The Effect of Diet on the Human Gut Microbiome: A Me Gnotobiotic Mice

Science Translational Medicine

1, 6ra14

DOI: 10.1126/scitranslmed.3000322

Citation Report

-				_				
	IT/	\TI	ON	רו ו	ED.	$\cap I$	т	

#	Article	IF	CITATIONS
1	The Human Intestinal Microbiota and Microbiome. , 0, , 635-644.		0
2	Gut Check: Testing a Role for the Intestinal Microbiome in Human Obesity. Science Translational Medicine, 2009, 1, 6ps7.	12.4	24
3	Obesity, Metabolic Syndrome, and Microbiota. Journal of Clinical Gastroenterology, 2010, 44, S16-S18.	2.2	98
4	Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14691-14696.	7.1	4,561
5	Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB Journal, 2010, 24, 4948-4959.	0.5	425
6	Dairy Livestock Methane Remediation and Global Warming. Journal of Community Health, 2010, 35, 500-502.	3.8	11
7	Alignment and clustering of phylogenetic markers - implications for microbial diversity studies. BMC Bioinformatics, 2010, 11, 152.	2.6	63
8	Liver fatty acid-binding protein and obesity. Journal of Nutritional Biochemistry, 2010, 21, 1015-1032.	4.2	180
9	Creating and characterizing communities of human gut microbes in gnotobiotic mice. ISME Journal, 2010, 4, 1094-1098.	9.8	116
10	Postprandial remodeling of the gut microbiota in Burmese pythons. ISME Journal, 2010, 4, 1375-1385.	9.8	229
11	Germâ€free C57BL/6J mice are resistant to highâ€fatâ€dietâ€induced insulin resistance and have altered cholesterol metabolism. FASEB Journal, 2010, 24, 4948-4959.	0.5	321
12	Gut Microbial Gene Expression in Mother-Fed and Formula-Fed Piglets. PLoS ONE, 2010, 5, e12459.	2.5	98
13	Microbial Community Development in a Dynamic Gut Model Is Reproducible, Colon Region Specific, and Selective for <i>Bacteroidetes</i> and <i>Clostridium</i> Cluster IX. Applied and Environmental Microbiology, 2010, 76, 5237-5246.	3.1	272
14	Probiotics and Obesity. Annals of Nutrition and Metabolism, 2010, 57, 20-23.	1.9	18
15	A Microbe-Dependent Viral Key to Crohn's Box. Science Translational Medicine, 2010, 2, 43ps39.	12.4	5
16	Understanding the Extent and Sources of Variation in Gut Microbiota Studies; a Prerequisite for Establishing Associations with Disease. Diversity, 2010, 2, 1085-1096.	1.7	8
17	Deficits in gastrointestinal responses controlling food intake and body weight. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1423-R1439.	1.8	54
18	The Human Microbiome Project, Personalized Medicine and the Birth of Pharmacomicrobiomics.	0.2	72

#	Article	IF	CITATIONS
19	Intestinal microbiota and blue baby syndrome. Gut Microbes, 2010, 1, 359-366.	9.8	22
20	Les lipopolysaccharides bactériens et les maladies métaboliques. Cahiers De Nutrition Et De Dietetique, 2010, 45, 114-121.	0.3	0
21	Obesity, Diabetes, and Gut Microbiota. Diabetes Care, 2010, 33, 2277-2284.	8.6	557
22	Genetics and Environmental Interactions Shape the Intestinal Microbiome to Promote Inflammatory Bowel Disease Versus Mucosal Homeostasis. Gastroenterology, 2010, 139, 1816-1819.	1.3	156
23	Adapting functional genomic tools to metagenomic analyses: investigating the role of gut bacteria in relation to obesity. Briefings in Functional Genomics, 2010, 9, 355-361.	2.7	6
24	Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5. Science, 2010, 328, 228-231.	12.6	1,804
25	Homeostasis and Inflammation in the Intestine. Cell, 2010, 140, 859-870.	28.9	671
26	Our Unindicted Coconspirators: Human Metabolism from a Microbial Perspective. Cell Metabolism, 2010, 12, 111-116.	16.2	64
27	Specificity of the Adaptive Immune Response to the Gut Microbiota. Advances in Immunology, 2010, 107, 71-107.	2.2	21
28	Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7503-7508.	7.1	414
29	Gut Microbiota, Intestinal Permeability, Obesityâ€Induced Inflammation, and Liver Injury. Journal of Parenteral and Enteral Nutrition, 2011, 35, 14S-20S.	2.6	259
30	The volatile microbiome. Genome Biology, 2011, 12, 114.	9.6	8
31	Gut microbiome-host interactions in health and disease. Genome Medicine, 2011, 3, 14.	8.2	550
32	Metabolic fate of polyphenols in the human superorganism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4531-4538.	7.1	448
33	Nutritional Therapy in Practice for Learning, Behavioural and Mood Disorders. Nutrition and Health, 2011, 20, 239-254.	1.5	1
34	Probiotics, Enteric and Diarrheal Diseases, and Global Health. Gastroenterology, 2011, 140, 8-14.e9.	1.3	113
35	Bile Acid Is a Host Factor That Regulates the Composition of the Cecal Microbiota in Rats. Gastroenterology, 2011, 141, 1773-1781.	1.3	738
36	Gut microbiota, probiotics, and vitamin D: Interrelated exposures influencing allergy, asthma, and obesity?. Journal of Allergy and Clinical Immunology, 2011, 127, 1087-1094.	2.9	198

ARTICLE IF CITATIONS # Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nature Reviews 37 9.6 653 Endocrinology, 2011, 7, 639-646. Human intestinal microbiota: cross-talk with the host and its potential role in colorectal cancer. 6.1 99 Critical Reviews in Microbiology, 2011, 37, 1-14. 39 Metagenomic biomarker discovery and explanation. Genome Biology, 2011, 12, R60. 9.6 11,192 Moving pictures of the human microbiome. Genome Biology, 2011, 12, R50. 934 Association Between Composition of the Human Gastrointestinal Microbiome and Development of 41 1.3 512 Fatty Liver With Choline Deficiency. Gastroenterology, 2011, 140, 976-986. Human-Associated Microbial Signatures: Examining Their Predictive Value. Cell Host and Microbe, 2011, 11.0 134 10, 292-296. Microbiome and Malignancy. Cell Host and Microbe, 2011, 10, 324-335. 11.0 43 480 The Guts of Dietary Habits. Science, 2011, 334, 45-46. 12.6 44 Mechanisms controlling pathogen colonization of the gut. Current Opinion in Microbiology, 2011, 14, 45 5.1345 82-91. Control of host inflammatory responsiveness by indigenous microbiota reveals an adaptive component of the innate immune system. Microbes and Infection, 2011, 13, 1121-1132. Effects of the gut microbiota on obesity and glucose homeostasis. Trends in Endocrinology and 47 7.1 263 Metabolism, 2011, 22, 117-123. Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the 15.1 106 gastrointestinal tract. Trends in Food Science and Technology, 2011, 22, 689-697. Investigating the biological and clinical significance of human dysbioses. Trends in Microbiology, 2011, 49 7.7 157 19, 427-434. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6252-6257. 7.1 51 Human nutrition, the gut microbiome and the immune system. Nature, 2011, 474, 327-336. 27.8 2,175 Predicting a Human Gut Microbiota's Response to Diet in Gnotobiotic Mice. Science, 2011, 333, 101-104. 12.6 480 53 Diversity of the autochthonous colonic microbiota. Gut Microbes, 2011, 2, 99-104. 9.8 149 54 Ecological Physiology of Diet and Digestive Systems. Annual Review of Physiology, 2011, 73, 69-93. 13.1 256

	CITATION R	EPORT	
# 55	ARTICLE The Future of Children's Health in the Genomic Era. Rambam Maimonides Medical Journal, 2011, 2, e0053.	IF 1.0	CITATIONS
56	Gut microbiome, obesity, and metabolic dysfunction. Journal of Clinical Investigation, 2011, 121, 2126-2132.	8.2	703
57	Relative Bioavailability and Bioaccessibility and Speciation of Arsenic in Contaminated Soils. Environmental Health Perspectives, 2011, 119, 1629-1634.	6.0	156
58	Environmental and Gut Bacteroidetes: The Food Connection. Frontiers in Microbiology, 2011, 2, 93.	3.5	989
59	Studying the Enteric Microbiome in Inflammatory Bowel Diseases: Getting through the Growing Pains and Moving Forward. Frontiers in Microbiology, 2011, 2, 144.	3.5	20
60	Gut Microbiota of Healthy and Malnourished Children in Bangladesh. Frontiers in Microbiology, 2011, 2, 228.	3.5	157
61	Resveratrol Increases Glucose Induced GLP-1 Secretion in Mice: A Mechanism which Contributes to the Glycemic Control. PLoS ONE, 2011, 6, e20700.	2.5	124
62	The colonic microflora and probiotic therapy in health and disease. Current Opinion in Gastroenterology, 2011, 27, 61-65.	2.3	22
63	Gut Microbiota, Immunity, and Disease: A Complex Relationship. Frontiers in Microbiology, 2011, 2, 180.	3.5	161
64	Host and gut microbiota symbiotic factors: lessons from inflammatory bowel disease and successful symbionts. Cellular Microbiology, 2011, 13, 508-517.	2.1	25
65	Supervised classification of human microbiota. FEMS Microbiology Reviews, 2011, 35, 343-359.	8.6	377
66	Diet, gut microbiota and immune responses. Nature Immunology, 2011, 12, 5-9.	14.5	1,050
67	Unravelling the effects of the environment and host genotype on the gut microbiome. Nature Reviews Microbiology, 2011, 9, 279-290.	28.6	1,305
69	Molecular methods to describe the spectrum and dynamics of the vaginal microbiota. Anaerobe, 2011, 17, 191-195.	2.1	76
70	Metabolic activities and probiotic potential of bifidobacteria. International Journal of Food Microbiology, 2011, 149, 88-105.	4.7	213
71	Our microbial selves: what ecology can teach us. EMBO Reports, 2011, 12, 775-784.	4.5	71
72	Interaction Between Obesity and the Gut Microbiota: Relevance in Nutrition. Annual Review of Nutrition, 2011, 31, 15-31.	10.1	358
73	Responses of Gut Microbiota and Glucose and Lipid Metabolism to Prebiotics in Genetic Obese and Diet-Induced Leptin-Resistant Mice. Diabetes, 2011, 60, 2775-2786.	0.6	881

#	Article	IF	Citations
74	Detecting Novel Associations in Large Data Sets. Science, 2011, 334, 1518-1524.	12.6	2,252
75	Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetologica, 2011, 48, 257-273.	2.5	199
76	Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease?. Genes and Nutrition, 2011, 6, 241-260.	2.5	194
77	Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microbial Cell Factories, 2011, 10, S10.	4.0	172
78	Analysis of time-dependent adaptations in whole-body energy balance in obesity induced by high-fat diet in rats. Lipids in Health and Disease, 2011, 10, 99.	3.0	43
79	Symbiosis and development: The hologenome concept. Birth Defects Research Part C: Embryo Today Reviews, 2011, 93, 56-66.	3.6	169
80	Integrating â€~-omics' and natural product discovery platforms to investigate metabolic exchange in microbiomes. Current Opinion in Chemical Biology, 2011, 15, 79-87.	6.1	21
81	Bacterial adaptation to the gut environment favors successful colonization. Gut Microbes, 2011, 2, 307-318.	9.8	18
82	The nature of nutrition: a unifying framework. Australian Journal of Zoology, 2011, 59, 350.	1.0	78
83	Effect of diet and gut dynamics on the establishment and persistence of Escherichia coli. Microbiology (United Kingdom), 2011, 157, 1375-1384.	1.8	18
84	A randomised trial of sheathed versus standard forceps for obtaining uncontaminated biopsy specimens of microbiota from the terminal ileum. Gut, 2011, 60, 1043-1049.	12.1	21
85	Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes. Human Molecular Genetics, 2011, 20, 1687-1696.	2.9	135
86	Programming of Host Metabolism by the Gut Microbiota. Annals of Nutrition and Metabolism, 2011, 58, 44-52.	1.9	201
87	Persistence of Antibiotic Resistance: Evaluation of a Probiotic Approach Using Antibiotic-Sensitive Megasphaera elsdenii Strains To Prevent Colonization of Swine by Antibiotic-Resistant Strains. Applied and Environmental Microbiology, 2011, 77, 7158-7166.	3.1	24
88	Altered Gut Microbiota and Endocannabinoid System Tone in Obese and Diabetic Leptin-Resistant Mice: Impact on Apelin Regulation in Adipose Tissue. Frontiers in Microbiology, 2011, 2, 149.	3.5	267
89	Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. Gut Microbes, 2011, 2, 178-182.	9.8	22
90	Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. American Journal of Clinical Nutrition, 2011, 94, 58-65.	4.7	1,015
91	Predominant Effect of Host Genetics on Levels of Lactobacillus johnsonii Bacteria in the Mouse Gut. Applied and Environmental Microbiology, 2011, 77, 6531-6538.	3.1	39

	CITA	ation Report	
#	Article	IF	CITATIONS
92	Directed Culturing of Microorganisms Using Metatranscriptomics. MBio, 2011, 2, e00012-11.	4.1	125
93	Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4578-4585.	7.1	2,108
94	Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4586-45	91. ^{7.1}	1,418
95	Key questions to guide a better understanding of host–commensal microbiota interactions in interactions in intestinal inflammation. Mucosal Immunology, 2011, 4, 127-132.	6.0	69
96	Gut Microbes, Immunity, and Metabolism. , 2011, , 311-330.		1
97	Towards an Evolutionary Model of Animal-Associated Microbiomes. Entropy, 2011, 13, 570-594.	2.2	48
98	Important Lessons Derived from Animal Models of Celiac Disease. International Reviews of Immunology, 2011, 30, 197-206.	3.3	24
99	Nutritional Immunology: A Multi-Dimensional Approach. PLoS Pathogens, 2011, 7, e1002223.	4.7	136
100	COMPANION ANIMALS SYMPOSIUM: Humanized animal models of the microbiome1. Journal of Animal Science, 2011, 89, 1531-1537.	0.5	58
101	Bioactive Food Components and Cancer-Specific Metabonomic Profiles. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	19
102	Infectious (Non)toleranceFrustrated Commensalism Gone Awry?. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007328-a007328.	5.5	13
103	Microbial Co-occurrence Relationships in the Human Microbiome. PLoS Computational Biology, 2012, 8, e1002606.	3.2	1,268
104	Chapter 12: Human Microbiome Analysis. PLoS Computational Biology, 2012, 8, e1002808.	3.2	408
105	Do Interactions Between Gut Ecology and Environmental Chemicals Contribute to Obesity and Diabetes?. Environmental Health Perspectives, 2012, 120, 332-339.	6.0	142
106	Is bile acid a determinant of the gut microbiota on a high-fat diet?. Gut Microbes, 2012, 3, 455-459.	9.8	170
107	Impact of Nutritional Factors on the Proteome of Intestinal Escherichia coli: Induction of OxyR-Dependent Proteins AhpF and Dps by a Lactose-Rich Diet. Applied and Environmental Microbiolog 2012, 78, 3580-3591.	y, 3.1	18
108	The intestinal microbiota in health and disease. Current Opinion in Gastroenterology, 2012, 28, 63-69.	2.3	136
109	Taking a metagenomic view of human nutrition. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 448-454.	2.5	54

\sim		<u> </u>	
(15	ГАТ	IVED	ODT
		NLF	

#	ARTICLE	IF	CITATIONS
110	Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer. PLoS ONE, 2012, 7, e39743.	2.5	821
111	Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts. Genome Research, 2012, 22, 1974-1984.	5.5	120
112	The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes, 2012, 3, 4-14.	9.8	881
113	Current and emerging concepts on the role of peripheral signals in the control of food intake and development of obesity. British Journal of Nutrition, 2012, 108, 778-793.	2.3	42
114	Stabilization of the murine gut microbiome following weaning. Gut Microbes, 2012, 3, 383-393.	9.8	126
115	Composition of the early intestinal microbiota. Gut Microbes, 2012, 3, 203-220.	9.8	195
116	Rodent models to study the relationships between mammals and their bacterial inhabitants. Gut Microbes, 2012, 3, 536-543.	9.8	21
117	Comparative evaluation of establishing a human gut microbial community within rodent models. Gut Microbes, 2012, 3, 234-249.	9.8	113
118	Crohn's disease and the mycobacterioses: A quarter century later. Causation or simple association?. Critical Reviews in Microbiology, 2012, 38, 52-93.	6.1	129
119	The Human Microbiome and Its Potential Importance to Pediatrics. Pediatrics, 2012, 129, 950-960.	2.1	252
120	The gut microbiota and its relationship to diet and obesity. Gut Microbes, 2012, 3, 186-202.	9.8	382
121	Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes, 2012, 3, 279-288.	9.8	682
122	Significance of the microbiome in obstructive lung disease. Thorax, 2012, 67, 456-463.	5.6	190
123	Resident risks. Nature, 2012, 490, 44-46.	27.8	Ο
124	Response to Lombardo. American Journal of Gastroenterology, 2012, 107, 1923-1924.	0.4	0
125	Expression of the blood-group-related glycosyltransferase <i>B4galnt2</i> influences the intestinal microbiota in mice. ISME Journal, 2012, 6, 1345-1355.	9.8	60
126	Short-term modifications in the distal gut microbiota of weaning mice induced by a high-fat diet. Microbiology (United Kingdom), 2012, 158, 983-992.	1.8	26
127	Probiotics stimulate enterocyte migration and microbial diversity in the neonatal mouse intestine. FASEB Journal, 2012, 26, 1960-1969.	0.5	96

#	Article	IF	CITATIONS
128	Commensal microbiome effects on mucosal immune system development in the ruminant gastrointestinal tract. Animal Health Research Reviews, 2012, 13, 129-141.	3.1	76
129	The gut microbiota, environment and diseases of modern society. Gut Microbes, 2012, 3, 374-382.	9.8	56
130	Ecological Succession of Bacterial Communities during Conventionalization of Germ-Free Mice. Applied and Environmental Microbiology, 2012, 78, 2359-2366.	3.1	68
131	Promoting Healthy Growth: What Are the Priorities for Research and Action?. Advances in Nutrition, 2012, 3, 234-241.	6.4	37
132	The Endogenous Bacteria Alter Gut Epithelial Apoptosis and Decrease Mortality Following Pseudomonas aeruginosa Pneumonia. Shock, 2012, 38, 508-514.	2.1	48
133	Investigation into the Physiologies ofAeromonas veroniiin vitroand Inside the Digestive Tract of the Medicinal Leech Using RNA-seq. Biological Bulletin, 2012, 223, 155-166.	1.8	10
134	The Intestinal Microbiota and Obesity. Journal of Clinical Gastroenterology, 2012, 46, 16-24.	2.2	168
135	Regulation of Metabolism: A Cross Talk Between Gut Microbiota and Its Human Host. Physiology, 2012, 27, 300-307.	3.1	47
136	Gut Microbiota and Obesity. Digestive Diseases, 2012, 30, 196-200.	1.9	17
137	Defining the human microbiome. Nutrition Reviews, 2012, 70, S38-S44.	5.8	789
138	Going viral: next-generation sequencing applied to phage populations in the human gut. Nature Reviews Microbiology, 2012, 10, 607-617.	28.6	377
139	Probiotics in the Development and Treatment of Allergic Disease. Gastroenterology Clinics of North America, 2012, 41, 747-762.	2.2	62
140	The Hologenome Concept. , 2012, , 323-340.		2
141	Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. Journal of Experimental Medicine, 2012, 209, 1445-1456.	8.5	295
142	Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biology, 2012, 13, R42.	9.6	797
143	Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biology, 2012, 13, R79.	9.6	2,258
144	Genetic modification of iron metabolism in mice affects the gut microbiota. BioMetals, 2012, 25, 883-892.	4.1	44
145	Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell, 2012, 150, 470-480.	28.9	1,603

#	Article	IF	Citations
146	Gut Microbes Make for Fattier Fish. Cell Host and Microbe, 2012, 12, 259-261.	11.0	18
147	Obesity: Underlying Mechanisms and the Evolving Influence of Diet. Current Nutrition Reports, 2012, 1, 205-214.	4.3	0
148	Effects of Gut Microbes on Nutrient Absorption and Energy Regulation. Nutrition in Clinical Practice, 2012, 27, 201-214.	2.4	596
149	Immuno-microbiota cross and talk: The new paradigm of metabolic diseases. Seminars in Immunology, 2012, 24, 67-74.	5.6	126
150	Genetic Markers for Rapid PCR-Based Identification of Gull, Canada Goose, Duck, and Chicken Fecal Contamination in Water. Applied and Environmental Microbiology, 2012, 78, 503-510.	3.1	130
151	The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 577-589.	17.8	1,515
152	Lymphotoxin regulates commensal responses to enable diet-induced obesity. Nature Immunology, 2012, 13, 947-953.	14.5	128
153	Crosstalk between the gut microbiota and the endocannabinoid system: impact on the gut barrier function and the adipose tissue. Clinical Microbiology and Infection, 2012, 18, 50-53.	6.0	98
154	Securing the border: lymphotoxin, IL-23 and IL-22 keep out the bad guys and 'fatten' the homeland. Nature Immunology, 2012, 13, 940-941.	14.5	2
155	Dysbiosis of Gut Microbiota (DOGMA) – A novel theory for the development of Polycystic Ovarian Syndrome. Medical Hypotheses, 2012, 79, 104-112.	1.5	195
156	An evaluation of the effects of Lactobacillus ingluviei on body weight, the intestinal microbiome and metabolism in mice. Microbial Pathogenesis, 2012, 52, 61-68.	2.9	59
157	Gene-centric metagenomics analysis of feline intestinal microbiome using 454 junior pyrosequencing. Journal of Microbiological Methods, 2012, 88, 369-376.	1.6	93
158	The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell, 2012, 148, 1258-1270.	28.9	2,920
159	Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota. Cell, 2012, 149, 1578-1593.	28.9	1,050
160	The Human Gut Microbiota and Undernutrition. Science Translational Medicine, 2012, 4, 137ps12.	12.4	162
161	The function of our microbiota: who is out there and what do they do?. Frontiers in Cellular and Infection Microbiology, 2012, 2, 104.	3.9	352
162	Indication for Co-evolution of Lactobacillus johnsonii with its hosts. BMC Microbiology, 2012, 12, 149.	3.3	31
163	Changes in human gut flora with age: an Indian familial study. BMC Microbiology, 2012, 12, 222.	3.3	36

#	Article	IF	CITATIONS
164	Dietary rice bran promotes resistance to Salmonella enterica serovar Typhimurium colonization in mice. BMC Microbiology, 2012, 12, 71.	3.3	61
165	Recent Advances in the Role of Probiotics in Human Inflammation and Gut Health. Journal of Agricultural and Food Chemistry, 2012, 60, 8249-8256.	5.2	64
166	The importance of the gut microbiota after bariatric surgery. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 590-598.	17.8	216
167	Effects of green tea consumption on human fecal microbiota with special reference to <i>Bifidobacterium</i> species. Microbiology and Immunology, 2012, 56, 729-739.	1.4	130
168	Intestinal Microbiota as Novel Biomarkers of Prior Radiation Exposure. Radiation Research, 2012, 177, 573.	1.5	61
169	Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489, 242-249.	27.8	3,582
170	The relationship between gut microbiota and weight gain in humans. Future Microbiology, 2012, 7, 91-109.	2.0	306
171	Impact of the Gut Microbiota on the Development of Obesity: Current Concepts. American Journal of Gastroenterology Supplements (Print), 2012, 1, 22-27.	0.7	112
172	Obesity and the gut microbiome: Striving for causality. Molecular Metabolism, 2012, 1, 21-31.	6.5	82
173	Next-generation and whole-genome sequencing in the diagnostic clinical microbiology laboratory. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 1719-1726.	2.9	133
174	Nous Sommes Tous des Bacteries: Implications for medicine, pharmacology and public health. Biochemical Pharmacology, 2012, 84, 1543-1550.	4.4	13
175	From Animalcules to an Ecosystem: Application of Ecological Concepts to the Human Microbiome. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 137-155.	8.3	68
176	Oligosaccharides Might Contribute to the Antidiabetic Effect of Honey: A Review of the Literature. Molecules, 2012, 17, 248-266.	3.8	47
177	Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease. Nutrients, 2012, 4, 1095-1119.	4.1	533
179	Guts, Germs, and Meals: The Origin of Type 1 Diabetes. Current Diabetes Reports, 2012, 12, 456-462.	4.2	16
180	Microbiome: The critters within. Nature, 2012, 485, S12-S13.	27.8	37
181	Acetatifactor muris gen. nov., sp. nov., a novel bacterium isolated from the intestine of an obese mouse. Archives of Microbiology, 2012, 194, 901-907.	2.2	76
182	The chemopreventive role of dietary phytochemicals through gap junctional intercellular communication. Phytochemistry Reviews, 2012, 11, 285-307.	6.5	31

#	Article	IF	CITATIONS
183	Development of the Digestive System—Experimental Challenges and Approaches of Infant Lipid Digestion. Food Digestion, 2012, 3, 63-77.	0.9	82
184	Expression of Human Paraoxonase 1 Decreases Superoxide Levels and Alters Bacterial Colonization in the Gut of Drosophila melanogaster. PLoS ONE, 2012, 7, e43777.	2.5	12
185	Routine Habitat Change: A Source of Unrecognized Transient Alteration of Intestinal Microbiota in Laboratory Mice. PLoS ONE, 2012, 7, e47416.	2.5	65
186	High-Fat Diet Induces Periodontitis in Mice through Lipopolysaccharides (LPS) Receptor Signaling: Protective Action of Estrogens. PLoS ONE, 2012, 7, e48220.	2.5	67
187	Commensal Bacteria and MAMPs Are Necessary for Stress-Induced Increases in IL-1β and IL-18 but Not IL-6, IL-10 or MCP-1. PLoS ONE, 2012, 7, e50636.	2.5	71
188	Effect of Dietary L-arabinose on the Intestinal Microbiota and Metabolism of Dietary Daidzein in Adult Mice. Bioscience of Microbiota, Food and Health, 2012, 31, 59-65.	1.8	12
189	Gut microbiota and nonalcoholic fatty liver disease. Annals of Hepatology, 2012, 11, 440-449.	1.5	136
190	Intestinal Microbiota and Obesity. Handbook of Experimental Pharmacology, 2012, , 251-273.	1.8	69
191	Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 594-599.	7.1	699
192	The human microbiome: at the interface of health and disease. Nature Reviews Genetics, 2012, 13, 260-270.	16.3	2,798
193	Microbial interactions: from networks to models. Nature Reviews Microbiology, 2012, 10, 538-550.	28.6	2,693
194	Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012, 488, 178-184.	27.8	2,618
195	Challenges and opportunities of metabolomics. Journal of Cellular Physiology, 2012, 227, 2975-2981.	4.1	211
196	Role of nutrition and microbiota in susceptibility to inflammatory bowel diseases. Molecular Nutrition and Food Research, 2012, 56, 524-535.	3.3	112
197	Cancer and Inflammation: An Old Intuition with Rapidly Evolving New Concepts. Annual Review of Immunology, 2012, 30, 677-706.	21.8	433
198	Host-Microbe Interactions in the Neonatal Intestine: Role of Human Milk Oligosaccharides. Advances in Nutrition, 2012, 3, 450S-455S.	6.4	95
199	How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology, 2012, 10, 323-335.	28.6	1,073
200	Effect of high contents of dietary animal-derived protein or carbohydrates on canine faecal microbiota. BMC Veterinary Research, 2012, 8, 90.	1.9	75

ARTICLE IF CITATIONS # Xenobiotic Metabolomics: Major Impact on the Metabolome. Annual Review of Pharmacology and 201 9.4 209 Toxicology, 2012, 52, 37-56. Fat, bile and gut microbes. Nature, 2012, 487, 47-48. 27.8 203 Gut Microbiota and Obesity. Current Obesity Reports, 2012, 1, 1-8. 8.4 25 The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. 204 4.4 Diabetes, Obesity and Metabolism, 2012, 14, 112-120. Epithelial barrier biology: good fences make good neighbours. Immunology, 2012, 135, 1-8. 205 109 4.4 Experimental and analytical tools for studying the human microbiome. Nature Reviews Genetics, 2012, 16.3 13, 47-58. Responses of Gut Microbiota to Diet Composition and Weight Loss in Lean and Obese Mice. Obesity, 207 3.0 352 2012, 20, 738-747. Infant gut microbiota is protective against cow's milk allergy in mice despite immature ileal T-cell 208 2.7 response. FEMS Microbiology Ecology, 2012, 79, 192-202. The <i>yin yang</i> of bacterial polysaccharides: lessons learned from <i>B. fragilis</i> PSA. 209 6.0 124 Immunólogical Reviews, 2012, 245, 13-26. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. 6.0 186 Immunological Reviews, 2012, 245, 164-176. Gut bacteria profiles of Mus musculus at the phylum and family levels are influenced by saturation of 211 2.1 83 dietary fatty acids. Anaerobe, 2012, 18, 331-337. The potential for probiotic manipulation of the gastrointestinal microbiome. Current Opinion in 6.6 Biotechnology, 2012, 23, 192-201. Nextâ€generation sequencing technologies for environmental DNA research. Molecular Ecology, 2012, 213 3.9 721 21, 1794-1805. Comparisons of clustered regularly interspaced short palindromic repeats and viromes in human 214 3.8 saliva reveal bacterial adaptations to salivary viruses. Environmental Microbiology, 2012, 14, 2564-2576. Characterization of the Gastrointestinal Microbiota in Health and Inflammatory Bowel Disease. 215 1.9 91 Inflammatory Bowel Diseases, 2012, 18, 372-390. The effect of dietary chitin on the autochthonous gut bacteria of Atlantic cod (<i>Gadus) Tj ETQq1 1 0.784314 rgBT Overlock 10 Tf Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut 217 9.6 381 microbiota variation in common laboratory mice. Genome Biology, 2013, 14, R4. Emerging importance of holobionts in evolution and in probiotics. Gut Pathogens, 2013, 5, 12.

#	Article	IF	CITATIONS
219	Metagenomic profile of gut microbiota in children during cholera and recovery. Gut Pathogens, 2013, 5, 1.	3.4	118
220	Microbiological Survey of the Human Gastric Ecosystem Using Culturing and Pyrosequencing Methods. Microbial Ecology, 2013, 65, 763-772.	2.8	166
221	Psychobiotics: A Novel Class of Psychotropic. Biological Psychiatry, 2013, 74, 720-726.	1.3	917
222	Adiposity and Insulin Resistance in Humans: The Role of the Different Tissue and Cellular Lipid Depots. Endocrine Reviews, 2013, 34, 463-500.	20.1	204
224	Diet, microbes, and host genetics: the perfect storm in inflammatory bowel diseases. Journal of Gastroenterology, 2013, 48, 315-321.	5.1	128
225	Towards a †̃systems'-level understanding of the nervous system and its disorders. Trends in Neurosciences, 2013, 36, 674-684.	8.6	38
226	Functional profiling of the gut microbiome in disease-associated inflammation. Genome Medicine, 2013, 5, 65.	8.2	61
227	The Gordian Knot of dysbiosis, obesity and NAFLD. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 637-644.	17.8	134
228	The Absence of a Microbiota Enhances TSLP Expression in Mice with Defective Skin Barrier but Does Not Affect the Severity of their Allergic Inflammation. Journal of Investigative Dermatology, 2013, 133, 2714-2721.	0.7	29
229	From meta-omics to causality: experimental models for human microbiome research. Microbiome, 2013, 1, 14.	11.1	173
230	The Human Gut Microbiome. JAMA Surgery, 2013, 148, 563.	4.3	211
231	Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Molecular Metabolism, 2013, 2, 281-291.	6.5	84
233	Composition of Dietary Fat Source Shapes Gut Microbiota Architecture and Alters Host Inflammatory Mediators in Mouse Adipose Tissue. Journal of Parenteral and Enteral Nutrition, 2013, 37, 746-754.	2.6	119
234	Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut, 2013, 62, 1787-1794.	12.1	777
235	The role of diet in triggering human inflammatory disorders in the modern age. Microbes and Infection, 2013, 15, 765-774.	1.9	35
236	Cryptopatches Are Essential for the Development of Human GALT. Cell Reports, 2013, 3, 1874-1884.	6.4	58
237	Metabolic Disease Puts Up a Fight: Microbes, metabolism and medications. Nature Medicine, 2013, 19, 1218-1219.	30.7	8
238	Mucosal Immunology of Food Allergy. Current Biology, 2013, 23, R389-R400.	3.9	107

#	Article	IF	CITATIONS
239	Gut microbiota and non-alcoholic fatty liver disease: new insights. Clinical Microbiology and Infection, 2013, 19, 338-348.	6.0	196
240	Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes, Obesity and Metabolism, 2013, 15, 61-70.	4.4	112
241	Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17059-17064.	7.1	237
242	Sequencing the human microbiome in health and disease. Human Molecular Genetics, 2013, 22, R88-R94.	2.9	123
243	Clinical Consequences of Diet-Induced Dysbiosis. Annals of Nutrition and Metabolism, 2013, 63, 28-40.	1.9	100
244	Polyphenols and type 2 diabetes: A prospective review. PharmaNutrition, 2013, 1, 105-114.	1.7	106
245	Developing a metagenomic view of xenobiotic metabolism. Pharmacological Research, 2013, 69, 21-31.	7.1	159
246	The influence of probiotics and probiotic product on respiration of mitochondria and intracellular calcium signal in cells of cardiovascular system. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2013, 7, 294-301.	0.6	4
247	Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science, 2013, 341, 1241214	12.6	3,006
248	Herbal approaches to system dysfunctions. , 2013, , 183-350.		0
248 249	Herbal approaches to system dysfunctions. , 2013, , 183-350. Gut microbiota and obesity: lessons from the microbiome. Briefings in Functional Genomics, 2013, 12, 381-387.	2.7	0
248 249 250	 Herbal approaches to system dysfunctions. , 2013, , 183-350. Gut microbiota and obesity: lessons from the microbiome. Briefings in Functional Genomics, 2013, 12, 381-387. HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome, 2013, 1, 26. 	2.7	0 104 184
248 249 250 251	Herbal approaches to system dysfunctions. , 2013, , 183-350. Gut microbiota and obesity: lessons from the microbiome. Briefings in Functional Genomics, 2013, 12, 381-387. HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome, 2013, 1, 26. Nutrient-Sensing Mechanisms in the Gut as Therapeutic Targets for Diabetes. Diabetes, 2013, 62, 3005-3013.	2.7 11.1 0.6	0 104 184 61
248 249 250 251 252	 Herbal approaches to system dysfunctions. , 2013, , 183-350. Gut microbiota and obesity: lessons from the microbiome. Briefings in Functional Genomics, 2013, 12, 381-387. HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome, 2013, 1, 26. Nutrient-Sensing Mechanisms in the Gut as Therapeutic Targets for Diabetes. Diabetes, 2013, 62, 3005-3013. Metabolic Syndrome and Obesity in Adults. World Review of Nutrition and Dietetics, 2013, , 103-121. 	2.7 11.1 0.6 0.3	0 104 184 61
248 249 250 251 252 253	Herbal approaches to system dysfunctions. , 2013, , 183-350. Gut microbiota and obesity: lessons from the microbiome. Briefings in Functional Genomics, 2013, 12, 381-387. HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome, 2013, 1, 26. Nutrient-Sensing Mechanisms in the Gut as Therapeutic Targets for Diabetes. Diabetes, 2013, 62, 3005-3013. Metabolic Syndrome and Obesity in Adults. World Review of Nutrition and Dietetics, 2013, 103-121. The modulatory role of high fat feeding on gastrointestinal signals in obesity. Journal of Nutritional Biochemistry, 2013, 24, 1663-1677.	2.7 11.1 0.6 0.3 4.2	0 104 184 61 1
248 249 250 251 252 253	 Herbal approaches to system dysfunctions. , 2013, , 183-350. Gut microbiota and obesity: lessons from the microbiome. Briefings in Functional Genomics, 2013, 12, 381-387. HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome, 2013, 1, 26. Nutrient-Sensing Mechanisms in the Gut as Therapeutic Targets for Diabetes. Diabetes, 2013, 62, 3005-3013. Metabolic Syndrome and Obesity in Adults. World Review of Nutrition and Dietetics, 2013, 103-121. The modulatory role of high fat feeding on gastrointestinal signals in obesity. Journal of Nutritional Biochemistry, 2013, 24, 1663-1677. Experimental Approaches for Defining Functional Roles of Microbes in the Human Gut. Annual Review of Microbiology, 2013, 67, 459-475. 	2.7 11.1 0.6 0.3 4.2 7.3	0 104 184 61 1 777 39
248 249 250 251 252 253 254	Herbal approaches to system dysfunctions. , 2013, , 183-350. Gut microbiota and obesity: lessons from the microbiome. Briefings in Functional Genomics, 2013, 12, 381-387. HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome, 2013, 1, 26. Nutrient-Sensing Mechanisms in the Gut as Therapeutic Targets for Diabetes. Diabetes, 2013, 62, 3005-3013. Metabolic Syndrome and Obesity in Adults. World Review of Nutrition and Dietetics, 2013, 103-121. The modulatory role of high fat feeding on gastrointestinal signals in obesity. Journal of Nutritional Biochemistry, 2013, 24, 1663-1677. Experimental Approaches for Defining Functional Roles of Microbes in the Human Gut. Annual Review of Microbiology, 2013, 67, 459-475. Emerging Aspects of Food and Nutrition on Gut Microbiota. Journal of Agricultural and Food Chemistry, 2013, 61, 9559-9574.	2.7 11.1 0.6 0.3 4.2 7.3 5.2	0 104 184 61 1 777 39 40

#	Article	IF	CITATIONS
257	The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota. FASEB Journal, 2013, 27, 692-702.	0.5	78
258	Dyeing to Learn More about the Gut Microbiota. Cell Host and Microbe, 2013, 13, 119-120.	11.0	1
259	Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutrition Research, 2013, 33, 811-816.	2.9	70
260	Molecular monitoring of fecal microbiota in healthy adults following probiotic yogurt intake. PharmaNutrition, 2013, 1, 123-129.	1.7	18
261	Differential abundance analysis for microbial marker-gene surveys. Nature Methods, 2013, 10, 1200-1202.	19.0	1,921
262	The Gut Microbiome Modulates Colon Tumorigenesis. MBio, 2013, 4, e00692-13.	4.1	582
263	Intestinal and renal guanylin peptides system in hypertensive obese mice. Experimental Biology and Medicine, 2013, 238, 90-97.	2.4	5
264	Ketone body metabolism and cardiovascular disease. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1060-H1076.	3.2	340
265	Need for Prospective Cohort Studies to Establish Human Gut Microbiome Contributions to Disease Risk. Journal of the National Cancer Institute, 2013, 105, 1850-1851.	6.3	11
266	Xenobiotics Shape the Physiology and Gene Expression of the Active Human Gut Microbiome. Cell, 2013, 152, 39-50.	28.9	705
267	Integrating nutrition and immunology: A new frontier. Journal of Insect Physiology, 2013, 59, 130-137.	2.0	125
268	Gut and Root Microbiota Commonalities. Applied and Environmental Microbiology, 2013, 79, 2-9.	3.1	92
269	Gut metabotypes govern health effects of dietary polyphenols. Current Opinion in Biotechnology, 2013, 24, 220-225.	6.6	170
270	Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut, 2013, 62, 220-226.	12.1	235
271	Biodiversity and functional genomics in the human microbiome. Trends in Genetics, 2013, 29, 51-58.	6.7	207
272	Gut–brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences, 2013, 36, 305-312.	8.6	1,773
273	481 Individualized Responses of Gut Microbiota to Dietary Intervention Modeled in Humanized Mice. Gastroenterology, 2013, 144, S-88.	1.3	1
274	Obese Humans With Nonalcoholic Fatty Liver Disease Display Alterations in Fecal Microbiota and Volatile Organic Compounds. Clinical Gastroenterology and Hepatology, 2013, 11, 876-878.	4.4	10

#	Article	IF	CITATIONS
275	Parental Dietary Fat Intake Alters Offspring Microbiome and Immunity. Journal of Immunology, 2013, 191, 3200-3209.	0.8	147
276	Recent transcriptomics advances and emerging applications in food science. TrAC - Trends in Analytical Chemistry, 2013, 52, 142-154.	11.4	54
277	Selecting age-related functional characteristics in the human gut microbiome. Microbiome, 2013, 1, 2.	11.1	45
278	Gut microbiota, host health, and polysaccharides. Biotechnology Advances, 2013, 31, 318-337.	11.7	181
279	Genetic Control of Obesity and Gut Microbiota Composition in Response to High-Fat, High-Sucrose Diet in Mice. Cell Metabolism, 2013, 17, 141-152.	16.2	464
280	Intestinal Microbes, Diet, and Colorectal Cancer. Current Colorectal Cancer Reports, 2013, 9, 95-105.	0.5	14
281	Complex Interactions Among Diet, Gastrointestinal Transit, and Gut Microbiota in Humanized Mice. Gastroenterology, 2013, 144, 967-977.	1.3	387
282	Gut bacterial microbiota and obesity. Clinical Microbiology and Infection, 2013, 19, 305-313.	6.0	232
283	Live feed is not a major determinant of the microbiota associated with cod larvae (<i><scp>G</scp>adus morhua</i>). Environmental Microbiology Reports, 2013, 5, 537-548.	2.4	72
284	Lymphotoxin signalling in immune homeostasis and the control of microorganisms. Nature Reviews Immunology, 2013, 13, 270-279.	22.7	112
285	Infant Gut Microbiota: Developmental Influences and Health Outcomes. , 2013, , 233-256.		13
286	Metformin Retards Aging in C.Âelegans by Altering Microbial Folate and Methionine Metabolism. Cell, 2013, 153, 228-239.	28.9	811
287	Effects of Age and Strain on the Microbiota Colonization in an Infant Human Flora-Associated Mouse Model. Current Microbiology, 2013, 67, 313-321.	2.2	30
288	Quantifying the metabolic activities of human-associated microbial communities across multiple ecological scales. FEMS Microbiology Reviews, 2013, 37, 830-848.	8.6	22
289	Compression-based distance (CBD): a simple, rapid, and accurate method for microbiota composition comparison. BMC Bioinformatics, 2013, 14, 136.	2.6	5
290	Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Applied Microbiology and Biotechnology, 2013, 97, 1689-1697.	3.6	168
291	Effects of probiotic <i>Lactobacillus rhamnosus</i> GG and <i>Propionibacterium freudenreichii</i> ssp. <i>shermanii</i> JS supplementation on intestinal and systemic markers of inflammation in ApoE*3Leiden mice consuming a high-fat diet. British Journal of Nutrition, 2013, 110, 77-85.	2.3	24
292	Computational meta'omics for microbial community studies. Molecular Systems Biology, 2013, 9, 666.	7.2	253

#	Article	IF	CITATIONS
293	Habitat degradation impacts black howler monkey (<i>Alouatta pigra</i>) gastrointestinal microbiomes. ISME Journal, 2013, 7, 1344-1353.	9.8	1,031
294	Mouse models for liver cancer. Molecular Oncology, 2013, 7, 206-223.	4.6	144
295	Quantitatively Different, yet Qualitatively Alike: A Meta-Analysis of the Mouse Core Gut Microbiome with a View towards the Human Gut Microbiome. PLoS ONE, 2013, 8, e62578.	2.5	182
296	Beyond phylotyping: understanding the impact of gut microbiota on host biology. Neurogastroenterology and Motility, 2013, 25, 358-372.	3.0	48
297	Food allergy: an enigmatic epidemic. Trends in Immunology, 2013, 34, 390-397.	6.8	89
298	Longâ€ŧerm monitoring of the human intestinal microbiota composition. Environmental Microbiology, 2013, 15, 1146-1159.	3.8	195
299	A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME Journal, 2013, 7, 1933-1943.	9.8	290
300	A Key to Understanding the Effects of Food Bioactives in Health, Gut Microbiota. Journal of Agricultural and Food Chemistry, 2013, 61, 9755-9757.	5.2	14
301	From molecules to dynamic biological communities. Biology and Philosophy, 2013, 28, 241-259.	1.4	12
302	Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 2013, 62, 1112-1121.	12.1	632
303	Opportunities and challenges for gut microbiome studies in the Indian population. Microbiome, 2013, 1, 24.	11.1	51
304	Invertebrate systems for hypothesis-driven microbiome research. Microbiome Science and Medicine, 2013, 1, .	0.3	25
305	Race/Ethnicity, Obesity, and Related Cardio-Metabolic Risk Factors: A Life-Course Perspective. Current Cardiovascular Risk Reports, 2013, 7, 326-335.	2.0	21
306	Host-centric Proteomics of Stool: A Novel Strategy Focused on intestinal Responses to the Gut Microbiota. Molecular and Cellular Proteomics, 2013, 12, 3310-3318.	3.8	48
307	Frontiers of Nutritional Intervention. Journal of Nutrigenetics and Nutrigenomics, 2013, 6, I-II.	1.3	1
308	Monotonous Diets Protect Against Acute Colitis in Mice. Journal of Pediatric Gastroenterology and Nutrition, 2013, 56, 544-550.	1.8	17
309	Impact of probiotic feeding during weaning on the serum lipid profile and plasma metabolome in infants. British Journal of Nutrition, 2013, 110, 116-126.	2.3	26
311	Gut microbiota in health and disease. Revista De GastroenterologÃa De México (English Edition), 2013, 78, 240-248.	0.2	25

#	Article	IF	CITATIONS
312	Fatty Liver Accompanies an Increase in Lactobacillus Species in the Hind Gut of C57BL/6 Mice Fed a High-Fat Diet. Journal of Nutrition, 2013, 143, 627-631.	2.9	77
313	Mucin-type O-glycans and their roles in intestinal homeostasis. Glycobiology, 2013, 23, 1026-1037.	2.5	254
314	Diet, Gut Flora, and Multiple Sclerosis: Current Research and Future Perspectives. , 2013, , 115-126.		8
315	Co-evolution in context: The importance of studying gut microbiomes in wild animals. Microbiome Science and Medicine, 2013, 1, .	0.3	138
316	Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice. International Journal of Molecular Sciences, 2013, 14, 23993-24007.	4.1	40
317	Effects of Diet on Resource Utilization by a Model Human Gut Microbiota Containing Bacteroides cellulosilyticus WH2, a Symbiont with an Extensive Glycobiome. PLoS Biology, 2013, 11, e1001637.	5.6	244
318	Gut microbiota and metabolic disorders: how prebiotic can work?. British Journal of Nutrition, 2013, 109, S81-S85.	2.3	148
319	Crohn's Disease May Be Differentiated Into 2 Distinct Biotypes Based on the Detection of Bacterial Genomic Sequences and Virulence Genes Within Submucosal Tissues. Journal of Clinical Gastroenterology, 2013, 47, 612-620.	2.2	17
320	The role of gut microbiota in nutritional status. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 509-516.	2.5	38
321	A pig model of the human gastrointestinal tract. Gut Microbes, 2013, 4, 193-200.	9.8	163
322	Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Science Translational Medicine, 2013, 5, 178ra41.	12.4	824
322 323	Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Science Translational Medicine, 2013, 5, 178ra41. Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Research, 2013, 23, 1715-1720.	12.4 5.5	824 151
322 323 324	Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Science Translational Medicine, 2013, 5, 178ra41. Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Research, 2013, 23, 1715-1720. Linking the microbiota and metabolic disease with lymphotoxin. International Immunology, 2013, 25, 397-403.	12.4 5.5 4.0	824 151 5
322 323 324 325	Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Science Translational Medicine, 2013, 5, 178ra41. Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Research, 2013, 23, 1715-1720. Linking the microbiota and metabolic disease with lymphotoxin. International Immunology, 2013, 25, 397-403. Fungi of the Murine Gut: Episodic Variation and Proliferation during Antibiotic Treatment. PLoS ONE, 2013, 8, e71806.	12.4 5.5 4.0 2.5	824 151 5 201
322 323 324 325 326	Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Science Translational Medicine, 2013, 5, 178ra41.Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Research, 2013, 23, 1715-1720.Linking the microbiota and metabolic disease with lymphotoxin. International Immunology, 2013, 25, 397-403.Fungi of the Murine Gut: Episodic Variation and Proliferation during Antibiotic Treatment. PLoS ONE, 2013, 8, e71806.Interactions Between Diet and Gut Microbes in Inflammatory Bowel Disease. Lippincott S Bone and Joint Newsletter, 2013, 39, 1-5.	12.4 5.5 4.0 2.5 0.0	 824 151 5 201 0
322 323 324 325 326	Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Science Translational Medicine, 2013, 5, 178ra41.Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Research, 2013, 23, 1715-1720.Linking the microbiota and metabolic disease with lymphotoxin. International Immunology, 2013, 25, 397-403.Fungi of the Murine Gut: Episodic Variation and Proliferation during Antibiotic Treatment. PLoS ONE, 2013, 8, e71806.Interactions Between Diet and Gut Microbes in Inflammatory Bowel Disease. Lippincott S Bone and Joint Newsletter, 2013, 39, 1-5.Differential Induction of Antimicrobial REGIII by the Intestinal Microbiota and Bifidobacterium breve NCC2950. Applied and Environmental Microbiology, 2013, 79, 7745-7754.	12.4 5.5 4.0 2.5 0.0 3.1	 824 151 5 201 0 84
 322 323 324 325 326 327 328 	Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Science Translational Medicine, 2013, 5, 178ra41.Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Research, 2013, 23, 1715-1720.Linking the microbiota and metabolic disease with lymphotoxin. International Immunology, 2013, 25, 397-403.Fungi of the Murine Gut: Episodic Variation and Proliferation during Antibiotic Treatment. PLoS ONE, 2013, 8, e71806.Interactions Between Diet and Gut Microbes in Inflammatory Bowel Disease. Lippincott S Bone and Joint Newsletter, 2013, 39, 1-5.Differential Induction of Antimicrobial REGII by the Intestinal Microbiota and Bifidobacterium breve NCC2950. Applied and Environmental Microbiology, 2013, 79, 7745-7754.Evolving Concepts: How Diet and the Intestinal Microbiome Act as Modulators of Breast Malignancy. ISRN Oncology, 2013, 2013, 1-10.	12.4 5.5 4.0 2.5 0.0 3.1 2.1	 824 151 5 201 0 84 57

#	Article	IF	CITATIONS
330	Dynamic responses of <scp><i>B</i></scp> <i>acteroides thetaiotaomicron</i> during growth on glycan mixtures. Molecular Microbiology, 2013, 88, 876-890.	2.5	108
331	Contribution of the 7Î ² -hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. Journal of Lipid Research, 2013, 54, 3062-3069.	4.2	110
332	Restructuring of the amphibian gut microbiota through metamorphosis. Environmental Microbiology Reports, 2013, 5, 899-903.	2.4	148
333	Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therapeutic Advances in Gastroenterology, 2013, 6, 295-308.	3.2	642
334	The effect of high-fat diet on the composition of the gut microbiota in cloned and non-cloned pigs of lean and obese phenotype. Gut Microbes, 2013, 4, 371-381.	9.8	22
335	Loss of response to biologics versus increased risk of lymphoma in children with inflammatory bowel disease: the clinician's conundrum. Expert Review of Clinical Immunology, 2013, 9, 117-127.	3.0	6
336	Factors that drive variation among gut microbial communities. Gut Microbes, 2013, 4, 403-408.	9.8	24
337	Biphasic assembly of the murine intestinal microbiota during early development. ISME Journal, 2013, 7, 1112-1115.	9.8	142
339	The Role of Gut Microbiota on Insulin Resistance. Nutrients, 2013, 5, 829-851.	4.1	184
342	Sputum Microbiota in Tuberculosis as Revealed by 16S rRNA Pyrosequencing. PLoS ONE, 2013, 8, e54574.	2.5	85
343	Is Obesity a Risk Factor for Vaccine Non-Responsiveness?. PLoS ONE, 2013, 8, e82779.	2.5	57
344	Modification of Intestinal Microbiota and Its Consequences for Innate Immune Response in the Pathogenesis of Campylobacteriosis. Clinical and Developmental Immunology, 2013, 2013, 1-10.	3.3	108
345	Identification of Human Intestinal Microbiota of 92 Men by Data Mining for 5 Characteristics, <i>i.e.</i> , Age, BMI, Smoking Habit, Cessation Period of Previous Smokers and Drinking Habit. Bioscience of Microbiota, Food and Health, 2013, 32, 129-137.	1.8	9
346	Dietary Patterns Differently Associate with Inflammation and Gut Microbiota in Overweight and Obese Subjects. PLoS ONE, 2014, 9, e109434.	2.5	111
347	Dominant Effects of the Diet on the Microbiome and the Local and Systemic Immune Response in Mice. PLoS ONE, 2014, 9, e86366.	2.5	41
348	Characterization of the Gut Microbiota in the Red Panda (Ailurus fulgens). PLoS ONE, 2014, 9, e87885.	2.5	70
349	Seasonal Variation in Human Gut Microbiome Composition. PLoS ONE, 2014, 9, e90731.	2.5	246
350	Identifying Keystone Species in the Human Gut Microbiome from Metagenomic Timeseries Using Sparse Linear Regression. PLoS ONE, 2014, 9, e102451.	2.5	273

#	Article	IF	CITATIONS
351	The Antipsychotic Olanzapine Interacts with the Gut Microbiome to Cause Weight Gain in Mouse. PLoS ONE, 2014, 9, e115225.	2.5	147
352	The gut microbiota in mouse models of inflammatory bowel disease. Frontiers in Cellular and Infection Microbiology, 2014, 4, 28.	3.9	143
353	The Effects of Diet and the Microbiome on Reproduction and Longevity: A Comparative Review Across 5 Continents. Journal of Nutrition & Food Sciences, 2014, 05, .	1.0	19
354	Heat Shock Proteins: Intestinal Gatekeepers that Are Influenced by Dietary Components and the Gut Microbiota. Pathogens, 2014, 3, 187-210.	2.8	38
355	The Importance of Microbiota and Host Interactions Throughout Life. , 2014, , 489-511.		0
356	Perturbation of the Human Microbiome as a Contributor to Inflammatory Bowel Disease. Pathogens, 2014, 3, 510-527.	2.8	32
357	Maternal Gut Microbes Control Offspring Sex and Survival. Journal of Probiotics & Health, 2014, 02, .	0.6	1
358	The Human Microbiome and the Immune System: An Ever Evolving Understanding. Journal of Clinical & Cellular Immunology, 2014, 05, .	1.5	5
359	Pathogenesis of Ulcerative Colitis and Crohn's Disease: Similarities, Differences and a Lot of Things We Do Not Know Yet. Journal of Clinical & Cellular Immunology, 2014, 05, .	1.5	7
360	Nonalcoholic Fatty Liver Disease (NAFLD), a Manifestation of the Metabolic Syndrome: New Perspectives on the Nutritional Therapy. Endocrinology & Metabolic Syndrome: Current Research, 2014, 03, .	0.7	4
361	Two Randomized Cross-Over Trials Assessing the Impact of Dietary Gluten or Wholegrain on the Gut Microbiome and Host Metabolic Health. Journal of Clinical Trials, 2014, 04, .	0.1	15
362	The microbiota-gut-brain axis in functional gastrointestinal disorders. Gut Microbes, 2014, 5, 419-429.	9.8	112
363	Replication of Obesity and Associated Signaling Pathways Through Transfer of Microbiota From Obese-Prone Rats. Diabetes, 2014, 63, 1624-1636.	0.6	171
364	Probiotics and virulent human rotavirus modulate the transplanted human gut microbiota in gnotobiotic pigs. Gut Pathogens, 2014, 6, 39.	3.4	49
365	The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiology, 2014, 14, 311.	3.3	178
366	The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease. Cell Host and Microbe, 2014, 16, 276-289.	11.0	415
367	Mechanistic insight into digoxin inactivation by <i>Eggerthella lenta</i> augments our understanding of its pharmacokinetics. Gut Microbes, 2014, 5, 233-238.	9.8	139
368	Modulating the microbiota in inflammatory bowel diseases: prebiotics, probiotics or faecal transplantation?. Proceedings of the Nutrition Society, 2014, 73, 490-497.	1.0	34

#	Article	IF	CITATIONS
369	Reprograming of gut microbiome energy metabolism by the <i>FUT2</i> Crohn's disease risk polymorphism. ISME Journal, 2014, 8, 2193-2206.	9.8	182
370	Compositional dynamics of the human intestinal microbiota with aging: Implications for health. Journal of Nutrition, Health and Aging, 2014, 18, 773-786.	3.3	64
371	Relationship between drinking water and toenail arsenic concentrations among a cohort of Nova Scotians. Journal of Exposure Science and Environmental Epidemiology, 2014, 24, 135-144.	3.9	18
372	Intestinal microbiota in metabolic diseases. Gut Microbes, 2014, 5, 544-551.	9.8	170
373	Beneficial Effect of Oral Tigecycline Treatment on Clostridium difficile Infection in Gnotobiotic Piglets. Antimicrobial Agents and Chemotherapy, 2014, 58, 7560-7564.	3.2	12
374	Gut microbes and adverse food reactions: Focus on gluten related disorders. Gut Microbes, 2014, 5, 594-605.	9.8	37
375	Meta-Omic Platforms to Assist in the Understanding of NAFLD Gut Microbiota Alterations: Tools and Applications. International Journal of Molecular Sciences, 2014, 15, 684-711.	4.1	26
376	Hidden Diversity in Honey Bee Gut Symbionts Detected by Single-Cell Genomics. PLoS Genetics, 2014, 10, e1004596.	3.5	131
377	Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology, 2014, 5, 207.	3.5	551
378	Gut Microbiota in Human Health and Diseases. , 2014, , 469-469.		0
379	Captivity results in disparate loss of gut microbial diversity in closely related hosts. , 2014, 2, cou009-cou009.		132
380	Oligotyping reveals differences between gut microbiomes of free-ranging sympatric Namibian carnivores (Acinonyx jubatus, Canis mesomelas) on a bacterial species-like level. Frontiers in Microbiology, 2014, 5, 526.	3.5	43
381	Microbial Dysbiosis Is Associated with Human Breast Cancer. PLoS ONE, 2014, 9, e83744.	2.5	384
382	Five Years of Advancing Science, Improving Health. Science Translational Medicine, 2014, 6, 257ed20.	12.4	0
383	Fast dendrogram-based OTU clustering using sequence embedding. , 2014, , .		3
384	Clostridium ramosum Promotes High-Fat Diet-Induced Obesity in Gnotobiotic Mouse Models. MBio, 2014, 5, e01530-14.	4.1	176
385	Correlates of gut community composition across an ant species (<i><scp>C</scp>ephalotes) Tj ETQq0 0 0 rgBT / 1284-1300.</i>	Overlock 3.9	10 Tf 50 107 82
386	The Enteric Two-Step: nutritional strategies of bacterial pathogens within the gut. Cellular Microbiology, 2014, 16, 993-1003.	2.1	37

#	Article	IF	CITATIONS
387	Development of ileal cytokine and immunoglobulin expression levels in response to early feeding in broilers and layers. Poultry Science, 2014, 93, 3017-3027.	3.4	26
388	Gut Microbiota-Produced Succinate Promotes C.Âdifficile Infection after Antibiotic Treatment or Motility Disturbance. Cell Host and Microbe, 2014, 16, 770-777.	11.0	310
389	Diet and Feeding Pattern Affect the Diurnal Dynamics of the Gut Microbiome. Cell Metabolism, 2014, 20, 1006-1017.	16.2	655
390	The Gut Commensal Bacteroides thetaiotaomicron Exacerbates Enteric Infection through Modification of the Metabolic Landscape. Cell Host and Microbe, 2014, 16, 759-769.	11.0	255
391	Gut microbiota and cardiometabolic outcomes: influence of dietary patterns and their associated components. American Journal of Clinical Nutrition, 2014, 100, 369S-377S.	4.7	61
392	Exercise Prevents Weight Gain and Alters the Gut Microbiota in a Mouse Model of High Fat Diet-Induced Obesity. PLoS ONE, 2014, 9, e92193.	2.5	451
393	Functional gene arrays-based analysis of fecal microbiomes in patients with liver cirrhosis. BMC Genomics, 2014, 15, 753.	2.8	36
394	Broad scope method for creating humanized animal models for animal health and disease research through antibiotic treatment and human fecal transfer. Gut Microbes, 2014, 5, 183-191.	9.8	90
395	Carbohydrate Intake in the Etiology of Crohn's Disease and Ulcerative Colitis. Inflammatory Bowel Diseases, 2014, 20, 2013-2021.	1.9	78
396	Gut microbiota composition and its effects on obesity and insulin resistance. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 312-318.	2.5	51
397	Dietary arachidonic and oleic acid intake in ulcerative colitis etiology. European Journal of Gastroenterology and Hepatology, 2014, 26, 11-18.	1.6	64
398	Protein Quality and the Protein to Carbohydrate Ratio within a High Fat Diet Influences Energy Balance and the Gut Microbiota In C57BL/6J Mice. PLoS ONE, 2014, 9, e88904.	2.5	77
399	Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Frontiers in Microbiology, 2014, 5, 190.	3.5	250
400	The Effect of Malnutrition on Norovirus Infection. MBio, 2014, 5, e01032-13.	4.1	50
401	Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World Journal of Gastroenterology, 2014, 20, 908.	3.3	176
402	A Possible Link between Food and Mood: Dietary Impact on Gut Microbiota and Behavior in BALB/c Mice. PLoS ONE, 2014, 9, e103398.	2.5	124
403	Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. British Journal of Nutrition, 2014, 111, 1905-1917.	2.3	152
404	Diet, the Gut Microbiome and the Metabolome in IBD. Nestle Nutrition Institute Workshop Series, 2014, 79, 73-82.	0.1	18

#	Article	IF	CITATIONS
405	Autoimmunity and the Gut. Autoimmune Diseases, 2014, 2014, 1-12.	0.6	65
406	Differential Modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of Host Peripheral Lipid Metabolism and Histone Acetylation in Mouse Gut Organoids. MBio, 2014, 5, .	4.1	376
407	Host lifestyle affects human microbiota on daily timescales. Genome Biology, 2014, 15, R89.	9.6	735
408	Popular Exclusionary Diets for Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2014, 20, 732-741.	1.9	48
409	IKKÎ ² in intestinal epithelial cells regulates allergen-specific IgA and allergic inflammation at distant mucosal sites. Mucosal Immunology, 2014, 7, 257-267.	6.0	21
410	High-fat diet alters gut microbiota physiology in mice. ISME Journal, 2014, 8, 295-308.	9.8	583
411	Three-stage continuous culture system with a self-generated anaerobia to study the regionalized metabolism of the human gut microbiota. Journal of Microbiological Methods, 2014, 96, 111-118.	1.6	32
412	The dynamic microbiome. FEBS Letters, 2014, 588, 4131-4139.	2.8	173
413	A Clinician's Primer on the Role of the Microbiome in Human Health and Disease. Mayo Clinic Proceedings, 2014, 89, 107-114.	3.0	187
414	What is the role of obesity in the aetiology of arsenic-related disease?. Environment International, 2014, 66, 115-123.	10.0	18
415	16S rRNA Gene Pyrosequencing Reveals Shift in Patient Faecal Microbiota During High-Dose Chemotherapy as Conditioning Regimen for Bone Marrow Transplantation. Microbial Ecology, 2014, 67, 690-699.	2.8	120
416	Fecal Biomarkers for Research on Dietary and Lifestyle Risk Factors in Colorectal Cancer Etiology. Current Colorectal Cancer Reports, 2014, 10, 114-131.	0.5	5
417	Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME Journal, 2014, 8, 2116-2130.	9.8	491
418	Gut microbiota-based translational biomarkers to prevent metabolic syndrome via nutritional modulation. FEMS Microbiology Ecology, 2014, 87, 303-314.	2.7	44
419	Beneficial modulation of the gut microbiota. FEBS Letters, 2014, 588, 4120-4130.	2.8	204
420	Diet Effects in Gut Microbiome and Obesity. Journal of Food Science, 2014, 79, R442-51.	3.1	88
421	Cellular and molecular longevity pathways: the old and the new. Trends in Endocrinology and Metabolism, 2014, 25, 212-223.	7.1	12
422	The bacterial communities in plant phloemâ€sapâ€feeding insects. Molecular Ecology, 2014, 23, 1433-1444.	3.9	89

ARTICLE IF CITATIONS # Diet, microbiota and autoimmune diseases. Lupus, 2014, 23, 518-526. 423 156 1.6 Gut microbiota dictates the metabolic response of <i>Drosophila </i>to diet. Journal of Experimental 424 1.7 253 Biology, 2014, 217, 1894-901. Simultaneous UPLC–MS/MS analysis of native catechins and procyanidins and their microbial 425 metabolites in intestinal contents and tissues of male Wistar Furth inbred rats. Journal of 2.3 34 Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 958, 63-74. Metabolic Interplay between Gut Bacteria and Their Host. Frontiers of Hormone Research, 2014, 42, 73-82. Mathematical modeling of primary succession of murine intestinal microbiota. Proceedings of the 427 7.1 183 National Academy of Sciences of the United States of America, 2014, 111, 439-444. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiology Reviews, 8.6 2014, 38, 996-1047. The marriage of nutrigenomics with the microbiome: the case of infant-associated bifidobacteria and 429 4.7 36 milk. American Journal of Clinical Nutrition, 2014, 99, 697S-703S. The Human Gut Microbiome and Its Role in Obesity and the Metabolic Syndrome., 2014, , 71-105. 430 Gut microbiota in older subjects: variation, health consequences and dietary intervention prospects. 431 1.0 33 Proceedings of the Nutrition Society, 2014, 73, 441-451. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. Journal of Hepatology, 2014, 60, 824-831. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505, 559-563. 433 27.8 7,592 The heart and the gut. European Heart Journal, 2014, 35, 426-430. 2.2 434 123 Drosophila as a model for intestinal dysbiosis and chronic inflammatory diseases. Developmental and 435 2.3 71 Comparative Immunology, 2014, 42, 102-110. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell, 28.9 1,615 2014, 156, 84-96. Intestinal microbiota, diet and health. British Journal of Nutrition, 2014, 111, 387-402. 437 2.3371 Impact of Diet on Human Intestinal Microbiota and Health. Annual Review of Food Science and 173 Technology, 2014, 5, 239-262. Role of Protocatechuic Acid in Obesity-Related Pathologies., 2014, , 177-189. 439 3 Diet alters probiotic <scp><i>L</i>/i>clscp><i>actobacillus</i> persistence and function in the intestine. 440 3.8 Environmental Microbiology, 2014, 16, 2915-2926.

#	ARTICLE	IF.	CITATIONS
441	Wild aught rodents retain a majority of their natural gut microbiota upon entrance into captivity. Environmental Microbiology Reports, 2014, 6, 191-195.	2.4	92
442	Alterations in cecal microbiota of Jinhua piglets fostered by a Yorkshire sow. Science Bulletin, 2014, 59, 4304-4311.	1.7	9
443	The Devil Lies in the Details: How Variations in Polysaccharide Fine-Structure Impact the Physiology and Evolution of Gut Microbes. Journal of Molecular Biology, 2014, 426, 3851-3865.	4.2	162
444	New aspects of IgA synthesis in the gut. International Immunology, 2014, 26, 489-494.	4.0	23
445	Discovering new indicators of fecal pollution. Trends in Microbiology, 2014, 22, 697-706.	7.7	136
446	The interplay between the gut microbiota and the immune system. Gut Microbes, 2014, 5, 411-418.	9.8	161
447	Gastric microbiota is altered in oesophagitis and <scp>B</scp> arrett's oesophagus and further modified by proton pump inhibitors. Environmental Microbiology, 2014, 16, 2905-2914.	3.8	150
448	Dietary Supplementation with Cocoa Flavanols Does Not Alter Colon Tissue Profiles of Native Flavanols and Their Microbial Metabolites Established during Habitual Dietary Exposure in C57BL/6J Mice. Journal of Agricultural and Food Chemistry, 2014, 62, 11190-11199.	5.2	11
449	In vivo efficacy of HDL-like nanolipid particles containing multivalent peptide mimetics of apolipoprotein A-I. Journal of Lipid Research, 2014, 55, 2053-2063.	4.2	33
450	Compositional dynamics of the human intestinal microbiota with aging: Implications for health. Journal of Nutrition, Health and Aging, 0, , .	3.3	5
451	A Delicate Balance: Maintaining Mutualism to Prevent Disease. Cell Host and Microbe, 2014, 16, 425-427.	11.0	5
452	Temporal Dynamics of the Cecal Gut Microbiota of Juvenile Arctic Ground Squirrels: a Strong Litter Effect across the First Active Season. Applied and Environmental Microbiology, 2014, 80, 4260-4268.	3.1	15
453	Diet-Induced Alterations in Gut Microflora Contribute to Lethal Pulmonary Damage in TLR2/TLR4-Deficient Mice. Cell Reports, 2014, 8, 137-149.	6.4	43
454	An Overview of the Microbiome and the Effects of Antibiotics. Journal for Nurse Practitioners, 2014, 10, 445-450.	0.8	10
455	A Perspective on the Complexity of Dietary Fiber Structures and Their Potential Effect on the Gut Microbiota. Journal of Molecular Biology, 2014, 426, 3838-3850.	4.2	424
456	Digesting the emerging role for the gut microbiome in central nervous system demyelination. Multiple Sclerosis Journal, 2014, 20, 1553-1559.	3.0	60
457	Intestinal and Systemic Inflammatory Responses Are Positively Associated with Sulfidogenic Bacteria Abundance in High-Fat–Fed Male C57BL/6J Mice. Journal of Nutrition, 2014, 144, 1181-1187.	2.9	56
458	Getting Started with Microbiome Analysis: Sample Acquisition to Bioinformatics. Current Protocols in Human Genetics, 2014, 82, 18.8.1-29.	3.5	111

# 459	ARTICLE Starving our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metabolism, 2014, 20, 779-786.	IF 16.2	CITATIONS 614
460	Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14500-14505.	7.1	243
461	Gut microbiota, the pharmabiotics they produce and host health. Proceedings of the Nutrition Society, 2014, 73, 477-489.	1.0	126
462	Comparative Diversity Analysis of Gut Microbiota in Two Different Human Flora-Associated Mouse Strains. Current Microbiology, 2014, 69, 365-373.	2.2	18
463	Viable Intestinal Passage of a Canine Jejunal Commensal Strain Lactobacillus acidophilus LAB20 in Dogs. Current Microbiology, 2014, 69, 467-473.	2.2	2
464	The effects of the microbiota on the host immune system. Autoimmunity, 2014, 47, 494-504.	2.6	43
465	Probiotics and prebiotics in neonatal necrotizing enterocolitis: New opportunities for translational research. Pathophysiology, 2014, 21, 35-46.	2.2	23
467	Synbiotic in the management of infantile colic: A randomised controlled trial. Journal of Paediatrics and Child Health, 2014, 50, 801-805.	0.8	49
468	The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (<scp><i>A</i></scp> <i>louatta pigra</i>). American Journal of Physical Anthropology, 2014, 155, 652-664.	2.1	103
469	Diet, gut microbes, and genetics in immune function: can we leverage our current knowledge to achieve better outcomes in inflammatory bowel diseases?. Current Opinion in Immunology, 2014, 31, 16-23.	5.5	29
470	Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. Journal of Nutritional Biochemistry, 2014, 25, 270-280.	4.2	130
471	A Fish Tale Worth Telling: Enteral Fat for Management of Short Gut Syndrome. Journal of Pediatrics, 2014, 165, 226-227.	1.8	2
472	Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells. Cytokine and Growth Factor Reviews, 2014, 25, 227-233.	7.2	14
473	Designing future prebiotic fiber to target metabolic syndrome. Nutrition, 2014, 30, 497-502.	2.4	46
474	Shrinkage of the human core microbiome and a proposal for launching microbiome biobanks. Future Microbiology, 2014, 9, 639-656.	2.0	12
475	Towards an integrated understanding of gut microbiota using insects as model systems. Journal of Insect Physiology, 2014, 69, 12-18.	2.0	53
476	Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World Journal of Gastroenterology, 2014, 20, 16498.	3.3	89
477	The Role of the gut Microbiome in the Pathogenesis and Treatment of Obesity. Global Advances in Health and Medicine, 2014, 3, 44-57.	1.6	43

#	Article	IF	CITATIONS
478	Genetically identical co-housed pigs as models for dietary studies of gut microbiomes. Microbiome Science and Medicine, 2014, 1, .	0.3	3
479	Infl uence of the Intestinal Microbiota on the Critically. , 2014, , 301-314.		1
480	Managing ulcerative colitis and Crohn's disease. Nursing and Residential Care, 2014, 16, 687-691.	0.1	0
482	Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Scientific Reports, 2015, 5, 14862.	3.3	170
483	The impact of rearing environment on the development of gut microbiota in tilapia larvae. Scientific Reports, 2015, 5, 18206.	3.3	228
484	Diversity of key players in the microbial ecosystems of the human body. Scientific Reports, 2015, 5, 15920.	3.3	30
485	Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clinical Epigenetics, 2015, 7, 112.	4.1	229
486	Variable responses of human and non-human primate gut microbiomes to a Western diet. Microbiome, 2015, 3, 53.	11.1	108
487	Impact of dietary deviation on disease progression and gut microbiome composition in lupus-prone SNF1 mice. Clinical and Experimental Immunology, 2015, 181, 323-337.	2.6	119
488	Responses to fishmeal and soybean meal-based diets by three kinds of larval carps of different food habits. Aquaculture Nutrition, 2015, 21, 552-568.	2.7	20
489	The microbial community structure of the cotton rat nose. Environmental Microbiology Reports, 2015, 7, 929-935.	2.4	35
490	Understanding probiotics' role in allergic children. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 495-503.	2.3	21
491	Artificial sweeteners and glucose intolerance: a dietitians' perspective. Practical Diabetes, 2015, 32, 73-75.	0.3	5
492	The Role of Curcumin in Modulating Colonic Microbiota During Colitis and Colon Cancer Prevention. Inflammatory Bowel Diseases, 2015, 21, 2483-2494.	1.9	166
493	Reciprocal interaction of diet and microbiome in inflammatory bowel diseases. Current Opinion in Gastroenterology, 2015, 31, 464-470.	2.3	31
494	The Intestinal Microbiota in Acute Anorexia Nervosa and During Renourishment. Psychosomatic Medicine, 2015, 77, 969-981.	2.0	237
495	Towards large-cohort comparative studies to define the factors influencing the gut microbial community structure of ASD patients. Microbial Ecology in Health and Disease, 2015, 26, 26555.	3.5	16
496	Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. Journal of Clinical Investigation, 2015, 125, 4212-4222.	8.2	268

#	Article	IF	CITATIONS
497	Intrinsic association between diet and the gut microbiome: current evidence. Nutrition and Dietary Supplements, 2015, 7, 69.	0.7	11
498	Anaerobic Infections. , 2015, , 2736-2743.e1.		5
499	Does the Gut Microbiota Contribute to Obesity? Going beyond the Gut Feeling. Microorganisms, 2015, 3, 213-235.	3.6	38
500	Gut Microbiota and Host Reaction in Liver Diseases. Microorganisms, 2015, 3, 759-791.	3.6	47
501	Intestinal Microbial Dysbiosis and Colonic Epithelial Cell Hyperproliferation by Dietary α-Mangostin is Independent of Mouse Strain. Nutrients, 2015, 7, 764-784.	4.1	19
502	The Infant Gut Microbiome: Evidence for Obesity Risk and Dietary Intervention. Nutrients, 2015, 7, 2237-2260.	4.1	128
503	Breast Milk and Solid Food Shaping Intestinal Immunity. Frontiers in Immunology, 2015, 6, 415.	4.8	65
504	Geriatric Respondents and Non-Respondents to Probiotic Intervention Can be Differentiated by Inherent Gut Microbiome Composition. Frontiers in Microbiology, 2015, 6, 944.	3.5	19
505	Factors Determining Colorectal Cancer: The Role of the Intestinal Microbiota. Frontiers in Oncology, 2015, 5, 220.	2.8	71
506	Longitudinal Microbiome Data Analysis. , 2015, , 97-111.		5
506 507	Longitudinal Microbiome Data Analysis. , 2015, , 97-111. Integrated Community Profiling Indicates Long-Term Temporal Stability of the Predominant Faecal Microbiota in Captive Cheetahs. PLoS ONE, 2015, 10, e0123933.	2.5	5
506 507 508	Longitudinal Microbiome Data Analysis. , 2015, , 97-111. Integrated Community Profiling Indicates Long-Term Temporal Stability of the Predominant Faecal Microbiota in Captive Cheetahs. PLoS ONE, 2015, 10, e0123933. Bifidobacterium pseudocatenulatum CECT 7765 Reduces Obesity-Associated Inflammation by Restoring the Lymphocyte-Macrophage Balance and Gut Microbiota Structure in High-Fat Diet-Fed Mice. PLoS ONE, 2015, 10, e0126976.	2.5 2.5	5 10 179
506 507 508 509	Longitudinal Microbiome Data Analysis., 2015, , 97-111. Integrated Community Profiling Indicates Long-Term Temporal Stability of the Predominant Faecal Microbiota in Captive Cheetahs. PLoS ONE, 2015, 10, e0123933. Bifidobacterium pseudocatenulatum CECT 7765 Reduces Obesity-Associated Inflammation by Restoring the Lymphocyte-Macrophage Balance and Gut Microbiota Structure in High-Fat Diet-Fed Mice. PLoS ONE, 2015, 10, e0126976. Bacterial Composition of the Human Upper Gastrointestinal Tract Microbiome Is Dynamic and Associated with Genomic Instability in a Barrett's Esophagus Cohort. PLoS ONE, 2015, 10, e0129055.	2.5 2.5 2.5	5 10 179 107
506 507 508 509	Longitudinal Microbiome Data Analysis., 2015,, 97-111. Integrated Community Profiling Indicates Long-Term Temporal Stability of the Predominant Faecal Microbiota in Captive Cheetahs. PLoS ONE, 2015, 10, e0123933. Bifidobacterium pseudocatenulatum CECT 7765 Reduces Obesity-Associated Inflammation by Restoring the Lymphocyte-Macrophage Balance and Gut Microbiota Structure in High-Fat Diet-Fed Mice. PLoS ONE, 2015, 10, e0126976. Bacterial Composition of the Human Upper Gastrointestinal Tract Microbiome Is Dynamic and Associated with Genomic Instability in a Barrett's Esophagus Cohort. PLoS ONE, 2015, 10, e0129055. Variation in Taxonomic Composition of the Fecal Microbiota in an Inbred Mouse Strain across Individuals and Time. PLoS ONE, 2015, 10, e0142825.	2.5 2.5 2.5 2.5	5 10 179 107 84
506 507 508 509 510	Longitudinal Microbiome Data Analysis., 2015, 97-111. Integrated Community Profiling Indicates Long-Term Temporal Stability of the Predominant Faecal Microbiota in Captive Cheetahs. PLoS ONE, 2015, 10, e0123933. Bifidobacterium pseudocatenulatum CECT 7765 Reduces Obesity-Associated Inflammation by Restoring the Lymphocyte-Macrophage Balance and Gut Microbiota Structure in High-Fat Diet-Fed Mice. PLoS ONE, 2015, 10, e0126976. Bacterial Composition of the Human Upper Gastrointestinal Tract Microbiome Is Dynamic and Associated with Genomic Instability in a Barrett's Esophagus Cohort. PLoS ONE, 2015, 10, e0129055. Variation in Taxonomic Composition of the Fecal Microbiota in an Inbred Mouse Strain across Individuals and Time. PLoS ONE, 2015, 10, e0142825. The Multifaceted Role of Commensal Microbiota in Homeostasis and Gastrointestinal Diseases. Journal of Immunology Research, 2015, 2015, 1-14.	2.5 2.5 2.5 2.5 2.2	5 10 179 107 84 33
506 507 508 509 510 511	Longitudinal Microbiome Data Analysis., 2015, , 97-111. Integrated Community Profiling Indicates Long-Term Temporal Stability of the Predominant Faecal Microbiota in Captive Cheetahs. PLoS ONE, 2015, 10, e0123933. Bifidobacterium pseudocatenulatum CECT 7765 Reduces Obesity-Associated Inflammation by Restoring the Lymphocyte-Macrophage Balance and Gut Microbiota Structure in High-Fat Diet-Fed Mice. PLoS ONE, 2015, 10, e0126976. Bacterial Composition of the Human Upper Gastrointestinal Tract Microbiome Is Dynamic and Associated with Genomic Instability in a Barrett's Esophagus Cohort. PLoS ONE, 2015, 10, e0129055. Variation In Taxonomic Composition of the Fecal Microbiota in an Inbred Mouse Strain across Individuals and Time. PLoS ONE, 2015, 10, e0142825. The Multifaceted Role of Commensal Microbiota in Homeostasis and Gastrointestinal Diseases. Journal of Immunology Research, 2015, 2015, 1-14. Influence of gut bacteria on development and progression of non-alcoholic fatty liver disease. World Journal of Hepatology, 2015, 7, 1679.	2.5 2.5 2.5 2.2 2.2	5 10 179 107 84 33 27
 506 507 508 509 510 511 512 513 	Longitudinal Microbiome Data Analysis., 2015,, 97-111. Integrated Community Profiling Indicates Long-Term Temporal Stability of the Predominant Faecal Microbiota in Captive Cheetahs. PLoS ONE, 2015, 10, e0123933. Bifidobacterium pseudocatenulatum CECT 7765 Reduces Obesity-Associated Inflammation by Restoring the Lymphocyte-Macrophage Balance and Gut Microbiota Structure in High-Fat Diet-Fed Mice. PLoS ONE, 2015, 10, e0126976. Bacterial Composition of the Human Upper Gastrointestinal Tract Microbiome Is Dynamic and Associated with Genomic Instability in a Barrett's Esophagus Cohort. PLoS ONE, 2015, 10, e0129055. Variation in Taxonomic Composition of the Fecal Microbiota in an Inbred Mouse Strain across Individuals and Time. PLoS ONE, 2015, 10, e0142825. The Multifaceted Role of Commensal Microbiota in Homeostasis and Gastrointestinal Diseases. Journal of Immunology Research, 2015, 2015, 1-14. Influence of gut bacteria on development and progression of non-alcoholic fatty liver disease. World Journal of Hepatology, 2015, 7, 1679. Diversity in gut bacterial community of school-age children in Asia. Scientific Reports, 2015, 5, 8397.	2.5 2.5 2.5 2.2 2.2 2.0 3.3	5 10 179 107 84 33 27 221

#ARTICLEIFCITATIONS515Variation in koala microbiomes within and between individuals: effect of body region and captivity3.378516Monitoring host responses to the gut microbiota. ISME Journal, 2015, 9, 1908-1915.9.832

CITATION REPORT

517 Multiscale analysis of the murine intestine for modeling human diseases. Integrative Biology (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

518	The Howler Monkey as a Model for Exploring Host-Gut Microbiota Interactions in Primates. , 2015, , 229-258.		8
519	Gene–environment interactions in inflammatory bowel disease pathogenesis. Current Opinion in Gastroenterology, 2015, 31, 277-282.	2.3	36
520	Nutrition, immunity and viral infections in honey bees. Current Opinion in Insect Science, 2015, 10, 170-176.	4.4	156
521	Control of commensal microbiota by the adaptive immune system. Gut Microbes, 2015, 6, 156-160.	9.8	15
522	Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 1337-1346.	2.9	114
523	The Mucosal Microbiome. , 2015, , 63-77.		2
524	Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience, 2015, 300, 128-140.	2.3	209
526	The human microbiome in hematopoiesis and hematologic disorders. Blood, 2015, 126, 311-318.	1.4	66
527	Gut Microbial Succession Follows Acute Secretory Diarrhea in Humans. MBio, 2015, 6, e00381-15.	4.1	150
528	Latest approaches for the treatment of obesity. Expert Opinion on Drug Discovery, 2015, 10, 825-839.	5.0	72
529	Review article: dietary fibre-microbiota interactions. Alimentary Pharmacology and Therapeutics, 2015, 42, 158-179.	3.7	430
530	Feeding the brain and nurturing the mind: Linking nutrition and the gut microbiota to brain development. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14105-14112.	7.1	114
531	The gastrointestinal microbiota and colorectal cancer. American Journal of Physiology - Renal Physiology, 2015, 308, G351-G363.	3.4	160
532	Nutrients, Foods, and Colorectal Cancer Prevention. Gastroenterology, 2015, 148, 1244-1260.e16.	1.3	466
533	Using metabolomics to analyse the role of gut microbiota in nutrition and disease. , 2015, , 115-136.		1

#	Article	IF	CITATIONS
534	Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. Journal of Applied Physiology, 2015, 118, 1059-1066.	2.5	212
535	Therapeutic Manipulation of the Microbiome in IBD: Current Results and Future Approaches. Current Treatment Options in Gastroenterology, 2015, 13, 105-120.	0.8	95
536	The composition of the gut microbiota shapes the colon mucus barrier. EMBO Reports, 2015, 16, 164-177.	4.5	519
537	How informative is the mouse for human gut microbiota research?. DMM Disease Models and Mechanisms, 2015, 8, 1-16.	2.4	990
538	Gender bias in lupus: does immune response initiated in the gut mucosa have a role?. Clinical and Experimental Immunology, 2015, 180, 393-407.	2.6	39
539	Food, Immunity, and the Microbiome. Gastroenterology, 2015, 148, 1107-1119.	1.3	278
540	Macronutrients mediate the functional relationship between <i>Drosophila</i> and <i>Wolbachia</i> . Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142029.	2.6	73
541	Linking fat intake, the intestinal microbiome, and necrotizing enterocolitis in premature infants. Pediatric Research, 2015, 77, 121-126.	2.3	14
542	High-Protein Diet Improves Postoperative Weight Gain After Massive Small-Bowel Resection. Journal of Gastrointestinal Surgery, 2015, 19, 451-457.	1.7	4
543	Small Bowel Resection Induces Long-Term Changes in the Enteric Microbiota of Mice. Journal of Gastrointestinal Surgery, 2015, 19, 56-64.	1.7	41
544	The Gut Microbiota Appears to Compensate for Seasonal Diet Variation in the Wild Black Howler Monkey (Alouatta pigra). Microbial Ecology, 2015, 69, 434-443.	2.8	254
545	Comparative Analysis of Intestinal Tract Models. Annual Review of Food Science and Technology, 2015, 6, 329-350.	9.9	91
546	Dietary effects on human gut microbiome diversity. British Journal of Nutrition, 2015, 113, S1-S5.	2.3	350
547	Lean rats gained more body weight from a high-fructooligosaccharide diet. Food and Function, 2015, 6, 2315-2321.	4.6	19
548	Significant differences in fecal microbiota are associated with various stages of glucose tolerance in African American male veterans. Translational Research, 2015, 166, 401-411.	5.0	59
549	Crohn associated microbial communities associated to colonic mucosal biopsies in patients of the western Mediterranean. Systematic and Applied Microbiology, 2015, 38, 442-452.	2.8	37
550	Metagenomics: A New Frontier for Translational Research and Personalized Therapeutics in Psychiatry?. Biological Psychiatry, 2015, 77, 600-601.	1.3	0
551	Metagenomic Surveys of Gut Microbiota. Genomics, Proteomics and Bioinformatics, 2015, 13, 148-158.	6.9	76

	CITATION N	LFORT	
#	Article	IF	CITATIONS
552	The intestinal glycome and its modulation by diet and nutrition. Nutrition Reviews, 2015, 73, 359-375.	5.8	30
553	Microbiota Metabolite Regulation of Host Immune Homeostasis: A Mechanistic Missing Link. Current Allergy and Asthma Reports, 2015, 15, 24.	5.3	54
554	Optimizing dietary levels of menhaden and soybean oils and soybean lecithin for pre-gonadal somatic growth in juveniles of the sea urchin Lytechinus variegatus. Aquaculture, 2015, 446, 198-205.	3.5	13
555	Gut–liver axis, nutrition, and non-alcoholic fatty liver disease. Clinical Biochemistry, 2015, 48, 923-930.	1.9	233
556	Gnotobiotics. , 2015, , 1263-1296.		3
557	Microbial influences on hormesis, oncogenesis, and therapy: A review of the literature. Environmental Research, 2015, 142, 239-256.	7.5	10
558	The Quorum Sensing Peptides PhrG, CSP and EDF Promote Angiogenesis and Invasion of Breast Cancer Cells In Vitro. PLoS ONE, 2015, 10, e0119471.	2.5	77
559	Lentinula edodes-Derived Polysaccharide Alters the Spatial Structure of Gut Microbiota in Mice. PLoS ONE, 2015, 10, e0115037.	2.5	66
560	Parallels Between Mammals and Flies in Inflammatory Bowel Disease. Healthy Ageing and Longevity, 2015, , 151-189.	0.2	1
561	Pan-colonic pharmacokinetics of catechins and procyanidins in male Sprague–Dawley rats. Journal of Nutritional Biochemistry, 2015, 26, 1007-1014.	4.2	19
562	Dynamics of the surgical microbiota along the cardiothoracic surgery pathway. Frontiers in Microbiology, 2014, 5, 787.	3.5	11
563	Deep Metabotyping of the Murine Gastrointestinal Tract for the Visualization of Digestion and Microbial Metabolism. Journal of Proteome Research, 2015, 14, 2267-2277.	3.7	8
564	Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME Journal, 2015, 9, 2490-2502.	9.8	928
565	Sequencing and beyond: integrating molecular 'omics' for microbial community profiling. Nature Reviews Microbiology, 2015, 13, 360-372.	28.6	544
566	Comparison of the effects of five dietary fibers on mucosal transcriptional profiles, and luminal microbiota composition and SCFA concentrations in murine colon. Molecular Nutrition and Food Research, 2015, 59, 1590-1602.	3.3	41
567	Probiotics. Disease-a-Month, 2015, 61, 259-290.	1.1	33
568	The role of the gut microbiota in metabolic health. FASEB Journal, 2015, 29, 3111-3123.	0.5	167
569	Gut microbiota and the development of pediatric diseases. Journal of Gastroenterology, 2015, 50, 720-726.	5.1	41

#	Article	IF	CITATIONS
570	Green areas around homes reduce atopic sensitization in children. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 195-202.	5.7	208
571	The Microbiome and Graft Versus Host Disease. Current Stem Cell Reports, 2015, 1, 39-47.	1.6	14
572	The gut microbiome in cardio-metabolic health. Genome Medicine, 2015, 7, 33.	8.2	92
573	Comparison of the gut microbiota of people in France and Saudi Arabia. Nutrition and Diabetes, 2015, 5, e153-e153.	3.2	100
574	A novel role for maternal stress and microbial transmission in early life programming and neurodevelopment. Neurobiology of Stress, 2015, 1, 81-88.	4.0	120
575	Cultivating Healthy Growth and Nutrition through the Gut Microbiota. Cell, 2015, 161, 36-48.	28.9	155
576	Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. European Journal of Nutrition, 2015, 54, 325-341.	3.9	437
577	Sewage Reflects the Microbiomes of Human Populations. MBio, 2015, 6, e02574.	4.1	220
578	Gut Microbiota and Metabolic Diseases: From Pathogenesis to Therapeutic Perspective. Molecular and Integrative Toxicology, 2015, , 199-234.	0.5	7
579	The gut microbiome in autoimmunity: Sex matters. Clinical Immunology, 2015, 159, 154-162.	3.2	114
580	Inflammaging and Cancer: A Challenge for the Mediterranean Diet. Nutrients, 2015, 7, 2589-2621.	4.1	160
581	Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Communications, 2015, 6, 6734.	12.8	983
583	Autoimmune host–microbiota interactions at barrier sites and beyond. Trends in Molecular Medicine, 2015, 21, 233-244.	6.7	100
584	Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. Journal of Nutritional Biochemistry, 2015, 26, 651-660.	4.2	372
585	Experimental colitis models: Insights into the pathogenesis of inflammatory bowel disease and translational issues. European Journal of Pharmacology, 2015, 759, 253-264.	3.5	84
587	Impact of diet on the human intestinal microbiota. Current Opinion in Food Science, 2015, 2, 71-77.	8.0	44
588	Gut Microbiome and Obesity: A Plausible Explanation for Obesity. Current Obesity Reports, 2015, 4, 250-261.	8.4	154
589	Dietary Polyphenols Promote Growth of the Gut Bacterium <i>Akkermansia muciniphila</i> and Attenuate High-Fat Diet–Induced Metabolic Syndrome. Diabetes, 2015, 64, 2847-2858.	0.6	526

		PORT	
#	Article	IF	CITATIONS
590	Quantitative Imaging of Gut Microbiota Spatial Organization. Cell Host and Microbe, 2015, 18, 478-488.	11.0	359
591	Gastrointestinal microbiome modulator improves glucose tolerance in overweight and obese subjects: A randomized controlled pilot trial. Journal of Diabetes and Its Complications, 2015, 29, 1272-1276.	2.3	70
592	Prebiotic effects of cocoa fibre on rats. Journal of Functional Foods, 2015, 19, 341-352.	3.4	29
593	Modulation of gut microbiota by polyphenols from adlay (<i>Coix lacryma-jobi</i> L.) Tj ETQq1 1 0.784314 rgBT and Nutrition, 2015, 66, 783-789.	Overlock 2.8	10 Tf 50 62 27
594	A catalog of the mouse gut metagenome. Nature Biotechnology, 2015, 33, 1103-1108.	17.5	422
595	Host genetic variation impacts microbiome composition across human body sites. Genome Biology, 2015, 16, 191.	8.8	612
597	Digestion and Postprandial Metabolism in the Elderly. Advances in Food and Nutrition Research, 2015, 76, 79-124.	3.0	14
598	Linking Microbiota to Human Diseases: A Systems Biology Perspective. Trends in Endocrinology and Metabolism, 2015, 26, 758-770.	7.1	134
599	Dysbiotic gut microbiome: A key element of Crohn's disease. Comparative Immunology, Microbiology and Infectious Diseases, 2015, 43, 36-49.	1.6	59
600	Frailty and the Microbiome. Interdisciplinary Topics in Gerontology and Geriatrics, 2015, 41, 54-65.	2.6	12
601	Community assembly of a euryhaline fish microbiome during salinity acclimation. Molecular Ecology, 2015, 24, 2537-2550.	3.9	219
602	Efficient and Accurate OTU Clustering with GPU-Based Sequence Alignment and Dynamic Dendrogram Cutting. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 1060-1073.	3.0	5
603	Overview of dietary choices for ulcerative colitis and Crohn's disease. Gastrointestinal Nursing, 2015, 13, 35-41.	0.1	5
604	Milk bioactives may manipulate microbes to mediate parent-offspring conflict. Evolution, Medicine and Public Health, 2015, 2015, 106-121.	2.5	42
605	Potential for using a hermetically-sealed, positive-pressured isocage system for studies involving germ-free mice outside a flexible-film isolator. Gut Microbes, 2015, 6, 255-265.	9.8	36
606	Alteration of the rat cecal microbiome during colonization with the helminth <i>Hymenolepis diminuta</i> . Gut Microbes, 2015, 6, 182-193.	9.8	99
607	Fallback Foods, Optimal Diets, and Nutritional Targets: Primate Responses to Varying Food Availability and Quality. Annual Review of Anthropology, 2015, 44, 493-512.	1.5	119
608	The Altered Schaedler Flora: Continued Applications of a Defined Murine Microbial Community. ILAR Journal, 2015, 56, 169-178.	1.8	173

#	Article	IF	CITATIONS
609	Intestinal Microbiota in Animal Models of Inflammatory Diseases. ILAR Journal, 2015, 56, 179-191.	1.8	40
610	Microbiota Organ and Bariatric Surgery. , 2015, , 43-55.		0
611	A Review of Applied Aspects of Dealing with Gut Microbiota Impact on Rodent Models. ILAR Journal, 2015, 56, 250-264.	1.8	28
612	Manipulating the Gut Microbiota: Methods and Challenges: FigureÂ1. ILAR Journal, 2015, 56, 205-217.	1.8	114
613	Applications of imaging for bacterial systems biology. Current Opinion in Microbiology, 2015, 27, 114-120.	5.1	14
614	Pathways and functions of gut microbiota metabolism impacting host physiology. Current Opinion in Biotechnology, 2015, 36, 137-145.	6.6	140
615	The relationship between early-life environment, the epigenome and the microbiota. Epigenomics, 2015, 7, 1173-1184.	2.1	24
616	Pathogen Resistance Mediated by IL-22 Signaling at the Epithelial–Microbiota Interface. Journal of Molecular Biology, 2015, 427, 3676-3682.	4.2	52
617	Gene-Environment Interactions Controlling Energy and Glucose Homeostasis and the Developmental Origins of Obesity. Physiological Reviews, 2015, 95, 47-82.	28.8	124
618	Insights Into the Role of the Microbiome in Obesity and Type 2 Diabetes. Diabetes Care, 2015, 38, 159-165.	8.6	519
619	Whole Grain Oats Improve Insulin Sensitivity and Plasma Cholesterol Profile and Modify Gut Microbiota Composition in C57BL/6J Mice. Journal of Nutrition, 2015, 145, 222-230.	2.9	56
620	Intra- and Interindividual Variations Mask Interspecies Variation in the Microbiota of Sympatric Peromyscus Populations. Applied and Environmental Microbiology, 2015, 81, 396-404.	3.1	54
621	The Role of the Gut Microbiota in the Pathogenesis of Antiphospholipid Syndrome. Current Rheumatology Reports, 2015, 17, 472.	4.7	32
622	Influence of Intestinal Microbiota on Body Weight Gain: a Narrative Review of the Literature. Obesity Surgery, 2015, 25, 346-353.	2.1	48
623	Diet Dominates Host Genotype in Shaping the Murine Gut Microbiota. Cell Host and Microbe, 2015, 17, 72-84.	11.0	941
624	MECHANISMS IN ENDOCRINOLOGY: Gut microbiota in patients with type 2 diabetes mellitus. European Journal of Endocrinology, 2015, 172, R167-R177.	3.7	183
625	The human microbiota associated with overall health. Critical Reviews in Biotechnology, 2015, 35, 129-140.	9.0	20
626	Obesity—a disease with many aetiologies disguised in the same oversized phenotype: has the overeating theory failed?. Nephrology Dialysis Transplantation, 2015, 30, 1656-1664.	0.7	25

#	Article	IF	CITATIONS
627	Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clinical and Experimental Immunology, 2015, 179, 363-377.	2.6	218
628	Pathogenesis of Necrotizing Enterocolitis. American Journal of Pathology, 2015, 185, 4-16.	3.8	142
629	Metagenomic epidemiology: a new frontier. Journal of Epidemiology and Community Health, 2015, 69, 306-308.	3.7	3
630	Host adaptive immunity alters gut microbiota. ISME Journal, 2015, 9, 770-781.	9.8	198
631	Exopolysaccharides from fermented dairy products and health promotion. , 2015, , 23-38.		2
632	Diet and host–microbial crosstalk in postnatal intestinal immune homeostasis. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 14-25.	17.8	85
633	Germ-Free Animals. , 2016, , 109-140.		1
634	Gut Microbiota-brain Axis. Chinese Medical Journal, 2016, 129, 2373-2380.	2.3	301
635	Diet therapy for inflammatory bowel diseases: The established and the new. World Journal of Gastroenterology, 2016, 22, 2179-2194.	3.3	123
636	Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases. World Journal of Gastroenterology, 2016, 22, 8905.	3.3	113
637	Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis. World Journal of Gastroenterology, 2016, 22, 9257.	3.3	55
638	An Exposome Perspective on Environmental Enteric Dysfunction. Environmental Health Perspectives, 2016, 124, 1121-1126.	6.0	20
639	Microbiome, Prebiotics, and Human Health. , 2016, , 335-343.		1
640	Peripheral Influences of Methamphetamine Neurotoxicity. , 2016, , 309-319.		3
641	Deciphering bacterial community changes in zucker diabetic fatty rats based on 16S rRNA gene sequences analysis. Oncotarget, 2016, 7, 48941-48952.	1.8	19
642	A Metagenomic Insight Into the Human Microbiome. , 2016, , 107-119.		15
643	Gut Microbiota and Metabolic Health: The Potential Beneficial Effects of a Medium Chain Triglyceride Diet in Obese Individuals. Nutrients, 2016, 8, 281.	4.1	95
644	Tissue-Associated Bacterial Alterations in Rectal Carcinoma Patients Revealed by 16S rRNA Community Profiling. Frontiers in Cellular and Infection Microbiology, 2016, 6, 179.	3.9	125
#	Article	IF	CITATIONS
-----	---	-----	-----------
645	The Autoimmune Ecology. Frontiers in Immunology, 2016, 7, 139.	4.8	68
646	Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Frontiers in Immunology, 2016, 7, 290.	4.8	93
647	Editorial: Microorganisms for Functional Food. Frontiers in Microbiology, 2016, 7, 298.	3.5	0
648	Experimental Evolution on a Wild Mammal Species Results in Modifications of Gut Microbial Communities. Frontiers in Microbiology, 2016, 7, 634.	3.5	27
649	Controlling the Microbiome: Microhabitat Adjustments for Successful Biocontrol Strategies in Soil and Human Gut. Frontiers in Microbiology, 2016, 7, 1079.	3.5	37
650	Interactions between Obesity Status and Dietary Intake of Monounsaturated and Polyunsaturated Oils on Human Gut Microbiome Profiles in the Canola Oil Multicenter Intervention Trial (COMIT). Frontiers in Microbiology, 2016, 7, 1612.	3.5	64
651	Effect of Different Lignocellulosic Diets on Bacterial Microbiota and Hydrolytic Enzyme Activities in the Gut of the Cotton Boll Weevil (Anthonomus grandis). Frontiers in Microbiology, 2016, 07, 2093.	3.5	27
652	Modeling-Enabled Systems Nutritional Immunology. Frontiers in Nutrition, 2016, 3, 5.	3.7	21
653	Alcoholic Liver Disease: Update on the Role of Dietary Fat. Biomolecules, 2016, 6, 1.	4.0	86
654	Gut Microbiota and Lifestyle Interventions in NAFLD. International Journal of Molecular Sciences, 2016, 17, 447.	4.1	75
655	Diet, Microbiota, Obesity, and NAFLD: A Dangerous Quartet. International Journal of Molecular Sciences, 2016, 17, 481.	4.1	100
656	CST, an Herbal Formula, Exerts Anti-Obesity Effects through Brain-Gut-Adipose Tissue Axis Modulation in High-Fat Diet Fed Mice. Molecules, 2016, 21, 1522.	3.8	26
657	The Intestinal Microbiota in Metabolic Disease. Nutrients, 2016, 8, 202.	4.1	211
658	Bacteroides fragilis metabolises exopolysaccharides produced by bifidobacteria. BMC Microbiology, 2016, 16, 150.	3.3	48
659	A Single-Batch Fermentation System to Simulate Human Colonic Microbiota for High-Throughput Evaluation of Prebiotics. PLoS ONE, 2016, 11, e0160533.	2.5	92
660	Reduced Epithelial Na+/H+ Exchange Drives Gut Microbial Dysbiosis and Promotes Inflammatory Response in T Cell-Mediated Murine Colitis. PLoS ONE, 2016, 11, e0152044.	2.5	35
661	Long-Term Transcriptomic Effects of Prebiotics and Synbiotics Delivered In Ovo in Broiler Chickens. PLoS ONE, 2016, 11, e0168899.	2.5	43
662	The Challenge of Maintaining a Healthy Microbiome during Long-Duration Space Missions. Frontiers in Astronomy and Space Sciences, 2016, 3, .	2.8	48

#	Article	IF	CITATIONS
663	Effects of different diets on intestinal microbiota and nonalcoholic fatty liver disease development. World Journal of Gastroenterology, 2016, 22, 7353.	3.3	59
664	Giving back to the community: microbial mechanisms of plant–soil interactions. Functional Ecology, 2016, 30, 1043-1052.	3.6	89
665	Evidence of Avian and Possum Fecal Contamination in Rainwater Tanks as Determined by Microbial Source Tracking Approaches. Applied and Environmental Microbiology, 2016, 82, 4379-4386.	3.1	22
666	The complex interplay of diet, xenobiotics, and microbial metabolism in the gut: Implications for clinical outcomes. Clinical Pharmacology and Therapeutics, 2016, 99, 588-599.	4.7	24
667	The human gut microbiota and its interactive connections to diet. Journal of Human Nutrition and Dietetics, 2016, 29, 539-546.	2.5	62
668	Datafying microbes: Malnutrition at the intersection of genomics and global health. BioSocieties, 2016, 11, 334-351.	1.3	15
669	Spatial disturbances in altered mucosal and luminal gut viromes of dietâ€induced obese mice. Environmental Microbiology, 2016, 18, 1498-1510.	3.8	73
670	Dietary Practices and Beliefs in Patients with Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2016, 22, 164-170.	1.9	146
671	Diet–microbiota interactions as moderators of human metabolism. Nature, 2016, 535, 56-64.	27.8	1,602
672	HORSE SPECIES SYMPOSIUM: Canine intestinal microbiology and metagenomics: From phylogeny to function1. Journal of Animal Science, 2016, 94, 2247-2261.	0.5	24
673	Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice. Food and Nutrition Research, 2016, 60, 29993.	2.6	64
674	Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Medicine, 2016, 8, 67.	8.2	260
675	Characterization of saliva microbiota's functional feature based on metagenomic sequencing. SpringerPlus, 2016, 5, 2098.	1.2	15
676	The Gastrointestinal Microbiome. , 2016, , 126-137.		1
677	The Gut Microbiome. , 2016, , 799-808.		2
678	Comparison of the bacterial communities in feces from wild versus housed sables (Martes zibellina) by high-throughput sequence analysis of the bacterial 16S rRNA gene. AMB Express, 2016, 6, 98.	3.0	18
679	Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice. Scientific Reports, 2016, 6, 23001.	3.3	78
680	Gut microbiota from metabolic disease-resistant, macrophage-specific RIP140 knockdown mice improves metabolic phenotype and gastrointestinal integrity. Scientific Reports, 2016, 6, 38599.	3.3	5

#	Article	IF	CITATIONS
681	Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nature Communications, 2016, 7, 13699.	12.8	145
682	Lifestyle and geographic insights into the distinct gut microbiota in elderly women from two different geographic locations. Journal of Physiological Anthropology, 2016, 35, 31.	2.6	48
683	European Crohn's and Colitis Organisation Topical Review on environmental factors in IBD. Journal of Crohn's and Colitis, 2017, 11, jjw223.	1.3	27
684	Gut microbiota influences pathological angiogenesis in obesityâ€driven choroidal neovascularization. EMBO Molecular Medicine, 2016, 8, 1366-1379.	6.9	133
685	The Gut Microbiome and Its Role in Obesity. Nutrition Today, 2016, 51, 167-174.	1.0	261
686	Gut Microbiota: A Possible Role in the Pathogenesis of Multiple Sclerosis. , 2016, , 181-187.		0
687	Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biological Conservation, 2016, 199, 56-66.	4.1	73
688	Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection. Infection and Immunity, 2016, 84, 2131-2140.	2.2	13
689	Functional Characterization of Inflammatory Bowel Disease–Associated Gut Dysbiosis in Gnotobiotic Mice. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 468-481.	4.5	189
690	Gut Microbiota as a Target in the Pathogenesis of Metabolic Disorders: A New Approach to Novel Therapeutic Agents. Hormone and Metabolic Research, 2016, 48, 349-358.	1.5	104
691	Moody microbes or fecal phrenology: what do we know about the microbiota-gut-brain axis?. BMC Medicine, 2016, 14, 58.	5.5	117
692	Microbiota and caspase-1/caspase-8 regulate IL-1β-mediated bone disease. Gut Microbes, 2016, 7, 334-341.	9.8	13
693	Germ-Free Mice Model for Studying Host–Microbial Interactions. Methods in Molecular Biology, 2016, 1438, 123-135.	0.9	51
694	Gut Immunity and Type 1 Diabetes: a Mélange of Microbes, Diet, and Host Interactions?. Current Diabetes Reports, 2016, 16, 60.	4.2	13
695	From Sample to Multi-Omics Conclusions in under 48 Hours. MSystems, 2016, 1, .	3.8	53
696	Agaro-oligosaccharides: a new frontier in the fight against colon cancer?. American Journal of Physiology - Renal Physiology, 2016, 310, G335-G336.	3.4	24
697	The Gut Microbiota in Type 2 Diabetes. , 2016, , 275-293.		0
698	Effect of long-term antibiotic use on weight in adolescents with acne. Journal of Antimicrobial Chemotherapy, 2016, 71, 1098-1105.	3.0	5

<u> </u>		<u> </u>	
(15	ГАТІ	NEDC	DT
	IAL	NLPC	ואר

#	Article	IF	CITATIONS
699	Early-Life Intranasal Colonization with Nontypeable Haemophilus influenzae Exacerbates Juvenile Airway Disease in Mice. Infection and Immunity, 2016, 84, 2022-2030.	2.2	21
700	A humanized microbiota mouse model of ovalbumin-induced lung inflammation. Gut Microbes, 2016, 7, 342-352.	9.8	35
701	Human Microbiota-Associated Mice: A Model with Challenges. Cell Host and Microbe, 2016, 19, 575-578.	11.0	190
702	Microbes Drive Evolution of Animals and Plants: the Hologenome Concept. MBio, 2016, 7, e01395.	4.1	358
703	Dietary whey proteins shield murine cecal microbiota from extensive disarray caused by a high-fat diet. Food Research International, 2016, 85, 121-130.	6.2	22
704	Layerâ€byâ€Layer Encapsulation of Probiotics for Delivery to the Microbiome. Advanced Materials, 2016, 28, 9486-9490.	21.0	239
705	Gut microbiota mediated benefits of barley kernel products on metabolism, gut hormones, and inflammatory markers as affected by co-ingestion of commercially available probiotics: a randomized controlled study in healthy subjects. Clinical Nutrition ESPEN, 2016, 15, 49-56.	1.2	19
706	The Core Gut Microbiome of the American Cockroach, Periplaneta americana, Is Stable and Resilient to Dietary Shifts. Applied and Environmental Microbiology, 2016, 82, 6603-6610.	3.1	124
707	Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nature Medicine, 2016, 22, 1330-1334.	30.7	201
708	From homeostasis to pathology: decrypting microbe–host symbiotic signals in the intestinal crypt. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150500.	4.0	15
709	Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biology, 2016, 17, 189.	8.8	183
710	Impact of maternal nutrition in pregnancy and lactation on offspring gut microbial composition and function. Gut Microbes, 2016, 7, 459-470.	9.8	144
711	Engineering Human Microbiota: Influencing Cellular and Community Dynamics for Therapeutic Applications. International Review of Cell and Molecular Biology, 2016, 324, 67-124.	3.2	12
712	Signals from the gut microbiota to distant organs in physiology and disease. Nature Medicine, 2016, 22, 1079-1089.	30.7	952
713	The human microbiome and juvenile idiopathic arthritis. Pediatric Rheumatology, 2016, 14, 55.	2.1	29
714	Genetic and Transcriptional Analysis of Human Host Response to Healthy Gut Microbiota. MSystems, 2016, 1, .	3.8	28
715	The oesophageal microbiome: an unexplored link in obesity-associated oesophageal adenocarcinoma. FEMS Microbiology Ecology, 2016, 92, fiw161.	2.7	17
717	Preparation of a standardised faecal slurry for ex-vivo microbiota studies which reduces inter-individual donor bias. Journal of Microbiological Methods, 2016, 129, 109-116.	1.6	29

#	Article	IF	CITATIONS
718	Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Molecular Metabolism, 2016, 5, 759-770.	6.5	142
719	Colonic Pro-inflammatory Macrophages Cause Insulin Resistance in an Intestinal Ccl2/Ccr2-Dependent Manner. Cell Metabolism, 2016, 24, 295-310.	16.2	142
720	Gut microbiota directs <scp>PPAR</scp> γâ€driven reprogramming of the liver circadian clock by nutritional challenge. EMBO Reports, 2016, 17, 1292-1303.	4.5	127
721	The programming effects of nutritionâ€induced catchâ€up growth on gut microbiota and metabolic diseases in adult mice. MicrobiologyOpen, 2016, 5, 296-306.	3.0	23
722	Incorporating the gut microbiota into models of human and nonâ€human primate ecology and evolution. American Journal of Physical Anthropology, 2016, 159, 196-215.	2.1	99
723	Effect of <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> GCL2505 on the physiological function of intestine in a rat model. Food Science and Nutrition, 2016, 4, 782-790.	3.4	20
724	Antibiotic perturbation of the preterm infant gut microbiome and resistome. Gut Microbes, 2016, 7, 443-449.	9.8	102
725	Experimental design considerations in microbiota/inflammation studies. Clinical and Translational Immunology, 2016, 5, e92.	3.8	43
726	Diet and Gut Microbial Function in Metabolic and Cardiovascular Disease Risk. Current Diabetes Reports, 2016, 16, 93.	4.2	28
727	Hydrogen Metabolism in Helicobacter pylori Plays a Role in Gastric Carcinogenesis through Facilitating CagA Translocation. MBio, 2016, 7, .	4.1	27
728	Taxonomic and predicted metabolic profiles of the human gut microbiome in pre-Columbian mummies. FEMS Microbiology Ecology, 2016, 92, fiw182.	2.7	26
729	Bisphenol A alters gut microbiome: Comparative metagenomics analysis. Environmental Pollution, 2016, 218, 923-930.	7.5	122
730	The Role of the Intestinal Microbiome in Type 1 Diabetes Pathogenesis. Current Diabetes Reports, 2016, 16, 89.	4.2	47
731	Extending colonic mucosal microbiome analysis—assessment of colonic lavage as a proxy for endoscopic colonic biopsies. Microbiome, 2016, 4, 61.	11.1	43
732	High-throughput sequencing technology to reveal the composition and function of cecal microbiota in Dagu chicken. BMC Microbiology, 2016, 16, 259.	3.3	73
733	Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Molecular Cell, 2016, 64, 982-992.	9.7	405
734	The impact of early life gut colonization on metabolic and obesogenic outcomes: what have animal models shown us?. Journal of Developmental Origins of Health and Disease, 2016, 7, 15-24.	1.4	36
735	Individualized Responses of Gut Microbiota to Dietary Intervention Modeled in Humanized Mice. MSystems, 2016, 1,	3.8	45

#	Article	IF	CITATIONS
736	Learning from microbial strategies for polysaccharide degradation. Biochemical Society Transactions, 2016, 44, 94-108.	3.4	77
737	The effect of short-term exposure to energy-matched diets enriched in fat or sugar on memory, gut microbiota and markers of brain inflammation and plasticity. Brain, Behavior, and Immunity, 2016, 57, 304-313.	4.1	75
738	Emerging Technologies for Gut Microbiome Research. Trends in Microbiology, 2016, 24, 887-901.	7.7	148
739	Decoding molecular interactions in microbial communities. FEMS Microbiology Reviews, 2016, 40, 648-663.	8.6	71
740	Intestinal microbiota could transfer host Gut characteristics from pigs to mice. BMC Microbiology, 2016, 16, 238.	3.3	54
741	Bariatric surgery and type 2 diabetes: are there weight lossâ€independent therapeutic effects of upper gastrointestinal bypass?. Journal of Internal Medicine, 2016, 280, 476-486.	6.0	52
742	Gut Microbiota in Obesity and Undernutrition. Advances in Nutrition, 2016, 7, 1080-1089.	6.4	103
743	A High-Fat High-Sucrose Diet Rapidly Alters Muscle Integrity, Inflammation and Gut Microbiota in Male Rats. Scientific Reports, 2016, 6, 37278.	3.3	85
744	The Gut Microbiota. Gastroenterology Clinics of North America, 2016, 45, 601-614.	2.2	34
745	Long-Term Implications of Antibiotic Use on Gut Health and Microbiota in Populations Including Patients With Cystic Fibrosis. , 2016, , 223-259.		1
746	Microbiome. , 2016, , 14-18.		0
747	The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. NanoImpact, 2016, 3-4, 47-57.	4.5	103
748	Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Molecular Metabolism, 2016, 5, 1175-1186.	6.5	216
749	Identification of Altered Metabolomic Profiles Following a Panchakarma-based Ayurvedic Intervention in Healthy Subjects: The Self-Directed Biological Transformation Initiative (SBTI). Scientific Reports, 2016, 6, 32609.	3.3	32
750	Probiotic legacy effects on gut microbial assembly in tilapia larvae. Scientific Reports, 2016, 6, 33965.	3.3	49
751	Policy and regulations in light of the human body as a â€~superorganism' containing multiple, intertwined symbiotic relationships. Clinical Research and Regulatory Affairs, 2016, 33, 39-48.	2.1	10
752	The gut microbiome: Potential innovations for the understanding and treatment of psychopathology Canadian Psychology, 2016, 57, 67-75.	2.1	4
753	High fat diet drives obesity regardless the composition of gut microbiota in mice. Scientific Reports, 2016, 6, 32484.	3.3	97

#	Article	IF	CITATIONS
754	Phage Probiotics. SpringerBriefs in Biochemistry and Molecular Biology, 2016, , 39-58.	0.3	0
755	Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice. Scientific Reports, 2016, 6, 31786.	3.3	86
756	Soy and Gut Microbiota: Interaction and Implication for Human Health. Journal of Agricultural and Food Chemistry, 2016, 64, 8695-8709.	5.2	92
757	Significant pharmacokinetic differences of berberine are attributable to variations in gut microbiota between Africans and Chinese. Scientific Reports, 2016, 6, 27671.	3.3	37
758	Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome, 2016, 4, 28.	11.1	195
759	Human gut microbiota and healthy aging: Recent developments and future prospective. Nutrition and Healthy Aging, 2016, 4, 3-16.	1.1	150
760	Towards human exploration of space: The THESEUS review series on nutrition and metabolism research priorities. Npj Microgravity, 2016, 2, 16029.	3.7	52
761	Letter: faecal volatile organic metabolites, promising biomarkers in inflammatory bowel disease and Letter: faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease. Authors' reply. Alimentary Pharmacology and Therapeutics, 2016, 43, 1241-1242.	3.7	1
762	The human gut microbiome of Latin America populations: a landscape to be discovered. Current Opinion in Infectious Diseases, 2016, 29, 528-537.	3.1	20
764	Regulating inflammation with microbial metabolites. Nature Medicine, 2016, 22, 581-583.	30.7	61
765	The intestinal microbiome and surgical disease. Current Problems in Surgery, 2016, 53, 257-293.	1.1	24
766	Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors. Immunity, 2016, 44, 1255-1269.	14.3	797
767	The role of Gut Microbiota in the development of obesity and Diabetes. Lipids in Health and Disease, 2016, 15, 108.	3.0	364
768	Potential applications of metagenomics to assess the biological effects of food structure and function, 2016, 7, 4160-4169.	4.6	7
769	Beneficial metabolic effects of selected probiotics on dietâ€induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. Environmental Microbiology, 2016, 18, 1484-1497.	3.8	127
770	Microbiota and pathogen â€~pas de deux': setting up and breaking down barriers to intestinal infection. Pathogens and Disease, 2016, 74, ftw051.	2.0	20
771	Effects of Walnut Consumption on Colon Carcinogenesis and Microbial Community Structure. Cancer Prevention Research, 2016, 9, 692-703.	1.5	50
772	Effect of a long-term high-protein diet on survival, obesity development, and gut microbiota in mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E886-E899.	3.5	55

#	Article	IF	Citations
773	Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology, 2016, 31, 283-293.	3.1	463
774	Effects of alternative plant-based feeds on hepatic and gastrointestinal histology and the gastrointestinal microbiome of sablefish (Anoplopoma fimbria). Aquaculture, 2016, 464, 683-691.	3.5	19
775	Mirror, mirror on the wall: which microbiomes will help heal them all?. BMC Medicine, 2016, 14, 72.	5.5	31
776	Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure. Cell Metabolism, 2016, 23, 1216-1223.	16.2	274
777	Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metabolism, 2016, 24, 41-50.	16.2	1,734
778	Manipulation of the Gut Microbiota Reveals Role in Colon Tumorigenesis. MSphere, 2016, 1, .	2.9	94
779	Crossover Control Study of the Effect of Personal Care Products Containing Triclosan on the Microbiome. MSphere, 2016, 1, .	2.9	62
780	Calcium supplementation modulates gut microbiota in a prebiotic manner in dietary obese mice. Molecular Nutrition and Food Research, 2016, 60, 468-480.	3.3	77
781	Gut microbiota and immune crosstalk in metabolic disease. Molecular Metabolism, 2016, 5, 771-781.	6.5	141
782	Diet-induced extinctions in the gut microbiota compound over generations. Nature, 2016, 529, 212-215.	27.8	1,287
783	Degradation of chondroitin sulfate by the gut microbiota of Chinese individuals. International Journal of Biological Macromolecules, 2016, 86, 112-118.	7.5	62
784	Bottom-Up Proteomics (2013–2015): Keeping up in the Era of Systems Biology. Analytical Chemistry, 2016, 88, 95-121.	6.5	52
785	Gut microbiota and diet in patients with different glucose tolerance. Endocrine Connections, 2016, 5, 1-9.	1.9	148
786	Bile Acids, the Microbiome and Metabolic Disease-Implications for Surgery. , 2016, , 81-90.		0
787	Gut microbiome diversity in acute infective and chronic inflammatory gastrointestinal diseases in North India. Journal of Gastroenterology, 2016, 51, 660-671.	5.1	40
788	The chemistry of gut microbial metabolism of polyphenols. Phytochemistry Reviews, 2016, 15, 425-444.	6.5	161
789	Challenges of metabolomics in human gut microbiota research. International Journal of Medical Microbiology, 2016, 306, 266-279.	3.6	117
790	A polyphenol-rich fraction obtained from table grapes decreases adiposity, insulin resistance and markers of inflammation and impacts gut microbiota in high-fat-fed mice. Journal of Nutritional Biochemistry, 2016, 31, 150-165.	4.2	87

#	Article	IF	Citations
791	Obesity, Asthma, and the Microbiome. Physiology, 2016, 31, 108-116.	3.1	26
792	The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders?. Current Obesity Reports, 2016, 5, 51-64.	8.4	83
793	Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures. Journal of Nutritional Biochemistry, 2016, 31, 127-136.	4.2	32
794	Prebiotics: Definition and protective mechanisms. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 27-37.	2.4	120
795	Diet, microbiota, and dysbiosis: a â€~recipe' for colorectal cancer. Food and Function, 2016, 7, 1731-1740.	4.6	97
796	Composition of the gut microbiota modulates the severity of malaria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2235-2240.	7.1	198
797	Metabolic modeling with Big Data and the gut microbiome. Applied & Translational Genomics, 2016, 10, 10-15.	2.1	28
798	The Intestinal Immune System in Obesity and Insulin Resistance. Cell Metabolism, 2016, 23, 413-426.	16.2	355
799	Satiety Innovations: Food Products to Assist Consumers with Weight Loss, Evidence on the Role of Satiety in Healthy Eating: Overview and In Vitro Approximation. Current Obesity Reports, 2016, 5, 97-105.	8.4	9
800	Probiotics in prevention and treatment of obesity: a critical view. Nutrition and Metabolism, 2016, 13, 14.	3.0	235
801	Gut microbiota, obesity and diabetes. Postgraduate Medical Journal, 2016, 92, 286-300.	1.8	377
802	Clinical implications of antibiotic impact on gastrointestinal microbiota and <i>Clostridium difficile</i> infection. Expert Review of Gastroenterology and Hepatology, 2016, 10, 1145-1152.	3.0	30
803	Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. International Journal of Neuropsychopharmacology, 2016, 19, pyw020.	2.1	419
804	Nonalcoholic Components of Wine and Atherosclerotic Cardiovascular Disease. , 2016, , 83-99.		0
805	Different Th17 immunity in gut, liver, and adipose tissues during obesity: the role of diet, genetics, and microbes. Gut Microbes, 2016, 7, 82-89.	9.8	45
806	Gut microbiota impact on stroke outcome: Fad or fact?. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 891-898.	4.3	58
807	Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen Candida albicans. MSphere, 2016, 1, .	2.9	50
808	The mouse gut microbiome revisited: From complex diversity to model ecosystems. International Journal of Medical Microbiology, 2016, 306, 316-327.	3.6	70

#	Article	IF	CITATIONS
809	Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species. Oecologia, 2016, 180, 717-733.	2.0	91
810	Role of the microbiome in the normal and aberrant glycemic response. Clinical Nutrition Experimental, 2016, 6, 59-73.	2.0	29
812	A perspective on NETosis in diabetes and cardiometabolic disorders. Nutrition, Metabolism and Cardiovascular Diseases, 2016, 26, 1-8.	2.6	45
813	Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 2016, 90, 575-587.	3.9	523
814	Tools for the Microbiome: Nano and Beyond. ACS Nano, 2016, 10, 6-37.	14.6	137
815	Regulation of energy balance by a gut–brain axis and involvement of the gut microbiota. Cellular and Molecular Life Sciences, 2016, 73, 737-755.	5.4	156
816	Utility of Helicobacter spp. associated GFD markers for detecting avian fecal pollution in natural waters of two continents. Water Research, 2016, 88, 613-622.	11.3	30
817	Host Genetic Control of the Microbiota Mediates the Drosophila Nutritional Phenotype. Applied and Environmental Microbiology, 2016, 82, 671-679.	3.1	127
818	Gut microbiome in health and disease: Linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. , 2016, 158, 52-62.		394
819	What is new about diet in hepatic encephalopathy. Metabolic Brain Disease, 2016, 31, 1289-1294.	2.9	30
820	High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 2016, 65, 1812-1821.	12.1	1,092
821	The microbiome and its potential as a cancer preventive intervention. Seminars in Oncology, 2016, 43, 97-106.	2.2	102
822	Phenolic compounds from red wine and coffee are associated with specific intestinal microorganisms in allergic subjects. Food and Function, 2016, 7, 104-109.	4.6	26
823	Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice. ISME Journal, 2016, 10, 1217-1227.	9.8	85
824	Gut microbiota and obesity. Cellular and Molecular Life Sciences, 2016, 73, 147-162.	5.4	383
825	Implications of dietary salt intake for multiple sclerosis pathogenesis. Multiple Sclerosis Journal, 2016, 22, 133-139.	3.0	22
826	Nutritional modulation of gut microbiota — the impact on metabolic disease pathophysiology. Journal of Nutritional Biochemistry, 2016, 28, 191-200.	4.2	77
827	A comparison of the nutritional status between adult celiac patients on a long-term, strictly gluten-free diet and healthy subjects. European Journal of Clinical Nutrition, 2016, 70, 23-27.	2.9	76

#	Article	IF	CITATIONS
828	<i>Akkermansia muciniphila</i> and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 2016, 65, 426-436.	12.1	1,379
829	Mucosal Immunology. , 2016, , 365-370.e2.		1
830	Appetite Regulation and Thermogenesis. , 2016, , 457-467.e5.		0
831	Innate inflammation in type 1 diabetes. Translational Research, 2016, 167, 214-227.	5.0	65
832	Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Critical Reviews in Food Science and Nutrition, 2017, 57, 59-81.	10.3	178
833	Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Molecular Nutrition and Food Research, 2017, 61, 1500902.	3.3	194
834	Mechanistic and Technical Challenges in Studying the Human Microbiome and Cancer Epidemiology. Technology in Cancer Research and Treatment, 2017, 16, 150-158.	1.9	7
835	Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases. Molecular Nutrition and Food Research, 2017, 61, 1600129.	3.3	110
836	An informative approach on differential abundance analysis for time-course metagenomic sequencing data. Bioinformatics, 2017, 33, 1286-1292.	4.1	20
837	Western diets, gut dysbiosis, and metabolic diseases: Are they linked?. Gut Microbes, 2017, 8, 130-142.	9.8	177
838	The thyroid, the eyes and the gut: a possible connection. Journal of Endocrinological Investigation, 2017, 40, 567-576.	3.3	36
839	Gut Microbiota Mediates Protection Against Enteropathy Induced by Indomethacin. Scientific Reports, 2017, 7, 40317.	3.3	33
840	Evolutionary and ecological forces that shape the bacterial communities of the human gut. Mucosal Immunology, 2017, 10, 567-579.	6.0	24
841	Personalized microbiomeâ€based approaches to metabolic syndrome management and prevention. Journal of Diabetes, 2017, 9, 226-236.	1.8	39
842	Intestinal Microbiota: Facts and Fiction. Digestive Diseases, 2017, 35, 139-147.	1.9	28
843	The Dynamic Maggot Mass Microbiome. Annals of the Entomological Society of America, 2017, 110, 45-53.	2.5	36
844	The microbiome and systemic lupus erythematosus. Immunologic Research, 2017, 65, 432-437.	2.9	53
845	Confounding effects of microbiome on the susceptibility of TNFSF15 to Crohn's disease in the Ryukyu Islands. Human Genetics, 2017, 136, 387-397.	3.8	14

# 846	ARTICLE Microbiota composition of simultaneously colonized mice housed under either a gnotobiotic isolator or individually ventilated cage regime. Scientific Reports, 2017, 7, 42245.	IF 3.3	Citations 37
847	Microbes and Diet-Induced Obesity: Fast, Cheap, and Out of Control. Cell Host and Microbe, 2017, 21, 278-281.	11.0	61
848	Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health. Cell Metabolism, 2017, 25, 522-534.	16.2	108
849	A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats. Journal of Applied Microbiology, 2017, 122, 1627-1638.	3.1	31
850	We are not alone: a case for the human microbiome in extra intestinal diseases. Gut Pathogens, 2017, 9, 13.	3.4	54
851	Metagenomics approach to the study of the gut microbiome structure and function in zebrafish Danio rerio fed with gluten formulated diet. Journal of Microbiological Methods, 2017, 135, 69-76.	1.6	34
852	The maternal microbiome: Cause or consequence of obesity risk in the next generation?. Obesity, 2017, 25, 497-498.	3.0	4
853	Diet affects arctic ground squirrel gut microbial metatranscriptome independent of community structure. Environmental Microbiology, 2017, 19, 1518-1535.	3.8	17
854	Crosstalk between Bile Acids and Gut Microbiota and Its Impact on Farnesoid X Receptor Signalling. Digestive Diseases, 2017, 35, 246-250.	1.9	80
855	Animal nutrition and breeding conditions modify the physiology of isolated primary cells. Medical Hypotheses, 2017, 102, 16-18.	1.5	0
856	Food and Industrial Grade Titanium Dioxide Impacts Gut Microbiota. Environmental Engineering Science, 2017, 34, 537-550.	1.6	41
857	High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome, 2017, 5, 43.	11.1	132
858	The influence of diet on the grass carp intestinal microbiota and bile acids. Aquaculture Research, 2017, 48, 4934-4944.	1.8	26
859	The Gut Microbiome: Connecting Spatial Organization to Function. Cell Host and Microbe, 2017, 21, 433-442.	11.0	453
860	The microbiome in respiratory medicine: current challenges and future perspectives. European Respiratory Journal, 2017, 49, 1602086.	6.7	194
861	Muramyl Dipeptide-Based Postbiotics Mitigate Obesity-Induced Insulin Resistance via IRF4. Cell Metabolism, 2017, 25, 1063-1074.e3.	16.2	149
862	Short Term High Fat Diet Induces Obesity‣nhancing Changes in Mouse Gut Microbiota That are Partially Reversed by Cessation of the High Fat Diet. Lipids, 2017, 52, 499-511.	1.7	66
863	Quantitative detection of fecal contamination with domestic poultry feces in environments in China. AMB Express, 2017, 7, 80.	3.0	19

	Сг	tation Report	
#	Article	IF	CITATIONS
864	Intestinal Microbiology and Ecology in Crohn's Disease and Ulcerative Colitis. , 2017, , 67-74.		1
865	Inulin with different degrees of polymerization modulates composition of intestinal microbiota in mice. FEMS Microbiology Letters, 2017, 364, .	1.8	61
866	Effects of dietary rapeseed meal supplementation on cecal microbiota in laying hens with different flavin-containing monooxygenase 3 genotypes. Poultry Science, 2017, 96, 1748-1758.	3.4	16
867	Moutan Cortex and Paeoniae Radix Rubra reverse high-fat-diet-induced metabolic disorder and restore gut microbiota homeostasis. Chinese Journal of Natural Medicines, 2017, 15, 210-219.	1.3	9
868	Applying the design-build-test paradigm in microbiome engineering. Current Opinion in Biotechnology 2017, 48, 85-93.	/, 6.6	13
869	Fish oil, lard and soybean oil differentially shape gut microbiota of middle-aged rats. Scientific Reports, 2017, 7, 826.	3.3	43
870	Bacterial and fungal communities vary with the type of organic substrate: implications for biocontrol of soilless crops. Environmental Chemistry Letters, 2017, 15, 537-545.	16.2	28
871	Interaction Between Familial Transmission and a Constitutively Active Immune System Shapes Gut Microbiota in Drosophila melanogaster. Genetics, 2017, 206, 889-904.	2.9	30
872	Nod2 and Nod2-regulated microbiota protect BALB/c mice from diet-induced obesity and metabolic dysfunction. Scientific Reports, 2017, 7, 548.	3.3	48
873	MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Research, 2017, 45, W180-W188.	14.5	1,359
874	Changes in gut microbiota of migratory passerines during stopover after crossing an ecological barrier. Auk, 2017, 134, 137-145.	1.4	45
875	Chronic Rhinosinusitis and the Evolving Understanding of Microbial Ecology in Chronic Inflammatory Mucosal Disease. Clinical Microbiology Reviews, 2017, 30, 321-348.	13.6	103
876	Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes. Journal of Molecular Medicine, 2017, 95, 1-8.	3.9	267
877	TCDD influences reservoir of antibiotic resistance genes in murine gut microbiome. FEMS Microbiology Ecology, 2017, 93, .	2.7	32
878	Fecal microbiota variation across the lifespan of the healthy laboratory rat. Gut Microbes, 2017, 8, 428-439.	9.8	93
879	CE. American Journal of Nursing, 2017, 117, 24-30.	0.4	6
880	The Microbiota-Obesity Connection, Part 2. Holistic Nursing Practice, 2017, 31, 204-209.	0.7	0
881	Green tea polyphenols reduce obesity in highâ€fat dietâ€induced mice by modulating intestinal micro composition. International Journal of Food Science and Technology, 2017, 52, 1723-1730.	biota 2.7	50

#	Article	IF	CITATIONS
882	Synthesized enone fatty acids resembling metabolites from gut microbiota suppress macrophageâ€mediated inflammation in adipocytes. Molecular Nutrition and Food Research, 2017, 61, 1700064.	3.3	36
883	Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. Biochimie, 2017, 141, 97-106.	2.6	196
884	Microbiome and NAFLD: potential influence of aerobic fitness and lifestyle modification. Physiological Genomics, 2017, 49, 385-399.	2.3	31
885	On phagocytes and macular degeneration. Progress in Retinal and Eye Research, 2017, 61, 98-128.	15.5	121
886	Impact and Application of Nutraceuticals on Inflammation-Induced Colorectal Cancer Development. , 2017, , 273-291.		0
887	Blastocystis: how do specific diets and human gut microbiota affect its development and pathogenicity?. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 1531-1540.	2.9	55
888	From mystery to mechanism: can proteomics build systems-level understanding of our gut microbes?. Expert Review of Proteomics, 2017, 14, 473-476.	3.0	6
889	Comprehensive survey of intestinal microbiota changes in offspring of human microbiota associated mice. European Journal of Microbiology and Immunology, 2017, 7, 65-75.	2.8	23
890	Association between urinary metabolic profile and the intestinal effects of cocoa in rats. British Journal of Nutrition, 2017, 117, 623-634.	2.3	17
891	Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility. Scientific Reports, 2017, 7, 441.	3.3	161
892	Curcumin improves intestinal barrier function: modulation of intracellular signaling, and organization of tight junctions. American Journal of Physiology - Cell Physiology, 2017, 312, C438-C445.	4.6	153
893	Intestinal Barrier Function and the Gut Microbiome Are Differentially Affected in Mice Fed a Western-Style Diet or Drinking Water Supplemented with Fructose. Journal of Nutrition, 2017, 147, 770-780.	2.9	118
894	Can Consideration of the Microbiome Improve Antimicrobial Utilization and Treatment Outcomes in the Oncology Patient?. Clinical Cancer Research, 2017, 23, 3263-3268.	7.0	30
895	Microbiota: a key orchestrator of cancer therapy. Nature Reviews Cancer, 2017, 17, 271-285.	28.4	699
896	The Gut Microbiome, Energy Homeostasis, and Implications for Hypertension. Current Hypertension Reports, 2017, 19, 27.	3.5	42
897	Rice- or pork-based diets with similar calorie and content result in different rat gut microbiota. International Journal of Food Sciences and Nutrition, 2017, 68, 829-839.	2.8	4
898	High-cholesterol diet does not alter gut microbiota composition in mice. Nutrition and Metabolism, 2017, 14, 15.	3.0	36
899	Differential effect of early antibiotic intervention on bacterial fermentation patterns and mucosal gene expression in the colon of pigs under diets with different protein levels. Applied Microbiology and Biotechnology. 2017, 101, 2493-2505.	3.6	50

#	Article	IF	CITATIONS
900	Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome. Brain, Behavior, and Immunity, 2017, 64, 33-49.	4.1	85
901	Microbial nutrient niches in the gut. Environmental Microbiology, 2017, 19, 1366-1378.	3.8	258
902	Altered Gut Microbiome Composition and Tryptic Activity of the 5xFAD Alzheimer's Mouse Model. Journal of Alzheimer's Disease, 2017, 56, 775-788.	2.6	230
903	Comparative analysis of the gut microbiota of black bears in China using high-throughput sequencing. Molecular Genetics and Genomics, 2017, 292, 407-414.	2.1	95
904	Consumption of a high-fat diet alters the seminal fluid and gut microbiomes in male mice. Reproduction, Fertility and Development, 2017, 29, 1602.	0.4	38
905	Current paradigms in the etiology of obesity. Techniques in Gastrointestinal Endoscopy, 2017, 19, 2-11.	0.3	37
906	Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota. Journal of Lipid Research, 2017, 58, 412-419.	4.2	66
907	Brown fat thermogenesis: Stability of developmental programming and transient effects of temperature and gut microbiota in adults. Biochimie, 2017, 134, 93-98.	2.6	12
908	Distinct Microbial Communities Trigger Colitis Development upon Intestinal Barrier Damage via Innate or Adaptive Immune Cells. Cell Reports, 2017, 21, 994-1008.	6.4	105
911	Human Gut Metagenomics: Success and Limits of the Activity-Based Approaches. , 2017, , 161-178.		0
912	Nicotine Alters the Gut Microbiome and Metabolites of Gut–Brain Interactions in a Sex-Specific Manner. Chemical Research in Toxicology, 2017, 30, 2110-2119.	3.3	66
913	Intestinal microbiota changes in mice lacking pituitary adenylate cyclase activating polypeptide (PACAP) — bifidobacteria make the difference. European Journal of Microbiology and Immunology, 2017, 7, 187-199.	2.8	34
914	Altered Gut Microbiota in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 60, 1241-1257.	2.6	319
915	Group Living and Male Dispersal Predict the Core Gut Microbiome in Wild Baboons. Integrative and Comparative Biology, 2017, 57, 770-785.	2.0	69
916	Effect of acid whey-fortified breads on caecal fermentation processes and blood lipid profile in rats. British Journal of Nutrition, 2017, 118, 169-178.	2.3	5
917	Functional amplification and preservation of human gut microbiota. Microbial Ecology in Health and Disease, 2017, 28, 1308070.	3.5	10
918	Oolong Tea Polyphenols–Phospholipids Complex Reduces Obesity in High Fat Dietâ€Induced Mice Model. European Journal of Lipid Science and Technology, 2017, 119, 1600394.	1.5	9
919	Development of the gut microbiota in infancy and its impact on health in later life. Allergology International, 2017, 66, 515-522.	3.3	413

#	Article	IF	CITATIONS
920	Dietary Proteins Rapidly Altered the Microbial Composition in Rat Caecum. Current Microbiology, 2017, 74, 1447-1452.	2.2	29
921	A bacteriophages journey through the human body. Immunological Reviews, 2017, 279, 106-122.	6.0	182
922	Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews, 2017, 279, 70-89.	6.0	1,015
923	The salivary microbiome is consistent between subjects and resistant to impacts of short-term hospitalization. Scientific Reports, 2017, 7, 11040.	3.3	34
924	Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10719-10724.	7.1	666
925	The Microbial Ecosystem Distinguishes Chronically Diseased Tissue from Adjacent Tissue in the Sigmoid Colon of Chronic, Recurrent Diverticulitis Patients. Scientific Reports, 2017, 7, 8467.	3.3	41
926	The intricate connection between diet, microbiota, and cancer: A jigsaw puzzle. Seminars in Immunology, 2017, 32, 35-42.	5.6	19
927	Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin. Translational Research, 2017, 189, 30-50.	5.0	34
928	The Role of the Indigenous Gut Microbiota in Human Health and Disease. Advances in Environmental Microbiology, 2017, , 75-104.	0.3	1
929	Effect of gut microbiota on host whole metabolome. Metabolomics, 2017, 13, 1.	3.0	14
930	IL-17A-dependent gut microbiota is essential for regulating diet-induced disorders in mice. Science Bulletin, 2017, 62, 1052-1063.	9.0	16
931	The evolution of the host microbiome as an ecosystem on a leash. Nature, 2017, 548, 43-51.	27.8	687
932	Issues and consequences of using nutrition to modulate the avian immune response. Journal of Applied Poultry Research, 2017, 26, 605-612.	1.2	29
933	Effects of concentration of corn distillers dried grains with solubles and enzyme supplementation on cecal microbiota and performance in broiler chickens. Applied Microbiology and Biotechnology, 2017, 101, 7017-7026.	3.6	21
934	Gut microbiome response to shortâ€ŧerm dietary interventions in reactive hypoglycemia subjects. Diabetes/Metabolism Research and Reviews, 2017, 33, e2927.	4.0	14
935	The interaction effect and mechanism between tea polyphenols and intestinal microbiota: Role in human health. Journal of Food Biochemistry, 2017, 41, e12415.	2.9	34
936	Dietary perturbations alter the ecological significance of ingested Lactobacillus plantarum in the digestive tract. Scientific Reports, 2017, 7, 7267.	3.3	9
937	Mechanisms of <i>Salmonella</i> pathogenesis in animal models. Human and Ecological Risk Assessment (HERA), 2017, 23, 1877-1892.	3.4	30

#	Article	IF	Citations
938	Sex Effects at the Ramparts: Nutrient- and Microbe-Mediated Regulation of the Immune-Metabolic Interface. Advances in Experimental Medicine and Biology, 2017, 1043, 113-140.	1.6	1
939	Exploring the microbiome in health and disease. Toxicology Research and Application, 2017, 1, 239784731774188.	0.6	36
940	Contemporary Applications of Fecal Microbiota Transplantation to Treat Intestinal Diseases in Humans. Archives of Medical Research, 2017, 48, 766-773.	3.3	37
941	Immunology of Gut-Bone Signaling. Advances in Experimental Medicine and Biology, 2017, 1033, 59-94.	1.6	19
942	Dietary Uncoupling of Gut Microbiota and Energy Harvesting from Obesity and Glucose Tolerance in Mice. Cell Reports, 2017, 21, 1521-1533.	6.4	177
943	Changes in the Qualitative and Quantitative Composition of the Intestinal Microflora in Rats in Experimental Allergic Encephalomyelitis. Neuroscience and Behavioral Physiology, 2017, 47, 328-336.	0.4	0
944	The microbiome and big data. Current Opinion in Systems Biology, 2017, 4, 92-96.	2.6	11
945	Polydextrose changes the gut microbiome and attenuates fasting triglyceride and cholesterol levels in Western diet fed mice. Scientific Reports, 2017, 7, 5294.	3.3	71
946	Alteration of gut microbiota in association with cholesterol gallstone formation in mice. BMC Gastroenterology, 2017, 17, 74.	2.0	60
947	Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice. Diabetologia, 2017, 60, 2033-2041.	6.3	53
948	Nutrition Matters in IBD. Clinical Gastroenterology, 2017, , 233-255.	0.0	0
949	Gut microbial metabolism defines host metabolism: an emerging perspective in obesity and allergic inflammation. Obesity Reviews, 2017, 18, 18-31.	6.5	93
950	Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans. ISME Journal, 2017, 11, 676-690.	9.8	63
951	From obesity through immunity to type 2 diabetes mellitus. International Journal of Diabetes in Developing Countries, 2017, 37, 407-418.	0.8	5
952	Enteral High Fat-Polyunsaturated Fatty Acid Blend Alters the Pathogen Composition of the Intestinal Microbiome in Premature Infants with an Enterostomy. Journal of Pediatrics, 2017, 181, 93-101.e6.	1.8	46
953	Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational Research, 2017, 179, 223-244.	5.0	351
954	Obesity-associated cancer risk: the role of intestinal microbiota in the etiology of the host proinflammatory state. Translational Research, 2017, 179, 155-167.	5.0	36
955	Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunology, 2017, 10, 18-26.	6.0	533

#	Article	IF	CITATIONS
956	Highâ€fiber and highâ€protein diets shape different gut microbial communities, which ecologically behave similarly under stress conditions, as shown in a gastrointestinal simulator. Molecular Nutrition and Food Research, 2017, 61, 1600150.	3.3	33
957	Gut microbiota after Rouxâ€en‥ gastric bypass and sleeve gastrectomy in a diabetic rat model: Increased diversity and associations of discriminant genera with metabolic changes. Diabetes/Metabolism Research and Reviews, 2017, 33, e2857.	4.0	52
958	Concise Review: Current Status and Future Directions on Research Related to Nonalcoholic Fatty Liver Disease. Stem Cells, 2017, 35, 89-96.	3.2	48
959	Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis. ISME Journal, 2017, 11, 15-30.	9.8	68
960	Diversity is the question, not the answer. ISME Journal, 2017, 11, 1-6.	9.8	358
962	6.28 Liver Tissue Engineering â~†. , 2017, , 491-512.		4
963	Gut region influences the diversity and interactions of bacterial communities in pikas (Ochotona) Tj ETQq0 0 0	rgBT /Over 2.7	lock 10 Tf 50
964	Gut Microbiota in Obesity and Metabolic Abnormalities: A Matter of Composition or Functionality?. Archives of Medical Research, 2017, 48, 735-753.	3.3	59
965	Microbiota Diversification and Crash Induced by Dietary Oxalate in the Mammalian Herbivore <i>Neotoma albigula</i> . MSphere, 2017, 2, .	2.9	22
966	Amino acid supplements and metabolic health: a potential interplay between intestinal microbiota and systems control. Genes and Nutrition, 2017, 12, 27.	2.5	40
967	A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC Microbiology, 2017, 17, 194.	3.3	196
968	Intestinal Microbiota Contributes to Energy Balance, Metabolic Inflammation, and Insulin Resistance in Obesity. Journal of Obesity and Metabolic Syndrome, 2017, 26, 161-171.	3.6	12
969	Identification of the Microbiota in the Aging Process. , 2017, , 37-56.		3
970	Dietary Fiber, Soluble and Insoluble, Carbohydrates, Fructose, and Lipids. , 2017, , 187-200.		2
971	In vitro models of the human microbiota and microbiome. Emerging Topics in Life Sciences, 2017, 1, 373-384.	2.6	8
972	Computational Approaches for Integrative Analysis of the Metabolome and Microbiome. Metabolites, 2017, 7, 62.	2.9	78
973	Impact of Novel Sorghum Bran Diets on DSS-Induced Colitis. Nutrients, 2017, 9, 330.	4.1	29
974	Short-Term Intake of a Fructose-, Fat- and Cholesterol-Rich Diet Causes Hepatic Steatosis in Mice: Effect of Antibiotic Treatment. Nutrients, 2017, 9, 1013.	4.1	41

# 975	ARTICLE Nonalcoholic Fatty Liver Disease Is Exacerbated in High-Fat Diet-Fed Gnotobiotic Mice by Colonization with the Gut Microbiota from Patients with Nonalcoholic Steatohepatitis. Nutrients, 2017, 9, 1220.	IF 4.1	CITATIONS
976	Taxonomic and Metagenomic Alterations of Microbiota in Bariatric Surgery. , 2017, , 259-265.		0
977	Small Intestinal Bacterial Overgrowth and Irritable Bowel Syndrome: A Bridge between Functional Organic Dichotomy. Gut and Liver, 2017, 11, 196-208.	2.9	126
978	Effects of Antidiabetic Drugs on Gut Microbiota Composition. Genes, 2017, 8, 250.	2.4	104
979	Early Microbes Modify Immune System Development and Metabolic Homeostasis—The "Restaurant― Hypothesis Revisited. Frontiers in Endocrinology, 2017, 8, 349.	3.5	86
980	The Human Microbiome and the Missing Heritability Problem. Frontiers in Genetics, 2017, 8, 80.	2.3	67
981	The Microbiota and Epigenetic Regulation of T Helper 17/Regulatory T Cells: In Search of a Balanced Immune System. Frontiers in Immunology, 2017, 8, 417.	4.8	103
982	Interactions between Intestinal Microbiota and Host Immune Response in Inflammatory Bowel Disease. Frontiers in Immunology, 2017, 8, 942.	4.8	249
983	Fructose: A Dietary Sugar in Crosstalk with Microbiota Contributing to the Development and Progression of Non-Alcoholic Liver Disease. Frontiers in Immunology, 2017, 8, 1159.	4.8	132
984	Immunological and Clinical Effect of Diet Modulation of the Gut Microbiome in Multiple Sclerosis Patients: A Pilot Study. Frontiers in Immunology, 2017, 8, 1391.	4.8	121
985	Early-Life Human Microbiota Associated With Childhood Allergy Promotes the T Helper 17 Axis in Mice. Frontiers in Immunology, 2017, 8, 1699.	4.8	14
986	Linking Peripartal Dynamics of Ruminal Microbiota to Dietary Changes and Production Parameters. Frontiers in Microbiology, 2017, 7, 2143.	3.5	58
987	Impact of Westernized Diet on Gut Microbiota in Children on Leyte Island. Frontiers in Microbiology, 2017, 8, 197.	3.5	132
988	Gut Microbial Diversity Assessment of Indian Type-2-Diabetics Reveals Alterations in Eubacteria, Archaea, and Eukaryotes. Frontiers in Microbiology, 2017, 8, 214.	3.5	81
989	Bacterial Composition, Genotoxicity, and Cytotoxicity of Fecal Samples from Individuals Consuming Omnivorous or Vegetarian Diets. Frontiers in Microbiology, 2017, 8, 300.	3.5	24
990	Inferring Microbial Interactions in the Gut of the Hong Kong Whipping Frog (Polypedates) Tj ETQq1 1 0.784314 i	rgBT/Over	logk 10 Tf 50
991	Different Types of Dietary Fibers Trigger Specific Alterations in Composition and Predicted Functions of Colonic Bacterial Communities in BALB/c Mice. Frontiers in Microbiology, 2017, 8, 966.	3.5	47
992	A Stoichioproteomic Analysis of Samples from the Human Microbiome Project. Frontiers in Microbiology, 2017, 8, 1119.	3.5	5

#	Article	IF	Citations
993	Development of Human Breast Milk Microbiota-Associated Mice as a Method to Identify Breast Milk Bacteria Capable of Colonizing Gut. Frontiers in Microbiology, 2017, 8, 1242.	3.5	16
994	Succession and Fermentation Products of Grass Carp (Ctenopharyngodon idellus) Hindgut Microbiota in Response to an Extreme Dietary Shift. Frontiers in Microbiology, 2017, 8, 1585.	3.5	77
995	Links between Soil Fungal Diversity and Plant and Soil Properties on the Loess Plateau. Frontiers in Microbiology, 2017, 8, 2198.	3.5	94
996	Exploring Braak's Hypothesis of Parkinson's Disease. Frontiers in Neurology, 2017, 8, 37.	2.4	210
997	Microbial Ecology along the Gastrointestinal Tract. Microbes and Environments, 2017, 32, 300-313.	1.6	372
998	Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology?. Journal of Immunology Research, 2017, 2017, 1-14.	2.2	52
999	High Fat Diet Alters Gut Microbiota and the Expression of Paneth Cell-Antimicrobial Peptides Preceding Changes of Circulating Inflammatory Cytokines. Mediators of Inflammation, 2017, 2017, 1-9.	3.0	116
1000	RNA-Based Stable Isotope Probing Suggests <i>Allobaculum</i> spp. as Particularly Active Glucose Assimilators in a Complex Murine Microbiota Cultured In Vitro. BioMed Research International, 2017, 2017, 1-13.	1.9	56
1001	Human Gut Microbiota Associated with Obesity in Chinese Children and Adolescents. BioMed Research International, 2017, 2017, 1-8.	1.9	127
1002	Microbiome. , 2017, , 569-583.		9
1003	Different Intestinal Microbial Profile in Over-Weight and Obese Subjects Consuming a Diet with Low Content of Fiber and Antioxidants. Nutrients, 2017, 9, 551.	4.1	36
1004	Diet, Microbial Diversity, and Gut Integrity. , 2017, , 285-292.		0
1005	Microbiome sharing between children, livestock and household surfaces in western Kenya. PLoS ONE, 2017, 12, e0171017.	2.5	49
1006	Maternal treatment with short-chain fatty acids modulates the intestinal microbiota and immunity and ameliorates type 1 diabetes in the offspring. PLoS ONE, 2017, 12, e0183786.	2.5	46
1007	Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats. PLoS ONE, 2017, 12, e0184735.	2.5	80
1008	Species-specific signatures of the microbiome from Camponotus and Colobopsis ants across developmental stages. PLoS ONE, 2017, 12, e0187461.	2.5	36
1009	Principles of Establishing and Operating a Gnotobiotic Facility. , 2017, , 21-63.		2
1010	Use of Gnotobiotic Mice in the Study of Metabolic Syndrome. , 2017, , 385-390.		0

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1011	Community characteristics of the gut microbiomes of competitive cyclists. Microbiome	e, 2017, 5, 98.	11.1	219
1012	Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese Biology, 2017, 15, 120.	mice. BMC	3.8	208
1013	Worse inflammatory profile in omnivores than in vegetarians associates with the gut m composition. Diabetology and Metabolic Syndrome, 2017, 9, 62.	icrobiota	2.7	78
1014	Viral communities of the human gut: metagenomic analysis of composition and dynam 2017, 8, 12.	ics. Mobile DNA,	3.6	119
1015	Stable engraftment of human microbiota into mice with a single oral gavage following conditioning. Microbiome, 2017, 5, 87.	antibiotic	11.1	138
1016	The Relationship between Habitual Dietary Intake and Gut Microbiota in Young Japanes Journal of Nutritional Science and Vitaminology, 2017, 63, 396-404.	e Women.	0.6	23
1017	Diet and rosacea: the role of dietary change in the management of rosacea. Dermatolo Conceptual, 2017, 7, 31-37.	gy Practical and	0.9	50
1018	The ecological community of commensal, symbiotic, and pathogenic gastrointestinal n – an appraisal. Clinical and Experimental Gastroenterology, 2017, Volume 1	nicroorganisms .0, 91-103.	2.3	38
1019	The Influence of Microbiota on Mechanisms of Bariatric Surgery. , 2017, , 267-281.			3
1020	Extracts from <i>Hericium erinaceus</i> relieve inflammatory bowel disease by regulati and gut microbiota. Oncotarget, 2017, 8, 85838-85857.	ng immunity	1.8	61
1021	"Nature versus Nurture―and the indigenous microbiome. Journal of Public Health 2017, 1, 30-30.	and Emergency,	4.4	0
1022	Lactobacillus gasseri in the Upper Small Intestine Impacts an ACSL3-Dependent Fatty A Pathway Regulating Whole-Body Glucose Homeostasis. Cell Metabolism, 2018, 27, 572	.cid-Sensing 2-587.e6.	16.2	54
1023	Featured article: Structure moderation of gut microbiota in liraglutide-treated diabetic Experimental Biology and Medicine, 2018, 243, 34-44.	male rats.	2.4	56
1024	Role of the Gut Microbiota in Health and Disease. , 2018, , 35-62.			4
1025	Do we choose control diets wisely?. Trends in Endocrinology and Metabolism, 2018, 29), 447-448.	7.1	6
1026	The gastrointestinal tract microbiota of northern white-cheeked gibbons (Nomascus le varies with age and captive condition. Scientific Reports, 2018, 8, 3214.	ucogenys)	3.3	12
1027	The Role of Human Gut Microbiota in Obesity. , 2018, , 71-76.			0
1028	Coix polysaccharides: Gut microbiota regulation and immunomodulatory. Bioactive Car and Dietary Fibre, 2018, 16, 53-61.	bohydrates	2.7	34

#	Article	IF	CITATIONS
1029	Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model. Nature Microbiology, 2018, 3, 662-669.	13.3	185
1030	Microbial Signatures as a Predictive Tool in IBD—Pearls and Pitfalls. Inflammatory Bowel Diseases, 2018, 24, 1123-1132.	1.9	10
1031	The Role of the Gut Microbiota in the Metabolism of Polyphenols as Characterized by Gnotobiotic Mice. Journal of Alzheimer's Disease, 2018, 63, 409-421.	2.6	63
1032	Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity. Obesity, 2018, 26, 801-809.	3.0	110
1033	Impact of dietary gut microbial metabolites on the epigenome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170359.	4.0	60
1034	The development of probiotics therapy to obesity: a therapy that has gained considerable momentum. Hormones, 2018, 17, 141-151.	1.9	23
1035	The Genetic and Microbial Influences in Obesity. , 2018, , 275-284.		0
1036	The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes, 2018, 9, 1-18.	9.8	304
1037	The Microbiome in Neurodegenerative Disease. Current Geriatrics Reports, 2018, 7, 81-91.	1.1	7
1038	The modulatory effect of nanocomplexes loaded with EGCG3ʺMe on intestinal microbiota of high fat diet-induced obesity mice model. Journal of Food Biochemistry, 2018, 42, e12501.	2.9	11
1039	Methodological Strategies in Microbiome Research and their Explanatory Implications. Perspectives on Science, 2018, 26, 239-265.	1.0	14
1040	The Brain-Gut-Microbiome Axis. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 133-148.	4.5	735
1041	Dietary supplementation with flaxseed meal and oat hulls modulates intestinal histomorphometric characteristics, digesta- and mucosa-associated microbiota in pigs. Scientific Reports, 2018, 8, 5880.	3.3	30
1042	Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids. Cell Host and Microbe, 2018, 23, 458-469.e5.	11.0	399
1043	Interaction of genotype and diet on small intestine microbiota of Japanese quail fed a cholesterol enriched diet. Scientific Reports, 2018, 8, 2381.	3.3	14
1045	Association of gut microbial communities with plasma lipopolysaccharide-binding protein (LBP) in premenopausal women. ISME Journal, 2018, 12, 1631-1641.	9.8	49
1046	A bite to fight: front-line innate immune defenses against malaria parasites. Pathogens and Global Health, 2018, 112, 1-12.	2.3	15
1047	Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose. ISME Journal, 2018, 12, 1319-1328.	9.8	89

#	Article	IF	CITATIONS
1048	Clinical Relevance of Gastrointestinal Microbiota During Pregnancy: A Primer for Nurses. Biological Research for Nursing, 2018, 20, 84-102.	1.9	9
1049	Causal effects of the microbiota on immune-mediated diseases. Science Immunology, 2018, 3, .	11.9	103
1050	Arabinoxylo-Oligosaccharides and Inulin Impact Inter-Individual Variation on Microbial Metabolism and Composition, Which Immunomodulates Human Cells. Journal of Agricultural and Food Chemistry, 2018, 66, 1121-1130.	5.2	63
1051	Microbiota transplantation reveals beneficial impact of berberine on hepatotoxicity by improving gut homeostasis. Science China Life Sciences, 2018, 61, 1537-1544.	4.9	18
1052	Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E152-E161.	7.1	46
1053	The gut microbiota as a novel regulator of cardiovascular function and disease. Journal of Nutritional Biochemistry, 2018, 56, 1-15.	4.2	122
1054	Rates of gut microbiome divergence in mammals. Molecular Ecology, 2018, 27, 1884-1897.	3.9	179
1055	Cancer, obesity and immunometabolism $\hat{a} \in \mathbb{C}$ Connecting the dots. Cancer Letters, 2018, 417, 11-20.	7.2	36
1056	Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. Cell Host and Microbe, 2018, 23, 27-40.e7.	11.0	477
1057	Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice. Gastroenterology, 2018, 154, 1037-1046.e2.	1.3	273
1058	Family-Based Behavioral Interventions for Childhood Obesity. Contemporary Endocrinology, 2018, , 555-567.	0.1	3
1059	Testing association between soil bacterial diversity and soil carbon storage on the Loess Plateau. Science of the Total Environment, 2018, 626, 48-58.	8.0	53
1060	Influence of fruit and invertebrate consumption on the gut microbiota of wild whiteâ€faced capuchins (<i>Cebus capucinus</i>). American Journal of Physical Anthropology, 2018, 165, 576-588.	2.1	36
1061	Antiobesity molecular mechanisms of action: Resveratrol and pterostilbene. BioFactors, 2018, 44, 50-60.	5.4	51
1063	A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols. Food and Function, 2018, 9, 1079-1087.	4.6	99
1064	Influence of dietary avilamycin on ileal and cecal microbiota in broiler chickens. Poultry Science, 2018, 97, 970-979.	3.4	36
1065	Transplantation of human microbiota into conventional mice durably reshapes the gut microbiota. Scientific Reports, 2018, 8, 6854.	3.3	83
1066	Studying microbial functionality within the gut ecosystem by systems biology. Genes and Nutrition, 2018, 13, 5.	2.5	31

#	Article	IF	CITATIONS
1067	Modulations in the offspring gut microbiome are refractory to postnatal synbiotic supplementation among juvenile primates. BMC Microbiology, 2018, 18, 28.	3.3	19
1068	The hologenome concept of evolution after 10Âyears. Microbiome, 2018, 6, 78.	11.1	326
1069	The common use of improper control diets in diet-induced metabolic disease research confounds data interpretation: the fiber factor. Nutrition and Metabolism, 2018, 15, 3.	3.0	97
1070	Neutral models of short-term microbiome dynamics with host subpopulation structure and migration limitation. Microbiome, 2018, 6, 80.	11.1	17
1071	The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein and Cell, 2018, 9, 474-487.	11.0	204
1072	Relationship between diet, the gut microbiota, and brain function. Nutrition Reviews, 2018, 76, 603-617.	5.8	47
1073	Diet, gut microbiota composition and feeding behavior. Physiology and Behavior, 2018, 192, 177-181.	2.1	23
1074	Predominant gut Lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice. Microbiome, 2018, 6, 54.	11.1	141
1075	High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome, 2018, 6, 57.	11.1	176
1076	The primary biological network of Bifidobacterium in the gut. FEMS Microbiology Letters, 2018, 365, .	1.8	26
1077	Making Millennial Medicine More Meta. MSystems, 2018, 3, .	3.8	2
1078	The gut microbiota and its potential role in obesity. Future Microbiology, 2018, 13, 589-603.	2.0	32
1079	A phylogenetic scan test on a Dirichlet-tree multinomial model for microbiome data. Annals of Applied Statistics, 2018, 12, .	1.1	15
1080	The role of diet in multiple sclerosis: A review. Nutritional Neuroscience, 2018, 21, 377-390.	3.1	88
1081	Cafeteria diet and probiotic therapy: cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. Molecular Psychiatry, 2018, 23, 351-361.	7.9	84
1082	Helminth-induced alterations of the gut microbiota exacerbate bacterial colitis. Mucosal Immunology, 2018, 11, 144-157.	6.0	121
1083	Gut: A key player in the pathogenesis of type 2 diabetes?. Critical Reviews in Food Science and Nutrition, 2018, 58, 1294-1309.	10.3	26
1084	Impact of dietary fat on gut microbiota and low-grade systemic inflammation: mechanisms and clinical implications on obesity. International Journal of Food Sciences and Nutrition, 2018, 69, 125-143.	2.8	171

#	Article	IF	CITATIONS
1085	Gut microbiota metabolites for sweetening type I diabetes. Cellular and Molecular Immunology, 2018, 15, 92-95.	10.5	9
1086	Metformin Alters Upper Small Intestinal Microbiota that Impact a Glucose-SGLT1-Sensing Glucoregulatory Pathway. Cell Metabolism, 2018, 27, 101-117.e5.	16.2	187
1087	Fractures and the gut microbiome. Current Opinion in HIV and AIDS, 2018, 13, 28-37.	3.8	13
1088	Impacts of the Human Gut Microbiome on Therapeutics. Annual Review of Pharmacology and Toxicology, 2018, 58, 253-270.	9.4	74
1089	Steroids, stress and the gut microbiomeâ€brain axis. Journal of Neuroendocrinology, 2018, 30, e12548.	2.6	119
1090	Mechanisms of weight loss and improved metabolism following bariatric surgery. Annals of the New York Academy of Sciences, 2018, 1411, 53-64.	3.8	99
1091	Harnessing Gut Microbes for Mental Health: Getting From Here to There. Biological Psychiatry, 2018, 83, 214-223.	1.3	129
1092	Key factors involved in obesity development. Eating and Weight Disorders, 2018, 23, 267-274.	2.5	14
1093	Dietary components that counteract the increased risk of colorectal cancer related to red meat consumption. International Journal of Food Sciences and Nutrition, 2018, 69, 536-548.	2.8	27
1094	Estrogens and female liver health. Steroids, 2018, 133, 38-43.	1.8	46
1095	Metabolic analysis of Panax notoginseng saponins with gut microbiota-mediated biotransformation by HPLC-DAD-Q-TOF-MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2018, 150, 199-207.	2.8	60
1096	Effect of dietary carbohydrates and time of year on ACTH and cortisol concentrations in adult and aged horses. Domestic Animal Endocrinology, 2018, 63, 15-22.	1.6	25
1097	Changes in gut microbiota during development of compulsive checking and locomotor sensitization induced by chronic treatment with the dopamine agonist quinpirole. Behavioural Pharmacology, 2018, 29, 211-224.	1.7	13
1098	From Epidemiology to Epigenetics: Evidence for the Importance of Nutrition to Optimal Health Development Across the Life Course. , 2018, , 431-462.		4
1099	The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro. Journal of Food Science and Technology, 2018, 55, 399-407.	2.8	101
1100	Social behaviour and gut microbiota in redâ€bellied lemurs (<i><scp>E</scp>ulemur rubriventer</i>): In search of the role of immunity in the evolution of sociality. Journal of Animal Ecology, 2018, 87, 388-399.	2.8	57
1101	Adverse effect of early-life high-fat/high-carbohydrate ("Westernâ€) diet on bacterial community in the distal bowel of mice. Nutrition Research, 2018, 50, 25-36.	2.9	20
1102	Risk factors for infection with multidrug-resistant organisms in Haryana, India. American Journal of Infection Control, 2018, 46, 341-345.	2.3	16

#	Article	IF	CITATIONS
1103	Commensal Koch's postulates: establishing causation in human microbiota research. Current Opinion in Microbiology, 2018, 42, 47-52.	5.1	84
1104	How poverty affects diet to shape the microbiota and chronic disease. Nature Reviews Immunology, 2018, 18, 279-287.	22.7	46
1105	The Role of the Gut Microbiome in Multiple Sclerosis Risk and Progression: Towards Characterization of the "MS Microbiome― Neurotherapeutics, 2018, 15, 126-134.	4.4	75
1106	Mouse models for human intestinal microbiota research: a critical evaluation. Cellular and Molecular Life Sciences, 2018, 75, 149-160.	5.4	380
1107	Recipe for IBD: can we use food to control inflammatory bowel disease?. Seminars in Immunopathology, 2018, 40, 145-156.	6.1	26
1108	Sugary t(h)reats: our gut microbiome and diet. EClinicalMedicine, 2018, 6, 1-2.	7.1	0
1109	Low-dosage antibiotic intake can disturb gut microbiota in mice. CYTA - Journal of Food, 2018, 16, 672-678.	1.9	11
1110	Interactions between human microbiome, diet, enteric viruses and immune system: Novel insights from gnotobiotic pig research. Drug Discovery Today: Disease Models, 2018, 28, 95-103.	1.2	10
1111	The Effect of Hydrated Sodium Calcium Aluminosilicate on Fatty Liver and the Composition of the Intestinal Microbiota in Overfed Landes Geese. Brazilian Journal of Poultry Science, 2018, 20, 393-402.	0.7	2
1112	Using gnotobiotic mice to discover and validate therapeutically active microbiota to maintain mucosal homeostasis and treat intestinal inflammation. Drug Discovery Today: Disease Models, 2018, 28, 73-77.	1.2	1
1113	Gut Microbial and Metabolic Responses to Salmonella enterica Serovar Typhimurium and Candida albicans. MBio, 2018, 9, .	4.1	31
1114	Exploring Interactions between the Gut Microbiota and Social Behavior through Nutrition. Genes, 2018, 9, 534.	2.4	22
1115	GutLogo: Agent-based modeling framework to investigate spatial and temporal dynamics in the gut microbiome. PLoS ONE, 2018, 13, e0207072.	2.5	15
1116	The gut microbiota and cardiovascular health benefits: A focus on wholegrain oats. Nutrition Bulletin, 2018, 43, 358-373.	1.8	17
1117	Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight, 2018, 3, .	5.0	166
1118	Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients, 2018, 10, 1651.	4.1	181
1119	Modulation of the Gut Microbiota in Rats by Hugan Qingzhi Tablets during the Treatment of High-Fat-Diet-Induced Nonalcoholic Fatty Liver Disease. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-14.	4.0	99
1120	Effects of urbanization on the foraging ecology and microbiota of the generalist seabird Larus argentatus. PLoS ONE, 2018, 13, e0209200.	2.5	72

#	Article	IF	CITATIONS
1121	Flavonoids and Colorectal Cancer Prevention. Antioxidants, 2018, 7, 187.	5.1	51
1122	Novel perspectives on fermented milks and cardiometabolic health with a focus on type 2 diabetes. Nutrition Reviews, 2018, 76, 16-28.	5.8	43
1123	Analysis and correction of compositional bias in sparse sequencing count data. BMC Genomics, 2018, 19, 799.	2.8	85
1124	"Metabolically Healthy―Obesity: Fact or Threat?. Current Diabetes Reviews, 2018, 14, 405-410.	1.3	14
1125	Regulatory Efficacy of Spirulina platensis Protease Hydrolyzate on Lipid Metabolism and Gut Microbiota in High-Fat Diet-Fed Rats. International Journal of Molecular Sciences, 2018, 19, 4023.	4.1	31
1126	Impact of Individual Traits, Saturated Fat, and Protein Source on the Gut Microbiome. MBio, 2018, 9, .	4.1	70
1127	The hindgut microbiota of praying mantids is highly variable and includes both prey-associated and host-specific microbes. PLoS ONE, 2018, 13, e0208917.	2.5	7
1128	Diet, physical activity and screen time but not body mass index are associated with the gut microbiome of a diverse cohort of college students living in university housing: a cross-sectional study. BMC Microbiology, 2018, 18, 210.	3.3	51
1129	Performance Evaluation of Normalization Approaches for Metagenomic Compositional Data on Differential Abundance Analysis. ICSA Book Series in Statistics, 2018, , 329-344.	0.2	5
1130	Cordycepin reduces weight through regulating gut microbiota in high-fat diet-induced obese rats. Lipids in Health and Disease, 2018, 17, 276.	3.0	46
1131	Gut microbial features can predict host phenotype response to protein deficiency. Physiological Reports, 2018, 6, e13932.	1.7	17
1132	Colonocyte metabolism shapes the gut microbiota. Science, 2018, 362, .	12.6	411
1133	The Effect of Cluten-Free Diet on Health and the Gut Microbiota Cannot Be Extrapolated from One Population to Others. Nutrients, 2018, 10, 1421.	4.1	24
1134	Beef, Casein, and Soy Proteins Differentially Affect Lipid Metabolism, Triglycerides Accumulation and Gut Microbiota of High-Fat Diet-Fed C57BL/6J Mice. Frontiers in Microbiology, 2018, 9, 2200.	3.5	81
1135	Altered Gut Microbiota and Compositional Changes in Firmicutes and Proteobacteria in Mexican Undernourished and Obese Children. Frontiers in Microbiology, 2018, 9, 2494.	3.5	99
1136	Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Scientific Reports, 2018, 8, 14184.	3.3	140
1137	Intestinal microbiota profiling and predicted metabolic dysregulation in psoriasis patients. Experimental Dermatology, 2018, 27, 1336-1343.	2.9	79
1138	The "Gut Feeling― Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics, 2018, 15, 109-125.	4.4	117

#	Article	IF	CITATIONS
1139	Diversity-Function Relationships in Natural, Applied, and Engineered Microbial Ecosystems. Advances in Applied Microbiology, 2018, 105, 131-189.	2.4	13
1140	Introductory Overview of Statistical Analysis of Microbiome Data. ICSA Book Series in Statistics, 2018, , 43-75.	0.2	7
1141	Influence of the microbiota and probiotics in obesity. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2018, 30, 271-279.	0.2	15
1142	<i>Clostridioides difficile</i> uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. Science Translational Medicine, 2018, 10, .	12.4	128
1143	The impact of exercise training and resveratrol supplementation on gut microbiota composition in high-fat diet fed mice. Physiological Reports, 2018, 6, e13881.	1.7	24
1144	US Immigration Westernizes the Human Gut Microbiome. Cell, 2018, 175, 962-972.e10.	28.9	511
1145	Different Oat Ingredients Stimulate Specific Microbial Metabolites in the Gut Microbiome of Three Human Individuals in Vitro. ACS Omega, 2018, 3, 12446-12456.	3.5	27
1146	Procyanidin attenuates weight gain and modifies the gut microbiota in high fat diet induced obese mice. Journal of Functional Foods, 2018, 49, 362-368.	3.4	52
1147	Probiotics in the Treatment of Colorectal Cancer. Medicines (Basel, Switzerland), 2018, 5, 101.	1.4	65
1148	Eating Habits in Combating Disease. , 2018, , 423-432.		1
1149	A Comparative Study on the Faecal Bacterial Community and Potential Zoonotic Bacteria of Muskoxen (Ovibos moschatus) in Northeast Greenland, Northwest Greenland and Norway. Microorganisms, 2018, 6, 76.	3.6	10
1150	Emerging Role of Diet and Microbiota Interactions in Neuroinflammation. Frontiers in Immunology, 2018, 9, 2067.	4.8	26
1151	Diet, Microbiota and Gut-Lung Connection. Frontiers in Microbiology, 2018, 9, 2147.	3.5	267
1152	The hygiene hypothesis at a glance: Early exposures, immune mechanism and novel therapies. Acta Tropica, 2018, 188, 16-26.	2.0	44
1153	Changes in the Gut Microbiota of Urban Subjects during an Immersion in the Traditional Diet and Lifestyle of a Rainforest Village. MSphere, 2018, 3, .	2.9	34
1154	Pharmacology in the age of the holobiont. Current Opinion in Systems Biology, 2018, 10, 34-42.	2.6	6
1155	Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model. Journal of Functional Foods, 2018, 46, 268-277.	3.4	71
1156	Interaction between Host MicroRNAs and the Gut Microbiota in Colorectal Cancer. MSystems, 2018, 3, .	3.8	97

#	APTICLE	IF	CITATIONS
1157	Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease. , 2018, 8, 731-760.		30
1158	Ethanol extract of <i>Ganoderma lucidum</i> ameliorates lipid metabolic disorders and modulates the gut microbiota composition in high-fat diet fed rats. Food and Function, 2018, 9, 3419-3431.	4.6	126
1159	Metagenomics Analysis of Gut Microbiota in a High Fat Diet–Induced Obesity Mouse Model Fed with (â^')â€Epigallocatechin 3â€ <i>O</i> â€{3â€ <i>O</i> â€Methyl) Gallate (EGCG3″Me). Molecular Nutrition and Fo Research, 2018, 62, e1800274	oad 3	59
1160	Adherence to the Western, Prudent, and Mediterranean dietary patterns and chronic lymphocytic leukemia in the MCC-Spain study. Haematologica, 2018, 103, 1881-1888.	3.5	21
1161	Analysis Methods for Shotgun Metagenomics. Computational Biology, 2018, , 71-112.	0.2	1
1162	Diet, Microbiome and Multiple Sclerosis. Neurology International Open, 2018, 02, E40-E43.	0.4	0
1163	Diet Effects on Gut Microbiome Composition, Function, and Host Physiology. , 2018, , 755-766.		1
1164	Essential Fatty Acids Linoleic Acid and αâ€Linolenic Acid Sexâ€Dependently Regulate Glucose Homeostasis in Obesity. Molecular Nutrition and Food Research, 2018, 62, e1800448.	3.3	25
1165	Interactions of Gut Microbiota, Endotoxemia, Immune Function, and Diet in Exertional Heatstroke. Hindawi Publishing Corporation, 2018, 2018, 1-33.	1.1	38
1166	Metabolic Effects of Dietary Nitrate in Health and Disease. Cell Metabolism, 2018, 28, 9-22.	16.2	242
1167	Altered Gut Microbiota: A Link Between Diet and the Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2018, 16, 321-328.	1.3	41
1168	A taxonomic signature of obesity in a large study of American adults. Scientific Reports, 2018, 8, 9749.	3.3	192
1169	Alterations in the gut bacterial microbiome in fungal Keratitis patients. PLoS ONE, 2018, 13, e0199640.	2.5	65
1170	Biogeography and environmental conditions shape bacteriophage-bacteria networks across the human microbiome. PLoS Computational Biology, 2018, 14, e1006099.	3.2	45
1171	Resilience of small intestinal beneficial bacteria to the toxicity of soybean oil fatty acids. ELife, 2018, 7,	6.0	14
1172	Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Frontiers in Immunology, 2018, 9, 1830.	4.8	371
1173	Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiological Reviews, 2018, 98, 1983-2023.	28.8	184
1174	Therapeutic reduction of lysophospholipids in the digestive tract recapitulates the metabolic benefits of bariatric surgery and promotes diabetes remission. Molecular Metabolism, 2018, 16, 55-64.	6.5	8

#	Article	IF	CITATIONS
1175	The Human Gut Microbiome – A Potential Controller of Wellness and Disease. Frontiers in Microbiology, 2018, 9, 1835.	3.5	681
1176	Cecal versus fecal microbiota in Ossabaw swine and implications for obesity. Physiological Genomics, 2018, 50, 355-368.	2.3	33
1177	Intestinal microbiota composition is altered according to nutritional biorhythms in the leopard coral grouper (Plectropomus leopardus). PLoS ONE, 2018, 13, e0197256.	2.5	44
1178	Gnotobiology. , 2018, , 341-356.		0
1179	Associations Between Nutrition, Gut Microbiome, and Health in A Novel Nonhuman Primate Model. Scientific Reports, 2018, 8, 11159.	3.3	60
1180	Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis. Physiological Genomics, 2018, 50, 244-254.	2.3	198
1181	Impact of a 3-Months Vegetarian Diet on the Gut Microbiota and Immune Repertoire. Frontiers in Immunology, 2018, 9, 908.	4.8	56
1182	Temporal and Spatial Impact of Human Cadaver Decomposition on Soil Bacterial and Arthropod Community Structure and Function. Frontiers in Microbiology, 2017, 8, 2616.	3.5	55
1183	Exploratory Analysis of the Microbiological Potential for Efficient Utilization of Fiber Between Lantang and Duroc Pigs. Frontiers in Microbiology, 2018, 9, 1342.	3.5	13
1184	Urban Diets Linked to Gut Microbiome and Metabolome Alterations in Children: A Comparative Cross-Sectional Study in Thailand. Frontiers in Microbiology, 2018, 9, 1345.	3.5	55
1185	Genetically Obese Human Gut Microbiota Induces Liver Steatosis in Germ-Free Mice Fed on Normal Diet. Frontiers in Microbiology, 2018, 9, 1602.	3.5	48
1186	Gut Microbiome Composition in Non-human Primates Consuming a Western or Mediterranean Diet. Frontiers in Nutrition, 2018, 5, 28.	3.7	125
1187	Pregestational overweight and obesity are associated with differences in gut microbiota composition and systemic inflammation in the third trimester. PLoS ONE, 2018, 13, e0200305.	2.5	64
1188	Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. Microbiome, 2018, 6, 109.	11.1	168
1189	Development of outbred CD1 mouse colonies with distinct standardized gut microbiota profiles for use in complex microbiota targeted studies. Scientific Reports, 2018, 8, 10107.	3.3	30
1190	Gut Microbiota and the Polycystic Ovary Syndrome: Influence of Sex, Sex Hormones, and Obesity. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 2552-2562.	3.6	201
1191	The Nile Rat (Arvicanthis niloticus) as a Superior Carbohydrate-Sensitive Model for Type 2 Diabetes Mellitus (T2DM). Nutrients, 2018, 10, 235.	4.1	26
1192	A Walnut-Enriched Diet Affects Gut Microbiome in Healthy Caucasian Subjects: A Randomized, Controlled Trial. Nutrients, 2018, 10, 244.	4.1	82

ARTICLE IF CITATIONS Lactobacillus plantarum Strain Ln4 Attenuates Diet-Induced Obesity, Insulin Resistance, and Changes in 1193 4.1 113 Hepatic mRNA Levels Associated with Glucose and Lipid Metabolism. Nutrients, 2018, 10, 643. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice 1194 4.1 without Body Weight Change. Nutrients, 2018, 10, 761. Impact of nutrition and rotavirus infection on the infant gut microbiota in a humanized pig model. 1195 2.0 53 BMC Gastroenterology, 2018, 18, 93. A unified conceptual framework for prediction and control of microbiomes. Current Opinion in 5.1 Microbiology, 2018, 44, 20-27. Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with 1197 6.3 74 type 2 diabetes. Diabetologia, 2018, 61, 1700-1711. From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota. MSystems, 1198 3.8 2018, 3, . Research on oral microbiota of monozygotic twins with discordant caries experience - in vitro and in 1199 3.3 15 vivo study. Scientific Reports, 2018, 8, 7267. Use of dietary indices to control for diet in human gut microbiota studies. Microbiome, 2018, 6, 77. 11.1 1200 Non-Ischemic Heart Failure With Reduced Ejection Fraction Is Associated With Altered Intestinal 1201 1.6 41 Microbiota. Circulation Journal, 2018, 82, 1640-1650. Healthy hosts rule within: ecological forces shaping the gut microbiota. Mucosal Immunology, 2018, 6.0 11, 1299-1305. Association analysis of dietary habits with gut microbiota of a native Chinese community. 1203 19 1.8 Experimental and Therapeutic Medicine, 2018, 16, 856-866. Dynamic changes in human-gut microbiome in relation to a placebo-controlled anthelminthic trial in 1204 3.0 44 Indonesia. PLoS Neglected Tropical Diseases, 2018, 12, e0006620. Beneficial Effect of Intestinal Fermentation of Natural Polysaccharides. Nutrients, 2018, 10, 1055. 1205 4.1 115 Metagenomic Approaches for Understanding New Concepts in Microbial Science. International 1.6 Journal of Genomics, 2018, 2018, 1-15. Role of gut microbiota in chronic lowâ€grade inflammation as potential driver for atherosclerotic 1207 6.5 169 cardiovascular disease: a systematic review of human studies. Obesity Reviews, 2018, 19, 1719-1734. Orthogonal Dietary Niche Enables Reversible Engraftment of a Gut Bacterial Commensal. Cell Reports, 2018, 24, 1842-1851. 6.4 Establishment of a Macaca fascicularis gut microbiome gene catalog and comparison with the human, 1209 6.4 53 pig, and mouse gut microbiomes. GigaScience, 2018, 7, . Quorum Sensing Can Be Repurposed To Promote Information Transfer between Bacteria in the 3.8 Mammalian Gut. ACS Synthetic Biology, 2018, 7, 2270-2281.

#	Article	IF	CITATIONS
1211	A combination of xylooligosaccharides and a polyphenol blend affect microbial composition and activity in the distal colon exerting immunomodulating properties on human cells. Journal of Functional Foods, 2018, 47, 163-171.	3.4	32
1212	Intermittent Hypoxia and Hypercapnia, a Hallmark of Obstructive Sleep Apnea, Alters the Gut Microbiome and Metabolome. MSystems, 2018, 3, .	3.8	96
1213	Associations between attention-deficit/hyperactivity disorder symptoms and dietary habits in elementary school children. Appetite, 2018, 127, 274-279.	3.7	20
1214	Impact of Gut Microbiota and Diet on the Development of Atherosclerosis in <i>Apoe</i> ^{â^'/â^'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2318-2326.	2.4	123
1215	Influencia de la microbiota y de los probióticos en la obesidad. ClÃnica E Investigación En Arteriosclerosis, 2018, 30, 271-279.	0.8	31
1216	Intestinal-Based Diseases and Peripheral Infection Risk Associated with Gut Dysbiosis: Therapeutic use of Pre- and Probiotics and Fecal Microbiota Transplantation. , 2018, , 197-288.		0
1217	Dysbiosis of the Microbiota: Therapeutic Strategies Utilizing Dietary Modification, Pro- and Prebiotics and Fecal Transplant Therapies in Promoting Normal Balance and Local GI Functions. , 2018, , 381-419.		3
1218	Intestinal Dysbiosis in Obesity, Metabolic Syndrome and Related Metabolic Diseases: Therapeutic Strategies Utilizing Dietary Modification, Pro- and Prebiotics, and Fecal Microbial Transplant (FMT) Therapy. , 2018, , 463-515.		0
1219	An exploratory study on the effect of daily fruits and vegetable juice on human gut microbiota. Food Science and Biotechnology, 2018, 27, 1377-1386.	2.6	13
1220	A Comprehensive Study on Predicting Functional Role of Metagenomes Using Machine Learning Methods. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 751-763.	3.0	15
1221	Dietary fat and gut microbiota: mechanisms involved in obesity control. Critical Reviews in Food Science and Nutrition, 2019, 59, 3045-3053.	10.3	59
1222	The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer's Disease—a Critical Review. Molecular Neurobiology, 2019, 56, 1841-1851.	4.0	368
1223	Effect of industrial trans-fatty acids-enriched diet on gut microbiota of C57BL/6 mice. European Journal of Nutrition, 2019, 58, 2625-2638.	3.9	39
1224	Humanizing the gut microbiota of mice: Opportunities and challenges. Laboratory Animals, 2019, 53, 244-251.	1.0	13
1225	Making Sense of … the Microbiome in Psychiatry. International Journal of Neuropsychopharmacology, 2019, 22, 37-52.	2.1	142
1226	Terrestriality and bacterial transfer: a comparative study of gut microbiomes in sympatric Malagasy mammals. ISME Journal, 2019, 13, 50-63.	9.8	59
1227	Outside the liver box: The gut microbiota as pivotal modulator of liver diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 912-919.	3.8	22
1228	Animal models of NAFLD from a hepatologist's point of view. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 943-953.	3.8	132

#	Article	IF	CITATIONS
1229	Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME Journal, 2019, 13, 576-587.	9.8	236
1230	Mechanisms underlying the weight loss effects of RYGB and SG: similar, yet different. Journal of Endocrinological Investigation, 2019, 42, 117-128.	3.3	139
1231	Cooked Red Lentils Dose-Dependently Modulate the Colonic Microenvironment in Healthy C57Bl/6 Male Mice. Nutrients, 2019, 11, 1853.	4.1	12
1232	Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens, 2019, 8, 126.	2.8	464
1233	Non-antibiotic therapy for <i>Clostridioides difficile</i> infection: a review. Critical Reviews in Clinical Laboratory Sciences, 2019, 56, 493-509.	6.1	17
1234	Correlation between Jejunal Microbial Diversity and Muscle Fatty Acids Deposition in Broilers Reared at Different Ambient Temperatures. Scientific Reports, 2019, 9, 11022.	3.3	15
1235	Gut dysbiosis and its epigenomic impact on disease. , 2019, , 409-422.		1
1236	Baseline microbiota composition modulates antibiotic-mediated effects on the gut microbiota and host. Microbiome, 2019, 7, 111.	11.1	50
1237	Pathophysiology of Necrotizing Enterocolitis: An Update. Current Pediatric Reviews, 2019, 15, 68-87.	0.8	38
1238	Protective Effects of Anthocyanins in Obesityâ€Associated Inflammation and Changes in Gut Microbiome. Molecular Nutrition and Food Research, 2019, 63, e1900149.	3.3	53
1239	Meta-Analysis Reveals Reproducible Gut Microbiome Alterations in Response to a High-Fat Diet. Cell Host and Microbe, 2019, 26, 265-272.e4.	11.0	194
1240	Basal Diet Determined Long-Term Composition of the Gut Microbiome and Mouse Phenotype to a Greater Extent than Fecal Microbiome Transfer from Lean or Obese Human Donors. Nutrients, 2019, 11, 1630.	4.1	23
1241	Potential relevance of pig gut content transplantation for production and research. Journal of Animal Science and Biotechnology, 2019, 10, 55.	5.3	25
1242	Genetic Permissiveness and Dietary Glycemic Load Interact to Predict Type-II Diabetes in the Nile rat (Arvicanthis niloticus). Nutrients, 2019, 11, 1538.	4.1	9
1243	Human gut microbiome changes during a 10 week Randomised Control Trial for micronutrient supplementation in children with attention deficit hyperactivity disorder. Scientific Reports, 2019, 9, 10128.	3.3	56
1244	Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nature Microbiology, 2019, 4, 1727-1736.	13.3	184
1245	How Diet Affects Vertebrate Semiochemistry. , 2019, , 81-93.		2
1246	Gut microbiota in phytopharmacology: A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacological Research, 2019, 147, 104367.	7.1	135

#	Article	IF	CITATIONS
1247	Omics Analyses of Gut Microbiota in a Circadian Rhythm Disorder Mouse Model Fed with Oolong Tea Polyphenols. Journal of Agricultural and Food Chemistry, 2019, 67, 8847-8854.	5.2	37
1248	Fecal metabolite of a gnotobiotic mouse transplanted with gut microbiota from a patient with Alzheimer's disease. Bioscience, Biotechnology and Biochemistry, 2019, 83, 2144-2152.	1.3	87
1249	Development of a Humanized Murine Model for the Study of Oxalobacter formigenes Intestinal Colonization. Journal of Infectious Diseases, 2019, 220, 1848-1858.	4.0	9
1250	Effects of a Fermented Beverage of Changbai Mountain Fruit and Vegetables on the Composition of Gut Microbiota in Mice. Plant Foods for Human Nutrition, 2019, 74, 468-473.	3.2	10
1251	New Aquaculture Technology Based on Host-Symbiotic Co-metabolism. , 2019, , 189-228.		0
1252	Experimental Microbiomes: Models Not to Scale. MSystems, 2019, 4, .	3.8	17
1253	Diet Quality Is Associated with Microbial Diversity and Host Health. Journal of Nutrition, 2019, 149, 1489-1490.	2.9	2
1254	Predicting the Longitudinally and Radially Varying Gut Microbiota Composition Using Multi-Scale Microbial Metabolic Modeling. Processes, 2019, 7, 394.	2.8	18
1255	Gut microbiota phenotypes of obesity. Npj Biofilms and Microbiomes, 2019, 5, 18.	6.4	144
1256	Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Advances in Nutrition, 2020, 11, 77-91.	6.4	382
1257	Pathogenetic Impact of Bacterial–Fungal Interactions. Microorganisms, 2019, 7, 459.	3.6	31
1258	Incorporating functional trade-offs into studies of the gut microbiota. Current Opinion in Microbiology, 2019, 50, 20-27.	5.1	14
1259	The microbiota and infectious diseases. , 2019, , 445-457.		0
1260	Detecting Changes in the <i>Caenorhabditis elegans</i> Intestinal Environment Using an Engineered Bacterial Biosensor. ACS Synthetic Biology, 2019, 8, 2620-2628.	3.8	21
1261	Improved 18S and 28S rDNA primer sets for NGS-based parasite detection. Scientific Reports, 2019, 9, 15789.	3.3	37
1262	Alternating consumption of βâ€glucan and quercetin reduces mortality in mice with colorectal cancer. Food Science and Nutrition, 2019, 7, 3273-3285.	3.4	23
1263	The lung microbiome: clinical and therapeutic implications. Internal and Emergency Medicine, 2019, 14, 1241-1250.	2.0	46
1264	Gut microbiota mediated allostasis prevents stress-induced neuroinflammatory risk factors of Alzheimer's disease. Progress in Molecular Biology and Translational Science, 2019, 168, 147-181.	1.7	21

#	Article	IF	CITATIONS
1265	Distinct Gut Microbiota Induced by Different Fat-to-Sugar-Ratio High-Energy Diets Share Similar Pro-obesity Genetic and Metabolite Profiles in Prediabetic Mice. MSystems, 2019, 4, .	3.8	18
1266	Guidelines for Transparency on Gut Microbiome Studies in Essential and Experimental Hypertension. Hypertension, 2019, 74, 1279-1293.	2.7	54
1267	Combined Buckwheat d-Fagomine and Fish Omega-3 PUFAs Stabilize the Populations of Gut Prevotella and Bacteroides While Reducing Weight Gain in Rats. Nutrients, 2019, 11, 2606.	4.1	14
1268	Changes of intestinal bacterial microbiota in coronary heart disease complicated with nonalcoholic fatty liver disease. BMC Genomics, 2019, 20, 862.	2.8	42
1269	Diet–microbiome–disease: Investigating diet's influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathogens, 2019, 15, e1007891.	4.7	49
1270	Nutritional psychiatry: Towards improving mental health by what you eat. European Neuropsychopharmacology, 2019, 29, 1321-1332.	0.7	191
1271	Effects of combined d-fagomine and omega-3 PUFAs on gut microbiota subpopulations and diabetes risk factors in rats fed a high-fat diet. Scientific Reports, 2019, 9, 16628.	3.3	13
1272	The Cholesterol-Lowering Effect of Oats and Oat Beta Glucan: Modes of Action and Potential Role of Bile Acids and the Microbiome. Frontiers in Nutrition, 2019, 6, 171.	3.7	104
1273	The Need for Alternative Insect Protein in Africa. Annals of the Entomological Society of America, 2019, 112, 566-575.	2.5	2
1274	Steatosis and gut microbiota dysbiosis induced by high-fat diet are reversed by 1-week chow diet administration. Nutrition Research, 2019, 71, 72-88.	2.9	17
1275	ls there any association between gut microbiota and type 1 diabetes? A systematic review. Gut Pathogens, 2019, 11, 49.	3.4	63
1276	From the Table to the Tumor: The Role of Mediterranean and Western Dietary Patterns in Shifting Microbial-Mediated Signaling to Impact Breast Cancer Risk. Nutrients, 2019, 11, 2565.	4.1	35
1277	The Microbiota-Gut-Brain Axis. Physiological Reviews, 2019, 99, 1877-2013.	28.8	2,304
1278	Structurally Different Pectic Oligosaccharides Produced from Apple Pomace and Their Biological Activity In Vitro. Foods, 2019, 8, 365.	4.3	33
1279	Gut Microbiome: A Promising Biomarker for Immunotherapy in Colorectal Cancer. International Journal of Molecular Sciences, 2019, 20, 4155.	4.1	83
1280	The Microbiome and Prostate Cancer Risk. Current Urology Reports, 2019, 20, 66.	2.2	33
1281	The gut microbiome and cardiovascular disease: current knowledge and clinical potential. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H923-H938.	3.2	82
1282	Reproductive Microbiomes in Wild Animal Species: A New Dimension in Conservation Biology. Advances in Experimental Medicine and Biology, 2019, 1200, 225-240.	1.6	18

#	Article	IF	CITATIONS
1283	Gut Microbiota as a Therapeutic Target to Ameliorate the Biochemical, Neuroanatomical, and Behavioral Effects of Traumatic Brain Injuries. Frontiers in Neurology, 2019, 10, 875.	2.4	65
1284	Effects of chitosan oligosaccharide-nisin conjugates formed by Maillard reaction on the intestinal microbiota of high-fat diet-induced obesity mice model. Food Quality and Safety, 2019, 3, 169-177.	1.8	10
1285	Microbial Metabolism Modulates Antibiotic Susceptibility within the Murine Gut Microbiome. Cell Metabolism, 2019, 30, 800-823.e7.	16.2	70
1286	Muscle strength is increased in mice that are colonized with microbiota from high-functioning older adults. Experimental Gerontology, 2019, 127, 110722.	2.8	99
1287	Diet–microbiota interactions and personalized nutrition. Nature Reviews Microbiology, 2019, 17, 742-753.	28.6	514
1288	Complex interactions between the microbiome and cancer immune therapy. Critical Reviews in Clinical Laboratory Sciences, 2019, 56, 567-585.	6.1	28
1289	Taking a Closer Look at the Biogeography of the Human Gastrointestinal Microbiome. Gastroenterology, 2019, 157, 927-929.	1.3	5
1290	Understanding the association between the human gut, oral and skin microbiome and the Ayurvedic concept of prakriti. Journal of Biosciences, 2019, 44, 1.	1.1	11
1291	New system to examine the activity and water and food intake of germ-free mice in a sealed positive-pressure cage. Heliyon, 2019, 5, e02176.	3.2	11
1292	Modulation of high fat diet-induced microbiome changes, but not behaviour, by minocycline. Brain, Behavior, and Immunity, 2019, 82, 309-318.	4.1	10
1293	A Double Humanized BLT-mice Model Featuring a Stable Human-Like Gut Microbiome and Human Immune System. Journal of Visualized Experiments, 2019, , .	0.3	13
1294	Microbiome composition shapes rapid genomic adaptation of <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20025-20032.	7.1	103
1295	Sample Preservation and Storage Significantly Impact Taxonomic and Functional Profiles in Metaproteomics Studies of the Human Gut Microbiome. Microorganisms, 2019, 7, 367.	3.6	32
1296	Food Preservatives Induce Proteobacteria Dysbiosis in Human-Microbiota Associated Nod2-Deficient Mice. Microorganisms, 2019, 7, 383.	3.6	40
1297	Administration of a Synbiotic Containing Enterococcus faecium Does Not Significantly Alter Fecal Microbiota Richness or Diversity in Dogs With and Without Food-Responsive Chronic Enteropathy. Frontiers in Veterinary Science, 2019, 6, 277.	2.2	24
1298	2- <i>O</i> -{scp>d-Glucopyranosyl- <scp>l</scp> -ascorbic Acid, an Ascorbic Acid Derivative Isolated from the Fruits of <i>Lycium Barbarum</i> L., Modulates Gut Microbiota and Palliates Colitis in Dextran Sodium Sulfate-Induced Colitis in Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 11408-11419.	5.2	70
1299	Impact of a Nomadic Pastoral Lifestyle on the Gut Microbiome in the Fulani Living in Nigeria. Frontiers in Microbiology, 2019, 10, 2138.	3.5	19
1300	Akkermansia muciniphila-Derived Extracellular Vesicles as a Mucosal Delivery Vector for Amelioration of Obesity in Mice. Frontiers in Microbiology, 2019, 10, 2155.	3.5	141
#	Article	IF	CITATIONS
------	---	------	-----------
1301	Prenatal and postnatal contributions of the maternal microbiome on offspring programming. Frontiers in Neuroendocrinology, 2019, 55, 100797.	5.2	77
1302	Development of Salmonellosis as Affected by Bioactive Food Compounds. Microorganisms, 2019, 7, 364.	3.6	5
1303	Gut microbiota: A new protagonist in the risk of cardiovascular disease?. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2019, 31, 178-185.	0.2	1
1304	Modification of wheat bran particle size and tissue composition affects colonisation and metabolism by human faecal microbiota. Food and Function, 2019, 10, 379-396.	4.6	22
1305	Urogenital schistosomiasis is associated with signatures of microbiome dysbiosis in Nigerian adolescents. Scientific Reports, 2019, 9, 829.	3.3	41
1306	Transforming medicine with the microbiome. Science Translational Medicine, 2019, 11, .	12.4	50
1307	Enhanced viability of layer-by-layer encapsulated Lactobacillus pentosus using chitosan and sodium phytate. Food Chemistry, 2019, 285, 260-265.	8.2	52
1308	Population structure of human gut bacteria in a diverse cohort from rural Tanzania and Botswana. Genome Biology, 2019, 20, 16.	8.8	66
1309	The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cellular and Molecular Life Sciences, 2019, 76, 1541-1558.	5.4	333
1310	Algae dictate multiple stressor effects on coral microbiomes. Coral Reefs, 2019, 38, 229-240.	2.2	11
1311	Potential Role for the Gut Microbiota in Modulating Host Circadian Rhythms and Metabolic Health. Microorganisms, 2019, 7, 41.	3.6	191
1312	Microbiome engineering: enhancing climate resilience in corals. Frontiers in Ecology and the Environment, 2019, 17, 100-108.	4.0	58
1313	How diet and the microbiome shape health or contribute to disease: A mini-review of current models and clinical studies. Experimental Biology and Medicine, 2019, 244, 484-493.	2.4	11
1314	Community ecology as a framework for human microbiome research. Nature Medicine, 2019, 25, 884-889.	30.7	96
1315	The effects of antipsychotic medications on microbiome and weight gain in children and adolescents. BMC Medicine, 2019, 17, 112.	5.5	58
1316	The effects of antibiotics and melatonin on hepato-intestinal inflammation and gut microbial dysbiosis induced by a short-term high-fat diet consumption in rats. British Journal of Nutrition, 2019, 122, 841-855.	2.3	24
1317	The role of sodium in modulating immune cell function. Nature Reviews Nephrology, 2019, 15, 546-558.	9.6	74
1318	The Role of the Human Microbiome in Chemical Toxicity. International Journal of Toxicology, 2019, 38, 251-264.	1.2	34

#	Article	IF	CITATIONS
1319	Gut microbiota mediates the protective effects of dietary βâ€hydroxyâ€Î²â€methylbutyrate (HMB) against obesity induced by highâ€fat diets. FASEB Journal, 2019, 33, 10019-10033.	0.5	55
1320	Modulation of the Caecal Gut Microbiota of Mice by Dietary Supplement Containing Resistant Starch: Impact Is Donor-Dependent. Frontiers in Microbiology, 2019, 10, 1234.	3.5	18
1321	High fat diet alters gut microbiota but not spatial working memory in early middle-aged Sprague Dawley rats. PLoS ONE, 2019, 14, e0217553.	2.5	26
1322	Exploring Associations between Interindividual Differences in Taste Perception, Oral Microbiota Composition, and Reported Food Intake. Nutrients, 2019, 11, 1167.	4.1	62
1323	Review article: emerging role of the gut microbiome in the progression of nonalcoholic fatty liver disease and potential therapeutic implications. Alimentary Pharmacology and Therapeutics, 2019, 50, 144-158.	3.7	50
1324	The intestinal microbiota and cardiovascular disease. Cardiovascular Research, 2019, 115, 1471-1486.	3.8	33
1325	Effects of Different Diets on Microbiota in The Small Intestine Mucus and Weight Regulation in Rats. Scientific Reports, 2019, 9, 8500.	3.3	19
1326	Host-microbiome interactions in response to a high-saturated fat diet and fish-oil supplementation in zebrafish adult. Journal of Functional Foods, 2019, 60, 103416.	3.4	10
1327	Enhanced nutrient supply and intestinal microbiota development in very low birth weight infants. Pediatric Research, 2019, 86, 323-332.	2.3	5
1328	Metabolism at the centre of the host–microbe relationship. Clinical and Experimental Immunology, 2019, 197, 193-204.	2.6	34
1329	Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats. Ecology and Evolution, 2019, 9, 6508-6523.	1.9	61
1330	Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. American Journal of Pathology, 2019, 189, 1300-1310.	3.8	31
1331	Gnotobiotics: Past, present and future. Laboratory Animals, 2019, 53, 232-243.	1.0	36
1332	Gut microbiota in wild and captive Guizhou snubâ€nosed monkeys, <i>Rhinopithecus brelichi</i> . American Journal of Primatology, 2019, 81, e22989.	1.7	55
1333	Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 184-192.	5.2	126
1334	A comparative study of gut microbiomes in captive nocturnal strepsirrhines. American Journal of Primatology, 2019, 81, e22986.	1.7	15
1335	Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease. Cells, 2019, 8, 450.	4.1	53
1336	Evolutionary "Experiments―in Symbiosis: The Study of Model Animals Provides Insights into the Mechanisms Underlying the Diversity of Host–Microbe Interactions. BioEssays, 2019, 41, e1800256.	2.5	34

#	Article	IF	Citations
1337	High-fat diet reduces the level of secretory immunoglobulin A coating of commensal gut microbiota. Bioscience of Microbiota, Food and Health, 2019, 38, 55-64.	1.8	27
1338	Protocol for the Gut Bugs Trial: a randomised double-blind placebo-controlled trial of gut microbiome transfer for the treatment of obesity in adolescents. BMJ Open, 2019, 9, e026174.	1.9	16
1339	Metagenome Data Analysis. Learning Materials in Biosciences, 2019, , 325-337.	0.4	0
1340	Amelioration of obesity-related biomarkers by Lactobacillus sakei CJLSO3 in a high-fat diet-induced obese murine model. Scientific Reports, 2019, 9, 6821.	3.3	33
1341	Human gut microbiota transferred to germ-free NOD mice modulate the progression towards type 1 diabetes regardless of the pace of beta cell function loss in the donor. Diabetologia, 2019, 62, 1291-1296.	6.3	25
1342	Microbiota and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH). Annals of Hepatology, 2019, 18, 416-421.	1.5	49
1343	Metformin attenuates the onset of non-alcoholic fatty liver disease and affects intestinal microbiota and barrier in small intestine. Scientific Reports, 2019, 9, 6668.	3.3	80
1344	Utilizing the fecal microbiota to understand foal gut transitions from birth to weaning. PLoS ONE, 2019, 14, e0216211.	2.5	28
1345	Gut microbiome interventions in human health and diseases. Medicinal Research Reviews, 2019, 39, 2286-2313.	10.5	52
1346	Stereotypes About Enterotype: the Old and New Ideas. Genomics, Proteomics and Bioinformatics, 2019, 17, 4-12.	6.9	97
1347	Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 2019, 11, 923.	4.1	220
1348	The influence of neuroinflammation in Autism Spectrum Disorder. Brain, Behavior, and Immunity, 2019, 79, 75-90.	4.1	214
1349	Interactions Between Food and Gut Microbiota: Impact on Human Health. Annual Review of Food Science and Technology, 2019, 10, 389-408.	9.9	52
1351	Biological Resources for Genomic Investigation in the Vervet Monkey (Chlorocebus). , 2019, , 16-28.		3
1352	Savanna Monkey Taxonomy. , 2019, , 31-54.		2
1353	The Promise of Vervet Genomics. , 2019, , 55-59.		0
1354	African Green Monkeys as a Natural Host of SIV. , 2019, , 60-70.		0
1355	The Vervet Microbiome. , 2019, , 71-78.		0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1356	Population Genetics and Savanna Monkeys. , 2019, , 81-100.			0
1357	Population Genetic Structure of Vervet Monkeys in South Africa. , 2019, , 101-106.			0
1358	Behavioral Ecology of Savanna Monkeys. , 2019, , 109-126.			1
1359	Socioecology of Vervet Monkeys. , 2019, , 127-132.			0
1360	Biological Complexity in Primate Sociality and Health. , 2019, , 133-140.			0
1361	Predation and Food Competition in Vervet Monkeys (Chlorocebus pygerythrus). , 2019	, , 141-151.		0
1362	Vervet Monkeys' Social Learning Abilities. , 2019, , 152-160.			0
1363	Life History of Savanna Monkeys. , 2019, , 163-198.			1
1364	The Social and Thermal Competence of Wild Vervet Monkeys. , 2019, , 199-207.			2
1365	Novelty-Seeking in Vervets: Developmental, Genetic, and Environmental Influences. , 20)19, , 208-216.		0
1366	Measurement of Novelty-Seeking in Wild Vervet Monkeys. , 2019, , 217-223.			0
1367	Causes of Variation in the Static Allometry of Morphological Structures: A Case Study v Monkeys. , 2019, , 224-232.	vith Vervet		0
1368	Ethnoprimatology and Savanna Monkeys. , 2019, , 235-243.			1
1369	Exploring Caribbean Green Monkeys (Chlorocebus sabaeus) through an Ethnoprimatolo 2019, , 244-254.	gical Lens. ,		0
1370	Vervet Monkeys (Chlorocebus pygerthrus), Chimpanzees (Pan troglodytes), and Human	ıs (Homo) Tj ETQq0 0 0 rg	ςBT /Over	lock 10 Tf 50
1373	Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice. Internatio Oral Science, 2019, 11, 10.	nal Journal of	8.6	69
1374	Human Gut Microbiome Response Induced by Fermented Dairy Product Intake in Health Nutrients, 2019, 11, 547.	ıy Volunteers.	4.1	56
1375	Functional gastrointestinal disorders and gut-brain axis: What does the future hold?. W of Gastroenterology, 2019, 25, 552-566.	orld Journal	3.3	85

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1376	From germ theory to germ therapy. Kaohsiung Journal of Medical Sciences, 2019, 35, 2	73-82.	1.9	6
1377	Influence of Obesity on Pneumococcus Infection Risk in the Elderly. Frontiers in Endoc 10, 71.	rinology, 2019,	3.5	41
1378	Characterizing the bacterial community across the gastrointestinal tract of goats: Cor potential function. MicrobiologyOpen, 2019, 8, e00820.	nposition and	3.0	19
1379	Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeosta EBioMedicine, 2019, 44, 665-674.	sis.	6.1	66
1380	Momordica charantia (bitter melon) modulates adipose tissue inflammasome gene ex adipose-gut inflammatory cross talk in high-fat diet (HFD)-fed mice. Journal of Nutritio Biochemistry, 2019, 68, 16-32.	pression and nal	4.2	17
1381	Mining the microbiota for microbial and metabolite-based immunotherapies. Nature R Immunology, 2019, 19, 305-323.	eviews	22.7	211
1382	Sixâ€Week Highâ€Fat Diet Alters the Gut Microbiome and Promotes Cecal Inflammati Production, and Simple Steatosis without Obesity in Male Rats. Lipids, 2019, 54, 119-	on, Endotoxin 131.	1.7	28
1383	The Use of Defined Microbial Communities To Model Host-Microbe Interactions in the Microbiology and Molecular Biology Reviews, 2019, 83, .	Human Gut.	6.6	56
1384	A Mediterranean Diet Mix Has Chemopreventive Effects in a Murine Model of Colorect Modulating Apoptosis and the Gut Microbiota. Frontiers in Oncology, 2019, 9, 140.	al Cancer	2.8	26
1385	A unified framework for unconstrained and constrained ordination of microbiome reac PLoS ONE, 2019, 14, e0205474.	l count data.	2.5	14
1386	Candida albicans Morphogenesis Programs Control the Balance between Gut Commer Invasive Infection. Cell Host and Microbe, 2019, 25, 432-443.e6.	ısalism and	11.0	154
1387	Nonalcoholic fatty liver disease and the gut microbiome: Are bacteria responsible for fa Experimental Biology and Medicine, 2019, 244, 408-418.	atty liver?.	2.4	19
1388	A potential role for the gut microbiome in substance use disorders. Psychopharmacolo 1513-1530.	ıgy, 2019, 236,	3.1	110
1389	Factors influencing the gut microbiome in children: from infancy to childhood. Journal Biosciences, 2019, 44, 1.	of	1.1	81
1390	Polysaccharide peptides from Ganoderma lucidum ameliorate lipid metabolic disorders microbiota dysbiosis in high-fat diet-fed rats. Journal of Functional Foods, 2019, 57, 48	and gut 3-58.	3.4	109
1391	The importance of scale in comparative microbiome research: New insights from the g captive and wild lemurs. American Journal of Primatology, 2019, 81, e22974.	ut and glands of	1.7	35
1392	The Role of the Microbiome in Immunologic Development and its Implication For Panc Immunotherapy. Gastroenterology, 2019, 156, 2097-2115.e2.	reatic Cancer	1.3	73
1393	The role of diet and intestinal microbiota in the development of metabolic syndrome. J Nutritional Biochemistry, 2019, 70, 1-27.	ournal of	4.2	116

#	Article	IF	CITATIONS
1394	Microbiota intestinal: ¿un nuevo protagonista en el riesgo de enfermedad cardiovascular?. ClÃnica E Investigación En Arteriosclerosis, 2019, 31, 178-185.	0.8	2
1395	Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Frontiers in Endocrinology, 2019, 10, 82.	3.5	66
1396	Amelioration of hyperglycemia by Rubus occidentalis (black raspberry) and increase in short-chain fatty acids producing bacteria. Journal of Functional Foods, 2019, 54, 433-439.	3.4	19
1397	Germ-Free Animals as a Tool to Study Indigenous Microbiota. , 2019, , 3-11.		1
1399	Evolutionary change in the human gut microbiome: From a static to a dynamic view. PLoS Biology, 2019, 17, e3000126.	5.6	25
1400	Diversity of the Gut Microbiota in Dihydrotestosterone-Induced PCOS Rats and the Pharmacologic Effects of Diane-35, Probiotics, and Berberine. Frontiers in Microbiology, 2019, 10, 175.	3.5	56
1401	Immunometabolic Links between Estrogen, Adipose Tissue and Female Reproductive Metabolism. Biology, 2019, 8, 8.	2.8	24
1402	More Than a Gut Feeling: Emerging Roles of the Microbiome in the Pathophysiology and Treatment of Depression. , 2019, , 137-145.		0
1403	The Role of Prebiotics in Disease Prevention and Health Promotion. , 2019, , 151-167.		14
1404	Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut, 2019, 68, 1417-1429.	12.1	422
1405	Bacterial community mapping of the intestinal tract in acute pancreatitis rats based on 16S rDNA gene sequence analysis. RSC Advances, 2019, 9, 5025-5036.	3.6	11
1406	Dysbiosis in Snoring Children. Journal of Pediatric Gastroenterology and Nutrition, 2019, 68, 272-277.	1.8	26
1407	Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome, 2019, 7, 19.	11.1	149
1408	Chapter 17 Fibre and fibre breakdown products as microbial and immune defence modulators. , 2019, , 297-311.		0
1409	The Influence of Feed and Drinking Water on Terrestrial Animal Research and Study Replicability. ILAR Journal, 2019, 60, 175-196.	1.8	12
1410	Complex Microbiota in Laboratory Rodents: Management Considerations. ILAR Journal, 2019, 60, 289-297.	1.8	10
1411	Methods in microbiome research: Past, present, and future. Best Practice and Research in Clinical Rheumatology, 2019, 33, 101498.	3.3	12
1412	The Interplay between Immune System and Microbiota in Diabetes. Mediators of Inflammation, 2019, 2019, 1-10.	3.0	29

#	Article	IF	CITATIONS
1413	COPD and the gut-lung axis: the therapeutic potential of fibre. Journal of Thoracic Disease, 2019, 11, S2173-S2180.	1.4	64
1414	Estradiol and high fat diet associate with changes in gut microbiota in female ob/ob mice. Scientific Reports, 2019, 9, 20192.	3.3	45
1415	Whole barley prevents obesity and dyslipidemia without the involvement of the gut microbiota in germ free C57BL/6J obese mice. Food and Function, 2019, 10, 7498-7508.	4.6	14
1416	Habitual animal fat consumption in shaping gut microbiota and microbial metabolites. Food and Function, 2019, 10, 7973-7982.	4.6	22
1417	Human Gut Microbiome Transplantation in Ileitis Prone Mice: A Tool for the Functional Characterization of the Microbiota in Inflammatory Bowel Disease Patients. Inflammatory Bowel Diseases, 2020, 26, 347-359.	1.9	12
1418	Alcohol shifts gut microbial networks and ameliorates a murine model of neuroinflammation in a sex-specific pattern. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25808-25815.	7.1	36
1419	Gut Microbiota Has a Widespread and Modifiable Effect on Host Gene Regulation. MSystems, 2019, 4, .	3.8	74
1420	Effect of Short-Term Dietary Intervention and Probiotic Mix Supplementation on the Gut Microbiota of Elderly Obese Women. Nutrients, 2019, 11, 3011.	4.1	47
1421	Cooking shapes the structure and function of the gut microbiome. Nature Microbiology, 2019, 4, 2052-2063.	13.3	112
1422	Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food and Chemical Toxicology, 2019, 124, 385-399.	3.6	74
1423	Diet composition and gut microbiome of 0-group European plaice Pleuronectes platessa L Strong homogeneity and subtle spatial and temporal differences. Journal of Sea Research, 2019, 144, 67-77.	1.6	4
1424	Dietary sugar silences a colonization factor in a mammalian gut symbiont. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 233-238.	7.1	71
1425	Educational intervention improves fruit and vegetable intake in young adults with metabolic syndrome components. Nutrition Research, 2019, 62, 89-100.	2.9	14
1426	â€~Inside Out'– a dialogue between mitochondria and bacteria. FEBS Journal, 2019, 286, 630-641.	4.7	25
1427	Importance of gut microbiota in obesity. European Journal of Clinical Nutrition, 2019, 72, 26-37.	2.9	88
1428	Gut microbiota: a potential manipulator for host adipose tissue and energy metabolism. Journal of Nutritional Biochemistry, 2019, 64, 206-217.	4.2	46
1429	Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere, 2019, 217, 646-658.	8.2	277
1430	Variations in Gut Microbiota of Siberian Flying Squirrels Correspond to Seasonal Phenological Changes in Their Hokkaido Subarctic Forest Ecosystem. Microbial Ecology, 2019, 78, 223-231.	2.8	16

#	Article	IF	CITATIONS
1431	The role of microbiota in the pathogenesis of lupus: Dose it impact lupus nephritis?. Pharmacological Research, 2019, 139, 191-198.	7.1	23
1432	Interleukinâ€17/interleukinâ€17 receptor axis elicits intestinal neutrophil migration, restrains gut dysbiosis and lipopolysaccharide translocation in highâ€fat dietâ€induced metabolic syndrome model. Immunology, 2019, 156, 339-355.	4.4	52
1433	The microbiome of Escherichia coli and culture-negative nonsevere clinical mastitis: Characterization and associations with linear score and milk production. Journal of Dairy Science, 2019, 102, 578-594.	3.4	12
1434	Influence of Early Life, Diet, and the Environment on the Microbiome. Clinical Gastroenterology and Hepatology, 2019, 17, 231-242.	4.4	130
1435	The Gut–Brain Axis in the Neuropsychological Disease Model of Obesity: A Classical Movie Revised by the Emerging Director "Microbiome― Nutrients, 2019, 11, 156.	4.1	50
1436	Microbial regulation of organismal energy homeostasis. Nature Metabolism, 2019, 1, 34-46.	11.9	354
1437	Impact of plant sterols enrichment dose on gut microbiota from lean and obese subjects using TIM-2 in vitro fermentation model. Journal of Functional Foods, 2019, 54, 164-174.	3.4	37
1438	Cross-Domain and Viral Interactions in the Microbiome. Microbiology and Molecular Biology Reviews, 2019, 83, .	6.6	95
1439	Deterministic Assembly and Diversity Gradient Altered the Biofilm Community Performances of Bioreactors. Environmental Science & amp; Technology, 2019, 53, 1315-1324.	10.0	109
1440	The Metabolic Response to a Low Amino Acid Diet is Independent of Diet-Induced Shifts in the Composition of the Gut Microbiome. Scientific Reports, 2019, 9, 67.	3.3	16
1441	Gut microbiota in children and altered profiles in juvenile idiopathic arthritis. Journal of Autoimmunity, 2019, 98, 1-12.	6.5	39
1442	Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition, 2019, 60, 175-184.	2.4	326
1443	Gut Microbiota; Its Importance in Obesity. , 2019, , 353-362.		1
1444	Obesity, diabetes, and the gut microbiome: an updated review. Expert Review of Gastroenterology and Hepatology, 2019, 13, 3-15.	3.0	139
1445	An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences, 2019, 76, 473-493.	5.4	552
1446	Adaptation of intestinal fermentation over time in the growing pig is influenced by the amount of kiwi fruit consumed. British Journal of Nutrition, 2019, 121, 601-614.	2.3	6
1447	A mathematical model to investigate the key drivers of the biogeography of the colon microbiota. Journal of Theoretical Biology, 2019, 462, 552-581.	1.7	30
1448	The Costs of Living Together: Immune Responses to the Microbiota and Chronic Gut Inflammation. Applied and Environmental Microbiology, 2019, 85, .	3.1	4

#	Article	IF	CITATIONS
1449	Microbes: possible link between modern lifestyle transition and the rise of metabolic syndrome. Obesity Reviews, 2019, 20, 407-419.	6.5	35
1450	Gut Microbial Metabolism and Nonalcoholic Fatty Liver Disease. Hepatology Communications, 2019, 3, 29-43.	4.3	27
1451	Thinking Outside the Cereal Box: Noncarbohydrate Routes for Dietary Manipulation of the Gut Microbiota. Applied and Environmental Microbiology, 2019, 85, .	3.1	14
1452	Obesity and severe asthma. Allergology International, 2019, 68, 135-142.	3.3	82
1453	Sex Differences in Pulmonary Responses to Ozone in Mice. Role of the Microbiome. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 198-208.	2.9	49
1454	Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poultry Science, 2019, 98, 695-706.	3.4	110
1455	You are what you eat: diet, health and the gut microbiota. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 35-56.	17.8	980
1456	Metaproteomics Study of the Gut Microbiome. Methods in Molecular Biology, 2019, 1871, 123-132.	0.9	12
1457	Fecal incontinence as a moderator between dietary intake and depressive symptoms among a sample of older adults obtained from the National Health and Nutrition Examination Survey (NHANES). Aging and Mental Health, 2019, 23, 222-232.	2.8	1
1458	Low adherence to the western and high adherence to the mediterranean dietary patterns could prevent colorectal cancer. European Journal of Nutrition, 2019, 58, 1495-1505.	3.9	126
1459	Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice. Bone, 2019, 118, 20-31.	2.9	69
1460	The Effect of Leanâ€Seafood and Nonâ€Seafood Diets on Fecal Metabolites and Gut Microbiome: Results from a Randomized Crossover Intervention Study. Molecular Nutrition and Food Research, 2019, 63, e1700976.	3.3	30
1461	Monovalerin and trivalerin increase brain acetic acid, decrease liver succinic acid, and alter gut microbiota in rats fed high-fat diets. European Journal of Nutrition, 2019, 58, 1545-1560.	3.9	18
1462	The exposome in atopic dermatitis. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 63-74.	5.7	111
1463	Neuroinflammation in Murine Cirrhosis Is Dependent on the Gut Microbiome and Is Attenuated by Fecal Transplant. Hepatology, 2020, 71, 611-626.	7.3	76
1464	Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut, 2020, 69, 42-51.	12.1	121
1465	Role of dietary lipids in food allergy. Critical Reviews in Food Science and Nutrition, 2020, 60, 1797-1814.	10.3	19
1466	Impact of black raspberries on the normal and malignant Apc deficient murine gut microbiome. Journal of Berry Research, 2020, 10, 61-76.	1.4	6

#	Article	IF	CITATIONS
1467	Alterations in the Gut Microbiome at 6 Months of Age in Obese Latino Infants. Journal of the American College of Nutrition, 2020, 39, 47-53.	1.8	4
1468	Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiology of Disease, 2020, 134, 104621.	4.4	210
1469	The Future of Microbiomeâ€Based Therapeutics in Clinical Applications. Clinical Pharmacology and Therapeutics, 2020, 107, 123-128.	4.7	33
1470	Untapped "-omics― the microbial metagenome, estrobolome, and their influence on the development of breast cancer and response to treatment. Breast Cancer Research and Treatment, 2020, 179, 287-300.	2.5	33
1471	The microbiome-gut-brain axis: The missing link in depression. , 2020, , 255-274.		1
1472	Establishment of the early-life microbiome: a DOHaD perspective. Journal of Developmental Origins of Health and Disease, 2020, 11, 201-210.	1.4	46
1473	A microbial sea of possibilities: current knowledge and prospects for an improved understanding of the fish microbiome. Reviews in Aquaculture, 2020, 12, 1101-1134.	9.0	117
1474	Changes in Cold and Hot Syndrome and Gastrointestinal Bacterial Community Structure in Mice by Intervention with Food of Different Nature. Chinese Journal of Integrative Medicine, 2020, 26, 448-454.	1.6	4
1475	Ambient temperature alters body size and gut microbiota of Xenopus tropicalis. Science China Life Sciences, 2020, 63, 915-925.	4.9	20
1476	Accumulation of polybrominated diphenyl ethers and microbiome response in the great pond snail Lymnaea stagnalis with exposure to nylon (polyamide) microplastics. Ecotoxicology and Environmental Safety, 2020, 188, 109882.	6.0	40
1477	Adaptation of the Gut Microbiota to Modern Dietary Sugars and Sweeteners. Advances in Nutrition, 2020, 11, 616-629.	6.4	70
1478	Microbiotaâ€dependent and â€independent effects of dietary fibre on human health. British Journal of Pharmacology, 2020, 177, 1363-1381.	5.4	72
1479	Dietary Habits of 2- to 9-Year-Old American Children Are Associated with Gut Microbiome Composition. Journal of the Academy of Nutrition and Dietetics, 2020, 120, 517-534.	0.8	34
1480	Prenatal low-dose DEHP exposure induces metabolic adaptation and obesity: Role of hepatic thiamine metabolism. Journal of Hazardous Materials, 2020, 385, 121534.	12.4	58
1481	ls a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review. Critical Reviews in Food Science and Nutrition, 2020, 60, 2990-3004.	10.3	47
1482	Western Diet Promotes Intestinal Colonization by Collagenolytic Microbes and Promotes Tumor Formation After Colorectal Surgery. Gastroenterology, 2020, 158, 958-970.e2.	1.3	53
1483	Changes of gut microbiota during silybinâ€mediated treatment of highâ€fat dietâ€induced nonâ€alcoholic fatty liver disease in mice. Hepatology Research, 2020, 50, 5-14.	3.4	39
1484	Exercise improves metabolic function and alters the microbiome in rats with gestational diabetes. FASEB Journal, 2020, 34, 1728-1744.	0.5	19

#	Article	IF	CITATIONS
1485	Dietary prophage inducers and antimicrobials: toward landscaping the human gut microbiome. Gut Microbes, 2020, 11, 721-734.	9.8	54
1486	Gut Microbe Transformation of Natural Products: Plant Polysaccharides Are Metabolized by Animal Symbionts. , 2020, , 519-528.		0
1487	Gutted! Unraveling the Role of the Microbiome in Major Depressive Disorder. Harvard Review of Psychiatry, 2020, 28, 26-39.	2.1	94
1488	Dietary fiber isolated from sweet potato residues promotes a healthy gut microbiome profile. Food and Function, 2020, 11, 689-699.	4.6	46
1489	Involvement of the Gut Microbiota and Barrier Function in Glucocorticoidâ€Induced Osteoporosis. Journal of Bone and Mineral Research, 2020, 35, 801-820.	2.8	101
1490	Prebiotic, immuno-stimulating and gut microbiota-modulating effects of Lycium barbarum polysaccharide. Biomedicine and Pharmacotherapy, 2020, 121, 109591.	5.6	105
1491	A novel polysaccharide isolated from <i>Flammulina velutipes</i> , characterization, macrophage immunomodulatory activities and its impact on gut microbiota in rats. Journal of Animal Physiology and Animal Nutrition, 2020, 104, 735-748.	2.2	31
1492	Toxigenic gut bacteria, diet and colon carcinogenesis. Journal of the Royal Society of New Zealand, 2020, 50, 418-433.	1.9	3
1493	Improving natural product research translation: From source to clinical trial. FASEB Journal, 2020, 34, 41-65.	0.5	45
1494	Plant and soil traits driving soil fungal community due to tree plantation on the Loess Plateau. Science of the Total Environment, 2020, 708, 134560.	8.0	33
1495	The role of gut microbiota in the resistance to obesity in mice fed a high fat diet. International Journal of Food Sciences and Nutrition, 2020, 71, 453-463.	2.8	53
1496	Understanding immune–microbiota interactions in the intestine. Immunology, 2020, 159, 4-14.	4.4	62
1497	Dietary Fatty Acids and Microbiota-Brain Communication in Neuropsychiatric Diseases. Biomolecules, 2020, 10, 12.	4.0	28
1498	Integrative description of bisexual Paramacrobiotus experimentalis sp. nov. (Macrobiotidae) from republic of Madagascar (Africa) with microbiome analysis. Molecular Phylogenetics and Evolution, 2020, 145, 106730.	2.7	34
1499	Modulatory effect of Cyclocarya paliurus flavonoids on the intestinal microbiota and liver clock genes of circadian rhythm disorder mice model. Food Research International, 2020, 138, 109769.	6.2	29
1500	The human microbiome in the 21st century. Nature Communications, 2020, 11, 5256.	12.8	48
1501	Deconstructing Mechanisms of Diet-Microbiome-Immune Interactions. Immunity, 2020, 53, 264-276.	14.3	77
1502	Gut microbiota and old age: Modulating factors and interventions for healthy longevity. Experimental Gerontology, 2020, 141, 111095.	2.8	61

#	Article	IF	CITATIONS
1503	Non-neuronal crosstalk promotes an inflammatory response in nodose ganglia cultures after exposure to byproducts from gram positive, high-fat-diet-associated gut bacteria. Physiology and Behavior, 2020, 226, 113124.	2.1	5
1504	Salivary Oral Microbiome of Children With Juvenile Idiopathic Arthritis: A Norwegian Cross-Sectional Study. Frontiers in Cellular and Infection Microbiology, 2020, 10, 602239.	3.9	12
1505	Gut Microbiome in Children from Indigenous and Urban Communities in México: Different Subsistence Models, Different Microbiomes. Microorganisms, 2020, 8, 1592.	3.6	13
1506	The mannose phosphotransferase system (Man-PTS) - Mannose transporter and receptor for bacteriocins and bacteriophages. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183412.	2.6	34
1507	Short chain fatty acids: Postbiotics/metabolites and graft versus host disease colitis. Seminars in Hematology, 2020, 57, 1-6.	3.4	24
1508	The Potential of Lactobacillus spp. for Modulating Oxidative Stress in the Gastrointestinal Tract. Antioxidants, 2020, 9, 610.	5.1	57
1509	The Gut Microbiome as a Component of the Gut–Brain Axis in Cognitive Health. Biological Research for Nursing, 2020, 22, 485-494.	1.9	17
1510	Body-size Scaling is Related to Gut Microbial Diversity, Metabolism and Dietary Niche of Arboreal Folivorous Flying Squirrels. Scientific Reports, 2020, 10, 7809.	3.3	9
1511	Selective Bacterial Colonization of the Murine Larynx in a Gnotobiotic Model. Frontiers in Microbiology, 2020, 11, 594617.	3.5	4
1512	Early Nutrition and Risk of Type 1 Diabetes: The Role of Gut Microbiota. Frontiers in Nutrition, 2020, 7, 612377.	3.7	8
1513	<p>Randomized Clinical Trial Examining the Impact of Lactobacillus rhamnosus GG Probiotic Supplementation on Cognitive Functioning in Middle-aged and Older Adults</p> . Neuropsychiatric Disease and Treatment, 2020, Volume 16, 2765-2777.	2.2	33
1514	Microbiome and pediatric obesity, malnutrition, and nutrition. , 2020, , 157-181.		5
1515	Metagenomics analysis of intestinal flora modulatory effect of green tea polyphenols by a circadian rhythm dysfunction mouse model. Journal of Food Biochemistry, 2020, 44, e13430.	2.9	14
1516	Comparative Analysis of Microbial Community Structure and Function in the Gut of Wild and Captive Amur Tiger. Frontiers in Microbiology, 2020, 11, 1665.	3.5	39
1517	Nutri-Epigenetics and Gut Microbiota: How Birth Care, Bonding and Breastfeeding Can Influence and Be Influenced?. International Journal of Molecular Sciences, 2020, 21, 5032.	4.1	15
1518	Dietâ€induced rodent models of obesityâ€related metabolic disorders—A guide to a translational perspective. Obesity Reviews, 2020, 21, e13081.	6.5	37
1519	How Food Affects Colonization Resistance Against Enteropathogenic Bacteria. Annual Review of Microbiology, 2020, 74, 787-813.	7.3	27
1520	Long-Term Consumption of 2- <i>O</i> -β- <scp>d</scp> -Glucopyranosyl- <scp>l</scp> -ascorbic Acid from the Fruits of <i>Lycium barbarum</i> Modulates Gut Microbiota in C57BL/6 Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 8863-8874.	5.2	18

#	Article	IF	CITATIONS
1521	Essential oils and microbiota: Implications for diet and weight control. Trends in Food Science and Technology, 2020, 104, 60-71.	15.1	14
1523	Oral administration of Korean propolis extract ameliorates DSS-induced colitis in BALB/c mice. International Journal of Medical Sciences, 2020, 17, 1984-1991.	2.5	11
1524	Consumption of a Western-Style Diet Modulates the Response of the Murine Gut Microbiome to Ciprofloxacin. MSystems, 2020, 5, .	3.8	23
1525	Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity. Nature Communications, 2020, 11, 3755.	12.8	97
1526	Can Dietary Fatty Acids Affect the COVID-19 Infection Outcome in Vulnerable Populations?. MBio, 2020, 11, .	4.1	13
1527	Strain-level epidemiology of microbial communities and the human microbiome. Genome Medicine, 2020, 12, 71.	8.2	75
1528	Data-driven microbiota biomarker discovery for personalized drug therapy of cardiovascular disease. Pharmacological Research, 2020, 161, 105225.	7.1	5
1529	<p>The Impact of Gut Microbiota Disorders on the Blood–Brain Barrier</p> . Infection and Drug Resistance, 2020, Volume 13, 3351-3363.	2.7	56
1530	Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Science Translational Medicine, 2020, 12, .	12.4	163
1531	The Gut Microbiome and Individual-Specific Responses to Diet. MSystems, 2020, 5, .	3.8	58
1531 1532	The Gut Microbiome and Individual-Specific Responses to Diet. MSystems, 2020, 5, . Parallel and non-parallel changes of the gut microbiota during trophic diversification in repeated young adaptive radiations of sympatric cichlid fish. Microbiome, 2020, 8, 149.	3.8 11.1	58
1531 1532 1533	The Gut Microbiome and Individual-Specific Responses to Diet. MSystems, 2020, 5, . Parallel and non-parallel changes of the gut microbiota during trophic diversification in repeated young adaptive radiations of sympatric cichlid fish. Microbiome, 2020, 8, 149. Abundance and nuclear antigen reactivity of intestinal and fecal Immunoglobulin A in lupus-prone mice at younger ages correlate with the onset of eventual systemic autoimmunity. Scientific Reports, 2020, 10, 14258.	3.8 11.1 3.3	58 13 9
1531 1532 1533 1533	The Gut Microbiome and Individual-Specific Responses to Diet. MSystems, 2020, 5, . Parallel and non-parallel changes of the gut microbiota during trophic diversification in repeated young adaptive radiations of sympatric cichlid fish. Microbiome, 2020, 8, 149. Abundance and nuclear antigen reactivity of intestinal and fecal Immunoglobulin A in lupus-prone mice at younger ages correlate with the onset of eventual systemic autoimmunity. Scientific Reports, 2020, 10, 14258. The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease?. Diseases (Basel, Switzerland), 2020, 8, 33.	3.8 11.1 3.3 2.5	58 13 9 15
1531 1532 1533 1534 1535	The Gut Microbiome and Individual-Specific Responses to Diet. MSystems, 2020, 5, . Parallel and non-parallel changes of the gut microbiota during trophic diversification in repeated young adaptive radiations of sympatric cichlid fish. Microbiome, 2020, 8, 149. Abundance and nuclear antigen reactivity of intestinal and fecal Immunoglobulin A in lupus-prone mice at younger ages correlate with the onset of eventual systemic autoimmunity. Scientific Reports, 2020, 10, 14258. The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease?. Diseases (Basel, Switzerland), 2020, 8, 33. Ascorbic Acid Derivative 2- <i>O</i> -?- <scp>d</scp> -Clucopyranosyl- <scp>l</scp> -Ascorbic Acid from the Fruit of <i>Lycium barbarum</i> Modulates Microbiota in the Small Intestine and Colon and Exerts an Immunomodulatory Effect on Cyclophosphamide-Treated BALB/c Mice. Journal of Agricultural and Food Chemistry. 2020 68, 111124	 3.8 11.1 3.3 2.5 5.2 	 58 13 9 15 44
1531 1532 1533 1534 1535	The Gut Microbiome and Individual-Specific Responses to Diet. MSystems, 2020, 5, . Parallel and non-parallel changes of the gut microbiota during trophic diversification in repeated young adaptive radiations of sympatric cichlid fish. Microbiome, 2020, 8, 149. Abundance and nuclear antigen reactivity of intestinal and fecal Immunoglobulin A in lupus-prone mice at younger ages correlate with the onset of eventual systemic autoimmunity. Scientific Reports, 2020, 10, 14258. The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease?. Diseases (Basel, Switzerland), 2020, 8, 33. Ascorbic Acid Derivative 2- <i>>O</i> >/i>·f²- <scp>d</scp> -Glucopyranosyl- <scp>l</scp> -Ascorbic Acid from the Fruit of <i>Lycium barbarum</i> >Modulates Microbiota in the Small Intestine and Colon and Exerts an Immunomodulatory Effect on Cyclophosphamide-Treated BALB/c Mice. Journal of Agricultural and Food Chemistry. 2020, 68, 11128-11143. Predicting community dynamics of antibiotic-sensitive and -resistant species in fluctuating environments. Journal of the Royal Society Interface, 2020, 17, 20190776.	 3.8 11.1 3.3 2.5 5.2 3.4 	 58 13 9 15 44 4
1531 1532 1533 1534 1535 1536	The Cut Microbiome and Individual-Specific Responses to Diet. MSystems, 2020, 5, . Parallel and non-parallel changes of the gut microbiota during trophic diversification in repeated young adaptive radiations of sympatric cichlid fish. Microbiome, 2020, 8, 149. Abundance and nuclear antigen reactivity of intestinal and fecal Immunoglobulin A in lupus-prone mice at younger ages correlate with the onset of eventual systemic autoimmunity. Scientific Reports, 2020, 10, 14258. The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease?. Diseases (Basel, Switzerland), 2020, 8, 33. Ascorbic Acid Derivative 2- <i>O</i> O Modulates Microbiota in the Small Intestine and Colon and Exerts an Immunomodulatory Effect on Cyclophosphamide-Treated BALB/c Mice. Journal of Agricultural and Food Chemistry. 2020, 68, 11128-11143. Predicting community dynamics of antibiotic-sensitive and -resistant species in fluctuating environments. Journal of the Royal Society Interface, 2020, 17, 20190776. Exploring changes in the human gut microbiota and microbial-derived metabolites in response to diets enriched in simple, refined, or unrefined carbohydrate-containing foods: a post hoc analysis of a randomized clinical trial. American Journal of Clinical Nutrition, 2020, 112, 1631-1641.	 3.8 11.1 3.3 2.5 5.2 3.4 4.7 	 58 13 9 15 44 4 11
1531 1532 1533 1534 1535 1536 1537	The Gut Microbiome and Individual-Specific Responses to Diet. MSystems, 2020, 5, . Parallel and non-parallel changes of the gut microbiota during trophic diversification in repeated young adaptive radiations of sympatric cichlid fish. Microbiome, 2020, 8, 149. Abundance and nuclear antigen reactivity of intestinal and fecal Immunoglobulin A in lupus-prone mice at younger ages correlate with the onset of eventual systemic autoimmunity. Scientific Reports, 2020, 10, 14258. The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease?. Diseases (Basel, Switzerland), 2020, 8, 33. Ascorbic Acid Derivative 2- <i>>O(/j>-β-<scp>d</scp>-Clucopyranosyl-<scp>l Ascorbic Acid Derivative 2-<i>>O(/j)-β-<scp>d Predicting community dynamics of antibiotic-sensitive and -resistant species in fluctuating environments. Journal of the Royal Society Interface, 2020, 17, 20190776. Exploring changes in the human gut microbiota and microbial-derived metabolites in response to diets enriched in simple, refined, or unrefined carbohydrate-containing foods: a post hoc analysis of a randomized clinical trial. American Journal of Clinical Nutrition, 2020, 112, 1631-1641. Changes in the Gut Microbiota of Children with Autism Spectrum Disorder. Autism Research, 2020, 13, 1614-1625.</scp></i></scp></i>	 3.8 11.1 3.3 2.5 5.2 3.4 4.7 3.8 	 58 13 9 15 44 4 11 90

#	Article	IF	CITATIONS
1540	Does Fibre-fix provided to people with irritable bowel syndrome who are consuming a low FODMAP diet improve their gut health, gut microbiome, sleep and mental health? A double-blinded, randomised controlled trial. BMJ Open Gastroenterology, 2020, 7, e000448.	2.7	2
1541	Gut Feeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1967-1969.	2.4	2
1542	Effect of gut microbiota on αâ€amanitin tolerance in <i>Drosophila tripunctata</i> . Ecology and Evolution, 2020, 10, 9419-9427.	1.9	6
1543	Impact of Gallic Acid on Gut Health: Focus on the Gut Microbiome, Immune Response, and Mechanisms of Action. Frontiers in Immunology, 2020, 11, 580208.	4.8	74
1544	Effects of Smoking and Smoking Cessation on the Intestinal Microbiota. Journal of Clinical Medicine, 2020, 9, 2963.	2.4	25
1545	Hyperinsulinaemia in cancer. Nature Reviews Cancer, 2020, 20, 629-644.	28.4	122
1546	Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Experimental and Molecular Medicine, 2020, 52, 1383-1396.	7.7	87
1547	Microbiome-mediated plasticity directs host evolution along several distinct time scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190589.	4.0	62
1548	Modifying macronutrients is superior to microbiome transplantation in treating nonalcoholic fatty liver disease. Gut Microbes, 2020, 12, 1792256.	9.8	3
1549	Relationship between Diet, Microbiota, and Healthy Aging. Biomedicines, 2020, 8, 287.	3.2	22
1550	Curing piglets from diarrhea and preparation of a healthy microbiome with Bacillus treatment for industrial animal breeding. Scientific Reports, 2020, 10, 19476.	3.3	25
1551	Differential longitudinal establishment of human fecal bacterial communities in germ-free porcine and murine models. Communications Biology, 2020, 3, 760.	4.4	13
1552	Adiponectin Role in Neurodegenerative Diseases: Focus on Nutrition Review. International Journal of Molecular Sciences, 2020, 21, 9255.	4.1	11
1553	Monitoring the Diversity and Metabolic Shift of Gut Microbes during Green Tea Feeding in an In Vitro Human Colonic Model. Molecules, 2020, 25, 5101.	3.8	14
1554	Shifts in microbial diversity, composition, and functionality in the gut and genital microbiome during a natural SIV infection in vervet monkeys. Microbiome, 2020, 8, 154.	11.1	11
1555	Genetic Factors of Alzheimer's Disease Modulate How Diet is Associated with Long-Term Cognitive Trajectories: A UK Biobank Study. Journal of Alzheimer's Disease, 2020, 78, 1245-1257.	2.6	15
1556	Why We Never Eat Alone: The Overlooked Role of Microbes and Partners in Obesity Debates in Bioethics. Journal of Bioethical Inquiry, 2020, 17, 435-448.	1.5	1
1557	ErnÄ ¤ rung bei entzündlichen Darmerkrankungen. Karger Kompass Autoimmun, 2020, 2, 96-103. 	0.0	0

#	Article	IF	CITATIONS
1558	Microbial Alterations and Risk Factors of Breast Cancer: Connections and Mechanistic Insights. Cells, 2020, 9, 1091.	4.1	38
1559	The gut microbiome and frailty. Translational Research, 2020, 221, 23-43.	5.0	22
1560	Oral administration of <i>Lactobacillus fermentum</i> CRL1446 improves biomarkers of metabolic syndrome in mice fed a high-fat diet supplemented with wheat bran. Food and Function, 2020, 11, 3879-3894.	4.6	23
1561	Diet differentially regulates enterochromaffin cell serotonin content, density and nutrient sensitivity in the mouse small and large intestine. Neurogastroenterology and Motility, 2020, 32, e13869.	3.0	11
1562	Investigating the effects of fatigue on blood glucose levels – Implications for diabetes. Translational Metabolic Syndrome Research, 2020, 3, 17-20.	0.8	2
1563	<i>>Trans</i> -fatty acids alter the gut microbiota in high-fat-diet-induced obese rats. British Journal of Nutrition, 2020, 124, 1251-1263.	2.3	19
1564	The Dynamics of Interacting Bacterial and Fungal Communities of the Mouse Colon Following Antibiotics. Microbial Ecology, 2020, 80, 573-592.	2.8	4
1565	Modulation of the human gut microbiota by phenolics and phenolic fiberâ€rich foods. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1268-1298.	11.7	111
1566	The dichotomous role of the gut microbiome in exacerbating and ameliorating neurodegenerative disorders. Expert Review of Neurotherapeutics, 2020, 20, 673-686.	2.8	26
1567	A Guide to Diet-Microbiome Study Design. Frontiers in Nutrition, 2020, 7, 79.	3.7	78
1568	Directed remodeling of the mouse gut microbiome inhibits the development of atherosclerosis. Nature Biotechnology, 2020, 38, 1288-1297.	17.5	70
1569	Prostate carcinogenesis: inflammatory storms. Nature Reviews Cancer, 2020, 20, 455-469.	28.4	114
1570	A Humanized Diet Profile May Facilitate Colonization and Immune Stimulation in Human Microbiota-Colonized Mice. Frontiers in Microbiology, 2020, 11, 1336.	3.5	8
1571	Intestinal expression of toll-like receptor gene changes early after gastric bypass surgery and association with type 2 diabetes remission. Nutrition, 2020, 79-80, 110885.	2.4	7
1572	Microbiota and Lifestyle: A Special Focus on Diet. Nutrients, 2020, 12, 1776.	4.1	102
1573	Colonization Potential to Reconstitute a Microbe Community in Pseudo Germ-Free Mice After Fecal Microbe Transplant From Equol Producer. Frontiers in Microbiology, 2020, 11, 1221.	3.5	19
1574	Gut Microbiome Dysbiosis and Depression: a Comprehensive Review. Current Pain and Headache Reports, 2020, 24, 36.	2.9	31
1575	Maize Bran Particle Size Governs the Community Composition and Metabolic Output of Human Gut Microbiota in in vitro Fermentations. Frontiers in Microbiology, 2020, 11, 1009.	3.5	15

#	Article	IF	CITATIONS
1576	Metatranscriptomic analysis to define the Secrebiome, and 16S rRNA profiling of the gut microbiome in obesity and metabolic syndrome of Mexican children. Microbial Cell Factories, 2020, 19, 61.	4.0	71
1577	Meat Protein in High-Fat Diet Induces Adipogensis and Dyslipidemia by Altering Gut Microbiota and Endocannabinoid Dysregulation in the Adipose Tissue of Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 3933-3946.	5.2	22
1578	The Role of the Gut Microbiota in Dietary Interventions for Depression and Anxiety. Advances in Nutrition, 2020, 11, 890-907.	6.4	104
1579	Factors that shape the host microbiome. , 2020, , 55-77.		5
1580	The Changes in the Frog Gut Microbiome and Its Putative Oxygen-Related Phenotypes Accompanying the Development of Gastrointestinal Complexity and Dietary Shift. Frontiers in Microbiology, 2020, 11, 162.	3.5	24
1581	US nativity and dietary acculturation impact the gut microbiome in a diverse US population. ISME Journal, 2020, 14, 1639-1650.	9.8	29
1582	Multiview learning for understanding functional multiomics. PLoS Computational Biology, 2020, 16, e1007677.	3.2	71
1583	Faecal microbiota transplantation from metabolically compromised human donors accelerates osteoarthritis in mice. Annals of the Rheumatic Diseases, 2020, 79, 646-656.	0.9	55
1584	Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome, 2020, 8, 36.	11.1	213
1585	The Role of the Gut Microbiome in Energy Balance With a Focus on the Gut-Adipose Tissue Axis. Frontiers in Genetics, 2020, 11, 297.	2.3	52
1586	Obesity Affects the Microbiota–Gut–Brain Axis and the Regulation Thereof by Endocannabinoids and Related Mediators. International Journal of Molecular Sciences, 2020, 21, 1554.	4.1	60
1587	Strategies to Dissect Host-Microbial Immune Interactions That Determine Mucosal Homeostasis vs. Intestinal Inflammation in Gnotobiotic Mice. Frontiers in Immunology, 2020, 11, 214.	4.8	23
1588	Current Perspectives on Gut Microbiome Dysbiosis and Depression. Advances in Therapy, 2020, 37, 1328-1346.	2.9	93
1589	Dietary quinoa (Chenopodium quinoa Willd.) polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota. International Journal of Biological Macromolecules, 2020, 163, 55-65.	7.5	61
1590	Enhanced modulation of gut microbial dynamics affecting body weight in birds triggered by natural growth promoters administered in conventional feed. Saudi Journal of Biological Sciences, 2020, 27, 2747-2755.	3.8	17
1591	Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease. Translational Research, 2020, 226, 1-11.	5.0	34
1592	Effects of diet, habitat, and phylogeny on the fecal microbiome of wild African savanna (<i>Loxodonta) Tj ETQqO</i>	0 0 rgBT /	Overlock 10

1593	641-851.	1.5
------	----------	-----

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1594	Dietary Regulation of Memory T Cells. International Journal of Molecular Sciences, 2020), 21, 4363.	4.1	13
1595	What Can the Bacterial Community of Atta sexdens (Linnaeus, 1758) Tell Us about the This Ant Species Evolves?. Insects, 2020, 11, 332.	Habitats in Which	2.2	5
1596	Functional modulation of gut microbiota in diabetic rats following dietary intervention pistachio nuts (Pistacia vera L.). Metabolism Open, 2020, 7, 100040.	with	2.9	26
1597	How being synanthropic affects the gut bacteriome and mycobiome: comparison of tw with contrasting ecologies. BMC Microbiology, 2020, 20, 194.	o mouse species	3.3	14
1598	Distinct differences in gut microbial composition and functional potential from lean to obese subjects. Journal of Internal Medicine, 2020, 288, 699-710.	morbidly	6.0	20
1599	A Revolutionizing Approach to Autism Spectrum Disorder Using the Microbiome. Nutrio 1983.	ents, 2020, 12,	4.1	30
1600	Microbial patterns in rumen are associated with gain of weight in beef cattle. Antonie V Leeuwenhoek, 2020, 113, 1299-1312.	'an	1.7	8
1601	Association between the body weight of growing pigs and the functional capacity of th microbiota. Animal Science Journal, 2020, 91, e13418.	ieir gut	1.4	27
1602	A gut feeling about the ketogenic diet in epilepsy. Epilepsy Research, 2020, 166, 10640)9.	1.6	11
1603	Metabolite Profiling of the Gut Microbiome in Mice with Dietary Administration of Black ACS Omega, 2020, 5, 1318-1325.	R Raspberries.	3.5	10
1604	Daily Intake of Paraprobiotic Lactobacillus amylovorus CP1563 Improves Pre-Obese Co Affects the Gut Microbial Community in Healthy Pre-Obese Subjects: A Double-Blind, Ra Placebo-Controlled Study. Microorganisms, 2020, 8, 304.	nditions and andomized,	3.6	14
1605	Conserved and variable responses of the gut microbiome to resistant starch type 2. Nu Research, 2020, 77, 12-28.	trition	2.9	57
1606	Exploration of the Relationship Between Gut Microbiota and Polycystic Ovary Syndrom Review. Geburtshilfe Und Frauenheilkunde, 2020, 80, 161-171.	e (PCOS): a	1.8	61
1607	Nanoplastic ingestion induces behavioral disorders in terrestrial snails: trophic transfer effects <i>via</i> viavascular plants. Environmental Science: Nano, 2020, 7, 975-983.		4.3	112
1608	Propionic Acid Promotes the Virulent Phenotype of Crohn's Disease-Associated Adl Escherichia coli. Cell Reports, 2020, 30, 2297-2305.e5.	ierent-Invasive	6.4	42
1610	Housing condition-associated changes in gut microbiota further affect the host respon diet-induced nonalcoholic fatty liver. Journal of Nutritional Biochemistry, 2020, 79, 108	se to 362.	4.2	11
1611	The Link between Gut Dysbiosis and Neuroinflammation in Parkinson's Disease. Ne 160-173.	uroscience, 2020, 432,	2.3	78
1612	Bacteriophages Isolated from Stunted Children Can Regulate Gut Bacterial Communitie Age-Specific Manner. Cell Host and Microbe, 2020, 27, 199-212.e5.	es in an	11.0	85

#	Article	IF	Citations
1613	Nitrate from diet might fuel gut microbiota metabolism: Minding the gap between redox signaling and inter-kingdom communication. Free Radical Biology and Medicine, 2020, 149, 37-43.	2.9	28
1614	Gut microbiota differences in Island Hispanic Puerto Ricans and mainland non-Hispanic whites during chemoradiation for rectal cancer: A pilot study. Current Problems in Cancer, 2020, 44, 100551.	2.0	9
1615	Nutrition in Inflammatory Bowel Disease. Digestion, 2020, 101, 120-135.	2.3	59
1616	Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents. Cell, 2020, 180, 221-232.	28.9	318
1617	The Gastrointestinal Microbiome in Chronic Renal Diseases. Current Oral Health Reports, 2020, 7, 45-53.	1.6	0
1618	The effect of diet on the gastrointestinal microbiome of juvenile rehabilitating green turtles (Chelonia mydas). PLoS ONE, 2020, 15, e0227060.	2.5	34
1619	The NLRP6 inflammasome in health and disease. Mucosal Immunology, 2020, 13, 388-398.	6.0	72
1620	The progress of gut microbiome research related to brain disorders. Journal of Neuroinflammation, 2020, 17, 25.	7.2	252
1621	Culture-enriched metagenomic sequencing enables in-depth profiling of the cystic fibrosis lung microbiota. Nature Microbiology, 2020, 5, 379-390.	13.3	57
1622	Association Between Sulfur-Metabolizing Bacterial Communities in Stool and Risk of Distal Colorectal Cancer in Men. Gastroenterology, 2020, 158, 1313-1325.	1.3	88
1623	Gut microbiota composition after diet and probiotics in overweight breast cancer survivors: a randomized open-label pilot intervention trial. Nutrition, 2020, 74, 110749.	2.4	38
1624	The Influence of Polyphenol Compounds on Human Gastrointestinal Tract Microbiota. Nutrients, 2020, 12, 350.	4.1	37
1625	Alteration of Microbiome Profile by D-Allulose in Amelioration of High-Fat-Diet-Induced Obesity in Mice. Nutrients, 2020, 12, 352.	4.1	30
1626	Effect of probiotics on obesity-related markers per enterotype: a double-blind, placebo-controlled, randomized clinical trial. EPMA Journal, 2020, 11, 31-51.	6.1	47
1627	Sequence count data are poorly fit by the negative binomial distribution. PLoS ONE, 2020, 15, e0224909.	2.5	31
1628	Revisiting Inflammatory Bowel Disease: Pathology, Treatments, Challenges and Emerging Therapeutics Including Drug Leads from Natural Products. Journal of Clinical Medicine, 2020, 9, 1273.	2.4	83
1629	Systematic review with meta-analysis: Effects of probiotic supplementation on symptoms in functional dyspepsia. Journal of Functional Foods, 2020, 68, 103902.	3.4	17
1630	Dysregulation of synaptic pruning as a possible link between intestinal microbiota dysbiosis and neuropsychiatric disorders. Journal of Neuroscience Research, 2020, 98, 1335-1369.	2.9	45

ORT

#	Article	IF	CITATIONS
1631	Cottonseed meal fermented by Candida tropical reduces the fat deposition in white-feather broilers through cecum bacteria-host metabolic cross-talk. Applied Microbiology and Biotechnology, 2020, 104, 4345-4357.	3.6	14
1632	Gut, oral and skin microbiome of Indian patrilineal families reveal perceptible association with age. Scientific Reports, 2020, 10, 5685.	3.3	50
1633	Degradation of the Incretin Hormone Glucagon-Like Peptide-1 (GLP-1) by Enterococcus faecalis Metalloprotease GelE. MSphere, 2020, 5, .	2.9	14
1634	Human gut microbiome composition and tryptophan metabolites were changed differently by fast food and Mediterranean diet in 4 days: a pilot study. Nutrition Research, 2020, 77, 62-72.	2.9	79
1635	Bacterial fecal microbiota is only minimally affected by a standardized weight loss plan in obese cats. BMC Veterinary Research, 2020, 16, 112.	1.9	11
1636	Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota. Free Radical Biology and Medicine, 2020, 156, 83-98.	2.9	134
1637	Rebaudioside affords hepatoprotection ameliorating sugar sweetened beverage- induced nonalcoholic steatohepatitis. Scientific Reports, 2020, 10, 6689.	3.3	15
1638	Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut, 2020, 69, 1796-1806.	12.1	149
1639	Inflammatory bowel disease: A key role for microbiota?. Meta Gene, 2020, 25, 100713.	0.6	10
1640	Sequence variant analysis reveals poor correlations in microbial taxonomic abundance between humans and mice after gnotobiotic transfer. ISME Journal, 2020, 14, 1809-1820.	9.8	30
1641	From Nursery to Nursing Home: Emerging Concepts in Clostridioides difficile Pathogenesis. Infection and Immunity, 2020, 88, .	2.2	11
1642	Capsulized faecal microbiota transplantation ameliorates post-weaning diarrhoea by modulating the gut microbiota in piglets. Veterinary Research, 2020, 51, 55.	3.0	27
1643	Gut Microbiota, Its Role in Induction of Alzheimer's Disease Pathology, and Possible Therapeutic Interventions: Special Focus on Anthocyanins. Cells, 2020, 9, 853.	4.1	55
1644	Gut microbiome: A possible common therapeutic target for treatment of atherosclerosis and cancer. Seminars in Cancer Biology, 2021, 70, 85-97.	9.6	21
1645	Classical methods and perspectives for manipulating the human gut microbial ecosystem. Critical Reviews in Food Science and Nutrition, 2021, 61, 234-258.	10.3	13
1646	The Microbiome and Cancer: Creating Friendly Neighborhoods and Removing the Foes Within. Cancer Research, 2021, 81, 790-800.	0.9	29
1647	Insufficient dietary choline aggravates disease severity in a mouse model of <i>Citrobacter rodentium</i> -induced colitis. British Journal of Nutrition, 2021, 125, 50-61.	2.3	9
1648	Human gut-derived commensal suppresses generation of T-cell response to gliadin in humanized mice by modulating gut microbiota. Anaerobe, 2021, 68, 102237.	2.1	11

#	Article	IF	CITATIONS
1649	Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: towards preventive strategies against enteric infections. FEMS Microbiology Reviews, 2021, 45, .	8.6	27
1650	Fecal Bacteria as Biomarkers for Predicting Food Intake in Healthy Adults. Journal of Nutrition, 2021, 151, 423-433.	2.9	26
1651	Innate responses to gut microbiota; critical assessment of the necessary experimental controls. Current Opinion in Microbiology, 2021, 59, 34-41.	5.1	1
1652	Mucin-derived <i>O</i> -glycans supplemented to diet mitigate diverse microbiota perturbations. ISME Journal, 2021, 15, 577-591.	9.8	55
1653	The airway microbiome in COPD, bronchiectasis and bronchiectasis OPD overlap. Clinical Respiratory Journal, 2021, 15, 123-133.	1.6	35
1654	Dietary Fructose Alters the Composition, Localization, and Metabolism of Gut Microbiota in Association With Worsening Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 525-550.	4.5	58
1655	Therapeutic potential of nutraceuticals to protect brain after stroke. Neurochemistry International, 2021, 142, 104908.	3.8	10
1656	Comparative study of the bacterial communities throughout the gastrointestinal tract in two beef cattle breeds. Applied Microbiology and Biotechnology, 2021, 105, 313-325.	3.6	14
1657	Total-body PET Imaging. PET Clinics, 2021, 16, 75-87.	3.0	7
1658	High dietary starch impairs intestinal health and microbiota of largemouth bass, Micropterus salmoides. Aquaculture, 2021, 534, 736261.	3.5	73
1659	Gut microbial metabolites as multi-kingdom intermediates. Nature Reviews Microbiology, 2021, 19, 77-94.	28.6	557
1660	Roles of the Polyphenol–Gut Microbiota Interaction in Alleviating Colitis and Preventing Colitis-Associated Colorectal Cancer. Advances in Nutrition, 2021, 12, 546-565.	6.4	77
1661	Identification of Allobaculum mucolyticum as a novel human intestinal mucin degrader. Gut Microbes, 2021, 13, 1966278.	9.8	42
1662	A high-fat diet and high-fat and high-cholesterol diet may affect glucose and lipid metabolism differentially through gut microbiota in mice. Experimental Animals, 2021, 70, 73-83.	1.1	35
1663	Interactions of Food With the Microbiota of the Digestive Tract. , 2022, , 1-11.		0
1664	Microbial Diversity and Classification. , 2021, , .		0
1665	Dietary Modulation of the Gut Microbiome—Probing the Role of Small RNAs. , 2021, , 380-397.		0
1666	Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes, 2021, 13, 1941711.	9.8	59

#	Article	IF	CITATIONS
1667	Probiotics ameliorate chronic low-grade inflammation and fat accumulation with gut microbiota composition change in diet-induced obese mice models. Applied Microbiology and Biotechnology, 2021, 105, 1203-1213.	3.6	17
1668	Microbiota, a New Playground for the Omega-3 Polyunsaturated Fatty Acids in Cardiovascular Diseases. Marine Drugs, 2021, 19, 54.	4.6	12
1669	Overview of the Effect of Citrobacter rodentium Infection on Host Metabolism and the Microbiota. Methods in Molecular Biology, 2021, 2291, 399-418.	0.9	5
1670	Microbial Species that Initially Colonize the Human Gut at Birth or in Early Childhood Can Stay in Human Body for Lifetime. Microbial Ecology, 2021, 82, 1074-1079.	2.8	6
1671	Gut microbial communities from patients with anorexia nervosa do not influence body weight in recipient germ-free mice. Gut Microbes, 2021, 13, 1-15.	9.8	14
1672	Genetic Variation in Holobionts. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 275-315.	0.6	0
1673	Diabetogenically beneficial gut microbiota alterations in third trimester of pregnancy. Reproduction and Fertility, 2021, 2, R1-R12.	1.8	3
1674	Engineered probiotics modulate the endocannabinoid system. Biotechnology Notes, 2021, 2, 33-38.	1.2	7
1675	Microbiota—Cardiovascular Axis: How We Could Improve Cardiovascular System With Microbiota Metabolites. , 2021, , .		0
1676	Microbiota as a Regulator of Circadian Rhythms—Special Focus on Sleep and Metabolism. , 2021, , 69-69.		1
1677	Diet Leaves a Genetic Signature in a Keystone Member of the Gut Microbiota. SSRN Electronic Journal, 0, , .	0.4	0
1678	Gut microbiome profiles associated with steatosis severity in metabolic associated fatty liver disease. , 0, , .		2
1679	Associations of Genetic Variants Contributing to Gut Microbiota Composition in Immunoglobin A Nephropathy. MSystems, 2021, 6, .	3.8	18
1680	Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far?. European Journal of Nutrition, 2021, 60, 3567-3584.	3.9	51
1681	Effects of pollen and nectar inoculation by yeasts, bacteria or both on bumblebee colony development. Oecologia, 2021, 195, 689-703.	2.0	17
1682	Using ecological coexistence theory to understand antibiotic resistance and microbial competition. Nature Ecology and Evolution, 2021, 5, 431-441.	7.8	46
1683	Kidney–Gut Crosstalk in AKI. Kidney360, 2021, 2, 886-889.	2.1	7
1684	New Insights Into the Cancer–Microbiome–Immune Axis: Decrypting a Decade of Discoveries. Frontiers in Immunology, 2021, 12, 622064.	4.8	91

#	Article	IF	CITATIONS
1685	Exploring the Gut Microbiome Alteration of the European Hare (Lepus europaeus) after Short-Term Diet Modifications. Biology, 2021, 10, 148.	2.8	0
1686	Microbiota as Drivers and as Therapeutic Targets in Ocular and Tissue Specific Autoimmunity. Frontiers in Cell and Developmental Biology, 2020, 8, 606751.	3.7	11
1687	Taxonomic Description and Genome Sequence of Christensenella intestinihominis sp. nov., a Novel Cholesterol-Lowering Bacterium Isolated From Human Gut. Frontiers in Microbiology, 2021, 12, 632361.	3.5	18
1688	A Newly Developed Synbiotic Yogurt Prevents Diabetes by Improving the Microbiome–Intestine–Pancreas Axis. International Journal of Molecular Sciences, 2021, 22, 1647.	4.1	15
1689	The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nature Medicine, 2021, 27, 333-343.	30.7	179
1690	Application of germ-free NOD-scid IL2rgnull mice as a humanized model for tumor microbiome precision medicine. Science China Life Sciences, 2021, 64, 644-647.	4.9	2
1691	Donor Microbiota Composition and Housing Affect Recapitulation of Obese Phenotypes in a Human Microbiota-Associated Murine Model. Frontiers in Cellular and Infection Microbiology, 2021, 11, 614218.	3.9	5
1692	Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment. Frontiers in Microbiology, 2021, 12, 634511.	3.5	157
1693	A Comparison of the In Vitro Effects of 2'Fucosyllactose and Lactose on the Composition and Activity of Gut Microbiota from Infants and Toddlers. Nutrients, 2021, 13, 726.	4.1	34
1694	Modulation of human intestinal microbiota in a clinical trial by consumption of a β-d-glucan-enriched extract obtained from Lentinula edodes. European Journal of Nutrition, 2021, 60, 3249-3265.	3.9	24
1695	Effect of a Humanized Diet Profile on Colonization Efficiency and Gut Microbial Diversity in Human Flora-Associated Mice. Frontiers in Nutrition, 2021, 8, 633738.	3.7	4
1697	Dietary switch to Western diet induces hypothalamic adaptation associated with gut microbiota dysbiosis in rats. International Journal of Obesity, 2021, 45, 1271-1283.	3.4	12
1698	The effect of calorie intake, fasting, and dietary composition on metabolic health and gut microbiota in mice. BMC Biology, 2021, 19, 51.	3.8	19
1699	Role of the gut microbiome in Alzheimer's disease. Reviews in the Neurosciences, 2021, 32, 767-789.	2.9	6
1700	Ultrafine particles altered gut microbial population and metabolic profiles in a sex-specific manner in an obese mouse model. Scientific Reports, 2021, 11, 6906.	3.3	6
1701	The gut microbial composition in polycystic ovary syndrome with insulin resistance: findings from a normalâ€weight population. Journal of Ovarian Research, 2021, 14, 50.	3.0	20
1702	The Adult Phenylketonuria (PKU) Gut Microbiome. Microorganisms, 2021, 9, 530.	3.6	19
1703	Diet and the Microbiota–Gut–Brain Axis: Sowing the Seeds of Good Mental Health. Advances in Nutrition, 2021, 12, 1239-1285.	6.4	125

#	Article	IF	CITATIONS
1704	The Western Dietary Pattern Combined with Vancomycin-Mediated Changes to the Gut Microbiome Exacerbates Colitis Severity and Colon Tumorigenesis. Nutrients, 2021, 13, 881.	4.1	8
1705	Key hepatic metabolic pathways are altered in germ-free mice during pregnancy. PLoS ONE, 2021, 16, e0248351.	2.5	8
1706	Gut Microbiota and Obesity in Adults and Children: The State of the Art. Frontiers in Pediatrics, 2021, 9, 657020.	1.9	31
1707	Impaired Intestinal Barrier and Tissue Bacteria: Pathomechanisms for Metabolic Diseases. Frontiers in Endocrinology, 2021, 12, 616506.	3.5	56
1708	Gut microbiome, body weight, and mammographic breast density in healthy postmenopausal women. Cancer Causes and Control, 2021, 32, 681-692.	1.8	8
1709	The gut microbiota composition of Trichoplusia ni is altered by diet and may influence its polyphagous behavior. Scientific Reports, 2021, 11, 5786.	3.3	19
1710	Potential Mechanisms Linking Food-Derived MicroRNAs, Gut Microbiota and Intestinal Barrier Functions in the Context of Nutrition and Human Health. Frontiers in Nutrition, 2021, 8, 586564.	3.7	42
1711	Social networks strongly predict the gut microbiota of wild mice. ISME Journal, 2021, 15, 2601-2613.	9.8	64
1712	Role and Mechanism of Gut Microbiota in Human Disease. Frontiers in Cellular and Infection Microbiology, 2021, 11, 625913.	3.9	202
1713	Metaproteomics—An Advantageous Option in Studies of Host-Microbiota Interaction. Microorganisms, 2021, 9, 980.	3.6	13
1714	Obesity Drives an Oral Microbiota Signature of Female Patients with Periodontitis: A Pilot Study. Diagnostics, 2021, 11, 745.	2.6	7
1715	The Gut Microbiome in Hypertension. Circulation Research, 2021, 128, 934-950.	4.5	86
1716	Beneficial Effects of Phenolic Compounds on Gut Microbiota and Metabolic Syndrome. International Journal of Molecular Sciences, 2021, 22, 3715.	4.1	71
1717	Anxiolytic effects of a galacto-oligosaccharides prebiotic in healthy females (18–25Âyears) with corresponding changes in gut bacterial composition. Scientific Reports, 2021, 11, 8302.	3.3	32
1718	Health effects of dietary sulfated polysaccharides from seafoods and their interaction with gut microbiota. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2882-2913.	11.7	36
1719	Chronic oral exposure to pesticides and their consequences on metabolic regulation: role of the microbiota. European Journal of Nutrition, 2021, 60, 4131-4149.	3.9	15
1721	Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients, 2021, 13, 1389.	4.1	46
1722	Manipulating the Microbiome: An Alternative Treatment for Bile Acid Diarrhoea. Microbiology Research, 2021, 12, 335-353.	1.9	1

#	Article	IF	CITATIONS
1723	Influence of Dietary Components and Traditional Chinese Medicine on Hypertension: A Potential Role for Gut Microbiota. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-10.	1.2	5
1724	Crosstalk between gut microbiome and immunology in the management of ischemic brain injury. Journal of Neuroimmunology, 2021, 353, 577498.	2.3	17
1725	Gut microbiome variation modulates the effects of dietary fiber on host metabolism. Microbiome, 2021, 9, 117.	11.1	61
1727	The microbiome—the revealing of a long time unbeknownst factor for outcome in murine models of graft-versus-host disease. Bone Marrow Transplantation, 2021, 56, 1777-1783.	2.4	Ο
1728	An Overview of Current Knowledge of the Gut Microbiota and Low-Calorie Sweeteners. Nutrition Today, 2021, 56, 105-113.	1.0	4
1729	Host-microbial interactions in the metabolism of different dietary fats. Cell Metabolism, 2021, 33, 857-872.	16.2	29
1730	Acute Radiation Syndrome and the Microbiome: Impact and Review. Frontiers in Pharmacology, 2021, 12, 643283.	3.5	21
1731	Diet, obesity, and the gut microbiome as determinants modulating metabolic outcomes in a non-human primate model. Microbiome, 2021, 9, 100.	11.1	56
1732	Gastrokine-1, an anti-amyloidogenic protein secreted by the stomach, regulates diet-induced obesity. Scientific Reports, 2021, 11, 9477.	3.3	5
1733	Understanding Oral Diseases: Exploring Opportunities from Filipino Oral Microbiome Research. , 0, , .		1
1734	Pairing Binge Drinking and a High-Fat Diet in Adolescence Modulates the Inflammatory Effects of Subsequent Alcohol Consumption in Mice. International Journal of Molecular Sciences, 2021, 22, 5279.	4.1	5
1735	Culturing Human Gut Microbiomes in the Laboratory. Annual Review of Microbiology, 2021, 75, 49-69.	7.3	11
1736	Gut dysbiosis is associated with poorer long-term prognosis in cirrhosis. World Journal of Hepatology, 2021, 13, 557-570.	2.0	24
1737	Comparison of the Intestinal Microbiome of Italian Patients with Multiple Sclerosis and Their Household Relatives. Life, 2021, 11, 620.	2.4	16
1738	Gut Microbiota and Host Metabolism: From Proof of Concept to Therapeutic Intervention. Microorganisms, 2021, 9, 1302.	3.6	46
1739	Consistent Alterations of Human Fecal Microbes After Transplantation into Germ-free Mice. Genomics, Proteomics and Bioinformatics, 2022, 20, 382-393.	6.9	6
1740	Escherichia coli Shiga Toxins and Gut Microbiota Interactions. Toxins, 2021, 13, 416.	3.4	26
1742	Crataegus pinnatifida polysaccharide alleviates colitis via modulation of gut microbiota and SCFAs metabolism. International Journal of Biological Macromolecules, 2021, 181, 357-368.	7.5	122

#	Article	IF	CITATIONS
1743	Longitudinal Changes in Diet Cause Repeatable and Largely Reversible Shifts in Gut Microbial Communities of Laboratory Mice and Are Observed across Segments of the Entire Intestinal Tract. International Journal of Molecular Sciences, 2021, 22, 5981.	4.1	10
1744	Engraftment of Bacteria after Fecal Microbiota Transplantation Is Dependent on Both Frequency of Dosing and Duration of Preparative Antibiotic Regimen. Microorganisms, 2021, 9, 1399.	3.6	12
1745	Caloric restriction disrupts the microbiota and colonization resistance. Nature, 2021, 595, 272-277.	27.8	109
1746	Value added immunoregulatory polysaccharides of Hericium erinaceus and their effect on the gut microbiota. Carbohydrate Polymers, 2021, 262, 117668.	10.2	46
1747	Effect of sequentially fed high protein, hydrolyzed protein, and high fiber diets on the fecal microbiota of healthy dogs: a cross-over study. Animal Microbiome, 2021, 3, 42.	3.8	9
1748	Composition and Associations of the Infant Gut Fungal Microbiota with Environmental Factors and Childhood Allergic Outcomes. MBio, 2021, 12, e0339620.	4.1	31
1749	Gut Microbiota: The Missing Link Between Helicobacter pylori Infection and Metabolic Disorders?. Frontiers in Endocrinology, 2021, 12, 639856.	3.5	29
1750	Malnutrition Aggravates Alterations Observed in the Gut Structure and Immune Response of Mice Infected with Leishmania infantum. Microorganisms, 2021, 9, 1270.	3.6	3
1751	Key Technologies for Progressing Discovery of Microbiome-Based Medicines. Frontiers in Microbiology, 2021, 12, 685935.	3.5	13
1752	Chronic Stress-Induced Depression and Anxiety Priming Modulated by Gut-Brain-Axis Immunity. Frontiers in Immunology, 2021, 12, 670500.	4.8	54
1753	Upregulation of Anti-Oxidative Stress Response Improves Metabolic Changes in L-Selectin-Deficient Mice but Does Not Prevent NAFLD Progression or Fecal Microbiota Shifts. International Journal of Molecular Sciences, 2021, 22, 7314.	4.1	1
1754	A Novel Family of RNA-Binding Proteins Regulate Polysaccharide Metabolism in <i>Bacteroides thetaiotaomicron</i> . Journal of Bacteriology, 2021, 203, e0021721.	2.2	6
1755	The Mechanism of Oral Melatonin Ameliorates Intestinal and Adipose Lipid Dysmetabolism Through Reducing Escherichia Coli-Derived Lipopolysaccharide. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1643-1667.	4.5	13
1756	Metatranscriptomics for the Human Microbiome and Microbial Community Functional Profiling. Annual Review of Biomedical Data Science, 2021, 4, 279-311.	6.5	36
1758	Comparative analysis of oral-gut microbiota between captive and wild long-tailed macaque in Thailand. Scientific Reports, 2021, 11, 14280.	3.3	15
1759	The Intestinal Microbiome Predicts Weight Loss on a Calorie-Restricted Diet and Is Associated With Improved Hepatic Steatosis. Frontiers in Nutrition, 2021, 8, 718661.	3.7	16
1760	Jetlagged microbiota: A problem for gut and metabolic function. Acta Physiologica, 2021, 233, e13722.	3.8	3
1761	Differences in Gut Microbiome Composition Between Sympatric Wild and Allopatric Laboratory Populations of Omnivorous Cockroaches. Frontiers in Microbiology, 2021, 12, 703785.	3.5	15

	Сітаті	on Report	
#	Article	IF	Citations
1762	Oral Microbiota: A Major Player in the Diagnosis of Systemic Diseases. Diagnostics, 2021, 11, 1376.	2.6	32
1765	Fructose, glucose and fat interrelationships with metabolic pathway regulation and effects on the gut microbiota. Acta Veterinaria Hungarica, 2021, 69, 134-156.	0.5	2
1766	Distinct Changes in Gut Microbiota Are Associated with Estradiol-Mediated Protection from Diet-Induced Obesity in Female Mice. Metabolites, 2021, 11, 499.	2.9	15
1767	Diet-induced dysbiosis of the maternal gut microbiome in early life programming of neurodevelopmental disorders. Neuroscience Research, 2021, 168, 3-19.	1.9	15
1768	Western Diet Changes Gut Microbiota and Ameliorates Liver Injury in a Mouse Model with Human‣ike Bile Acid Composition. Hepatology Communications, 2021, 5, 2052-2067.	4.3	7
1769	Comparative study of gut microbiota from captive and confiscated-rescued wild pangolins. Journal of Genetics and Genomics, 2021, 48, 825-835.	3.9	20
1770	Microbial composition differs between production systems and is associated with growth performance and carcass quality in pigs. Animal Microbiome, 2021, 3, 57.	3.8	7
1771	A Central Role for Atg5 in Microbiota-Dependent Foxp3+ RORγt+ Treg Cell Preservation to Maintain Intestinal Immune Homeostasis. Frontiers in Immunology, 2021, 12, 705436.	4.8	5
1772	Impact of the Host-Microbiome on Osteomyelitis Pathogenesis. Frontiers in Molecular Biosciences, 2021, 8, 702484.	3.5	6
1773	The promise of the gut microbiome as part of individualized treatment strategies. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 7-25.	17.8	60
1774	Affective disorders impact prevalence of Flavonifractor and abundance of Christensenellaceae in gut microbiota. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 110, 110300.	4.8	15
1775	Exploration of Diet Quality by Obesity Severity in Association with Gestational Weight Gain and Distal Gut Microbiota in Pregnant African American Women: Opportunities for Intervention. Maternal and Child Health Journal, 2022, 26, 882-894.	1.5	3
1776	Integrative Longitudinal Analysis of Metabolic Phenotype and Microbiota Changes During the Development of Obesity. Frontiers in Cellular and Infection Microbiology, 2021, 11, 671926.	3.9	3
1777	Waistline to the gumline: Relationship between obesity and periodontal diseaseâ€biological and management considerations. Periodontology 2000, 2021, 87, 299-314.	13.4	20
1778	Evidence for health properties of pomegranate juices and extracts beyond nutrition: A critical systematic review of human studies. Trends in Food Science and Technology, 2021, 114, 410-423.	15.1	48
1779	Integrating Dietary Data into Microbiome Studies: A Step Forward for Nutri-Metaomics. Nutrients, 2021, 13, 2978.	4.1	7
1780	Seasonal Variation in the Faecal Microbiota of Mature Adult Horses Maintained on Pasture in New Zealand. Animals, 2021, 11, 2300.	2.3	5
1781	Understanding Choline Bioavailability and Utilization: First Step Toward Personalizing Choline Nutrition. Journal of Agricultural and Food Chemistry, 2021, 69, 10774-10789.	5.2	18

#	Article	IF	CITATIONS
1782	Indoles as essential mediators in the gut-brain axis. Their role in Alzheimer's disease. Neurobiology of Disease, 2021, 156, 105403.	4.4	39
1783	Drugs and bugs: Negative affect, psychostimulant useÂand withdrawal, and the microbiome. American Journal on Addictions, 2021, 30, 525-538.	1.4	2
1784	Estado nutricional, consumo alimentar e saúde intestinal em mulheres de uma academia da saúde. Revista Da Faculdade De Ciências Médicas De Sorocaba, 2021, 22, 59-64.	0.2	0
1785	Chinese gut microbiota and its associations with staple food type, ethnicity, and urbanization. Npj Biofilms and Microbiomes, 2021, 7, 71.	6.4	37
1786	Gut Microbiota in Adipose Tissue Dysfunction Induced Cardiovascular Disease: Role as a Metabolic Organ. Frontiers in Endocrinology, 2021, 12, 749125.	3.5	12
1787	The Influence of Diet and Probiotics on the Response of Solid Tumours to Immunotherapy: Present and Future Perspectives. Applied Sciences (Switzerland), 2021, 11, 8445.	2.5	2
1788	Chronic liver disease enables gut Enterococcus faecalis colonization to promote liver carcinogenesis. Nature Cancer, 2021, 2, 1039-1054.	13.2	26
1789	Gut microbiota regulation of P-glycoprotein in the intestinal epithelium in maintenance of homeostasis. Microbiome, 2021, 9, 183.	11.1	54
1790	Procedures for Fecal Microbiota Transplantation in Murine Microbiome Studies. Frontiers in Cellular and Infection Microbiology, 2021, 11, 711055.	3.9	39
1791	The "Adipo-Cerebral―Dialogue in Childhood Obesity: Focus on Growth and Puberty. Physiopathological and Nutritional Aspects. Nutrients, 2021, 13, 3434.	4.1	8
1793	Bacteriophage-mediated modulation of microbiota for diseases treatment. Advanced Drug Delivery Reviews, 2021, 176, 113856.	13.7	18
1794	Controlled Complexity: Optimized Systems to Study the Role of the Gut Microbiome in Host Physiology. Frontiers in Microbiology, 2021, 12, 735562.	3.5	2
1795	The Role of Gut Microbiota and Gut–Brain Interplay in Selected Diseases of the Central Nervous System. International Journal of Molecular Sciences, 2021, 22, 10028.	4.1	41
1796	The role of genotype and diet in shaping gut microbiome in a genetic vitamin A deficient mouse model. Journal of Genetics and Genomics, 2022, 49, 155-164.	3.9	6
1797	Induction of IL-22-Producing CD4+ T Cells by Segmented Filamentous Bacteria Independent of Classical Th17 Cells. Frontiers in Immunology, 2021, 12, 671331.	4.8	7
1798	Early-Life Microbial Restitution Reduces Colitis Risk Promoted by Antibiotic-Induced Gut Dysbiosis in Interleukin 10–/– Mice. Gastroenterology, 2021, 161, 940-952.e15.	1.3	20
1799	Tumor models to assess immune response and tumor-microbiome interactions in colorectal cancer. , 2021, 231, 107981.		9
1800	Positive Synergistic Effects of Quercetin and Rice Bran on Human Gut Microbiota Reduces Enterobacteriaceae Family Abundance and Elevates Propionate in a Bioreactor Model. Frontiers in Microbiology, 2021, 12, 751225.	3.5	2

#	Article	IF	CITATIONS
1801	The immunological influence of physical exercise on TBI-induced pathophysiology: Crosstalk between the spleen, gut, and brain. Neuroscience and Biobehavioral Reviews, 2021, 130, 15-30.	6.1	11
1802	Influence of goat colostrum and mature milk on intestinal microbiota. Journal of Functional Foods, 2021, 86, 104704.	3.4	5
1803	Polysaccharide from Artocarpus heterophyllus Lam. (jackfruit) pulp modulates gut microbiota composition and improves short-chain fatty acids production. Food Chemistry, 2021, 364, 130434.	8.2	38
1804	Exploring the potential of prebiotic and polyphenol-based dietary interventions for the alleviation of cognitive and gastrointestinal perturbations associated with military specific stressors. Journal of Functional Foods, 2021, 87, 104753.	3.4	2
1805	Characterization of the gut microbiota among Veterans with unique military-related exposures and high prevalence of chronic health conditions: A United States-Veteran Microbiome Project (US-VMP) study. Brain, Behavior, & Immunity - Health, 2021, 18, 100346.	2.5	9
1806	Gut Microbiota Interactions With Obesity. , 2022, , 201-219.		3
1807	Gut Bacterial Dysbiosis and Its Clinical Implications. , 2021, , 1-27.		0
1808	A Single Human-Relevant Fast Food Meal Rapidly Reorganizes Metabolomic and Transcriptomic Signatures in a Gut Microbiota-Dependent Manner#. Immunometabolism, 2021, 3, .	1.6	3
1809	Mechanisms of Gut Microbiota Modulation by Food, Probiotics, Prebiotics and More. , 2021, , 84-84.		1
1810	Polysaccharide on diabetes, obesity, and other cardiovascular disease risk factors. , 2021, , 115-128.		0
1811	<i>In vitro</i> colonic fermentation of red kidney beans depends on cotyledon cells integrity and microbiota adaptation. Food and Function, 2021, 12, 4983-4994.	4.6	2
1812	The emerging world of microbiome in autoimmune disorders: Opportunities and challenges. Indian Journal of Rheumatology, 2021, 16, 57.	0.4	14
1813	Microbiology and Microbiome. Laboratory Animal Science and Medicine, 2021, , 77-104.	0.3	0
1814	NON-ALCOHOLIC FATTY LIVER DISEASE IN THE CONTEXT OF ALTERED GUT MICROBIOTA. Wiadomości Lekarskie, 2021, 74, 1007-1010.	0.3	1
1815	The Immunopathogenesis of Alzheimer's Disease Is Related to the Composition of Gut Microbiota. Nutrients, 2021, 13, 361.	4.1	73
1816	Polyphenols and their impacts on the host epigenome and the gut microbiome. , 2021, , 225-237.		1
1817	Microbiomes in Medicine and Agriculture. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 353-412.	0.6	0
1819	When a pandemic and an epidemic collide: COVID-19, gut microbiota, and the double burden of malnutrition. BMC Medicine, 2021, 19, 31.	5.5	35

#	Article	IF	Citations
1822	Host Genotype and the Effect on Microbial Communities. , 2011, , 15-41.		11
1823	Recent Progress in Engineering Human-Associated Microbiomes. Methods in Molecular Biology, 2014, 1151, 3-25.	0.9	15
1824	Anti-inflammatory Effects of Probiotics and Their Metabolites: Possible Role for Epigenetic Effects. , 2014, , 127-150.		1
1825	Application of Humanized Mice in Immunological Research. Methods in Molecular Biology, 2016, 1371, 157-176.	0.9	4
1826	Neuropathology of HIV-1 Disease. , 2017, , 143-208.		2
1827	Pathways Linking Nutritional Status and Infectious Disease: Causal and Conceptual Frameworks. , 2021, , 3-22.		5
1828	Nutrition and Gastrointestinal Health as Modulators of Parkinson's Disease. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 213-242.	0.6	5
1829	The Family Lachnospiraceae. , 2014, , 197-201.		30
1830	Comparison Between the Gut Microbiota in Different Gastrointestinal Segments of Large-Tailed Han and Small-Tailed Han Sheep Breeds with High-Throughput Sequencing. Indian Journal of Microbiology, 2020, 60, 436-450.	2.7	4
1831	Short-Chain Fatty Acid Production and Functional Aspects on Host Metabolism. , 2018, , 37-106.		15
1832	Pathogenesis of Nonalcoholic Fatty Liver Disease. , 2018, , 369-390.e14.		2
1833	Jejunum: The understudied meeting place of dietary lipids and the microbiota. Biochimie, 2020, 178, 124-136.	2.6	44
1834	Comparison of soil microbial community between planted woodland and natural grass vegetation on the Loess Plateau. Forest Ecology and Management, 2020, 460, 117817.	3.2	31
1835	Gut microbiome and multiple sclerosis: New insights and perspective. International Immunopharmacology, 2020, 88, 107024.	3.8	30
1836	Gut microbiota differently contributes to intestinal immune phenotype and systemic autoimmune progression in female and male lupus-prone mice. Journal of Autoimmunity, 2020, 108, 102420.	6.5	39
1838	A Review of the Role of Gut microbiome in Obesity. E3S Web of Conferences, 2020, 218, 03010.	0.5	1
1839	The dietary practices and beliefs of people living with inactive ulcerative colitis. European Journal of Gastroenterology and Hepatology, 2021, 33, 372-379.	1.6	30
1840	Description of two novel members of the family Erysipelotrichaceae: lleibacterium valens gen. nov., sp. nov. and Dubosiella newyorkensis, gen. nov., sp. nov., from the murine intestine, and emendation to the description of Faecalibacterium rodentium. International Journal of Systematic and Evolutionary Microbiology. 2017. 67, 1247-1254.	1.7	81

#	Article	IF	CITATIONS
1841	The influence of the commensal and pathogenic gut microbiota on prion disease pathogenesis. Journal of General Virology, 2016, 97, 1725-1738.	2.9	14
1842	Prion disease pathogenesis in the absence of the commensal microbiota. Journal of General Virology, 2017, 98, 1943-1952.	2.9	13
1843	An overview of the bacterial contribution to Crohn disease pathogenesis. Journal of Medical Microbiology, 2016, 65, 1049-1059.	1.8	53
1844	The predominant site of bacterial translocation across the intestinal mucosal barrier occurs at the advancing disease margin in Crohn's disease. Microbiology (United Kingdom), 2016, 162, 1608-1619.	1.8	24
1845	Differential modulation of flagella expression in enterohaemorrhagic Escherichia coli O157: H7 by intestinal short-chain fatty acid mixes. Microbiology (United Kingdom), 2016, 162, 1761-1772.	1.8	18
1846	Bacterial communities in the small intestine respond differently to those in the caecum and colon in mice fed low- and high-fat diets. Microbiology (United Kingdom), 2017, 163, 1189-1197.	1.8	35
1860	Microbial Peer Pressure. Hypertension, 2020, 76, 1674-1687.	2.7	77
1861	Interactions between gut microbiota and skeletal muscle. Nutrition and Metabolic Insights, 2020, 13, 117863882098049.	1.9	23
1863	CNS Regulation of Energy Balance. , 2014, , 183-194.		1
1864	Gut microbiome-Mediterranean diet interactions in improving host health. F1000Research, 2019, 8, 699.	1.6	81
1864 1865	Gut microbiome-Mediterranean diet interactions in improving host health. F1000Research, 2019, 8, 699. microbiomeDASim:ÂSimulating longitudinal differential abundance for microbiome data. F1000Research, 2019, 8, 1769.	1.6 1.6	81
1864 1865 1866	Gut microbiome-Mediterranean diet interactions in improving host health. F1000Research, 2019, 8, 699. microbiomeDASim:ÂSimulating longitudinal differential abundance for microbiome data. F1000Research, 2019, 8, 1769. Polysaccharide from wild morels alters the spatial structure of gut microbiota and the production of short-chain fatty acids in mice. Bioscience of Microbiota, Food and Health, 2020, 39, 219-226.	1.6 1.6 1.8	81 3 10
1864 1865 1866 1867	Gut microbiome-Mediterranean diet interactions in improving host health. F1000Research, 2019, 8, 699. microbiomeDASim:ÂSimulating longitudinal differential abundance for microbiome data. F1000Research, 2019, 8, 1769. Polysaccharide from wild morels alters the spatial structure of gut microbiota and the production of short-chain fatty acids in mice. Bioscience of Microbiota, Food and Health, 2020, 39, 219-226. Isoflavones and inflammatory bowel disease. World Journal of Clinical Cases, 2020, 8, 2081-2091.	1.6 1.6 1.8 0.8	81 3 10 18
1864 1865 1866 1867 1868	Gut microbiome-Mediterranean diet interactions in improving host health. F1000Research, 2019, 8, 699. microbiomeDASim:ÂSimulating longitudinal differential abundance for microbiome data. F1000Research, 2019, 8, 1769. Polysaccharide from wild morels alters the spatial structure of gut microbiota and the production of short-chain fatty acids in mice. Bioscience of Microbiota, Food and Health, 2020, 39, 219-226. Isoflavones and inflammatory bowel disease. World Journal of Clinical Cases, 2020, 8, 2081-2091. Probiotics in inflammatory bowel disease: Does it work?. World Journal of Meta-analysis, 2020, 8, 54-66.	1.6 1.6 1.8 0.8	81 3 10 18
1864 1865 1866 1867 1868	Gut microbiome-Mediterranean diet interactions in improving host health. F1000Research, 2019, 8, 699. microbiomeDASim:ÂSimulating longitudinal differential abundance for microbiome data. F1000Research, 2019, 8, 1769. Polysaccharide from wild morels alters the spatial structure of gut microbiota and the production of short-chain fatty acids in mice. Bioscience of Microbiota, Food and Health, 2020, 39, 219-226. Isoflavones and inflammatory bowel disease. World Journal of Clinical Cases, 2020, 8, 2081-2091. Probiotics in inflammatory bowel disease: Does it work?. World Journal of Meta-analysis, 2020, 8, 54-66. SteadyCom: Predicting microbial abundances while ensuring community stability. PLoS Computational Biology, 2017, 13, e1005539.	1.6 1.6 1.8 0.8 0.1 3.2	 81 3 10 18 10 154
1864 1865 1866 1867 1868 1869	Gut microbiome-Mediterranean diet interactions in improving host health. F1000Research, 2019, 8, 699. microbiomeDASim:ÂSimulating longitudinal differential abundance for microbiome data. F1000Research, 2019, 8, 1769. Polysaccharide from wild morels alters the spatial structure of gut microbiota and the production of short-chain fatty acids in mice. Bioscience of Microbiota, Food and Health, 2020, 39, 219-226. Isoflavones and inflammatory bowel disease. World Journal of Clinical Cases, 2020, 8, 2081-2091. Probiotics in inflammatory bowel disease: Does it work?. World Journal of Meta-analysis, 2020, 8, 54-66. SteadyCom: Predicting microbial abundances while ensuring community stability. PLoS Computational Biology, 2017, 13, e1005539. Metatranscriptomic Approach to Analyze the Functional Human Gut Microbiota. PLoS ONE, 2011, 6, e17447.	1.6 1.6 1.8 0.8 0.1 3.2 2.5	 81 3 10 18 10 154 302
1864 1865 1866 1867 1868 1869 1870	Gut microbiome-Mediterranean diet interactions in improving host health. F1000Research, 2019, 8, 699. microbiomeDASim:ÂSimulating longitudinal differential abundance for microbiome data. F1000Research, 2019, 8, 1769. Polysaccharide from wild morels alters the spatial structure of gut microbiota and the production of short-chain fatty acids in mice. Bioscience of Microbiota, Food and Health, 2020, 39, 219-226. Isoflavones and inflammatory bowel disease. World Journal of Clinical Cases, 2020, 8, 2081-2091. Probiotics in inflammatory bowel disease: Does it work?. World Journal of Meta-analysis, 2020, 8, 54-66. SteadyCom: Predicting microbial abundances while ensuring community stability. PLoS Computational Biology, 2017, 13, e1005539. Metatranscriptomic Approach to Analyze the Functional Human Gut Microbiota. PLoS ONE, 2011, 6, e21105. Extrapolation of Urn Models via Poissonization: Accurate Measurements of the Microbial Unknown. PLoS ONE, 2011, 6, e21105.	 1.6 1.8 0.8 0.1 3.2 2.5 2.5 	 81 3 10 18 10 154 302 19

#	Article	IF	CITATIONS
1873	Increased Intestinal Permeability Correlates with Sigmoid Mucosa alpha-Synuclein Staining and Endotoxin Exposure Markers in Early Parkinson's Disease. PLoS ONE, 2011, 6, e28032.	2.5	689
1874	High Nutrient Transport and Cycling Potential Revealed in the Microbial Metagenome of Australian Sea Lion (Neophoca cinerea) Faeces. PLoS ONE, 2012, 7, e36478.	2.5	41
1875	Crohn's Disease-Associated Adherent-Invasive Escherichia coli Adhesion Is Enhanced by Exposure to the Ubiquitous Dietary Polysaccharide Maltodextrin. PLoS ONE, 2012, 7, e52132.	2.5	112
1876	Novel Insights into E. coli's Hexuronate Metabolism: Kdul Facilitates the Conversion of Galacturonate and Glucuronate under Osmotic Stress Conditions. PLoS ONE, 2013, 8, e56906.	2.5	25
1877	Short-Chain Fructo-Oligosaccharides Modulate Intestinal Microbiota and Metabolic Parameters of Humanized Gnotobiotic Diet Induced Obesity Mice. PLoS ONE, 2013, 8, e71026.	2.5	75
1878	Bacterial Community Mapping of the Mouse Gastrointestinal Tract. PLoS ONE, 2013, 8, e74957.	2.5	363
1879	Metabolic Proximity in the Order of Colonization of a Microbial Community. PLoS ONE, 2013, 8, e77617.	2.5	32
1880	The Living Dead: Bacterial Community Structure of a Cadaver at the Onset and End of the Bloat Stage of Decomposition. PLoS ONE, 2013, 8, e77733.	2.5	205
1881	Association between Dietary Fiber Intake and Physical Performance in Older Adults: A Nationwide Study in Taiwan. PLoS ONE, 2013, 8, e80209.	2.5	26
1882	A Taxonomic Signature of Obesity in the Microbiome? Getting to the Guts of the Matter. PLoS ONE, 2014, 9, e84689.	2.5	277
1883	Dynamics of the Microbiota in Response to Host Infection. PLoS ONE, 2014, 9, e95534.	2.5	52
1884	Comparative Analysis of Functional Metagenomic Annotation and the Mappability of Short Reads. PLoS ONE, 2014, 9, e105776.	2.5	58
1885	Characterization of Microbial Dysbiosis and Metabolomic Changes in Dogs with Acute Diarrhea. PLoS ONE, 2015, 10, e0127259.	2.5	135
1886	Relative Importance and Additive Effects of Maternal and Infant Risk Factors on Childhood Asthma. PLoS ONE, 2016, 11, e0151705.	2.5	53
1887	Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS ONE, 2016, 11, e0152126.	2.5	157
1888	Gut microbiome analysis of type 2 diabetic patients from the Chinese minority ethnic groups the Uygurs and Kazaks. PLoS ONE, 2017, 12, e0172774.	2.5	34
1889	Intestinal, extra-intestinal and systemic sequelae of Toxoplasma gondii induced acute ileitis in mice harboring a human gut microbiota. PLoS ONE, 2017, 12, e0176144.	2.5	34
1890	Assessment of gut microbiota populations in lean and obese Zucker rats. PLoS ONE, 2017, 12, e0181451.	2.5	29

#	Article	IF	Citations
1891	Quercetin metabolism by fecal microbiota from healthy elderly human subjects. PLoS ONE, 2017, 12, e0188271.	2.5	40
1892	Impact of genistein on the gut microbiome of humanized mice and its role in breast tumor inhibition. PLoS ONE, 2017, 12, e0189756.	2.5	57
1893	Loss of CNFY toxin-induced inflammation drives Yersinia pseudotuberculosis into persistency. PLoS Pathogens, 2018, 14, e1006858.	4.7	23
1894	A review on preventive role of ketogenic diet (KD) in CNS disorders from the gut microbiota perspective. Reviews in the Neurosciences, 2021, 32, 143-157.	2.9	35
1895	Analysis of Gut Microbiome and Diet Modification in Patients with Crohn's Disease. SOJ Microbiology & Infectious Diseases, 2014, 2, 1-13.	0.7	65
1896	Beyond cells – The virome in the human holobiont. Microbial Cell, 2019, 6, 373-396.	3.2	17
1897	Impact of the Microbiome on the Immune System. Critical Reviews in Immunology, 2019, 39, 313-328.	0.5	27
1898	Early Childhood Obesity Prevention Policies. , 2011, , .		44
1899	Transplant of microbiota from long-living people to mice reduces aging-related indices and transfers beneficial bacteria. Aging, 2020, 12, 4778-4793.	3.1	38
1900	Dietary factors and microRNA-binding site polymorphisms in the <i>IL13</i> gene: risk and prognosis analysis of colorectal cancer. Oncotarget, 2017, 8, 47379-47388.	1.8	4
1901	Constructing personalized longitudinal holo'omes of colon cancer-prone humans and their modeling in flies and mice. Oncotarget, 2019, 10, 4224-4246.	1.8	9
1902	The gut microbiota in neuropsychiatric disorders. Acta Neurobiologiae Experimentalis, 2018, 78, 69-81.	0.7	55
1903	Modeling Host-Microbiome Interactions in <i>Caenorhabditis elegans</i> . Journal of Nematology, 2017, 49, 348-356.	0.9	32
1904	Gut Microbiota, Obesity and Bariatric Surgery: Current Knowledge and Future Perspectives. Current Pharmaceutical Design, 2019, 25, 2038-2050.	1.9	19
1905	Integrating Microbiome Network: Establishing Linkages Between Plants, Microbes and Human Health. Open Microbiology Journal, 2019, 13, 330-342.	0.7	8
1906	Harnessing the microbiota to treat neurological diseases. Dialogues in Clinical Neuroscience, 2019, 21, 159-165.	3.7	4
1907	A duodenal sleeve bypass device added to intensive medical therapy for obesity with type 2 diabetes: a RCT. Efficacy and Mechanism Evaluation, 2020, 7, 1-130.	0.7	5
1908	Characterization of genetic variation and basis of inflammatory bowel disease in the Toll-like receptor 5 gene of the red wolf and the maned wolf. Endangered Species Research, 2017, 32, 135-144.	2.4	6

	CITATION	I REPORT	
#	Article	IF	CITATIONS
1909	Effect of Pre- and Post-Weaning High-Fat Dietary Manipulation on Intestinal Microflora and Alkaline Phosphatase Activity in Male Rats. Physiological Research, 2017, 66, 677-685.	0.9	5
1910	Gallstone Disease, Obesity and the Firmicutes/Bacteroidetes Ratio as a Possible Biomarker of Gut Dysbiosis. Journal of Personalized Medicine, 2021, 11, 13.	2.5	121
1911	Gut Microbiota Profile of Obese Diabetic Women Submitted to Roux-en-Y Gastric Bypass and Its Association with Food Intake and Postoperative Diabetes Remission. Nutrients, 2020, 12, 278.	4.1	47
1912	Bacteria, food, and cancer. F1000 Biology Reports, 2011, 3, 12.	4.0	15
1913	A General Perspective of Microbiota in Human Health and Disease. , 2020, 11, .		3
1914	Escherichia coli-host macrophage interactions in the pathogenesis of inflammatory bowel disease. World Journal of Gastroenterology, 2014, 20, 8751-63.	3.3	23
1915	Towards a standard diet-induced and biopsy-confirmed mouse model of non-alcoholic steatohepatitis: Impact of dietary fat source. World Journal of Gastroenterology, 2019, 25, 4904-4920.	3.3	75
1916	Exploring the food-gut axis in immunotherapy response of cancer patients. World Journal of Gastroenterology, 2020, 26, 4919-4932.	3.3	17
1917	Cultivable intestinal microbiota of yellowtail juveniles (Seriola lalandi) in an aquaculture system. Latin American Journal of Aquatic Research, 2017, 41, 395-403.	0.6	21
1918	Biofilm feeding: Microbial colonization of food promotes the growth of a detritivorous arthropod. ZooKeys, 2016, 577, 25-41.	1.1	23
1919	Microbiome: Paediatriciansâ \in^2 perspective. Indian Journal of Medical Research, 2015, 142, 515.	1.0	34
1920	Risk factors of the efficacy of hepatitis B vaccine in health-care workers. Journal of Research in Medical Sciences, 2020, 25, 15.	0.9	1
1921	Prebiotics and Probiotics within the Framework of the Hologenome Concept. Journal of Microbial & Biochemical Technology, 2011, s1, .	0.2	4
1922	Dietary Factors: Major Regulators of the Gut's Microbiota. Gut and Liver, 2012, 6, 411-416.	2.9	146
1924	Annual fasting; the early calories restriction for cancer prevention. BioImpacts, 2012, 2, 213-5.	1.5	6
1925	Ecosystem Health Disorders - changing perspectives in clinical medicine and nutrition. Asia Pacific Journal of Clinical Nutrition, 2014, 23, 1-15.	0.4	48
1926	The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. ELife, 2013, 2, e01102.	6.0	355
1927	Impact of birth weight and postnatal diet on the gut microbiota of young adult guinea pigs. PeerJ, 2017, 5, e2840.	2.0	11

#	Article	IF	CITATIONS
1928	Gene and genome-centric analyses of koala and wombat fecal microbiomes point to metabolic specialization for digestion. PeerJ, 2017, 5, e4075.	2.0	24
1929	Bibliometric analysis of research on the role of intestinal microbiota in obesity. PeerJ, 2018, 6, e5091.	2.0	40
1930	Minimizing confounders and increasing data quality in murine models for studies of the gut microbiome. PeerJ, 2018, 6, e5166.	2.0	48
1931	The microbes we eat: abundance and taxonomy of microbes consumed in a day's worth of meals for three diet types. PeerJ, 2014, 2, e659.	2.0	85
1932	Host dietary specialization and neutral assembly shape gut bacterial communities of wild dragonflies. PeerJ, 2019, 7, e8058.	2.0	19
1933	Effects of microbial evolution dominate those of experimental host-mediated indirect selection. PeerJ, 2020, 8, e9350.	2.0	22
1934	Fungal lysozyme leverages the gut microbiota to curb DSS-induced colitis. Gut Microbes, 2021, 13, 1988836.	9.8	29
1935	Insight into the Animal Models for Microbiome Studies. , 2021, , 259-273.		4
1936	Gut Microbiome and Alzheimer's Disease. Journal of Dairy Science and Biotechnology, 2021, 39, 94-103.	0.3	0
1937	The East Asian gut microbiome is distinct from colocalized White subjects and connected to metabolic health. ELife, 2021, 10, .	6.0	25
1938	Can manipulation of gut microbiota really be transformed into an intervention strategy for cardiovascular disease management?. Folia Microbiologica, 2021, 66, 897-916.	2.3	5
1939	Functional attractors in microbial community assembly. Cell Systems, 2022, 13, 29-42.e7.	6.2	59
1940	Microbiota and Ocular Diseases. Frontiers in Cellular and Infection Microbiology, 2021, 11, 759333.	3.9	23
1941	Drugs and Bugs: The Gut-Brain Axis and Substance Use Disorders. Journal of NeuroImmune Pharmacology, 2022, 17, 33-61.	4.1	19
1944	Comparison of 16S rRNA Gene Based Microbial Profiling Using Five Next-Generation Sequencers and Various Primers. Frontiers in Microbiology, 2021, 12, 715500.	3.5	16
1946	Living Medication: Overview and Classification into Pharmaceutical Law. , 2011, , 349-367.		0
1947	Host Genetics and Gut Microbiota. , 2012, , 281-295.		1
1948	Gut Microbiota, Obesity and Metabolic Dysfunction. Indonesian Biomedical Journal, 2011, 3, 150.	0.3	0

# 1949	ARTICLE The Effect of Diet on Gut Microbiota in Humans Living in Different Environments: A Metagenomic Approach. Advances in Microbial Ecology, 2012, , 279-294.	IF 0.1	CITATIONS 0
1950	Prebiotics, Probiotics, Synbiotics, and Phage Therapy. , 2013, , 151-167.		0
1952	Asthma and Microbes: A New Paradigm. , 2014, , 89-110.		0
1953	Dietary Influence of the Gut Microbiome Potential Hazards and Benefits. , 2014, 04, .		0
1954	The Role of Microbes in Obesity. , 2014, , 59-73.		0
1955	Gut Microbiome and Obesity. , 2014, , 205-214.		0
1956	Obesity and Gallbladder Disease. , 2014, , 613-624.		0
1957	Gut Flora in the Development and Progression of Nonalcoholic Fatty Liver Disease. Journal of Liver: Disease & Transplantation, 2015, 04, .	0.0	0
1959	Gut microbiome dysbiosis in metabolic disorders: implications for probiotics as prospective investigational new drugs. Journal of Gastrointestinal Infections, 2015, 5, 5-12.	0.2	0
1960	Modern concepts of the microbiocenosis of the skin and intestine in patients with eczema and metabolic syndrome. Klinicheskaya Dermatologiya I Venerologiya, 2015, 14, 11.	0.2	2
1961	Contribution of the gut microbiota to the pathogenesis of insulin resistance (literature review). Profilakticheskaya Meditsina, 2015, 18, 54.	0.6	6
1962	What's bugging you and your diet?. Journal of Food & Nutritional Disorders, 2015, 04, .	0.1	0
1963	Better Understanding of Severe Immunological Reactions: Food Allergy. , 2015, , 125-141.		0
1964	Interaction between the Microbiome and Diet: The Hologenome Concept. Journal of Nutrition & Food Sciences, 2016, 06, .	1.0	3
1966	Digestive Health. , 2016, , 129-142.		0
1967	Diet-Induced Alteration of the Murine Intestinal Microbiome Following Antibiotic Ablation. Advances in Microbiology, 2017, 07, 545-564.	0.6	3
1968	Origin of Antiphospholipid Antibodies. , 2017, , 29-52.		1
1973	Metabolic Syndrome, Gut Microbiome and Dietary Bioactive Peptides, an Unexplored Triad. Diabesity, 2018, 4, 1.	0.1	0

# 1978	ARTICLE Role of Dietary Pattern on the Microbial Diversity in the Gut of the Experimental Mice. Asian Journal of Engineering and Applied Technology, 2018, 7, 106-109.	IF 0.1	CITATIONS 0
1980	Obesity in Kidney Disease. , 2019, , 265-275.		0
1981	Verdauung und Darmerkrankungen. , 2019, , 49-121.		0
1982	Exploring the Role of the Microbiome in Multiple Sclerosis. US Neurology, 2019, 15, 82.	0.2	1
1983	Microbiota: Current Research and Emerging Trends. , 2019, , .		0
1984	The profiles of dysbiotic microbial communities. AIMS Microbiology, 2019, 5, 87-101.	2.2	1
1995	microbiomeDASim:ÂSimulating longitudinal differential abundance for microbiome data. F1000Research, 2019, 8, 1769.	1.6	5
1998	The rising dominance of microbiology: what to expect in the next 15 years?. Microbial Biotechnology, 2022, 15, 110-128.	4.2	10
1999	A hierarchical Bayesian approach for detecting global microbiome associations. Statistical Applications in Genetics and Molecular Biology, 2021, 20, 85-100.	0.6	0
2000	The Gut Microbiome: Human Health and Inflammatory Skin Diseases. Annals of Dermatology, 2020, 32, 265.	0.9	11
2001	Biobased Materials for Medical Applications. , 2021, , 139-193.		1
2002	Management Diarrhea in Systemic Sclerosis. In Clinical Practice, 2021, , 193-210.	0.0	0
2003	Administration of Cholic Acid Inhibits Equol Production from Daidzein in Mice. Journal of Nutritional Science and Vitaminology, 2020, 66, 571-576.	0.6	2
2004	Impact of Gut Microbiota on Host byÂExploring Proteomics. , 2020, , 229-250.		1
2007	The Gut Microbiome and Antimicrobial Resistance in Companion Animals. , 2020, , 233-245.		1
2008	Immune System Under Fire: The Rise of Food Immune Reaction and Autoimmunity. , 2020, , 843-862.		0
2009	Effects of anti-aging interventions on intestinal microbiota. Gut Microbes, 2021, 13, 1994835.	9.8	32
2011	Metataxonomic and Metabolic Impact of Fecal Microbiota Transplantation From Patients With Pancreatic Cancer Into Germ-Free Mice: A Pilot Study. Frontiers in Cellular and Infection Microbiology, 2021, 11, 752889.	3.9	6
#	Article	IF	CITATIONS
------	---	-----	-----------
2012	Prebiotics, Probiotics, Synbiotics, and Phage Therapy. , 2013, , 151-167.		0
2015	Gut Microbiome: The Third Musketeer in the Cancer-Immune System Cross-Talk. Journal of Pancreatology, 2020, 3, 181-187.	0.9	3
2016	Shaping the (auto)immune response in the gut: the role of intestinal immune regulation in the prevention of type 1 diabetes. American Journal of Clinical and Experimental Immunology, 2013, 2, 156-71.	0.2	24
2017	A brief history of animal modeling. Missouri Medicine, 2013, 110, 201-5.	0.3	76
2018	Irritable bowel syndrome: the role of food in pathogenesis and management. Gastroenterology and Hepatology, 2014, 10, 164-74.	0.1	52
2019	Traditional food & modern lifestyle: impact of probiotics. Indian Journal of Medical Research, 2014, 140, 333-5.	1.0	7
2020	Synbiotics in Children with Cow's Milk Allergy: A Randomized Controlled Trial. Iranian Journal of Pediatrics, 2014, 24, 29-34.	0.3	10
2021	Striking a Balance with Help from our Little Friends - How the Gut Microbiota Contributes to Immune Homeostasis. Yale Journal of Biology and Medicine, 2016, 89, 389-395.	0.2	24
2022	Modeling Host-Microbiome Interactions in. Journal of Nematology, 2017, 49, 348-356.	0.9	18
2023	Ancient Diet: Gut Microbiota, Immunity, and Health. Yale Journal of Biology and Medicine, 2018, 91, 177-184.	0.2	11
2024	The association between gut microbiota, cholesterol gallstones, and colorectal cancer. Gastroenterology and Hepatology From Bed To Bench, 2019, 12, S8-S13.	0.6	5
2027	Next-generation microbial drugs developed from microbiome's natural products. Advances in Genetics, 2021, 108, 341-382.	1.8	2
2028	Neoagarooligosaccharides modulate gut microbiota and alleviate body weight gain and metabolic syndrome in high-fat diet-induced obese rats. Journal of Functional Foods, 2022, 88, 104869.	3.4	16
2029	Obesogens: How They Are Identified and Molecular Mechanisms Underlying Their Action. Frontiers in Endocrinology, 2021, 12, 780888.	3.5	28
2030	High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells, 2021, 10, 3164.	4.1	199
2031	The Rhythm of Many: Biological Rhythms in the Marine Environment, From Macro-Scale Planktonic Ecosystems to Micro-Scale Holobionts. Frontiers in Marine Science, 2021, 8, .	2.5	5
2032	Synthetic Microbiomes on the Rise—Application in Deciphering the Role of Microbes in Host Health and Disease. Nutrients, 2021, 13, 4173.	4.1	10
2033	The Interaction between Dietary Components, Gut Microbiome, and Endurance Performance. , 0, , .		0

#	Article	IF	CITATIONS
2034	Gut microbiota-based vaccination engages innate immunity to improve blood glucose control in obese mice. Molecular Metabolism, 2022, 55, 101404.	6.5	4
2035	Effect of Geography and Captivity on Scat Bacterial Communities in the Imperiled Channel Island Fox. Frontiers in Microbiology, 2021, 12, 748323.	3.5	3
2036	Intestinal microbial communities and <i>Holdemanella</i> isolated from HIV+/â^' men who have sex with men increase frequencies of lamina propria CCR5 ⁺ CD4 ⁺ T cells. Gut Microbes, 2021, 13, 1997292.	9.8	8
2037	The Gut Microbiota and Immunopathophysiology. , 2021, , .		0
2038	A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clinical Microbiology Reviews, 2022, 35, e0033820.	13.6	138
2039	Apigenin Alleviates Obesity-Associated Metabolic Syndrome by Regulating the Composition of the Gut Microbiome. Frontiers in Microbiology, 2021, 12, 805827.	3.5	30
2040	Characterization of captive and wild 13-lined ground squirrel cecal microbiotas using Illumina-based sequencing. Animal Microbiome, 2022, 4, 1.	3.8	6
2042	Systems Level Model of Dietary Effects on Cognition via the Microbiome-Gut-Brain Axis*. , 2021, , .		0
2043	Factors modulating the avian immune system. , 2022, , 419-435.		1
2044	Physiological effects of food availability times in higher vertebrates. Journal of Experimental Biology, 2022, 225, .	1.7	3
2045	Overtraining Syndrome as a Complex Systems Phenomenon. Frontiers in Network Physiology, 2022, 1, .	1.8	8
2046	Diet leaves a genetic signature in a keystone member of the gut microbiota. Cell Host and Microbe, 2022, 30, 183-199.e10.	11.0	43
2047	Functional role of branched chain amino acids in poultry: a review. Poultry Science, 2022, 101, 101715.	3.4	23
2049	Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chemical Reviews, 2022, 122, 7142-7181.	47.7	21
2050	Changes in Metabolic Regulation and the Microbiota Composition after Supplementation with Different Fatty Acids in db/db Mice. International Journal of Food Science, 2022, 2022, 1-14.	2.0	1
2051	The impact of clinical nutrition on inflammatory skin diseases. JDDG - Journal of the German Society of Dermatology, 2022, 20, 185-202.	0.8	12
2052	Weight-loss in obese dogs promotes important shifts in fecal microbiota profile to the extent of resembling microbiota of lean dogs. Animal Microbiome, 2022, 4, 6.	3.8	7

		CITATION REPORT		
#	Article		IF	CITATIONS
2054	Fungal commensalism modulated by a dual-action phosphate transceptor. Cell Reports	, 2022, 38, 110293.	6.4	7
2055	Microbiome Resilience despite a Profound Loss of Minority Microbiota following Clinda Challenge in Humanized Gnotobiotic Mice. Microbiology Spectrum, 2022, , e0196021.	mycin	3.0	4
2056	Effects of antibiotic treatment on microbiota, viral transmission and viral pathogenesis ts1 infected BALB/c mice. PLoS ONE, 2022, 17, e0261689.	of MoMuLV	2.5	0
2059	Immunity and Nutrition: The Right Balance in Inflammatory Bowel Disease. Cells, 2022,	11, 455.	4.1	14
2060	Gut microbiome effects on neuronal excitability & amp; activity: Implications for epileps of Disease, 2022, 165, 105629.	y. Neurobiology	4.4	17
2061	Optimization of the 16S rRNA sequencing analysis pipeline for studying inÂvitro comm commensals. IScience, 2022, 25, 103907.	unities of gut	4.1	9
2062	Control of immunity via nutritional interventions. Immunity, 2022, 55, 210-223.		14.3	44
2063	Preclinical stage abundance and nuclear antigen reactivity of faecal Immunoglobulin A males and females of lupusâ€prone mouse models. Immunology, 2022, 165, 497-507.	vary among	4.4	3
2064	Dietary macronutrients and the gut microbiome: a precision nutrition approach to impr cardiometabolic health. Gut, 2022, 71, 1214-1226.	ove	12.1	50
2066	La asociación entre microbioma intestinal y uveÃŧis autoinmune. Archivos De La Socie Oftalmologia, 2022, , .	dad Espanola De	0.2	0
2067	Comparative study on the weight loss and lipid metabolism by tea polyphenols in diet in C57BL/6J pseudo germ free and conventionalized mice. Food Science and Human Wellm 697-710.	nduced obese ness, 2022, 11,	4.9	8
2068	Evaluation of Sample Preservation and Storage Methods for Metaproteomics Analysis c Microbiomes. Microbiology Spectrum, 2021, 9, e0187721.	of Intestinal	3.0	8
2069	Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines, 2022, 1	0, 83.	3.2	71
2070	Therapeutic Opportunities of IL-22 in Non-Alcoholic Fatty Liver Disease: From Molecular to Clinical Applications. Biomedicines, 2021, 9, 1912.	[.] Mechanisms	3.2	13
2072	Factors influencing the gut microbiome in children: from infancy to childhood. Journal c Biosciences, 2019, 44, .	of	1.1	21
2073	Understanding the association between the human gut, oral and skin microbiome and t concept of prakriti. Journal of Biosciences, 2019, 44, .	the Ayurvedic	1.1	6
2074	The Gut Microbiome. , 2022, , .			0
2075	The G Protein-Coupled Receptor, VPAC1, Mediates Vasoactive Intestinal Peptide-Depen Homeostasis of the Gut Microbiota. , 2022, 1, 253-264.	dent Functional		2

#	Article	IF	CITATIONS
2077	High Altitude Decreases Bone Mineral Density and the Mediation Effect of Gut Microbiota. SSRN Electronic Journal, 0, , .	0.4	0
2078	Biotransformation of toxic xenobiotics by human gut microbiota. , 2022, , 217-243.		0
2079	Identification of sleep fragmentation-induced gut microbiota alteration and prediction of functional impact in Sprague Dawley rats harboring microbiome derived from multiple human donors. Sleep Science, 2022, 15, 7-19.	1.0	6
2080	The association between intestinal microbiome and autoimmune uveitis. Archivos De La Sociedad Espanola De Oftalmologia, 2022, 97, 264-275.	0.2	3
2081	Molecular Mechanisms Underlying the Bioactive Properties of a Ketogenic Diet. Nutrients, 2022, 14, 782.	4.1	18
2082	From the Dish to the Real World: Modeling Interactions between the Gut and Microorganisms in Gut Organoids by Tailoring the Gut Milieu. International Journal of Stem Cells, 2022, 15, 70-84.	1.8	7
2083	Diabetes and Its Cardiovascular Complications: Comprehensive Network and Systematic Analyses. Frontiers in Cardiovascular Medicine, 2022, 9, 841928.	2.4	7
2084	Long-term high-fructose high-fat diet feeding elicits insulin resistance, exacerbates dyslipidemia and induces gut microbiota dysbiosis in WHHL rabbits. PLoS ONE, 2022, 17, e0264215.	2.5	12
2085	Multi-Omics Strategies for Investigating the Microbiome in Toxicology Research. Toxicological Sciences, 2022, 187, 189-213.	3.1	6
2086	Food as Treatment of Inflammatory Bowel Diseases. Infection and Immunity, 2022, 90, e0058321.	2.2	8
2087	Dietary fiber combinations to mitigate the metabolic, microbial, and cognitive imbalances resulting from dietâ€induced obesity in rats. FASEB Journal, 2022, 36, e22269.	0.5	4
2088	Transfer of Human Microbiome to Drosophila Gut Model. Microorganisms, 2022, 10, 553.	3.6	1
2089	Short-Term Metformin Treatment Enriches Bacteroides dorei in an Obese Liver Steatosis Zucker Rat Model. Frontiers in Microbiology, 2022, 13, 834776.	3.5	2
2090	Obesity aggravates contact hypersensitivity reaction in mice. Contact Dermatitis, 2022, 87, 28-39.	1.4	3
2091	Heart Failure Severity Closely Correlates with Intestinal Dysbiosis and Subsequent Metabolomic Alterations. Biomedicines, 2022, 10, 809.	3.2	13
2094	Integrated gut microbiome and metabolome analyses reveals an inconsistent dose effect of a tuna oil with more higher docosahexaenoic acid content on intestinal dysbiosis and metabolic disorders in highâ€fat dietâ€fed mice. Journal of the Science of Food and Agriculture, 2022, , .	3.5	2
2095	Effects of caloric restriction on the gut microbiome are linked with immune senescence. Microbiome, 2022, 10, 57.	11.1	38
2096	Metagenomics and artificial intelligence in the context of human health. Infection, Genetics and Evolution, 2022, 100, 105267.	2.3	23

ARTICLE IF CITATIONS Prophage Activation in the Intestine: Insights Into Functions and Possible Applications. Frontiers in 2097 3.5 23 Microbiology, 2021, 12, 785634. The Link between Gut Dysbiosis Caused by a High-Fat Diet and Hearing Loss. International Journal of 2099 4.1 Molecular Sciences, 2021, 22, 13177. Bhagvad Gita, gut microbiota, and mental health. Yoga Mimamsa, 2021, 53, 22-30. 2100 0.1 1 Gut Microbial Signatures of Distinct Trimethylamine N-Oxide Response to Raspberry Consumption. Nutrients, 2022, 14, 1656. Obesity and gut–microbiota–brain axis: A narrative review. Journal of Clinical Laboratory Analysis, 2102 2.1 51 2022, 36, e24420. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in 64 6.4 healthy adults. Cell Reports, 2022, 39, 110649. A secondary metabolite drives intraspecies antagonism in a gut symbiont that is inhibited by cell-wall 2104 11.0 10 acetylation. Cell Host and Microbe, 2022, 30, 824-835.e6. Mechanisms, therapeutic implications, and methodological challenges of gut microbiota and cardiovascular diseases: a position paper by the ESC Working Group on Coronary Pathophysiology and Microcirculation. Cardiovascular Research, 2022, 118, 3171-3182. 3.8 21 2106 Study of metagenomics of Barilius bendelisis (Hamilton, 1822) fish species., 2022, 1, 100031. 0 Sulfur in lucinid bivalves inhibits intake rates of a molluscivore shorebird. Oecologia, 2022, 199, 69-78. Three-dimensional imaging for the quantification of spatial patterns in microbiota of the intestinal mucosa. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, 2186 7.118 e2118483119. The cure from within? a review of the microbiome and diet in melanoma. Cancer and Metastasis 2188 5.9 Reviews, 2022, 41, 261-280. Knowledge Mapping of the Links Between the Gut Microbiota and Heart Failure: A Scientometric 2189 2.4 20 Investigation (2006–2021). Frontiers in Cardiovascular Medicine, 2022, 9, 882660. Pediatric neuropsychiatric syndromes associated with infection and microbiome alterations: clinical findings, possible role of the mucosal epithelium, and strategies for the development of new animal 2190 5.0 models. Expert Opinion on Drug Discovery, 2022, 17, 717-731. Comparative Gut Microbiome in Trachypithecus leucocephalus and Other Primates in Guangxi, China, 2191 3.9 8 Based on Metagenome Sequencing. Frontiers in Cellular and Infection Microbiology, 2022, 12, . Mechanisms of Kwashiorkor-Associated Immune Suppression: Insights From Human, Mouse, and Pig 4.8 Studies. Frontiers in Immunology, 2022, 13, 826268. Eco-Evolutionary Dynamics of the Human-Gut Microbiota Symbiosis in a Changing Nutritional 2193 1.1 3 Environment. Evolutionary Biology, 2022, 49, 255-264. Gut Microbiome as a Mediator of Stress Resilience: A Reactive Scope Model Framework. Integrative and 2194 Comparative Biology, 2022, 62, 41-57.

#	Article	IF	CITATIONS
2197	The Gut Microbiome in Colorectal Cancer. Hematology/Oncology Clinics of North America, 2022, 36, 491-506.	2.2	3
2198	The metabolites derived from lipids and their effects on human health. , 2022, , 211-223.		Ο
2199	Increased Relative Abundance of Ruminoccocus Is Associated With Reduced Cardiovascular Risk in an Obese Population. Frontiers in Nutrition, 2022, 9, 849005.	3.7	13
2201	Efficiency Assessment of Bacterial Cellulose on Lowering Lipid Levels In Vitro and Improving Lipid Metabolism In Vivo. Molecules, 2022, 27, 3495.	3.8	2
2202	Gut Microbiota of Individuals Could Be Balanced by a 14-Day Supplementation With Laminaria japonica and Differed in Metabolizing Alginate and Galactofucan. Frontiers in Nutrition, 2022, 9, .	3.7	3
2203	Single ell Transcriptomic Analysis Demonstrates the Regulation of Peach Polysaccharides on Circadian Rhythm Disturbance. Molecular Nutrition and Food Research, 2022, 66, .	3.3	4
2204	The faecal metabolome of black howler monkeys (<i>Alouatta pigra</i>) varies in response to seasonal dietary changes. Molecular Ecology, 2022, 31, 4146-4161.	3.9	4
2205	Modulation of gut microbiota by bioactive compounds for prevention and management of type 2 diabetes. Biomedicine and Pharmacotherapy, 2022, 152, 113148.	5.6	20
2208	The Use of Elimination Diets in Gastrointestinal Disease: a Review. Current Treatment Options in Gastroenterology, 0, , .	0.8	0
2209	The Association of Dietary Fiber Intake in Three Meals with All-Cause and Disease-Specific Mortality among Adults: The U.S. National Health and Nutrition Examination Survey, 2003–2014. Nutrients, 2022, 14, 2521.	4.1	4
2210	A High-Carbohydrate Diet Prolongs Dysbiosis and Clostridioides difficile Carriage and Increases Delayed Mortality in a Hamster Model of Infection. Microbiology Spectrum, 2022, 10, .	3.0	4
2211	Dietary Influences on Gut Microbiota with a Focus on Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2022, 20, 429-439.	1.3	16
2212	Polyphenols and Polysaccharides from Morus alba L. Fruit Attenuate High-Fat Diet-Induced Metabolic Syndrome Modifying the Gut Microbiota and Metabolite Profile. Foods, 2022, 11, 1818.	4.3	5
2213	NAD+ and its possible role in gut microbiota: Insights on the mechanisms by which gut microbes influence host metabolism. Animal Nutrition, 2022, 10, 360-371.	5.1	10
2214	Targeting the gut to prevent and counteract metabolic disorders and pathologies during aging. Critical Reviews in Food Science and Nutrition, 2023, 63, 11185-11210.	10.3	2
2215	A Smart Real-Time Monitoring Method of Vegetable Diseases and Insect Pests Based on Optical Fiber Sensor. Journal of Testing and Evaluation, 2023, 51, 1277-1294.	0.7	0
2216	High-fat diets containing different types of fatty acids modulate gut-brain axis in obese mice. Nutrition and Metabolism, 2022, 19, .	3.0	1
2217	Short-Term Dairy Product Elimination and Reintroduction Minimally Perturbs the Gut Microbiota in Self-Reported Lactose-Intolerant Adults. MBio, 2022, 13, .	4.1	3

#	Article	IF	CITATIONS
2218	Fat Absorption, Metabolism, and Global Regulation. Food Chemistry, Function and Analysis, 2022, , 68-85.	0.2	0
2221	Dynamics of the Gut Microbiome and Transcriptome in Korea Native Ricefish (Oryzias latipes) during Chronic Antibiotic Exposure. Genes, 2022, 13, 1243.	2.4	4
2222	Impact of Nutrition, Microbiota Transplant and Weight Loss Surgery on Dopaminergic Alterations in Parkinson's Disease and Obesity. International Journal of Molecular Sciences, 2022, 23, 7503.	4.1	9
2223	A Distribution-Free Model for Longitudinal Metagenomic Count Data. Genes, 2022, 13, 1183.	2.4	1
2224	The Unique Seed Protein Composition of Quality Protein Popcorn Promotes Growth of Beneficial Bacteria From the Human Gut Microbiome. Frontiers in Microbiology, 0, 13, .	3.5	1
2225	Microbial and Transcriptomic Profiling Reveals Diet-Related Alterations of Metabolism in Metabolic Disordered Mice. Frontiers in Nutrition, 0, 9, .	3.7	2
2226	Microenvironmental Factors that Shape Bacterial Metabolites in Inflammatory Bowel Disease. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	5
2227	Porphyran From Porphyra haitanensis Alleviates Obesity by Reducing Lipid Accumulation and Modulating gut Microbiota Homeostasis. Frontiers in Pharmacology, 0, 13, .	3.5	4
2228	Potential of Establishing the Corresponding Human Microbial Community in Pseudo Germ-Free Mice through Fecal Microbe Transfer from Three Urolithin Metabotypes. Journal of Agricultural and Food Chemistry, 2022, 70, 9388-9398.	5.2	4
2229	Seasonal variation in structure and function of gut microbiota in <i>Pomacea canaliculata</i> . Ecology and Evolution, 2022, 12, .	1.9	4
2230	Adherence to the Western, Prudent and Mediterranean Dietary Patterns and Colorectal Cancer Risk: Findings from the Spanish Cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Spain). Nutrients, 2022, 14, 3085.	4.1	11
2231	Material Engineering in Gut Microbiome and Human Health. Research, 2022, 2022, .	5.7	3
2232	Characterization of the Fecal Microbiome in Dogs Receiving Medical Management for Congenital Portosystemic Shunts. Frontiers in Veterinary Science, 0, 9, .	2.2	1
2233	The impact of dietary nutrient intake on gut microbiota in the progression and complications of chronic kidney disease. Kidney International, 2022, 102, 728-739.	5.2	8
2234	Role of the Gut–Brain Axis, Gut Microbial Composition, Diet, and Probiotic Intervention in Parkinson's Disease. Microorganisms, 2022, 10, 1544.	3.6	15
2235	Diet, Gut Microbiome, and Cognitive Decline. Current Nutrition Reports, 2022, 11, 643-652.	4.3	15
2236	Differential richness inference for 16S rRNA marker gene surveys. Genome Biology, 2022, 23, .	8.8	5
2238	Repetitive transcranial direct current stimulation modulates theÂbrain–gut–microbiome axis in obese rodents. Pharmacological Reports, 2022, 74, 871-889.	3.3	6

ARTICLE

2239 Comparative analysis of the fecal bacterial communities of hawksbill sea turtles (<i>Eretmochelys) Tj ETQq0 0 0 rgBT_8/Overlock 10 Tf 50

2240	Quorum sensing-based interactions among drugs, microbes, and diseases. Science China Life Sciences, 2023, 66, 137-151.	4.9	9
2241	Three main metabolites from Wolfiporia cocos (F. A. Wolf) Ryvarden & Gilb regulate the gut microbiota in mice: A comparative study using microbiome-metabolomics. Frontiers in Pharmacology, 0, 13, .	3.5	6
2242	Dysbiosis and Migraine Headaches in Adults With Celiac Disease. Cureus, 2022, , .	0.5	3
2243	Supplementation of multi-enzymes alone or combined with inactivated Lactobacillus benefits growth performance and gut microbiota in broilers fed wheat diets. Frontiers in Microbiology, 0, 13, .	3.5	4
2244	Colorectal Cancer and Microbiota Modulation for Clinical Use. A Systematic Review. Nutrition and Cancer, 0, , 1-17.	2.0	1
2245	Approaches to discern if microbiome associations reflect causation in metabolic and immune disorders. Gut Microbes, 2022, 14, .	9.8	5
2246	Individual Nutrition Is Associated with Altered Gut Microbiome Composition for Adults with Food Insecurity. Nutrients, 2022, 14, 3407.	4.1	5
2247	The role of the gut microbiota in multiple sclerosis. Nature Reviews Neurology, 2022, 18, 544-558.	10.1	44
2248	Gnotobiotic mice housing conditions critically influence the phenotype associated with transfer of faecal microbiota in a context of obesity. Gut, 2023, 72, 896-905.	12.1	5
2249	Human gut microbiota in health and disease: Unveiling the relationship. Frontiers in Microbiology, 0, 13, .	3.5	70
2251	High-altitude exposure decreases bone mineral density and its relationship with gut microbiota: Results from the China multi-ethnic cohort (CMEC) study. Environmental Research, 2022, 215, 114206.	7.5	11
2252	Biological factors controlling starch digestibility in human digestive system. Food Science and Human Wellness, 2023, 12, 351-358.	4.9	15
2253	Intestinal Microbiome Modified by Bariatric Surgery Improves Insulin Sensitivity and Correlates with Increased Brown Fat Activity and Energy Expenditure. SSRN Electronic Journal, 0, , .	0.4	0
2254	Harnessing gut friendly microbiomes to combat metabolic syndrome. , 2022, , 185-191.		0
2255	Aging: Impact of Gut Microbiota. , 2022, , 71-82.		0
2256	Adaptation of Gut Microbiota to Modern Dietary Sugars and Sweeteners. Advances in Clinical Medicine, 2022, 12, 8280-8286.	0.0	0
2257	Comparative Analysis of Corrinoid Profiles across Host-Associated and Environmental Samples. Biochemistry, 2022, 61, 2791-2796.	2.5	7

#	Article	IF	Citations
2258	Effects of Thermally-Oxidized Frying Oils (Corn Oil and Lard) on Gut Microbiota in Hamsters. Antioxidants, 2022, 11, 1732.	5.1	3
2259	Distinct colon mucosa microbiomes associated with tubular adenomas and serrated polyps. Npj Biofilms and Microbiomes, 2022, 8, .	6.4	8
2260	The Yin-Yang functions of macrophages in metabolic disorders. , 2022, 1, 319-332.		1
2262	The Role of the Microbiome in Pancreatic Cancer. Cancers, 2022, 14, 4479.	3.7	12
2263	Insulin resistance and intestinal microbial metabolites in childhood obesity. Gastroenterologia, 2022, 56, 171-178.	0.3	0
2264	Current in Vitro and Animal Models for Understanding Foods: Human Gut–Microbiota Interactions. Journal of Agricultural and Food Chemistry, 2022, 70, 12733-12745.	5.2	5
2265	Modulation of gut microbiota: The effects of a fruits and vegetables supplement. Frontiers in Nutrition, 0, 9, .	3.7	3
2266	Food and Gut Microbiota-Derived Metabolites in Nonalcoholic Fatty Liver Disease. Foods, 2022, 11, 2703.	4.3	3
2267	Inflammasome-Mediated Cytokines: A Key Connection between Obesity-Associated NASH and Liver Cancer Progression. Biomedicines, 2022, 10, 2344.	3.2	3
2268	Review of the Current State of Freely Accessible Web Tools for the Analysis of 16S rRNA Sequencing of the Gut Microbiome. International Journal of Molecular Sciences, 2022, 23, 10865.	4.1	2
2269	Commensal Fungus Candida albicans Maintains a Long-Term Mutualistic Relationship with the Host To Modulate Gut Microbiota and Metabolism. Microbiology Spectrum, 2022, 10, .	3.0	11
2270	Genomic analysis of intestinal flora and liver genes in mice with circadian rhythm disorders fed with flavonoids from Sedum aizoon L Food Bioscience, 2022, 50, 102067.	4.4	6
2272	Long term weight cycling affects fecal microbiota of mice. Molecular Nutrition and Food Research, 0, , 2200439.	3.3	1
2273	Replacing saturated fatty acids with polyunsaturated fatty acids increases the abundance of Lachnospiraceae and is associated with reduced total cholesterol levels—a randomized controlled trial in healthy individuals. Lipids in Health and Disease, 2022, 21, .	3.0	11
2275	The Use of Gut Microbial Modulation Strategies as Interventional Strategies for Ageing. Microorganisms, 2022, 10, 1869.	3.6	5
2277	Variation in Gut Microbiota Composition is Associated with Sleep Quality and Cognitive Performance in Older Adults with Insomnia. Nature and Science of Sleep, 0, Volume 14, 1753-1767.	2.7	5
2279	Multi-omics analysis: Paving the path toward achieving precision medicine in cancer treatment and immuno-oncology. Frontiers in Molecular Biosciences, 0, 9, .	3.5	17
2280	Gut microbiota may mediate the impact of chronic apical periodontitis on atherosclerosis in apolipoprotein Eâ \in deficient mice. International Endodontic Journal, O, , .	5.0	3

# 2281	ARTICLE Infant behavioral state and stool microbiome in infants receiving Lactocaseibacillus rhamnosus GG in	IF 1.7	CITATIONS 2
2282	formula: randomized controlled trial. BMC Pediatrics, 2022, 22, . Interaction between gut microbiota and COVID-19 and its vaccines. World Journal of Gastroenterology, 0, 28, 5801-5806.	3.3	6
2283	Associations of the skin, oral and gut microbiome with aging, frailty and infection risk reservoirs in older adults. Nature Aging, 2022, 2, 941-955.	11.6	21
2285	Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metabolism, 2022, 34, 1700-1718.	16.2	118
2286	Role of gut microbiota in food safety. , 2023, , 812-828.		0
2287	Melatonin–Microbiome Two-Sided Interaction in Dysbiosis-Associated Conditions. Antioxidants, 2022, 11, 2244.	5.1	13
2288	The Role of the Gut Microbiota in the Relationship Between Diet and Human Health. Annual Review of Physiology, 2023, 85, 449-468.	13.1	44
2289	A dietary change to a high-fat diet initiates a rapid adaptation of the intestine. Cell Reports, 2022, 41, 111641.	6.4	26
2290	A prebiotic diet modulates microglial states and motor deficits in α-synuclein overexpressing mice. ELife, 0, 11, .	6.0	18
2291	A steamed broccoli sprout diet preparation that reduces colitis via the gut microbiota. Journal of Nutritional Biochemistry, 2023, 112, 109215.	4.2	5
2292	Modeling interaction networks between host, diet, and bacteria predicts obesogenesis in a mouse model. Frontiers in Molecular Biosciences, 0, 9, .	3.5	0
2293	Short-Term Tomato Consumption Alters the Pig Gut Microbiome toward a More Favorable Profile. Microbiology Spectrum, 2022, 10, .	3.0	1
2294	Genomic ancestry, diet and microbiomes of Upper Palaeolithic hunter-gatherers from San Teodoro cave. Communications Biology, 2022, 5, .	4.4	5
2296	Interplay of dietary antioxidants and gut microbiome in human health: What has been learnt thus far?. Journal of Functional Foods, 2023, 100, 105365.	3.4	18
2297	Intratumoral bacteria are an important "accomplice―in tumor development and metastasis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2023, 1878, 188846.	7.4	8
2298	Interplay of broccoli/broccoli sprout bioactives with gut microbiota in reducing inflammation in in inflammatory bowel diseases. Journal of Nutritional Biochemistry, 2023, 113, 109238.	4.2	6
2300	Brevibacillus laterosporus BL1, a promising probiotic, prevents obesity and modulates gut microbiota in mice fed a high-fat diet. Frontiers in Nutrition, 0, 9, .	3.7	3
2301	Effect of Probiotic Adjuvant Therapy on Improvement of Clinical Symptoms & Interleukin 6 Levels in Patients With Schizophrenia. Psychiatry Investigation, 2022, 19, 898-908.	1.6	2

	CITATION REI	PORT	
#	Article	IF	CITATIONS
2302	Anti-inflammatory mechanisms of polyphenols in adipose tissue: role of gut microbiota, intestinal barrier integrity and zinc homeostasis. Journal of Nutritional Biochemistry, 2023, 115, 109242.	4.2	7
2303	Milk Fermented with Pediococcus acidilactici Strain BE Improves High Blood Glucose Levels and Pancreatic Beta-Cell Function in Diabetic Rats. Food Science of Animal Resources, 2023, 43, 170-183.	4.1	2
2304	Healthy microbiome – a mere idea or a sound concept?. Physiological Research, 2022, 71, 719-738.	0.9	6
2305	Real-time non-invasive fluorescence imaging of gut commensal bacteria to detect dynamic changes in the microbiome of live mice. Cell Chemical Biology, 2022, 29, 1721-1728.e5.	5.2	7
2306	The central role of the gut in intensive care. Critical Care, 2022, 26, .	5.8	13
2307	Lactobacillus reuteri improves the development and maturation of fecal microbiota in piglets through mother-to-infant microbe and metabolite vertical transmission. Microbiome, 2022, 10, .	11.1	14
2308	Acute high-fat diet impairs macrophage-supported intestinal damage resolution. JCI Insight, 2023, 8, .	5.0	3
2310	Age and micronutrient effects on the microbiome in a mouse model of zinc depletion and supplementation. PLoS ONE, 2022, 17, e0275352.	2.5	3
2311	â€~Pera' Orange and â€~Moro' Blood Orange Juice Improves Oxidative Stress and Inflammatory Response Biomarkers and Modulates the Gut Microbiota of Individuals with Insulin Resistance and Different Obesity Classes. Obesities, 2022, 2, 389-412.	0.8	2
2312	Modulation of adipose tissue metabolism by microbial-derived metabolites. Frontiers in Microbiology, 0, 13, .	3.5	4
2313	Dynamic Monitoring of Changes in Fecal Flora of Giant Pandas in Mice: Co-Occurrence Network Reconstruction. Microbiology Spectrum, 2023, 11, .	3.0	1
2314	The protective effect of Buzhong Yiqi decoction on ischemic stroke mice and the mechanism of gut microbiota. Frontiers in Neuroscience, 0, 16, .	2.8	2
2315	Evaluating a potential model to analyze the function of the gut microbiota of the giant panda. Frontiers in Microbiology, 0, 13, .	3.5	1
2316	Diversity and Prevalence of Clostridium innocuum in the Human Gut Microbiota. MSphere, 2023, 8, .	2.9	6
2317	Healthy dietary patterns are associated with the gut microbiome in the Hispanic Community Health Study/Study of Latinos. American Journal of Clinical Nutrition, 2023, 117, 540-552.	4.7	7
2319	A first molecular characterization of the scorpion telson microbiota of Hadrurus arizonensis and Smeringurus mesaensis. PLoS ONE, 2023, 18, e0277303.	2.5	0
2320	Probiotic induced synthesis of microbiota polyamine as a nutraceutical for metabolic syndrome and obesity-related type 2 diabetes. Frontiers in Endocrinology, 0, 13, .	3.5	1
2321	Intermittent Protein Diets Alter Hepatic Lipid Accumulation by Changing Tryptophan Metabolism in a Fast-Response Manner. Journal of Agricultural and Food Chemistry, 0, , .	5.2	0

#	Article	IF	CITATIONS
2322	New insights into the mechanisms of highâ€fat diet mediated gut microbiota in chronic diseases. , 2023, 2, .		16
2323	Gut Microbiota and Time-Restricted Feeding/Eating: A Targeted Biomarker and Approach in Precision Nutrition. Nutrients, 2023, 15, 259.	4.1	10
2324	Galactooligosaccharide (GOS) Reduces Branched Short-Chain Fatty Acids, Ammonium, and pH in a Short-Term Colonic Fermentation Model. Applied Microbiology, 2023, 3, 90-103.	1.6	2
2325	The gut microbiota in obesity and weight management: microbes as friends or foe?. Nature Reviews Endocrinology, 2023, 19, 258-271.	9.6	38
2326	Eucommia bark/leaf extract improves HFD-induced lipid metabolism disorders via targeting gut microbiota to activate the Fiaf-LPL gut-liver axis and SCFAs-GPR43 gut-fat axis. Phytomedicine, 2023, 110, 154652.	5.3	7
2327	Diet-mediated gut microbial community modulation and signature metabolites as potential biomarkers for early diagnosis, prognosis, prevention and stage-specific treatment of colorectal cancer. Journal of Advanced Research, 2023, 52, 45-57.	9.5	1
2328	Quantifying (non)parallelism of gut microbial community change using multivariate vector analysis. Ecology and Evolution, 2022, 12, .	1.9	2
2329	Gut microbe Lactiplantibacillus plantarum undergoes different evolutionary trajectories between insects and mammals. BMC Biology, 2022, 20, .	3.8	2
2330	Multi-omics microsampling for the profiling of lifestyle-associated changes in health. Nature Biomedical Engineering, 2024, 8, 11-29.	22.5	22
2331	Gut-brain axis. , 2023, , 445-495.		0
2331 2332	Gut-brain axis. , 2023, , 445-495. Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals, 2023, 16, 197.	3.8	0
2331 2332 2333	Gut-brain axis. , 2023, , 445-495. Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals, 2023, 16, 197. Infection-elicited microbiota promotes host adaptation to nutrient restriction. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.8	0 7 1
2331 2332 2333 2333	Gut-brain axis. , 2023, , 445-495. Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals, 2023, 16, 197. Infection-elicited microbiota promotes host adaptation to nutrient restriction. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, . Links between Childhood Obesity, High-Fat Diet, and Central Precocious Puberty. Children, 2023, 10, 241.	3.8 7.1 1.5	0 7 1 7
2331 2332 2333 2334 2335	Gut-brain axis., 2023, , 445-495. Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals, 2023, 16, 197. Infection-elicited microbiota promotes host adaptation to nutrient restriction. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, . Links between Childhood Obesity, High-Fat Diet, and Central Precocious Puberty. Children, 2023, 10, 241. Chrono-Nutrition: Circadian Rhythm and Personalized Nutrition. International Journal of Molecular Sciences, 2023, 24, 2571.	3.8 7.1 1.5 4.1	0 7 1 7 13
2331 2332 2333 2334 2335 2336	Gut-brain axis. , 2023, , 445-495. Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals, 2023, 16, 197. Infection-elicited microbiota promotes host adaptation to nutrient restriction. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, . Links between Childhood Obesity, High-Fat Diet, and Central Precocious Puberty. Children, 2023, 10, 241. Chrono-Nutrition: Circadian Rhythm and Personalized Nutrition. International Journal of Molecular Sciences, 2023, 24, 2571. Lipks Lucommia (I)> Bark/Leaf Extract Improves Lipid Metabolism Disorders by Affecting Intestinal Microbiomea€"Host Interaction in HFD Mice. Journal of Agricultural and Food Chemistry, 2023, 71, 3297-3314.	3.8 7.1 1.5 4.1 5.2	0 7 1 7 13 3
2331 2332 2333 2334 2335 2336 2337	Gut-brain axis. , 2023, , 445-495. Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals, 2023, 16, 197. Infection-elicited microbiota promotes host adaptation to nutrient restriction. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, . Links between Childhood Obesity, High-Fat Diet, and Central Precocious Puberty. Children, 2023, 10, 241. Chrono-Nutrition: Circadian Rhythm and Personalized Nutrition. International Journal of Molecular Sciences, 2023, 24, 2571. <\substring k/leaf Extract Improves Lipid Metabolism Disorders by Affecting Intestinal Microbiomeaee ^{(Host} Host Interaction in HFD Mice. Journal of Agricultural and Food Chemistry, 2023, 71, 3297-3314. Dietary tryptophan deficiency promotes gut RORi ³ t+ Treg cells at the expense of Gata ³ + Treg cells and alters commensal microbiota metabolism. Cell Reports, 2023, 42, 112135.	3.8 7.1 1.5 4.1 5.2 6.4	0 7 1 7 13 3
2331 2332 2333 2334 2335 2336 2337	Gut-brain axis., 2023, ,445-495. Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals, 2023, 16, 197. Infection-elicited microbiota promotes host adaptation to nutrient restriction. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, . Links between Childhood Obesity, High-Fat Diet, and Central Precocious Puberty. Children, 2023, 10, 241. Chrono-Nutrition: Circadian Rhythm and Personalized Nutrition. International Journal of Molecular Sciences, 2023, 24, 2571. <\begin{aligned} <tr> <\begin{bmatrix} <tr> Sciences, 2023, 24, 2571. <\begin{bmatrix} <tr> <\begin{bmatrix} <tr> Sciences, 2023, 24, 2571. <\begin{bmatrix} <tr> Sciences, 2023, 24, 2571.</tr></tr></tr></tr></tr>	3.8 7.1 1.5 4.1 5.2 6.4 3.8	0 7 1 7 13 3 9 4

#	Article	IF	CITATIONS
2340	Investigating the Relation between the Gut Microbiota and Inflammatory Bowel Disease in a Mouse Model. Journal of Medical Microbiology and Infectious Diseases, 2022, 10, 122-128.	0.1	0
2341	Effects of probiotic and synbiotic supplementation on ponderal and linear growth in severely malnourished young infants in a randomized clinical trial. Scientific Reports, 2023, 13, .	3.3	9
2342	Microbial changes from bariatric surgery alters glucose-dependent insulinotropic polypeptide and prevents fatty liver disease. Gut Microbes, 2023, 15, .	9.8	4
2343	The gut microbiota pathway mechanisms of diabetes. AMB Express, 2023, 13, .	3.0	7
2344	COVID-19 morbidity in lower versus higher income populations underscores the need to restore lost biodiversity of eukaryotic symbionts. IScience, 2023, 26, 106167.	4.1	1
2346	Gut Microbiota and Coronary Artery Disease: Current Therapeutic Perspectives. Metabolites, 2023, 13, 256.	2.9	4
2347	Periodontal disease is associated with increased gut colonization of pathogenic Haemophilus parainfluenzae in patients with Crohn's disease. Cell Reports, 2023, 42, 112120.	6.4	12
2348	The Role of Gut Microbiota in High-Fat-Diet-Induced Diabetes: Lessons from Animal Models and Humans. Nutrients, 2023, 15, 922.	4.1	5
2349	The fecal microbiotas of women of Pacific and New Zealand European ethnicities are characterized by distinctive enterotypes that reflect dietary intakes and fecal water content. Gut Microbes, 2023, 15, .	9.8	1
2350	Gut Microbiota and Alzheimer's Disease: How to Study and Apply Their Relationship. International Journal of Molecular Sciences, 2023, 24, 4047.	4.1	7
2351	Celiac Disease: Disease Models in Understanding Pathogenesis and Search for Therapy. Open Access Macedonian Journal of Medical Sciences, 2022, 10, 705-719.	0.2	0
2352	The waxy mutation in sorghum and other cereal grains reshapes the gut microbiome by reducing levels of multiple beneficial species. Gut Microbes, 2023, 15, .	9.8	5
2353	Mechanisms linking bariatric surgery to adipose tissue, glucose metabolism, fatty liver disease and gut microbiota. Langenbeck's Archives of Surgery, 2023, 408, .	1.9	5
2354	Fecal Microbiota Composition as a Metagenomic Biomarker of Dietary Intake. International Journal of Molecular Sciences, 2023, 24, 4918.	4.1	1
2355	Metabolically healthy obesity: Misleading phrase or healthy phenotype?. European Journal of Internal Medicine, 2023, 111, 5-20.	2.2	14
2356	Basal Diet Fed to Recipient Mice Was the Driving Factor for Colitis and Colon Tumorigenesis, despite Fecal Microbiota Transfer from Mice with Severe or Mild Disease. Nutrients, 2023, 15, 1338.	4.1	0
2357	Research progress of gut microbiota and obesity caused by high-fat diet. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	6
2358	Changes of intestinal microbiota in the giant salamander (Andrias davidianus) during growth based on high-throughput sequencing. Frontiers in Microbiology, 0, 14, .	3.5	1

ARTICLE IF CITATIONS Intestinal Microbiomics in Physiological and Pathological Conditions., 0,,. 1 2360 The Interaction between Gut Microbiota and Host Amino Acids Metabolism in Multiple Myeloma. 3.7 Cancers, 2023, 15, 1942. Are gut dysbiosis, barrier disruption, and endotoxemia related to adipose tissue dysfunction in 2362 metabolic disorders? Overview of the mechanisms involved. Internal and Emergency Medicine, 2023, 18, 2.0 4 1287-1302. Gut microbiota alterations in critically III patients with carbapenem-resistant Enterobacteriaceae 2363 colonization: A clinical analysis. Frontiers in Microbiology, 0, 14, . Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on 2364 4.1 4 Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients, 2023, 15, 1767. Dietary Polyphenols, Microbiome, and Multiple Sclerosis: From Molecular Anti-Inflammatory and 2365 Neuroprotective Mechanisms to Clinical Evidence. International Journal of Molecular Sciences, 2023, 4.1 24, 7247. Polylactic acid (PLA), polyethylene terephthalate (PET), and polystyrene (PS) microplastics differently affect the gut microbiota of marine medaka (Oryzias melastigma) after individual and combined 2366 4.0 7 exposure with sulfamethazine. Aquatic Toxicology, 2023, 259, 106522. Microbiome: Impact of sex on function and characteristics of gut microbiome. , 2023, , 313-329. 2367 Gut microbiome modified by bariatric surgery improves insulin sensitivity and correlates with 2368 6.5 4 increased brown fat activity and energy expenditure. Cell Reports Medicine, 2023, 4, 101051. Dietary palmitoleic acid reprograms gut microbiota and improves biological therapy against colitis. 2369 Gut Microbes, 2023, 15, . Roles of the gut microbiome in weight management. Nature Reviews Microbiology, 2023, 21, 535-550. 2371 28.6 11 Out of the stable: Social disruption and concurrent shifts in the feral mare (<i>Equus caballus</i>) fecal microbiota. Ecology and Evolution, 2023, 13, . Mechanistic Insights into Immune-Microbiota Interactions and Preventive Role of Probiotics Against 2373 3.9 0 Autoimmune Diabetes Mellitus. Probiotics and Antimicrobial Proteins, 0, , . Potential role of gut microbiota in prostate cancer: immunity, metabolites, pathways of action?. 2374 2.8 Frontiers in Oncology, 0, 13, . 2375 Human gut microbiome: A primer for the clinician. JGH Open, 2023, 7, 337-350. 1.6 1 An In Vitro Small Intestine Model Incorporating a Food Matrix and Bacterial Mock Community for 2376 Intestinal Function Testing. Microorganisms, 2023, 11, 1419. Maternal transmission gives way to social transmission during gut microbiota assembly in wild mice. 2378 3.8 6 Animal Microbiome, 2023, 5, . Dissecting the impact of dietary fiber type on atherosclerosis in mice colonized with different gut microbial communities. Npj Biofilms and Microbiomes, 2023, 9, . 2379 6.4

#	Article	IF	CITATIONS
2380	Fecal metabonomics combined with 16S rDNA sequencing to analyze the changes of gut microbiota in rats fed with different protein source diets. European Journal of Nutrition, 0, , .	3.9	0
2381	Microbial genes outperform species and SNVs as diagnostic markers for Crohn's disease on multicohort fecal metagenomes empowered by artificial intelligence. Gut Microbes, 2023, 15, .	9.8	4
2383	Human Microbiome and Lifestyle Disorders. , 2023, , 165-193.		0
2384	Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients, 2023, 15, 2749.	4.1	43
2385	Gut Microbiota and Aging: Traditional Chinese Medicine and Modern Medicine. Clinical Interventions in Aging, 0, Volume 18, 963-986.	2.9	6
2386	Crosstalk between dietary pomegranate and gut microbiota: evidence of health benefits. Critical Reviews in Food Science and Nutrition, 0, , 1-27.	10.3	1
2388	Zfp362 potentiates murine colonic inflammation by constraining Treg cell function rather than promoting Th17 cell differentiation. European Journal of Immunology, 2023, 53, .	2.9	1
2389	From symbiosis to dysbiosis in gut-consequence includes metabolic syndrome. , 2023, , 61-83.		0
2390	Compositional and functional features of the intestinal lactobacilli associated with different long-term diet types. Food and Function, 0, , .	4.6	0
2391	Absence of gut microbiota reduces neonatal survival and exacerbates liver disease in <i>Cyp2c70</i> -deficient mice with a human-like bile acid composition. Clinical Science, 2023, 137, 995-1011.	4.3	4
2392	Individualized network analysis reveals link between the gut microbiome, diet intervention and Gestational Diabetes Mellitus. PLoS Computational Biology, 2023, 19, e1011193.	3.2	0
2393	Complex alpha and beta mannan foraging by the human gut bacteria. Biotechnology Advances, 2023, 66, 108166.	11.7	4
2394	Th17 cells sense microbiome to promote depressive-like behaviors. Microbiome, 2023, 11, .	11.1	4
2395	Mechanistic impacts of bacterial diet on dopaminergic neurodegeneration in a Caenorhabditis elegans α-synuclein model of Parkinson's disease. IScience, 2023, 26, 106859.	4.1	1
2396	New insights into the pathophysiology and therapeutic targets of asthma and comorbid chronic rhinosinusitis with or without nasal polyposis. Clinical Science, 2023, 137, 727-753.	4.3	13
2397	Role of the intestinal microbiota in the pathogenesis of multiple sclerosis. Part 2. Gut microbiota as a predisposition factor for the multiple sclerosis development. Meditsinskii Akademicheskii Zhurnal, 2023, 1, 5-40.	0.2	0
2398	The making of the oral microbiome in Agta hunter–gatherers. Evolutionary Human Sciences, 2023, 5, .	1.7	2
2399	Composition of the colon microbiota in the individuals with inflammatory bowel disease and colon cancer. Folia Microbiologica, 0, , .	2.3	2

#	Article	IF	CITATIONS
2400	Can antibiotics for enteritis or for urinary tract infection disrupt the urinary microbiota in rats?. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	0
2401	Simulated gastrointestinal digestion of beer using the simgi® model. Investigation of colonic phenolic metabolism and impact on human gut microbiota. Food Research International, 2023, 173, 113228.	6.2	0
2402	Marked variations in gut microbial diversity, functions, and disease risk between wild and captive alpine musk deer. Applied Microbiology and Biotechnology, 0, , .	3.6	0
2403	Effects of isolation and confinement on gastrointestinal microbiota–a systematic review. Frontiers in Nutrition, 0, 10, .	3.7	0
2404	Associations between the gut microbiome and metabolic, inflammatory, and appetitive effects of sleeve gastrectomy. Obesity Reviews, 2023, 24, .	6.5	1
2405	Predictive association of gut microbiome and NLR in anemic low middle-income population of Odisha- a cross-sectional study. Frontiers in Nutrition, 0, 10, .	3.7	0
2406	Gut microbiota: Candidates for a novel strategy for ameliorating sleep disorders. Critical Reviews in Food Science and Nutrition, 0, , 1-17.	10.3	1
2407	Succinate signaling attenuates high-fat diet-induced metabolic disturbance and intestinal barrier dysfunction. Pharmacological Research, 2023, 194, 106865.	7.1	3
2409	Towards modulating the gut microbiota to enhance the efficacy of immune-checkpoint inhibitors. Nature Reviews Clinical Oncology, 2023, 20, 697-715.	27.6	10
2410	The long-term gut bacterial signature of a wild primate is associated with a timing effect of pre- and postnatal maternal glucocorticoid levels. Microbiome, 2023, 11, .	11.1	1
2411	Unveiling and harnessing the human gut microbiome in the rising burden of non-communicable diseases during urbanization. Gut Microbes, 2023, 15, .	9.8	2
2412	Effects of graded levels of dietary protein supplementation on milk yield, body weight gain, blood biochemical parameters, and gut microbiota in lactating ewes. Frontiers in Veterinary Science, 0, 10, .	2.2	1
2413	Gut-derived metabolites mediating cognitive development in 5-year-old children: Early-life transplant in mice has lasting effects throughout adulthood. Brain, Behavior, and Immunity, 2023, 114, 94-110.	4.1	1
2414	Short-term dietary changes can result in mucosal and systemic immune depression. Nature Immunology, 2023, 24, 1473-1486.	14.5	9
2415	Impact of Diet on Colorectal Cancer Progression and Prevention: From Nutrients to Neoplasms. Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi, The, 2023, 82, 73-83.	0.4	1
2416	Therapeutic targeting of gutâ€originating regulatory B cells in neuroinflammatory diseases. European Journal of Immunology, 0, , .	2.9	1
2417	Gut Microbial Metabolome and Dysbiosis in Neurodegenerative Diseases: Psychobiotics and Fecal Microbiota Transplantation as a Therapeutic Approach—A Comprehensive Narrative Review. International Journal of Molecular Sciences, 2023, 24, 13294.	4.1	2
2418	A Review on the Genus Paramacrobiotus (Tardigrada) with a New Diagnostic Key. Diversity, 2023, 15, 977.	1.7	1

#	Article	IF	CITATIONS
2419	Metabolic impact of polyphenol-rich aronia fruit juice mediated by inflammation status of gut microbiome donors in humanized mouse model. Frontiers in Nutrition, 0, 10, .	3.7	0
2420	Questioning the foundations of the gut microbiota and obesity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	9
2421	Gut microbiota parallelism and divergence associated with colonisation of novel habitats. Molecular Ecology, 2023, 32, 5661-5672.	3.9	0
2422	Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis. Medicinal Research Reviews, 0, , .	10.5	1
2423	Association of <i>ADRB2</i> gene polymorphisms and intestinal microbiota in Chinese Han adolescents. Open Life Sciences, 2023, 18, .	1.4	0
2424	Simple and flexible sign and rank-based methods for testing for differential abundance in microbiome studies. PLoS ONE, 2023, 18, e0292055.	2.5	0
2425	Multiâ€omics approach to socioeconomic disparity in metabolic syndrome reveals roles of diet and microbiome. Proteomics, 2023, 23, .	2.2	0
2426	The TNFâ^†ARE Model of Crohn's Disease-like Ileitis. Inflammatory Bowel Diseases, 0, , .	1.9	0
2427	Review article: The complex interplay between diet and <i>Escherichia coli</i> in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2023, 58, 984-1004.	3.7	2
2428	Effects of a calorie-restricted dietary intervention on weight loss and gut microbiota diversity in obese patients with sleep deprivation. Eating and Weight Disorders, 2023, 28, .	2.5	0
2429	The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. International Journal of Molecular Sciences, 2023, 24, 14582.	4.1	6
2430	Migration Spurs Changes in the Human Microbiome: a Review. Journal of Racial and Ethnic Health Disparities, 0, , .	3.2	0
2431	Exploration of pathogenic microorganism within the small intestine of necrotizing enterocolitis. World Journal of Pediatrics, 2024, 20, 165-172.	1.8	2
2432	Gut Microbiota Uniqueness Is Associated with Lake Size, a Proxy for Diet Diversity, in Stickleback Fish. American Naturalist, 2024, 203, 284-291.	2.1	0
2433	Fucogalactan Sulfate (FS) from <i>Laminaria japonica</i> Regulates Lipid Metabolism in Diet-Induced Humanized Dyslipidemia Mice via an Intestinal FXR-FGF19-CYP7A1/CYP8B1 Pathway. Journal of Agricultural and Food Chemistry, 2023, 71, 14027-14037.	5.2	1
2434	The dietary intervention of synbiotic preparation promotes the bioconversion of soy isoflavones to equol and its metabolic mechanism. Journal of Functional Foods, 2023, 109, 105784.	3.4	1
2436	Assessing the validity of fecal sampling for characterizing variation in threespine stickleback's gut microbiota. PLoS ONE, 2023, 18, e0290875.	2.5	1
2438	Creation of a non-Western humanized gnotobiotic mouse model through the transplantation of rural African fecal microbiota. Microbiology Spectrum, 2023, 11, .	3.0	1

#	Article	IF	CITATIONS
2439	High-fructose corn syrup aggravates colitis via microbiota dysbiosis-mediated Th17/Treg imbalance. Clinical Science, 2023, 137, 1619-1635.	4.3	2
2440	Obesity Is Associated with the Severity of Periodontal Inflammation Due to a Specific Signature of Subgingival Microbiota. International Journal of Molecular Sciences, 2023, 24, 15123.	4.1	1
2441	The gut microbiome in the fight against obesity: The potential of dietary factors. FASEB Journal, 2023, 37, .	0.5	2
2444	The impact of botanical fermented foods on metabolic syndrome and type 2 diabetes: a systematic review of randomised controlled trials. Nutrition Research Reviews, 0, , 1-20.	4.1	1
2445	Gut Microbiome and Liver Diseases from the Perspective of 3PM: The Predictive, Preventive, and Personalized Medicine. Advances in Predictive, Preventive and Personalised Medicine, 2023, , 141-175.	0.6	0
2446	Gut Microbiota and Obesity: The Chicken or the Egg?. Obesities, 2023, 3, 296-321.	0.8	0
2447	Changes in the gut microbiota in autism in children: pathogenetic significance and ways of correction. Russian Pediatric Journal, 2023, 26, 360-367.	0.2	0
2448	The effects of host ecology and phylogeny on gut microbiota (non)parallelism across birds and mammals. MSphere, 0, , .	2.9	0
2449	Ketogenic diet therapy for pediatric epilepsy is associated with alterations in the human gut microbiome that confer seizure resistance in mice. Cell Reports, 2023, 42, 113521.	6.4	4
2451	A Synthetic Formula Amino Acid Diet Leads to Microbiome Dysbiosis, Reduced Colon Length, Inflammation, and Altered Locomotor Activity in C57BL/6J Mice. Microorganisms, 2023, 11, 2694.	3.6	0
2452	Complex interplay of gut microbiota between obesity and asthma in children. Frontiers in Microbiology, 0, 14, .	3.5	1
2453	Fecal Metagenomics to Identify Biomarkers of Food Intake in Healthy Adults: Findings from Randomized, Controlled, Nutrition Trials. Journal of Nutrition, 2024, 154, 271-283.	2.9	0
2454	A key genetic factor governing arabinan utilization in the gut microbiome alleviates constipation. Cell Host and Microbe, 2023, 31, 1989-2006.e8.	11.0	3
2455	Engraftment of aging-related human gut microbiota and the effect of a seven-species consortium in a pre-clinical model. Gut Microbes, 2023, 15, .	9.8	0
2456	Study on Immunoregulatory Effects of Fucoidan from Sargassum graminifolium In Vivo and Immunoactivation Activity of Its Fecal Fermentation Products Using Co-Culture Model. Molecules, 2023, 28, 7794.	3.8	0
2457	Folate-producing bifidobacteria: metabolism, genetics, and relevance. , 0, 3, .		0
2459	Nutritional Modulation of Gut Microbiota Alleviates Metabolic and Neurological Disorders. , 2023, , 97-125.		0
2460	Biological potential of Potentilla fulgens extract on acute inflammation, nocioception tolerance, oxidative stress and its phytochemical constituents. , 2024, 4, 100563.		0

#	Article	IF	CITATIONS
2461	Novel Techniques and Models for Studying the Role of the Gut Microbiota in Drug Metabolism. European Journal of Drug Metabolism and Pharmacokinetics, 2024, 49, 131-147.	1.6	0
2462	Biodiversity of intestinal Lactobacillus in relation to dietary habits and health status in Mongolians of China. Food Bioscience, 2024, 57, 103492.	4.4	0
2463	Microbiome and pregnancy: focus on microbial dysbiosis coupled with maternal obesity. International Journal of Obesity, 0, , .	3.4	0
2464	Influence of gut microbiota on autoimmunity: A narrative review. , 2024, 5, 100046.		0
2465	The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Frontiers in Neuroscience, 0, 17, .	2.8	2
2466	Nutritional regulation of microbiota-derived metabolites: Implications for immunity and inflammation. Immunity, 2024, 57, 14-27.	14.3	2
2467	Obesogens: a unifying theory for the global rise in obesity. International Journal of Obesity, 2024, 48, 449-460.	3.4	0
2468	Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Frontiers in Immunology, 0, 15, .	4.8	1
2469	Gut Microbiome and Polycystic Ovary Syndrome: Interplay of Associated Microbial-Metabolite Pathways and Therapeutic Strategies. Reproductive Sciences, 0, , .	2.5	0
2470	Tunable control of <i>B. infantis</i> abundance and gut metabolites by co-administration of human milk oligosaccharides. Gut Microbes, 2024, 16, .	9.8	0
2472	Pollen Diet Diversity does not Affect Gut Bacterial Communities or Melanization in a Social and Solitary Bee Species. Microbial Ecology, 2024, 87, .	2.8	0
2474	Effectiveness assessment of using water environmental microHI to predict the health status of wild fish. Frontiers in Microbiology, 0, 14, .	3.5	0
2475	PNPLA3 Genotype and Dietary Fat Modify Concentrations of Plasma and Fecal Short Chain Fatty Acids and Plasma Branched-Chain Amino Acids. Nutrients, 2024, 16, 261.	4.1	0
2476	Microbiota Implications in Endocrine-Related Diseases: From Development to Novel Therapeutic Approaches. Biomedicines, 2024, 12, 221.	3.2	1
2477	An overview of artificial nutrition in apiculture. Journal of Experimental Biology and Agricultural Sciences, 2023, 11, 884-918.	0.4	0
2478	Moderate variations in the human diet impact the gut microbiota in humanized mice. Acta Physiologica, 2024, 240, .	3.8	0
2480	Long term methionine restriction: Influence on gut microbiome and metabolic characteristics. Aging Cell, 2024, 23, .	6.7	0
2481	Metabolic Insights into Caffeine's Anti-Adipogenic Effects: An Exploration through Intestinal Microbiota Modulation in Obesity. International Journal of Molecular Sciences, 2024, <u>25, 1803</u> .	4.1	0

ARTICLE IF CITATIONS Alterations in the diversity, composition and function of the gut microbiota in Uyghur individuals 2482 2.8 0 with sarcopenia. Experimental Gerontology, 2024, 187, 112376. The Microbiome Modulates the Immune System to Influence Cancer Therapy. Cancers, 2024, 16, 779. 2483 3.7 The Importance of the Microbiome in the Gut., 2023, , 1-11. 2484 0 The gut microbiome regulates the clinical efficacy of sulfasalazine therapy for IBD-associated 2485 spondyloarthritis. Cell Reports Medicine, 2024, 5, 101431. Peeling off the layers from microbial dark matter (MDM): recent advances, future challenges, and 2486 6.1 0 opportunities. Critical Reviews in Microbiology, 0, , 1-21. Pathophysiology of acute lung injury in patients with acute brain injury: the triple-hit hypothesis. Critical Care, 2024, 28, . 2487 5.8 Cardiovascular diseases: pathophysiological role of gut microbiota and new targets for treatment 2488 0.4 0 and prevention. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2024, , 201-208. A guide to germâ€free and gnotobiotic mouse technology to study health and disease. FEBS Journal, 0, , . 2490 The importance of host physical niches for the stability of gut microbiome composition. Philosophical 2491 4.0 0 Transactions of the Royal Society B: Biological Sciences, 2024, 379, .