Transition metal-catalyzed C–H activation reactions: enantioselectivity

Chemical Society Reviews 38, 3242

DOI: 10.1039/b816707a

Citation Report

#	Article	IF	CITATIONS
1	Transition metal-catalyzed Câ€"H activation reactions: diastereoselectivity and enantioselectivity. Chemical Society Reviews, 2009, 38, 3242.	18.7	1,498
2	Ruthenium-Catalyzed Hydroxylation of Unactivated Tertiary Câ^'H Bonds. Journal of the American Chemical Society, 2010, 132, 10202-10204.	6.6	123
3	Rhenium-Catalyzed Diastereoselective Synthesis of Aminoindanes via the Insertion of Allenes into a Câ^'H Bond. Organic Letters, 2010, 12, 4274-4276.	2.4	101
4	Palladium-Catalyzed Carbo-Heterofunctionalization of Alkenes for the Synthesis of Oxindoles and Spirooxindoles. Organic Letters, 2010, 12, 4498-4501.	2.4	188
5	A Direct Intramolecular $\hat{Ca}^{-1}H$ Amination Reaction Cocatalyzed by Copper(II) and Iron(III) as Part of an Efficient Route for the Synthesis of Pyrido[1,2- <i>a</i>)benzimidazoles from <i>N</i> -Aryl-2-aminopyridines. Journal of the American Chemical Society, 2010, 132, 13217-13219.	6.6	338
6	Rhodium-Catalyzed Oxidative Câ^'H Arylation of 2-Arylpyridine Derivatives via Decarbonylation of Aromatic Aldehydes. Journal of the American Chemical Society, 2010, 132, 12212-12213.	6.6	142
7	Iron-Facilitated Direct Oxidative Câ^'H Transformation of Allylarenes or Alkenes to Alkenyl Nitriles. Journal of the American Chemical Society, 2010, 132, 15893-15895.	6.6	184
8	Transitionâ€Metal atalyzed Direct C–H Alkenylation, Alkynylation, Benzylation, and Alkylation of (Hetero)arenes. European Journal of Organic Chemistry, 2010, 2010, 6495-6516.	1.2	175
10	Functionalization of Organic Molecules by Transitionâ€Metalâ€Catalyzed C(sp ³)H Activation. Chemistry - A European Journal, 2010, 16, 2654-2672.	1.7	1,032
11	Transitionâ€Metalâ€Catalyzed Synthesis of Hydroxylated Arenes. Chemistry - A European Journal, 2010, 16, 5274-5284.	1.7	176
12	Pd ^{II} â€Catalysed CH Functionalisation of Indoles and Pyrroles Assisted by the Removable <i>N</i> à€(2â€Pyridyl)sulfonyl Group: C2â€Alkenylation and Dehydrogenative Homocoupling. Chemistry - A European Journal, 2010, 16, 9676-9685.	1.7	177
17	Enantioselective Palladiumâ€Catalyzed Direct Alkylation and Olefination Reaction of Simple Arenes. Angewandte Chemie - International Edition, 2010, 49, 5826-5828.	7.2	59
18	Palladiumâ€Catalyzed Ringâ€Expansion Reaction of Indoles with Alkynes: From Indoles to Tetrahydroquinoline Derivatives Under Mild Reaction Conditions. Angewandte Chemie - International Edition, 2010, 49, 4036-4041.	7.2	79
19	Enantioselective Oxidative Crossâ€Coupling Reaction of 3â€Indolylmethyl CH Bonds with 1,3â€Dicarbonyls Using a Chiral Lewis Acidâ€Bonded Nucleophile to Control Stereochemistry. Angewandte Chemie - International Edition, 2010, 49, 5558-5562.	7.2	192
20	<i>syn</i> â€Selective Rhodium(I)â€Catalyzed Allylations of Ketimines Proceeding through a Directed CH Activation/Allene Addition Sequence. Angewandte Chemie - International Edition, 2010, 49, 8181-8184.	7.2	225
21	Mild oxidation of hydrocarbons by tert-butyl hydroperoxide catalyzed by electron deficient manganese(III) corroles. Journal of Molecular Catalysis A, 2010, 332, 1-6.	4.8	30
22	Models for the basis of enantioselection in palladium mediated C–H activation reactions. Tetrahedron: Asymmetry, 2010, 21, 2782-2787.	1.8	17
23	Ortho-Palladation of (Z)-2-Aryl-4-Arylidene-5(4H)-Oxazolones. Structure and Functionalization. Organometallics, 2010, 29, 1428-1435.	1.1	16

#	Article	IF	Citations
24	Cu(II)-Mediated Methylthiolation of Aryl Câ^'H Bonds with DMSO. Organic Letters, 2010, 12, 1644-1647.	2.4	244
25	Pd(II)-Catalyzed Enantioselective Câ^'H Olefination of Diphenylacetic Acids. Journal of the American Chemical Society, 2010, 132, 460-461.	6.6	427
26	Regioselective functionalization of iminophosphoranes through Pd-mediated C–H bond activation: C–C and C–X bond formation. Dalton Transactions, 2010, 39, 10422.	1.6	13
27	Inverted regioselectivity of C–H amination: Unexpected oxidation at β- rather than γ-C–H. Organic and Biomolecular Chemistry, 2010, 8, 4246.	1.5	16
28	Pd(II)-Catalyzed Synthesis of Carbolines by Iminoannulation of Internal Alkynes via Direct Câ [^] H Bond Cleavage Using Dioxygen as Oxidant. Organic Letters, 2010, 12, 1540-1543.	2.4	123
29	Controlling Factors for Câ^'H Functionalization versus Cyclopropanation of Dihydronaphthalenes. Journal of Organic Chemistry, 2010, 75, 1927-1939.	1.7	48
30	Palladium-Catalyzed Tandem Diperoxidation/Câ [^] H Activation Resulting in Diperoxy-oxindole in Air. Organic Letters, 2010, 12, 4482-4485.	2.4	53
31	Palladium(II)-Catalyzed <i>Ortho</i> Arylation of 2-Phenoxypyridines with Potassium Aryltrifluoroborates via Câ^3H Functionalization. Organometallics, 2010, 29, 4058-4065.	1.1	76
32	Copper-Catalyzed Amination of Primary Benzylic Câ^'H Bonds with Primary and Secondary Sulfonamides. Journal of Organic Chemistry, 2010, 75, 2726-2729.	1.7	116
33	Facile Synthesis of 2-(Phenylthio)phenols by Copper(I)-Catalyzed Tandem Transformation of Câ^'S Coupling/Câ^'H Functionalization. Journal of the American Chemical Society, 2010, 132, 15531-15533.	6.6	161
34	Selectivity enhancement in functionalization of C–H bonds: A review. Organic and Biomolecular Chemistry, 2010, 8, 4217.	1.5	198
35	Palladium-catalyzed desulfitative C–H arylation of azoles with sodium sulfinates. Organic and Biomolecular Chemistry, 2011, 9, 7675.	1.5	99
36	Probing the catalytic potential of chloro nitrosyl rhenium(i) complexes. Dalton Transactions, 2011, 40, 2578.	1.6	8
37	Enantioselective synthesis of 2-methyl indolines by palladium catalysed asymmetric C(sp3)–H activation/cyclisation. Chemical Communications, 2011, 47, 11483.	2.2	181
38	Hydroxyl-directed C–H carbonylation enabled by mono-N-protected amino acid ligands: An expedient route to 1-isochromanones. Chemical Science, 2011, 2, 967.	3.7	187
39	Rh Catalyzed C–H Activation and Oxidative Olefination without Chelate Assistance: On the Reactivity of Bromoarenes. Organic Letters, 2011, 13, 6346-6349.	2.4	90
40	An Acid-Catalyzed Formal Allylic Câ^'H Oxidation of Aryl Cycloalkenes withN-Propylthiosuccinimide. Organic Letters, 2011, 13, 1548-1551.	2.4	25
41	Smooth C(alkyl)–H bond activation in rhodium complexes comprising abnormal carbene ligands. Dalton Transactions, 2011, 40, 9911.	1.6	35

#	ARTICLE	IF	Citations
42	Cycloruthenated Complexes from Iminophosphoranes: Synthesis, Structure, and Reactivity with Internal Alkynes. Organometallics, 2011, 30, 642-648.	1.1	20
43	FeCl3/Nal-Catalyzed Allylic C–H Oxidation of Arylalkenes with a Catalytic Amount of Disulfide under Air. Journal of Organic Chemistry, 2011, 76, 7269-7274.	1.7	28
44	lodo-Carbocyclization of Electron-Deficient Alkenes: Synthesis of Oxindoles and Spirooxindoles. Organic Letters, 2011, 13, 2244-2247.	2.4	103
45	Novel Cyclopalladated Imino-thiophenes: Synthesis and Reactivity Toward Alkynes and Carbon Monoxide. Inorganic Chemistry, 2011, 50, 8598-8607.	1.9	19
46	Allylic Câ€"H bond activation and functionalization mediated by tris(oxazolinyl)borato rhodium(i) and iridium(i) compounds. Dalton Transactions, 2011, 40, 6500.	1.6	10
47	Ruthenium-Catalyzed Oxidative C–H Bond Alkenylations in Water: Expedient Synthesis of Annulated Lactones. Organic Letters, 2011, 13, 4153-4155.	2.4	309
48	Metal-Free Direct Arylations of Indoles and Pyrroles with Diaryliodonium Salts. Organic Letters, 2011, 13, 2358-2360.	2.4	158
49	Rhodium-Catalyzed Oxidativeortho-Acylation of Benzamides with Aldehydes: Direct Functionalization of the sp2C–H Bond. Organic Letters, 2011, 13, 4390-4393.	2.4	159
50	Palladium-catalyzed cascade reactions of coumarins with alkynes: synthesis of highly substituted cyclopentadiene fused chromones. Chemical Communications, 2011, 47, 5422-5424.	2.2	30
51	C–H Bond Arylations and Benzylations on Oxazol(in)es with a Palladium Catalyst of a Secondary Phosphine Oxide. Organic Letters, 2011, 13, 3082-3085.	2.4	86
52	Copper-Mediated C–H Activation/C–S Cross-Coupling of Heterocycles with Thiols. Journal of Organic Chemistry, 2011, 76, 8999-9007.	1.7	230
53	Palladium-Catalyzed Oxidative <i>sp</i> ² Câ^'H Bond Acylation with Alcohols. Organic Letters, 2011, 13, 1614-1617.	2.4	160
54	Regioselective Orthopalladation of (<i>Z</i>)-2-Aryl-4-Arylidene-5(4 <i>H</i>)-Oxazolones: Scope, Kinetico-Mechanistic, and Density Functional Theory Studies of the Câ€"H Bond Activation. Inorganic Chemistry, 2011, 50, 8132-8143.	1.9	41
56	Rhodium-Catalyzed C–H Amination. An Enabling Method for Chemical Synthesis. Organic Process Research and Development, 2011, 15, 758-762.	1.3	257
57	Stereoselective Rhodium-Catalyzed Amination of Alkenes. Organic Letters, 2011, 13, 5460-5463.	2.4	89
58	Ligand-Accelerated Cross-Coupling of C(sp ²)â€"H Bonds with Arylboron Reagents. Journal of the American Chemical Society, 2011, 133, 18183-18193.	6.6	172
59	C(naphthyl)–H bond activation by rhodium: isolation, characterization and TD-DFT study of the cyclometallates. RSC Advances, 2011, 1, 1279.	1.7	6
60	Palladium-Catalyzed Oxidative Alkynylation of Heterocycles with Terminal Alkynes under Air Conditions. Organic Letters, 2011, 13, 1474-1477.	2.4	133

#	Article	IF	Citations
61	Pâ^'C Bond Activation Chemistry: Evidence for 1,1-Carboboration Reactions Proceeding with Phosphorusâ^'Carbon Bond Cleavage. Journal of the American Chemical Society, 2011, 133, 4610-4616.	6.6	103
62	Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots. Collection of Czechoslovak Chemical Communications, 2011, 76, 859-917.	1.0	450
63	Synthesis of Benzodiquinanes via Tandem Palladium-Catalyzed Semipinacol Rearrangement and Direct Arylation. Organic Letters, 2011, 13, 232-235.	2.4	56
64	Palladium-Catalyzed Direct <i>Ortho</i> Câ€"H Arylation of 2-Arylpyridine Derivatives with Aryltrimethoxysilane. Journal of Organic Chemistry, 2011, 76, 8543-8548.	1.7	64
65	Morpholine catalyzed direct C3 alkenylation of indoles with \hat{l}_{\pm},\hat{l}^2 -unsaturated aldehydes. Chemical Communications, 2011, 47, 8097.	2.2	55
66	Combined C–H Functionalization/Cope Rearrangement with Vinyl Ethers as a Surrogate for the Vinylogous Mukaiyama Aldol Reaction. Journal of the American Chemical Society, 2011, 133, 11940-11943.	6.6	61
67	Electron deficient manganese(III) corrole catalyzed oxidation of alkanes and alkylbenzenes at room temperature. Catalysis Communications, 2011, 12, 1193-1197.	1.6	21
68	Bond Formations between Two Nucleophiles: Transition Metal Catalyzed Oxidative Cross-Coupling Reactions. Chemical Reviews, 2011, 111, 1780-1824.	23.0	1,767
69	Ruthenium-Catalyzed Direct C–H Bond Arylations of Heteroarenes. Organic Letters, 2011, 13, 3332-3335.	2.4	274
70	Guiding principles for site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. Chemical Society Reviews, 2011, 40, 1857.	18.7	916
71	Catalytic C–H amination: the stereoselectivity issue. Chemical Society Reviews, 2011, 40, 1926.	18.7	564
72	An Unexpected Oxidation of Unactivated Methylene C–H Using DIB/TBHP Protocol. Organic Letters, 2011, 13, 4308-4311.	2.4	56
73	Lessons and revelations from biomimetic syntheses. Nature Chemical Biology, 2011, 7, 865-875.	3.9	112
74	Ruthenium-Catalyzed Oxidative Synthesis of 2-Pyridones through C–H/N–H Bond Functionalizations. Organic Letters, 2011, 13, 3278-3281.	2.4	199
75	Investigating N-methoxy-N $\hat{a}\in^2$ -aryl ureas in oxidative C $\hat{a}\in^{\text{``H}}$ olefination reactions: an unexpected oxidation behaviour. Organic and Biomolecular Chemistry, 2011, 9, 4736.	1.5	67
76	Synthesis of Dragmacidin D via Direct C–H Couplings. Journal of the American Chemical Society, 2011, 133, 19660-19663.	6.6	146
77	Synthesis and structure of mono- and di-nuclear complexes of ortho-palladated derived from phosphorus ylides. Journal of Organometallic Chemistry, 2011, 696, 3521-3526.	0.8	13
78	Ruthenium-Catalyzed C–H/N–O Bond Functionalization: Green Isoquinolone Syntheses in Water. Organic Letters, 2011, 13, 6548-6551.	2.4	348

#	ARTICLE	IF	CITATIONS
79	Rh(III)-Catalyzed Directed Câ^'H Olefination Using an Oxidizing Directing Group: Mild, Efficient, and Versatile. Journal of the American Chemical Society, 2011, 133, 2350-2353.	6.6	718
80	Selective functionalisation of saturated C–H bonds with metalloporphyrin catalysts. Chemical Society Reviews, 2011, 40, 1950.	18.7	565
81	Carboxylate-Assisted Transition-Metal-Catalyzed Câ $^{\circ}$ H Bond Functionalizations: Mechanism and Scope. Chemical Reviews, 2011, 111, 1315-1345.	23.0	3,087
82	Challenge and progress: palladium-catalyzed sp3 C–H activation. Catalysis Science and Technology, 2011, 1, 191.	2.1	443
83	Pd(II)-CatalyzedOrthoArylation of 6-Arylpurines with Aryl lodides via Purine-Directed Câ^'H Activation: A New Strategy for Modification of 6-Arylpurine Derivatives. Organic Letters, 2011, 13, 2008-2011.	2.4	67
84	Pd-catalyzed Highly Regio- and Stereocontrolled Direct Alkenylation of Electron-deficient Polyfluoroarenes. Chemistry Letters, 2011, 40, 978-979.	0.7	21
85	Regioselective ortho-acetoxylation/methoxylation of N-(2-benzoylphenyl)benzamides via substrate directed C–H activation. Tetrahedron Letters, 2011, 52, 5926-5929.	0.7	29
86	Phosphine ligand triggered oxidative decarbonylative homocoupling of aromatic aldehydes: selectively generating biaryls and diarylketones. Chemical Communications, 2011, 47, 2161.	2.2	54
87	Pd(II)-Catalyzed Enantioselective Câ€"H Activation of Cyclopropanes. Journal of the American Chemical Society, 2011, 133, 19598-19601.	6.6	370
88	C–H functionalization logic in total synthesis. Chemical Society Reviews, 2011, 40, 1976.	18.7	1,217
89	Radicals in Transition Metal Catalyzed Reactions? Transition Metal Catalyzed Radical Reactions?: A Fruitful Interplay Anyway. Topics in Current Chemistry, 2011, 320, 323-451.	4.0	79
90	Cu(II) Catalyzed Imine C–H Functionalization Leading to Synthesis of 2,5-Substituted 1,3,4-Oxadiazoles. Organic Letters, 2011, 13, 5976-5979.	2.4	132
91	Towards mild metal-catalyzed C–H bond activation. Chemical Society Reviews, 2011, 40, 4740.	18.7	2,295
92	Palladiumâ€Catalyzed Direct Benzylation of Xanthines. ChemCatChem, 2011, 3, 893-897.	1.8	26
93	Induced Intramolecularity: An Effective Strategy in Catalysis. ACS Catalysis, 2011, 1, 877-886.	5.5	77
94	Transition metal-catalyzed arylation of unactivated C(sp3)â€"H bonds. Chemical Society Reviews, 2011, 40, 4902.	18.7	779
95	Copper-Catalyzed Amidation of 2-Phenylpyridine with Oxygen as the Terminal Oxidant. Journal of Organic Chemistry, 2011, 76, 4158-4162.	1.7	187
96	Palladium-Catalyzed Direct Olefination of Urea Derivatives withn-Butyl Acrylate by C–H Bond Activation under Mild Reaction Conditions. Organic Letters, 2011, 13, 6137-6139.	2.4	48

#	Article	IF	Citations
97	Pd-Catalyzed Intermolecular C–H Amination with Alkylamines. Journal of the American Chemical Society, 2011, 133, 7652-7655.	6.6	398
98	Transitionâ€metalâ€catalyzed aminations and aziridinations of CH and CC bonds with iminoiodinanes. Chemical Record, 2011, 11, 331-357.	2.9	193
99	Ironâ€Catalyzed CH Fuctionalization of Indoles. Advanced Synthesis and Catalysis, 2011, 353, 2939-2944.	2.1	142
100	CC Bond Formation <i>via</i> CH Activation and CN Bond Formation <i>via</i> Oxidative Amination Catalyzed by Palladium―Polyoxometalate Nanomaterials Using Dioxygen as the Terminal Oxidant. Advanced Synthesis and Catalysis, 2011, 353, 2988-2998.	2.1	62
101	Palladium atalyzed Oxidative CH Bond Acylation of Acetanilides with Benzylic Alcohols. Advanced Synthesis and Catalysis, 2011, 353, 3373-3379.	2.1	86
102	Userâ€Friendly [(Diglyme)NiBr ₂]â€Catalyzed Direct Alkylations of Heteroarenes with Unactivated Alkyl Halides through Cï₺¿H Bond Cleavages. Advanced Synthesis and Catalysis, 2011, 353, 3325-3329.	2.1	72
103	Allâ€Carbonâ€Substituted Quaternary Carbon Atoms in Oxindoles by an Aerobic Palladium(II)â€Catalyzed Ring Closure onto Tri†and Tetrasubstituted Double Bonds. European Journal of Organic Chemistry, 2011, 2011, 1148-1154.	1.2	29
104	Neighboring Acetalâ€Assisted Brønstedâ€Acidâ€Catalyzed Si–H Bond Activation: Divergent Synthesis of Functional Siloxanes through Silylation and Hydrolytic Oxidation of Organosilanes. European Journal of Organic Chemistry, 2011, 2011, 1736-1742.	1.2	17
118	Copper(II)â€Catalyzed <i>metaâ€</i> Selective Direct Arylation of αâ€Aryl Carbonyl Compounds. Angewandte Chemie - International Edition, 2011, 50, 463-466.	7.2	282
119	Bystanding F ⁺ Oxidants Enable Selective Reductive Elimination from Highâ€Valent Metal Centers in Catalysis. Angewandte Chemie - International Edition, 2011, 50, 1478-1491.	7.2	366
120	Enantioselective Rhodiumâ€Catalyzed Allylic CH Activation for the Addition to Conjugated Dienes. Angewandte Chemie - International Edition, 2011, 50, 2144-2147.	7.2	79
121	If CïŁ¿H Bonds Could Talk: Selective CïŁ¿H Bond Oxidation. Angewandte Chemie - International Edition, 2011, 50, 3362-3374.	7.2	1,189
122	Direct Palladiumâ€Catalyzed Intermolecular Allylation of Highly Electronâ€Deficient Polyfluoroarenes. Angewandte Chemie - International Edition, 2011, 50, 5918-5923.	7.2	157
123	Palladium atalyzed Enantioselective Intramolecular Hydroarylation of Alkynes To Form Axially Chiral 4â€Aryl 2â€Quinolinones. Angewandte Chemie - International Edition, 2011, 50, 3963-3967.	7.2	70
124	Combining Gold(I)/Gold(III) Catalysis and CH Functionalization: A Formal Intramolecular [3+2] Annulation towards Tricyclic Indolines and Mechanistic Studies. Angewandte Chemie - International Edition, 2011, 50, 4450-4454.	7.2	117
125	Mutual Activation: Suzuki–Miyaura Coupling through Direct Cleavage of the sp ² CO Bond of Naphtholate. Angewandte Chemie - International Edition, 2011, 50, 7097-7100.	7.2	145
126	Ruthenium atalyzed Oxidative Annulation by Cleavage of CH/NH Bonds. Angewandte Chemie - International Edition, 2011, 50, 6379-6382.	7.2	440
127	Computationally Guided Stereocontrol of the Combined CH Functionalization/Cope Rearrangement. Angewandte Chemie - International Edition, 2011, 50, 9370-9373.	7.2	33

#	ARTICLE	IF	CITATIONS
128	Copper atalyzed Aerobic Oxidative CH Functionalizations: Trends and Mechanistic Insights. Angewandte Chemie - International Edition, 2011, 50, 11062-11087.	7.2	1,212
129	Pd ^{II} â€Catalyzed CH Olefination of <i>N</i> â€(2â€Pyridyl)sulfonyl Anilines and Arylalkylamines. Angewandte Chemie - International Edition, 2011, 50, 10927-10931.	7.2	132
130	Enantioselective Rhodium(I)â€Catalyzed [3+2] Annulations of Aromatic Ketimines Induced by Directed CH Activations. Angewandte Chemie - International Edition, 2011, 50, 11098-11102.	7.2	194
131	Palladium(II)â€Catalyzed Oneâ€Pot Syntheses of 9â€(Pyridinâ€2â€yl)â€9 <i>H</i> à€carbazoles through a Tandem Activation/CX (X=C or N) Formation Process. Chemistry - A European Journal, 2011, 17, 13613-13620.	CH	49
132	Palladiumâ€Catalyzed CH Bond Functionalization of a Metal–Organic Framework (MOF): Mild, Selective, and Efficient. Chemistry - A European Journal, 2011, 17, 11974-11977.	1.7	29
133	Rutheniumâ€Catalyzed Isoquinolone Synthesis through CH Activation Using an Oxidizing Directing Group. Chemistry - A European Journal, 2011, 17, 12573-12577.	1.7	291
134	Rhodiumâ€Catalyzed Annulation of <i>N</i> àêBenzoylsulfonamide with Isocyanide through CH Activation. Chemistry - A European Journal, 2011, 17, 12591-12595.	1.7	142
135	Unsaturated 4,4′-bis-[5(4H)-oxazolones]: Synthesis and evaluation of their ortho-palladation through C–H bond activation. Inorganica Chimica Acta, 2011, 368, 247-251.	1.2	10
136	Iron-facilitated direct oxidative C–H transformation of allyl arenes to alkenyl aldehydes. Tetrahedron Letters, 2011, 52, 3208-3211.	0.7	21
137	Recent Applications of Zirconium Compounds as Catalysts or Reagents in Organic Synthesis. Current Organic Chemistry, 2011, 15, 3800-3823.	0.9	30
139	Oxidations. , 2012, , 491-544.		0
140	Highly Enantioselective Rh-Catalyzed Carboacylation of Olefins: Efficient Syntheses of Chiral Poly-Fused Rings. Journal of the American Chemical Society, 2012, 134, 20005-20008.	6.6	178
141	Palladium-Catalyzed Direct <i>ortho</i> -Acylation through an Oxidative Coupling of Acetanilides with Toluene Derivatives. Journal of Organic Chemistry, 2012, 77, 11339-11344.	1.7	121
142	Rhodium(III)-Catalyzed Direct Oxidative Cross Coupling at the C5 Position of Chromones with Alkenes. Organic Letters, 2012, 14, 6108-6111.	2.4	43
143	5.2 Oxidation: C–O Bond Formation by C–H Activation. , 2012, , 36-68.		6
144	Highly Diastereoselective Synthesis of Tetrahydropyridines by a C–H Activation–Cyclization–Reduction Cascade. Journal of the American Chemical Society, 2012, 134, 4064-4067.	6.6	120
145	Palladium-Catalyzed Cycloaddition of Alkynyl Aryl Ethers with Internal Alkynes via Selective Ortho C–H Activation. Journal of the American Chemical Society, 2012, 134, 6124-6127.	6.6	68
146	Versatile Synthesis of Isocoumarins and α-Pyrones by Ruthenium-Catalyzed Oxidative C–H/O–H Bond Cleavages. Organic Letters, 2012, 14, 930-933.	2.4	262

#	Article	IF	CITATIONS
147	Making expensive dirhodium(ii) catalysts cheaper: Rh(ii) recycling methods. Organic and Biomolecular Chemistry, 2012, 10, 3357.	1.5	43
148	Synthesis of N-alkyl and N-aryl isoquinolones and derivatives via Pd-catalysed C–H activation and cyclization reactions. Organic and Biomolecular Chemistry, 2012, 10, 9429.	1.5	58
149	Intramolecular Ïf-Bond Metathesis Between Carbon–Carbon and Silicon–Silicon Bonds. Organic Letters, 2012, 14, 3230-3232.	2.4	51
150	Synthesis of <i>ortho</i> ê€Acylphenols through the Palladiumâ€Catalyzed Ketoneâ€Directed Hydroxylation of Arenes. Angewandte Chemie - International Edition, 2012, 51, 13075-13079.	7.2	195
151	CATALYTIC ASYMMETRIC INTERMOLECULAR C–H INSERTION OF 1,4-CYCLOHEXADIENE WITH α-ALKYL-α-DIAZOESTERS USING CHIRAL DIRHODIUM(II) CARBOXYLATES. Heterocycles, 2012, 86, 1647.	0.4	11
157	Activation of a C(sp ³)H Bond by a Transient Ïfâ€Alkylpalladium(II) Complex: Synthesis of Spirooxindoles Through a Palladiumâ€Catalyzed Domino Carbopalladation/C(sp ³)C(sp ³) Bondâ€Forming Process. Angewandte Chemie - International Edition. 2012. 51. 11561-11565.	7.2	184
158	Palladiumâ€Catalyzed Dehydrogenation/Oxidative Crossâ€Coupling Sequence of βâ€Heteroatomâ€Substituted Ketones. Angewandte Chemie - International Edition, 2012, 51, 11333-11336.	7.2	113
159	Diverse Reactivity in a Rhodium(III)â€Catalyzed Oxidative Coupling of <i>N</i> à€Allyl Arenesulfonamides with Alkynes. Angewandte Chemie - International Edition, 2012, 51, 12348-12352.	7.2	95
160	Freeâ€Amineâ€Directed Alkenylation of C(sp ²)H and Cycloamination by Palladium Catalysis. Chemistry - A European Journal, 2012, 18, 15816-15821.	1.7	98
161	Copper―and Phosphineâ€Ligandâ€Free Palladiumâ€Catalyzed Direct Allylation of Electronâ€Deficient Polyfluoroarenes with Allylic Chlorides. Chemistry - A European Journal, 2012, 18, 14643-14648.	1.7	73
162	Organocatalytic Enantioselective Dehydrogenative <i>α</i> â€Alkylation of Aldehydes with Benzylic Compounds. Chinese Journal of Chemistry, 2012, 30, 2721-2725.	2.6	21
163	Asymmetric Pd-NHC*-catalyzed coupling reactions. Pure and Applied Chemistry, 2012, 84, 1741-1748.	0.9	16
164	Generation of 4-polyfluoroaryl pyrrolo[1,2-a]quinolines via C–H bond activation. Chemical Communications, 2012, 48, 5028.	2.2	42
165	Synthesis of a [2.2]paracyclophane based planar chiral palladacycle by a highly selective kinetic resolution/C–H activation reaction. Chemical Communications, 2012, 48, 1991-1993.	2.2	45
166	Asymmetric C(sp3)-H/C(Ar) coupling reactions. Highly enantio-enriched indolines via regiodivergent reaction of a racemic mixture. Chemical Science, 2012, 3, 1422.	3.7	161
167	Rhodium-catalyzed oxidative C2-acylation of indoles with aryl and alkyl aldehydes. Chemical Communications, 2012, 48, 5163.	2.2	126
168	Reaction of $N\hat{a}\in \mathbb{Z}$ -(2-alkynylbenzylidene)hydrazide with tertiary amine: a concise synthesis of H-pyrazolo[5,1-a]isoquinolines. RSC Advances, 2012, 2, 5961.	1.7	12
169	Platinum-catalyzed 1,3-acyloxy migration/[1,5]-hydride transfer/cycloaddition sequence: synthesis of ring-fused tetrahydroquinolines. RSC Advances, 2012, 2, 560-565.	1.7	16

#	Article	IF	CITATIONS
170	Rate-Limiting Step of the Rh-Catalyzed Carboacylation of Alkenes: C–C Bond Activation or Migratory Insertion?. Journal of the American Chemical Society, 2012, 134, 715-722.	6.6	68
171	Highly Selective Intramolecular Carbene Insertion into Primary C–H Bond of α-Diazoacetamides Mediated by a (⟨i⟩p⟨ i⟩-Cymene)ruthenium(II) Carboxylate Complex. Journal of the American Chemical Society, 2012, 134, 7588-7591.	6.6	61
172	Challenges in C–C bond formation through direct transformations of sp2 C–H bonds. Tetrahedron, 2012, 68, 5130-5136.	1.0	82
173	Direct Carbo-Acylation Reactions of 2-Arylpyridines with α-Diketones via Pd-Catalyzed C–H Activation and Selective C(sp2)–C(sp2) Cleavage. Organic Letters, 2012, 14, 4594-4597.	2.4	90
174	Spirocyclization by Palladium-Catalyzed Domino Heck–Direct C–H Arylation Reactions: Synthesis of Spirodihydroquinolin-2-ones. Organic Letters, 2012, 14, 3760-3763.	2.4	108
175	Copper-Catalyzed Dehydrogenative Cross-Coupling of Benzothiazoles with Thiazoles and Polyfluoroarene. Organic Letters, 2012, 14, 4950-4953.	2.4	106
176	Pd(II)-Catalyzed Primary-C(sp ³)–H Acyloxylation at Room Temperature. Organic Letters, 2012, 14, 3724-3727.	2.4	166
177	Allylic Carbon–Carbon Double Bond Directed Pd-Catalyzed Oxidative <i>ortho</i> ortho	6.6	149
178	Ruthenium-Catalyzed Oxidative C–H Bond Olefination of <i>N</i> -Methoxybenzamides Using an Oxidizing Directing Group. Organic Letters, 2012, 14, 736-739.	2.4	271
179	Ruthenium-Catalyzed C–H Bond Arylations of Arenes Bearing Removable Directing Groups via Six-Membered Ruthenacycles. Organic Letters, 2012, 14, 1154-1157.	2.4	160
180	Rhodium-catalyzed regioselective amidation of indoles with sulfonyl azides via C–H bond activation. Organic and Biomolecular Chemistry, 2012, 10, 8953.	1.5	126
181	Carbon–Halogen Bond Formation by the Reductive Elimination of Pd ^{II} Species. Asian Journal of Organic Chemistry, 2012, 1, 16-24.	1.3	40
183	Beyond Directing Groups: Transitionâ€Metalâ€Catalyzed CH Activation of Simple Arenes. Angewandte Chemie - International Edition, 2012, 51, 10236-10254.	7.2	1,515
184	Rutheniumâ€Catalyzed Oxidative Coupling/Cyclization of Isoquinolones with Alkynes through CH/NH Activation: Mechanism Study and Synthesis of Dibenzo[<i>a</i> , <i>g</i>)quinolizinâ€8â€one Derivatives. Chemistry - A European Journal, 2012, 18, 12873-12879.	1.7	109
186	Iron-catalyzed arylation of benzoazoles with aromatic aldehydes using oxygen as oxidant. Green Chemistry, 2012, 14, 1577.	4.6	62
188	Pd-Catalyzed Oxidative <i>ortho</i> -C–H Borylation of Arenes. Journal of the American Chemical Society, 2012, 134, 134-137.	6.6	170
189	Pd-Catalyzed Dehydrogenative Cross-Coupling of Polyfluoroarenes with Heteroatom-Substituted Enones. Organic Letters, 2012, 14, 1176-1179.	2.4	81
190	Regioselective palladium-catalyzed direct cross-coupling of coumarins with simple arenes. Chemical Communications, 2012, 48, 9613.	2.2	86

#	Article	IF	Citations
191	Lewis Acid atalyzed Conjugate Addition of <i>sp</i> ³ CH Bonds to Methylenemalononitriles. Advanced Synthesis and Catalysis, 2012, 354, 2146-2150.	2.1	56
192	Recent advances in transition metal-catalyzed sp ³ Câ€"H amination adjacent to double bonds and carbonyl groups. Chemical Society Reviews, 2012, 41, 931-942.	18.7	422
193	Rhodiumâ€Catalyzed Oxidative <i>ortho</i> à€Acylation of Aryl Ketone <i>O</i> à€Methyl Oximes with Aryl and Alkyl Aldehydes. Advanced Synthesis and Catalysis, 2012, 354, 2916-2920.	2.1	79
194	Palladium-Catalyzed Aerobic Dehydrogenative Cross-Coupling of Polyfluoroarenes with Thiophenes: Facile Access to Polyfluoroarene–Thiophene Structure. Organometallics, 2012, 31, 1335-1340.	1.1	90
195	Asymmetric catalytic carbon–carbon coupling reactions via C–H bond activation. Catalysis Science and Technology, 2012, 2, 1099.	2.1	144
196	2.24 Selected Diastereoselective Reactions: C–H Insertions. , 2012, , 738-782.		0
197	Ruthenium-Catalyzed Oxidative C–H Alkenylations of Anilides and Benzamides in Water. Organic Letters, 2012, 14, 728-731.	2.4	245
198	Rh(III)-Catalyzed C–H Bond Activation along with "Rollover―for the Synthesis of 4-Azafluorenes. Organic Letters, 2012, 14, 5106-5109.	2.4	67
199	Zinc-catalyzed benzylic C–H bond oxidation. Tetrahedron Letters, 2012, 53, 6123-6126.	0.7	27
200	Synthesis of Tri- and Tetrasubstituted Pyrazoles via Ru(II) Catalysis: Intramolecular Aerobic Oxidative C–N Coupling. Organic Letters, 2012, 14, 5030-5033.	2.4	106
201	On the selectivity in some Rh(III) catalyzed CH activation cross-couplings. Comptes Rendus Chimie, 2012, 15, 1081-1085.	0.2	7
202	Cationic iridium-catalyzed enantioselective activation of secondary sp3 C–H bond adjacent to nitrogen atom. Tetrahedron, 2012, 68, 9009-9015.	1.0	97
203	Rhodium catalyzed synthesis of isoindolinones via C–H activation of N-benzoylsulfonamides. Tetrahedron, 2012, 68, 9192-9199.	1.0	51
204	Mild Câ€"H activation of activated aromatics with [8,8′-ν4-I-3,3′-Co(1,2-C2B9H10)2]: Just mix them. Journal Organometallic Chemistry, 2012, 721-722, 70-77.	of 0.8	25
205	Regioselective CH Bond Activation on Stabilized Nitrogen Ylides Promoted by Pd(II) Complexes: Scope and Limitations. Organometallics, 2012, 31, 394-404.	1.1	13
206	Experimental Study of the Reaction of a Ni(PEt ₃) ₂ Synthon with Polyfluorinated Pyridines: Concerted, Phosphine-Assisted, or Radical C–F Bond Activation Mechanisms?. Organometallics, 2012, 31, 1361-1373.	1.1	50
207	Palladium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Dibenzosiloles via Enantioselective C–H Bond Functionalization. Journal of the American Chemical Society, 2012, 134, 7305-7308.	6.6	213
209	Palladium-catalyzed selective oxidative olefination and arylation of 2-pyridones. Chemical Science, 2012, 3, 3231.	3.7	108

#	Article	IF	CITATIONS
210	Palladium atalyzed Highly Regioselective Arylation of Allylamines with Thiophenes and Furans. Advanced Synthesis and Catalysis, 2012, 354, 3225-3230.	2.1	32
211	Density Functional Theory Study of the Mechanism of the Rhodium(I)-Catalyzed Conjugated Diene Assisted Allylic C–H Bond Activation and Addition to Alkenes Using Ene-2-dienes As Substrates. Organometallics, 2012, 31, 5185-5195.	1.1	37
212	High-Yielding, Versatile, and Practical [Rh(III)Cp*]-Catalyzed <i>Ortho</i> Bromination and Iodination of Arenes. Journal of the American Chemical Society, 2012, 134, 8298-8301.	6.6	383
213	A concise, efficient synthesis of sugar-based benzothiazoles through chemoselective intramolecular C–S coupling. Chemical Science, 2012, 3, 2388.	3.7	67
214	Directed Metal (Oxo) Aliphatic C–H Hydroxylations: Overriding Substrate Bias. Journal of the American Chemical Society, 2012, 134, 9721-9726.	6.6	178
215	Double-Fold C–H Oxygenation of Arenes Using PyrDipSi: a General and Efficient Traceless/Modifiable Silicon-Tethered Directing Group. Journal of the American Chemical Society, 2012, 134, 5528-5531.	6.6	121
216	Amideâ€Directed Tandem CC/CN Bond Formation through CH Activation. Chemistry - an Asian Journal, 2012, 7, 1502-1514.	1.7	252
217	Copperâ€Catalyzed CH Oxidation/Crossâ€Coupling of αâ€Amino Carbonyl Compounds. Angewandte Chemie - International Edition, 2012, 51, 3453-3457.	7.2	131
218	Oxidation and Amination of Benzylic sp ³ C–H Bond Catalyzed by Rhenium(V) Complexes. ACS Catalysis, 2012, 2, 163-167.	5.5	62
219	Rh[III]-Catalyzed Direct C–H Amination Using <i>N</i> li>-Chloroamines at Room Temperature. Organic Letters, 2012, 14, 656-659.	2.4	261
220	Understanding Reactivity and Stereoselectivity in Palladium-Catalyzed Diastereoselective sp ³ C–H Bond Activation: Intermediate Characterization and Computational Studies. Journal of the American Chemical Society, 2012, 134, 14118-14126.	6.6	115
221	Catalytic C–H oxidation by a triazamacrocyclic ruthenium complex. Chemical Science, 2012, 3, 1810.	3.7	70
222	Aryl Grignard Reagents in Chemodivergent <i>N</i> ―and <i>C</i> â€Arylations: Concise Access to Two Families of Tetracyclic Fused Carbazoles from 6â€Nitroquinolines. European Journal of Organic Chemistry, 2012, 2012, 2375-2385.	1.2	15
223	Direct and Selective Benzylic Oxidation of Alkylarenes via C–H Abstraction Using Alkali Metal Bromides. Organic Letters, 2012, 14, 2414-2417.	2.4	132
224	Synthesis of 2-(Polyfluoroaryl)benzofurans via a Copper(I)-Catalyzed Reaction of 2-(2,2-Dibromovinyl)phenol with Polyfluoroarene. Organic Letters, 2012, 14, 70-73.	2.4	68
225	Pd-Catalyzed Direct Arylation of Polyfluoroarenes on Water under Mild Conditions Using PPh ₃ Ligand. Journal of Organic Chemistry, 2012, 77, 2992-2998.	1.7	91
226	Synthesis of Olefinâ€Oxazoline Ligands (OlefOx) by Rhodium(III)â€Catalyzed Oxidative Olefination. Advanced Synthesis and Catalysis, 2012, 354, 579-583.	2.1	47
234	Palladiumâ€Catalyzed Direct CH Arylation of Enamides with Simple Arenes. Angewandte Chemie - International Edition, 2012, 51, 5701-5705.	7.2	144

#	Article	IF	CITATIONS
235	Roomâ€Temperature Copperâ€Catalyzed Oxidation of Electronâ€Deficient Arenes and Heteroarenes Using Air. Angewandte Chemie - International Edition, 2012, 51, 4666-4670.	7.2	151
236	Rhodium(III)â€Catalyzed CH Activation of Arenes Using a Versatile and Removable Triazene Directing Group. Angewandte Chemie - International Edition, 2012, 51, 7242-7245.	7.2	244
237	CH Bond Activation Triggered by Formation of Metallacycles: Rhodium(I)â€Catalyzed Cyclopropanation/Cyclization of Allenynes. Angewandte Chemie - International Edition, 2012, 51, 7305-7308.	7.2	62
238	Undirected Arene and Chelateâ€Assisted Olefin Câ€H Bond Activation: [Rh ^{III} Cp*]â€Catalyzed Dehydrogenative Alkene–Arene Coupling as a New Pathway for the Selective Synthesis of Highly Substituted <i>Z</i> Olefins. Chemistry - an Asian Journal, 2012, 7, 1208-1212.	1.7	72
239	Generation of Polyfluoroarylâ€Fused <i>H</i> â€Pyrazolo[5,1â€ <i>a</i>]isoquinolines through a Reaction of <i>N</i> ′â€(2â€Alkynylbenzylidene)hydrazide with Polyfluoroarene. Chemistry - an Asian Journal, 2012, 7, 1909-1914.	1.7	12
240	Diastereo―and Enantioselective Intramolecular C(sp ³)H Arylation for the Synthesis of Fused Cyclopentanes. Chemistry - A European Journal, 2012, 18, 4480-4484.	1.7	139
241	CH Activation: A Complementary Tool in the Total Synthesis of Complex Natural Products. Chemistry - A European Journal, 2012, 18, 9452-9474.	1.7	492
242	Palladiumâ€Catalyzed Monoâ€Î±â€Arylation of Acetone with Aryl Imidazolylsulfonates. Chemistry - A European Journal, 2012, 18, 10230-10233.	1.7	65
243	Direct Transformation of Simple Enals to 3,4â€Disubstituted Benzaldehydes under Mild Reaction Conditions via an Organocatalytic Regio―and Chemoselective Dimerization Cascade. Chemistry - A European Journal, 2012, 18, 9770-9774.	1.7	11
244	Enantioselective, transition metal catalyzed cycloisomerizations. Chemical Society Reviews, 2012, 41, 4884.	18.7	220
245	Regioselective Intramolecular Arylthiolations by Ligand Free Cu and Pd Catalyzed Reaction. ACS Catalysis, 2012, 2, 544-551.	5.5	71
246	N-Heterocyclic Carbene Gold(I) and Copper(I) Complexes in C–H Bond Activation. Accounts of Chemical Research, 2012, 45, 778-787.	7.6	320
247	Ruthenium-catalyzed aerobic oxidative coupling of alkynes with 2-aryl-substituted pyrroles. Chemical Science, 2012, 3, 177-180.	3.7	182
248	Innate and Guided C–H Functionalization Logic. Accounts of Chemical Research, 2012, 45, 826-839.	7.6	491
249	Regioselective copper(I)-catalyzed C–H hydroxylation/C–S coupling: expedient construction of 2-(styrylthio)phenols. Tetrahedron, 2012, 68, 5046-5052.	1.0	27
250	Synthesis of Tetrasubstituted Alkenes through a Palladiumâ€Catalyzed Domino Carbopalladation/Cī£¿Hâ€Activation Reaction. Chemistry - A European Journal, 2012, 18, 3286-3291.	1.7	44
251	Rutheniumâ€Catalyzed Regioselective Cyclization of Aromatic Ketones with Alkynes: An Efficient Route to Indenols and Benzofulvenes. European Journal of Organic Chemistry, 2012, 2012, 417-423.	1.2	95
252	Palladiumâ€Catalyzed Direct and Siteâ€Selective Desulfitative Arylation of Indoles with Sodium Sulfinates. Advanced Synthesis and Catalysis, 2012, 354, 335-340.	2.1	106

#	Article	IF	CITATIONS
253	Aerobic Palladium(II) atalyzed 5â€∢i>endo⟨li>â€∢i>trig⟨li> Cyclization: An Entry into the Diastereoselective Câ€2 Alkenylation of Indoles with Tri―and Tetrasubstituted Double Bonds. Angewandte Chemie - International Edition, 2012, 51, 1265-1269.	7.2	77
254	Chiral Monodentate Phosphines and Bulky Carboxylic Acids: Cooperative Effects in Palladiumâ€Catalyzed Enantioselective C(sp ³)â€"H Functionalization. Angewandte Chemie - International Edition, 2012, 51, 2238-2242.	7.2	232
255	Catalytic Synthesis of <i>n</i> -Alkyl Arenes through Alkyl Group Cross-Metathesis. Journal of the American Chemical Society, 2013, 135, 12572-12575.	6.6	57
256	Theoretical Studies on Intramolecular C–H Amination of Biaryl Azides Catalyzed by Four Different Late Transition Metals. Organometallics, 2013, 32, 415-426.	1.1	37
257	Catalyst-Controlled C–O versus C–N Allylic Functionalization of Terminal Olefins. Journal of the American Chemical Society, 2013, 135, 12032-12037.	6.6	110
258	1,2,3-Triazoles as versatile directing group for selective sp2 and sp3 C–H activation: cyclization vs substitution. Chemical Science, 2013, 4, 3712.	3.7	214
259	Direct Ortho Arylation of 9-(Pyridin-2-yl)-9 <i>H</i> -carbazoles Bearing a Removable Directing Group via Palladium(II)-Catalyzed Câ€"H Bond Activation. Organometallics, 2013, 32, 272-282.	1.1	55
260	Direct synthesis of 8-aryl tetrahydroquinolines via pd-catalyzed ortho-arylation of arylureas in water. RSC Advances, 2013, 3, 1025-1028.	1.7	25
261	A C–H oxidation approach for streamlining synthesis of chiral polyoxygenated motifs. Tetrahedron, 2013, 69, 7771-7778.	1.0	25
262	Employing a robustness screen: rapid assessment of rhodium(III)-catalysed C–H activation reactions. Tetrahedron, 2013, 69, 7817-7825.	1.0	64
263	Mechanistic Study on Ligandâ€Controlled Cobaltâ€Catalyzed Regioselectivityâ€Switchable Hydroarylation of Styrenes. Chemistry - A European Journal, 2013, 19, 12093-12103.	1.7	52
264	Mechanistic Study of Palladium-Catalyzed Chemoselective C(sp3)â€"H Activation of Carbamoyl Chloride. Organometallics, 2013, 32, 4165-4173.	1.1	23
265	Gold(I)â€Catalyzed Functionalization of Benzhydryl C(<i>sp</i> ³)H Bonds. Advanced Synthesis and Catalysis, 2013, 355, 2227-2231.	2.1	31
267	Palladium atalyzed Hydrobenzylation of <i>ortho</i> â€Tolyl Alkynyl Ethers by Benzylic CH Activation: Remarkable Alkynoxyâ€Directing Effect. Angewandte Chemie - International Edition, 2013, 52, 10611-10615.	7.2	47
268	Rhodiumâ€Catalyzed Dynamic Kinetic Asymmetric Transformations of Racemic Allenes by the [3+2] Annulation of Aryl Ketimines. Angewandte Chemie - International Edition, 2013, 52, 10630-10634.	7.2	146
269	Theoretical studies of iron(iii)-catalyzed intramolecular C–H amination of azides. Dalton Transactions, 2013, 42, 14369.	1.6	17
270	Atropodiastereoselective Cï£;H Olefination of Biphenyl <i>p</i> â€Tolyl Sulfoxides with Acrylates. Advanced Synthesis and Catalysis, 2013, 355, 2139-2144.	2.1	140
271	Palladium atalyzed Oxidative Annulation <i>via</i> CH/NH Functionalization: Access to Substituted Pyrroles. Advanced Synthesis and Catalysis, 2013, 355, 2550-2557.	2.1	49

#	Article	IF	CITATIONS
272	Direct Transformation of Methyl Imines to αâ€lminonitriles under Mild and Transitionâ€Metalâ€Free Conditions. Chemistry - A European Journal, 2013, 19, 11199-11202.	1.7	33
273	Bond Activation and Catalysis. , 2013, , 399-432.		4
274	Ru(II)-catalyzed ring expansion of alkynylcyclopropanes in the presence of sulfonamides. Chinese Journal of Catalysis, 2013, 34, 1816-1819.	6.9	3
275	Enantioselective Synthesis and Application to the Allylic Imidate Rearrangement of Amineâ€Coordinated Palladacycle Catalysts of Cobalt Sandwich Complexes. Chemistry - A European Journal, 2013, 19, 17951-17962.	1.7	17
277	Thioether-Promoted Direct Olefination of Polyfluoroarenes Catalyzed by Palladium. Organic Letters, 2013, 15, 5266-5269.	2.4	38
278	Unprecedented ortho-acylation of azoxybenzenes with α-oxocarboxylic acids by Pd-catalyzed C–H activation and decarboxylation. Chemical Communications, 2013, 49, 9170.	2.2	128
279	Access to Indenones by Rhodium(III)-Catalyzed C–H Annulation of Arylnitrones with Internal Alkynes. Organic Letters, 2013, 15, 5440-5443.	2.4	137
280	Traceless Directing Strategy: Efficient Synthesis of N-Alkyl Indoles via Redox-Neutral C–H Activation. Organic Letters, 2013, 15, 5294-5297.	2.4	200
281	Metal-free synthesis of 3,3-disubstituted oxindoles via 1,2-alkylarylation of activated alkenes with alcohols. Tetrahedron, 2013, 69, 10030-10035.	1.0	36
282	Enantioselective Functionalization of Allylic C–H Bonds Following a Strategy of Functionalization and Diversification. Journal of the American Chemical Society, 2013, 135, 17983-17989.	6.6	72
283	Nickel-Catalyzed Aromatic Câ€"H Alkylation with Secondary or Tertiary Alkylâ€"Bromine Bonds for the Construction of Indolones. Organic Letters, 2013, 15, 6166-6169.	2.4	83
284	Direct Bis-Arylation of Cyclobutanecarboxamide via Double C–H Activation: An Auxiliary-Aided Diastereoselective Pd-Catalyzed Access to Trisubstituted Cyclobutane Scaffolds Having Three Contiguous Stereocenters and an All-cis Stereochemistry. Journal of Organic Chemistry, 2013, 78, 11911-11934.	1.7	57
285	Nickel or Phenanthroline Mediated Intramolecular Arylation of sp ³ Câ€"H Bonds Using Aryl Halides. Organic Letters, 2013, 15, 5986-5989.	2.4	49
286	Rh(III)-Catalyzed Coupling of Benzamides with Propargyl Alcohols via Hydroarylation–Lactonization. Organic Letters, 2013, 15, 6290-6293.	2.4	71
287	Pd-Catalyzed Enantioselective C–H Iodination: Asymmetric Synthesis of Chiral Diarylmethylamines. Journal of the American Chemical Society, 2013, 135, 16344-16347.	6.6	222
288	Indole Synthesis by Rhodium(III)â€Catalyzed Hydrazineâ€Directed CH Activation: Redoxâ€Neutral and Traceless by NN Bond Cleavage. Angewandte Chemie - International Edition, 2013, 52, 12426-12429.	7.2	341
290	Pyridineâ€Directed Palladiumâ€Catalyzed Phosphonation of C(sp ²)H Bonds. Angewandte Chemie - International Edition, 2013, 52, 9801-9804.	7.2	173
291	Asymmetric C(sp ²)H Activation. Chemistry - A European Journal, 2013, 19, 14010-14017.	1.7	224

#	Article	IF	CITATIONS
293	Palladiumâ€Catalyzed Throughâ€Space C(sp ³)H and C(sp ²)H Bond Activation by 1,4â€Palladium Migration: Efficient Synthesis of [3,4]â€Fused Oxindoles. Angewandte Chemie - International Edition, 2013, 52, 12385-12389.	7.2	168
294	Enantioselective [3 + 2] annulation via C–H activation between cyclic N-acyl ketimines and 1,3-dienes catalyzed by iridium/chiral diene complexes. Chemical Science, 2013, 4, 4499.	3.7	112
295	Ruthenium-Catalyzed C–H Activation/Cyclization for the Synthesis of Phosphaisocoumarins. Journal of Organic Chemistry, 2013, 78, 10209-10220.	1.7	75
296	Direct Access to Highly Substituted 1â€Naphthols through Palladiumâ€Catalyzed Oxidative Annulation of Benzoylacetates and Internal Alkynes. Chemistry - A European Journal, 2013, 19, 13322-13327.	1.7	52
297	Modular synthesis of all-substituted furans through oxidative carbonylation of cyclopropenes with tandem metal relay catalysis. Organic and Biomolecular Chemistry, 2013, 11, 6258.	1.5	25
298	Catalytic C–H and C–S Bond Activation of Thiophenes. Organic Letters, 2013, 15, 282-285.	2.4	22
299	Palladium-Catalyzed C–H Activation/Cross-Coupling of Pyridine <i>N</i> Oxides with Nonactivated Secondary Alkyl Bromides. Journal of the American Chemical Society, 2013, 135, 616-619.	6.6	242
300	Cu-catalyzed direct C–H amination of 2-alkylazaarenes with azodicarboxylates via nucleophilic addition. Tetrahedron Letters, 2013, 54, 711-714.	0.7	41
301	Rhodium(I)â€Catalyzed Redoxâ€Economic Crossâ€Coupling of Carboxylic Acids with Arenes Directed by Nâ€Containing Groups. Angewandte Chemie - International Edition, 2013, 52, 2063-2067.	7.2	149
302	Enantioselective Synthesis of Planar Chiral Ferrocenes via Palladium-Catalyzed Direct Coupling with Arylboronic Acids. Journal of the American Chemical Society, 2013, 135, 86-89.	6.6	249
303	Copper-catalyzed C–N bond formation through C–H/N–H activation: a novel approach to the synthesis of multisubstituted ureas. Chemical Communications, 2013, 49, 819-821.	2.2	62
304	Synthesis of fluorenones viaquaternary ammonium salt-promoted intramolecular dehydrogenative arylation of aldehydes. Chemical Science, 2013, 4, 829-833.	3.7	165
305	Investigation and Comparison of the Mechanistic Steps in the [(Cp*MCl ₂) ₂] (Cp*=C ₅ Me ₅ ; M=Rh, Ir) atalyzed Oxidative Annulation of Isoquinolones with Alkynes. Chemistry - A European Journal, 2013, 19, 358-364.	1.7	72
306	Rh(III)-catalyzed oxidative synthesis of pyrazoles from azomethines and acrylamides. Chinese Journal of Catalysis, 2013, 34, 679-683.	6.9	7
307	Pd/Mg–La mixed oxide catalyzed oxidative sp2 CH bond acylation with alcohols. Journal of Molecular Catalysis A, 2013, 379, 213-218.	4.8	21
310	Palladium-Catalyzed C(sp ² and sp ³)â€"H Activation/Câ€"O Bond Formation: Synthesis of Benzoxaphosphole 1- and 2-Oxides. Organic Letters, 2013, 15, 5210-5213.	2.4	57
311	Rhodium(III) atalyzed CC Coupling between Arenes and Aziridines by CH Activation. Angewandte Chemie - International Edition, 2013, 52, 2577-2580.	7.2	142
313	Asymmetric C-H Bond Functionalization. , 2013, , 267-272.		0

#	ARTICLE	IF	CITATIONS
314	Iron-catalyzed Cross-Coupling of Electron-Deficient Heterocycles and Quinone with Organoboron Species via Innate C–H Functionalization: Application in Total Synthesis of Pyrazine Alkaloid Botryllazine A. Journal of Organic Chemistry, 2013, 78, 2639-2648.	1.7	100
315	Scope and mechanism of asymmetric C(sp3)–H/C(Ar)–X coupling reactions: computational and experimental study. Chemical Science, 2013, 4, 1995.	3.7	108
316	Enhanced Reactivity in Dioxirane C–H Oxidations via Strain Release: A Computational and Experimental Study. Journal of Organic Chemistry, 2013, 78, 4037-4048.	1.7	74
317	Rhodium(III)â€Catalyzed Amidation of Aryl Ketone <i>O</i> àâ€Methyl Oximes with Isocyanates by CH Activation: Convergent Synthesis of 3â€Methyleneisoindolinâ€1â€ones. Chemistry - A European Journal, 2013, 19, 4701-4706.	1.7	113
318	Palladium–copper-cocatalyzed intramolecular oxidative coupling: an efficient and atom-economical strategy for the synthesis of 3-acylindoles. Chemical Communications, 2013, 49, 1410.	2.2	58
319	Palladium-Catalyzed Desulfitative Cross-Coupling Reaction of Sodium Sulfinates with Benzyl Chlorides. Organic Letters, 2013, 15, 1520-1523.	2.4	89
320	Catalytic C–H Activation/C–C Coupling Reaction: DFT Studies on the Mechanism, Solvent Effect, and Role of Additive. Journal of Organic Chemistry, 2013, 78, 2405-2412.	1.7	35
321	Synthesis of Aryl Ethers from Benzoates through Carboxylateâ€Directed CHâ€Activating Alkoxylation with Concomitant Protodecarboxylation. Angewandte Chemie - International Edition, 2013, 52, 2959-2962.	7.2	148
322	Copper-catalyzed aromatic C–H bond halogenation with lithium halides under aerobic conditions. Organic and Biomolecular Chemistry, 2013, 11, 2756.	1.5	80
323	Iron-catalyzed direct alkenylation of sp3(C–H) bonds via decarboxylation of cinnamic acids under ligand-free conditions. Green Chemistry, 2013, 15, 976.	4.6	93
324	Rh(III)-Catalyzed Addition of Alkenyl Câ€"H Bond to Isocyanates and Intramolecular Cyclization: Direct Synthesis 5-Ylidenepyrrol-2(5 <i>H</i>)-ones. Organic Letters, 2013, 15, 1814-1817.	2.4	90
325	Mild Rhodium(III) atalyzed Direct CH Allylation of Arenes with Allyl Carbonates. Angewandte Chemie - International Edition, 2013, 52, 5386-5389.	7.2	275
326	Recent advances in transition-metal-free direct C–C and C–heteroatom bond forming reactions. RSC Advances, 2013, 3, 11957.	1.7	155
327	Copper-catalyzed enantioselective allylic oxidation of acyclic olefins. Tetrahedron Letters, 2013, 54, 2665-2668.	0.7	36
328	Mild Rhodium(III) $\hat{a} \in C$ atalyzed Cyclization of Amides with $\hat{l}_{\pm}, \hat{l}^2 \hat{a} \in U$ nsaturated Aldehydes and Ketones to Azepinones: Application to the Synthesis of the Homoprotoberberine Framework. Angewandte Chemie - International Edition, 2013, 52, 5393-5397.	7.2	180
329	Ironâ€Catalyzed Synthesis of 2â€Vinylquinolines via sp ³ CH Functionalization and Subsequent CN Cleavage. Chemistry - an Asian Journal, 2013, 8, 534-537.	1.7	60
330	General and Efficient Synthesis of Indoles through Triazeneâ€Directed C–H Annulation. Angewandte Chemie - International Edition, 2013, 52, 5795-5798.	7.2	223
331	Sequential C–H Functionalization Reactions for the Enantioselective Synthesis of Highly Functionalized 2,3-Dihydrobenzofurans. Journal of the American Chemical Society, 2013, 135, 6774-6777.	6.6	142

#	Article	IF	CITATIONS
332	Iridium(iii)-bis(oxazolinyl)phenyl catalysts for enantioselective C–H functionalization. Chemical Science, 2013, 4, 2590.	3.7	49
333	Pd(II)-catalyzed intramolecular aminopalladation/direct C–H arylation under aerobic conditions: synthesis of pyrrolo[1,2-a]indoles. Tetrahedron, 2013, 69, 4415-4420.	1.0	28
334	Redox of ferrocene controlled asymmetric dehydrogenative Heck reaction via palladium-catalyzed dual C–H bond activation. Chemical Science, 2013, 4, 2675.	3.7	177
335	Developing Ligands for Palladium(II)-Catalyzed C–H Functionalization: Intimate Dialogue between Ligand and Substrate. Journal of Organic Chemistry, 2013, 78, 8927-8955.	1.7	472
336	Regioselective Threefold Aromatic Substitution of Benzoic Acid Derivatives by Dearomatization, Regioselective Functionalization, and Rearomatization. Angewandte Chemie - International Edition, 2013, 52, 4933-4936.	7.2	29
337	Aerobic Synthesis of Pyrroles and Dihydropyrroles from Imines: Palladium(II)â€Catalyzed Intramolecular CH Dehydrogenative Cyclization. Angewandte Chemie - International Edition, 2013, 52, 4892-4896.	7.2	89
338	Enantioselective Intramolecular Carbene Câ€"H Insertion Catalyzed by a Chiral Iridium(III) Complex of <i>D</i> ₄ -Symmetric Porphyrin Ligand. ACS Catalysis, 2013, 3, 1144-1148.	5 . 5	54
339	Total synthesis of taxane terpenes: cyclase phase. Tetrahedron, 2013, 69, 5685-5701.	1.0	29
340	Catalytic Enantioselective Carbon Insertion into the β-Vinyl C–H Bond of Cyclic Enones. Journal of the American Chemical Society, 2013, 135, 7126-7129.	6.6	49
341	Palladium-catalyzed ortho-acylation of 2-arylbenzoxazoles and 2-arylbenzothiazoles using arylmethyl alcohols as the acyl source. Tetrahedron, 2013, 69, 4908-4914.	1.0	16
342	On the role of anionic ligands in the site-selectivity of oxidative C–H functionalization reactions of arenes. Chemical Science, 2013, 4, 2767.	3.7	84
343	Oxidative Addition of a Strained C–C Bond onto Electron-Rich Rhodium(I) at Room Temperature. Journal of the American Chemical Society, 2013, 135, 7142-7145.	6.6	110
344	Mild Aromatic Palladium-Catalyzed Protodecarboxylation: Kinetic Assessment of the Decarboxylative Palladation and the Protodepalladation Steps. Journal of Organic Chemistry, 2013, 78, 4744-4761.	1.7	59
345	Direct Access to Acylated Azobenzenes via Pd-Catalyzed C–H Functionalization and Further Transformation into an Indazole Backbone. Organic Letters, 2013, 15, 620-623.	2.4	171
346	Completely Regioselective Direct C–H Functionalization of Benzo[<i>b</i>]thiophenes Using a Simple Heterogeneous Catalyst. Journal of the American Chemical Society, 2013, 135, 7450-7453.	6.6	160
347	Rhodium(III)â€Catalyzed Synthesis of Cyclopenta[<i>b</i>)pyrroles from 1,2â€Diketones, 2â€Aminopyridine, and Alkynes. Chemistry - an Asian Journal, 2013, 8, 1386-1390.	1.7	20
348	Rhodium-Catalyzed $[6+2]$ Cycloaddition of Internal Alkynes with Cycloheptatriene: Catalytic Study and DFT Calculations of the Reaction Mechanism. Organometallics, 2013, 32, 3529-3536.	1.1	28
349	Copper-catalyzed benzylic oxidation of C(sp3)–H bonds. Tetrahedron, 2013, 69, 2033-2037.	1.0	26

#	Article	IF	CITATIONS
350	Rhodiumâ€Catalyzed Direct Addition of Indoles to <i>N</i> à€Sulfonylaldimines. Advanced Synthesis and Catalysis, 2013, 355, 360-364.	2.1	40
351	Asymmetric Allylic Alkylation of Alkene through Direct C (sp ³)â€H Functionalization. ChemCatChem, 2013, 5, 1289-1290.	1.8	11
352	Rh[III]-Catalyzed C–H Amidation Using Aroyloxycarbamates To Give <i>N</i> Boc Protected Arylamines. Organic Letters, 2013, 15, 3014-3017.	2.4	157
353	Cp* Iridium Precatalysts for Selective C–H Oxidation with Sodium Periodate As the Terminal Oxidant. Organometallics, 2013, 32, 957-965.	1.1	60
354	Metalâ€Free Oxidative Carbonâ€Heteroatom Bond Formation Through C–H Bond Functionalization. European Journal of Organic Chemistry, 2013, 2013, 5769-5804.	1.2	251
355	The Copperâ€Catalyzed Oxidative <i>N</i> â€Acylation of Sulfoximines. Advanced Synthesis and Catalysis, 2013, 355, 1490-1494.	2.1	64
356	Enantioselective CH Arylation Strategy for Functionalized Dibenzazepinones with Quaternary Stereocenters. Angewandte Chemie - International Edition, 2013, 52, 7865-7868.	7.2	129
357	Synthesis of Phosphaisocoumarins through Rhodium-Catalyzed Cyclization Using Alkynes and Arylphosphonic Acid Monoesters. Organic Letters, 2013, 15, 3358-3361.	2.4	98
358	Pd-catalyzed oxidative cross-coupling between two electron rich heteroarenes. Chemical Science, 2013, 4, 3508.	3.7	40
359	Rhodiumâ€Catalyzed Synthesis of Amides from Aldehydes and Azides by Chelationâ€Assisted CH Bond Activation. Chemistry - A European Journal, 2013, 19, 10511-10515.	1.7	93
360	Rhodium(III)-Catalyzed C–H Activation and Amidation of Arenes Using <i>N</i> -Arenesulfonated Imides as Amidating Reagents. Organic Letters, 2013, 15, 3706-3709.	2.4	122
361	A straightforward access to guaiazulene derivatives using palladium-catalysed sp2 or sp3 C–H bond functionalisation. Chemical Communications, 2013, 49, 5598.	2.2	39
362	Terminal Olefins to Linear α,β-Unsaturated Ketones: Pd(II)/Hypervalent Iodine Co-catalyzed Wacker Oxidation–Dehydrogenation. Journal of the American Chemical Society, 2013, 135, 7831-7834.	6.6	75
363	Rhodium(iii)-catalyzed intramolecular annulations involving amide-directed C–H activations: synthetic scope and mechanistic studies. Chemical Science, 2013, 4, 2874.	3.7	130
365	Transition-metal-catalyzed additions of Câ€"H bonds to Câ€"X (X = N, O) multiple bonds via Câ€"H bond activation. Organic and Biomolecular Chemistry, 2013, 11, 5558.	1.5	106
366	Palladium-catalyzed ortho-acylation of 2-arylbenzoxazoles. Tetrahedron, 2013, 69, 320-326.	1.0	30
368	1,5-Rhodium Shift in Rearrangement of $\langle i \rangle N \langle i \rangle$ -Arenesulfonylazetidin-3-ols into Benzosultams. Journal of the American Chemical Society, 2013, 135, 19103-19106.	6.6	82
369	Dirigent proteins: molecular characteristics and potential biotechnological applications. Applied Microbiology and Biotechnology, 2013, 97, 8427-8438.	1.7	60

#	Article	IF	CITATIONS
370	Mechanistic Study of Palladium-Catalyzed Oxidative Câ€"H/Câ€"H Coupling of Polyfluoroarenes with Simple Arenes. Chinese Journal of Chemical Physics, 2013, 26, 415-423.	0.6	6
373	Catalytic Alkane Oxidation by Homogeneous and Silica-supported Cobalt(II) Complex Catalysts with a Triazolyl Group-containing Tetradentate Ligand. Chemistry Letters, 2013, 42, 1197-1199.	0.7	21
375	Diastereo―and Enantioselective Synthesis of Organometallic Bis(helicene)s by a Combination of CH Activation and Dynamic Isomerization. Chemistry - A European Journal, 2013, 19, 16722-16728.	1.7	28
378	Silver Ion Promoted, Pd ^{II} â€Catalyzed Arylation of Arenes with a Free Amine as Directing Group in Aqueous Medium. Chemistry - A European Journal, 2013, 19, 16825-16831.	1.7	41
381	Bis(sulfonylimide)ruthenium(VI) Porphyrins: Xâ€ray Crystal Structure and Mechanism of CH Bond Amination by Density Functional Theory Calculations. Chemistry - A European Journal, 2013, 19, 11320-11331.	1.7	40
384	Cationic Iridium-Catalyzed Synthesis Initiated by the Cleavage of C-H, N-H, and C-O Bonds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 1182-1194.	0.0	10
385	Enantioselective synthesis of planar chiral ferrocenes via palladium-catalyzed annulation with diarylethynes. Beilstein Journal of Organic Chemistry, 2013, 9, 1891-1896.	1.3	79
386	TDAE Strategy for the Synthesis of 2,3-Diaryl N-Tosylaziridines. Molecules, 2013, 18, 7364-7375.	1.7	5
389	[Rh ^{III} (Cp*)]â€Catalyzed <i>ortho</i> àâ€Selective Direct C(sp ²)H Bond Amidation/Amination of Benzoic Acids by <i>N</i> àâ€Chlorocarbamates and <i>N</i> â€Chloromorpholines. A Versatile Synthesis of Functionalized Anthranilic Acids. Chemistry - A European Journal, 2014, 20, 4474-4480.	1.7	67
390	Iron-catalyzed transformations of diazo compounds. National Science Review, 2014, 1, 580-603.	4.6	146
391	Electrochemical C-H phosphorylation of 2-phenylpyridine in the presence of palladium salts. Russian Chemical Bulletin, 2014, 63, 2641-2646.	0.4	21
392	Nickel-Mediated Synthesis of Isoindolinones at Room Temperature. Synthesis, 2014, 46, 3033-3040.	1.2	5
393	Iridium(III)â€Catalyzed CH Amidation of Arylphosphoryls Leading to a <i>P</i> â€Stereogenic Center. Chemistry - A European Journal, 2014, 20, 12421-12425.	1.7	89
394	Aminosulfonylation of Arenes, Sulfur Dioxide, and Hydrazines Cocatalyzed by Gold(III) Chloride and Palladium Acetate. Advanced Synthesis and Catalysis, 2014, 356, 3225-3230.	2.1	70
395	Palladiumâ€Catalysed Dehydrogenative <i>sp</i> ³ CH Bonds Functionalisation into Alkenes: A Direct Access to <i>N</i> àâ€Alkenylbenzenesulfonamides. Advanced Synthesis and Catalysis, 2014, 356, 119-124.	2.1	29
398	Metalâ€Free 2,3â€Dichloroâ€5,6â€dicyanoâ€1,4â€benzoquinone (DDQ)â€Mediated Crossâ€Dehydrogenativeâ€6 (CDC) of Benzylic C(<i>>p</i> ³)H Bonds and Vinylic C(<i>>p</i> ²)H Bonds: Efficient Oneâ€Pot Synthesis of 1 <i>H</i> >â€Indenes. Advanced Synthesis and Catalysis, 2014, 356, 3157-3163.	Coupling 2.1	41
399	Silver(I)-mediated coupling reaction of heterocyclic ketene aminals (HKAs) with bis(phenylsulfonyl)sulfides to synthesis of benzenesulfonothioyl-HKAs. Tetrahedron, 2014, 70, 8858-8862.	1.0	6
402	Palladiumâ€eatalyzed direct arylation of polyfluoroarene and facile synthesis of liquid crystal compounds. Applied Organometallic Chemistry, 2014, 28, 180-185.	1.7	12

#	Article	IF	CITATIONS
403	Rhodium(<scp>iii</scp>)-catalyzed C–H alkynylation of azomethine ylides under mild conditions. Organic and Biomolecular Chemistry, 2014, 12, 9329-9332.	1.5	44
406	Rh(<scp>iii</scp>)-catalyzed Câ€"H activationâ€"desymmetrization of diazabicycles with arenes: facile synthesis of functionalized cyclopentenes. Chemical Science, 2014, 5, 297-302.	3.7	81
407	Selective Bromination of sp ³ CH Bonds by Organophotoredox Catalysis. Asian Journal of Organic Chemistry, 2014, 3, 536-544.	1.3	44
408	Practical Metalâ€Free C(sp ³)H Functionalization: Construction of Structurally Diverse αâ€Substituted <i>N</i> â€Benzyl and <i>N</i> â€Allyl Carbamates. Angewandte Chemie - International Edition, 2014, 53, 3904-3908.	7.2	111
409	Ironâ€Catalyzed Allylic C–H Amination of Substituted 1,3â€Dienes. European Journal of Organic Chemistry, 2014, 2014, 2174-2181.	1.2	19
410	Nickel Complex Catalyzed Efficient Activation of sp3 and sp2 C–H Bonds for Alkylation and Arylation of Oxygen Containing Heterocyclic Molecules. Catalysis Letters, 2014, 144, 507-515.	1.4	23
411	Pd-catalyzed cross-coupling of polyfluoroarenes with cyclic vinyl triflates. Science China Chemistry, 2014, 57, 276-281.	4.2	3
412	Asymmetric Organocatalytic Direct C(sp ²)H/C(sp ³)H Oxidative Crossâ€Coupling by Chiral Iodine Reagents. Angewandte Chemie - International Edition, 2014, 53, 3466-3469.	7.2	118
413	Cationic Ir/Meâ€BIPAMâ€Catalyzed Asymmetric Intramolecular Direct Hydroarylation of αâ€Ketoamides. Angewandte Chemie - International Edition, 2014, 53, 2658-2661.	7.2	47
414	Chiral Cpâ€Rhodium(III)â€Catalyzed Asymmetric Hydroarylations of 1,1â€Disubstituted Alkenes. Angewandte Chemie - International Edition, 2014, 53, 507-511.	7.2	246
415	Ruthenium-catalyzed alkenylation of azoxybenzenes with alkenes through ortho-selective C–H activation. Chemical Communications, 2014, 50, 4218-4221.	2.2	58
416	Palladiumâ€Catalyzed [2+2+1] Oxidative Annulation of 4â€Hydroxycoumarins with Unactivated Internal Alkynes: Access to Spiro Cyclopentadieneâ€Chromanâ€2,4â€dione Complexes. Advanced Synthesis and Catalysis, 2014, 356, 319-324.	2.1	26
417	Pd-catalyzed aerobic direct olefination of polyfluoroarenes. Tetrahedron Letters, 2014, 55, 2962-2964.	0.7	13
418	Palladium Nanoparticleâ€Catalyzed Direct Ethynylation of Aliphatic Carboxylic Acid Derivatives <i>via</i> C(<i>sp</i> ³)H Bond Functionalization. Advanced Synthesis and Catalysis, 2014, 356, 1631-1637.	2.1	55
419	Iridiumâ€Catalyzed Enantioselective CH Alkylation of Ferrocenes with Alkenes Using Chiral Diene Ligands. Angewandte Chemie - International Edition, 2014, 53, 5410-5413.	7.2	196
420	Palladiumâ€Catalysed, Directed CH Coupling with Organometallics. Advanced Synthesis and Catalysis, 2014, 356, 1395-1411.	2.1	123
421	Advancement in Cascade [1,n]â∈Hydrogen Transfer/Cyclization: A Method for Direct Functionalization of Inactive C(<i>sp</i> ³)H Bonds. Advanced Synthesis and Catalysis, 2014, 356, 1137-1171.	2.1	171
422	Palladiumâ€Catalyzed CF Bond Formation <i>via</i> Directed CH Activation. Advanced Synthesis and Catalysis, 2014, 356, 1412-1418.	2.1	75

#	Article	IF	Citations
423	Syntheses of Sulfides and Selenides through Direct Oxidative Functionalization of C(sp ³)â€"H Bond. Organic Letters, 2014, 16, 3032-3035.	2.4	111
424	Palladium(II)-Catalyzed Enantioselective C(sp ³)–H Activation Using a Chiral Hydroxamic Acid Ligand. Journal of the American Chemical Society, 2014, 136, 8138-8142.	6.6	231
425	Metal-Free Azaphosphaannulation of Phosphonamides through Intramolecular Oxidative C–N Bond Formation. Organic Letters, 2014, 16, 3098-3101.	2.4	33
426	Catalytic Enantioselective Oxidative Crossâ€Coupling of Benzylic Ethers with Aldehydes. Angewandte Chemie - International Edition, 2014, 53, 543-547.	7.2	174
427	Cu(II)-Mediated C–H Amidation and Amination of Arenes: Exceptional Compatibility with Heterocycles. Journal of the American Chemical Society, 2014, 136, 3354-3357.	6.6	313
428	Nickelâ€Catalyzed Decarboxylative Acylation of Heteroarenes by sp ² CH Functionalization. Chemistry - A European Journal, 2014, 20, 7241-7244.	1.7	66
429	Rh(III)-Catalyzed Câ€"H Amidation with <i>N</i> -Hydroxycarbamates: A New Entry to <i>N</i> -Carbamate-Protected Arylamines. Organic Letters, 2014, 16, 592-595.	2.4	84
430	Palladium-Catalyzed Unactivated C(sp ³)–H Bond Activation and Intramolecular Amination of Carboxamides: A New Approach to β-Lactams. Organic Letters, 2014, 16, 480-483.	2.4	125
431	Rh(III)-Catalyzed Intermolecular Câ€"H Amination of 1-Aryl-1 <i>H</i> -pyrazol-5(4 <i>H</i>)-ones with Alkylamines. Organic Letters, 2014, 16, 42-45.	2.4	61
432	Rh(III)-Catalyzed C–H Activation with Allenes To Synthesize Conjugated Olefins. Organic Letters, 2014, 16, 330-333.	2.4	69
433	Transition metal-catalyzed direct nucleophilic addition of C–H bonds to carbon–heteroatom double bonds. Chemical Science, 2014, 5, 2146-2159.	3.7	292
434	2-Hydroxy-1,10-phenanthroline vs 1,10-Phenanthroline: Significant Ligand Acceleration Effects in the Palladium-Catalyzed Oxidative Heck Reaction of Arenes. Organic Letters, 2014, 16, 500-503.	2.4	75
435	Catalytic asymmetric α-C(sp3)–H functionalization of amines. Tetrahedron Letters, 2014, 55, 551-558.	0.7	101
436	Palladiumâ€Catalyzed Regioselective <i>ortho</i> à€Acylation of Azoxybenzenes with Aldehyde Derivatives. Advanced Synthesis and Catalysis, 2014, 356, 3789-3793.	2.1	27
437	Room-temperature enantioselective C–H iodination via kinetic resolution. Science, 2014, 346, 451-455.	6.0	198
438	Structurally Diverse α-Substituted Benzopyran Synthesis through a Practical Metal-Free C(sp ³)â€"H Functionalization. Organic Letters, 2014, 16, 5988-5991.	2.4	77
440	Nickelâ€Catalyzed Decarboxylative Arylation of Heteroarenes through sp ² C–H Functionalization. European Journal of Organic Chemistry, 2014, 2014, 7586-7589.	1.2	31
441	Long-Range C–H Bond Activation by Rh ^{III} -Carboxylates. Journal of the American Chemical Society, 2014, 136, 14690-14693.	6.6	27

#	Article	IF	Citations
442	Highly enantioselective oxidative tandem cyclization reaction: a chiral ligand and an anion cooperatively control stereoselectivity. Organic Chemistry Frontiers, 2014, 1, 473-476.	2.3	23
443	Palladium-catalyzed regioselective azidation of allylic C–H bonds under atmospheric pressure of dioxygen. Organic and Biomolecular Chemistry, 2014, 12, 3340-3343.	1.5	56
444	Palladium-catalyzed ortho-acylation of 2-benzyl-1,2,3-triazoles with aldehydes. Organic and Biomolecular Chemistry, 2014, 12, 7474-7477.	1.5	16
445	Palladium-catalyzed direct C–H allylation of arenes without directing groups. Organic Chemistry Frontiers, 2014, 1, 546.	2.3	18
446	Construction of C(sp ²)â€"S and C(sp ²)â€"Se bonds via a silver(<scp>i</scp>)-mediated coupling reaction of heterocyclic ketene aminals with diaryl dichalcogenides. RSC Advances, 2014, 4, 26389-26397.	1.7	9
447	Dimeric pyrrole–imidazole alkaloids: synthetic approaches and biosynthetic hypotheses. Chemical Communications, 2014, 50, 8628-8639.	2.2	59
449	Synthesis of Axially Chiral Biaryls through Sulfoxideâ€Directed Asymmetric Mild CH Activation and Dynamic Kinetic Resolution. Angewandte Chemie - International Edition, 2014, 53, 13871-13875.	7.2	226
450	Construction of Axial Chirality by Rhodiumâ€Catalyzed Asymmetric Dehydrogenative Heck Coupling of Biaryl Compounds with Alkenes. Angewandte Chemie - International Edition, 2014, 53, 13244-13247.	7.2	297
451	Ruthenium–Porphyrinâ€Catalyzed Diastereoselective Intramolecular Alkyl Carbene Insertion into CH Bonds of Alkyl Diazomethanes Generated In Situ from <i>N</i> â€Tosylhydrazones. Angewandte Chemie - International Edition, 2014, 53, 14175-14180.	7.2	99
452	Rhodium(<scp>iii</scp>)-catalyzed olefinic C–H alkynylation of enamides at room temperature. Chemical Communications, 2014, 50, 9865-9868.	2.2	129
453	Enantioselective C–H Bond Addition of Pyridines to Alkenes Catalyzed by Chiral Half-Sandwich Rare-Earth Complexes. Journal of the American Chemical Society, 2014, 136, 12209-12212.	6.6	249
454	Privileged strategies for direct transformations of inert aliphatic C–H bonds. National Science Review, 2014, 1, 172-175.	4.6	5
455	Oxalyl Amide Assisted Palladium-Catalyzed Arylation of C(sp ²)â€"H Bond at the δPosition. Organic Letters, 2014, 16, 5682-5685.	2.4	55
456	Amide-Assisted Acetoxylation of Vinyl C(sp2)–H Bonds by Rhodium Catalysis. Organic Letters, 2014, 16, 4870-4873.	2.4	75
457	Enantioselective Allylic Hydroxylation of ï‰â€Alkenoic Acids and Esters by P450 BM3 Monooxygenase. Angewandte Chemie - International Edition, 2014, 53, 13253-13257.	7.2	33
458	Palladium-Catalyzed C8 Alkylation of 1-Naphthylamides with Alkyl Halides via Bidentate-Chelation Assistance. Journal of Organic Chemistry, 2014, 79, 6720-6725.	1.7	77
459	Sulfoximine Assisted Pd(II)-Catalyzed Bromination and Chlorination of Primary β-C(sp ³)–H Bond. Organic Letters, 2014, 16, 5258-5261.	2.4	105
460	Chiral Counteranion Strategy for Asymmetric Oxidative C(sp ³)ï½;H/C(sp ³)ï½;H Coupling: Enantioselective αâ€Allylation of Aldehydes with Terminal Alkenes. Angewandte Chemie - International Edition, 2014, 53, 12218-12221.	7.2	211

#	Article	IF	CITATIONS
461	Rhodium-catalyzed direct coupling of biaryl pyridine derivatives with internal alkynes. Chemical Communications, 2014, 50, 8204-8207.	2.2	48
462	Synthesis of heterocyclic-fused benzopyrans via the Pd(ii)-catalyzed C–H alkenylation/C–O cyclization of flavones and coumarins. Organic and Biomolecular Chemistry, 2014, 12, 3413-3422.	1.5	21
463	Cu(II)-Mediated Ortho C–H Alkynylation of (Hetero)Arenes with Terminal Alkynes. Journal of the American Chemical Society, 2014, 136, 11590-11593.	6.6	220
464	Cobalt-Catalyzed C–H Arylations, Benzylations, and Alkylations with Organic Electrophiles and Beyond. Journal of Organic Chemistry, 2014, 79, 8948-8954.	1.7	341
465	Palladium-Catalyzed Aerobic Oxidative C–H Olefination with Removable 1,2,3-Triazole Directing Group. Organic Letters, 2014, 16, 4448-4451.	2.4	66
466	Access to Î²â€Łactams by Enantioselective Palladium(0)â€Catalyzed C(sp ³)H Alkylation. Angewandte Chemie - International Edition, 2014, 53, 9064-9067.	7.2	127
467	Pd(II)-Catalyzed Intermolecular Direct C–H Bond Iodination: An Efficient Approach toward the Synthesis of Axially Chiral Compounds via Kinetic Resolution. ACS Catalysis, 2014, 4, 2741-2745.	5. 5	205
468	Design and synthesis of imidazo[1,2-α][1,8]naphthyridine derivatives as anti-HCV agents via direct C–H arylation. Organic and Biomolecular Chemistry, 2014, 12, 2344-2348.	1.5	27
469	Rhodium(<scp>iii</scp>)-catalyzed coupling of N-sulfonyl 2-aminobenzaldehydes with oxygenated allylic olefins through C–H activation. Organic and Biomolecular Chemistry, 2014, 12, 4290-4294.	1.5	31
470	Synthesis and Direct C2 Functionalization of Imidazolium and 1,2,4-Triazolium N-Imides. Journal of Organic Chemistry, 2014, 79, 10593-10598.	1.7	12
471	<i>Meta</i> -Selective Arene C–H Bond Olefination of Arylacetic Acid Using a Nitrile-Based Directing Group. Organic Letters, 2014, 16, 5760-5763.	2.4	180
472	New organometallic ruthenium(ii) complexes containing chelidonic acid (4-oxo-4H-pyran-2,6-dicarboxylic acid): synthesis, structure and in vitro biological activity. RSC Advances, 2014, 4, 2004-2022.	1.7	28
473	Highly site-selective sequential alkenylation of oxalyl amide protected phenylpropylamine derivatives via a seven-membered palladacycle. Chemical Science, 2014, 5, 4962-4967.	3.7	66
474	Rh(III)-Catalyzed C–H Activation/Cyclization of Indoles and Pyrroles: Divergent Synthesis of Heterocycles. Journal of Organic Chemistry, 2014, 79, 6490-6500.	1.7	155
475	Straightforward installation of carbon–halogen, carbon–oxygen and carbon–carbon bonds within metal–organic frameworks (MOF) via palladium-catalysed direct C–H functionalization. Chemical Communications, 2014, 50, 13261-13264.	2.2	12
477	Rh(<scp>iii</scp>)-Catalyzed synthesis of sultones through C–H activation directed by a sulfonic acid group. Chemical Communications, 2014, 50, 9776.	2.2	41
478	Versatile reactivity of Pd-catalysts: mechanistic features of the mono-N-protected amino acid ligand and cesium-halide base in Pd-catalyzed C–H bond functionalization. Chemical Society Reviews, 2014, 43, 5009-5031.	18.7	148
479	Recent development of direct asymmetric functionalization of inert C–H bonds. RSC Advances, 2014, 4, 6173.	1.7	532

#	Article	IF	CITATIONS
480	Directed CH Alkenylation of Quinoline <i>N</i> à€Oxides at the Câ€8 Position Using a Cationic Rhodium(I) Catalyst. Advanced Synthesis and Catalysis, 2014, 356, 1516-1520.	2.1	80
481	Using Rh(III)-Catalyzed C–H Activation as a Tool for the Selective Functionalization of Ketone-Containing Molecules. Organic Letters, 2014, 16, 1630-1633.	2.4	67
482	Enantioselective Synthesis of Planar Chiral Ferrocenes via Pd(0)-Catalyzed Intramolecular Direct C–H Bond Arylation. Journal of the American Chemical Society, 2014, 136, 4841-4844.	6.6	193
483	Copper-catalysed oxidative Csp ³ –H methylenation to terminal olefins using DMF. Chemical Communications, 2014, 50, 7636-7638.	2.2	61
484	Palladium(II)/Lewis Acid Synergistically Catalyzed Allylic Câ€"H Olefination. Organic Letters, 2014, 16, 3332-3335.	2.4	59
485	Synthesis of (Poly)fluorobiphenyls through Metalâ€catalyzed CH Bond Activation/Arylation of (Poly)fluorobenzene Derivatives. ChemCatChem, 2014, 6, 1824-1859.	1.8	79
486	Terminal Olefins to Chromans, Isochromans, and Pyrans via Allylic C–H Oxidation. Journal of the American Chemical Society, 2014, 136, 10834-10837.	6.6	104
487	Palladium-Nanoparticle-Catalyzed 1,7-Palladium Migration Involving C–H Activation, Followed by Intramolecular Amination: Regioselective Synthesis of N1-Arylbenzotriazoles and an Evaluation of Their Inhibitory Activity toward Indoleamine 2,3-Dioxygenase. Journal of Organic Chemistry, 2014, 79, 6366-6371.	1.7	43
488	Synthesis of 2-Vinylbenzofurans via the Copper-Catalyzed Multicomponent Reactions Involving an Oxa-Michael/Arylation/Vinylation Cascade. Organic Letters, 2014, 16, 5160-5163.	2.4	34
489	Rhodiumâ€Catalyzed Oxidative Perfluoroalkenylation by Carbonyl Group Directed C–H Bond Activation. European Journal of Organic Chemistry, 2014, 2014, 7211-7219.	1.2	10
490	KOAc-promoted alkynylation of α-Câ€"H bonds of ethers with alkynyl bromides under transition-metal-free conditions. Organic and Biomolecular Chemistry, 2014, 12, 2969-2978.	1.5	32
491	Rh(III)-Catalyzed Selective Coupling of $\langle i \rangle N \langle i \rangle$ -Methoxy- $1 \langle i \rangle H \langle i \rangle$ -indole-1-carboxamides and Aryl Boronic Acids. Organic Letters, 2014, 16, 3560-3563.	2.4	104
492	Palladium-Catalyzed Intramolecular Asymmetric Câ€"H Functionalization/Cyclization Reaction of Metallocenes: An Efficient Approach toward the Synthesis of Planar Chiral Metallocene Compounds. Journal of the American Chemical Society, 2014, 136, 4472-4475.	6.6	190
493	Easily Accessible Auxiliary for Palladiumâ€Catalyzed Intramolecular Amination of C(sp ²)H and C(sp ³)H Bonds at δâ€and εâ€Positions. Angewandte Chemie - International Edition, 2014, 5 9884-9888.	37.2	143
494	Rh(III)- and Ir(III)-Catalyzed C–H Alkynylation of Arenes under Chelation Assistance. Journal of the American Chemical Society, 2014, 136, 4780-4787.	6.6	389
495	Iron-catalyzed/mediated oxidative transformation of C–H bonds. Organic Chemistry Frontiers, 2014, 1, 194-214.	2.3	253
496	Rhodium(III)-Catalyzed Redox-Neutral C–H Arylation via Rearomatization. Organic Letters, 2014, 16, 1586-1589.	2.4	51
497	Regioselective and regiospecific C(naphthyl)–H bond activation: Isolation, characterization, crystal structure and TDDFT study of isomeric cyclopalladates. Journal of Organometallic Chemistry, 2014, 761, 147-155.	0.8	8

#	Article	IF	CITATIONS
498	Asymmetric Synthesis of Isoindolones by Chiral Cyclopentadienylâ€Rhodium(III)â€Catalyzed CH Functionalizations. Angewandte Chemie - International Edition, 2014, 53, 7896-7899.	7.2	270
499	sp ³ –sp ² vs sp ³ –sp ³ C–C Site Selectivity in Rh-Catalyzed Ring Opening of Benzocyclobutenol: A DFT Study. Journal of the American Chemical Society, 2014, 136, 169-178.	6.6	69
500	Ligand-Based Carbonâ€"Nitrogen Bond Forming Reactions of Metal Dinitrosyl Complexes with Alkenes and Their Application to Câ€"H Bond Functionalization. Accounts of Chemical Research, 2014, 47, 517-529.	7.6	35
501	Carboxylate-Assisted Ruthenium-Catalyzed Alkyne Annulations by C–H/Het–H Bond Functionalizations. Accounts of Chemical Research, 2014, 47, 281-295.	7.6	1,518
502	Density Functional Theory Calculations on Oxidative Cī£¿C Bond Cleavage and Nī£¿O Bond Formation of [Ru ^{II} (bpy) ₂ (diamine)] ²⁺ via Reactive Ruthenium Imide Intermediates. Chemistry - A European Journal, 2014, 20, 15122-15130.	1.7	5
509	Enantioselective Synthesis of Spiroindenes by Enolâ€Directed Rhodium(III)â€Catalyzed CH Functionalization and Spiroannulation. Angewandte Chemie - International Edition, 2015, 54, 13975-13979.	7.2	138
510	A Combined IMâ€MS/DFT Study on [Pd(MPAA)]â€Catalyzed Enantioselective CH Activation: Relay of Chirality through a Rigid Framework. Chemistry - A European Journal, 2015, 21, 11180-11188.	1.7	94
511	Pd-Catalyzed C―H Functionalization. , 2015, , 59-94.		1
513	Alkynoxy-Directed C–H Functionalizations: Palladium(0)-Catalyzed Annulations of Alkynyl Aryl Ethers with Alkynes. Bulletin of the Chemical Society of Japan, 2015, 88, 1388-1403.	2.0	12
514	Palladium-Catalyzed Enantioselective Domino Heck/Intermolecular C–H Bond Functionalization: Development and Application to the Synthesis of (+)-Esermethole. Journal of the American Chemical Society, 2015, 137, 16028-16031.	6.6	178
517	Ligandâ€Enabled Catalytic CH Arylation of Aliphatic Amines by a Fourâ€Memberedâ€Ring Cyclopalladation Pathway. Angewandte Chemie - International Edition, 2015, 54, 15840-15844.	7.2	110
519	Palladium(II)â€Catalyzed <i>meta</i> àâ€CH Olefination: Constructing Multisubstituted Arenes through Homoâ€Diolefination and Sequential Heteroâ€Diolefination. Angewandte Chemie - International Edition, 2015, 54, 8515-8519.	7.2	216
520	Chiral γâ€Lactams by Enantioselective Palladium(0)â€Catalyzed Cyclopropane Functionalizations. Angewandte Chemie - International Edition, 2015, 54, 11826-11829.	7.2	138
521	Readily Removable Directing Group Assisted Chemo―and Regioselective C(sp ³)H Activation by Palladium Catalysis. Angewandte Chemie - International Edition, 2015, 54, 13686-13690.	7.2	53
523	Highly Efficient Synthesis of Arylpyrrole Derivatives via Rh(III)â€Catalyzed Direct CH Arylation with Aryl Boronic Acids. Chinese Journal of Chemistry, 2015, 33, 1015-1018.	2.6	10
525	Ligandâ€Enabled Catalytic CH Arylation of Aliphatic Amines by a Fourâ€Memberedâ€Ring Cyclopalladation Pathway. Angewandte Chemie, 2015, 127, 16066-16070.	1.6	28
526	Metalâ€Free Oxidative CC Bond Formation through CH Bond Functionalization. Chemistry - A European Journal, 2015, 21, 14678-14693.	1.7	151
527	Fe ^{III} â€Catalyzed Crossâ€Dehydrogenative Arylation (CDA) between Oxindoles and Arenes under an Air Atmosphere. Chemistry - A European Journal, 2015, 21, 16744-16748.	1.7	52

#	Article	IF	Citations
530	Manganese(I) atalyzed C–H Aminocarbonylation of Heteroarenes. Angewandte Chemie - International Edition, 2015, 54, 14137-14140.	7.2	126
531	Oneâ€pot synthesis of polyfluoroterphenyls via palladiumâ€catalyzed Suzuki–Miyaura coupling of chlorobromobenzene and CH bond functionalization of perfluoroarenes. Applied Organometallic Chemistry, 2015, 29, 50-56.	1.7	4
532	Total Synthesis of Codeine. Chemistry - A European Journal, 2015, 21, 16379-16382.	1.7	24
533	Cobalt(III)â€Catalyzed CH/NO Functionalizations: Isohypsic Access to Isoquinolines. Chemistry - A European Journal, 2015, 21, 15525-15528.	1.7	180
537	Enantiospecific CH Activation Using Ruthenium Nanocatalysts. Angewandte Chemie - International Edition, 2015, 54, 10474-10477.	7.2	118
538	C–H bond halogenation catalyzed or mediated by copper: an overview. Beilstein Journal of Organic Chemistry, 2015, 11, 2132-2144.	1.3	56
539	Transition metal-catalyzed C–H bond functionalizations by the use of diverse directing groups. Organic Chemistry Frontiers, 2015, 2, 1107-1295.	2.3	1,379
540	Catalytic C–C Bond Activations via Oxidative Addition to Transition Metals. Chemical Reviews, 2015, 115, 9410-9464.	23.0	878
541	Oxalyl amide assisted palladium-catalyzed synthesis of pyrrolidones via carbonylation of γ-C(sp ³)–H bonds of aliphatic amine substrates. Chemical Science, 2015, 6, 4610-4614.	3.7	107
542	Formal [4+1] Annulation Reactions in the Synthesis of Carbocyclic and Heterocyclic Systems. Chemical Reviews, 2015, 115, 5301-5365.	23.0	350
543	Copper-Mediated Aryloxylation and Vinyloxylation of \hat{l}^2 -C(sp3) \hat{a} e"H Bond of Propionamides with Organosilanes. Organic Letters, 2015, 17, 2768-2771.	2.4	37
544	Step economical synthesis of o-aryl benzamides via Câ€"H activation relayed by the in situ installation of directing group: a multicomponent method. RSC Advances, 2015, 5, 46192-46196.	1.7	22
545	Regioselective Cross-Couplings of Coumarins and Flavones with Ethers via C(sp ³)–H Functionalization. Journal of Organic Chemistry, 2015, 80, 7251-7257.	1.7	86
546	Acyloxylation of 1,4-Dioxanes and 1,4-Dithianes Catalyzed by a Copper–Iron Mixed Oxide. Journal of Organic Chemistry, 2015, 80, 6814-6821.	1.7	13
547	Cpâ^—Co(III)-catalyzed direct functionalization of aromatic C–H bonds with α-diazomalonates. Tetrahedron Letters, 2015, 56, 4093-4095.	0.7	97
548	Rhodium-catalyzed regioselective direct C–H arylation of indoles with aryl boronic acids. Tetrahedron Letters, 2015, 56, 3754-3757.	0.7	37
549	Palladium-catalyzed ortho-C–H alkenylation of 2-benzyl-1,2,3-triazoles. Organic and Biomolecular Chemistry, 2015, 13, 7146-7148.	1.5	20
550	Activation and Oxidation of Mesitylene C–H Bonds by (Phebox)Iridium(III) Complexes. Organometallics, 2015, 34, 2879-2888.	1.1	18

#	Article	IF	CITATIONS
551	Ligand-Controlled Divergent Câ€"H Functionalization of Aldehydes with Enynes by Cobalt Catalysts. Journal of the American Chemical Society, 2015, 137, 16116-16120.	6.6	130
552	Auxiliary-Directed Pd-Catalyzed γ-C(sp ³)–H Bond Activation of α-Aminobutanoic Acid Derivatives. Organic Letters, 2015, 17, 6094-6097.	2.4	50
553	Palladium-catalyzed regio-selective oxidative C–H bond acylation of azoxybenzenes with alcohols. Organic and Biomolecular Chemistry, 2015, 13, 4160-4164.	1.5	17
554	Cobalt(III)â€Catalyzed Directed CH Coupling with Diazo Compounds: Straightforward Access towards Extended Ï€â€Systems. Angewandte Chemie - International Edition, 2015, 54, 4508-4511.	7.2	312
555	Palladium(<scp>ii</scp>)-catalysed ortho-arylation of N-benzylpiperidines. Chemical Communications, 2015, 51, 4406-4409.	2.2	28
556	Cu(II)-Catalyzed Coupling of Aromatic C–H Bonds with Malonates. Organic Letters, 2015, 17, 1228-1231.	2.4	71
557	Copper-catalyzed ortho-halogenation of arenes and heteroarenes directed by a removable auxiliary. Chemical Communications, 2015, 51, 5093-5096.	2.2	84
558	Dehydrogenative and decarboxylative C–H alkynylation of heteroarenes catalyzed by Pd(II)–carbene complex. Tetrahedron, 2015, 71, 1975-1981.	1.0	17
559	The direct α-C(sp ³)â€"H functionalisation of N-aryl tetrahydroisoquinolines via an iron-catalysed aerobic nitro-Mannich reaction and continuous flow processing. Chemical Communications, 2015, 51, 334-337.	2.2	56
560	Carboxylic Acids as Traceless Directing Groups for the Rhodium(III)â€Catalyzed Decarboxylative CH Arylation of Thiophenes. Angewandte Chemie - International Edition, 2015, 54, 3817-3821.	7.2	211
561	Transition-Metal-Catalyzed Arylation of Nitroimidazoles and Further Transformations of Manipulable Nitro Group. Journal of Organic Chemistry, 2015, 80, 2103-2119.	1.7	37
563	(Diacetoxyiodo)benzeneâ€Mediated Oxygenation of Benzylic C(sp ³)–H Bonds with <i>N</i> à€Hydroxyamides at Room Temperature. European Journal of Organic Chemistry, 2015, 2015, 1680-1684.	1.2	25
564	Regio- and Stereoselective Pd-Catalyzed Direct Arylation of Unactivated sp ³ C(3)–H Bonds of Tetrahydrofuran and 1,4-Benzodioxane Systems. Journal of Organic Chemistry, 2015, 80, 2339-2355.	1.7	68
565	Functionalization of C–H Bonds via Metal-Catalyzed Desulfitative Coupling: An Alternative Tool for Access to Aryl- or Alkyl-Substituted (Hetero)arenes. ACS Catalysis, 2015, 5, 978-991.	5.5	142
566	Palladium-catalyzed oxidative ortho-acylation of 2-arylbenzoxazoles and 2-arylbenzothiazoles with toluene derivatives. Tetrahedron, 2015, 71, 1574-1580.	1.0	32
567	Rh(iii)-catalyzed direct C–H/C–H cross-coupling of quinones with arenes assisted by a directing group: identification of carbazole quinones as GSKβ inhibitors. Organic and Biomolecular Chemistry, 2015, 13, 3918-3923.	1.5	54
568	Controlling the Selectivity of C–H Activation in Pyridinium Triazolylidene Iridium Complexes: Mechanistic Details and Influence of Remote Substituents. Organometallics, 2015, 34, 858-869.	1.1	28
570	Cobaltâ€Catalyzed CH Arylations with Weaklyâ€Coordinating Amides and Tetrazoles: Expedient Route to Angiotensinâ€Hâ€Receptor Blockers. Chemistry - A European Journal, 2015, 21, 5718-5722.	1.7	66

#	Article	IF	CITATIONS
571	Transition-Metal-Catalyzed Direct Addition of Unactivated C–H Bonds to Polar Unsaturated Bonds. Chemical Reviews, 2015, 115, 3468-3517.	23.0	668
572	Phosphaannulation of Aryl―and Benzylphosphonic Acids with Unactivated Alkenes ⟨i⟩via⟨ i⟩ Palladiumâ€Catalyzed CH Activation/Oxidative Cyclization Reaction. Advanced Synthesis and Catalysis, 2015, 357, 811-817.	2.1	30
574	Copper-catalyzed oxidative esterification of ortho-formyl phenols without affecting labile formyl group. Tetrahedron Letters, 2015, 56, 4569-4573.	0.7	12
575	Palladium-catalyzed oxalyl amide assisted direct ortho-alkynylation of arylalkylamine derivatives at \hat{l}' and $\hat{l}\mu$ positions. Chemical Communications, 2015, 51, 12103-12106.	2.2	46
576	Palladium-catalyzed intramolecular rearrangement of vinylidenecyclopropanes through C–C bond activation. Organic Chemistry Frontiers, 2015, 2, 792-796.	2.3	4
577	Copper-Catalyzed Intramolecular Dehydrogenative Amidation of Unactivated C(sp ³)–H Bonds Using O ₂ as the Sole Oxidant. Journal of Organic Chemistry, 2015, 80, 8424-8429.	1.7	62
578	Distant C-H Activation/Functionalization: A New Horizon of Selectivity Beyond Proximity. Catalysis Reviews - Science and Engineering, 2015, 57, 345-405.	5.7	62
579	Palladium-Catalyzed Chelation-Assisted Regioselective Oxidative Dehydrogenative Homocoupling/Ortho-Hydroxylation in N-Phenylpyrazoles. Journal of Organic Chemistry, 2015, 80, 7360-7374.	1.7	26
580	Dynamic behaviour of monohaptoallylpalladium species: internal coordination as a driving force in allylic alkylation chemistry. Chemical Science, 2015, 6, 5734-5739.	3.7	8
581	Catalytic C–H Bond Functionalization of Cyclopropane Derivatives. Topics in Organometallic Chemistry, 2015, , 91-113.	0.7	8
582	Pd-catalyzed cross-coupling of aromatic compounds with carboxylic acids via C–H bond activation. Organic Chemistry Frontiers, 2015, 2, 502-505.	2.3	18
583	sp3–sp3 carbon–carbon bond formation using 2-alkylazoles and a bromoacrylate as the reaction partners. Tetrahedron Letters, 2015, 56, 4354-4358.	0.7	4
584	Mechanistic Understanding of the Aryl-Dependent Ring Formations in Rh(III)-Catalyzed C–H Activation/Cycloaddition of Benzamides and Methylenecyclopropanes by DFT Calculations. Organometallics, 2015, 34, 3012-3020.	1.1	68
585	Ambient-Temperature Ortho C–H Arylation of Benzoic Acids with Aryl Iodides with Ligand-Supported Palladium Catalyst. Organic Letters, 2015, 17, 3418-3421.	2.4	70
586	Catalytic Asymmetric Arylation of \hat{l}_{\pm} -Aryl- \hat{l}_{\pm} -diazoacetates with Aniline Derivatives. Journal of the American Chemical Society, 2015, 137, 8700-8703.	6.6	158
587	Enantioselective palladium(0)-catalyzed intramolecular cyclopropane functionalization: access to dihydroquinolones, dihydroisoquinolones and the BMS-791325 ring system. Chemical Science, 2015, 6, 5164-5171.	3.7	99
588	Phosphine-Free Palladium-Catalyzed Direct Bisarylation of Pyrroles with Aryl Iodides on Water. Journal of Organic Chemistry, 2015, 80, 5302-5307.	1.7	24
589	Asymmetric C–H functionalization involving organocatalysis. Tetrahedron Letters, 2015, 56, 3703-3714.	0.7	36

#	Article	IF	Citations
590	Recent advances in transition metal-catalyzed Câ \in "H bond functionalization of ferrocene derivatives. Dalton Transactions, 2015, 44, 10128-10135.	1.6	102
591	Asymmetric C–H functionalization of cyclopropanes using an isoleucine-NH2 bidentate directing group. Chemical Science, 2015, 6, 3611-3616.	3.7	72
592	Chiral Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-Catalyzed C–H Functionalizations. Accounts of Chemical Research, 2015, 48, 1308-1318.	7.6	736
593	Indium-catalyzed oxidative cross-dehydrogenative coupling of chromenes with 1,3-dicarbonyls and aryl rings. Organic and Biomolecular Chemistry, 2015, 13, 5710-5715.	1.5	22
594	Rhodiumâ€Catalyzed Enantioselective Intramolecular CH Silylation for the Syntheses of Planarâ€Chiral Metallocene Siloles. Angewandte Chemie - International Edition, 2015, 54, 6918-6921.	7.2	157
595	Palladium-catalyzed oxygenation of C(sp ²)â€"H and C(sp ³)â€"H bonds under the assistance of oxalyl amide. RSC Advances, 2015, 5, 28430-28434.	1.7	33
596	Ru(II)-catalyzed ortho-amidation and decarboxylation of aromatic acids: a versatile route to meta-substituted N-aryl benzamides. Science China Chemistry, 2015, 58, 1286-1291.	4.2	34
597	Cobalt(III) atalyzed Aryl and Alkenyl CH Aminocarbonylation with Isocyanates and Acyl Azides. Angewandte Chemie - International Edition, 2015, 54, 8551-8554.	7.2	185
598	Development of Modifiable Bidentate Amino Oxazoline Directing Group for Pd atalyzed Arylation of Secondary CH Bonds. Chemistry - A European Journal, 2015, 21, 7389-7393.	1.7	43
599	Rh/Cu-catalyzed multiple Câ€"H, Câ€"C, and Câ€"N bond cleavage: facile synthesis of pyrido[2,1-a]indoles from 1-(pyridin-2-yl)-1H-indoles and γ-substituted propargyl alcohols. Chemical Communications, 2015, 51, 6777-6780.	2.2	54
600	Insights into the coordination chemistry of alkanes to metal carbonyls from quantum chemical calculations. Journal of Organometallic Chemistry, 2015, 793, 241-247.	0.8	3
601	Seleniumâ€Catalyzed C(sp ³)H Acyloxylation: Application in the Expedient Synthesis of Isobenzofuranones. Chemistry - A European Journal, 2015, 21, 7030-7034.	1.7	52
602	Palladium-Catalyzed C–H Functionalization of Acyldiazomethane and Tandem Cross-Coupling Reactions. Journal of the American Chemical Society, 2015, 137, 4435-4444.	6.6	94
603	Ironâ€Catalyzed C(sp ²)H and C(sp ³)H Methylations of Amides and Anilides. Chemistry - A European Journal, 2015, 21, 8812-8815.	1.7	95
604	Regiospecific Benzoylation of Electron-Deficient <i>N</i> Heterocycles with Methylbenzenes via a Minisci-Type Reaction. Journal of Organic Chemistry, 2015, 80, 5625-5632.	1.7	67
605	A Unique Alkylation of Azobenzenes with Allyl Acetates by Rh ^{III} -Catalyzed C–H Functionalization. Organic Letters, 2015, 17, 2450-2453.	2.4	46
606	Diaryliodoniums by Rhodium(III)â€Catalyzed CH Activation: Mild Synthesis and Diversified Functionalizations. Angewandte Chemie - International Edition, 2015, 54, 7405-7409.	7.2	57
607	Palladium-Catalyzed Asymmetric Arylation of C(sp ³)â€"H Bonds of Aliphatic Amides: Controlling Enantioselectivity Using Chiral Phosphoric Amides/Acids. Organic Letters, 2015, 17, 2458-2461.	2.4	167

#	Article	IF	CITATIONS
608	Rhodium-Catalyzed Enantioselective Silylation of Arene C–H Bonds: Desymmetrization of Diarylmethanols. Journal of the American Chemical Society, 2015, 137, 6742-6745.	6.6	113
609	Diastereoselective Carbonyl Allylation with Simple Olefins Enabled by Palladium Complex-Catalyzed C–H Oxidative Borylation. Journal of the American Chemical Society, 2015, 137, 4054-4057.	6.6	96
610	Palladiumâ€Catalyzed Enantioselective CH Arylation for the Synthesis of Pâ€Stereogenic Compounds. Angewandte Chemie - International Edition, 2015, 54, 6265-6269.	7.2	158
611	Nickel-catalyzed directed sulfenylation of sp ² and sp ³ C–H bonds. Chemical Communications, 2015, 51, 7863-7866.	2.2	116
612	Copper Acetate–DMSO Promoted Methylthiolation of Arenes and Heteroarenes. Journal of Organic Chemistry, 2015, 80, 4116-4122.	1.7	94
613	Enantiopure Sulfoxides: Efficient Chiral Directing Group for Stereoselective C‒H Bond Activation: Towards the Control of Axial Chirality. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1339-1351.	0.8	8
614	Asymmetric Dearomatization of Naphthols via a Rh-Catalyzed C(sp ²)–H Functionalization/Annulation Reaction. Journal of the American Chemical Society, 2015, 137, 4880-4883.	6.6	293
615	Asymmetric Allylic C–H Oxidation for the Synthesis of Chromans. Journal of the American Chemical Society, 2015, 137, 12732-12735.	6.6	124
616	Palladium catalyzed ortho-C–H-benzoxylation of 2-arylpyridines using iodobenzene dibenzoates. Tetrahedron Letters, 2015, 56, 6136-6141.	0.7	15
617	Enantioselective Functionalization of Inactive sp ³ Câ€"H Bonds Remote to Functional Group by Metal/Organo Cooperative Catalysis. Organic Letters, 2015, 17, 5120-5123.	2.4	24
618	<i>N</i> -Acyl Amino Acid Ligands for Ruthenium(II)-Catalyzed <i>meta</i> -Câ€"H <i>tert</i> -Alkylation with Removable Auxiliaries. Journal of the American Chemical Society, 2015, 137, 13894-13901.	6.6	308
619	Sequential one-pot Rh(III)-catalyzed direct C2 and C7 alkylation of (hetero)aromatic C–H bonds of indoles. Tetrahedron Letters, 2015, 56, 6214-6218.	0.7	32
620	Cobalt-Catalyzed Cyclization of Aliphatic Amides and Terminal Alkynes with Silver-Cocatalyst. Journal of the American Chemical Society, 2015, 137, 12990-12996.	6.6	242
621	TADDOL-based phosphorus(<scp>iii</scp>)-ligands in enantioselective Pd(0)-catalysed C–H functionalisations. Chemical Communications, 2015, 51, 17647-17657.	2.2	109
622	Cobalt(III)-Catalyzed C–H Alkynylation with Bromoalkynes under Mild Conditions. Organic Letters, 2015, 17, 5316-5319.	2.4	160
623	Cu(II)-Mediated C(sp ²)–H Hydroxylation. Journal of Organic Chemistry, 2015, 80, 8843-8848.	1.7	85
624	Copper-catalyzed aerobic oxidative coupling: From ketone and diamine to pyrazine. Science Advances, 2015, 1, e1500656.	4.7	24
625	Rhodium(iii)-catalyzed annulation of arenes with alkynes assisted by an internal oxidizing N–O bond. Organic and Biomolecular Chemistry, 2015, 13, 10977-10980.	1.5	14

#	Article	IF	Citations
626	Pd-Catalyzed Highly Enantioselective Synthesis of Planar Chiral Ferrocenylpyridine Derivatives. Organometallics, 2015, 34, 4618-4625.	1.1	64
627	Phosphorylation of C–H bonds of aromatic compounds using metals and metal complexes. Russian Chemical Reviews, 2015, 84, 917-951.	2.5	56
628	Cp*Co(III)-Catalyzed Annulations of 2-Alkenylphenols with CO: Mild Access to Coumarin Derivatives. Organic Letters, 2015, 17, 5404-5407.	2.4	132
629	Synthesis of Benzyl Esters via Functionalization of Multiple C–H Bonds by Palladium Catalysis. Organic Letters, 2015, 17, 5300-5303.	2.4	16
630	Directing-group-assisted copper-catalyzed oxidative esterification of phenols with aldehydes. Organic and Biomolecular Chemistry, 2015, 13, 10834-10843.	1.5	11
631	Mechanism of Pd-catalyzed C(sp ³)–H activation of aliphatic amines: an insight from DFT calculations. RSC Advances, 2015, 5, 71586-71592.	1.7	10
632	Iridium(III)-Catalyzed Direct Arylation of Câ \in "H Bonds with Diaryliodonium Salts. Journal of the American Chemical Society, 2015, 137, 12231-12240.	6.6	146
633	Synthesis of 1,2,4-Triazoles via Oxidative Heterocyclization:ÂSelective C–N Bond Over C–S Bond Formation. Journal of Organic Chemistry, 2015, 80, 9016-9027.	1.7	30
634	Enantioselective Dehydrogenative Heck Arylations of Trisubstituted Alkenes with Indoles to Construct Quaternary Stereocenters. Journal of the American Chemical Society, 2015, 137, 15668-15671.	6.6	158
635	Palladium(II)-Catalyzed Intramolecular Tandem Aminoalkylation via Divergent C(sp ³)–H Functionalization. Journal of the American Chemical Society, 2015, 137, 1130-1135.	6.6	103
636	Regioselective Direct Arylation of Fused 3â€Nitropyridines and Other Nitroâ€Substituted Heteroarenes: The Multipurpose Nature of the Nitro Group as a Directing Group. ChemCatChem, 2015, 7, 316-324.	1.8	27
637	Silver-Catalyzed C(sp ²)–H Functionalization/C–O Cyclization Reaction at Room Temperature. Journal of Organic Chemistry, 2015, 80, 911-919.	1.7	89
638	Transitionâ€Metalâ€Free Synthesis of Fluorinated Nitriles and Diaryl Ketones Through a Selective C–F Bond Functionalization Under Mild Conditions. European Journal of Organic Chemistry, 2015, 2015, 616-624.	1.2	14
639	Iridium-Catalyzed C–H Activation and Deuteration of Primary Sulfonamides: An Experimental and Computational Study. ACS Catalysis, 2015, 5, 402-410.	5.5	121
640	Copper-Catalyzed C–H Functionalization Reactions: Efficient Synthesis of Heterocycles. Chemical Reviews, 2015, 115, 1622-1651.	23.0	843
641	Selective formation of C–N and Cî€N bonds via C(sp ³)–H activation of isochroman in the presence of DTBP. Organic Chemistry Frontiers, 2015, 2, 60-64.	2.3	14
643	Exploiting the narrow gap of rearrangement between the substituents in the vicinal disubstitution reactions of diaryliodonium salts with pyridine N-sulfonamidates. Organic and Biomolecular Chemistry, 2015, 13, 751-763.	1.5	8
644	Mechanism, reactivity, and selectivity of the iridium-catalyzed C(sp ³)–H borylation of chlorosilanes. Chemical Science, 2015, 6, 1735-1746.	3.7	63

#	Article	IF	CITATIONS
645	Ruthenium-catalyzed direct C3 alkylation of indoles with \hat{l}_{\pm},\hat{l}^2 -unsaturated ketones. Organic and Biomolecular Chemistry, 2015, 13, 1254-1263.	1.5	28
646	Palladium-catalyzed unactivated β-methylene C(sp ³)â€"H bond alkenylation of aliphatic amides and its application in a sequential C(sp ³)â€"H/C(sp ²)â€"H bond alkenylation. Organic and Biomolecular Chemistry, 2015, 13, 697-701.	1.5	29
647	One-pot cascade synthesis of N-methoxyisoquinolinediones via Rh(⟨scp⟩iii⟨/scp⟩)-catalyzed carbenoid insertion Câ€"H activation/cyclization. Chemical Communications, 2015, 51, 668-671.	2.2	110
648	One-Pot Sequential Alkynylation and Cycloaddition: Regioselective Construction and Biological Evaluation of Novel Benzoxazole–Triazole Derivatives. ACS Combinatorial Science, 2015, 17, 39-48.	3.8	34
649	Efficient Synthesis of Frutinoneâ€A and Its Derivatives through Palladium atalyzed CH Activation/Carbonylation. Chemistry - an Asian Journal, 2015, 10, 878-881.	1.7	25
650	Palladium/norbornene chemistry: an unexpected route to methanocarbazole derivatives via three Csp ³ â€"Csp ² /Csp ³ â€"N bond formations in a single synthetic sequence. Chemical Communications, 2015, 51, 225-228.	2.2	29
651	Enantioselective Radical Alkynylation of C(sp ³)â€H Bonds Using Sulfoximine as a Traceless Chiral Auxiliary. Chemistry - an Asian Journal, 2015, 10, 120-123.	1.7	39
653	Cationic Pd(II)-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies. Beilstein Journal of Organic Chemistry, 2016, 12, 1040-1064.	1.3	36
654	Rh(III)-Catalyzed, Highly Selectively Direct C–H Alkylation of Indoles with Diazo Compounds. Catalysts, 2016, 6, 89.	1.6	18
655	Enantioselective carbenoid insertion into C(sp ³)â€"H bonds. Beilstein Journal of Organic Chemistry, 2016, 12, 882-902.	1.3	38
656	Palladiumâ€Catalyzed C(sp2)â€"H Bond Alkylation of Ketoximes by Using the Ringâ€Opening of Epoxides. European Journal of Organic Chemistry, 2016, 2016, 3090-3096.	1.2	24
657	Transitionâ€Metalâ€Catalyzed Redoxâ€Neutral and Redoxâ€Green C–H Bond Functionalization. Chemical Record, 2016, 16, 1807-1818.	2.9	16
658	Highâ€Valent Pentamethylcyclopentadienylcobalt(III) or â€iridium(III) atalyzed CH Annulation with Alkynes: Synthesis of Heterocyclic Quaternary Ammonium Salts. Advanced Synthesis and Catalysis, 2016, 358, 2186-2191.	2.1	52
659	Rhodium atalyzed Enantioselective Silylation of Cyclopropyl Câ^'H Bonds. Angewandte Chemie - International Edition, 2016, 55, 8723-8727.	7.2	102
660	Enantioselective Access to Spirocyclic Sultams by Chiral Cp ^x â€"Rhodium(III) atalyzed Annulations. Chemistry - A European Journal, 2016, 22, 2270-2273.	1.7	132
661	1,1,1,3,3,3â€Hexafluoroisopropanol as a Remarkable Medium for Atroposelective Sulfoxideâ€Directed Fujiwara–Moritani Reaction with Acrylates and Styrenes. Chemistry - A European Journal, 2016, 22, 1735-1743.	1.7	111
662	Highâ€Valentâ€Cobaltâ€Catalyzed Câ^'H Functionalization Based on Concerted Metalationâ€"Deprotonation and Singleâ€Electronâ€Transfer Mechanisms. ChemCatChem, 2016, 8, 1242-1263.	1.8	270
663	A Preliminary Study of Diastereoselectivity in the Pd ^{II} atalyzed C(sp ³)â€H Alkoxylation of Cyclic Systems. Chemistry - A European Journal, 2016, 22, 3273-3277.	1.7	16

#	ARTICLE	IF	CITATIONS
664	Rhodium atalysed Enantioselective C–H Functionalization in Asymmetric Synthesis. European Journal of Organic Chemistry, 2016, 2016, 1459-1475.	1.2	50
665	Iridium―and Rhodiumâ€Catalyzed Carbocyclization between 2â€Phenylimidazo[1,2â€ <i>a</i>)pyridine and αâ€Diazo Esters. Advanced Synthesis and Catalysis, 2016, 358, 880-886.	2.1	55
666	Rapid Construction of a Benzoâ€Fused Indoxamycin Core Enabled by Siteâ€Selective Câ^'H Functionalizations. Angewandte Chemie, 2016, 128, 8410-8414.	1.6	4
667	Expedient Ironâ€Catalyzed Câ^'H Allylation/Alkylation by Triazole Assistance with Ample Scope. Angewandte Chemie - International Edition, 2016, 55, 1484-1488.	7.2	176
668	Palladium-Catalyzed Allylic Amidation with N-Heterocycles via sp ³ Câ€"H Oxidation. ACS Catalysis, 2016, 6, 5295-5301.	5.5	50
669	Construction of Quaternary Stereogenic Carbon Centers through Copper atalyzed Enantioselective Allylic Alkylation of Azoles. Angewandte Chemie, 2016, 128, 4855-4858.	1.6	20
670	Rhodium atalyzed Enantioselective Silylation of Cyclopropyl Câ^'H Bonds. Angewandte Chemie, 2016, 128, 8865-8869.	1.6	32
671	Synthesis and applications of rhodacyclopentanones derived from C–C bond activation. Chemical Communications, 2016, 52, 10817-10829.	2.2	85
672	A General Strategy for the Nickelâ€Catalyzed Câ^'H Alkylation of Anilines. Angewandte Chemie - International Edition, 2016, 55, 3153-3157.	7.2	117
673	Enantioselective Câ^'H Olefination of αâ€Hydroxy and αâ€Amino Phenylacetic Acids by Kinetic Resolution. Angewandte Chemie - International Edition, 2016, 55, 2856-2860.	7.2	99
674	Mild Câ^'H/Câ^'C Activation by <i>Z</i> â€Selective Cobalt Catalysis. Angewandte Chemie - International Edition, 2016, 55, 7408-7412.	7.2	166
675	A General Strategy for the Nickel atalyzed Câ^'H Alkylation of Anilines. Angewandte Chemie, 2016, 128, 3205-3209.	1.6	36
676	Manganese(I) atalyzed Substitutive Câ^'H Allylation. Angewandte Chemie, 2016, 128, 7878-7881.	1.6	66
677	Mild Câ^'H/Câ^'C Activation by <i>Z</i> â€Selective Cobalt Catalysis. Angewandte Chemie, 2016, 128, 7534-7538.	1.6	52
678	Controllable Rh(III)-Catalyzed Annulation between Salicylaldehydes and Diazo Compounds: Divergent Synthesis of Chromones and Benzofurans. Organic Letters, 2016, 18, 6464-6467.	2.4	105
679	Catalytic Asymmetric Dearomatization by Transition-Metal Catalysis: A Method for Transformations of Aromatic Compounds. CheM, 2016, 1, 830-857.	5.8	446
680	The Use of Directing Groups Enables the Selective and Efficient Biocatalytic Oxidation of Unactivated Adamantyl Câ€H Bonds. ChemistrySelect, 2016, 1, 6700-6707.	0.7	10
681	Rhodium Catalysts for C–S Bond Formation. Topics in Organometallic Chemistry, 2016, , 31-67.	0.7	8

#	Article	IF	Citations
682	An Enantioselective Bidentate Auxiliary Directed Palladium atalyzed Benzylic Câ^'H Arylation of Amines Using a BINOL Phosphate Ligand. Angewandte Chemie, 2016, 128, 15613-15617.	1.6	46
683	Cationic Two-Coordinate Complexes of Pd(I) and Pt(I) Have Longer Metal-Ligand Bonds Than Their Neutral Counterparts. CheM, 2016, 1, 902-920.	5.8	31
684	Hydrogen-Atom Transfer Reactions. Topics in Current Chemistry, 2016, 374, 17.	3.0	75
685	Synthesis of Planar Chiral Ferrocenes by Transitionâ€Metalâ€Catalyzed Enantioselective Câ^'H Activation. ChemCatChem, 2016, 8, 68-73.	1.8	102
686	Singleâ€Component Phosphinous Acid Ruthenium(II) Catalysts for Versatile Câ^'H Activation by Metalâ€"Ligand Cooperation. Chemistry - A European Journal, 2016, 22, 1248-1252.	1.7	76
687	Copper(I)-catalysed amidation and successive oxidation of benzylic C(sp3)–H bond: synthesis of 1H-pyrrolo[3,4-b]quinoline-1,3(2H)-diones. Tetrahedron, 2016, 72, 4245-4251.	1.0	14
688	5-Methylisoxazole-3-carboxamide-Directed Palladium-Catalyzed γ-C(sp ³)–H Acetoxylation and Application to the Synthesis of γ-Mercapto Amino Acids for Native Chemical Ligation. Organic Letters, 2016, 18, 2696-2699.	2.4	30
689	Ruthenium Oxidase Catalysis for Siteâ€Selective C–H Alkenylations with Ambient O ₂ as the Sole Oxidant. Angewandte Chemie - International Edition, 2016, 55, 264-267.	7.2	164
690	Direct Observation of C–H Cyclopalladation at Tertiary Positions Enabled by an Exo-Directing Group. Organometallics, 2016, 35, 1057-1059.	1.1	29
691	Mild metal-catalyzed C–H activation: examples and concepts. Chemical Society Reviews, 2016, 45, 2900-2936.	18.7	1,526
692	Various difunctionalizations of acrylamide: an efficient approach to synthesize oxindoles. Organic and Biomolecular Chemistry, 2016, 14, 4365-4377.	1.5	105
693	Ketone-Assisted Ruthenium(II)-Catalyzed C–H Imidation: Access to Primary Aminoketones by Weak Coordination. ACS Catalysis, 2016, 6, 3172-3175.	5 . 5	69
694	Palladium-Catalyzed Deaminative Phenanthridinone Synthesis from Aniline via C–H Bond Activation. Journal of Organic Chemistry, 2016, 81, 4103-4111.	1.7	46
695	Directing activator-assisted regio- and oxidation state-selective aerobic oxidation of secondary C(sp ³)â€"H bonds in aliphatic alcohols. Organic and Biomolecular Chemistry, 2016, 14, 4378-4381.	1.5	16
696	Rhodium(II)-Catalyzed C–H Functionalization of Electron-Deficient Methyl Groups. Journal of the American Chemical Society, 2016, 138, 5761-5764.	6.6	41
697	1,2,3-Triazole amine as directing group in promoting catalytic oxidative C–H olefination under aerobic conditions. Tetrahedron, 2016, 72, 2756-2762.	1.0	13
698	Synthesis of Quinoline-Based NNN-Pincer Nickel(II) Complexes: A Robust and Improved Catalyst System for Câ€"H Bond Alkylation of Azoles with Alkyl Halides. Organometallics, 2016, 35, 1785-1793.	1.1	38
699	An Approach to Tetraphenylenes via Pd-Catalyzed C–H Functionalization. Organic Letters, 2016, 18, 2032-2035.	2.4	59

#	Article	IF	CITATIONS
700	Highly regioselective meta arylation of oxalyl amide-protected \hat{l}^2 -arylethylamine via the Catellani reaction. Chemical Communications, 2016, 52, 6903-6906.	2.2	69
701	Palladium-catalyzed double Câ€"H functionalization of 2-aryl-1,3-dicarbonyl compounds: a facile access to alkenylated benzopyrans. Tetrahedron Letters, 2016, 57, 2488-2491.	0.7	13
702	Palladium-catalyzed ortho-acylation of N-Nitrosoanilines with î±-oxocarboxylic acids: a convenient method to synthesize N-Nitroso ketones and indazoles. Tetrahedron Letters, 2016, 57, 2511-2514.	0.7	12
703	lonic liquid [bmim]Br assisted chemoselective benzylic C H oxidations using -butyl hydroperoxide. Journal of Molecular Liquids, 2016, 222, 441-445.	2.3	12
704	Enantioselective Formal C(sp ^{)â^'H Vinylation. Chemistry - A European Journal, 2016, 22, 14912-14919.}	1.7	28
705	Palladium(0)-Catalyzed Asymmetric Câ \in "H Alkenylation for Efficient Synthesis of Planar Chiral Ferrocenes. Organometallics, 2016, 35, 3227-3233.	1.1	44
706	Catalytic Asymmetric Câ^'H Functionalization under Photoredox Conditions by Radical Translocation and Stereocontrolled Alkene Addition. Angewandte Chemie, 2016, 128, 13693-13696.	1.6	91
707	Highly Enantioselective Allylic C–H Alkylation of Terminal Olefins with Pyrazol-5-ones Enabled by Cooperative Catalysis of Palladium Complex and Brønsted Acid. Journal of the American Chemical Society, 2016, 138, 14354-14361.	6.6	158
708	Catalytic Asymmetric Câ^'H Functionalization under Photoredox Conditions by Radical Translocation and Stereocontrolled Alkene Addition. Angewandte Chemie - International Edition, 2016, 55, 13495-13498.	7.2	231
709	Cobaltâ€Catalyzed Twofold Direct C(<i>sp</i> ²)â°'C(<i>sp</i> ³) Bond Coupling: Regioselective Câ€3 Alkylation of Coumarins with (Cyclo)alkyl Ethers. Advanced Synthesis and Catalysis, 2016, 358, 2422-2426.	2.1	37
710	Enantioselective Main Group Catalysis: Modern Catalysts for Organic Transformations. Coordination Chemistry Reviews, 2016, 324, 123-139.	9.5	107
711	The diastereoselective synthesis of octahedral cationic iridium hydride complexes with a stereogenic metal centre. Chemical Communications, 2016, 52, 10629-10631.	2.2	4
712	Nickelâ€Catalyzed Câ^'H Chalcogenation of Anilines. Chemistry - A European Journal, 2016, 22, 14151-14154.	1.7	78
713	Palladium atalyzed C–H Arylation of Amides by Triazole Assistance. European Journal of Organic Chemistry, 2016, 2016, 5429-5436.	1.2	35
715	Ligand-accelerated enantioselective methylene C(sp ³)–H bond activation. Science, 2016, 353, 1023-1027.	6.0	296
716	Catalystâ€Guided C=Het Hydroarylations by Manganeseâ€Catalyzed Additiveâ€Free Câ^'H Activation. Chemistry - A European Journal, 2016, 22, 14856-14859.	1.7	74
717	Rhodium(III)-Catalyzed Regio- and Stereoselective C–H Allylation of Arenes with Vinyl Benzoxazinanones. Organic Letters, 2016, 18, 4392-4395.	2.4	47
718	Ruthenium-Catalyzed Intramolecular Hydroarylation of Arenes and Mechanistic Study: Synthesis of Dihydrobenzofurans, Indolines, and Chromans. Journal of Organic Chemistry, 2016, 81, 8552-8560.	1.7	32

#	Article	IF	CITATIONS
719	Overcoming the Limitations of Câ^'H Activation with Strongly Coordinating Nâ€Heterocycles by Cobalt Catalysis. Angewandte Chemie, 2016, 128, 10542-10546.	1.6	40
721	Enantioselective CH Activation and Ligand Acceleration with Newly Designed APAQ Ligands. CheM, 2016, 1, 528-530.	5.8	4
722	Chain-walking Cycloisomerization of 1, <i>n</i> -Dienes Catalyzed by Pyridine–Oxazoline Palladium Catalysts and Its Application to Asymmetric Synthesis. Chemistry Letters, 2016, 45, 297-299.	0.7	22
723	Catalytic Multisite-Selective Acetoxylation Reactions at sp ² vs sp ³ C–H Bonds in Cyclic Olefins. Organic Letters, 2016, 18, 5014-5017.	2.4	42
724	A practical oxidative C–H functionalization of N-carbamoyl tetrahydro-β-carbolines with diverse potassium trifluoroborates. Organic and Biomolecular Chemistry, 2016, 14, 9431-9438.	1.5	15
725	Regioselective Synthesis of 2,3,4-Trisubstituted Pyrroles via Pd(II)-Catalyzed Three-Component Cascade Reactions of Amines, Alkyne Esters, and Alkenes. Organic Letters, 2016, 18, 4864-4867.	2.4	36
726	Cobaltâ€Catalyzed Câ^'H Functionalizations by Imidate Assistance with Aryl and Alkyl Chlorides. Advanced Synthesis and Catalysis, 2016, 358, 2443-2448.	2.1	50
727	Overcoming the Limitations of Câ^'H Activation with Strongly Coordinating Nâ€Heterocycles by Cobalt Catalysis. Angewandte Chemie - International Edition, 2016, 55, 10386-10390.	7.2	174
728	Amino Acid Ligands for Ruthenium(II) atalyzed C–H Arylation of Aryltetrazoles with Chlorides: Expedient Access to Antihypertension Drugs. European Journal of Organic Chemistry, 2016, 2016, 3700-3704.	1.2	29
729	Transformation of masked benzyl alcohols to o-aminobenzaldehydes through C–H activation: a facile approach to quinazolines. Chemical Communications, 2016, 52, 10241-10244.	2.2	11
730	Pdâ€Catalyzed Directed Chlorination of Unactivated C(sp ³)â€"H Bonds at Room Temperature. European Journal of Organic Chemistry, 2016, 2016, 3625-3630.	1.2	26
731	C8â€"H bond activation vs. C2â€"H bond activation: from naphthyl amines to lactams. Chemical Communications, 2016, 52, 13307-13310.	2.2	41
732	Direct <i>ortho</i> -Arylation of Pyridinecarboxylic Acids: Overcoming the Deactivating Effect of sp ² -Nitrogen. Organic Letters, 2016, 18, 6094-6097.	2.4	35
733	Palladium N-heterocyclic carbene catalyzed expected and unexpected C–C and C–N functionalization reactions of 1-aryl-3-methyl-1H-pyrazol-5(4H)-ones. RSC Advances, 2016, 6, 111139-111143.	1.7	10
734	Palladium-catalyzed non-directed CH benzoxylation of simple arenes with iodobenzene dibenzoates. Tetrahedron Letters, 2016, 57, 5859-5863.	0.7	8
735	Cobalt-promoted selective arylation of benzamides and acrylamides with arylboronic acids. Organic and Biomolecular Chemistry, 2016, 14, 11070-11075.	1.5	48
736	Stereoselective Peptide Modifications via \hat{l}^2 -C(sp ³)-H Arylations. Journal of Organic Chemistry, 2016, 81, 11646-11655.	1.7	66
737	An Enantioselective Bidentate Auxiliary Directed Palladium atalyzed Benzylic Câ^'H Arylation of Amines Using a BINOL Phosphate Ligand. Angewandte Chemie - International Edition, 2016, 55, 15387-15391.	7.2	142

#	Article	IF	Citations
738	Ir atalyzed Câ^'H Amidation of Aldehydes with Stoichiometric/Catalytic Directing Group. Chemistry - A European Journal, 2016, 22, 17808-17812.	1.7	54
739	Synergistic Heterobimetallic Manifold for Expedient Manganese(I)â€Catalyzed Câ^'H Cyanation. Chemistry - A European Journal, 2016, 22, 17958-17961.	1.7	75
740	Palladium-catalyzed decarboxylative ortho-arylation of 2-pyridyl sulfoxides with benzoyl peroxides. Organic and Biomolecular Chemistry, 2016, 14, 10585-10588.	1.5	14
741	Enantiopure Sulfinyl Aniline as a Removable and Recyclable Chiral Auxiliary for Asymmetric C(sp ³)â^'H Bond Activation. Chemistry - A European Journal, 2016, 22, 17397-17406.	1.7	50
742	Palladium(II)/copper(I)-catalyzed sequential CH arylation and oxidative CN bond cleavage of aryl sulfonamino acids: Efficient one-pot synthesis of primary biaryl sulfonamides. Tetrahedron, 2016, 72, 8382-8386.	1.0	3
743	Recent advances in aerobic oxidation with ruthenium catalysts. Tetrahedron Letters, 2016, 57, 5551-5559.	0.7	26
744	C(sp ³)â€"H Alkenylation Catalyzed by Cationic Alkylhafnium Complexes: Stereoselective Synthesis of Trisubstituted Alkenes from 2,6-Dimethylpyridines and Internal Alkynes. Organometallics, 2016, 35, 3816-3827.	1.1	21
745	Cobalt-Catalyzed Carbonylation of C(sp ⁾²)–H Bonds with Azodicarboxylate as the Carbonyl Source. Organic Letters, 2016, 18, 5960-5963.	2.4	78
746	Ruthenium(<scp>ii</scp>)-catalyzed C–H functionalizations on benzoic acids with aryl, alkenyl and alkynyl halides by weak-O-coordination. Chemical Communications, 2016, 52, 13171-13174.	2.2	73
747	Palladium-catalyzed direct arylation and cyclization of o-iodobiaryls to a library of tetraphenylenes. Scientific Reports, 2016, 6, 33131.	1.6	38
748	Palladium atalyzed Monoâ€Selective <i>ortho</i> CH Arylation of Aryl Sulfonamides in Water: A Concise Access to Biaryl Sulfoamide Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 1968-1974.	2.1	28
749	Enantioselective Câ^'H Olefination of αâ€Hydroxy and αâ€Amino Phenylacetic Acids by Kinetic Resolution. Angewandte Chemie, 2016, 128, 2906-2910.	1.6	23
750	Rhodiumâ€Catalyzed Intramolecular Câ^H Bond Activation with Triazoles: Preparation of Stereodefined Pyrrolidines and Other Related Cyclic Compounds. Chemistry - A European Journal, 2016, 22, 890-895.	1.7	26
751	Manganese(I)â€Catalyzed Substitutive Câ^H Allylation. Angewandte Chemie - International Edition, 2016, 55, 7747-7750.	7.2	178
752	Rapid Construction of a Benzoâ€Fused Indoxamycin Core Enabled by Siteâ€Selective Câ^'H Functionalizations. Angewandte Chemie - International Edition, 2016, 55, 8270-8274.	7.2	34
753	Silver-Free Palladium-Catalyzed sp ³ and sp ² C–H Alkynylation Promoted by a 1,2,3-Triazole Amine Directing Group. Organic Letters, 2016, 18, 2970-2973.	2.4	81
754	Copper-Catalyzed Aerobic Enantioselective Cross-Dehydrogenative Coupling of N-Aryl Glycine Esters with Terminal Alkynes. Organic Letters, 2016, 18, 2982-2985.	2.4	84
755	Heterogeneous palladium-catalysed Catellani reaction in biomass-derived \hat{l}^3 -valerolactone. Green Chemistry, 2016, 18, 5025-5030.	4.6	90

#	Article	IF	CITATIONS
756	Catalytic Enantioselective Desymmetrization Reactions to All-Carbon Quaternary Stereocenters. Chemical Reviews, 2016, 116, 7330-7396.	23.0	583
757	Nickel-Catalyzed C–H Alkynylation of Anilines: Expedient Access to Functionalized Indoles and Purine Nucleobases. ACS Catalysis, 2016, 6, 4690-4693.	5.5	98
758	Pd-Catalyzed Coupling of \hat{I}^3 -C(sp ³) $\hat{a}\in H$ Bonds of Oxalyl Amide-Protected Amino Acids with Heteroaryl and Aryl Iodides. Journal of Organic Chemistry, 2016, 81, 5681-5689.	1.7	23
760	Facile Access to Fluoroaromatic Molecules by Transition-Metal-Free C-F Bond Cleavage of Polyfluoroarenes: An Efficient, Green, and Sustainable Protocol. Chemical Record, 2016, 16, 667-687.	2.9	28
761	Iridium(<scp>iii</scp>)-catalyzed regioselective direct arylation of sp ² C–H bonds with diaryliodonium salts. Organic and Biomolecular Chemistry, 2016, 14, 7109-7113.	1.5	27
762	(Pentamethylcyclopentadienyl)cobalt(III)â€Catalyzed Oxidative [4+2] Annulation of NH Imines with Alkynes: Straightforward Synthesis of Multisubstituted Isoquinolines. Advanced Synthesis and Catalysis, 2016, 358, 1705-1710.	2.1	62
764	Expedient Ironâ€Catalyzed Câ^'H Allylation/Alkylation by Triazole Assistance with Ample Scope. Angewandte Chemie, 2016, 128, 1506-1510.	1.6	51
765	Construction of Quaternary Stereogenic Carbon Centers through Copper atalyzed Enantioselective Allylic Alkylation of Azoles. Angewandte Chemie - International Edition, 2016, 55, 4777-4780.	7.2	65
766	Rhodiumâ€Catalyzed/Copperâ€Mediated Selective C2 Alkynylation of Indoles and C1 Alkynylation of Carbazoles with <i>γ</i> à€Substituted <i>tert</i> â€Propargyl Alcohols. ChemCatChem, 2016, 8, 2146-2154.	1.8	26
767	The mechanism of palladium(II)-mediated C–H cleavage with mono- <i>N</i> -protected amino acid (MPAA) ligands: origins of rate acceleration. Pure and Applied Chemistry, 2016, 88, 119-138.	0.9	72
768	Stereoselective synthesis of 1,3-disubstituted isoindolines via Rh(<scp>iii</scp>)-catalyzed tandem oxidative olefination–cyclization of 4-aryl cyclic sulfamidates. Chemical Communications, 2016, 52, 4286-4289.	2.2	19
769	Rh(III)-Catalyzed Synthesis of <i>N</i> -Unprotected Indoles from Imidamides and Diazo Ketoesters via C–H Activation and C–C/C–N Bond Cleavage. Organic Letters, 2016, 18, 700-703.	2.4	122
770	Theoretical Studies on Palladium-Mediated Enantioselective C–H Iodination. Journal of Organic Chemistry, 2016, 81, 1006-1020.	1.7	18
771	Regioselectivity in palladium-catalysed direct arylation of 5-membered ring heteroaromatics. Catalysis Science and Technology, 2016, 6, 2005-2049.	2.1	190
772	Recent Advances in C–H Functionalization. Journal of Organic Chemistry, 2016, 81, 343-350.	1.7	504
773	Pd(<scp>ii</scp>)-catalyzed î²-C–H arylation of O-methyl ketoximes with iodoarenes. Organic Chemistry Frontiers, 2016, 3, 380-384.	2.3	25
774	Palladium(II)-Catalyzed, Heteroatom-Directed, Regioselective C–H Nitration of Anilines Using Pyrimidine as a Removable Directing Group. Organic Letters, 2016, 18, 448-451.	2.4	68
775	A DFT Study on Rh-Catalyzed Asymmetric Dearomatization of 2-Naphthols Initiated with C–H Activation: A Refined Reaction Mechanism and Origins of Multiple Selectivity. ACS Catalysis, 2016, 6, 262-271.	5 . 5	63

#	Article	IF	CITATIONS
776	Palladium-catalyzed decarboxylative alkoxycarbonylation of potassium aryltrifluoroborates with potassium oxalate monoesters. Organic Chemistry Frontiers, 2016, 3, 243-250.	2.3	13
777	Low-valent cobalt-catalyzed C–H allylation. Organic Chemistry Frontiers, 2016, 3, 673-677.	2.3	19
778	Facile Generation and Isolation of Ï€-Allyl Complexes from Aliphatic Alkenes and an Electron-Deficient Rh(III) Complex: Key Intermediates of Allylic Câ€"H Functionalization. Organometallics, 2016, 35, 1547-1552.	1.1	61
779	Rhodium-Catalyzed/Copper-Mediated Tandem C(sp ²)â€"H Alkynylation and Annulation: Synthesis of 11-Acylated Imidazo[1,2- <i>a</i> 2 <i>H</i> 1,2′]dipyridin-5-ium-4-olates from 2 <i>H</i> 1,2′-Bipyridin]-2-ones and Propargyl Alcohols. Organic Letters, 2016, 18, 1064-1067.	2.4	49
780	An Enantioselective Oxidative C–H/C–H Cross-Coupling Reaction: Highly Efficient Method To Prepare Planar Chiral Ferrocenes. Journal of the American Chemical Society, 2016, 138, 2544-2547.	6.6	149
781	lr(<scp>iii</scp>)-catalyzed C–H alkynylation of arenes under chelation assistance. Organic and Biomolecular Chemistry, 2016, 14, 2898-2904.	1.5	24
782	Palladium-catalyzed C-3 desulfitative arylation of indolizines with sodium arylsulfinates and arylsulfonyl hydrazides. RSC Advances, 2016, 6, 21814-21821.	1.7	31
783	Pd-Catalyzed α-Selective C–H Functionalization of Olefins: En Route to 4-Imino-β-Lactams. Journal of the American Chemical Society, 2016, 138, 2146-2149.	6.6	69
784	Trends in applying C–H oxidation to the total synthesis of natural products. Natural Product Reports, 2016, 33, 562-581.	5.2	105
785	A remarkable solvent effect of fluorinated alcohols on transition metal catalysed C–H functionalizations. Organic Chemistry Frontiers, 2016, 3, 394-400.	2.3	172
786	Mechanism and Regioselectivity of Rh(III)-Catalyzed Intermolecular Annulation of Aryl-Substituted Diazenecarboxylates and Alkenes: DFT Insights. Organometallics, 2016, 35, 450-455.	1.1	11
787	Selective Synthesis of Indoles by Cobalt(III)-Catalyzed C–H/N–O Functionalization with Nitrones. ACS Catalysis, 2016, 6, 2705-2709.	5.5	157
788	Ligand-free palladium-catalyzed facile construction of tetra cyclic dibenzo[<i>b</i> hh][1,6]naphthyridine derivatives: domino sequence of intramolecular C–H bond arylation and oxidation reactions. RSC Advances, 2016, 6, 26993-26999.	1.7	23
789	Nickel-catalyzed ortho-halogenation of unactivated (hetero)aryl C–H bonds with lithium halides using a removable auxiliary. Chemical Communications, 2016, 52, 4934-4937.	2.2	74
790	Asymmetric Alkylation of <i>N</i> -Sulfonylbenzamides with Vinyl Ethers via C–H Bond Activation Catalyzed by Hydroxoiridium/Chiral Diene Complexes. Journal of the American Chemical Society, 2016, 138, 4010-4013.	6.6	110
791	Heterogeneous catalytic approaches in C–H activation reactions. Green Chemistry, 2016, 18, 3471-3493.	4.6	192
792	Half-sandwich rhodium and iridium metallamacrocycles constructed via C–H activation. Dalton Transactions, 2016, 45, 7014-7021.	1.6	4
793	Iron-catalyzed arylation of α-aryl-α-diazoesters. Organic and Biomolecular Chemistry, 2016, 14, 5516-5519.	1.5	39

#	Article	IF	CITATIONS
794	Enantioselective syntheses of indanes: from organocatalysis to C–H functionalization. Chemical Society Reviews, 2016, 45, 1368-1386.	18.7	125
795	Palladium-catalyzed direct C–H arylation of 3-aryl-2H-benzo[1,2,4]thiadiazine 1,1-dioxides: an efficient strategy to the synthesis of benzothiadiazine-1,1-dioxide derivatives. Organic and Biomolecular Chemistry, 2016, 14, 1921-1924.	1.5	10
796	Palladium catalyzed ortho -C–H-acylation of 2-arylpyridines using phenylacetylenes and styrene epoxide. Tetrahedron Letters, 2016, 57, 90-94.	0.7	8
797	Rhodium(III)-Catalyzed Coupling of Arenes with Cyclopropanols via C–H Activation and Ring Opening. ACS Catalysis, 2016, 6, 647-651.	5 . 5	137
798	Ligand-Promoted Pd(II)-Catalyzed Functionalization of Unactivated C(sp ³)–H Bond: Regioand Stereoselective Synthesis of Arylated Rimantadine Derivatives. ACS Catalysis, 2016, 6, 769-774.	5 . 5	24
799	Oxazolinyl-Assisted C–H Amidation by Cobalt(III) Catalysis. ACS Catalysis, 2016, 6, 793-797.	5.5	216
800	Chemo- and regioselective oxygenation of C(sp $<$ sup $>$ 3 $<$ /sup $>$) \hat{a} \in "H bonds in aliphatic alcohols using a covalently bound directing activator and atmospheric oxygen. Chemical Science, 2016, 7, 1904-1909.	3.7	38
801	Cobalt-Catalyzed C–H Activation. ACS Catalysis, 2016, 6, 498-525.	5.5	1,073
802	Efficient, versatile and practical palladium-catalyzed highly regioselective ortho-halogenation of azoxybenzenes. Organic and Biomolecular Chemistry, 2016, 14, 323-329.	1.5	18
803	NHPI and ferric nitrate: a mild and selective system for aerobic oxidation of benzylic methylenes. Catalysis Science and Technology, 2016, 6, 1378-1383.	2.1	78
804	Rh(III)-catalyzed aromatic C–H bond carbenoid functionalization ofÂtriazenes by α-diazomalonate. Tetrahedron, 2016, 72, 2725-2730.	1.0	20
805	Visibleâ€Lightâ€Mediated Remote Aliphatic Câ°'H Functionalizations through a 1,5â€Hydrogen Transfer Cascade. Angewandte Chemie - International Edition, 2017, 56, 1881-1884.	7.2	216
806	Visibleâ€Lightâ€Mediated Remote Aliphatic Câ^'H Functionalizations through a 1,5â€Hydrogen Transfer Cascade. Angewandte Chemie, 2017, 129, 1907-1910.	1.6	66
807	Ruthenium(II) atalyzed <i>meta</i> Câ^'H Mono―and Difluoromethylations by Phosphine/Carboxylate Cooperation. Angewandte Chemie, 2017, 129, 2077-2081.	1.6	69
808	Ruthenium(II)â€Catalyzed <i>meta</i> Câ^'H Mono―and Difluoromethylations by Phosphine/Carboxylate Cooperation. Angewandte Chemie - International Edition, 2017, 56, 2045-2049.	7.2	183
809	Palladium-catalyzed aerobic (1+2) annulation of Csp ³ â€"H bonds with olefin for the synthesis of 3-azabicyclo[3.1.0]hex-2-ene. Chemical Communications, 2017, 53, 2294-2297.	2.2	14
810	Metal–Organic Cooperative Catalysis in C–H and C–C Bond Activation. Chemical Reviews, 2017, 117, 8977-9015.	23.0	525
811	<i>meta</i> â€Câ^H Bromination on Purine Bases by Heterogeneous Ruthenium Catalysis. Angewandte Chemie, 2017, 129, 1579-1582.	1.6	31

#	Article	IF	CITATIONS
812	Copper-Mediated Nucleophilic Addition/Cascade Cyclization of Aryl Diynes. Organic Letters, 2017, 19, 802-805.	2.4	12
813	Formation of α-chiral centers by asymmetric β-C(sp ³)–H arylation, alkenylation, and alkynylation. Science, 2017, 355, 499-503.	6.0	169
814	Biomass-derived solvents as effective media for cross-coupling reactions and C–H functionalization processes. Green Chemistry, 2017, 19, 1601-1612.	4.6	169
815	Recent advancements in dehydrogenative cross coupling reactions for CC bond formation. Tetrahedron Letters, 2017, 58, 803-824.	0.7	142
816	Isoindolinones via Copper-Catalyzed Intramolecular Benzylic C–H Sulfamidation. Journal of Organic Chemistry, 2017, 82, 1719-1725.	1.7	28
817	Expeditious diastereoselective synthesis of elaborated ketones via remote Csp3–H functionalization. Nature Communications, 2017, 8, 13832.	5.8	68
818	Synthesis of 2,2,2,â€Trichloroethyl Aryl―and Vinyldiazoacetates by Palladium atalyzed Cross oupling. Chemistry - A European Journal, 2017, 23, 3272-3275.	1.7	19
819	Rutheniumâ€Catalyzed <i>meta</i> å€Selective Câ°'H Mono―and Difluoromethylation of Arenes through <i>ortho</i> å€Metalation Strategy. Chemistry - A European Journal, 2017, 23, 3285-3290.	1.7	101
820	Copper(II)-mediated intermolecular amination of inert C(sp3)H bonds with simple alkylamines to construct $\hat{l}_{\pm},\hat{l}_{\pm}$ -disubstituted \hat{l}_{\pm} -amino acid derivatives. Tetrahedron Letters, 2017, 58, 935-940.	0.7	11
821	Synthesis of Planar Chiral Ferrocenes via Transition-Metal-Catalyzed Direct C–H Bond Functionalization. Accounts of Chemical Research, 2017, 50, 351-365.	7.6	254
822	Palladium(II)-catalyzed aerobic intramolecular allylic C H activation for the synthesis of indolines. Tetrahedron, 2017, 73, 1904-1910.	1.0	6
823	Ruthenium(II)-Catalyzed C–H Oxygenations of Reusable Sulfoximine Benzamides. Organic Letters, 2017, 19, 1278-1281.	2.4	82
824	Catalytic Enantioselective Transformations Involving Câ€"H Bond Cleavage by Transition-Metal Complexes. Chemical Reviews, 2017, 117, 8908-8976.	23.0	827
825	Copper-catalyzed aerobic oxidative coupling of o-phenylenediamines with 2-aryl/heteroarylethylamines: direct access to construct quinoxalines. Organic and Biomolecular Chemistry, 2017, 15, 2259-2268.	1.5	18
826	Total Synthesis and Stereochemical Assignment of Delavatine A: Rh-Catalyzed Asymmetric Hydrogenation of Indene-Type Tetrasubstituted Olefins and Kinetic Resolution through Pd-Catalyzed Triflamide-Directed C–H Olefination. Journal of the American Chemical Society, 2017, 139, 5558-5567.	6.6	75
827	A Chiral Nitrogen Ligand for Enantioselective, Iridium atalyzed Silylation of Aromatic Câ^'H Bonds. Angewandte Chemie, 2017, 129, 1112-1116.	1.6	8
828	Iron atalyzed Câ^'H Alkynylation through Triazole Assistance: Expedient Access to Bioactive Heterocycles. Chemistry - A European Journal, 2017, 23, 3577-3582.	1.7	71
829	Manganeseâ€Catalyzed Câ^'H Alkynylation: Expedient Peptide Synthesis and Modification. Angewandte Chemie, 2017, 129, 3220-3224.	1.6	96

#	Article	IF	CITATIONS
830	Manganeseâ€Catalyzed Câ^'H Alkynylation: Expedient Peptide Synthesis and Modification. Angewandte Chemie - International Edition, 2017, 56, 3172-3176.	7.2	253
831	Asymmetric hydroarylation of vinyl ethers catalyzed by a hydroxoiridium complex: azoles as effective directing groups. Chemical Communications, 2017, 53, 2760-2763.	2.2	47
832	Organocatalysis in Inert C–H Bond Functionalization. Chemical Reviews, 2017, 117, 9433-9520.	23.0	578
833	Ligand-Enabled Pd(II)-Catalyzed Bromination and Iodination of C(sp ³)–H Bonds. Journal of the American Chemical Society, 2017, 139, 5724-5727.	6.6	58
834	Theoretical Elucidation of Potential Enantioselectivity in a Pd-Catalyzed Aromatic C–H Coupling Reaction. Journal of Organic Chemistry, 2017, 82, 4900-4906.	1.7	13
835	Domino C–H/N–H Allylations of Imidates by Cobalt Catalysis. ACS Catalysis, 2017, 7, 3430-3433.	5.5	86
836	Regio- and Diastereoselective Cross-Dehydrogenative Coupling of Tetrahydropyridines with 1,3-Dicarbonyl Compounds. Organic Letters, 2017, 19, 2146-2149.	2.4	27
837	Iridiumâ€Catalyzed Intramolecular C–H Silylation of Siloxaneâ€Tethered Arene and Hydrosilane: Facile and Catalytic Synthesis of Cyclic Siloxanes. Advanced Synthesis and Catalysis, 2017, 359, 2247-2252.	2.1	29
838	Iridiumâ€Catalyzed Regio―and Enantioselective Hydroarylation of Alkenyl Ethers by Olefin Isomerization. Angewandte Chemie - International Edition, 2017, 56, 5607-5611.	7.2	113
839	Picolinamide as a Directing Group on Metal Sandwich Compounds: sp ² C–H Bond Activation and sp ³ C–H Bond Oxidation. Organometallics, 2017, 36, 1784-1794.	1.1	14
840	Nickelâ€Catalyzed Regioselective C–H Bond Mono―and Bisâ€Nitration of Aryloxazolines with <i>tertâ€</i> Butyl Nitrite as Nitro Source. Advanced Synthesis and Catalysis, 2017, 359, 2596-2604.	2.1	31
841	lridiumâ€Catalyzed Regio―and Enantioselective Hydroarylation of Alkenyl Ethers by Olefin Isomerization. Angewandte Chemie, 2017, 129, 5699-5703.	1.6	35
842	Palladium(<scp>ii</scp>)-catalyzed ortho-Câ€"H olefination of phenylalanine and phenylethylamine derivatives directed by removable picolinamide group. RSC Advances, 2017, 7, 25031-25040.	1.7	27
843	Iron-catalyzed esterification of allylic sp 3 C–H bonds with carboxylic acids: Facile access to allylic esters. Tetrahedron Letters, 2017, 58, 2490-2494.	0.7	15
844	Atroposelective Synthesis of Axially Chiral Biaryls by Palladium atalyzed Asymmetric Câ^'H Olefination Enabled by a Transient Chiral Auxiliary. Angewandte Chemie, 2017, 129, 6717-6721.	1.6	93
845	A deciduous directing group approach for the addition of aryl and vinyl nucleophiles to maleimides. Chemical Communications, 2017, 53, 6251-6254.	2.2	67
846	New Approaches for Biaryl-Based Phosphine Ligand Synthesis via Pâ•O Directed C–H Functionalizations. Accounts of Chemical Research, 2017, 50, 1480-1492.	7.6	169
847	Palladiumâ€Catalyzed Cascade sp ² Câ^'H Functionalization/Intramolecular Asymmetric Allylation: From Aryl Ureas and 1,3â€Dienes to Chiral Indolines. Angewandte Chemie, 2017, 129, 6741-6745.	1.6	20

#	Article	IF	CITATIONS
848	Palladiumâ€Catalyzed Cascade sp ² Câ^'H Functionalization/Intramolecular Asymmetric Allylation: From Aryl Ureas and 1,3â€Dienes to Chiral Indolines. Angewandte Chemie - International Edition, 2017, 56, 6641-6645.	7.2	92
849	Atroposelective Synthesis of Axially Chiral Biaryls by Palladium atalyzed Asymmetric CⰒH Olefination Enabled by a Transient Chiral Auxiliary. Angewandte Chemie - International Edition, 2017, 56, 6617-6621.	7.2	290
850	Palladium-Catalyzed Enantioselective C(sp ²)â€"H Imidoylation by Desymmetrization. ACS Catalysis, 2017, 7, 3832-3836.	5.5	54
851	The use of carboxylic acids as traceless directing groups for regioselective C–H bond functionalisation. Chemical Communications, 2017, 53, 5584-5597.	2.2	196
852	Pd-Catalyzed oxidative annulation of enamides with diazabicyclic olefins: rapid access to cyclopentene fused 2-pyrrolines. Chemical Communications, 2017, 53, 1848-1851.	2.2	25
853	Palladiumâ€Catalyzed Enantioselective Narasaka–Heck Reaction/Direct Câ^'H Alkylation of Arenes: Iminoarylation of Alkenes. Angewandte Chemie - International Edition, 2017, 56, 9577-9581.	7.2	95
854	Palladiumâ€Catalyzed Enantioselective Narasaka–Heck Reaction/Direct Câ^'H Alkylation of Arenes: Iminoarylation of Alkenes. Angewandte Chemie, 2017, 129, 9705-9709.	1.6	32
855	Mechanistic Studies on Pd(MPAA)-Catalyzed Enantioselective C–H Activation Reactions. Springer Theses, 2017, , 83-110.	0.0	0
856	meta-Selective C–H difluoromethylation of various arenes with a versatile ruthenium catalyst. Organic Chemistry Frontiers, 2017, 4, 1867-1871.	2.3	39
857	Methods Utilizing First-Row Transition Metals in Natural Product Total Synthesis. Chemical Reviews, 2017, 117, 11680-11752.	23.0	176
858	Enantioselectivity Model for Pd-Catalyzed Câ€"H Functionalization Mediated by the Mono-N-protected Amino Acid (MPAA) Family of Ligands. ACS Catalysis, 2017, 7, 4344-4354.	5 . 5	37
859	Catalytic Asymmetric Synthesis of Butenolides and Butyrolactones. Chemical Reviews, 2017, 117, 10502-10566.	23.0	311
860	Palladium-catalyzed direct ortho-alkynylation of arylalkylacid derivatives at \hat{l}^3 and \hat{l}^2 positions via an N,O-bidentate directing group. Organic Chemistry Frontiers, 2017, 4, 1931-1934.	2.3	14
861	Iron-catalyzed C–H/N–H activation by triazole guidance: versatile alkyne annulation. Chemical Communications, 2017, 53, 6460-6463.	2.2	59
862	Manganese(I)-Catalyzed C–H 3,3-Difluoroallylation of Pyridones and Indoles. Organic Letters, 2017, 19, 3159-3162.	2.4	82
863	Ruthenium(II)-Catalyzed C–H Alkynylation of Weakly Coordinating Benzoic Acids. Organic Letters, 2017, 19, 3171-3174.	2.4	56
864	Copper-Catalyzed Arylation of Benzylic Câ€"H bonds with Alkylarenes as the Limiting Reagents. Journal of the American Chemical Society, 2017, 139, 7709-7712.	6.6	134
865	The Origins of Dramatic Differences in Five-Membered vs Six-Membered Chelation of Pd(II) on Efficiency of C(sp ³)–H Bond Activation. Journal of the American Chemical Society, 2017, 139, 8514-8521.	6.6	96

#	Article	IF	Citations
866	Divergent Access to 1-Naphthols and Isocoumarins via Rh(III)-Catalyzed C–H Activation Assisted by Phosphonium Ylide. Organic Letters, 2017, 19, 3410-3413.	2.4	77
867	Ruthenium(II) atalyzed Câ^'C Arylations and Alkylations: Decarbamoylative Câ^'C Functionalizations. Angewandte Chemie, 2017, 129, 5425-5428.	1.6	13
868	Ruthenium(II)â€Catalyzed Câ^'C Arylations and Alkylations: Decarbamoylative Câ^'C Functionalizations. Angewandte Chemie - International Edition, 2017, 56, 5341-5344.	7.2	55
869	Asymmetric Synthesis of Spiropyrazolones by Rhodiumâ€Catalyzed C(sp ²)â^'H Functionalization/Annulation Reactions. Angewandte Chemie, 2017, 129, 4611-4615.	1.6	59
870	Pd/Cu-catalyzed dual C–H bond carbonylation towards the synthesis of fluorazones. Chemical Communications, 2017, 53, 4354-4357.	2.2	30
871	Expeditious and Solventâ€Free Nickelâ€Catalyzed Câ^'H Arylation of Arenes and Indoles. ChemSusChem, 2017, 10, 2242-2248.	3.6	37
872	Cobaltâ€Catalyzed <i>ortho</i> àêMethylation of Ferrocenes Bearing <i>ortho</i> àêDirecting Groups by Catalytic Directed C–H Bond Activation. European Journal of Organic Chemistry, 2017, 2017, 3041-3048.	1.2	28
873	P(O)R ₂ -Directed Enantioselective C–H Olefination toward Chiral Atropoisomeric Phosphine–Olefin Compounds. Organic Letters, 2017, 19, 1842-1845.	2.4	112
874	Efficient syntheses of 3-hydroxyimino-1-isoindolinones and 3-methylene-1-isoindolinones via Cu-promoted C–H activation–nitroalkylation–intramolecular cyclization tandem processes. Chemical Communications, 2017, 53, 4597-4600.	2.2	21
875	Asymmetric Synthesis of Spiropyrazolones by Rhodium atalyzed C(sp ²)â^'H Functionalization/Annulation Reactions. Angewandte Chemie - International Edition, 2017, 56, 4540-4544.	7.2	161
876	One Substrate, Two Modes of C–H Functionalization: A Metal-Controlled Site-Selectivity Switch in C–H Arylation Reactions. Organic Letters, 2017, 19, 262-265.	2.4	34
877	Mechanistic Study of Cp*Co ^{III} /Rh ^{III} -Catalyzed Directed Câ€"H Functionalization with Diazo Compounds. Journal of Organic Chemistry, 2017, 82, 1195-1204.	1.7	55
878	Asymmetric Transformations under Iridium/Chiral Diene Catalysis. ACS Catalysis, 2017, 7, 833-847.	5 . 5	94
879	Rhodium(III)-Catalyzed Selective Monoarylation of β or γ C(sp3)–H Bonds Assisted by a Trimethylpyrazole Group. Organic Letters, 2017, 19, 356-359.	2.4	32
880	Merging allylic Câ€"H bond activation and Câ€"C bond cleavage en route to the formation of a quaternary carbon stereocenter in acyclic systems. Nature Protocols, 2017, 12, 74-87.	5. 5	16
881	Mechanism of selective C–H cyanation of 2-phenylpyridine with benzyl nitrile catalyzed by CuBr: a DFT investigation. Organic Chemistry Frontiers, 2017, 4, 377-385.	2.3	13
882	<i>meta</i> 倀â^'H Bromination on Purine Bases by Heterogeneous Ruthenium Catalysis. Angewandte Chemie - International Edition, 2017, 56, 1557-1560.	7.2	128
883	One-pot synthesis of fluorescent 2,4-dialkenylindoles by rhodium-catalyzed dual C–H functionalization. Organic Chemistry Frontiers, 2017, 4, 455-459.	2.3	36

#	ARTICLE	IF	CITATIONS
884	Double Chiral Induction Enables a Stereoselective Carbonyl Allylation with Simple Alkenes under the Sequential Catalysis of Palladium Complex and Chiral Phosphoric Acid. Organic Letters, 2017, 19, 102-105.	2.4	49
885	A Chiral Nitrogen Ligand for Enantioselective, Iridiumâ€Catalyzed Silylation of Aromatic Câ^'H Bonds. Angewandte Chemie - International Edition, 2017, 56, 1092-1096.	7.2	66
887	Palladium-catalyzed direct sulfonylation of C–H bonds with the insertion of sulfur dioxide. Chemical Communications, 2017, 53, 12548-12551.	2.2	62
888	Ketene Aminal Phosphates: Competent Substrates for Enantioselective Pd(0)-Catalyzed C–H Functionalizations. ACS Catalysis, 2017, 7, 7417-7420.	5.5	48
889	Oxidative C–H functionalization of N-carbamoyl 1,2-dihydroquinolines. Organic and Biomolecular Chemistry, 2017, 15, 7600-7606.	1.5	14
890	Enantioselective C–H Functionalization–Addition Sequence Delivers Densely Substituted 3-Azabicyclo[3.1.0]hexanes. Journal of the American Chemical Society, 2017, 139, 12398-12401.	6.6	75
891	Mechanisms of Csp 3 -H functionalization of ethyl 2-(methyl(p -tolyl)amino)acetate: A theoretical investigation. Computational and Theoretical Chemistry, 2017, 1118, 144-152.	1.1	10
892	Asymmetric Ironâ€Catalyzed Câ^'H Alkylation Enabled by Remote Ligand <i>meta</i> å€Substitution. Angewandte Chemie - International Edition, 2017, 56, 14197-14201.	7.2	129
893	Asymmetric Ironâ€Catalyzed Câ^'H Alkylation Enabled by Remote Ligand <i>meta</i> â€Substitution. Angewandte Chemie, 2017, 129, 14385-14389.	1.6	104
894	Direct Allylic C–H Bond Activation To Synthesize [Pd(η ³ -cin)(IPr)Cl] Complex: Application in the Allylation of Oxindoles. ACS Catalysis, 2017, 7, 7400-7404.	5.5	34
895	Rhodium(<scp>iii</scp>)-catalyzed synthesis of indanones via C–H activation of phenacyl phosphoniums and coupling with olefins. Organic Chemistry Frontiers, 2017, 4, 2114-2118.	2.3	20
896	Synthesis of Benzopyrans by Enolateâ€Directed Rhodiumâ€Catalyzed Oxidative Câ^'H Alkenylation of 1,3â€Dicarbonyl Compounds. Asian Journal of Organic Chemistry, 2017, 6, 1598-1603.	1.3	4
897	Nickel-catalyzed C–H activation of purine bases with alkyl halides. Chemical Communications, 2017, 53, 9113-9116.	2.2	36
898	Synthesis of Spirooxindoles via the <i>tert</i> -Amino Effect. Organic Letters, 2017, 19, 4014-4017.	2.4	53
899	Secondary Phosphine Oxide Preligands for Palladiumâ€Catalyzed Câ€"H (Hetero)Arylations: Efficient Access to Pybox Ligands. Advanced Synthesis and Catalysis, 2017, 359, 3137-3141.	2.1	20
900	Rutheniumâ€Catalyzed Alkynylation of Benzoic Acids Mediated by a Weakly Coordinationâ€Directing Auxiliary. European Journal of Organic Chemistry, 2017, 2017, 4749-4752.	1.2	17
901	Palladium atalyzed Spirocyclization through Câ^'H Activation and Regioselective Alkyne Insertion. Angewandte Chemie, 2017, 129, 11060-11063.	1.6	37
902	Palladium atalyzed Spirocyclization through Câ^'H Activation and Regioselective Alkyne Insertion. Angewandte Chemie - International Edition, 2017, 56, 10920-10923.	7.2	126

#	Article	IF	Citations
903	MnCl ₂ atalyzed Câ^'H Alkylations with Alkyl Halides. Chemistry - A European Journal, 2017, 23, 11524-11528.	1.7	57
904	Experimental and Computational Development of a Conformationally Flexible Template for the ⟨i⟩meta⟨ i⟩-Câ€"H Functionalization of Benzoic Acids. Journal of the American Chemical Society, 2017, 139, 10702-10714.	6.6	91
905	Asymmetric alkylation of remote C(sp ³)â€"H bonds by combining proton-coupled electron transfer with chiral Lewis acid catalysis. Chemical Communications, 2017, 53, 8964-8967.	2.2	106
906	Rhodium(III)â€Catalyzed Câ^'H Activation of <i>O</i> à€Acetyl Ketoximes/ <i>N</i> à€Methoxybenzamides toward the Synthesis of Isoquinoline/Isoquinoloneâ€Fused Bicycles. Asian Journal of Organic Chemistry, 2017, 6, 1561-1565.	1.3	12
907	Selectivity Control in Ruthenium(II)-Catalyzed C–H/N–O Activation with Alkynyl Bromides. Organic Letters, 2017, 19, 4620-4623.	2.4	47
908	Pd-catalyzed asymmetric allylic alkylations via C–H activation of N-allyl imines with glycinates. Chemical Science, 2017, 8, 6815-6821.	3.7	17
909	Ir-Catalyzed Enantioselective, Intramolecular Silylation of Methyl C–H Bonds. Journal of the American Chemical Society, 2017, 139, 12137-12140.	6.6	77
910	Amides as Weak Coordinating Groups in Proximal C–H Bond Activation. European Journal of Organic Chemistry, 2017, 2017, 5439-5459.	1.2	109
911	Visible-Light-Activated Asymmetric β-C–H Functionalization of Acceptor-Substituted Ketones with 1,2-Dicarbonyl Compounds. Journal of the American Chemical Society, 2017, 139, 17245-17248.	6.6	85
912	Mechanism of Rhodium-Catalyzed C–H Functionalization: Advances in Theoretical Investigation. Accounts of Chemical Research, 2017, 50, 2799-2808.	7.6	203
913	Selective <i>ortho</i> C–H Activation of Pyridines Directed by Lewis Acidic Boron of PBP Pincer Iridium Complexes. Journal of the American Chemical Society, 2017, 139, 17297-17300.	6.6	70
914	Experimental–Computational Synergy for Selective Pd(II)-Catalyzed C–H Activation of Aryl and Alkyl Groups. Accounts of Chemical Research, 2017, 50, 2853-2860.	7.6	189
915	Transition Metal-Free α-Csp ³ -H Methylenation of Ketones to Form C╀ Bond Using Dimethyl Sulfoxide as Carbon Source. Journal of Organic Chemistry, 2017, 82, 7159-7164.	1.7	71
916	Recent progress in insertion and cyclopropanation reactions of metal carbenoids from α-diazocarbonyl compounds. Research on Chemical Intermediates, 2017, 43, 6447-6504.	1.3	43
917	Tri-Substituted Triazole-Enabled C–H Activation of Benzyl and Aryl Amines by Iron Catalysis. Organic Letters, 2017, 19, 3795-3798.	2.4	51
918	Palladiumâ€Catalyzed Pyridineâ€Directed Regioselective Oxidative C–H Acylation of Carbazoles by Using Aldehydes as the Acyl Source. European Journal of Organic Chemistry, 2017, 2017, 332-340.	1.2	20
919	Recent advances in rhodium-catalyzed asymmetric synthesis of heterocycles. Organic and Biomolecular Chemistry, 2017, 15, 1029-1050.	1.5	60
920	Ruthenium(II) Biscarboxylate atalyzed Borylations of C(sp ²)â^'H and C(sp ³)â^'H Bonds. Chemistry - A European Journal, 2017, 23, 84-87.	1.7	37

#	Article	IF	CITATIONS
921	Iodine-mediated Câ€"N and Câ€"S bond formation: regioselective synthesis of benzo[4,5]imidazo[2,1-b]thiazoles. New Journal of Chemistry, 2017, 41, 75-80.	1.4	23
922	Rhodium(III)â€Catalyzed Enantiotopic Câ^H Activation Enables Access to <i>P</i> PPhosphinamides. Angewandte Chemie - International Edition, 2017, 56, 364-367.	7.2	206
923	Polystyreneâ€supported Pd(II) complexâ€catalysed carboacylation of 2â€arylpyridines with alcohols via C─H bond activation under solventâ€free conditions. Applied Organometallic Chemistry, 2017, 31, e3581.	1.7	4
924	Metal-catalyzed C H activation/functionalization: The fundamentals. Journal of Molecular Catalysis A, 2017, 426, 275-296.	4.8	235
925	Rhodium(III)â€Catalyzed Enantiotopic Câ^'H Activation Enables Access to P â€Chiral Cyclic Phosphinamides. Angewandte Chemie, 2017, 129, 370-373.	1.6	89
926	Identification of monodentate oxazoline as a ligand for copper-promoted ortho-C–H hydroxylation and amination. Chemical Science, 2017, 8, 1469-1473.	3.7	51
927	Catalytic synthesis of chiral organoheteroatom compounds of silicon, phosphorus, and sulfur via asymmetric transition metal-catalyzed C–H functionalization. Coordination Chemistry Reviews, 2017, 330, 37-52.	9.5	145
928	Palladiumâ€Catalyzed Enantioselective Câ^'H Olefination of Diaryl Sulfoxides through Parallel Kinetic Resolution and Desymmetrization. Angewandte Chemie - International Edition, 2018, 57, 5129-5133.	7.2	68
929	Transition Metalâ€Catalyzed Dicarbofunctionalization of Unactivated Olefins. Chemical Record, 2018, 18, 1314-1340.	2.9	340
930	Iridium-catalysed direct sulfamidation of quinazolinones. RSC Advances, 2018, 8, 8450-8454.	1.7	20
931	Copper(I) Halide for Regioselective Ortho-Halogenation of Directed Arenes. Catalysis Letters, 2018, 148, 1067-1072.	1.4	9
932	Strategies toward Dicarbofunctionalization of Unactivated Olefins by Combined Heck Carbometalation and Cross-Coupling. Journal of Organic Chemistry, 2018, 83, 3013-3022.	1.7	255
933	Electrochemical Intramolecular C—H/O—H Cross oupling of 2â€Arylbenzoic Acids. Chinese Journal of Chemistry, 2018, 36, 619-624.	2.6	36
934	Cu-Catalyzed Aerobic Oxidative Sulfuration/Annulation Approach to Thiazoles via Multiple Csp ³ â€"H Bond Cleavage. Organic Letters, 2018, 20, 2632-2636.	2.4	71
935	Towards Sustainable Câ^'H Functionalization Reactions: The Emerging Role of Bioâ€Based Reaction Media. Chemistry - A European Journal, 2018, 24, 13383-13390.	1.7	42
936	Copperâ€Catalyzed Câ^'H Ethoxycarbonyldifluoromethylation of Indoles and Pyrroles. Asian Journal of Organic Chemistry, 2018, 7, 1319-1322.	1.3	11
937	Gold(<scp>i</scp>)- and rhodium(<scp>iii</scp>)-catalyzed formal regiodivergent C–H alkynylation of 1-arylpyrazolones. Organic and Biomolecular Chemistry, 2018, 16, 2860-2864.	1.5	24
938	Palladiumâ€Catalyzed Enantioselective Câ^'H Olefination of Diaryl Sulfoxides through Parallel Kinetic Resolution and Desymmetrization. Angewandte Chemie, 2018, 130, 5223-5227.	1.6	15

#	Article	IF	CITATIONS
939	Enantioselective γ-C(sp ³)–H Activation of Alkyl Amines via Pd(II)/Pd(0) Catalysis. Journal of the American Chemical Society, 2018, 140, 5322-5325.	6.6	88
940	Direct <i>ortho</i> -Selective C–H Functionalization of Carboxybenzyl-Protected Arylalkylamines via Ir(III)-Catalyzed C–H Activation. Organic Letters, 2018, 20, 2454-2458.	2.4	19
941	Preparation of Benzo[$\langle i\rangle c\langle i\rangle$] carbazol-6-amines via Manganese-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1 $\langle i\rangle$ H $\langle i\rangle$ -indoles with Ketenimines and Subsequent Oxidative Cyclization. Organic Letters, 2018, 20, 1426-1429.	2.4	40
942	Enantioselective C–H Arylation and Vinylation of Cyclobutyl Carboxylic Amides. ACS Catalysis, 2018, 8, 2577-2581.	5.5	65
943	Tailored trisubstituted chiral Cp ^x Rh ^{III} catalysts for kinetic resolutions of phosphinic amides. Chemical Science, 2018, 9, 2981-2985.	3.7	124
944	C(sp ²)–H functionalization of aldehyde-derived hydrazones ⟨i>via a radical process. Organic and Biomolecular Chemistry, 2018, 16, 1227-1241.	1.5	28
945	Remote C–H Functionalization via Selective Hydrogen Atom Transfer. Synthesis, 2018, 50, 1569-1586.	1.2	335
946	Transitionâ€Metalâ€Catalyzed Cyanation by Using an Electrophilic Cyanating Agent, <i>N</i> â€Cyanoâ€ <i>N</i> â€phenylâ€ <i>p</i> â€toluenesulfonamide (NCTS). Chemistry - an Asian Journal, 2018 482-495.	,113,	51
947	Highly <i>meta</i> -selective halogenation of 2-phenylpyridine with a ruthenium(<scp>i</scp>) catalyst. Organic Chemistry Frontiers, 2018, 5, 1118-1123.	2.3	24
948	Recent Advances in Supramolecular Gels and Catalysis. Chemistry - an Asian Journal, 2018, 13, 712-729.	1.7	112
949	Macrolide Synthesis through Intramolecular Oxidative Crossâ€Coupling of Alkenes. Angewandte Chemie, 2018, 130, 564-568.	1.6	13
950	Scalable, Stereocontrolled Formal Syntheses of (+)â€soschizandrin and (+)â€steganone: Development and Applications of Palladium(II) atalyzed Atroposelective Câ°'H Alkynylation. Angewandte Chemie, 2018, 130, 3723-3727.	1.6	62
951	Scalable, Stereocontrolled Formal Syntheses of (+)â€ksoschizandrin and (+)â€6teganone: Development and Applications of Palladium(II) atalyzed Atroposelective Câ°'H Alkynylation. Angewandte Chemie - International Edition, 2018, 57, 3661-3665.	7.2	177
952	Dual Intermolecular Allylic C–H Functionalization of the Tetrasubstituted Alkene Scaffold. European Journal of Organic Chemistry, 2018, 2018, 1248-1254.	1.2	5
953	A General Protocol for Addressing Speciation of the Active Catalyst Applied to Ligand-Accelerated Enantioselective C(sp ³)–H Bond Arylation. ACS Catalysis, 2018, 8, 1528-1531.	5.5	27
954	C–O Bonds from Pdâ€Catalyzed C(sp ³)–H Reactions Mediated by Heteroatomic Groups. European Journal of Organic Chemistry, 2018, 2018, 1176-1203.	1.2	37
955	Rhâ€catalyzed Transient Directing Group Promoted C—H Amidation of Benzaldehydes Utilizing Dioxazolones. Chinese Journal of Chemistry, 2018, 36, 213-216.	2.6	46
956	Synthesis of Highly Substituted Arenes via Cyclohexadiene–Alkene C–H Cross Coupling and Aromatization. ACS Catalysis, 2018, 8, 1213-1217.	5.5	14

#	Article	IF	CITATIONS
957	Rutheniumâ€Mediated Distal Câ^'H Activation. Chemistry - an Asian Journal, 2018, 13, 2243-2256.	1.7	44
958	Selective formation of phthalimides from amines, aldehydes and CO by Pd-catalyzed oxidative C–H aminocarbonylation. Organic Chemistry Frontiers, 2018, 5, 1957-1961.	2.3	11
959	Ruthenium(II)-enabled para-selective C–H difluoromethylation of anilidesÂand their derivatives. Nature Communications, 2018, 9, 1189.	5.8	104
960	Total synthesis of the isoquinoline alkaloid decumbenine B <i>via</i> Ru(<scp>iii</scp>)-catalyzed C–H activation. Organic Chemistry Frontiers, 2018, 5, 1604-1607.	2.3	14
961	Direct oxidative Câ€"H alkynylation of N-carbamoyl tetrahydroisoquinolines and dihydroisoquinolines. Organic and Biomolecular Chemistry, 2018, 16, 2792-2799.	1.5	11
962	Palladium-catalyzed 2-pyridylmethyl-directed \hat{l}^2 -C(sp3) H activation and cyclization of aliphatic amides with gem-dibromoolefins: A rapid access to \hat{l}^3 -lactams. Chinese Chemical Letters, 2018, 29, 191-193.	4.8	10
963	Cobaltâ€Catalyzed Diastereoselective [4+2] Annulation of Phosphinamides with Heterobicyclic Alkenes at Room Temperature. Advanced Synthesis and Catalysis, 2018, 360, 255-260.	2.1	48
964	Mechanism and selectivity of rhodiumâ€catalyzed CH bond arylation of indoles. International Journal of Quantum Chemistry, 2018, 118, e25526.	1.0	7
965	A copper-catalyzed sulfonylative Câ€"H bond functionalization from sulfur dioxide and aryldiazonium tetrafluoroborates. Organic Chemistry Frontiers, 2018, 5, 366-370.	2.3	58
966	Cobalt(iii)-catalyzed 1,4-addition of C–H bonds of oximes to maleimides. Organic Chemistry Frontiers, 2018, 5, 184-188.	2.3	52
967	Macrolide Synthesis through Intramolecular Oxidative Crossâ€Coupling of Alkenes. Angewandte Chemie - International Edition, 2018, 57, 555-559.	7.2	74
968	Insertion of sulfur dioxide <i>via</i> a radical process: an efficient route to sulfonyl compounds. Organic Chemistry Frontiers, 2018, 5, 691-705.	2.3	270
969	Base- and Additive-Free Ir-Catalyzed <i>ortho</i> lodination of Benzoic Acids: Scope and Mechanistic Investigations. ACS Catalysis, 2018, 8, 920-925.	5.5	49
970	Exploring the mechanism of the Pd-catalyzed spirocyclization reaction: a combined DFT and experimental study. Chemical Science, 2018, 9, 1496-1509.	3.7	62
971	Quantifying Structural Effects of Amino Acid Ligands in Pd(II)-Catalyzed Enantioselective C–H Functionalization Reactions. Organometallics, 2018, 37, 203-210.	1.1	32
972	Chiral hybrid materials based on pyrrolidine building units to perform asymmetric Michael additions with high stereocontrol. Catalysis Science and Technology, 2018, 8, 5835-5847.	2.1	12
973	Recent advances in the sulfonylation of Câ \in H bonds with the insertion of sulfur dioxide. Chemical Communications, 2018, 54, 12561-12569.	2.2	171
975	Pdâ€Catalyzed Atroposelective Câ^H Allylation through βâ€O Elimination: Diverse Synthesis of Axially Chiral Biaryls. Angewandte Chemie, 2018, 130, 17397-17401.	1.6	57

#	Article	IF	Citations
976	Pdâ€Catalyzed Atroposelective Câ^'H Allylation through βâ€O Elimination: Diverse Synthesis of Axially Chiral Biaryls. Angewandte Chemie - International Edition, 2018, 57, 17151-17155.	7.2	163
977	Palladium-Catalyzed Asymmetric C–H Arylation for the Synthesis of Planar Chiral Benzothiophene-Fused Ferrocenes. ACS Catalysis, 2018, 8, 11735-11740.	5.5	47
978	Potential Induced Fineâ€ŧuning the Enantioaffinity of Chiral Metal Phases. Angewandte Chemie, 2018, 131, 3509.	1.6	5
979	Pd(II)â€Catalyzed Enantioselective C(sp3)–H Activation/Crossâ€Coupling Reactions of Free Carboxylic Acids. Angewandte Chemie, 2018, 131, 2156.	1.6	34
980	Enantioselective Cobalt(III)â€Catalyzed Câ^'H Activation Enabled by Chiral Carboxylic Acid Cooperation. Angewandte Chemie, 2018, 130, 15651-15655.	1.6	57
981	Cobalt(<scp>iii</scp>)-catalyzed site-selective C–H amidation of pyridones and isoquinolones. RSC Advances, 2018, 8, 32659-32663.	1.7	27
982	Visibleâ€Lightâ€Induced Pyridylation of Remote C(sp ³)â^H Bonds by Radical Translocation of Nâ€Alkoxypyridinium Salts. Angewandte Chemie - International Edition, 2018, 57, 15517-15522.	7.2	141
983	Enantioselective Cobalt(III)â€Catalyzed Câ^'H Activation Enabled by Chiral Carboxylic Acid Cooperation. Angewandte Chemie - International Edition, 2018, 57, 15425-15429.	7.2	177
984	Rh(<scp>iii</scp>)-Catalyzed <i>ortho</i> -C-(sp ²)â€"H amidation of ketones and aldehydes under synergistic ligand-accelerated catalysis. Chemical Communications, 2018, 54, 12113-12116.	2.2	34
985	Pd(0)-Catalyzed Bidentate Auxiliary Directed Enantioselective Benzylic C–H Arylation of 3-Arylpropanamides Using the BINOL Phosphoramidite Ligand. ACS Catalysis, 2018, 8, 11502-11512.	5.5	47
986	Visibleâ€Lightâ€Induced Pyridylation of Remote C(sp 3)â^'H Bonds by Radical Translocation of Nâ€Alkoxypyridinium Salts. Angewandte Chemie, 2018, 130, 15743-15748.	1.6	38
987	Palladiumâ€Catalyzed Câ^'H Alkenylation of Arenes with Alkynes: Stereoselective Synthesis of Vinyl Chlorides via a 1,4â€Chlorine Migration. Angewandte Chemie - International Edition, 2018, 57, 16041-16045.	7.2	18
988	Palladium atalyzed Câ^'H Alkenylation of Arenes with Alkynes: Stereoselective Synthesis of Vinyl Chlorides via a 1,4 hlorine Migration. Angewandte Chemie, 2018, 130, 16273-16277.	1.6	5
989	Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations. Accounts of Chemical Research, 2018, 51, 2036-2046.	7.6	422
990	Ruthenium-catalyzed annulation of aromatic ketones with internal alkynes: A reliable route to substituted naphthalene derivatives. Tetrahedron, 2018, 74, 6263-6269.	1.0	4
991	Cu(OAc) ₂ -Promoted Ortho C(sp ²)â€"H Amidation of 8-Aminoquinoline Benzamide with Acyl Azide: Selective Formation of Aroyl or Acetyl Amide Based on Catalyst Loading. Journal of Organic Chemistry, 2018, 83, 11758-11767.	1.7	15
992	Sequential C–C σ-Bond Cleavage/(sp ²) C–O Bond Formation via C–H Functionalization toward Pyranoindolones Fused with Medium-Sized Rings. Organic Letters, 2018, 20, 6130-6134.	2.4	25
993	Asymmetric Preparation of Polysubstituted Cyclopropanes Based on Direct Functionalization of Achiral Three-Membered Carbocycles. Chemical Reviews, 2018, 118, 8415-8434.	23.0	163

#	Article	IF	CITATIONS
994	Enantioselective synthesis of axially chiral vinyl arenes through palladium-catalyzed C–H olefination. Chemical Communications, 2018, 54, 10706-10709.	2.2	53
995	Access to <i>P</i> ―and Axially Chiral Biaryl Phosphine Oxides by Enantioselective Cp ^x lr ^{lll} â€Catalyzed Câ"H Arylations. Angewandte Chemie, 2018, 130, 13083-13087.	1.6	106
996	Natural Product Synthesis by Câ^'H Activation. Asian Journal of Organic Chemistry, 2018, 7, 1178-1192.	1.3	100
997	Cobalt(III)â€Catalyzed [4+2] Annulation of Heterobicyclic Alkenes by ⟨i>sp⟨ i>⟨sup⟩⟨i>2⟨ i>⟨ sup⟩ Câ^'H Activation. Asian Journal of Organic Chemistry, 2018, 7, 1362-1367.	1.3	30
998	Palladium (II)-catalysed intramolecular C H functionalizations: Efficient synthesis of kealiinine C and analogues. Molecular Catalysis, 2018, 455, 233-238.	1.0	4
999	Palladium-Catalyzed Synthesis of Dihydrobenzoindolones via C–H Bond Activation and Alkyne Insertion. Organic Letters, 2018, 20, 4367-4370.	2.4	51
1000	Axially Chiral Dibenzazepinones by a Palladium(0)â€Catalyzed Atropoâ€enantioselective Câ^'H Arylation. Angewandte Chemie, 2018, 130, 11206-11210.	1.6	47
1001	Axially Chiral Dibenzazepinones by a Palladium(0)â€Catalyzed Atropoâ€enantioselective Câ°'H Arylation. Angewandte Chemie - International Edition, 2018, 57, 11040-11044.	7.2	123
1002	Efficient Synthesis of Phthalimides via Cobaltâ€Catalyzed C(<i>sp</i> ²)â^'H Carbonylation of Benzoyl Hydrazides with Carbon Monoxide. Advanced Synthesis and Catalysis, 2018, 360, 3271-3276.	2.1	33
1003	Irâ€Catalyzed Enantioselective Intra―and Intermolecular Formal Câ^'H Conjugate Addition to βâ€Substituted α,βâ€Unsaturated Esters. Asian Journal of Organic Chemistry, 2018, 7, 1411-1418.	1.3	34
1004	Chiral Diaryliodonium Phosphate Enables Light Driven Diastereoselective α-C(sp ³)–H Acetalization. Journal of the American Chemical Society, 2018, 140, 8350-8356.	6.6	42
1005	Copper-catalyzed oxidative cross-dehydrogenative coupling of 2 <i>H</i> -chromenes and terminal alkynes. Organic and Biomolecular Chemistry, 2018, 16, 5144-5149.	1.5	18
1006	Asymmetric Photocatalytic C–H Functionalization of Toluene and Derivatives. Journal of the American Chemical Society, 2018, 140, 8439-8443.	6.6	112
1008	Access to <i>P</i> ―and Axially Chiral Biaryl Phosphine Oxides by Enantioselective Cp ^x lr ^{lll} â€Catalyzed Câ°'H Arylations. Angewandte Chemie - International Edition, 2018, 57, 12901-12905.	7.2	270
1009	Advances in Enantioselective C–H Activation/Mizoroki-Heck Reaction and Suzuki Reaction. Catalysts, 2018, 8, 90.	1.6	21
1010	Photoredox Catalysis for Building C–C Bonds from C(sp ²)–H Bonds. Chemical Reviews, 2018, 118, 7532-7585.	23.0	591
1011	Theoretical Mechanistic Study of Nickel(0)/Lewis Acid Catalyzed Polyfluoroarylcyanation of Alkynes: Origin of Selectivity for C–CN Bond Activation. Organometallics, 2018, 37, 2594-2601.	1.1	12
1012	Branch-Selective and Enantioselective Iridium-Catalyzed Alkene Hydroarylation via Anilide-Directed C–H Oxidative Addition. Journal of the American Chemical Society, 2018, 140, 9351-9356.	6.6	108

#	Article	IF	CITATIONS
1013	Palladium-Catalyzed C–H Amination of C(sp ²) and C(sp ³)–H Bonds: Mechanism and Scope for N-Based Molecule Synthesis. ACS Catalysis, 2018, 8, 5732-5776.	5.5	127
1014	The synergistic effect of self-assembly and visible-light induced the oxidative C–H acylation of N-heterocyclic aromatic compounds with aldehydes. Chemical Communications, 2018, 54, 5744-5747.	2.2	56
1015	Pd(II)-Catalyzed Enantioselective C(sp ³)â€"H Arylation of Free Carboxylic Acids. Journal of the American Chemical Society, 2018, 140, 6545-6549.	6.6	145
1016	Rhodium(III)â€Catalyzed Oxidative Annulation of Acrylic Acid with Alkynes: An Easy Approach to the Synthesis of αâ€Pyrones. Chemistry - an Asian Journal, 2018, 13, 3281-3284.	1.7	21
1017	Magnetic Nanoparticle Decorated N-Heterocyclic Carbene–Nickel Complex with Pendant Ferrocenyl Group for C–H Arylation of Benzoxazole. Catalysis Letters, 2018, 148, 3178-3192.	1.4	17
1018	Metal-Free C-5 Hydroxylation of 8-Aminoquinoline Amide. Journal of Organic Chemistry, 2018, 83, 11392-11398.	1.7	25
1019	Rhodium(III)-Catalyzed <i>Meta</i> -Selective Câ€"H Alkenylation of Phenol Derivatives. Organic Letters, 2018, 20, 5126-5129.	2.4	35
1020	Ligandâ€Enabled Enantioselective C–H Activation of Tetrahydroquinolines and Saturated Azaâ€Heterocycles by Rh ^I . Angewandte Chemie - International Edition, 2018, 57, 9950-9954.	7.2	96
1021	Palladiumâ€Catalyzed Hydroalkylation of Alkynes with Cyclopropanols: Access to γ,δâ€Unsaturated Ketones. Advanced Synthesis and Catalysis, 2018, 360, 3171-3175.	2.1	30
1022	Ligandenaktivierte enantioselektive Câ€Hâ€Aktivierung von Tetrahydrochinolinen und gesÃŧtigten Azaâ€Heterocyclen durch Rh ^I . Angewandte Chemie, 2018, 130, 10098-10102.	1.6	24
1023	Enantioselective remote meta-C–H arylation and alkylation via a chiral transient mediator. Nature, 2018, 558, 581-585.	13.7	204
1024	Tertiary amine-directed and involved carbonylative cyclizations through Pd/Cu-cocatalyzed multiple $C\hat{a}\in X$ (X = H or N) bond cleavage. Chemical Science, 2019, 10, 9292-9301.	3.7	12
1025	A Computational Mechanistic Study of Pd(II)-Catalyzed Enantioselective C(sp ³)–H Borylation: Roles of APAO Ligands. Journal of Organic Chemistry, 2019, 84, 10690-10700.	1.7	9
1026	MnO ₂ @Fe ₃ O ₄ Magnetic Nanoparticles as Efficient and Recyclable Heterogeneous Catalyst for Benzylic sp ³ Câ^'H Oxidation. Chemistry - an Asian Journal, 2019, 14, 3414-3423.	1.7	10
1027	Synthesis of 2-Arylbenzothiazole and 2-Arylthiazole Derivatives via a Ru-Catalyzed <i>meta</i> >-Selective Câ€"H Nitration Reaction. Journal of Organic Chemistry, 2019, 84, 12784-12791.	1.7	17
1028	Ruthenium(II)-Catalyzed C–H Acylmethylation between (Hetero)arenes and α-Cl Ketones/Sulfoxonium Ylides. Journal of Organic Chemistry, 2019, 84, 13262-13275.	1.7	34
1029	Rh(III)â€Catalyzed Ringâ€Opening Addition of Azabenzonorbornadienes with Cyclic <i>N</i> €Sulfonyl Ketimines <i>via</i> Câ^'H Bond Activation. Advanced Synthesis and Catalysis, 2019, 361, 4495-4499.	2.1	18
1030	Fe(III)-catalyzed oxidative coupling of alkylnitriles with aromatic carboxylic acids: Facile access to cyanomethyl esters. Tetrahedron Letters, 2019, 60, 150969.	0.7	6

#	Article	IF	CITATIONS
1031	Construction of N–C Axial Chirality through Atroposelective C–H Olefination of <i>N</i> -Arylindoles by Palladium/Amino Acid Cooperative Catalysis. Organic Letters, 2019, 21, 6361-6365.	2.4	110
1032	Oxidant speciation and anionic ligand effects in the gold-catalyzed oxidative coupling of arenes and alkynes. Chemical Science, 2019, 10, 8411-8420.	3.7	32
1033	Origin of Regiochemical Control in Rh(III)/Rh(V)-Catalyzed Reactions of Unsaturated Oximes and Alkenes to Form Pyrdines. ACS Catalysis, 2019, 9, $7154-7165$.	5.5	40
1035	Silver-Assisted Oxidative Isocyanide Insertion of Ethers: A Direct Approach to \hat{l}^2 -Carbonyl \hat{l}_{\pm} -Iminonitriles. Organic Letters, 2019, 21, 9223-9227.	2.4	19
1036	Recent Advances and Prospects of Organic Reactions "On Water― ChemistrySelect, 2019, 4, 12337-12355.	0.7	25
1037	Iridium(III)â€Catalyzed Dehydrogenative Coupling of Salicylic Acids with Alkynes: Synthesis of Highly Substituted 1â€Naphthol Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 5253-5257.	2.1	14
1038	Enantioselective Indole N–H Functionalization Enabled by Addition of Carbene Catalyst to Indole Aldehyde at Remote Site. ACS Catalysis, 2019, 9, 10971-10976.	5.5	33
1042	Pd-Catalyzed Heck-Type Reaction: Synthesizing Highly Diastereoselective and Multiple Aryl-Substituted P-Ligands. Organic Letters, 2019, 21, 7138-7142.	2.4	15
1043	Strategies for Enhancing the Rate Constant of Câ€"H Bond Cleavage by Concerted Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2019, 141, 15183-15189.	6.6	22
1044	Direct C–H Bond Imidation with Benzoyl Peroxide as a Mild Oxidant and a Reagent. Journal of Organic Chemistry, 2019, 84, 12992-13002.	1.7	22
1045	Pd-Catalyzed Atroposelective Câ€"H Allylation and Alkenylation: Access to Enantioenriched Atropisomers Featuring Pentatomic Heteroaromatics. Organometallics, 2019, 38, 4022-4028.	1.1	45
1046	Cobalt-catalyzed hydroxymethylarylation of terpenes with formaldehyde and arenes. Chemical Science, 2019, 10, 9560-9564.	3.7	49
1047	Regioselective Alkylative Cross-Coupling of Remote Unactivated C(<i>sp</i> ³)–H Bonds. Journal of the American Chemical Society, 2019, 141, 14062-14067.	6.6	72
1048	Controllable construction of isoquinolinedione and isocoumarin scaffolds via RhIII-catalyzed C–H annulation of N-tosylbenzamides with diazo compounds. Organic and Biomolecular Chemistry, 2019, 17, 8768-8777.	1.5	27
1049	Ruthenium-Catalyzed Enantioselective Câ€"H Functionalization: A Practical Access to Optically Active Indoline Derivatives. Journal of the American Chemical Society, 2019, 141, 15730-15736.	6.6	89
1050	Metal-supported and -assisted stereoselective cooperative photoredox catalysis. Dalton Transactions, 2019, 48, 15338-15357.	1.6	13
1051	Understanding the Activity and Enantioselectivity of Acetyl-Protected Aminoethyl Quinoline Ligands in Palladium-Catalyzed \hat{l}^2 -C(sp ⁾³) $\hat{a}\in\hat{l}$ Bond Arylation Reactions. Journal of the American Chemical Society, 2019, 141, 16726-16733.	6.6	27
1052	Kinetic Resolution via Rh-Catalyzed C–C Activation of Cyclobutanones at Room Temperature. Journal of the American Chemical Society, 2019, 141, 16260-16265.	6.6	67

#	Article	IF	Citations
1053	Alkaline-Metal-Catalyzed One-Pot Aminobenzylation of Aldehydes with Toluenes. Organic Letters, 2019, 21, 8514-8518.	2.4	41
1054	Controllable Intramolecular Unactivated C(sp3)-H Amination and Oxygenation of Carbamates. Organic Letters, 2019, 21, 880-884.	2.4	35
1055	Enantioselective Synthesis of Atropisomers Featuring Pentatomic Heteroaromatics by Pd-Catalyzed C–H Alkynylation. ACS Catalysis, 2019, 9, 1956-1961.	5 . 5	174
1056	Rh-Catalyzed tandem C–C/C–N bond formation of quinoxalines with alkynes leading to heterocyclic ammonium salts. Organic and Biomolecular Chemistry, 2019, 17, 2148-2152.	1.5	13
1057	Iridiumâ€Catalyzed Asymmetric Hydroarylation of Chromene Derivatives with Aromatic Ketones: Enantioselective Synthesis of 2â€Arylchromanes. Advanced Synthesis and Catalysis, 2019, 361, 2124-2128.	2.1	25
1058	Stereoselective synthesis of a phosphonate pThr mimetic <i>via</i> palladium-catalyzed γ-C(sp ³)â€"H activation for peptide preparation. Organic and Biomolecular Chemistry, 2019, 17, 2099-2102.	1.5	11
1059	Synthesis of cyano-substituted carbazoles <i>via</i> successive C–C/C–H cleavage. Organic and Biomolecular Chemistry, 2019, 17, 958-965.	1.5	15
1060	Catalytic asymmetric allylation of aldehydes with alkenes through allylic C(sp ³)–H functionalization mediated by organophotoredox and chiral chromium hybrid catalysis. Chemical Science, 2019, 10, 3459-3465.	3.7	137
1061	Palladium-Catalyzed Oxidative Cross-Coupling of Conjugated Enynones with Allylarenes: Synthesis of Furyl-Substituted 1,3-Dienes. Journal of Organic Chemistry, 2019, 84, 8275-8283.	1.7	17
1062	Selective $\hat{Ca}\in H$ acylation of indoles with $\hat{I}\pm -0$ xocarboxylic acids at the C4 position by palladium catalysis. Chemical Communications, 2019, 55, 8102-8105.	2.2	40
1063	Synthesis of Chiral Aldehyde Catalysts by Pdâ€Catalyzed Atroposelective Câ^'H Naphthylation. Angewandte Chemie, 2019, 131, 11586-11590.	1.6	36
1064	Three-Component Synthesis of Isoquinoline Derivatives by a Relay Catalysis with a Single Rhodium(III) Catalyst. Organic Letters, 2019, 21, 4971-4975.	2.4	30
1065	Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Enantioselective C(sp ³)–H Borylation of Cyclopropanes. Journal of the American Chemical Society, 2019, 141, 10599-10604.	6.6	94
1066	Recent advances in the synthesis of axially chiral biaryls <i>via</i> transition metal-catalysed asymmetric C–H functionalization. Chemical Communications, 2019, 55, 8514-8523.	2.2	322
1067	Rhodium-Catalyzed Atroposelective Câ€"H Arylation: Efficient Synthesis of Axially Chiral Heterobiaryls. Journal of the American Chemical Society, 2019, 141, 9504-9510.	6.6	156
1068	Synthesis of Chiral Aldehyde Catalysts by Pdâ€Catalyzed Atroposelective Câ^'H Naphthylation. Angewandte Chemie - International Edition, 2019, 58, 11464-11468.	7.2	122
1069	Ligandâ€Promoted Rh ^{III} â€Catalyzed Thiolation of Benzamides with a Broad Disulfide Scope. Angewandte Chemie, 2019, 131, 9197-9201.	1.6	9
1070	Visible light-mediated organophotocatalyzed C–H bond functionalization reactions. Organic and Biomolecular Chemistry, 2019, 17, 5475-5489.	1.5	61

#	Article	IF	CITATIONS
1071	Transition metal catalysed direct selanylation of arenes and heteroarenes. Dalton Transactions, 2019, 48, 9851-9905.	1.6	33
1072	Enantioselective Câ^'H Activation with Earthâ€Abundant 3d Transition Metals. Angewandte Chemie - International Edition, 2019, 58, 12803-12818.	7.2	330
1073	Enantioselektive Câ€Hâ€Aktivierung mit natürlich vorkommenden 3dâ€Ãœbergangsmetallen. Angewandte Chemie, 2019, 131, 12934-12949.	1.6	107
1074	Transition Metal–Catalyzed Allylic C(sp ³)–H Functionalization <i>via Î-</i> ³ â€Allylmetal Intermediate. Chinese Journal of Chemistry, 2019, 37, 720-743.	2.6	71
1075	Cross-dehydrogenative coupling of 3,6-dihydro-2H-pyrans with 1,3-dicarbonyls and aryl moieties. Tetrahedron Letters, 2019, 60, 1547-1550.	0.7	4
1076	Enantioselective C H Bond Functionalizations by 3d Transition-Metal Catalysts. Trends in Chemistry, 2019, 1, 471-484.	4.4	177
1077	Bimolecular oxidative C–H alkynylation of α-substituted isochromans. Organic Chemistry Frontiers, 2019, 6, 2028-2031.	2.3	3
1078	Asymmetric Total Synthesis of TAN-1085 Facilitated by Pd-Catalyzed Atroposelective C–H Olefination. Organic Letters, 2019, 21, 3352-3356.	2.4	56
1079	Cobalt-Catalyzed Annulation Reactions of Alkylidenecyclopropanes: Access to Spirocyclopropanes at Room Temperature. Organic Letters, 2019, 21, 3871-3875.	2.4	45
1080	Ligandâ€Promoted Rh ^{III} â€Catalyzed Thiolation of Benzamides with a Broad Disulfide Scope. Angewandte Chemie - International Edition, 2019, 58, 9099-9103.	7.2	59
1081	Diastereoselective Pd-Catalyzed C–H Arylation of Ferrocenylmethanamines with Arylboronic Acids or Pinacol Esters. Journal of Organic Chemistry, 2019, 84, 7312-7319.	1.7	9
1082	Enantioselective Synthesis of Biaryl Atropisomers by Pd atalyzed Câ^'H Olefination using Chiral Spiro Phosphoric Acid Ligands. Angewandte Chemie, 2019, 131, 6780-6784.	1.6	58
1083	Catalytic Asymmetric C–H Arylation of (η ⁶ -Arene)Chromium Complexes: Facile Access to Planar-Chiral Phosphines. ACS Catalysis, 2019, 9, 5268-5278.	5.5	37
1084	Catalytic enantioselective cross-dehydrogenative coupling of 3,6-dihydro-2 <i>H</i> -pyrans with aldehydes. Organic Chemistry Frontiers, 2019, 6, 1448-1452.	2.3	10
1085	Regio- and Enantioselective C–H Cyclization of Pyridines with Alkenes Enabled by a Nickel/N-Heterocyclic Carbene Catalysis. Journal of the American Chemical Society, 2019, 141, 5628-5634.	6.6	139
1086	Recent advances and prospects in nickel-catalyzed C–H activation. Catalysis Science and Technology, 2019, 9, 1726-1743.	2.1	81
1087	Pd(II)-Catalyzed Enantioselective Alkynylation of Unbiased Methylene C(sp ³)–H Bonds Using 3,3′-Fluorinated-BINOL as a Chiral Ligand. Journal of the American Chemical Society, 2019, 141, 4558-4563.	6.6	109
1088	Pd(<scp>ii</scp>)/Ag(<scp>i</scp>)-Cocatalyzed <i>ortho</i> direct arylation of <i>O</i> -phenylcarbamates with pinacol aryl boronates. Organic Chemistry Frontiers, 2019, 6, 1409-1413.	2.3	4

#	ARTICLE	IF	CITATIONS
1089	Emerging C H functionalization strategies for constructing fused polycyclic aromatic hydrocarbons and nanographenes. Inorganica Chimica Acta, 2019, 490, 112-129.	1.2	17
1090	Cp*Co(III)/MPAA-Catalyzed Enantioselective Amidation of Ferrocenes Directed by Thioamides under Mild Conditions. Organic Letters, 2019, 21, 1895-1899.	2.4	154
1091	Enantioselective Synthesis of Biaryl Atropisomers by Pdâ€Catalyzed Câ^'H Olefination using Chiral Spiro Phosphoric Acid Ligands. Angewandte Chemie - International Edition, 2019, 58, 6708-6712.	7.2	183
1092	Oxidative C H alkynylation of 3,6-dihydro-2H-pyrans. Chinese Chemical Letters, 2019, 30, 1432-1434.	4.8	7
1093	Cross-dehydrogenative coupling of secondary benzylic ethers with indoles and pyrroles. Tetrahedron Letters, 2019, 60, 1075-1078.	0.7	8
1094	Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Asymmetric C(sp ²)–H Borylation of Diarylmethylamines. Journal of the American Chemical Society, 2019, 141, 5334-5342.	6.6	93
1095	Enantioselective Arylation of Benzylic Câ^'H Bonds by Copper atalyzed Radical Relay. Angewandte Chemie, 2019, 131, 6491-6495.	1.6	13
1096	Enantioselective Arylation of Benzylic Câ^'H Bonds by Copper atalyzed Radical Relay. Angewandte Chemie - International Edition, 2019, 58, 6425-6429.	7.2	92
1097	Synthesis of polysubstituted 3-aminoindenes via rhodium-catalysed [3+2] cascade annulations of benzimidates with alkenes. Chemical Communications, 2019, 55, 4190-4193.	2.2	20
1098	Reactions in Water – A Greener Approach Using Ruthenium Catalysts. Chemical Record, 2019, 19, 1935-1951.	2.9	4
1099	Direct oxidative C(sp3) H cyanation of secondary benzylic ethers. Chinese Chemical Letters, 2019, 30, 1241-1243.	4.8	5
1100	Exploration of Catalytic Activity of Trypsin for C(sp ³)â€H Functionalization and Consequent C Bond Formation. European Journal of Organic Chemistry, 2019, 2019, 2864-2868.	1.2	7
1101	Desymmetrizationâ€Oriented Enantioselective Synthesis of Siliconâ€Stereogenic Silanes by Palladiumâ€Catalyzed Câ^'H Olefinations. Chemistry - an Asian Journal, 2019, 14, 2082-2085.	1.7	31
1102	Amideâ€Oxazoline Directed <i>ortho</i> òâ€C–H Nitration Mediated by Cu ^{II} . European Journal of Organic Chemistry, 2019, 2019, 3005-3011.	1.2	6
1103	Ferroceneâ€Initiated Oxidative Cyclization of Benzaldehyde with Alkyne: New Strategy to Substituted Indenones. European Journal of Organic Chemistry, 2019, 2019, 2740-2744.	1.2	10
1104	Cp*-Free Cobalt-Catalyzed C–H Activation/Annulations by Traceless <i>N</i> , <i>O</i> -Bidentate Directing Group: Access to Isoquinolines. Organic Letters, 2019, 21, 2863-2866.	2.4	51
1105	Oxidative C H alkylation of naphthoquinones with simple alkenes. Tetrahedron Letters, 2019, 60, 1268-1271.	0.7	7
1106	C–H functionalization reactions under flow conditions. Chemical Society Reviews, 2019, 48, 2767-2782.	18.7	94

#	Article	IF	CITATIONS
1107	Selective biocatalytic hydroxylation of unactivated methylene Câ€"H bonds in cyclic alkyl substrates. Chemical Communications, 2019, 55, 5029-5032.	2.2	13
1108	Ironâ€Catalyzed Synthesis of Dihydronaphthalenones from Aromatic Oxime Esters. Advanced Synthesis and Catalysis, 2019, 361, 3223-3227.	2.1	21
1109	Palladium-Catalyzed Enantioselective C–H Aminocarbonylation: Synthesis of Chiral Isoquinolinones. Organic Letters, 2019, 21, 1749-1754.	2.4	52
1110	Palladium-catalyzed allylic C–H oxidation under simple operation and mild conditions. Organic and Biomolecular Chemistry, 2019, 17, 3103-3107.	1.5	7
1111	Nickel, Cobalt and Palladium Catalysed Câ^'H Functionalization of Unâ€Activated C(sp ³)â^'H Bond. Chemical Record, 2019, 19, 1829-1857.	2.9	49
1112	Rhodium-catalyzed direct C–H bond alkynylation of aryl sulfonamides with bromoalkynes. Organic and Biomolecular Chemistry, 2019, 17, 2948-2953.	1.5	14
1113	Visible-Light-Induced Remote C(sp ³)–H Pyridylation of Sulfonamides and Carboxamides. Organic Letters, 2019, 21, 9719-9723.	2.4	59
1114	Enantioselective Copper-Catalyzed Cyanation of Remote C(sp3)-H Bonds Enabled by 1,5-Hydrogen Atom Transfer. IScience, 2019, 21, 490-498.	1.9	35
1115	Metal-Free Oxidative Cross-Coupling Reaction of Heteroaromatic and Related Compounds. Chemical and Pharmaceutical Bulletin, 2019, 67, 1259-1270.	0.6	13
1116	Heterogenized nickel catalysts for various organic transformations. Current Opinion in Green and Sustainable Chemistry, 2019, 15, 47-59.	3.2	17
1117	Direct Assembly of Polysubstituted Furans via C(<i>sp</i> ³)â^'H Bond Functionalization by Using Dimethyl Sulfoxide as a Dual Synthon. Advanced Synthesis and Catalysis, 2019, 361, 1084-1091.	2.1	31
1118	Oxidative Coupling Reactions Between Hydrocarbons and Organometallic Reagents (The Second) Tj ETQq $1\ 1\ 0$.784314 rgl	BT/Overlock
1119	Ultralow Loading Cobalt-Based Nanocatalyst for Benign and Efficient Aerobic Oxidation of Allylic Alcohols and Biobased Olefins. ACS Sustainable Chemistry and Engineering, 2019, 7, 1901-1908.	3.2	16
1120	3d Transition Metals for C–H Activation. Chemical Reviews, 2019, 119, 2192-2452.	23.0	1,666
1121	Palladium catalyzed synthesis of sugar-fused indolines via C(sp2)–H/N H activation. Carbohydrate Research, 2019, 473, 57-65.	1.1	8
1122	Palladium-Catalyzed, Enantioselective Formal Cycloaddition between Benzyltriflamides and Allenes: Straightforward Access to Enantioenriched Isoquinolines. Journal of the American Chemical Society, 2019, 141, 1862-1866.	6.6	42
1123	Pd ^{II} â€Catalyzed Enantioselective C(sp ³)â^'H Activation/Crossâ€Coupling Reactions of Free Carboxylic Acids. Angewandte Chemie - International Edition, 2019, 58, 2134-2138.	7.2	124
1124	Ruthenium-catalyzed synthesis of indole derivatives from N-aryl-2-aminopyridines and alpha-carbonyl sulfoxonium ylides. Organic and Biomolecular Chemistry, 2019, 17, 240-243.	1.5	42

#	Article	IF	CITATIONS
1125	Room-temperature Pd(<scp>ii</scp>)-catalyzed direct C–H TIPS-ethynylation of phenylacetic amides with terminal alkynes. Organic Chemistry Frontiers, 2019, 6, 442-446.	2.3	10
1126	Potentialâ€Induced Fineâ€Tuning of the Enantioaffinity of Chiral Metal Phases. Angewandte Chemie - International Edition, 2019, 58, 3471-3475.	7.2	35
1127	Alkylaminoâ€Directed Oneâ€Pot Reaction of <i>N</i> â€Alkyl Anilines with CO, Amines and Aldehydes Leading to 2,3â€Dihydroquinazolinâ€4(1 <i>H</i>)â€ones. Advanced Synthesis and Catalysis, 2019, 361, 976-982.	2.1	19
1128	Ru-catalyzed synthesis of substituted phthalides through C–H bond activation and functionalization. Tetrahedron Letters, 2019, 60, 699-702.	0.7	7
1129	Electrochemical Transitionâ€Metalâ€Catalyzed Câ^'H Bond Functionalization: Electricity as Clean Surrogates of Chemical Oxidants. ChemSusChem, 2019, 12, 115-132.	3.6	63
1130	Metal-catalyzed C–H bond functionalization of phenol derivatives. Tetrahedron, 2020, 76, 130925.	1.0	23
1131	Allylation of β-amino phosphonic acid precursor <i>via</i> palladium-NHC catalyzed allylic C–H activation. Organic Chemistry Frontiers, 2020, 7, 298-302.	2.3	12
1132	Copper mediated C(sp ²)–H amination and hydroxylation of phosphinamides. Chemical Communications, 2020, 56, 1444-1447.	2.2	8
1133	Synthesis of Chiral βâ€Lactams by Pdâ€Catalyzed Enantioselective Amidation of Methylene C(sp ³)â€"H Bonds. Chinese Journal of Chemistry, 2020, 38, 242-246.	2.6	64
1134	Enantioselective C–H Lactonization of Unactivated Methylenes Directed by Carboxylic Acids. Journal of the American Chemical Society, 2020, 142, 1584-1593.	6.6	63
1135	Encoding Chiral Molecular Information in Metal Structures. Chemistry - A European Journal, 2020, 26, 2993-3003.	1.7	18
1136	Nitrene Transfer Reactions for Asymmetric C–H Amination: Recent Development. European Journal of Organic Chemistry, 2020, 2020, 909-916.	1.2	102
1137	Synthesis, Crystal Structure, and Catalytic Property of a Copper Coordination Compound Based on In Situ Generated 2-Hydroxynicotinic Acid. Journal of Chemical Crystallography, 2020, 50, 234-240.	0.5	1
1138	Promotion Mechanism of H2O for Stereoselectivity in Pd(II)-catalyzed C―H Arylation of Diarylphosphinamides with Arylboronic Acids. Chemical Research in Chinese Universities, 2020, 36, 843-846.	1.3	3
1139	Acid-Controlled Access to \hat{l}^2 -Sulfenyl Ketones and \hat{l}_{\pm},\hat{l}^2 -Disulfonyl Ketones by Pummerer Reaction of \hat{l}^2 -Keto Sulfones and Sulfoxides. Journal of Organic Chemistry, 2020, 85, 691-701.	1.7	13
1140	Manganese- and rhenium-catalyzed C–H enaminylation: expedient access to novel indole–purine hybrids with anti-tumor bioactivities. Organic Chemistry Frontiers, 2020, 7, 3709-3714.	2.3	14
1141	Chiral Transient Directing Groups in Transition-Metal-Catalyzed Enantioselective C–H Bond Functionalization. ACS Catalysis, 2020, 10, 12898-12919.	5.5	88
1142	Enantioselective Synthesis of Atropisomeric Anilides via Pd(II)-Catalyzed Asymmetric C–H Olefination. Journal of the American Chemical Society, 2020, 142, 18266-18276.	6.6	96

#	Article	IF	CITATIONS
1143	C–H functionalization reactions enabled by hydrogen atom transfer to carbon-centered radicals. Chemical Science, 2020, 11, 12974-12993.	3.7	189
1144	Aryl C(sp ²)–X Coupling (X = C, N, O, Cl) and Facile Control of N-Mono- and N,N-Diarylation of Primary Alkylamines at a Pt(IV) Center. Journal of the American Chemical Society, 2020, 142, 20725-20734.	6.6	6
1145	Harnessing hypervalent iodonium ylides as carbene precursors: C–H activation of ⟨i>N⟨ i>-methoxybenzamides with a Rh(⟨scp⟩iii⟨ scp⟩)-catalyst. Chemical Communications, 2020, 56, 15462-15465.	2.2	49
1146	Transition Metal Catalyzed Enantioselective C(sp ²)â€"H Bond Functionalization. ACS Catalysis, 2020, 10, 13748-13793.	5.5	177
1147	Construction of axial chirality via palladium/chiral norbornene cooperative catalysis. Nature Catalysis, 2020, 3, 727-733.	16.1	93
1148	Aerobically-initiated C(sp ³)–H bond amination through the use of activated azodicarboxylates. Organic and Biomolecular Chemistry, 2020, 18, 6258-6264.	1.5	11
1149	Ligand-Accelerated Palladium(II)-Catalyzed Enantioselective Amination of C(sp ²)–H Bonds. Organic Letters, 2020, 22, 6394-6398.	2.4	21
1150	Palladium aminopyridine complexes catalyzed selective benzylic C–H oxidations with peracetic acid. Dalton Transactions, 2020, 49, 11150-11156.	1.6	13
1151	Asymmetric C–H Bond Functionalization of Ferrocenes: New Opportunities and Challenges. Trends in Chemistry, 2020, 2, 737-749.	4.4	91
1152	Pdâ€Catalyzed <i>ortho</i> à€Câ^'H Olefination of Benzenesulfonamides Directed by 7â€Azaindole. Asian Journal of Organic Chemistry, 2020, 9, 2087-2091.	1.3	5
1153	Diazanorbornene: A Valuable Synthon towards Carbocycles and Heterocycles. European Journal of Organic Chemistry, 2020, 2020, 6588-6613.	1.2	6
1154	Recent Advancements on Transitionâ€Metalâ€Catalyzed, Chelationâ€Induced <i>ortho</i> à€Hydroxylation of Arenes. Advanced Synthesis and Catalysis, 2020, 362, 5301-5351.	2.1	27
1155	Temperature-modulated selective C(sp ³)â \in "H or C(sp ²)â \in "H arylation through palladium catalysis. Chemical Science, 2020, 11, 11461-11467.	3.7	14
1156	Synthesis of CF ₃ -Containing Isoindolinone Derivatives through Rhodium-catalyzed Oxidative Coupling of Benzamides with 2-Trifluoromethylacrylate. Chemistry Letters, 2020, 49, 1481-1483.	0.7	4
1157	Enantioselective Silylation of Aliphatic Câ^'H Bonds for the Synthesis of Siliconâ€Stereogenic Dihydrobenzosiloles. Angewandte Chemie - International Edition, 2020, 59, 22217-22222.	7.2	65
1158	Rhodium-Catalyzed Atroposelective Oxidative C–H/C–H Cross-Coupling Reaction of 1-Aryl Isoquinoline Derivatives with Electron-Rich Heteroarenes. Journal of the American Chemical Society, 2020, 142, 15678-15685.	6.6	126
1159	Enantioselective Silylation of Aliphatic Câ^'H Bonds for the Synthesis of Siliconâ€5tereogenic Dihydrobenzosiloles. Angewandte Chemie, 2020, 132, 22401-22406.	1.6	20
1160	Recent Advancements in Allylic C(sp ³)â€"H Functionalization of Olefins Catalyzed by Rh(III) or Ir(III) Complexes. European Journal of Organic Chemistry, 2020, 2020, 7304-7319.	1.2	22

#	Article	IF	CITATIONS
1161	Catalytic Enantioselective Functionalizations of C–H Bonds by Chiral Iridium Complexes. Chemical Reviews, 2020, 120, 10516-10543.	23.0	165
1162	Iron-catalyzed remote functionalization of inert C(sp ³)–H bonds of alkenes <i>via</i> 1, <i>n</i> -hydrogen-atom-transfer by C-centered radical relay. Chemical Science, 2020, 11, 10437-10443.	3.7	43
1163	Chiral Transient Directing Group Strategies in Asymmetric Synthesis. Chemistry - an Asian Journal, 2020, 15, 3225-3238.	1.7	14
1164	Palladium(<scp>ii</scp>)-catalyzed asymmetric C–H carbonylation to diverse isoquinoline derivatives bearing all-carbon quaternary stereocenters. Chemical Communications, 2020, 56, 11605-11608.	2.2	17
1165	Reactivity and Selectivity Controlling Factors in the Pd/Dialkylbiarylphosphine-Catalyzed C–C Cleavage/Cross-Coupling of an N-Fused Bicyclo α-Hydroxy-β-Lactam. Journal of the American Chemical Society, 2020, 142, 21140-21152.	6.6	20
1166	Recent progress on selective deconstructive modes of halodifluoromethyl and trifluoromethyl-containing reagents. Chemical Society Reviews, 2020, 49, 9197-9219.	18.7	156
1167	Rhodium(III)-Catalyzed Alkenyl C–H Functionalization to Dienes and Allenes. Organic Letters, 2020, 22, 8786-8790.	2.4	11
1168	Hybrid Palladium Catalyst Assembled from Chiral Phosphoric Acid and Thioamide for Enantioselective βâ€C(sp 3)â^'H Arylation. Angewandte Chemie, 2020, 132, 12874-12878.	1.6	13
1169	C7â€Indole Amidations and Alkenylations by Ruthenium(II) Catalysis. Angewandte Chemie - International Edition, 2020, 59, 12534-12540.	7.2	70
1170	3d metallaelectrocatalysis for resource economical syntheses. Chemical Society Reviews, 2020, 49, 4254-4272.	18.7	150
1171	Dual-Ligand-Enabled Ir(III)-Catalyzed Enantioselective C–H Amidation for the Synthesis of Chiral Sulfoxides. ACS Catalysis, 2020, 10, 7207-7215.	5.5	65
1172	C7â€Indolâ€Amidierung und â€Alkenylierung durch Ruthenium(II)†Katalyse. Angewandte Chemie, 2020, 132, 12635-12641.	1.6	13
1173	Pd ^{II} â€Catalyzed Enantioselective C(sp ³)â€"H Arylation of Cyclobutyl Ketones Using a Chiral Transient Directing Group. Angewandte Chemie - International Edition, 2020, 59, 9594-9600.	7.2	74
1174	Synthetic Methods of Isocoumarins and Phosphaisocoumarins through CH Activation. Bulletin of the Korean Chemical Society, 2020, 41, 388-399.	1.0	10
1175	Iridium-Catalyzed Enantioselective α-C(sp ³)–H Borylation of Azacycles. Journal of the American Chemical Society, 2020, 142, 12062-12068.	6.6	83
1176	Pd(II)-Catalyzed Enantioselective γ-C(sp ³)â€"H Functionalizations of Free Cyclopropylmethylamines. Journal of the American Chemical Society, 2020, 142, 12015-12019.	6.6	82
1177	Remote azidation of C(sp ³)–H bonds to synthesize Î-azido sulfonamides <i>via</i> iron-catalyzed radical relay. Organic and Biomolecular Chemistry, 2020, 18, 5354-5358.	1.5	12
1178	Pd II â€Catalyzed Enantioselective C(sp 3)–H Arylation of Cyclobutyl Ketones Using a Chiral Transient Directing Group. Angewandte Chemie, 2020, 132, 9681-9687.	1.6	14

#	ARTICLE	IF	CITATIONS
1179	Catalytic rhodium (Rh)-based (mesoporous polydopamine) MPDA nanoparticles with enhanced phototherapeutic efficiency for overcoming tumor hypoxia. Biomaterials Science, 2020, 8, 4157-4165.	2.6	31
1180	Mechanistic Insight into Palladiumâ€Catalyzed Enantioselective Remote meta â€Câ^'H Arylation and Alkylation by Using Density Functional Theory (DFT) Calculations. Advanced Synthesis and Catalysis, 2020, 362, 1686-1695.	2.1	5
1181	The crucial roles of guest water in a biocompatible coordination network in the catalytic ring-opening polymerization of cyclic esters: a new mechanistic perspective. Chemical Science, 2020, 11, 3345-3354.	3.7	11
1182	Rh(III)â€Catalyzed Denitrogenative [4+2] Annulation of Benzamides and 3â€Diazoindolinâ€2â€imines: Expedient Access to Indolo[2,3‷c] isoquinolinâ€5â€ones. Chemistry - an Asian Journal, 2020, 15, 1052-1056.	1.7	13
1183	Rhodium(III)â€Catalyzed Redoxâ€Neutral Coupling of αâ€Trifluoromethylacrylic Acid with Benzamides through Directed Câ^'H Bond Cleavage. Chemistry - an Asian Journal, 2020, 15, 802-806.	1.7	7
1184	Harnessing the biocatalytic potential of iron- and α-ketoglutarate-dependent dioxygenases in natural product total synthesis. Natural Product Reports, 2020, 37, 1065-1079.	5.2	47
1185	DFT study on the mechanism of bimetallic Pd–Zn-catalyzed cycloaddition of alkynyl aryl ethers with internal alkynes. Dalton Transactions, 2020, 49, 2914-2923.	1.6	1
1186	Asymmetric construction of quaternary α-nitro amides by palladium-catalyzed C(sp ³)–H arylation. Chemical Communications, 2020, 56, 2292-2295.	2.2	10
1187	Rhodium(III)â€Catalyzed Directed Câ^'H Bond Naphthylation with 7â€Azabenzonorbornadiene as the Naphthylating Reagent. Asian Journal of Organic Chemistry, 2020, 9, 233-237.	1.3	7
1188	N-Heterocyclic Carbene Complexes in C–H Activation Reactions. Chemical Reviews, 2020, 120, 1981-2048.	23.0	429
1189	Photoinduced Heterogeneous Câ^'H Arylation by a Reusable Hybrid Copper Catalyst. Chemistry - A European Journal, 2020, 26, 3509-3514.	1.7	24
1190	Hybrid Palladium Catalyst Assembled from Chiral Phosphoric Acid and Thioamide for Enantioselective βâ€C(sp ³)â^'H Arylation. Angewandte Chemie - International Edition, 2020, 59, 12774-12778.	7.2	39
1191	Rhodium(III)â€Catalyzed Atroposelective Synthesis of Biaryls by Câ^'H Activation and Intermolecular Coupling with Sterically Hindered Alkynes. Angewandte Chemie, 2020, 132, 13390-13396.	1.6	32
1192	Rhodium(III) atalyzed Atroposelective Synthesis of Biaryls by Câ^'H Activation and Intermolecular Coupling with Sterically Hindered Alkynes. Angewandte Chemie - International Edition, 2020, 59, 13288-13294.	7.2	98
1193	Palladium-catalyzed ortho-C-H silylation of biaryl aldehydes using a transient directing group. Science China Chemistry, 2020, 63, 875-880.	4.2	17
1194	Palladium-Catalyzed $[5+2]$ Heteroannulation of Phenethylamides with $1,3$ -Dienes to Dopaminergic 3-Benzazepines. Organic Letters, 2020, 22, 3591-3595.	2.4	12
1195	Recent advances in theoretical studies on ligand-controlled selectivity of nickel- and palladium-catalyzed cross-coupling reactions. Chinese Chemical Letters, 2021, 32, 319-327.	4.8	15
1196	Iridium atalyzed Enantioselective Unbiased Methylene C(sp 3)–H Borylation of Acyclic Amides. Angewandte Chemie, 2021, 133, 3566-3570.	1.6	20

#	Article	IF	Citations
1197	Iridium atalyzed Enantioselective Unbiased Methylene C(sp ³)–H Borylation of Acyclic Amides. Angewandte Chemie - International Edition, 2021, 60, 3524-3528.	7.2	56
1198	Synthesis of planar chiral isoquinolinone-fused ferrocenes through palladium-catalyzed C-H functionalization reaction. Chinese Chemical Letters, 2021, 32, 239-242.	4.8	14
1199	Copperâ€Catalyzed Enantioconvergent Crossâ€Coupling of Racemic Alkyl Bromides with Azole C(sp 2)â^'H Bonds. Angewandte Chemie, 2021, 133, 384-388.	1.6	4
1200	Palladium-catalyzed aminocarbonylation of aryl iodides with amines: efficient access to bidentate amide directing groups. Transition Metal Chemistry, 2021, 46, 29-35.	0.7	1
1201	Chiral Catalysts for Pd ⁰ â€Catalyzed Enantioselective Câ^'H Activation. Chemistry - A European Journal, 2021, 27, 1231-1257.	1.7	72
1202	Advancing the Logic of Chemical Synthesis: Câ^'H Activation as Strategic and Tactical Disconnections for Câ^'C Bond Construction. Angewandte Chemie, 2021, 133, 15901-15924.	1.6	50
1203	Advancing the Logic of Chemical Synthesis: Câ^'H Activation as Strategic and Tactical Disconnections for Câ^'C Bond Construction. Angewandte Chemie - International Edition, 2021, 60, 15767-15790.	7.2	208
1204	Rhodium atalyzed Atroposelective Construction of Indoles via Câ^'H Bond Activation. Angewandte Chemie - International Edition, 2021, 60, 8391-8395.	7.2	99
1205	Iridiumâ€Catalyzed Regio―and Enantioselective Borylation of Unbiased Methylene C(sp ³)â^'H Bonds at the Position β to a Nitrogen Center. Angewandte Chemie - International Edition, 2021, 60, 5843-5847.	7.2	52
1206	Pd(II)-Catalyzed Enantioselective Intramolecular Arylation of Unbiased C(sp3)–H Bonds to Construct Chiral Benzo-ring Compounds. Organic Letters, 2021, 23, 97-101.	2.4	26
1207	Rhodiumâ€Catalyzed Atroposelective Construction of Indoles via Câ^'H Bond Activation. Angewandte Chemie, 2021, 133, 8472-8476.	1.6	23
1208	Recent advances in transition metal-catalyzed olefinic C–H functionalization. Organic Chemistry Frontiers, 2021, 8, 1085-1101.	2.3	116
1209	Copperâ€Catalyzed Enantioconvergent Crossâ€Coupling of Racemic Alkyl Bromides with Azole C(sp ^{)â^'H Bonds. Angewandte Chemie - International Edition, 2021, 60, 380-384.}	7.2	46
1210	Review for metal and organocatalysis of heterocyclic C-H functionalization. World Journal of Advanced Research and Reviews, 2021, 9, 001-030.	0.1	0
1211	Theoretical Study of Rh-Catalyzed C–C Bond Formation Through C–H Activation. Springer Briefs in Molecular Science, 2021, , 27-95.	0.1	0
1212	Direct functionalization of cyclic ethers with maleimide iodides via free radial-mediated sp3 C–H activation. Chemical Communications, 2021, 57, 4787-4790.	2.2	3
1213	A self-assembling, biporous, metal-binding covalent organic framework and its application for gas separation. Materials Advances, 0, , .	2.6	3
1214	Decarboxylative C–H alkylation of heteroarenes by copper catalysis. Organic Chemistry Frontiers, 2021, 8, 3128-3136.	2.3	18

#	Article	IF	Citations
1215	Electron-deficient boron-based catalysts for Câ€"H bond functionalisation. Chemical Society Reviews, 2021, 50, 1945-1967.	18.7	66
1216	Enantioselective "organocatalysis in disguise―by the ligand sphere of chiral metal-templated complexes. Chemical Society Reviews, 2021, 50, 9715-9740.	18.7	31
1217	Recent advances in aminative difunctionalization of alkenes. Organic and Biomolecular Chemistry, 2021, 19, 3036-3054.	1.5	49
1218	Recent advances and perspectives in manganese-catalyzed C–H activation. Catalysis Science and Technology, 2021, 11, 444-458.	2.1	36
1219	Microwave assisted and in-situ generated palladium nanoparticles catalysed desulfitative synthesis of cross-biphenyls from arylsulfonyl chlorides and phenylboronic acids. Results in Chemistry, 2021, 3, 100181.	0.9	2
1220	Iridiumâ€Catalyzed Regio―and Enantioselective Borylation of Unbiased Methylene C(sp 3)â°'H Bonds at the Position β to a Nitrogen Center. Angewandte Chemie, 2021, 133, 5907-5911.	1.6	13
1221	Rh(<scp>iii</scp>)-catalyzed regioselective C–H activation dialkenylation/annulation cascade for rapid access to 6 <i>H</i> -isoindolo[2,1- <i>a</i>]indole. RSC Advances, 2021, 11, 25194-25198.	1.7	3
1222	C3-Arylation of indoles with aryl ketones <i>via</i> C–C/C–H activations. Chemical Communications, 2021, 57, 9716-9719.	2.2	12
1223	Pd(<scp>ii</scp>)-Catalyzed enantioconvergent twofold Câ€"H annulation to access atropisomeric aldehydes: a platform for diversity-oriented-synthesis. Organic Chemistry Frontiers, 2021, 8, 3404-3412.	2.3	17
1224	Ni-Catalyzed C(sp ²)â€"H alkylation of <i>N</i> quinolylbenzamides using alkylsilyl peroxides as structurally diverse alkyl sources. Chemical Communications, 2021, 57, 7942-7945.	2.2	14
1225	Recent advances in catalytic enantioselective direct Câ€"H bond functionalization of electron-deficient N-containing heteroarenes. Organic Chemistry Frontiers, 2021, 9, 265-280.	2.3	17
1226	Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chinese Journal of Organic Chemistry, 2021, 41, 3844.	0.6	16
1227	Modern Synthetic Methods for the Stereoselective Construction of 1,3-Dienes. Molecules, 2021, 26, 249.	1.7	39
1228	Copper-Catalyzedortho-Sulfonylation with 5-Chloro-8-aminoquinoline Group-Directed. Chinese Journal of Organic Chemistry, 2021, 41, 384.	0.6	3
1229	Synthesis of 7â€Phenylindole Derivatives through Rhodiumâ€Catalyzed Dehydrogenative Coupling of 2â€(Acetylamino)â€1,1'â€biphenyls with Alkynes. Asian Journal of Organic Chemistry, 2021, 10, 868-871.	1.3	2
1230	Enantioselective C–H Alkenylation of Ferrocenes with Alkynes by Half-Sandwich Scandium Catalyst. Journal of the American Chemical Society, 2021, 143, 2470-2476.	6.6	72
1231	Site-Selective Direct C–H Pyridylation of Unactivated Alkanes by Triplet Excited Anthraquinone. Journal of the American Chemical Society, 2021, 143, 3003-3012.	6.6	94
1232	Hydrogen Atom Transfer-Driven Enantioselective Minisci Reaction of Amides. Journal of the American Chemical Society, 2021, 143, 4928-4934.	6.6	72

#	ARTICLE	IF	CITATIONS
1233	Progress of Dialkyl Azodicarboxylates in Organic Transformations. Asian Journal of Organic Chemistry, 2021, 10, 964-979.	1.3	11
1234	Kinetic Resolution of Allyltriflamides through a Pd-Catalyzed C–H Functionalization with Allenes: Asymmetric Assembly of Tetrahydropyridines. Journal of the American Chemical Society, 2021, 143, 3747-3752.	6.6	33
1235	Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chemical Reviews, 2021, 121, 4373-4505.	23.0	302
1236	Advances in C(<i>sp</i> ²)â^'H/C(<i>sp</i> ²)â^'H Oxidative Coupling of (Hetero)arenes Using 3d Transition Metal Catalysts. Advanced Synthesis and Catalysis, 2021, 363, 1998-2022.	2.1	36
1237	Mizoroki–Heck Reaction of Unstrained Aryl Ketones via Ligand-Promoted C–C Bond Olefination. Organic Letters, 2021, 23, 2147-2152.	2.4	22
1238	Cu-Catalyzed Direct C–H Alkylation of Polyfluoroarenes via Remote C(sp ³)–H Functionalization in Carboxamides. Organic Letters, 2021, 23, 2693-2698.	2.4	20
1241	Synthesis of Indenones through Rhodium(III)-catalyzed [3+2] Annulation Utilizing a Recyclable Carbazolyl Leaving Group. Chemistry Letters, 2021, 50, 585-588.	0.7	7
1242	Direct Activation of a Remote C(sp ³)–H Bond Enabled by a Visibleâ€Light Photosensitized Allene Moiety. Angewandte Chemie - International Edition, 2021, 60, 12053-12059.	7.2	14
1244	Transitionâ€Metalâ€Free α Csp ³ â^'H Cyanation of Sulfonamides. Chemistry - A European Journal, 2021, 27, 7103-7107.	1.7	6
1245	Direct Activation of a Remote C(sp 3)–H Bond Enabled by a Visible‣ight Photosensitized Allene Moiety. Angewandte Chemie, 2021, 133, 12160-12166.	1.6	0
1246	Ru ^V â€Acylimido Intermediate in [Ru ^{IV} (Por)Cl ₂]â€Catalyzed C–N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angewandte Chemie - International Edition, 2021, 60, 18619-18629.	7.2	11
1247	Computational Study of Key Mechanistic Details for a Proposed Copper (I)-Mediated Deconstructive Fluorination of N-Protected Cyclic Amines. Topics in Catalysis, 2022, 65, 418-432.	1.3	4
1248	Cobalt-catalyzed diastereo- and enantioselective allyl addition to aldehydes and α-ketoesters through allylic C–H functionalization. Cell Reports Physical Science, 2021, 2, 100406.	2.8	20
1249	Mechanism of Ir-Mediated Selective Pyridine <i>o</i> -Câ€"H Activation: The Role of Lewis Acidic Boryl Group. ACS Catalysis, 2021, 11, 6186-6192.	5.5	7
1250	Ru V â€Acylimido Intermediate in [Ru IV (Por)Cl 2]â€Catalyzed Câ€"N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angewandte Chemie, 2021, 133, 18767-18777.	1.6	1
1251	Ruthenium(II)-carboxylate-catalyzed C4/C6–H dual alkylations of indoles. Tetrahedron Letters, 2021, 72, 153064.	0.7	5
1252	Transition Metalâ€Free Regioselective Remote Câ^'H Bond 2,2,2â€Trifluoroethoxylation of 8â€Aminoquinoline Derivatives at the C5 Position. European Journal of Organic Chemistry, 2021, 2021, 3407-3410.	1.2	6
1253	Iron-Catalyzed, Site-Selective Difluoromethylthiolation (â^'SCF ₂ H) and Difluoromethylselenation (â^'SeCF ₂ H) of Unactivated C(sp ³)â€"H Bonds in <i>N</i> -Fluoroamides. Organic Letters, 2021, 23, 4721-4725.	2.4	27

#	Article	IF	CITATIONS
1254	C–H activation. Nature Reviews Methods Primers, 2021, 1, .	11.8	277
1255	Fluoroalkyl <i>N</i> -Triftosylhydrazones as Easily Decomposable Diazo Surrogates for Asymmetric [2 + 1] Cycloaddition: Synthesis of Chiral Fluoroalkyl Cyclopropenes and Cyclopropanes. ACS Catalysis, 2021, 11, 8527-8537.	5.5	32
1256	Iridium atalyzed Hydroarylation via Câ^'H Bond Activation. Chemical Record, 2021, 21, 3532-3545.	2.9	21
1257	On the mechanism of homogeneous Pt-catalysis: A theoretical view. Coordination Chemistry Reviews, 2021, 437, 213863.	9.5	17
1258	Atroposelective sp ³ Câ€"H Coupling for Kinetic Resolution of Thioanilide Atropisomers. Chinese Journal of Chemistry, 2021, 39, 3269-3276.	2.6	15
1259	Gerù⁄4stâ€Editierung – Stickstoffâ€Deletion sekundäer Amine mithilfe anomerer Amidâ€Reagenzien. Angewandte Chemie, 2021, 133, 19674-19676.	1.6	6
1260	Probing Catalyst Speciation in Pd-MPAAM-Catalyzed Enantioselective C(sp ³)–H Arylation: Catalyst Improvement via Destabilization of Off-Cycle Species. ACS Catalysis, 2021, 11, 11040-11048.	5.5	9
1261	Ruthenium Catalyzed Intramolecular Câ^'X (X=C, N, O, S) Bond Formation <i>via</i> Câ^'H Functionalization: An Overview. Chemistry - an Asian Journal, 2021, 16, 2392-2412.	1.7	12
1262	Skeletal Editingâ€"Nitrogen Deletion of Secondary Amines by Anomeric Amide Reagents. Angewandte Chemie - International Edition, 2021, 60, 19522-19524.	7.2	20
1263	Twofold Câ^'H Activationâ€Based Enantio―and Diastereoselective Câ^'H Arylation Using Diarylacetylenes as Rare Arylating Reagents. Angewandte Chemie, 2021, 133, 20587-20592.	1.6	11
1264	Twofold Câ^'H Activationâ€Based Enantio―and Diastereoselective Câ^'H Arylation Using Diarylacetylenes as Rare Arylating Reagents. Angewandte Chemie - International Edition, 2021, 60, 20424-20429.	7.2	58
1265	Rhodium(III)â€Catalyzed Sequential Câ^'H Activation and Cyclization from <i>N</i> à€Methoxyarylamides and 3â€Diazooxindoles for the Synthesis of Isochromenoindolones. Chemistry - an Asian Journal, 2021, 16, 3179-3187.	1.7	7
1266	<i>ortho</i> â€Allylation of 2â€Arylindazoles with Vinyl Cyclic Carbonate and Diallyl Carbonate <i>via</i> Manganeseâ€Catalyzed Câ^H Bond Activation. Advanced Synthesis and Catalysis, 2021, 363, 4974-4981.	2.1	10
1267	Unified Mechanistic Concept of the Copper-Catalyzed and Amide-Oxazoline-Directed C(sp ²)–H Bond Functionalization. ACS Catalysis, 2021, 11, 12620-12631.	5.5	12
1268	(1-Selenocyanatoethyl)benzene: A Selenocyanation Reagent for Site-Selective Selenocyanation of Inert Alkyl C(sp ³)–H Bonds. Organic Letters, 2021, 23, 7156-7160.	2.4	15
1269	Transitionâ€Metalâ€Catalyzed Selective Alkynylation of Câ^'H Bonds. Advanced Synthesis and Catalysis, 2021, 363, 4994-5027.	2.1	26
1270	Construction of Siâ€6tereogenic Silanes through Câ^'H Activation Approach. European Journal of Organic Chemistry, 2021, 2021, 6006-6014.	1.2	40
1271	Biaryl Synthesis via Electrooxidative Transition-Metal-Catalyzed C–H Activation. Synthesis, 2022, 54, 565-569.	1.2	7

#	Article	IF	CITATIONS
1272	Synthesis of Conjugated Polymers via Transition Metal Catalysed Câ ⁻ 'H Bond Activation. Chemistry - an Asian Journal, 2021, 16, 2896-2919.	1.7	12
1273	Bimetallic anchoring catalysis for C-H and C-C activation. Science China Chemistry, 2021, 64, 1923-1937.	4.2	24
1274	Theoretical View of Rh-Catalyzed C–H Functionalization. Springer Briefs in Molecular Science, 2021, , 1-18.	0.1	2
1275	Enantioselective synthesis of 3-substituted dihydrobenzofurans through iridium-catalyzed intramolecular hydroarylation. Organic and Biomolecular Chemistry, 2021, 19, 684-690.	1.5	10
1276	Pd-Catalyzed sp ³ Câ€"H alkoxycarbonylation of 8-methylquinolines using Mo(CO) ₆ as a CO surrogate. Chemical Communications, 2021, 57, 3359-3362.	2.2	6
1277	<i>Z</i> -Selective Pd-catalyzed 2,2,2-trifluoroethylation of acrylamides at room temperature. Chemical Communications, 2021, 57, 6241-6244.	2.2	19
1278	<i>O</i> -Directed Câ€"H functionalization <i>via</i> cobaltacycles: a sustainable approach for Câ€"C and Câ€"heteroatom bond formations. Chemical Communications, 2021, 57, 3630-3647.	2.2	29
1279	Construction of Protoberberine Alkaloid Core through Palladium Carbene Bridging C–H Bond Functionalization and Pyridine Dearomatization. ACS Catalysis, 2021, 11, 1570-1577.	5. 5	25
1280	Nâ€Centered Radical Directed Remote Câ^'H Bond Functionalization via Hydrogen Atom Transfer. Chemistry - an Asian Journal, 2020, 15, 651-672.	1.7	93
1281	Recent advances and prospects in the nickel- catalyzed cyanation. Journal of Organometallic Chemistry, 2020, 920, 121337.	0.8	24
1282	Site-Selective Aerobic C–H Monoacylation of Carbazoles Using Palladium Catalysis. Journal of Organic Chemistry, 2021, 86, 1396-1407.	1.7	15
1283	Asymmetric Functionalization of C–H Bonds <i>via</i> a Transient Carbon–Metal (C–M) Species. RSC Catalysis Series, 2015, , 141-213.	0.1	20
1284	Salen-based hypercrosslinked polymer-supported Pd as an efficient and recyclable catalyst for C–H halogenation. Chemical Communications, 2020, 56, 2889-2892.	2.2	31
1285	Traceless directing groups: a novel strategy in regiodivergent C–H functionalization. Chemical Communications, 2020, 56, 12479-12521.	2.2	7 3
1286	igand-Accelerated ortho-C-H Olefination of Phenylacetic Acids. Organic Syntheses, 2015, 92, 58-75.	1.0	5
1287	Asymmetric Hydroarylation of Unsaturated Bond via C-H Functionalization by Cationic Iridium/Bisphosphoramidite Catalyst. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 604-614.	0.0	2
1288	Site-selective unidirectional benzylic sp ³ Câ€"H oxidation of dodecahydrotriphenylene with RuCl ₃ â€"NalO ₄ : formation of benzylic ketones. RSC Advances, 2021, 11, 34498-34502.	1.7	3
1289	Toolbox for Distal C–H Bond Functionalizations in Organic Molecules. Chemical Reviews, 2022, 122, 5682-5841.	23.0	237

#	Article	IF	Citations
1290	Enantioselective C–H Alkylation of N-Arylbenzamides with Vinyl Ethers Catalyzed by an Iridium/Chiral Phosphoramidite–Olefin Complex. Synthesis, 2022, 54, 4753-4763.	1.2	6
1291	Sulfoximines Assisted Rh(III)-Catalyzed C–H Activation/Annulation Cascade to Synthesize Highly Fused Indeno-1,2-benzothiazines. Journal of Organic Chemistry, 2021, 86, 15217-15227.	1.7	9
1292	Transitionâ€Metalâ€Catalyzed Annulations Involving the Activation of C(sp3)â^'H Bonds. Angewandte Chemie, 0, , .	1.6	4
1293	Transitionâ€Metalâ€Catalyzed Annulations Involving the Activation of C(sp ³)â^'H Bonds. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
1295	Rhodium-Catalyzed Oxidative Olefination of N-(2-(4,5-Dihydrooxazol-2-yl)phenyl)amides with Arylethenes via Extraordinary N-Aryl C-H Bond Functionalization. Heterocycles, 2020, 100, 1979.	0.4	0
1296	Highly Regio- and Diastereoselective Tethered Aza-Wacker Cyclizations of Alkenyl Phosphoramidates. Journal of Organic Chemistry, 2021, 86, 14732-14758.	1.7	11
1297	Cationic Iridium/Chiral Bidentate Phosphoramidite Catalyzed Asymmetric Hydroarylation. Synthesis, 0,	1.2	2
1298	Development of Chiral Ligands for the Transitionâ€Metal atalyzed Enantioselective Silylation and Borylation of Câ°'H Bonds. Angewandte Chemie - International Edition, 2022, 61, .	7.2	59
1299	Development of Chiral Ligands for the Transitionâ€Metalâ€Catalyzed Enantioselective Silylation and Borylation of Câ~H Bonds. Angewandte Chemie, 2022, 134, e202113343.	1.6	15
1300	Cp*Co(III)-Catalyzed Enantioselective Hydroarylation of Unactivated Terminal Alkenes via C–H Activation. Journal of the American Chemical Society, 2021, 143, 19112-19120.	6.6	73
1301	Mechanistic insight into construction of axially chiral biaryls <i>via</i> palladium/chiral norbornene cooperative catalysis: a DFT-based computational study. Catalysis Science and Technology, 2022, 12, 105-115.	2.1	4
1302	Pd-catalyzed asymmetric oxidative C-H/C-H cross-coupling reaction between dialkylaminomethylferrocenes and indolizines. Chem Catalysis, 2022, 2, 102-113.	2.9	19
1303	The Phosphinamide-Based Catalysts: Discovery, Methodology Development, and Applications in Natural Product Synthesis. Accounts of Chemical Research, 2021, 54, 4354-4370.	7.6	11
1304	UV-Light-Initiated Construction of Indenones through Cyclization of Aryl Aldehydes or Aryl Ketones with Alkynes Avoiding Photocatalyst. Chinese Journal of Organic Chemistry, 2021, 41, 4808.	0.6	3
1305	Rhodium-Catalyzed Atroposelective C–H/C–H Cross-Coupling Reaction between 1-Aryl Isoquinoline Derivatives and Indolizines. Organic Letters, 2022, 24, 564-569.	2.4	21
1306	Recent advances in γ-C(sp3)â€"H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coordination Chemistry Reviews, 2022, 455, 214255.	9.5	18
1307	Three catalysts tango with olefins. , 2022, 1, 13-15.		0
1308	Palladium-Catalyzed Regio- and Diastereoselective Olefinic C–H Difluoromethylthiolation at Room Temperature. Journal of Organic Chemistry, 2022, 87, 3135-3144.	1.7	6

#	Article	IF	CITATIONS
1309	<scp>Copperâ€Mediated</scp> and Catalyzed C—H Bond Amination via Chelation Assistance: Scope, Mechanism and Synthetic Applications. Chinese Journal of Chemistry, 2022, 40, 1204-1223.	2.6	14
1310	Synthesis of Benzylidenesuccinates through Rhodium(III)â€Catalyzed Câ€H Alkenylation with Itaconate. Asian Journal of Organic Chemistry, 0, , .	1.3	4
1311	Remote Nâ€"H activation of indole aldehydes: an investigation of the mechanism, origin of selectivities, and role of the catalyst. New Journal of Chemistry, 2022, 46, 2761-2776.	1.4	1
1312	Advances in allylic and benzylic C–H bond functionalization enabled by metallaphotoredox catalysis. Chemical Communications, 2021, 58, 171-184.	2.2	32
1313	An atom economical approach for enantioselective cross dehydrogenative coupling. Chem Catalysis, 2022, 2, 5-7.	2.9	2
1314	Selective benzylic C _{sp3} â€"H bond activations mediated by a phosphorusâ€"nitrogen PN ³ P-nickel complex. Chemical Communications, 2022, 58, 1593-1596.	2.2	2
1315	Palladium(II)â€Catalyzed Selective Arylation of Tertiary Câ^'H Bonds of Cyclobutylmethyl Ketones Using Transient Directing Groups. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
1316	Palladium(II)â€Catalyzed Selective Arylation of Tertiary Câ^'H Bonds of Cyclobutylmethyl Ketones Using Transient Directing Groups. Angewandte Chemie, 2022, 134, .	1.6	2
1317	Rh(III)-Catalyzed Cascade C-H Activation/Annulation of Cyclic 2-Diazo-1,3-diketones with Benzoylacetonitriles to Polycyclic Benzo[de]chromenes. Heterocycles, 2022, 104, 764.	0.4	1
1318	Insights into the Activation Mode of αâ€Carbonyl Sulfoxonium Ylides in Rhodiumâ€Catalyzed Câ^'H Activation: A Theoretical Study. ChemistryOpen, 2022, 11, e202100254.	0.9	3
1319	C–H Insertion via Ruthenium Catalyzed <i>gem</i> -Hydrogenation of 1,3-Enynes. Journal of the American Chemical Society, 2022, 144, 4158-4167.	6.6	20
1320	4-Aminobenzotriazole (ABTA) as a Removable Directing Group for Palladium-Catalyzed Aerobic Oxidative C–H Olefination. Organic Letters, 2022, 24, 3107-3112.	2.4	5
1321	Palladium-Catalyzed Aerobic \hat{l}_{\pm} , \hat{l}^2 -Dehydrogenation of Aliphatic Amides. Journal of Organic Chemistry, 2022, 87, 4873-4882.	1.7	6
1322	Rhodium-Catalyzed Ring Expansion of Azetidines via Domino Conjugate Addition/N-Directed α-C(sp ³)â€"H Activation. Organic Letters, 2022, 24, 1883-1888.	2.4	6
1323	Rhodium(III)-Catalyzed Atroposelective Synthesis of C–N Axially Chiral Naphthylamines and Variants via C–H Activation. Organic Letters, 2022, 24, 2531-2535.	2.4	26
1324	Pd-Catalyzed C–H Functionalization of Indole-Containing Alkene-Tethered Aryl Halides with Alkynes To Construct Indole Alkaloid Scaffolds. Organic Letters, 2022, 24, 2910-2914.	2.4	9
1325	2,2′â€Azodi(2â€methylbutyronitrile) (AMBN) Promoted Alkenylation of Cyclic Ethers via Radical Addition to βâ€Nitrostyrenes. ChemistrySelect, 2022, 7, .	0.7	3
1329	C–H deuteration of organic compounds and potential drug candidates. Chemical Society Reviews, 2022, 51, 3123-3163.	18.7	85

#	Article	IF	CITATIONS
1330	Recent progress in rare-earth metal-catalyzed sp ² and sp ³ C–H functionalization to construct C–C and C–heteroelement bonds. Organic Chemistry Frontiers, 2022, 9, 3102-3141.	2.3	20
1332	C–H Heteroarylation of Aromatics via Catalyst Free SN2' Coupling Cycloaromatization. Green Chemistry, 0, , .	4.6	2
1333	Ruthenium-catalyzed (spiro)annulation of $\langle i \rangle N \langle i \rangle$ -aryl-2,3-dihydrophthalazine-1,4-diones with quinones to access pentacyclic spiro-indazolones and fused-cinnolines. Organic and Biomolecular Chemistry, 2022, 20, 4753-4764.	1.5	6
1334	Recent advances in the synthesis of ferrocene derivatives <i>via</i> 3d transition metal-catalyzed C–H functionalization. Organic and Biomolecular Chemistry, 2022, 20, 4061-4073.	1.5	13
1335	Transition metal-catalyzed C-H Alkylations as versatile tools for synthetic transformations: a review. Journal of the Iranian Chemical Society, 2022, 19, 3285-3315.	1.2	1
1336	Photoâ€Induced Rutheniumâ€Catalyzed Double Remote C(sp ²)â^'H / C(sp ³)â^'H Functionalizations by Radical Relay. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
1337	Ru-Catalyzed C–H Arylation of Acrylic Acids with Aryl Bromides. Organic Letters, 2022, 24, 3466-3470.	2.4	6
1338	Biocatalytic Enantioselective βâ€Hydroxylation of Unactivated C–H Bonds in Aliphatic Carboxylic Acids. Angewandte Chemie, 0, , .	1.6	O
1339	Biocatalytic Enantioselective βâ€Hydroxylation of Unactivated Câ^'H Bonds in Aliphatic Carboxylic Acids. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
1340	Asymmetric C(sp3)‒H Borylation: An Update. Organic and Biomolecular Chemistry, 0, , .	1.5	5
1341	Construction of Pyrrolocoumarin Cores through Double Câ€H Annulation Cascade. European Journal of Organic Chemistry, 0, , .	1.2	5
1342	Diastereoselective Synthesis of Amide-Bridged Axially Chiral Biaryls through Point-to-Axial Asymmetric C-H Arylation. Heterocycles, 2022, 104, 1026.	0.4	1
1343	An Efficient Electrocatalytic Oxidation of $C(Sp3)$ -H Bond for the Synthesis of Arylketones. SSRN Electronic Journal, $0, , .$	0.4	0
1344	Does an Enol Pathway Preclude High Stereoselectivity in Iron-Catalyzed Indole C–H Functionalization via Carbene Insertion?. Journal of Organic Chemistry, 2022, 87, 7919-7933.	1.7	10
1346	Recent Advances in Cobaltâ \in eatalyzed Functionalization of Unactivated Olefins. Asian Journal of Organic Chemistry, 2022, 11 , .	1.3	4
1347	Access to hexahydroazepinone heterocycles <i>via</i> palladium-catalysed C(sp ³)–H alkenylation/ring-opening of cyclopropanes. Chemical Communications, 0, , .	2.2	1
1348	Nickel/BrÃ,nsted acid dual-catalyzed regioselective C–H bond allylation of phenols with 1,3-dienes. Organic Chemistry Frontiers, 2022, 9, 3834-3839.	2.3	3
1349	Ru(II)â€Catalyzed Hydroarylation of inâ€situ Generated 3,3,3â€Trifluoroâ€1â€propyne by Câ^'H Bond Activation Facile and Practical Access to βâ€Trifluoromethylstyrenes. Chemistry - A European Journal, 2022, 28, .	1: _{1.7}	5

#	Article	IF	CITATIONS
1350	Cascade C–H-Activated Polyannulations toward Ring-Fused Heteroaromatic Polymers for Intracellular pH Mapping and Cancer Cell Killing. Journal of the American Chemical Society, 2022, 144, 11788-11801.	6.6	16
1351	Functionalisation of ethereal-based saturated heterocycles with concomitant aerobic C–H activation and C–C bond formation. Chemical Science, 2022, 13, 8626-8633.	3.7	8
1352	Heterogeneous Asymmetric Î'-C-H Functionalization of Aldehydes Under O2ÂCatalyzed by Hydroxide-Layered Fe(Iii) Sites Synergistic with Confined Interlayer Amine. SSRN Electronic Journal, 0, , .	0.4	0
1353	Construction of Benzocyclobutenes Enabled by Visibleâ€Lightâ€Induced Triplet Biradical Atom Transfer of Olefins. Angewandte Chemie, 2022, 134, .	1.6	2
1354	Construction of Benzocyclobutenes Enabled by Visibleâ€Lightâ€Induced Triplet Biradical Atom Transfer of Olefins. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
1355	Visible-light-driven intramolecular xanthylation of remote unactivated C(sp3)-H bonds. Green Synthesis and Catalysis, 2023, 4, 350-354.	3.7	10
1356	Cooperative triple catalysis enables regioirregular formal Mizoroki–Heck reactions. , 2022, 1, 565-575.		19
1357	Transitionâ€metalâ€catalyzed Heteroannulation Reactions in Aqueous Medium. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
1358	Directed Palladium Catalyzed Câ^'H (Ethoxycarbonyl)difluoromethylthiolation Reactions. Chemistry - A European Journal, 2022, 28, .	1.7	3
1359	Micellar Catalysis as a Tool for C–H Bond Functionalization toward C–C Bond Formation. Organometallics, 2022, 41, 3084-3098.	1.1	15
1360	Site- and Enantioselective Manganese-Catalyzed Benzylic C–H Azidation of Indolines. Journal of the American Chemical Society, 2022, 144, 15383-15390.	6.6	22
1361	Enantioselective <i>para</i> (sp ²)ⰒH Functionalization of Alkyl Benzene Derivatives via Cooperative Catalysis of Gold/Chiral Brønsted Acid**. Angewandte Chemie, 0, , .	1.6	1
1362	Enantioselective <i>para</i> (sp ²)â^'H Functionalization of Alkyl Benzene Derivatives via Cooperative Catalysis of Gold/Chiral Br¸nsted Acid**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
1363	Heterogeneous asymmetric \hat{I}^2 -C-H functionalization of aldehydes under O2 catalyzed by hydroxide-layered Fe(III) sites synergistic with confined interlayer amine. Journal of Catalysis, 2022, 414, 267-276.	3.1	3
1364	Metal catalyzed C–H functionalization on triazole rings. RSC Advances, 2022, 12, 27534-27545.	1.7	8
1365	Remote C(sp ³)â€"H heteroarylation of <i>N</i> fluorocarboxamides with quinoxalin-2(1 <i>H</i>)-ones under visible-light-induced photocatalyst-free conditions. Green Chemistry, 2022, 24, 9475-9481.	4.6	13
1366	Synthesis of alpha-pyrones and chromen-2-ones by transition-metal catalyzed annulations of sulfoxonium and iodonium ylides with <i>cis</i> >-stilbene acids. New Journal of Chemistry, 0, , .	1.4	6
1367	Directing group strategies in rhodium-catalyzed C–H amination. Organic and Biomolecular Chemistry, 2022, 20, 7554-7576.	1.5	4

#	Article	IF	CITATIONS
1368	Hydride Relay Exchange Mechanism for the Heterocyclic C–H Arylation of Benzofuran and Benzothiophene Catalyzed by Pd Complexes. Journal of Organic Chemistry, 2022, 87, 12997-13010.	1.7	2
1369	An efficient electrochemical oxidation of C(sp3)-H bond for the synthesis of arylketones. Molecular Catalysis, 2022, 530, 112633.	1.0	5
1370	Divergent Câ^'H Amidations and Imidations by Tuning Electrochemical Reaction Potentials. ChemSusChem, 2022, 15, .	3.6	3
1373	Visibleâ€Light Mediated Energy Transfer Enables the Synthesis of βâ€Lactams via Intramolecular Hydrogen Atom Transfer. Angewandte Chemie, 0, , .	1.6	1
1377	Postâ€Modification of Amino Acids and Peptides for the Rapid Synthesis of <i>C</i> â€Glycoamino Acids and <i>C</i> â€Glycopeptides. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
1378	Visibleâ€Lightâ€Mediated Energy Transfer Enables the Synthesis of βâ€Lactams via Intramolecular Hydrogen Atom Transfer. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
1383	Native functional group directed distal C(sp ³) $\hat{a}\in H$ activation of aliphatic systems. Catalysis Science and Technology, 2023, 13, 11-27.	2.1	3
1384	Regioselective Dichotomy in Ru(II)-Catalyzed C–H Annulation of Aryl Pyrazolidinones with 1,3-Diynes. Journal of Organic Chemistry, 2022, 87, 14103-14114.	1.7	3
1385	Construction of Non-Biaryl Atropisomeric Amide Scaffolds Bearing a C–N Axis via Enantioselective Catalysis. Molecules, 2022, 27, 6583.	1.7	13
1386	Asymmetric Remote <i>meta</i> -C–H Activation Controlled by a Chiral Ligand. ACS Catalysis, 2022, 12, 13435-13445.	5.5	7
1387	Ru― Rh―and Irâ€Catalyzed Enantioselective sp ³ Câ^'H Functionalization. Chemistry - an Asian Journal, 2022, 17, .	1.7	6
1388	Recent Advances in Alkenyl sp ² Câ€"H and Câ€"F Bond Functionalizations: Scope, Mechanism, and Applications. Chemical Reviews, 2022, 122, 17479-17646.	23.0	78
1389	Recent Advances in Rareâ€Earth Metalâ€Catalyzed Câ^'H Functionalization Reactions. ChemCatChem, 2022, 14, .	1.8	10
1390	Transition metal pincer complexes: A series of potential catalysts in C H activation reactions. Coordination Chemistry Reviews, 2023, 475, 214915.	9.5	8
1391	(SCp)Rhodium atalyzed Asymmetric Satoh–Miura Reaction for Buildingup Axial Chirality: Counteranionâ€Directed Switching of Reaction Pathways. Angewandte Chemie, 0, , .	1.6	0
1392	Chiral Ligands Based on Binaphthyl Scaffolds for Pd-Catalyzed Enantioselective C–H Activation/Cycloaddition Reactions. Journal of the American Chemical Society, 2022, 144, 21437-21442.	6.6	5
1393	(SCp)Rhodiumâ€Catalyzed Asymmetric Satoh–Miura Reaction for Buildingâ€up Axial Chirality: Counteranionâ€Directed Switching of Reaction Pathways. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26
1394	Radical addition-triggered remote functionalization of C–H bond via 1, n-hydrogen atom transfer process. Tetrahedron, 2023, 130, 133172.	1.0	O

#	Article	IF	CITATIONS
1395	Rhodium-catalyzed enantioselective C–H alkynylation of sulfoxides in diverse patterns: desymmetrization, kinetic resolution, and parallel kinetic resolution. Chemical Science, 2023, 14, 317-322.	3.7	4
1397	Transitionâ€Metalâ€Catalyzed Synthesis of Spiro Compounds through Activation and Cleavage of Câ^'H Bonds. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	6
1398	Highly efficient synthesis of indoline via palladium catalyzed C–H amination of C(sp2)–H bond using tert-butyl peroxybenzoate as an oxidant. Tetrahedron, 2022, , 133206.	1.0	1
1399	Cobalt(II)-Catalyzed C–H Alkylation of <i>N</i> -Heterocycles with 1,4-Dihydropyridines. ACS Catalysis, 2022, 12, 15707-15714.	5. 5	9
1400	Mechanistic Details of the Pdâ€catalyzed and MPAA Ligandâ€Enabled βâ€C(sp3)â€H Acetoxylation of Free Carboxylic Acid. Chemistry - an Asian Journal, 0, , .	1.7	0
1401	Synthesis of Chiral Sulfoximines via Iridiumâ€Catalyzed Regio―and Enantioselective Câ^'H Borylation: A Remarkable Sidearm Effect of Ligand. Angewandte Chemie, 2023, 135, .	1.6	3
1402	Synthesis of Chiral Sulfoximines via Iridiumâ€Catalyzed Regio―and Enantioselective Câ^'H Borylation: A Remarkable Sidearm Effect of Ligand. Angewandte Chemie - International Edition, 2023, 62, .	7.2	18
1403	Advances in Exploring Cyclopentadienyl (Cp) Rhodium Catalysts Featuring Diastereotopic or Enantiotopic Cp Faces for Asymmetric C–H Activation. Synthesis, 2023, 55, 1309-1321.	1.2	7
1404	Site―and Stereoselective C(<i>sp</i> ³)â^'H Borylation of Strained (Hetero)Cycloalkanols Enabled by Iridium Catalysis. Angewandte Chemie, 2023, 135, .	1.6	4
1405	Site―and Stereoselective C(<i>sp</i> ³)â^'H Borylation of Strained (Hetero)Cycloalkanols Enabled by Iridium Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
1406	Construction of Axial Chirality via Click Chemistry: Rh-Catalyzed Enantioselective Synthesis of 1-Triazolyl-2-Naphthylamines. Organic Letters, 2023, 25, 443-448.	2.4	2
1407	Cobalt catalyzed alkenylation/annulation reactions of alkynes via C–H activation: A review. Tetrahedron, 2023, 132, 133248.	1.0	5
1408	A Convergent, Modular Approach to Trifluoromethylâ€Bearing 5â€Membered Rings via Catalytic C(sp ^{)â~H Activation. Angewandte Chemie - International Edition, 2023, 62, .}	7.2	2
1409	A Convergent, Modular Approach to Trifluoromethylâ€Bearing 5â€Membered Rings via Catalytic C(sp ⁾³)â^'H Activation. Angewandte Chemie, 2023, 135, .	1.6	0
1410	Ligandâ€Dependant Selective Synthesis of Mono―and Dialkenylcarbazoles through Rhodium(III) atalyzed Câ^'H Alkenylation. Chemistry - an Asian Journal, 0, , .	1.7	0
1411	Electrochemical C(sp ³)–H functionalization of ethers <i>via</i> hydrogen-atom transfer by means of cathodic reduction. Chemical Communications, 2023, 59, 2664-2667.	2.2	8
1412	A Unified, Microwaveâ€Assisted, Palladiumâ€Catalyzed Regioselective Orthoâ€monohalogenation of 1â€Alkyl/benzylâ€3â€Phenylquinoxalinâ€2(1 <i>H</i>)â€ones. ChemistrySelect, 2023, 8, .	0.7	2
1413	Serendipitous synthesis of cross-conjugated dienes by cascade deconstructive esterification of thiomorpholinone-tethered alkenoic acids. RSC Advances, 2023, 13, 3181-3185.	1.7	0

#	ARTICLE	IF	CITATIONS
1414	Construction of Thienopyrroles through Rhodium-Catalyzed Direct Annulation of (Acetylamino)thiophenes with Alkynes. Synthesis, 0 , , .	1.2	0
1415	Cobalt-Catalyzed C–C Coupling Reactions with Csp3 Electrophiles. Topics in Organometallic Chemistry, 2023, , .	0.7	2
1416	Palladiumâ€Catalyzed Enantioselective Isodesmic Câ^'H Iodination of Phenylacetic Weinreb Amides. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
1417	TADDOL-derived phosphorus ligands in asymmetric catalysis. Coordination Chemistry Reviews, 2023, 482, 215079.	9.5	4
1418	Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview. Beilstein Journal of Organic Chemistry, 0, 19, 448-473.	1.3	3
1419	Electrochemical rhodium catalysed alkyne annulation with pyrazoles through anodic oxidation – a metal oxidant/additive free methodology. Organic and Biomolecular Chemistry, 2023, 21, 2024-2033.	1.5	3
1420	Construction of Axially Chiral Biaryls via Atroposelective <i>ortho</i> -C–H Arylation of Aryl Iodides. ACS Catalysis, 2023, 13, 2968-2980.	5.5	9
1421	Mechanism and Selectivity of Copper-Catalyzed Bromination of Distal C(sp ³)–H Bonds. Organometallics, 2023, 42, 2467-2476.	1.1	1
1422	Transition metal-catalyzed C–H/C–C activation and coupling with 1,3-diyne. Organic and Biomolecular Chemistry, 2023, 21, 2842-2869.	1.5	6
1423	Selective Synthesis of Benzofuro[2,3â€c]isoquinolines and 5,6â€Dihydroâ€7 <i>H</i> hai>a€benzo[c]benzofuro[2,3â€e]azepinâ€7â€ones from 4â€Diazoisoquinolinâ€3â€ones a Salicylaldehydes. Asian Journal of Organic Chemistry, 2023, 12, .	n t l3	0
1424	Palladium atalyzed Enantioselective Isodesmic Câ^'H Iodination of Phenylacetic Weinreb Amides. Angewandte Chemie, 2023, 135, .	1.6	1
1425	Our Voyage from Catalytic Cross-Hydroalkenylation to Transfer-Dehydroaromatization of Cyclic π-Systems: Reactivity and Selectivity Changes Enabled by NHC-Ni and NHC-Pd Hydride Equivalents. Synlett, 0, , .	1.0	0
1426	Fragile intermediate identification and reactivity elucidation in electrochemical oxidative α-C(sp ³)â€"H functionalization of tertiary amines. Chemical Science, 2023, 14, 4152-4157.	3.7	3
1427	Application of Ligands in Cp*Rh(III)-Catalyzed Câ€"H Bond Functionalization Reaction. Chinese Journal of Organic Chemistry, 2023, 43, 924.	0.6	1
1428	Enantioselective electrochemical cobalt-catalyzed aryl C–H activation reactions. Science, 2023, 379, 1036-1042.	6.0	66
1429	Enantioselective annulation reactions through C(sp2)–H activation with chiral CpxMIII catalysts. Chem Catalysis, 2023, 3, 100575.	2.9	4
1430	Rhodium-catalyzed Annulative Coupling of Coumarin-3-Carboxylic Acids with Alkynes. Chemistry Letters, 2023, 52, 307-309.	0.7	1
1432	Synthesis of Fused Lactones through Transitionâ€Metalâ€Catalyzed <i>peri</i> Câ^'H Functionalization. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	1

#	Article	IF	CITATIONS
1433	Copper-catalyzed asymmetric C(sp2)â€"H arylation for the synthesis of P- and axially chiral phosphorus compounds. Nature Communications, 2023, 14, .	5.8	7
1434	Nickelâ€Catalyzed Kinetic Resolution of Racemic Unactivated Alkenes via Enantioâ€, Diastereoâ€, and Regioselective Hydroamination. Angewandte Chemie, 2023, 135, .	1.6	O
1435	Nickelâ€Catalyzed Kinetic Resolution of Racemic Unactivated Alkenes via Enantioâ€, Diastereoâ€, and Regioselective Hydroamination. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
1436	Pd-Catalyzed Asymmetric Oxidative C–H/C–H Cross-Coupling Reaction between Ferrocenes and Azoles. Journal of Organic Chemistry, 2023, 88, 5752-5759.	1.7	4
1441	Oxidation: C–O Bond Formation by C–H Activation. , 2022, , .		0
1442	Pd-Catalyzed Enantioselective C(sp3)–H Activation. , 2022, , .		0
1453	Rhodium(<scp>iii</scp>)-catalyzed intermolecular [3+3] annulation of benzoxazines with quinone compounds: access to spiro-heterocyclic scaffolds. Chemical Communications, 2023, 59, 11520-11523.	2.2	4
1460	Carbon–Carbon Bond Formation by Asymmetric Iron- and Cobalt-Catalyzed Reactions. , 2023, , .		O
1477	Carbon–Carbon Bond Formation Via Biocatalytic Transformations. , 2023, , .		0
1481	Recent advances in hydrogen atom transfer induced C(sp ³)â€"H functionalizations initiated by radical addition to alkynes. Organic Chemistry Frontiers, 2024, 11, 1232-1250.	2.3	0
1484	Pd(<scp>ii</scp>)-Catalyzed enantioselective Câ€"H olefination toward the synthesis of <i>P</i> >stereogenic phosphinamides. Chemical Communications, 2024, 60, 1623-1626.	2.2	0