.		0
143	Effect of ethanol concentrations on few layer Schottky graphene transistors. Journal of Physics: Conference Series, 2013, 421, 012005.	0.3	0
144	From highly graphitic to amorphous carbon dots: A critical review. MRS Energy & Sustainability, 2014, 1, 1.	1.3	43
145	Tunable optical properties of graphene oxide by tailoring the oxygen functionalities using infrared irradiation. Nanotechnology, 2014, 25, 495704.	1.3	77
146	Photoluminescence of Graphene Oxide Infiltrated into Mesoporous Silicon. Journal of Physical Chemistry C, 2014, 118, 27301-27307.	1.5	24
147	Blue Luminescent Graphene Quantum Dots by Photochemical Stitching of Small Aromatic Molecules: Fluorescent Nanoprobes in Cellular Imaging. Particle and Particle Systems Characterization, 2014, 31, 433-438.	1.2	56

#	Article	IF	CITATIONS
148	Mn2+-mediated energy transfer process as a versatile origin of photoluminescence in graphene oxide. RSC Advances, 2014, 4, 54832-54836.	1.7	2
149	Luminescent Graphene Oxide with a Peptideâ€Quencher Complex for Optical Detection of Cellâ€Secreted Proteases by a Turnâ€On Response. Advanced Functional Materials, 2014, 24, 5119-5128.	7.8	38
150	Color-Switchable, Emission-Enhanced Fluorescence Realized by Engineering C-dot@C-dot Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 20700-20708.	4.0	58
151	Ultra-low-damage radical treatment for the highly controllable oxidation of large-scale graphene sheets. Carbon, 2014, 73, 244-251.	5.4	28
152	Electrochemical behaviour of vertically aligned carbon nanotubes and graphene oxide nanocomposite as electrode material. Electrochimica Acta, 2014, 119, 114-119.	2.6	79
153	A comparison study between ZnO nanorods coated with graphene oxide and reduced graphene oxide. Journal of Alloys and Compounds, 2014, 582, 29-32.	2.8	44
154	Grapheneviasonication assisted liquid-phase exfoliation. Chemical Society Reviews, 2014, 43, 381-398.	18.7	976
155	A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots. Nanoscale, 2014, 6, 3868-3874.	2.8	369
156	Graphene as an Electron Shuttle for Silver Deoxidation: Removing a Key Barrier to Plasmonics and Metamaterials for SERS in the Visible. Advanced Functional Materials, 2014, 24, 1864-1878.	7.8	85
157	Nitrogenâ€Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Waterâ€Splitting under Visible Light Illumination. Advanced Materials, 2014, 26, 3297-3303.	11.1	749
158	Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COOâ^' induced red-shift emission. Carbon, 2014, 70, 279-286.	5.4	240
159	Tribology of graphene: A review. International Journal of Precision Engineering and Manufacturing, 2014, 15, 577-585.	1.1	167
160	DFT study of optical properties of pure and doped graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 62, 28-35.	1.3	159
161	Loading of an anti-cancer drug onto graphene oxide and subsequent release to DNA/RNA: a direct optical detection. Nanoscale, 2014, 6, 2937-2944.	2.8	23
162	Graphene and carbon nanotube composite enabling a new prospective treatment for trichomoniasis disease. Materials Science and Engineering C, 2014, 41, 65-69.	3.8	20
163	Oneâ€Step Synthesis of Nâ€doped Graphene Quantum Sheets from Monolayer Graphene by Nitrogen Plasma. Advanced Materials, 2014, 26, 3501-3505.	11.1	109
164	Carbonâ€Dotâ€Decorated Nanodiamonds. Particle and Particle Systems Characterization, 2014, 31, 580-590.	1.2	36
165	Role of oxygen functionalities on the synthesis of photocatalytically active graphene–TiO2 composites. Applied Catalysis B: Environmental, 2014, 158-159, 329-340.	10.8	117

#	Article	IF	CITATIONS
166	Effect of size variation on the cathodoluminescence characteristics of graphene quantum dots. Current Applied Physics, 2014, 14, S111-S114.	1.1	4
167	Photoluminescence investigation about zinc oxide with graphene oxide & reduced graphene oxide buffer layers. Journal of Colloid and Interface Science, 2014, 416, 289-293.	5.0	22
168	Waveband-dependent photochemical processing of graphene oxide in fabricating reduced graphene oxide film and graphene oxide–Ag nanoparticles film. RSC Advances, 2013, 4, 2404-2408.	1.7	25
169	Origin of Strong Excitation Wavelength Dependent Fluorescence of Graphene Oxide. ACS Nano, 2014, 8, 1002-1013.	7.3	328
170	Exciton Characteristics in Graphene Epoxide. ACS Nano, 2014, 8, 1284-1289.	7.3	31
171	Effect of dry oxidation on the energy gap and chemical composition of CVD graphene on nickel. Applied Surface Science, 2014, 293, 1-11.	3.1	25
172	Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC - Trends in Analytical Chemistry, 2014, 54, 83-102.	5.8	296
173	A facile preparation of edge etching, porous and highly reactive graphene nanosheets via ozone treatment at a moderate temperature. Chemical Engineering Journal, 2014, 240, 187-194.	6.6	31
174	Enhanced visible photoluminescence emission from multiple face-contact-junction ZnO nanorods coated with graphene oxide sheets. Journal of Applied Physics, 2014, 115, 214304.	1.1	18
175	Correlated Optical and Magnetic Properties in Photoreduced Graphene Oxide. Journal of Physical Chemistry C, 2014, 118, 28258-28265.	1.5	21
176	The role of ozone in the ozonation process of graphene oxide: oxidation or decomposition?. RSC Advances, 2014, 4, 58325-58328.	1.7	37
177	A simple one-pot synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the detection of Cr(<scp>vi</scp>) in aqueous media. RSC Advances, 2014, 4, 52016-52022.	1.7	106
178	Bright Green Photoluminescence in Aminoazobenzene-Functionalized Graphene Oxide. Journal of Physical Chemistry C, 2014, 118, 6972-6979.	1.5	50
179	Fluorescence from graphene oxide and the influence of ionic, π–π interactions and heterointerfaces: electron or energy transfer dynamics. Physical Chemistry Chemical Physics, 2014, 16, 21183-21203.	1.3	38
180	Ultra-bright alkylated graphene quantum dots. Nanoscale, 2014, 6, 12635-12643.	2.8	24
181	Interactions of Organic Solvents at Graphene/α-Al ₂ O ₃ and Graphene Oxide/α-Al ₂ O ₃ Interfaces Studied by Sum Frequency Generation. Journal of Physical Chemistry C, 2014, 118, 17745-17755.	1.5	13
182	Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots. New Journal of Chemistry, 2014, 38, 4615-4621.	1.4	127
183	Doping Dependence of the Raman Spectrum of Defected Graphene. ACS Nano, 2014, 8, 7432-7441.	7.3	312

#	Article	IF	CITATIONS
184	Femtosecond pump–probe spectroscopy of graphene oxide in water. Journal Physics D: Applied Physics, 2014, 47, 094008.	1.3	21
185	Optical transmission control in graphene oxide and its organic composites with ultrashort laser pulses. Journal of Optics (United Kingdom), 2014, 16, 015205.	1.0	18
186	Fluorescent carbon nanomaterials: "quantum dots―or nanoclusters?. Physical Chemistry Chemical Physics, 2014, 16, 16075-16084.	1.3	155
187	Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 2014, 9, 590-603.	6.2	788
188	Revealing the tunable photoluminescence properties of graphene quantum dots. Journal of Materials Chemistry C, 2014, 2, 6954-6960.	2.7	530
189	Singular Sheet Etching of Graphene with Oxygen Plasma. Nano-Micro Letters, 2014, 6, 116-124.	14.4	53
190	Cold–silver nanocomposite-functionalized graphene based electrochemiluminescence immunosensor using graphene quantum dots coated porous PtPd nanochains as labels. Electrochimica Acta, 2014, 123, 470-476.	2.6	55
191	Excitonic Photoluminescence from Nanodisc States in Graphene Oxides. Journal of Physical Chemistry Letters, 2014, 5, 1754-1759.	2.1	53
192	Single-Particle Fluorescence Intensity Fluctuations of Carbon Nanodots. Nano Letters, 2014, 14, 620-625.	4.5	180
193	Highly oxidized graphene with enhanced fluorescence and its direct fluorescence visualization. Science China Chemistry, 2014, 57, 605-614.	4.2	7
194	Multiband photoluminescence from carbon nanoflakes synthesized by hot filament CVD: towards solid-state white light sources. Journal of Materials Chemistry C, 2014, 2, 2851-2858.	2.7	16
195	Fast, energy-efficient synthesis of luminescent carbon quantum dots. Green Chemistry, 2014, 16, 2566-2570.	4.6	116
196	Facile synthesis and optical properties of nitrogen-doped carbon dots. New Journal of Chemistry, 2014, 38, 1522.	1.4	80
197	Mildly O2 plasma treated CVD graphene as a promising platform for molecular sensing. Carbon, 2014, 76, 212-219.	5.4	39
198	Photoluminescence and dynamics of excitation relaxation in graphene oxide-porphyrin nanorods composite. Journal of Luminescence, 2014, 145, 33-37.	1.5	25
199	UV/O ₃ Generated Graphene Nanomesh: Formation Mechanism, Properties, and FET Studies. Journal of Physical Chemistry C, 2014, 118, 725-731.	1.5	48
200	Electroluminescence from Graphene Quantum Dots Prepared by Amidative Cutting of Tattered Graphite. Nano Letters, 2014, 14, 1306-1311.	4.5	260
201	A dual-fluorescent composite of graphene oxide and poly(3-hexylthiophene) enables the ratiometric detection of amines. Chemical Science, 2014, 5, 3130.	3.7	42

#	Article	IF	CITATIONS
202	Science and Engineering of Graphene Oxide. Particle and Particle Systems Characterization, 2014, 31, 619-638.	1.2	33
203	A powerful tool for graphene functionalization: Benzophenone mediated UV-grafting. Carbon, 2014, 77, 226-235.	5.4	41
204	One-pot reflux method synthesis of cobalt hydroxide nanoflake-reduced graphene oxide hybrid and their NOx gas sensors at room temperature. Journal of Alloys and Compounds, 2014, 612, 126-133.	2.8	36
205	Layer- and strain-dependent optoelectronic properties of hexagonal AlN. Physical Review B, 2015, 92, .	1.1	53
207	Damage evaluation in graphene underlying atomic layer deposition dielectrics. Scientific Reports, 2015, 5, 13523.	1.6	32
208	Graphene-based nanomaterials for versatile imaging studies. Chemical Society Reviews, 2015, 44, 4835-4852.	18.7	176
209	Enhanced Gas Permeation through Graphene Nanocomposites. Journal of Physical Chemistry C, 2015, 119, 13700-13712.	1.5	70
210	Facile laser-assisted synthesis of inorganic nanoparticles covered by a carbon shell with tunable luminescence. RSC Advances, 2015, 5, 50604-50610.	1.7	25
211	Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chemical Reviews, 2015, 115, 10816-10906.	23.0	1,151
212	Electrochemical tuning of optical properties of graphitic quantum dots. Journal of Luminescence, 2015, 166, 322-327.	1.5	5
213	Photochemistry of Graphene. Structure and Bonding, 2015, , 213-238.	1.0	0
214	Photofunctional Layered Materials. Structure and Bonding, 2015, , .	1.0	10
215	Spectroscopy and Microscopy of Graphene Oxide and Reduced Graphene Oxide. , 2015, , 29-60.		8
216	On the origin and tunability of blue and green photoluminescence from chemically derived graphene: Hydrogenation and oxygenation studies. Carbon, 2015, 95, 228-238.	5.4	37
217	Versatile photoluminescence from graphene and its derivatives. Carbon, 2015, 88, 86-112.	5.4	76
218	<i>In Situ</i> and Nonvolatile Photoluminescence Tuning and Nanodomain Writing Demonstrated by All-Solid-State Devices Based on Graphene Oxide. ACS Nano, 2015, 9, 2102-2110.	7.3	36
219	Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. Journal of Materials Science: Materials in Electronics, 2015, 26, 4347-4379.	1.1	135
221	The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and) Tj ETQq1 1	0.784314	rgBT /Overlo

# 222	ARTICLE Influence of the surface treatment with low-energy \$\$hbox {Ar}^{+}\$\$ Ar + plasma on graphene and defected graphene layers. Optical and Quantum Electronics. 2015, 47, 901-912.	IF 1.5	CITATIONS
223	Effects of graphene defect on electronic structures of its interface with organic semiconductor. Applied Physics Letters, 2015, 106, .	1.5	5
224	Fundamentals of nanotechnology and orthopedic materials. , 2015, , 1-25.		3
225	Enhancement of light emission in GaAs epilayers with graphene quantum dots. RSC Advances, 2015, 5, 60908-60913.	1.7	9
226	Size and Dopant Dependent Single Particle Fluorescence Properties of Graphene Quantum Dots. Journal of Physical Chemistry C, 2015, 119, 17988-17994.	1.5	49
227	Heterogeneous Fluorescence Intermittency in Single Layer Reduced Graphene Oxide. Nano Letters, 2015, 15, 4317-4321.	4.5	12
228	Luminomagnetic bifunctionality of Mn2+-bonded graphene oxide/reduced graphene oxide two dimensional nanosheets. Nanoscale, 2015, 7, 12498-12509.	2.8	7
229	New Fluorescent Metal-Ion Detection Using a Paper-Based Sensor Strip Containing Tethered Rhodamine Carbon Nanodots. ACS Applied Materials & Interfaces, 2015, 7, 15649-15657.	4.0	148
230	Formation of collisional sheath in electronegative plasma with two species of positive ions. Physics of Plasmas, 2015, 22, .	0.7	18
231	Synthesis of nanoporous graphene oxide adsorbents by freeze-drying or microwave radiation: Characterization and hydrogen storage properties. International Journal of Hydrogen Energy, 2015, 40, 6844-6852.	3.8	30
232	Bioconjugation of lipase and cholesterol oxidase with graphene or graphene oxide. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	5
233	Controllable size-selective method to prepare graphene quantum dots from graphene oxide. Nanoscale Research Letters, 2015, 10, 55.	3.1	140
234	Photocatalytic decomposition of graphene over a ZnO surface under UV irradiation. Physical Chemistry Chemical Physics, 2015, 17, 15683-15686.	1.3	9
235	Investigating the surface state of graphene quantum dots. Nanoscale, 2015, 7, 7927-7933.	2.8	196
236	Graphene Oxide–Phosphor Hybrid Nanoscrolls with High Luminescent Quantum Yield: Synthesis, Structural, and X-ray Absorption Studies. ACS Applied Materials & Interfaces, 2015, 7, 5693-5700.	4.0	25
237	Nanopatterning of Suspended Graphene Films by Local Catalytic Etching Using Atomic Force Microscopy Equipped with an Ag-Coated Probe. Journal of Physical Chemistry C, 2015, 119, 11914-11921.	1.5	7
238	Green and fast synthesis of amino-functionalized graphene quantum dots with deep blue photoluminescence. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	27
239	Low temperature synthesis of graphite on Ni films using inductively coupled plasma enhanced CVD. Journal of Materials Chemistry C, 2015, 3, 5192-5198.	2.7	34

#	Article	IF	Citations
240	Synthesis of graphene oxide dots for excitation-wavelength independent photoluminescence at high quantum yields. Journal of Materials Chemistry C, 2015, 3, 4553-4562.	2.7	39
241	Carbon Quantum Dots and Applications in Photocatalytic Energy Conversion. ACS Applied Materials & Interfaces, 2015, 7, 8363-8376.	4.0	613
242	Photoluminescent graphene quantum dots for in vitro and in vivo bioimaging using long wavelength emission. RSC Advances, 2015, 5, 39399-39403.	1.7	42
243	Engineering optical properties of a graphene oxide metamaterial assembled in microfluidic channels. Optics Express, 2015, 23, 1265.	1.7	47
244	Observing and tuning the density distribution of localized states of monolayer graphene oxide by using external electric field. Applied Physics Letters, 2015, 106, .	1.5	6
245	Memristive behaviour in inkjet printed graphene oxide thin layers. RSC Advances, 2015, 5, 68565-68570.	1.7	49
246	<i>In-situ</i> Raman study of laser-induced graphene oxidation. Physica Status Solidi (B): Basic Research, 2015, 252, 2451-2455.	0.7	14
247	Graphene-Assisted Chemical Etching of Silicon Using Anodic Aluminum Oxides as Patterning Templates. ACS Applied Materials & Interfaces, 2015, 7, 24242-24246.	4.0	30
248	Imaging and spectrum of monolayer graphene oxide in external electric field. Carbon, 2015, 93, 843-850.	5.4	16
249	Thermal deoxygenation causes photoluminescence shift from UV to blue region in lyophilized graphene oxide. RSC Advances, 2015, 5, 74342-74346.	1.7	8
250	Restructured graphene sheets embedded carbon film by oxygen plasma etching and its tribological properties. Applied Surface Science, 2015, 357, 771-776.	3.1	16
251	Graphene quantum dots: In the crossroad of graphene, quantum dots and carbogenic nanoparticles. Current Opinion in Colloid and Interface Science, 2015, 20, 354-361.	3.4	39
252	One step synthesis of fluorescent carbon dots through pyrolysis of N-hydroxysuccinimide. Journal of Materials Chemistry C, 2015, 3, 789-795.	2.7	54
253	Fast Response and High Sensitivity ZnO/glass Surface Acoustic Wave Humidity Sensors Using Graphene Oxide Sensing Layer. Scientific Reports, 2014, 4, 7206.	1.6	149
254	Breakdown into nanoscale of graphene oxide: Confined hot spot atomic reduction and fragmentation. Scientific Reports, 2014, 4, 6735.	1.6	105
255	Production of reduced graphene oxide via hydrothermal reduction in an aqueous sulphuric acid suspension and its electrochemical behaviour. Journal of Solid State Electrochemistry, 2015, 19, 361-380.	1.2	78
256	Field emission properties of the graphenated carbon nanotube electrode. Applied Surface Science, 2015, 324, 174-178.	3.1	10
257	Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chemical Society Reviews, 2015, 44, 4672-4698.	18.7	220

		CITATION REPORT		
#	Article		IF	CITATIONS
258	Carbon quantum dots and their applications. Chemical Society Reviews, 2015, 44, 362	2-381.	18.7	3,811
259	Science and technology roadmap for graphene, related two-dimensional crystals, and l Nanoscale, 2015, 7, 4598-4810.	nybrid systems.	2.8	2,452
260	The Effect of Thermal Reduction on the Photoluminescence and Electronic Structures Oxides. Scientific Reports, 2014, 4, 4525.	of Graphene	1.6	106
261	Graphene via Molecule-Assisted Ultrasound-Induced Liquid-Phase Exfoliation: A Supran Approach. ChemistrySelect, 2016, 1, .	nolecular	0.7	0
263	Photoluminescence enhancement of graphene oxide emission by infiltration in an aper silicon multilayer. Optics Express, 2016, 24, 24413.	iodic porous	1.7	16
264	Making few-layer graphene photoluminescent by UV ozonation. Optical Materials Expr	ress, 2016, 6, 3527.	1.6	7
265	Passive Q-switched and Mode-locked Fiber Lasers Using Carbon-based Saturable Absor	bers. , 0, , .		7
266	Supramolecular Approaches to Graphene: From Selfâ€Assembly to Moleculeâ€Assisted Exfoliation. Advanced Materials, 2016, 28, 6030-6051.	l Liquidâ€₽hase	11.1	154
267	Graphene oxide nanocomposites for potential wearable solar cells—A review. Journal Research, 2016, 31, 1633-1647.	of Materials	1.2	8
268	A Novel Technique of Synthesis of Highly Fluorescent Carbon Nanoparticles from Broth and In-vivo Bioimaging of C. elegans. Journal of Fluorescence, 2016, 26, 1541-1548.	h Constituent	1.3	19
269	Nonlinear optical response of some Graphene oxide and Graphene fluoride derivatives. Microfluidics and Nanofluidics, 2016, 3, .	Optofluidics,	0.5	8
270	Assessing the temporal stability of surface functional groups introduced by plasma tre outer shells of carbon nanotubes. Scientific Reports, 2016, 6, 31565.	atments on the	1.6	40
271	Raman spectra investigation of the defects of chemical vapor deposited multilayer gra modified by oxygen plasma treatment. Superlattices and Microstructures, 2016, 99, 1	phene and 25-130.	1.4	23
272	Understanding the interaction between energetic ions and freestanding graphene tow 2D perforation. Nanoscale, 2016, 8, 8345-8354.	ards practical	2.8	64
273	Proteolytic disassembly of peptide-mediated graphene oxide assemblies for turn-on flu sensing of proteases. Nanoscale, 2016, 8, 12272-12281.	orescence	2.8	19
274	Photoluminescent Carbon Nanostructures. Chemistry of Materials, 2016, 28, 4085-41	28.	3.2	186
275	Graphene quantum dots: structural integrity and oxygen functional groups for high su utilization in lithium sulfur batteries. NPG Asia Materials, 2016, 8, e272-e272.	lfur/sulfide	3.8	105
276	Thermoresponsive, and reversibly emissive, core–shell nanogel composed of PNIPAM nanodots. Polymer Bulletin, 2016, 73, 2615-2625.	1 and carbon	1.7	8

# 277	ARTICLE Elucidating Quantum Confinement in Graphene Oxide Dots Based On Excitation-Wavelength-Independent Photoluminescence. Journal of Physical Chemistry Letters, 2016, 7,	IF 2.1	CITATIONS
278	2087-2092. Tuning the luminescence and optical properties of graphene oxide and reduced graphene oxide functionnalized with PVA. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	27
279	Inorganic nanoparticles for optical bioimaging. Advances in Optics and Photonics, 2016, 8, 1.	12.1	175
280	Controlled surface oxidation of multi-layered graphene anode to increase hole injection efficiency in organic electronic devices. 2D Materials, 2016, 3, 014003.	2.0	12
281	GRAPHENE DEVICES FOR HIGH-FREQUENCY ELECTRONICS AND THz TECHNOLOGY. , 2016, , 167-188.		1
282	Self-organized graphene-like boron nitride containing nanoflakes on copper by low-temperature N2 + H2 plasma. RSC Advances, 2016, 6, 87607-87615.	1.7	11
283	Template-free hydrothermal synthesis of amphibious fluorescent carbon nanorice towards anti-counterfeiting applications and unleashing its nonlinear optical properties. RSC Advances, 2016, 6, 99060-99071.	1.7	10
285	Observation of scattering parameters for bandgap-tuned graphene oxide under 488Ânm illumination. Carbon, 2016, 109, 453-460.	5.4	3
286	Dispersion of Carbon Nanomaterials. , 2016, , 247-263.		3
287	Photosensitive ZnO-Graphene Quantum Dot Hybrid Nanocomposite for Optoelectronic Applications. ChemistrySelect, 2016, 1, 1503-1509.	0.7	12
288	Open-Shell Character and Nonlinear Optical Properties of Nanographenes. , 2016, , 437-456.		3
289	Observing the Heterogeneous Electro-redox of Individual Single-Layer Graphene Sheets. ACS Nano, 2016, 10, 8434-8442.	7.3	11
290	Understanding reactivity, aromaticity and absorption spectra of carbon cluster mimic to graphene: a DFT study. RSC Advances, 2016, 6, 79768-79780.	1.7	18
291	Photo-induced Doping in GaN Epilayers with Graphene Quantum Dots. Scientific Reports, 2016, 6, 23260.	1.6	12
292	Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today, 2016, 11, 565-586.	6.2	563
293	Leaky graphene oxide with high quantum yield and dual-wavelength photoluminescence. Carbon, 2016, 108, 461-470.	5.4	21
294	Nanomaterials for optical data storage. Nature Reviews Materials, 2016, 1, .	23.3	261
295	High Color-Purity Green, Orange, and Red Light-Emitting Diodes Based on Chemically Functionalized Graphene Quantum Dots. Scientific Reports, 2016, 6, 24205.	1.6	72

	CITATION	Report	
#	Article	IF	CITATIONS
296	Optical behaviour of functional groups of graphene oxide. Materials Research Express, 2016, 3, 105604.	0.8	9
297	Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes. Scientific Reports, 2016, 6, 19028.	1.6	96
298	Partial Oxidized Arsenene: Emerging Tunable Direct Bandgap Semiconductor. Scientific Reports, 2016, 6, 24981.	1.6	33
299	One-Pot Synthesis of Hydrophilic and Hydrophobic N-Doped Graphene Quantum Dots via Exfoliating and Disintegrating Graphite Flakes. Scientific Reports, 2016, 6, 30426.	1.6	68
300	A cleaning method for reduced graphene oxide by inductively coupled plasma. , 2016, , .		1
301	Spin-orbital effects in metal-dichalcogenide semiconducting monolayers. Scientific Reports, 2016, 6, 24093.	1.6	60
302	Graphene quantum dots from graphite by liquid exfoliation showing excitation-independent emission, fluorescence upconversion and delayed fluorescence. Physical Chemistry Chemical Physics, 2016, 18, 21278-21287.	1.3	112
303	Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications. Nanoscale, 2016, 8, 14297-14340.	2.8	378
304	Mechanisms of graphene fabrication through plasma-induced layer-by-layer thinning. Carbon, 2016, 105, 496-509.	5.4	27
305	Preparation of large-area graphene oxide sheets with a high density of carboxyl groups using O2/H2 low-damage plasma. Surface and Coatings Technology, 2016, 303, 170-175.	2.2	19
306	Computing optical properties of ultraâ€ŧhin crystals. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 351-368.	6.2	15
307	Graphene quantum dots decorated with Fe ₃ O ₄ nanoparticles/functionalized multiwalled carbon nanotubes as a new sensing platform for electrochemical determination of <scp>l</scp> -DOPA in agricultural products. Analytical Methods, 2016, 8, 5861-5868.	1.3	27
308	Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles. Carbon, 2016, 100, 678-692.	5.4	288
309	Efficient synthesis of rice based graphene quantum dots and their fluorescent properties. RSC Advances, 2016, 6, 23518-23524.	1.7	68
310	One-step and controllable bipolar doping of reduced graphene oxide using TMAH as reducing agent and doping source for field effect transistors. Carbon, 2016, 100, 608-616.	5.4	25
311	The green reduction of graphene oxide. RSC Advances, 2016, 6, 27807-27828.	1.7	235
312	Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 2016, 116, 163-214.	23.0	163
313	Graphene oxide-based nanomaterials for efficient photoenergy conversion. Journal of Materials Chemistry A, 2016, 4, 2014-2048.	5.2	73

#	Article	IF	CITATIONS
314	Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications. Biosensors and Bioelectronics, 2017, 89, 123-135.	5.3	148
315	Direct growth of special-shape graphene on different templates by remote catalyzation of Cu nanoparticles. Journal of Materials Science and Technology, 2017, 33, 800-806.	5.6	13
316	Liquid-phase exfoliation (LPE) of graphite towards graphene: An ab initio study. Journal of Molecular Liquids, 2017, 230, 461-472.	2.3	50
317	Self-organized semiconductor nano-network on graphene. Nanotechnology, 2017, 28, 145602.	1.3	1
318	Light–matter interaction of 2D materials: Physics and device applications. Chinese Physics B, 2017, 26, 036802.	0.7	21
319	Reduced graphene oxide/TiO 2 nanotube composites for formic acid photodegradation. Applied Catalysis B: Environmental, 2017, 209, 203-213.	10.8	89
320	Recent progress on single-molecule nanocatalysis based on single-molecule fluorescence microscopy. Science Bulletin, 2017, 62, 290-301.	4.3	9
321	Magnetism in pristine and chemically reduced graphene oxide. Journal of Applied Physics, 2017, 121, .	1.1	58
322	Ion beam modification of two-dimensional materials: Characterization, properties, and applications. Applied Physics Reviews, 2017, 4, 011103.	5.5	168
323	Carbon nanodots functionalized with rhodamine and poly(ethylene glycol) for ratiometric sensing of Al ions in aqueous solution. Sensors and Actuators B: Chemical, 2017, 249, 59-65.	4.0	21
324	The phosphorescence and excitation-wavelength dependent fluorescence kinetics of large-scale graphene oxide nanosheets. RSC Advances, 2017, 7, 22684-22691.	1.7	13
325	Graphene-based flexible electronic devices. Materials Science and Engineering Reports, 2017, 118, 1-43.	14.8	194
326	Current and future directions in electron transfer chemistry of graphene. Chemical Society Reviews, 2017, 46, 4530-4571.	18.7	125
327	Chemical and morphological evaluation of chars produced from primary biomass constituents: Cellulose, xylan, and lignin. Biomass and Bioenergy, 2017, 104, 17-35.	2.9	62
328	Direct Observations of Graphene Dispersed in Solution by Twilight Fluorescence Microscopy. Journal of Physical Chemistry Letters, 2017, 8, 2425-2431.	2.1	6
329	Nickel plasma modification of graphene for high-performance non-enzymatic glucose sensing. Sensors and Actuators B: Chemical, 2017, 251, 842-850.	4.0	31
330	The diode characteristics and rectification effect of three nanodevice containing graphene and oxidized graphene nanoribbons: A density functional theory + non-equilibrium Green's function study. Computational Materials Science, 2017, 137, 125-133.	1.4	2
331	Origin of extraordinary luminescence shift in graphene quantum dots with varying excitation energy: An experimental evidence of localized sp2 carbon subdomain. Carbon, 2017, 118, 524-530.	5.4	29

#	Article	IF	Citations
332	Making Graphene Nanoribbons Photoluminescent. Nano Letters, 2017, 17, 4029-4037.	4.5	73
333	Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene. Nano Letters, 2017, 17, 120-127.	4.5	120
334	A simple process for the fabrication of large-area CVD graphene based devices via selective <i>in situ</i> functionalization and patterning. 2D Materials, 2017, 4, 011010.	2.0	16
335	Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. Journal of Materials Chemistry A, 2017, 5, 3717-3734.	5.2	853
336	Modifying optical properties of reduced/graphene oxide with controlled ozone and thermal treatment in aqueous suspensions. Nanotechnology, 2017, 28, 065705.	1.3	19
337	Effect of Surface Chemistry on the Fluorescence of Detonation Nanodiamonds. ACS Nano, 2017, 11, 10924-10934.	7.3	98
338	Synergistic oxidation of CVD graphene on Cu by oxygen plasma etching. Carbon, 2017, 125, 500-508.	5.4	31
339	White-light emission of blue-luminescent graphene quantum dots by europium (III) complex incorporation. Carbon, 2017, 124, 479-485.	5.4	36
340	Carbon dot-silica composite nanoparticle: an excitation-independent fluorescence material with tunable fluorescence. RSC Advances, 2017, 7, 43839-43844.	1.7	20
341	Facile One-Pot Synthesis of Highly Stable Graphene–Ag0 Hybrid Nanostructures with Enhanced Optical Properties. Journal of Physical Chemistry C, 2017, 121, 21591-21599.	1.5	6
342	Carbon nanoflake-nanoparticle interface: A comparative study on structure and photoluminescent properties of carbon nanoflakes synthesized on nanostructured gold and carbon by hot filament CVD. Carbon, 2017, 124, 391-402.	5.4	12
343	Graphene Quantum Dot Solid Sheets: Strong blue-light-emitting & photocurrent-producing band-gap-opened nanostructures. Scientific Reports, 2017, 7, 10850.	1.6	61
344	Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment. Scientific Reports, 2017, 7, 6411.	1.6	60
345	Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin. European Journal of Pharmaceutical Sciences, 2017, 109, 359-371.	1.9	79
346	Hierarchically structured graphene-carbon nanotube-cobalt hybrid electrocatalyst for seawater battery. Journal of Power Sources, 2017, 372, 31-37.	4.0	25
347	Visible light emission in graphene field effect transistors. Nano Futures, 2017, 1, 025004.	1.0	6
348	Chemical vapor deposition of partially oxidized graphene. RSC Advances, 2017, 7, 32209-32215.	1.7	4
349	Optical, photonic and optoelectronic properties of graphene, h-BN and their hybrid materials. Nanophotonics, 2017, 6, 943-976.	2.9	78

#	Article	IF	CITATIONS
350	Tuning the band gap and optical spectra of silicon-doped graphene: Many-body effects and excitonic states. Journal of Alloys and Compounds, 2017, 693, 1185-1196.	2.8	119
351	Surface amination of carbon nanoparticles for modification of epoxy resins: plasma-treatment vs. wet-chemistry approach. European Polymer Journal, 2017, 87, 422-448.	2.6	59
352	The quenching of silver nanoparticles photoluminescence by graphene oxide: spectroscopic and morphological investigations. Journal of Materials Science: Materials in Electronics, 2017, 28, 1804-1811.	1.1	17
353	Bioapplications of graphene constructed functional nanomaterials. Chemico-Biological Interactions, 2017, 262, 69-89.	1.7	45
354	Laser-patterned functionalized CVD-graphene as highly transparent conductive electrodes for polymer solar cells. Nanoscale, 2017, 9, 62-69.	2.8	50
355	pH dependent tunable photoluminescence of Polyaniline grafted Graphene Oxide (GO–PANI) nanocomposite. Journal of Luminescence, 2017, 181, 138-146.	1.5	15
356	6. Graphene via Molecule-Assisted Ultrasound- Induced Liquid-Phase Exfoliation: A Supramolecular Approach. , 2017, , .		0
357	Surface Modification of Carbon Nanofibers and Graphene Platelets Mixtures by Plasma Polymerization of Propylene. Journal of Nanomaterials, 2017, 2017, 1-10.	1.5	8
358	Fast and controlled fabrication of porous graphene oxide: application of AFM tapping for mechano-chemistry. Nanotechnology, 2018, 29, 185301.	1.3	4
359	Rapid Identification of the Layer Number of Large-Area Graphene on Copper. Chemistry of Materials, 2018, 30, 2067-2073.	3.2	23
360	Recent progress in plasma-assisted synthesis and modification of 2D materials. 2D Materials, 2018, 5, 032002.	2.0	58
361	Semiconductorversusgraphene quantum dots as fluorescent probes for cancer diagnosis and therapy applications. Journal of Materials Chemistry B, 2018, 6, 2690-2712.	2.9	40
362	Resistance Switching and Memristive Hysteresis in Visible-Light-Activated Adsorbed ZnO Thin Films. Scientific Reports, 2018, 8, 2184.	1.6	30
363	Highly Fluorescent Chiral Nâ€Sâ€Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism. Angewandte Chemie, 2018, 130, 2401-2406.	1.6	52
364	Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films. ACS Sustainable Chemistry and Engineering, 2018, 6, 4154-4163.	3.2	102
365	Raman spectroscopy of graphene under ultrafast laser excitation. Nature Communications, 2018, 9, 308.	5.8	70
366	Highly Fluorescent Chiral Nâ€Sâ€Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism. Angewandte Chemie - International Edition, 2018, 57, 2377-2382.	7.2	249
367	Making graphene luminescent by adsorption of an amphiphilic europium complex. Applied Physics Letters, 2018, 112, .	1.5	7

#	Article	IF	CITATIONS
368	Morphological transformations of BNCO nanomaterials: Role of intermediates. Applied Surface Science, 2018, 442, 682-692.	3.1	4
369	Recent advances in two-dimensional transition metal dichalcogenides-graphene heterostructured materials for electrochemical applications. Progress in Materials Science, 2018, 96, 51-85.	16.0	132
370	Solvatochromism in highly luminescent environmental friendly carbon quantum dots for sensing applications: Conversion of bio-waste into bio-asset. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 191, 498-512.	2.0	75
371	Ramanâ€based technique for measuring thermal conductivity of graphene and related materials. Journal of Raman Spectroscopy, 2018, 49, 106-120.	1.2	119
372	Chemical etching of a semiconductor surface assisted by single sheets of reduced graphene oxide. Carbon, 2018, 127, 681-687.	5.4	20
373	Two- and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices. Journal of Materials Chemistry A, 2018, 6, 702-734.	5.2	126
374	Sonochemically synthesized blue fluorescent functionalized graphene oxide as a drug delivery system. Ultrasonics Sonochemistry, 2018, 42, 124-133.	3.8	32
375	Engineering graphene properties by modulated plasma treatments. Carbon, 2018, 129, 869-877.	5.4	24
376	Toward Multi-Parametric Porous Silicon Transducers Based on Covalent Grafting of Graphene Oxide for Biosensing Applications. Frontiers in Chemistry, 2018, 6, 583.	1.8	8
377	Influence of molecular fluorophores on the research field of chemically synthesized carbon dots. Nano Today, 2018, 23, 124-139.	6.2	181
378	Carbon Nanodots: A Review—From the Current Understanding of the Fundamental Photophysics to the Full Control of the Optical Response. Journal of Carbon Research, 2018, 4, 67.	1.4	137
379	Covalent grafting of graphene oxide on functionalized macroporous silicon. Open Material Sciences, 2018, 4, 15-22.	0.8	5
380	Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects. Nanophotonics, 2018, 8, 63-97.	2.9	254
381	Optoelectronics with single layer group-VIB transition metal dichalcogenides. Nanophotonics, 2018, 7, 1589-1600.	2.9	18
382	High density H2 and He plasmas: Can they be used to treat graphene?. Journal of Applied Physics, 2018, 124, .	1.1	10
383	Plasma Treatment of Graphene Oxide. , 2018, , .		3
384	Investigation on photoluminescence emission of (reduced) graphene oxide paper. IOP Conference Series: Materials Science and Engineering, 2018, 292, 012097.	0.3	12
385	Carbon Dots in Water and Mesoporous Matrix: Chasing the Origin of their Photoluminescence. Journal of Physical Chemistry C, 2018, 122, 25638-25650.	1.5	50

			_
#	ARTICLE	IF	CITATIONS
386	Oriented Carbon Nanostructures by Plasma Processing: Recent Advances and Future Challenges. Micromachines, 2018, 9, 565.	1.4	56
387	Blue fluorescent graphene oxide hybrid: Synthesis, characterization, and application as a drug delivery system. Journal of Drug Delivery Science and Technology, 2018, 48, 355-362.	1.4	10
388	Direct Synthesis of Graphene Quantum Dots with Different Fluorescence Properties by Oxidation of Graphene Oxide Using Nitric Acid. Applied Sciences (Switzerland), 2018, 8, 1303.	1.3	41
389	Upconversion Luminescence of Graphene Oxide through Hybrid Waveguide. Journal of Physical Chemistry C, 2018, 122, 16866-16871.	1.5	4
390	Optical Characterization of Nanomaterials. , 2018, , 269-299.		13
391	Characterisation of the heterojunction microstructure for electrodeposited vertical ZnO nanorods on CVD-graphene. Materials Research Express, 2018, 5, 085031.	0.8	6
392	Emerging photonic architectures in two-dimensional opto-electronics. Chemical Society Reviews, 2018, 47, 6824-6844.	18.7	71
393	Vibration analysis of defected and pristine triangular single-layer graphene nanosheets. Current Applied Physics, 2018, 18, 1327-1337.	1.1	13
394	Carbon dots with induced surface oxidation permits imaging at single-particle level for intracellular studies. Nanoscale, 2018, 10, 18510-18519.	2.8	26
395	Luminescence tunability of europium functionalized graphene oxide sheets. Materials Research Express, 2018, 5, 065039.	0.8	3
396	Luminescence in 2D Materials and van der Waals Heterostructures. Advanced Optical Materials, 2018, 6, 1701296.	3.6	58
397	Printing of Graphene and Related 2D Materials. , 2019, , .		25
398	2D Material Production Methods. , 2019, , 53-101.		2
399	The pivotal role of plasmachemistry in determining a sustainable future for graphene innovations. Rendiconti Lincei, 2019, 30, 563-572.	1.0	2
400	Facile ultrasonic synthesized NH2-carbon quantum dots for ultrasensitive Co2+ ion detection and cell imaging. Talanta, 2019, 205, 120121.	2.9	65
401	Experimental and molecular modeling of interaction of carbon quantum dots with glucose. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	10
402	Efficient green emission from edge states in graphene perforated by nitrogen plasma treatment. 2D Materials, 2019, 6, 045021.	2.0	6
403	Graphene oxide nanoparticles in the interstellar medium. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 490, L17-L20.	1.2	11

#	Article	IF	Citations
404	Blue and green luminescent carbon nanodots from controllable fuel-rich flame reactors. Scientific Reports, 2019, 9, 14566.	1.6	33
405	Ionic Conductance through Graphene: Assessing Its Applicability as a Proton Selective Membrane. ACS Nano, 2019, 13, 12109-12119.	7.3	28
408	Luminous nanocomposite: a future material for optoelectronic applications. Materials Research Express, 2019, 6, 115629.	0.8	1
409	Graphene(s): Tuning their Nonlinear Optical Response. , 2019, , .		1
410	Excitons in Carbonic Nanostructures. Journal of Carbon Research, 2019, 5, 71.	1.4	41
411	Nonradiative Excited‣tate Decay via Conical Intersection in Graphene Nanostructures. ChemPhysChem, 2019, 20, 2754-2758.	1.0	7
412	Effects of π-electron in humidity sensing of artificially stacked graphene bilayers modified with carboxyl and hydroxyl groups. Sensors and Actuators B: Chemical, 2019, 301, 127020.	4.0	10
413	Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chemical Reviews, 2019, 119, 11631-11717.	23.0	207
414	Fluorescence response from the surface states of nitrogen-doped carbon nanodots: evidence of a heterogeneous population of molecular-sized fluorophores. Photochemical and Photobiological Sciences, 2019, 18, 54-63.	1.6	5
415	Technical imprint of polymer nanocomposite comprising graphene quantum dot. Polymer-Plastics Technology and Materials, 2019, 58, 597-617.	0.6	5
416	Atomically-tailored graphene oxide displaying enhanced fluorescence for the improved optical sensing of MMP-2. Sensors and Actuators B: Chemical, 2019, 284, 485-493.	4.0	3
417	Graphene Oxide: From Tunable Structures to Diverse Luminescence Behaviors. Advanced Science, 2019, 6, 1900855.	5.6	70
418	Controllable Formation of Luminescent Carbon Quantum Dots Mediated by the Fano Resonances Formed in Oligomers of Gold Nanoparticles. Advanced Materials, 2019, 31, e1901371.	11.1	15
419	Revealing the trap emission in graphene-based nanostructures. Carbon, 2019, 150, 439-445.	5.4	6
420	Chemical etching of silicon assisted by graphene oxide. Japanese Journal of Applied Physics, 2019, 58, 050924.	0.8	11
421	Advancement in science and technology of carbon dot-polymer hybrid composites: a review. Functional Composites and Structures, 2019, 1, 022001.	1.6	99
422	Carbon quantum dots: an emerging material for optoelectronic applications. Journal of Materials Chemistry C, 2019, 7, 6820-6835.	2.7	225
423	Enhancing the Interfacial Strength of Carbon Fiber/Poly(ether ether ketone) Hybrid Composites by Plasma Treatments. Polymers, 2019, 11, 753.	2.0	36

CITATION REPORT ARTICLE IF CITATIONS Concentration-tuned multicolor carbon dots: microwave-assisted synthesis, characterization, 1.4 23 mechanism and applications. New Journal of Chemistry, 2019, 43, 8950-8957. Graphene oxide photonics. Journal of Optics (United Kingdom), 2019, 21, 053001. 1.0 Tuning the response selectivity of graphene oxide fluorescence by organometallic complexation for 2.8 9 neurotransmitter detection. Nanoscale, 2019, 11, 5254-5264. Exploring the fluorescence properties of reduced graphene oxide with tunable device performance. 1.8 Diamond and Related Materials, 2019, 94, 59-64. Advanced transferring of large-area freestanding graphene films by using fullerenes. 1.3 6 Nanotechnology, 2019, 30, 26LT01. Graphene based emergent nanolights: a short review on the synthesis, properties and application. 1.3 94 Research on Chemical Intermediates, 2019, 45, 3823-3853. Shedding Light on Pseudocapacitive Active Edges of Single-Layer Graphene Nanoribbons as 2.5 18 High-Capacitance Supercapacitors. ACS Applied Energy Materials, 2019, 2, 3665-3675. Structure and photoluminescence properties of MoO3â''/graphene nanoflake hybrid nanomaterials 3.1 formed via surface growth. Applied Surface Science, 2019, 480, 1054-1062. Amphipathic carbon dots with solvent-dependent optical properties and sensing application. Optical 1.7 52 Materials, 2019, 89, 224-230. Reduced graphene oxide nanocomposites for optoelectronics applications. Applied Physics A: 1.1 Materials Science and Processing, 2019, 125, 1. Reaction Kinetics of Reducing Graphene Oxide at Individual Sheet Level Studied by Twilight 1.5 3 Fluorescence Microscopy. Journal of Physical Chemistry C, 2019, 123, 6881-6887. Fundamentals of Fascinating Graphene Nanosheets: A Comprehensive Study. Nano, 2019, 14, 1930003. 0.5 Tris-(2-aminoethyl)amine-Intercalated Graphene Oxide as an Efficient 2D Material for Cerium-Ion 1.6 10 Fluorescent Sensor Applications. ACS Omega, 2019, 4, 22431-22437. Synthesis and characterization of graphene quantum dots. Physical Sciences Reviews, 2019, 5, . 0.8 Simple preparation of graphene quantum dots with controllable surface states from graphite. RSC 1.7 24 Advances, 2019, 9, 38447-38453. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, 336 and chemiluminescence. Talanta, 2019, 196, 456-478.

	Engineering Journal, 2019, 360, 673-679.	0.0	12
441	<i>In Vivo</i> Cell Tracking, Reactive Oxygen Species Scavenging, and Antioxidative Gene Down Regulation by Long-Term Exposure of Biomass-Derived Carbon Dots. ACS Biomaterials Science and Engineering, 2019, 5, 346-356.	2.6	34

66

41

Microwave-assisted liquid phase exfoliation of graphite fluoride into fluorographene. Chemical

#

424

426

427

428

429

430

431

432

434

436

438

#	Article	IF	CITATIONS
442	Energyâ€Dependent Spectral Analysis of Photonâ€Assisted Carrier Transport at Resonance in Graphene Oxide. Advanced Optical Materials, 2019, 7, 1800861.	3.6	0
443	Preparation and photoluminescence properties of graphene quantum dots by decomposition of graphene-encapsulated metal nanoparticles derived from Kraft lignin and transition metal salts. Journal of Luminescence, 2019, 206, 403-411.	1.5	23
444	Investigation of photoluminescence behavior of reduced graphene quantum dots. Inorganic Chemistry Communication, 2019, 99, 199-205.	1.8	20
445	Nanotechnology and chemical engineering as a tool to bioprocess microalgae for its applications in therapeutics and bioresource management. Critical Reviews in Biotechnology, 2020, 40, 46-63.	5.1	24
446	Flexible polymer composite films incorporated with Li-ion/reduced graphene oxide: excellent optical and photoluminescence performance. Applied Nanoscience (Switzerland), 2020, 10, 401-410.	1.6	4
447	Inorganic 2D Luminescent Materials: Structure, Luminescence Modulation, and Applications. Advanced Optical Materials, 2020, 8, 1900978.	3.6	37
448	Quasi van der Waals epitaxy nitride materials and devices on two dimension materials. Nano Energy, 2020, 69, 104463.	8.2	48
449	Chemical sensor platforms based on fluorescence resonance energy transfer (FRET) and 2D materials. TrAC - Trends in Analytical Chemistry, 2020, 124, 115797.	5.8	60
450	Graphene-dendritic polymer hybrids: synthesis, properties, and applications. Journal of the Iranian Chemical Society, 2020, 17, 735-764.	1.2	9
451	Electron impact dissociation of CO ₂ . Plasma Sources Science and Technology, 2020, 29, 01LT01.	1.3	33
452	Graphene based sensors. Comprehensive Analytical Chemistry, 2020, , 175-199.	0.7	56
453	Recent advances in chiral carbonized polymer dots: From synthesis and properties to applications. Nano Today, 2020, 34, 100953.	6.2	95
454	Characterizations of nanoscale two-dimensional materials and heterostructures. , 2020, , 55-90.		1
455	In-situ characterisation of the defect density in reduced graphene oxide under electrical stress using fluorescence microscopy. International Journal of Nanotechnology, 2020, 17, 57.	0.1	0
456	Nanolasers Based on 2D Materials. Laser and Photonics Reviews, 2020, 14, 2000271.	4.4	47
457	Insight into the photophysics of strong dual emission (blue & green) producing graphene quantum dot clusters and their application towards selective and sensitive detection of trace level Fe ³⁺ and Cr ⁶⁺ ions. RSC Advances, 2020, 10, 26613-26630.	1.7	11
458	Two-Channel Graphene pH Sensor Using Semi-Ionic Fluorinated Graphene Reference Electrode. Sensors, 2020, 20, 4184.	2.1	8
459	Synergistic CO ₂ â€Sieving from Polymer with Intrinsic Microporosity Masking Nanoporous Singleâ€Layer Graphene. Advanced Functional Materials, 2020, 30, 2003979.	7.8	43

#	Article	IF	CITATIONS
460	Oxygen migration and optical properties of coronene oxides and their persulfurated derivatives: insight into the electric field effect and the oxygen-site dependence. Physical Chemistry Chemical Physics, 2020, 22, 20078-20086.	1.3	2
461	Subpicosecond Charge Separation Time Scale at Graphene Quantum Dot Surface. Journal of Physical Chemistry C, 2020, 124, 24115-24125.	1.5	12
462	Gas separation using graphene nanosheet: insights from theory and simulation. Journal of Molecular Modeling, 2020, 26, 322.	0.8	5
463	Graphene Nanoplatelets-Based Ni-Zeolite Composite Catalysts for Heptane Hydrocracking. Journal of Carbon Research, 2020, 6, 31.	1.4	5
464	Printing of Crumpled CVD Graphene via Blister-Based Laser-Induced Forward Transfer. Nanomaterials, 2020, 10, 1103.	1.9	13
465	Nanoparticle mass detection by single-layer triangular graphene sheets, the extraordinary geometry for detection of nanoparticles. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	4
466	Optical properties of graphene oxide thin film reduced by low-cost diode laser. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	5
467	Doping Nitrogen into Q-Graphene by Plasma Treatment toward Peroxidase Mimics with Enhanced Catalysis. Analytical Chemistry, 2020, 92, 5152-5157.	3.2	37
468	Machine-intelligent inkjet-printed α-Fe2O3/rGO towards NO2 quantification in ambient humidity. Sensors and Actuators B: Chemical, 2020, 321, 128446.	4.0	20
469	Enhanced Stability and Amplified Signal Output of Single-Wall Carbon Nanotube-Based NH3-Sensitive Electrode after Dual Plasma Treatment. Nanomaterials, 2020, 10, 1026.	1.9	1
470	Optoelectronic and photoelectric properties and applications of graphene-based nanostructures. Materials Today Physics, 2020, 13, 100196.	2.9	42
471	Rational Design of Photo-Electrochemical Hybrid Devices Based on Graphene and Chlamydomonas reinhardtii Light-Harvesting Proteins. Scientific Reports, 2020, 10, 3376.	1.6	9
472	Bio-template assisted hierarchical ZnO superstructures coupled with graphene quantum dots for enhanced water oxidation kinetics. Solar Energy, 2020, 199, 39-46.	2.9	13
473	Catalytic Properties of Chemically Modified Graphene Sheets to Enhance Etching of Ge Surface in Water. Journal of Physical Chemistry C, 2020, 124, 6121-6129.	1.5	12
474	Solution processed graphene quantum dots decorated ZnO nanoflowers for mediating photoluminescence. Applied Surface Science, 2020, 510, 145407.	3.1	10
475	Preparation and characterization of graphene. , 2020, , 51-90.		1
476	Ultrasensitive grapheneâ€5i positionâ€sensitive detector for motion tracking. InformaÄnÃ-Materiály, 2020, 2, 761-768.	8.5	20
477	The correlation between diesel soot chemical structure and reactivity. Carbon, 2020, 161, 736-749.	5.4	42

#	Article	IF	CITATIONS
478	Making Graphene Luminescent by Direct Laser Writing. Journal of Physical Chemistry C, 2020, 124, 8371-8377.	1.5	11
479	Glowing photoluminescene in carbon-based nanodots: current state and future perspectives. Journal of Materials Science, 2020, 55, 8769-8792.	1.7	22
480	Nanostructured graphene materials utilization in fuel cells and batteries: A review. Journal of Energy Storage, 2020, 29, 101386.	3.9	50
481	Low-dimensional materials as saturable absorbers for pulsed waveguide lasers. JPhys Photonics, 2020, 2, 031001.	2.2	6
482	Carbon quantum dots modified oxygen doped carbon nitride nanosheets with enhanced hydrogen evolution under visible light irradiation. Journal of Molecular Structure, 2021, 1229, 129585.	1.8	7
483	Nitrogen and fluorine co-doped green fluorescence carbon dots as a label-free probe for determination of cytochrome c in serum and temperature sensing. Journal of Colloid and Interface Science, 2021, 586, 683-691.	5.0	35
484	Non-viral, direct neuronal reprogramming from human fibroblast using a polymer-functionalized nanodot. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102316.	1.7	5
485	Controlled defect formation and heteroatom doping in monolayer graphene using active oxygen species under ultraviolet irradiation. Carbon, 2021, 171, 55-61.	5.4	20
486	Recent Advance in Carbon Dots: From Properties to Applications. Chinese Journal of Chemistry, 2021, 39, 1364-1388.	2.6	24
487	Concentrationâ€Dependent Photoluminescence Properties of Graphene Oxide. Advanced Photonics Research, 2021, 2, 2000045.	1.7	5
488	Enhancing Performance of GaAs Photodiodes via Monolithic Integration of Selfâ€Formed Graphene Quantum Dots and Antireflection Surface Texturing. Advanced Photonics Research, 2021, 2, 2000134.	1.7	2
489	The optical properties and carrier mobility of MH ₃ (M = Co, Rh and Ir) monolayers. Physical Chemistry Chemical Physics, 2021, 23, 18078-18084.	1.3	3
490	Graphene modification based on plasma technologies. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 095208.	0.2	3
491	Graphene-Based Nanomaterials: Introduction, Structure, Synthesis, Characterization, and Properties. , 2021, , 23-48.		0
492	Recent advances in graphene quantum dot-based optical and electrochemical (bio)analytical sensors. Materials Advances, 2021, 2, 5513-5541.	2.6	50
493	The use of sample positioning to control defect creation by oxygen plasma in isotopically labelled bilayer graphene membranes. RSC Advances, 2021, 11, 10316-10322.	1.7	3
494	Formation of Carbon Quantum Dots via Hydrothermal Carbonization: Investigate the Effect of Precursors. Energies, 2021, 14, 986.	1.6	27
495	Stacking-Specific Reversible Oxidation of Bilayer Graphene. Chemistry of Materials, 2021, 33, 1249-1256.	3.2	4

#	Article	IF	CITATIONS
496	Optoelectronic Properties of Polycyclic Benzenoid Hydrocarbons of Various Sizes and Shapes for Donorâ€i€â€Acceptor Systems: A DFT Study. ChemistrySelect, 2021, 6, 2760-2769.	0.7	7
497	Enhanced Optical and Electrical Properties of Graphene Oxide-Silver Nanoparticles Nanocomposite Film by Thermal Annealing in the Air. Russian Journal of Applied Chemistry, 2021, 94, 402-409.	0.1	4
498	Facile synthesis and performance of pH/temperature dual-response hydrogel containing lignin-based carbon dots. International Journal of Biological Macromolecules, 2021, 175, 516-525.	3.6	34
499	Cold RF oxygen plasma treatment of graphene oxide films. Journal of Materials Science: Materials in Electronics, 2021, 32, 15718-15731.	1.1	7
500	Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes. ACS Applied Materials & Interfaces, 2021, 13, 29926-29935.	4.0	23
501	Graphene plasmon for optoelectronics. Reviews in Physics, 2021, 6, 100054.	4.4	54
502	An adequate avenue towards well-designed PBDT-DTNT:PCBM active layers via quantum dot/conductive polymer configurations. Journal of Industrial and Engineering Chemistry, 2021, 99, 431-442.	2.9	0
503	Single-layered graphene quantum dots with self-passivated layer from xylan for visual detection of trace chromium(Vl). Chemical Engineering Journal, 2022, 435, 131833.	6.6	23
504	Effect of Oxygen Plasma Treatment on the Structure and Mechanical Properties of Bilayer Graphene Studied by Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2021, 125, 19345-19352.	1.5	6
505	Selective Etching of Semiconductor Surfaces by Catalytic Activity of Nanocarbon. Vacuum and Surface Science, 2021, 64, 352-357.	0.0	0
506	Raman probing carbon & aqueous electrolytes interfaces and molecular dynamics simulations towards understanding electrochemical properties under polarization conditions in supercapacitors. Journal of Energy Chemistry, 2021, 60, 279-292.	7.1	24
507	Advances in non-equilibrium \$\$hbox {CO}_2\$\$ plasma kinetics: a theoretical and experimental review. European Physical Journal D, 2021, 75, 1.	0.6	47
508	Mechanism study on NO removal over the CQDs@MIL-100 (Fe) composite photocatalyst. Environmental Technology and Innovation, 2021, 24, 101809.	3.0	9
510	Carbon-based heterogeneous photocatalysts for water cleaning technologies: a review. Environmental Chemistry Letters, 2021, 19, 643-668.	8.3	32
511	Functionalized graphene-based nanocomposites for smart optoelectronic applications. Nanotechnology Reviews, 2021, 10, 605-635.	2.6	28
512	Optical Properties of Polymer Functionalized Graphene: Application as Optical Sensor. RSC Polymer Chemistry Series, 2021, , 133-163.	0.1	0
513	Quantum dots in cell imaging and their safety issues. Journal of Materials Chemistry B, 2021, 9, 5765-5779.	2.9	57
514	Carbon-based Nanomaterials in Analytical Chemistry. RSC Detection Science, 2018, , 1-36.	0.0	10

#	Article	IF	CITATIONS
515	Experimental and theoretical inquiry into optical properties of graphene derivatives. Nanotechnology, 2021, 32, 015709.	1.3	3
516	Tunable Etching of CVD Graphene for Transfer Printing of Nanoparticles Driven by Desorption of Contaminants with Low Temperature Annealing. ECS Journal of Solid State Science and Technology, 2020, 9, 093006.	0.9	2
517	Preparation of Organic Light-Emitting Diode Using Coal Tar Pitch, a Low-Cost Material, for Printable Devices. PLoS ONE, 2013, 8, e62903.	1.1	6
518	Interaction of plasma with Graphene Oxide: A review. SSRG International Journal of Engineering Trends and Technology, 2017, 49, 128-136.	0.3	6
519	Oxygen Plasma/Bismuth Modified Inkjet Printed Graphene Electrode for the Sensitive Simultaneous Detection of Lead and Cadmium. American Journal of Analytical Chemistry, 2020, 11, 1-14.	0.3	2
520	Singular Sheet Etching of Graphene with Oxygen Plasma. Nano-Micro Letters, 2014, 6, 116.	14.4	3
521	Direct Comparison of Optical Properties from Graphene Oxide Quantum Dots and Graphene Oxide. Applied Science and Convergence Technology, 2015, 24, 111-116.	0.3	5
522	Research status and development graphene devices using silicon as the subtrate. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 218102.	0.2	5
523	Synthesis, Properties and Applications of Luminescent Carbon Dots. Indian Institute of Metals Series, 2021, , 421-460.	0.2	2
524	Permeation pathway of two hydrophobic carbon nanoparticles across a lipid bilayer. Journal of Chemical Sciences, 2021, 133, 1.	0.7	6
525	Microbial inhibition and biosensing with multifunctional carbon dots: Progress and perspectives. Biotechnology Advances, 2021, 53, 107843.	6.0	24
526	Near-Infrared Photoluminescence Spectral Imaging of Chemically Oxidized Graphene Flakes. E-Journal of Surface Science and Nanotechnology, 2012, 10, 513-517.	0.1	1
527	Carbon-Based Nanostructures. Integrated Analytical Systems, 2014, , 3-31.	0.4	0
528	Graphene. , 2013, , 1-30.		0
529	Functionalization of Carbon Nanocomposites with Ruthenium Bipyridine and Terpyridine Complex. Advances in Chemical and Materials Engineering Book Series, 2014, , 26-61.	0.2	0
530	Graphene and Carbon Dots in Mesoporous Materials. , 2016, , 1-30.		0
531	Graphene and Carbon Dots in Mesoporous Materials. , 2018, , 2339-2368.		0
532	Fluorescent Carbon Nanostructures. , 2020, , 357-399.		Ο

#	Article	IF	CITATIONS
533	Tracking the complete degradation lifecycle of poly(ethyl cyanoacrylate): From induced photoluminescence to nitrogen-doped nano-graphene precursor residue. Polymer Degradation and Stability, 2022, 195, 109772.	2.7	2
534	Far-ultraviolet Absorption and Photoluminescence of Monolayer Graphene and Its Implications for Extended Red Emission. Astrophysical Journal, 2020, 901, 103.	1.6	3
535	In situ functionalization of graphene. 2D Materials, 2021, 8, 015022.	2.0	5
536	Transforming Carbon Black into Graphene Oxide Quantum Dots by Pulsed Laser Ablation in Ethanol. Journal of Korean Institute of Metals and Materials, 2020, 58, 808-814.	0.4	3
537	Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. Nanoscale Research Letters, 2021, 16, 167.	3.1	36
538	Phonon Bottleneck in Temperature-Dependent Hot Carrier Relaxation in Graphene Oxide. Journal of Physical Chemistry C, 2021, 125, 26583-26589.	1.5	4
539	Recent advances in arsenene nanostructures towards prediction, properties, synthesis and applications. Surfaces and Interfaces, 2022, 28, 101610.	1.5	8
540	N-doped graphene quantum dots from graphene oxide and dendrimer and application in photothermal therapy: An experimental and theoretical study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128066.	2.3	10
541	Novel 2D Photocatalyst of Single Atom-Dispersed Copper and Carbon Quantum Dots Co-Loaded with Ultrathin Ni-MOL for Degradation of Tetracycline. SSRN Electronic Journal, 0, , .	0.4	0
542	Graphene-Based Nanomaterials for Biomedical Imaging. Advances in Experimental Medicine and Biology, 2022, 1351, 125-148.	0.8	7
543	Micro-replication platform for studying the structural effect of seed surfaces on wetting properties. Scientific Reports, 2022, 12, 5607.	1.6	3
544	Picosecond energy transfer in a transition metal dichalcogenide–graphene heterostructure revealed by transient Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119726119.	3.3	16
545	Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coordination Chemistry Reviews, 2022, 462, 214523.	9.5	85
546	Synthesis and Characterization of Metallic Janus MoSH Monolayer. ACS Nano, 2021, 15, 20319-20331.	7.3	47
548	Recent trends in covalent functionalization of 2D materials. Physical Chemistry Chemical Physics, 2022, 24, 10684-10711.	1.3	20
549	Recent advances in graphene-based polymer composite scaffolds for bone/cartilage tissue engineering. Journal of Drug Delivery Science and Technology, 2022, 72, 103360.	1.4	5
550	Manufacturable biosensors based on graphene films. , 2022, , 243-307.		0
551	Optical Study of Fewâ€Layer Graphene Treated by Oxygen Plasma. Physica Status Solidi (B): Basic Research, 0, , 2200197.	0.7	3

#	Article	IF	CITATIONS
552	Developing green and sustainable concrete in integrating with different urban wastes. Journal of Cleaner Production, 2022, 368, 133057.	4.6	20
554	Modifications of Epitaxial Graphene on SiC for the Electrochemical Detection and Identification of Heavy Metal Salts in Seawater. Sensors, 2022, 22, 5367.	2.1	5
555	Carbon-Related Materials: Graphene and Carbon Nanotubes in Semiconductor Applications and Design. Micromachines, 2022, 13, 1257.	1.4	40
556	Vapor-Phase Chemical Etching of Silicon Assisted by Graphene Oxide for Microfabrication and Microcontact Printing. ACS Applied Nano Materials, 2022, 5, 11707-11714.	2.4	4
557	First-principles investigation of interaction between the atomic oxygen species and carbon nanostructures. Carbon Trends, 2022, 9, 100201.	1.4	4
558	Carbon Nanostructure/Zeolite Y Composites as Supports for Monometallic and Bimetallic Hydrocracking Catalysts. Nanomaterials, 2022, 12, 3246.	1.9	2
559	Synthesis of electrically conducting and thermally stable photoluminescent anthracene nanorods. Materials Chemistry and Physics, 2022, 292, 126878.	2.0	2
560	Optical properties of reduced graphene oxide sheets. , 0, , 209-218.		1
561	Intrinsic and engineered properties of black phosphorus. Materials Today Physics, 2022, 28, 100895.	2.9	9
562	Lignin-derived carbon quantum dots/Ni-MOL heterojunction from red phosphorus-assisted ball milling pretreatment and their application in photocatalysis: An insight from experiment and DFT calculation. Industrial Crops and Products, 2022, 189, 115829.	2.5	4
563	Electronic-level deciphering of the desalination mechanism of high-performance graphenylene membranes. Journal of Membrane Science, 2022, 664, 121068.	4.1	9
564	Effect of the oxidation degree on the bandgap of graphene oxides by Tour method. , 2022, , .		1
565	Evaluation of Absorption and Photoluminescence in Graphene Oxide Obtained Through a Simple Route. Journal of the Institution of Engineers (India): Series D, O, , .	0.6	0
566	Bioimaging applications of carbon quantum dots. , 2023, , 239-261.		0
567	Emerging Trends of Carbonâ \in Based Quantum Dots: Nanoarchitectonics and Applications. Small, 2023, 19, .	5.2	33
568	Synthesis of carbon quantum dots. , 2023, , 39-54.		0
569	Tunable synthesis of carbon quantum dots from the biomass of spent tea leaves as supercapacitor electrode. Materials Today Communications, 2023, 34, 105479.	0.9	6
570	Carbon Quantum Dots: Synthesis, Structure, Properties, and Catalytic Applications for Organic Synthesis. Catalysts, 2023, 13, 422.	1.6	21

#	Article	IF	CITATIONS
571	Fast O Atom Exchange Diagnosed by Isotopic Tracing as a Probe of Excited States in Nonequilibrium CO ₂ –CO–O ₂ Plasmas. Journal of Physical Chemistry C, 2023, 127, 6135-6151.	1.5	1
572	Some Aspects of Novel Materials from Optical to THz Engineering. Progress in Optical Science and Photonics, 2023, , 59-80.	0.3	1
574	Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis. RSC Advances, 2023, 13, 19173-19194.	1.7	2
575	Fluorescent Nanomaterials and Its Application in Biomedical Engineering. Advances in Digital Crime, Forensics, and Cyber Terrorism, 2023, , 164-186.	0.4	6