CITATION REPORT List of articles citing

Oxidative removal of bisphenol A by manganese dioxide: efficacy, products, and pathways

DOI: 10.1021/es900235f Environmental Science & Emp; Technology, 2009, 43, 3860-4.

Source: https://exaly.com/paper-pdf/46570430/citation-report.pdf

Version: 2024-04-20

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
246	Direct Electron-Transfer-Based Peroxymonosulfate Activation by Iron-Doped Manganese Oxide (-MnO2) and the Development of Galvanic Oxidation Processes (GOPs).		
245	Functional Groups and Interactions Controlling the Adsorption of Bisphenol a onto Different Polymers. 2009 , 27, 723-734		2
244	Metal (M = Co2+, Ni2+, and Cu2+) grafted mesoporous SBA-15: Effect of transition metal incorporation and pH conditions on the adsorption of Naproxen from water. 2010 , 132, 470-479		74
243	Biogeochemical redox processes and their impact on contaminant dynamics. <i>Environmental Science & Environmental & Envi</i>	10.3	815
242	Reaction of lincosamide antibiotics with manganese oxide in aqueous solution. <i>Environmental Science & Environmental &</i>	10.3	65
241	Degradation and mineralization of bisphenol A by mesoporous Bi2WO6 under simulated solar light irradiation. <i>Environmental Science & Environmental Sci</i>	10.3	236
240	Determination of bisphenol A based on chemiluminescence from gold(III)-peroxymonocarbonate. 2010 , 82, 1576-80		55
239	Multifunctional biomagnetic capsules for easy removal of phenol and bisphenol A. <i>Water Research</i> , 2010 , 44, 1961-9	12.5	39
238	Review of Endocrine-Disrupting-Compound Removal Technologies in Water and Wastewater Treatment Plants: An EU Perspective. 2011 , 50, 8389-8401		134
237	Oxidative removal of bisphenol A using zero valent aluminum-acid system. <i>Water Research</i> , 2011 , 45, 1872-8	12.5	97
236	Transformation of Bisphenol A in the Presence of Manganese Dioxide. 2011 , 176, 265-272		12
235	Removal of bisphenol A via a hybrid process combining oxidation on EMnO2 nanowires with microfiltration. 2011 , 392, 198-204		20
234	Oxidation of bisphenol F (BPF) by manganese dioxide. 2011 , 159, 2546-51		52
233	Fate of bisphenol A during treatment with the litter-decomposing fungi Stropharia rugosoannulata and Stropharia coronilla. <i>Chemosphere</i> , 2011 , 83, 226-32	8.4	28
232	Characterization of photocatalyst Bi3.84W0.16O6.24 and its photodegradation on bisphenol A under simulated solar light irradiation. 2011 , 105, 229-236		62
231	Oxidative transformation of carbamazepine by manganese oxides. <i>Environmental Science and Pollution Research</i> , 2012 , 19, 4206-13	5.1	22
230	Goethite-mediated transformation of bisphenol A. <i>Chemosphere</i> , 2012 , 89, 789-95	8.4	24

229	Birnessite-induced binding of phenolic monomers to soil humic substances and nature of the bound residues. <i>Environmental Science & Environmental Scie</i>	10.3	48
228	Oxidation of phenolic endocrine disrupting chemicals by potassium permanganate in synthetic and real waters. <i>Environmental Science & Environmental Sc</i>	10.3	155
227	Photocatalytic Degradation of Bisphenol A in Aqueous Suspensions of Titanium Dioxide. 2012 , 29, 630-	-637	23
226	Methodologies for Sample Preservation and Stabilization. 2012 , 31-49		2
225	Study of phenol biodegradation using Bacillus amyloliquefaciens strain WJDB-1 immobilized in alginate-chitosan-alginate (ACA) microcapsules by electrochemical method. 2012 , 23, 209-19		36
224	Removal of bisphenol-A from spiked synthetic effluents using an immersed membrane activated sludge process. <i>Separation and Purification Technology</i> , 2012 , 87, 101-109	8.3	29
223	Photo-Fenton-like treatment of BPA: effect of UV light source and water matrix on toxicity and transformation products. <i>Water Research</i> , 2013 , 47, 5052-64	12.5	103
222	Transformation of bisphenol A by manganese oxide-coated sand. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 1461-7	5.1	16
221	Oxidative removal of bisphenol A by permanganate: Kinetics, pathways and influences of co-existing chemicals. <i>Separation and Purification Technology</i> , 2013 , 107, 48-53	8.3	88
220	Reinvestigation of the role of humic acid in the oxidation of phenols by permanganate. <i>Environmental Science & Environmental </i>	10.3	61
219		10.3	26
	Environmental Science & Damp; Technology, 2013, 47, 14332-40 Oxidation of nonylphenol and octylphenol by manganese dioxide: kinetics and pathways. 2013,	10.3	
219	Oxidation of nonylphenol and octylphenol by manganese dioxide: kinetics and pathways. 2013, 180, 214-20 Highly active MnO2 nanosheet synthesis from graphene oxide templates and their application in	10.3	26
219	Oxidation of nonylphenol and octylphenol by manganese dioxide: kinetics and pathways. 2013, 180, 214-20 Highly active MnO2 nanosheet synthesis from graphene oxide templates and their application in efficient oxidative degradation of methylene blue. 2013, 3, 12909 Removal of Bisphenol A and its Oxidation Products from Aqueous Solutions by Sequential Catalytic	10.3	26 79
219218217	Oxidation of nonylphenol and octylphenol by manganese dioxide: kinetics and pathways. 2013, 180, 214-20 Highly active MnO2 nanosheet synthesis from graphene oxide templates and their application in efficient oxidative degradation of methylene blue. 2013, 3, 12909 Removal of Bisphenol A and its Oxidation Products from Aqueous Solutions by Sequential Catalytic Wet Air Oxidation and Biodegradation. 2013, 52, 9301-9307 Transformation of acetaminophen using manganese dioxide-mediated oxidative processes:		26 79 24
219218217216	Oxidation of nonylphenol and octylphenol by manganese dioxide: kinetics and pathways. 2013, 180, 214-20 Highly active MnO2 nanosheet synthesis from graphene oxide templates and their application in efficient oxidative degradation of methylene blue. 2013, 3, 12909 Removal of Bisphenol A and its Oxidation Products from Aqueous Solutions by Sequential Catalytic Wet Air Oxidation and Biodegradation. 2013, 52, 9301-9307 Transformation of acetaminophen using manganese dioxide-mediated oxidative processes: reaction rates and pathways. <i>Journal of Hazardous Materials</i> , 2013, 250-251, 138-46 Degradation of antibiotic amoxicillin using 1 x 1 molecular sieve-structured manganese oxide. 2013,	12.8	26792434
219218217216215	Oxidation of nonylphenol and octylphenol by manganese dioxide: kinetics and pathways. 2013, 180, 214-20 Highly active MnO2 nanosheet synthesis from graphene oxide templates and their application in efficient oxidative degradation of methylene blue. 2013, 3, 12909 Removal of Bisphenol A and its Oxidation Products from Aqueous Solutions by Sequential Catalytic Wet Air Oxidation and Biodegradation. 2013, 52, 9301-9307 Transformation of acetaminophen using manganese dioxide-mediated oxidative processes: reaction rates and pathways. <i>Journal of Hazardous Materials</i> , 2013, 250-251, 138-46 Degradation of antibiotic amoxicillin using 1 x 1 molecular sieve-structured manganese oxide. 2013, 34, 2443-51	12.8	267924347

211	One-Dimensional Nanostructured TiO2for Photocatalytic Degradation of Organic Pollutants in Wastewater. 2014 , 2014, 1-14		28
210	Environmental fate of the next generation refrigerant 2,3,3,3-tetrafluoropropene (HFO-1234yf). Environmental Science & amp; Technology, 2014, 48, 13181-7	.0.3	28
209	Potential and Limits of Biodegradation Processes for the Removal of Organic Xenobiotics from Wastewaters. 2014 , 1, 67-82		9
208	Abiotic Degradations/Transformations of EDCs through Oxidation Processes. 2014 , 254-295		
207	Efficient photocatalytic degradation of thiobencarb over BiVO4 driven by visible light: Parameter and reaction pathway investigations. <i>Separation and Purification Technology</i> , 2014 , 122, 78-86	3.3	35
206	Transformation of paracetamol into 1,4-benzoquinone by a manganese oxide bed filter. <i>Journal of Hazardous Materials</i> , 2014 , 271, 245-51	2.8	23
205	Recyclable polymer-based nano-hydrous manganese dioxide for highly efficient Tl(I) removal from water. 2014 , 57, 763-771		22
204	Oxidation of flame retardant tetrabromobisphenol a by aqueous permanganate: reaction kinetics, brominated products, and pathways. <i>Environmental Science & Environmental Scien</i>	10.3	81
203	Ultrasensitive determination of bisphenol A in water by inhibition of copper nanoclusters-enhanced chemiluminescence from the luminol MnO4 system. 2014 , 4, 44644-44649		22
202	Microporous assembly of MnO2 nanosheets for malachite green degradation. <i>Separation and Purification Technology</i> , 2014 , 134, 26-36	3.3	57
201	Production of hydroxylated polybrominated diphenyl ethers (OH-PBDEs) from bromophenols by manganese dioxide. <i>Environmental Science & Environmental Sc</i>	20.3	61
200	Nano-MnO x on activated carbon prepared by hydrothermal process for fast and highly efficient degradation of azo dyes. 2014 , 485, 91-98		27
199	A critical review of the reactivity of manganese oxides with organic contaminants. 2014 , 16, 1247-66		166
198	Catalytic oxidative degradation of bisphenol A using an ultrasonic-assisted tourmaline-based system: Influence factors and mechanism study. <i>Chemical Engineering Journal</i> , 2014 , 252, 346-354	4.7	65
197	Characterization and reactivity of biogenic manganese oxides for ciprofloxacin oxidation. 2014 , 26, 1154-	-61	45
196	Continuous removal of endocrine disruptors by versatile peroxidase using a two-stage system. 2015 , 31, 908-16		24
195	Oxidative Transformation of Controlled Substances by Manganese Dioxide. 2015 , 2015, 364170		2
194	Birnessite (EMnO2) mediated degradation of organoarsenic feed additive p-arsanilic acid. Environmental Science & amp; Technology, 2015, 49, 3473-81	10.3	97

193	Oxidative transformation of levofloxacin by EMnO2: products, pathways and toxicity assessment. <i>Chemosphere</i> , 2015 , 119, 282-288	8.4	33
192	Adsorption mechanism of magnetically separable Fe 3 O 4 /graphene oxide hybrids. 2015 , 355, 562-569		70
191	Identification of 4-Hydroxycumyl Alcohol As the Major MnO2-Mediated Bisphenol A Transformation Product and Evaluation of Its Environmental Fate. <i>Environmental Science & Environmental Science & Technology</i> , 2015 , 49, 6214-21	10.3	35
190	Factors influencing hydroquinone degradation in aqueous solution using a modified microelectrolysis method. 2015 , 71, 397-404		7
189	Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly. <i>Chemical Engineering Journal</i> , 2015 , 276, 155-165	14.7	96
188	Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions. <i>Chemosphere</i> , 2015 , 133, 41-6	8.4	29
187	Facet-dependent catalytic activity of nanosheet-assembled bismuth oxyiodide microspheres in degradation of bisphenol A. <i>Environmental Science & Environmental Science & Envir</i>	10.3	156
186	Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of co-existing chemicals and degradation pathway. <i>Chemical Engineering Journal</i> , 2015 , 276, 193-204	14.7	376
185	Redox Processes in Water Remediation Technologies. 2015 , 199-253		4
184	Sorption and degradation of 17Eestradiol-17-sulfate in sterilized soil-water systems. <i>Chemosphere</i> , 2015 , 119, 1322-1328	8.4	23
183	Low-temperature synthesis of graphene/Bi2Fe4O9 composite for synergistic adsorption-photocatalytic degradation of hydrophobic pollutant under solar irradiation. <i>Chemical Engineering Journal</i> , 2015 , 262, 1022-1032	14.7	86
182	Degradation of bisphenol A by ferrate(VI) oxidation: Kinetics, products and toxicity assessment. <i>Chemical Engineering Journal</i> , 2015 , 262, 34-40	14.7	87
181	The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation. 2016 , 367-386		
180	The oxidation capacity of Mn3O4 nanoparticles is significantly enhanced by anchoring them onto reduced graphene oxide to facilitate regeneration of surface-associated Mn(III). <i>Water Research</i> , 2016 , 103, 101-108	12.5	17
179	The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation. 2016 , 4,		6
178	Abiotic degradation of methyl parathion by manganese dioxide: Kinetics and transformation pathway. <i>Chemosphere</i> , 2016 , 150, 90-96	8.4	33
177	Facile synthesis of novel photoresponsive mesoporous molecularly imprinted polymers for photo-regulated selective separation of bisphenol A. <i>Chemical Engineering Journal</i> , 2016 , 296, 437-446	14.7	51
176	Degradation of aromatic amines in textile-dyeing sludge by combining the ultrasound technique with potassium permanganate treatment. <i>Journal of Hazardous Materials</i> , 2016 , 314, 1-10	12.8	35

175	Spectroscopic Investigation of Interfacial Interaction of Manganese Oxide with Triclosan, Aniline, and Phenol. <i>Environmental Science & Environmental </i>	10.3	42
174	Degradation of bisphenol A by nano-sized manganese dioxide synthesized using montmorillonite as templates. 2016 , 132-133, 155-160		18
173	Micelle Catalyzed Oxidative Degradation of Paracetamol by Water Soluble Colloidal MnO2 in Acidic Medium. 2016 , 53, 347-356		3
172	Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A. <i>Journal of Hazardous Materials</i> , 2016 , 320, 150-159	12.8	161
171	Fate of Bisphenol A in Terrestrial and Aquatic Environments. <i>Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 8403-16	10.3	147
170	Pharmaceutical removal from water with iron- or manganese-based technologies: A review. 2016 , 46, 1584-1621		27
169	Stimulation of Tetrabromobisphenol A Binding to Soil Humic Substances by Birnessite and the Chemical Structure of the Bound Residues. <i>Environmental Science & Environmental S</i>	10.3	21
168	Synthesis of surface imprinted polymer upon modified kaolinite and study on the selective adsorption of BPA. 2016 , 57, 3947-3956		7
167	Oxidation of organic contaminants by manganese oxide geomedia for passive urban stormwater treatment systems. <i>Water Research</i> , 2016 , 88, 481-491	12.5	42
166	Synthetic conditions-regulated catalytic Oxone efficacy of MnO x /SBA-15 towards butyl paraben (BPB) removal under heterogeneous conditions. <i>Chemical Engineering Journal</i> , 2016 , 289, 296-305	14.7	23
165	Catalyst support materials for prominent mineralization of bisphenol A in catalytic ozonation process. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 10223-33	5.1	14
164	Mechanistic study of photo-oxidation of Bisphenol-A (BPA) with hydrogen peroxide (H2O2) and sodium persulfate (SPS). 2016 , 166, 12-22		79
163	In-situ degradation of soil-sorbed 17Eestradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: Column studies. 2017 , 223, 238-246		14
162	Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12. 2017 , 9, 183-191		14
161	The synthesis of hydrophilic molecularly imprinted polymer microspheres and their application for selective removal of bisphenol A from water. 2017 , 116, 69-76		31
160	Structural Transformation of MnO during the Oxidation of Bisphenol A. <i>Environmental Science & Environmental Science</i>	10.3	53
159	Efficient removal of 17\(\text{\text{\text{E}}}\)thinylestradiol (EE2) from water using freshly formed Fe\(\text{\text{M}}\)n binary oxide. 2017 , 7, 23802-23811		14
158	Transformation of para arsanilic acid by manganese oxide: Adsorption, oxidation, and influencing factors. <i>Water Research</i> , 2017 , 116, 126-134	12.5	52

(2018-2017)

157	Metal inhibition on the reactivity of manganese dioxide toward organic contaminant oxidation in relation to metal adsorption and ionic potential. <i>Chemosphere</i> , 2017 , 170, 95-103	8.4	8
156	Degradation of amyl xanthate by manganese dioxide. 2017 , 76, 3404-3409		О
155	Bismuth oxyiodide coupled with bismuth nanodots for enhanced photocatalytic bisphenol A degradation: synergistic effects and mechanistic insight. 2017 , 9, 15484-15493		36
154	Reaction of antibiotic sulfadiazine with manganese dioxide in aqueous phase: Kinetics, pathways and toxicity assessment. 2017 , 52, 135-143		7
153	Morphology evolution and excellent visible-light photocatalytic activity of BiOBr hollow microspheres. 2017 , 92, 1236-1247		17
152	Influence of NOM and SS on the BPA removal via peroxidase catalyzed reactions: Kinetics and pathways. <i>Separation and Purification Technology</i> , 2017 , 173, 244-249	8.3	17
151	Degradation of tetracycline antibiotics by advanced oxidation processes: application of MnO2 nanomaterials. 2017 , 2, 32-42		5
150	Hyper-Cross-linked Porous MoS-Cyclodextrin-Polymer Frameworks: Durable Removal of Aromatic Phenolic Micropollutant from Water. 2018 , 90, 3621-3627		24
149	Oxidative Degradation of Bisphenol A Using Recyclable Nanomaterials. 2018 , 28, 535-547		
148	Role of oxalate in permanganate oxidation of 4-chlorophenol. <i>Chemosphere</i> , 2018 , 203, 117-122	8.4	7
147	Plasmonic photocatalysis: complete degradation of bisphenol A by a gold nanoparticle-reduced graphene oxide composite under visible light. 2018 , 17, 628-637		12
146	Structural Transformation of Birnessite by Fulvic Acid under Anoxic Conditions. <i>Environmental Science & Environmental Science</i>	10.3	52
145	Chlorination of bisphenol S: Kinetics, products, and effect of humic acid. Water Research, 2018, 131, 208	-221.7	39
144	Oxidation of Eblockers by birnessite: Kinetics, mechanism and effect of metal ions. <i>Chemosphere</i> , 2018 , 194, 588-594	8.4	7
143	Oxidative transformation kinetics and pathways of albendazole from reactions with manganese dioxide. <i>Journal of Hazardous Materials</i> , 2018 , 347, 299-306	12.8	12
142	Anoxic conditions are beneficial for abiotic diclofenac removal from water with manganese oxide (MnO). <i>Environmental Science and Pollution Research</i> , 2018 , 25, 10141-10147	5.1	10
141	Nano-MnO-mediated transformation of triclosan with humic molecules present: kinetics, products, and pathways. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 14416-14425	5.1	4
140	Manganese oxides and their application to metal ion and contaminant removal from wastewater. 2018 , 26, 264-280		71

139	Organo-montmorillonites for efficient and rapid water remediation: sequential and simultaneous adsorption of lead and bisphenol A. 2018 , 15, 286		11
138	Re-evaluation of stability and toxicity of silver sulfide nanoparticle in environmental water: Oxidative dissolution by manganese oxide. 2018 , 243, 1242-1251		16
137	Effect of MnO Phase Structure on the Oxidative Reactivity toward Bisphenol A Degradation. <i>Environmental Science & Environmental Science & Environment</i>	10.3	107
136	Chemical Regeneration of Manganese Oxide-Coated Sand for Oxidation of Organic Stormwater Contaminants. <i>Environmental Science & Environmental Science </i>	10.3	23
135	Application of manganese oxides under anoxic conditions to remove diclofenac from water. 2018 , 6, 5061-5068		6
134	Occurrence, endocrine-related bioeffects and fate of bisphenol A chemical degradation intermediates and impurities: A review. <i>Chemosphere</i> , 2018 , 207, 469-480	8.4	37
133	Reaction of bisphenol A with synthetic and commercial MnO: spectroscopic and kinetic study. 2018 , 20, 1046-1055		4
132	Removal of bisphenol A by Fe-impregnated activated carbons. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 25869-25879	5.1	8
131	Transformation of bisphenol AF and bisphenol S by manganese dioxide and effect of iodide. <i>Water Research</i> , 2018 , 143, 47-55	12.5	44
130	Oxidation of bisphenol A by nonradical activation of peroxymonosulfate in the presence of amorphous manganese dioxide. <i>Chemical Engineering Journal</i> , 2018 , 352, 1004-1013	14.7	102
130 129		14.7	102
	amorphous manganese dioxide. <i>Chemical Engineering Journal</i> , 2018 , 352, 1004-1013	14.7	102
129	amorphous manganese dioxide. <i>Chemical Engineering Journal</i> , 2018 , 352, 1004-1013 Integrated Systems for Removal of BPA from Wastewater. 2019 , 103-115	14.7	
129	amorphous manganese dioxide. <i>Chemical Engineering Journal</i> , 2018 , 352, 1004-1013 Integrated Systems for Removal of BPA from Wastewater. 2019 , 103-115 Bisphenol A Removal from Water and Wastewater. 2019 , Endocrine-Disrupting Pollutants in Industrial Wastewater and Their Degradation and Detoxification	8.4	8
129 128 127	amorphous manganese dioxide. <i>Chemical Engineering Journal</i> , 2018 , 352, 1004-1013 Integrated Systems for Removal of BPA from Wastewater. 2019 , 103-115 Bisphenol A Removal from Water and Wastewater. 2019 , Endocrine-Disrupting Pollutants in Industrial Wastewater and Their Degradation and Detoxification Approaches. 2019 , 121-142 Heterogeneous Fenton-like catalyst for treatment of rhamnolipid-solubilized hexadecane	8.4 10.2	8
129 128 127	amorphous manganese dioxide. <i>Chemical Engineering Journal</i> , 2018 , 352, 1004-1013 Integrated Systems for Removal of BPA from Wastewater. 2019 , 103-115 Bisphenol A Removal from Water and Wastewater. 2019 , Endocrine-Disrupting Pollutants in Industrial Wastewater and Their Degradation and Detoxification Approaches. 2019 , 121-142 Heterogeneous Fenton-like catalyst for treatment of rhamnolipid-solubilized hexadecane wastewater. <i>Chemosphere</i> , 2019 , 236, 124387 Polymerization of micropollutants in natural aquatic environments: A review. <i>Science of the Total</i>	10.2	8 3 64
129 128 127 126	Integrated Systems for Removal of BPA from Wastewater. 2019, 103-115 Bisphenol A Removal from Water and Wastewater. 2019, Endocrine-Disrupting Pollutants in Industrial Wastewater and Their Degradation and Detoxification Approaches. 2019, 121-142 Heterogeneous Fenton-like catalyst for treatment of rhamnolipid-solubilized hexadecane wastewater. Chemosphere, 2019, 236, 124387 Polymerization of micropollutants in natural aquatic environments: A review. Science of the Total Environment, 2019, 693, 133751 Complete degradation of bisphenol A and nonylphenol by a composite of biogenic manganese oxides and Escherichia coli cells with surface-displayed multicopper oxidase CotA. Chemical	10.2	8 3 64 16

121	Hydrothermal synthesis of manganese oxide and nitrogen doped graphene (NG-MnO2) nanohybrid for visible light degradation of methyl orange dye. 2019 , 117, 2477-2486		4
120	Effects of metal cations on coupled birnessite structural transformation and natural organic matter adsorption and oxidation. 2019 , 250, 292-310		23
119	Enhanced transformation of sulfonamide antibiotics by manganese(IV) oxide in the presence of model humic constituents. <i>Water Research</i> , 2019 , 153, 200-207	12.5	33
118	Impact of bisphenol A influent concentration and reaction time on MnO transformation in a stirred flow reactor. 2019 , 21, 19-27		11
117	Mechanisms of bisulfite/MnO-accelerated transformation of methyl parathion. <i>Journal of Hazardous Materials</i> , 2019 , 379, 120756	12.8	11
116	Modified graphene oxide as manganese oxide support for bisphenol A degradation. <i>Chemosphere</i> , 2019 , 225, 524-534	8.4	11
115	Activation of manganese dioxide with bisulfite for enhanced abiotic degradation of typical organophosphorus pesticides: Kinetics and transformation pathway. <i>Chemosphere</i> , 2019 , 226, 858-864	8.4	25
114	Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenol A degradation under acidic conditions. <i>Chemical Engineering Journal</i> , 2019 , 370, 906-915	14.7	98
113	Removal of 17Eestradiol from secondary wastewater treatment plant effluent using Fe-Saturated montmorillonite. <i>Chemosphere</i> , 2019 , 224, 480-486	8.4	3
112	Oxidation of methylparaben (MeP) and p-hydroxybenzoic acid (p-HBA) by manganese dioxide (MnO) and effects of iodide: Efficiency, products, and toxicity. <i>Science of the Total Environment</i> , 2019 , 661, 670-677	10.2	12
111	Effect of environmental factors on the oxidative transformation of cephalosporin antibiotics by manganese dioxides. 2019 , 21, 692-700		6
110	Degradation of endocrine disruptor, bisphenol-A, on an mixed oxidation state manganese oxide/modified graphite oxide composite: A role of carbonaceous phase. 2019 , 539, 516-524		31
109	Persulfate Activation on Crystallographic Manganese Oxides: Mechanism of Singlet Oxygen Evolution for Nonradical Selective Degradation of Aqueous Contaminants. <i>Environmental Science & Environmental Science</i>	10.3	408
108	Removal of Diclofenac from Aqueous Phase by Birnessite: Effects of pH and Common Ions. 2019 , 230, 1		7
107	Enhanced degradation performance of bisphenol M using peroxymonosulfate activated by zero-valent iron in aqueous solution: Kinetic study and product identification. <i>Chemosphere</i> , 2019 , 221, 314-323	8.4	26
106	Enrichment and degradation of tetracycline using three-dimensional graphene/MnO2 composites. <i>Chemical Engineering Journal</i> , 2019 , 358, 1139-1146	14.7	50
105	Photochemical activation of seemingly inert SO in specific water environments. <i>Chemosphere</i> , 2019 , 214, 399-407	8.4	4
104	Bisulfite triggers fast oxidation of organic pollutants by colloidal MnO. <i>Journal of Hazardous Materials</i> , 2019 , 363, 412-420	12.8	25

Oxidative removal of aromatic amino acids by manganese dioxide: kinetic modeling and effect of co-solutes. **2019**, 40, 37-43

102	Photocatalysis and catalytic wet air oxidation: Degradation and toxicity of bisphenol A containing wastewaters. 2020 , 41, 3272-3283		6
101	A novel hollow-sphere cyclodextrin nanoreactor for the enhanced removal of bisphenol A under visible irradiation. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121267	12.8	19
100	Ferrate oxidation of bisphenol F and removal of oxidation products with ferrate resulted particles. <i>Chemical Engineering Journal</i> , 2020 , 383, 123167	14.7	26
99	Visible light and fulvic acid assisted generation of Mn(III) to oxidize bisphenol A: The effect of tetrabromobisphenol A. <i>Water Research</i> , 2020 , 169, 115273	12.5	28
98	Enhanced Transformation of Emerging Contaminants by Permanganate in the Presence of Redox Mediators. <i>Environmental Science & Enp.; Technology</i> , 2020 , 54, 1909-1919	10.3	18
97	Organic structure and solid characteristics determine reactivity of phenolic compounds with synthetic and reclaimed manganese oxides. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 540-553	4.2	9
96	Insights for optimum cation defects in photocatalysis: A case study of hematite nanostructures. 2020 , 264, 118506		13
95	Structure-Reactivity Relationships in the Adsorption and Degradation of Substituted Phenylarsonic Acids on Birnessite (EMnO). <i>Environmental Science & Emp; Technology</i> , 2020 , 54, 1475-1483	10.3	20
94	Ferrate Oxidation of Phenolic Compounds in Iodine-Containing Water: Control of Iodinated Aromatic Products. <i>Environmental Science & Environmental Sci</i>	10.3	14
93	Encapsulation of biogenic manganese oxide and Pseudomonas putida MnB1 for removing 17		2
92	A novel nitrogen-containing covalent organic framework adsorbent for the efficient removal of bisphenol A from aqueous solution. 2020 , 113, 204-213		4
91	Detoxification of Endocrine Disruptors in Water Using Visible-Light-Active Nanostructures: A Review. 2020 , 3, 11659-11687		11
90	Nanostructured manganese oxides exhibit facet-dependent oxidation capabilities. <i>Environmental Science: Nano</i> , 2020 , 7, 3840-3848	7.1	2
89	Coupled effects of Mn(II), pH and anionic ligands on the reactivity of nanostructured birnessite. <i>Environmental Science: Nano</i> , 2020 , 7, 4022-4031	7.1	3
88	Toxicity and biotransformation of bisphenol S in freshwater green alga Chlorella vulgaris. <i>Science of the Total Environment</i> , 2020 , 747, 141144	10.2	6
87	Removal of 1,4-Naphthoquinone by Birnessite-Catalyzed Oxidation: Effect of Phenolic Mediators and the Reaction Pathway. 2020 , 17,		1
86	Contrasting impacts of pH on the abiotic transformation of hydrochar-derived dissolved organic matter mediated by EMnO2. 2020 , 378, 114627		14

85	Use of Emanganese dioxide for the removal of acetaminophen from aquatic environment: Kinetic II thermodynamic analysis and transformation products identification. 2020 , 8, 104565		4
84	Identifying the mechanisms of cation inhibition of phenol oxidation by acid birnessite. 2020 , 49, 1644-16	554	1
83	pH-Dependent Degradation of Diclofenac by a Tunnel-Structured Manganese Oxide. 2020 , 12, 2203		О
82	Tunable Mn Oxidation State and Redox Potential of Birnessite Coexisting with Aqueous Mn(II) in Mildly Acidic Environments. 2020 , 10, 690		3
81	Environmental Soil Remediation and Rehabilitation. <i>Applied Environmental Science and Engineering for A Sustainable Future</i> , 2020 ,	0.5	0
80	Promoted photoelectrocatalytic degradation of BPA with peroxymonosulfate on a MnFe2O4 modified carbon paper cathode. <i>Chemical Engineering Journal</i> , 2020 , 399, 125088	14.7	27
79	Significant Effect of Evaporation Process on the Reaction of Sulfamethoxazole with Manganese Oxide. <i>Environmental Science & Environmental Science & E</i>	10.3	5
78	Accelerated photoelectron transmission by carboxymethyl Eyclodextrin for organic contaminants removal: An alternative to noble metal catalyst. <i>Journal of Hazardous Materials</i> , 2020 , 393, 122414	12.8	13
77	Effects of Surfactants on the Degradation of Diclofenac by Manganese Oxide. 2020 , 17,		4
76	Formation and enhanced photodegradation of chlorinated derivatives of bisphenol A in wastewater treatment plant effluent. <i>Water Research</i> , 2020 , 184, 116002	12.5	8
75	Galvanic oxidation processes (GOPs): An effective direct electron transfer approach for organic contaminant oxidation. <i>Science of the Total Environment</i> , 2020 , 743, 140828	10.2	5
74	Removal of manganous dithionate (MnSO) with MnO from the desulfurization manganese slurry 2020 , 10, 1430-1438		2
73	Synergistic multiple active species driven fast estrone oxidation by EMnO in the existence of methanol. <i>Science of the Total Environment</i> , 2021 , 761, 143201	10.2	2
72	Hydrothermal preparation of BIIiO2-graphene oxide ternary nanocomposite, characterization and photocatalytic degradation of bisphenol A under simulated solar irradiation. 2021 , 123, 105591		16
71	Phenol driven changes onto MnO surface for efficient removal of methyl parathion: The role of adsorption. <i>Chemosphere</i> , 2021 , 269, 128695	8.4	6
70	Removal of lincomycin from aqueous solution by birnessite: kinetics, mechanism, and effect of common ions. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 3590-3600	5.1	O
69	Oxidative removal of sulfadiazine using synthetic and natural manganese dioxides. 2021 , 42, 2254-2266		4
68	Impacts of environmental levels of hydrogen peroxide and oxyanions on the redox activity of MnO particles. 2021 , 23, 1351-1361		1

67	Efficient Degradation of 2,4-Dichlorophenol on Activation of Peroxymonosulfate Mediated by MnO. 2021 , 107, 255-262		2
66	Orderly Porous Covalent Organic Frameworks-based Materials: Superior Adsorbents for Pollutants Removal from Aqueous Solutions. 2021 , 2, 100076		144
65	Regenerated Manganese-Oxide Coated Sands: The Role of Mineral Phase in Organic Contaminant Reactivity. <i>Environmental Science & Environmental Science </i>	10.3	2
64	Comparative study on the toxicity and removal of bisphenol S in two typical freshwater algae. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 36861-36869	5.1	O
63	UV Stimulated Manganese Dioxide for the Persulfate Catalytic Degradation of Bisphenol A. 2021 , 11, 502		4
62	pH-Dependent mechanisms and kinetics of the removal of acetaminophen by manganese dioxide. 2021 , 9, 105129		5
61	Enhanced transformation of phenolic compounds by manganese(IV) oxide, manganese(II) and permanganate in the presence of ligands: The determination and role of Mn(III). <i>Separation and Purification Technology</i> , 2021 , 261, 118272	8.3	5
60	Role of TEMPO in Enhancing Permanganate Oxidation toward Organic Contaminants. <i>Environmental Science & Environmental </i>	10.3	5
59	Boosted activity of EMnO2 by Kenaf derived carbon fiber for high-efficient oxidative degradation of bisphenol A in water. 2021 , 203, 109596		8
58	Removal of acetaminophen through direct electron transfer by reactive MnO: Efficiency, mechanism and pathway. <i>Science of the Total Environment</i> , 2021 , 769, 144377	10.2	6
57	Simultaneous oxidation of 4-aminophenylarsonic acid and adsorption of the produced inorganic arsenic by a combination of Co3O4-La2CO5@RSBC with peroxymonosulfate. <i>Chemical Engineering Journal</i> , 2021 , 413, 127417	14.7	7
56	Unrecognized role of humic acid as a reductant in accelerating fluoroquinolones oxidation by aqueous permanganate. 2021 , 33, 447-447		О
55	Ruthenium isomorphic substitution into manganese oxide octahedral molecular sieve OMS-2: Comparative physic-chemical and catalytic studies of Ru versus abundant metal cationic dopants. 2021 ,		3
54	Adsorption performance of modified agricultural waste materials for removal of emerging micro-contaminant bisphenol A: A comprehensive review. <i>Science of the Total Environment</i> , 2021 , 780, 146629	10.2	33
53	A Comprehensive Assessment of Catalytic Performances of Mn2O3 Nanoparticles for Peroxymonosulfate Activation during Bisphenol A Degradation. 2021 , 11, 993		2
52	Oxidative treatment of bisphenol A in municipal wastewater reverse osmosis concentrate using Ferrate(VI). 2021 , 9, 105462		3
51	Degradation of Adsorbed Bisphenol A by Soluble Mn(III). <i>Environmental Science & Environmental Science</i>	10.3	2
50	Effective activation of peroxymonosulfate with natural manganese-containing minerals through a nonradical pathway and the application for the removal of bisphenols. <i>Journal of Hazardous Materials</i> , 2021 , 417, 126152	12.8	5

49	Oxidative transformation of emerging organic contaminants by aqueous permanganate: Kinetics, products, toxicity changes, and effects of manganese products. <i>Water Research</i> , 2021 , 203, 117513	12.5	7
48	Biologically mediated abiotic degradation (BMAD) of bisphenol A by manganese-oxidizing bacteria. Journal of Hazardous Materials, 2021 , 417, 125987	12.8	6
47	Spin glass behavior and oxidative catalytic property of Zn2MnO4 from a metathesis driven metastable precursor. 2021 , 157, 110206		1
46	Facile synthesis of high crystallinity and oxygen vacancies rich bismuth oxybromide upconversion nanosheets by air-annealing for UVII is INIR broad spectrum driven Bisphenol A degradation. <i>Chemical Engineering Journal</i> , 2021 , 421, 127868	14.7	8
45	Enhanced abatement of pharmaceuticals by permanganate via the addition of CoO nanoparticles. <i>Chemosphere</i> , 2021 , 282, 131115	8.4	2
44	Catalyst bridging-mediated electron transfer for nonradical degradation of bisphenol A via natural manganese ore-cornstalk biochar composite activated peroxymonosulfate. <i>Chemical Engineering Journal</i> , 2021 , 426, 131777	14.7	13
43	Enhanced degradation mechanism of tetracycline by MnO with the presence of organic acids. <i>Chemosphere</i> , 2022 , 286, 131606	8.4	0
42	Abiotic Transformation of Lamotrigine by Redox-Active Mineral and Phenolic Compounds. <i>Environmental Science & Environmental S</i>	10.3	O
41	The Nature of Manganese Oxides in Soils and Their Role as Scavengers of Trace Elements: Implication for Soil Remediation. <i>Applied Environmental Science and Engineering for A Sustainable Future</i> , 2020 , 399-429	0.5	3
40	Measurement, Analysis, and Remediation of Bisphenol-A from Environmental Matrices. <i>Energy, Environment, and Sustainability</i> , 2020 , 423-444	0.8	1
39	A versatile strategy to fabricate magnetic dummy molecularly imprinted mesoporous silica particles for specific magnetic separation of bisphenol A. <i>New Journal of Chemistry</i> , 2019 , 43, 3400-3406	3 ^{.6}	15
38	In-Situ Oxidative Degradation of Emerging Contaminants in Soil and Groundwater Using a New Class of Stabilized MnO2 Nanoparticles. <i>Advances in Environmental Engineering and Green Technologies Book Series</i> , 112-136	0.4	1
37	ab initio study of Mn-based systems for oxidative degradation. <i>Chemosphere</i> , 2021 , 291, 132706	8.4	О
36	Mechanistic study of oxidative removal of bisphenol A by pristine nanocatalyst Mn3O4/peroxymonosulfate. <i>Separation and Purification Technology</i> , 2022 , 281, 119882	8.3	5
35	Aluminum-based layered metal oxides activating peroxymonosulfate for bisphenol A degradation via surface-bound sulfate radicals and singlet oxygen. <i>Journal of Hazardous Materials</i> , 2022 , 424, 12751.	5 ^{12.8}	2
34	Enhanced photocatalytic efficiency by direct photoexcited electron transfer from pollutants adsorbed on the surface valence band of BiOBr modified with graphitized C. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127502	12.8	5
33	Reuse of Water: An Integral Approach for Survival. 2021 , 489-512		1
32	Engineered Nanoconfinement Accelerating Spontaneous Manganese-Catalyzed Degradation of Organic Contaminants. <i>Environmental Science & Environmental Sc</i>	10.3	4

31	The removal performance and mechanisms of tetracycline over Mn-rich limonite <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	0
30	Nano-goethite-mediated transformation of anthracene derivatives under low moisture conditions. <i>Environmental Science: Nano</i> , 2022 , 9, 289-301	7.1	
29	Nanoparticles in the Earth surface systems and their effects on the environment and resource. <i>Gondwana Research</i> , 2022 ,	5.1	1
28	Photocatalytic Degradation of 4,4Pisopropylidenebis(2,6-dibromophenol) on Magnetite Catalysts vs. Ozonolysis Method: Process Efficiency and Toxicity Assessment of Disinfection By-Products <i>International Journal of Molecular Sciences</i> , 2022 , 23,	6.3	O
27	Removal effects and potential mechanisms of bisphenol A and 17 https://ethynylestradiol.by Biogenic Mn oxides generated by Bacillus sp. WH4 <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	0
26	Polarity Dependence of Transport of Pharmaceuticals and Personal Care Products Through Birnessite-Coated Porous Media. <i>Frontiers in Environmental Science</i> , 2021 , 9,	4.8	
25	Covalent organic frameworks as promising adsorbent paradigm for environmental pollutants from aqueous matrices: Perspective and challenges <i>Science of the Total Environment</i> , 2022 , 155279	10.2	5
24	Enhanced degradation of emerging contaminants by permanganate/quinone process: Case study with bisphenol A <i>Water Research</i> , 2022 , 219, 118528	12.5	1
23	Effect of Separate and Combined Toxicity of Bisphenol A and Zinc on the Soil Microbiome. <i>International Journal of Molecular Sciences</i> , 2022 , 23, 5937	6.3	1
22	Influence of chemical and mineralogical soil properties on the adsorption of sulfamethoxazole and diclofenac in Mediterranean soils. <i>Chemical and Biological Technologies in Agriculture</i> , 2022 , 9,	4.4	O
21	New Insights Into Humic Acid-boosted Conversion of Bisphenol A By Laccase-activated Co-polyreaction: Kinetics, Products, and Phytotoxicity. <i>Journal of Hazardous Materials</i> , 2022 , 129269	12.8	0
20	Novel MnO2/reduced graphene oxide micromotors for high-efficient removal of tetrabromobisphenol A in aqueous. <i>Environmental Science: Water Research and Technology</i> ,	4.2	
19	Abatement of Organic Contaminants by Mn(VII)/TEMPOs: Effects of TEMPOs Structure, Organic Contaminant Speciation, and Active Oxidizing Species. <i>Environmental Science & Environmental Science & Envir</i>	10.3	1
18	Degradation of chlortetracycline hydrochloride by peroxymonosulfate activation on natural manganese sand through response surface methodology. <i>Environmental Science and Pollution Research</i> ,	5.1	1
17	New insights into atrazine degradation by the novel manganese dioxide/bisulfite system: Product formation and Mn reuse. <i>Journal of Cleaner Production</i> , 2022 , 133106	10.3	0
16	Inhibition mechanisms of Fe2+/Fe3+ and Mn2+ on fungal laccase-enabled bisphenol a polyreaction. <i>Chemosphere</i> , 2022 , 307, 135685	8.4	
15	Trace Mn(II)-catalyzed periodate oxidation of organic contaminants not relying on any transient reactive species: The substrate-dependent dual roles of in-situ formed colloidal MnO2. 2023 , 451, 139	106	1
14	Activation of peroxymonosulfate via peroxyborate: Electrophilic substitution induced strong electrophile generation process. 2023 , 451, 138925		O

CITATION REPORT

13	Water with low ionic strength recovers the passivated birnessite-coated sand reactivity towards lincomycin removal. 2022 , 120306	О
12	Enhanced visible-light photocatalytic activity with Fe2O3InO@C/g-C3N4 heterojunction: Characterization, kinetics, and mechanisms. 2022 , 377, 134511	1
11	Enhancement and Inhibition of Oxidation in Phenolic Compound Mixtures with Manganese Oxides.	0
10	Enhanced Sludge Dewaterability by Efficient Oxidation of EMn2O3/Peroxymonosulfate: Analysis of the Mechanism and Evaluation of Engineering Application.	O
9	Promoted BPA degradation in food waste leachate via alkali-fluffed CoFe2O4@CoSiOx activated PMS under the assistance of inherent acetate. 2023 , 306, 122566	O
8	Efficiency of humin immobilized in manganesellginate beads for improving irreversible sorption and oxidative removal of 1-naphthol. 2023 , 51, 103343	O
7	Preparation of Porous and Durable Metakaolin-Based Alkali-Activated Materials with Active Metal as Composites for Catalytic Wet Air Oxidation.	O
6	Improvement of Fe(VI) oxidation by NaClO on degrading phenolic substances and reducing DBPs formation potential. 2023 , 864, 161080	O
5	Mn(III)-mediated bisphenol a degradation: Mechanisms and products. 2023, 235, 119787	O
4	Enhanced removal of phenolic compounds via irreversible sorption using manganese oxides immobilized on oxidized humin. 2023 , 122, 472-481	O
3	BPA degradation using biogenic manganese oxides produced by an engineered Escherichia coli with a non-blue laccase from Bacillus sp. GZB. 2023 , 326, 138407	O
2	Could manganate be an alternative of permanganate for micropollutant abatement?. 2023, 321, 138094	O
1	Synthesis of MnS/MnO Decorated N, S-Doped Carbon Derived from a Mn(II)-Coordinated Polymer for the Catalytic Oxidation of H 2 O 2 and Bisphenol A. 2210549	O