Photosynthetic energy conversion: natural and artificia

Chemical Society Reviews 38, 185-196

DOI: 10.1039/b802262n

Citation Report

#	ARTICLE	IF	Citations
2	A proposal for water oxidation in photosystem II. Pure and Applied Chemistry, 1998, 70, 925-929.	0.9	321
3	Proton-Coupled Electron Transfer. Chemical Reviews, 2007, 107, 5004-5064.	23.0	1,409
4	Modeling light-driven proton pumps in artificial photosynthetic reaction centers. Journal of Chemical Physics, 2009, 131, 035102.	1.2	24
6	Water Splitting by Cooperative Catalysis. Angewandte Chemie - International Edition, 2009, 48, 8178-8181.	7.2	68
7	A new family of octanuclear Mn complexes with a rod-like topology. Polyhedron, 2009, 28, 3203-3208.	1.0	16
8	Principles, Efficiency, and Blueprint Character of Solar-Energy Conversion in Photosynthetic Water Oxidation. Accounts of Chemical Research, 2009, 42, 1861-1870.	7.6	378
9	Light powered molecular machines. Chemical Society Reviews, 2009, 38, 1542.	18.7	474
10	The Temperature-Dependent Structure of Alkylamines and Their Corresponding Alkylammonium-Alkylcarbamates. Journal of the American Chemical Society, 2009, 131, 9107-9113.	6.6	34
11	Metalâ^'Ligand Cooperation in H ₂ Production and H ₂ O Decomposition on a Ru(II) PNN Complex: The Role of Ligand Dearomatizationâ^'Aromatization. Journal of the American Chemical Society, 2009, 131, 13584-13585.	6.6	90
12	A porphyrin–polyoxometallate bio-inspired mimic for artificial photosynthesis. Physical Chemistry Chemical Physics, 2009, 11, 8767.	1.3	84
13	Oxygenâ^Oxygen Bond Formation Pathways Promoted by Ruthenium Complexes. Accounts of Chemical Research, 2009, 42, 1944-1953.	7.6	276
14	The first amino acid manganese cluster: a [MnIV2MnIII3] dl-valine cage. Dalton Transactions, 2009, , 9117.	1.6	13
15	Spin-Selective Charge Transport Pathways through <i>p-</i> Oligophenylene-Linked Donorâ^Bridgeâ^Acceptor Molecules. Journal of the American Chemical Society, 2009, 131, 17655-17666.	6.6	83
16	Ordered and Oriented Supramolecular n/p-Heterojunction Surface Architectures: Completion of the Primary Color Collection. Journal of the American Chemical Society, 2009, 131, 11106-11116.	6.6	111
17	Making Oxygen with Ruthenium Complexes. Accounts of Chemical Research, 2009, 42, 1954-1965.	7.6	788
18	Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy and Environmental Science, 2010, 3, 1018.	15.6	488
19	Light-powered molecular devices and machines. Photochemical and Photobiological Sciences, 2010, 9, 1561-1573.	1.6	49
20	Methanol as a probe to investigate the relationship between the secondary electron donor TyrZ and the substrate water molecules in active photosystem II. Science Bulletin, 2010, 55, 809-813.	1.7	1

#	ARTICLE	IF	CITATIONS
21	Substitution of chloride by bromide modifies the low-temperature tyrosine Z oxidation in active photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1421-1427.	0.5	2
22	Regeneration of Oxidized Organic Photoâ€Sensitizers in GrÃtzel Solar Cells: Quantumâ€Chemical Portrait of a General Mechanism. ChemPhysChem, 2010, 11, 1858-1862.	1.0	38
23	The Role of Chemistry in the Energy Challenge. ChemSusChem, 2010, 3, 209-222.	3.6	222
27	Artificial Lightâ€Gated Catalyst Systems. Angewandte Chemie - International Edition, 2010, 49, 5054-5075.	7.2	346
28	Water as an Oxygen Source: Synthesis, Characterization, and Reactivity Studies of a Mononuclear Nonheme Manganese(IV) Oxo Complex. Angewandte Chemie - International Edition, 2010, 49, 8190-8194.	7.2	90
29	Tetra(β-phenothiazinyl) zinc phthalocyanine: An easily prepared D4–A system for efficient photoinduced electron transfer. Inorganica Chimica Acta, 2010, 363, 2259-2264.	1.2	8
30	Ruthenium complexes with non-innocent ligands: Electron distribution and implications for catalysis. Coordination Chemistry Reviews, 2010, 254, 309-330.	9.5	163
31	Energy Conversion in Natural and Artificial Photosynthesis. Chemistry and Biology, 2010, 17, 434-447.	6.2	366
32	Photoinduced electron transfer (PET) within D4–A and D–A photosynthetic systems: Enhanced intramolecular PET achieved by increasing the number of donors. Dyes and Pigments, 2010, 87, 139-143.	2.0	9
33	Structural and Mechanistic Aspects of Mnâ€oxo and Coâ€based Compounds in Water Oxidation Catalysis and Potential Applications in Solar Fuel Production. Journal of Integrative Plant Biology, 2010, 52, 704-711.	4.1	58
34	Photosynthesis for Food, Fuel and the Future. Journal of Integrative Plant Biology, 2010, 52, 694-697.	4.1	3
35	Crystal structure of a metal ion-bound oxoiron(IV) complex and implications for biological electron transfer. Nature Chemistry, 2010, 2, 756-759.	6.6	227
36	Synthesis and Structural Characterization of a Metal Cluster and a Coordination Polymer Based on the [Mn6($\hat{l}^{1}/44$ -O)2]10+Unit. Bioinorganic Chemistry and Applications, 2010, 2010, 1-7.	1.8	3
37	Photosynthetic Energy Conversion: Hydrogen Photoproduction by Natural and Biomimetic Means. , 0, ,		1
38	Synthesis and Characterization of a Linear [Mn3(O2CMe)4(py)8]2+Complex. Bioinorganic Chemistry and Applications, 2010, 2010, 1-7.	1.8	0
39	Engineering of an alternative electron transfer path in photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9650-9655.	3.3	49
40	Electron Spin Dynamics as a Controlling Factor for Spin-Selective Charge Recombination in Donorâ^Bridgeâ^Acceptor Molecules. Journal of Physical Chemistry C, 2010, 114, 20370-20379.	1.5	50
41	Taking Advantage of the Electronic Excited States of [60]-Fullerenes. Journal of Physical Chemistry C, 2010, 114, 1385-1403.	1.5	88

#	ARTICLE	IF	Citations
42	Solid-State55Mn NMR Spectroscopy of Bis(\hat{l} /4-oxo)dimanganese(IV) [Mn2O2(salpn)2], a Model for the Oxygen Evolving Complex in Photosystem II. Journal of the American Chemical Society, 2010, 132, 16727-16729.	6.6	9
43	Water Splitting by Nanocrystalline TiO ₂ in a Complete Photoelectrochemical Cell Exhibits Efficiencies Limited by Charge Recombination. Journal of Physical Chemistry C, 2010, 114, 4208-4214.	1.5	228
44	Accumulative Charge Separation Inspired by Photosynthesis. Journal of the American Chemical Society, 2010, 132, 17977-17979.	6.6	91
45	Dissecting Pathways Involved in Manganese Homeostasis and Stress in Higher Plant Cells. Plant Cell Monographs, 2010, , 95-117.	0.4	32
46	Turning carbon dioxide into fuel. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 3343-3364.	1.6	369
47	Reversible Oâ^O Bond Cleavage and Formation between Mn(IV)-Peroxo and Mn(V)-Oxo Corroles. Journal of the American Chemical Society, 2010, 132, 14030-14032.	6.6	81
48	Mechanism for the Light-Induced O ₂ Evolution from H ₂ O Promoted by Ru(II) PNN Complex: A DFT Study. Journal of Physical Chemistry A, 2010, 114, 10334-10338.	1.1	26
49	Photoinduced Charge Separation in a Ferroceneâ^'Aluminum(III) Porphyrinâ^'Fullerene Supramolecular Triad. Journal of Physical Chemistry B, 2010, 114, 14348-14357.	1.2	64
50	Using Intramolecular Energy Transfer to Transform non-Photoactive, Visible-Light-Absorbing Chromophores into Sensitizers for Photoredox Reactions. Journal of the American Chemical Society, 2010, 132, 7338-7346.	6.6	38
51	Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chemical Reviews, 2010, 110, 6474-6502.	23.0	2,676
52	Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels, 2010, 1, 143-162.	1.4	343
53	A Mn15 single-molecule magnet consisting of a supertetrahedron incorporated in a loop. Dalton Transactions, 2010, 39, 4978.	1.6	34
54	Ferromagnetic manganese "cubes― from PSII to single-molecule magnets. Dalton Transactions, 2010, 39, 4777.	1.6	28
55	Effects of Protonation State on a Tyrosineâ^'Histidine Bioinspired Redox Mediatorâ€. Journal of Physical Chemistry B, 2010, 114, 14450-14457.	1.2	61
56	Basic ancillary ligands promote O–O bond formation in iridium-catalyzed water oxidation: A DFT study. Dalton Transactions, 2011, 40, 11241.	1.6	45
57	Implications of remote water molecules on the electron transfer coupled processes at a nonporphyrinic Mn(iii)-hydroxido complex. Energy and Environmental Science, 2011, 4, 2041.	15.6	17
58	Synthesis and spectroscopic properties of meso-substituted quinoxalinoporphyrins. New Journal of Chemistry, 2011, 35, 1630.	1.4	12
60	Metal Ion-Coupled Electron Transfer of a Nonheme Oxoiron(IV) Complex: Remarkable Enhancement of Electron-Transfer Rates by Sc ³⁺ . Journal of the American Chemical Society, 2011, 133, 403-405.	6.6	172

#	ARTICLE	IF	Citations
61	Native Electrospray Mass Spectrometry Reveals the Nature and Stoichiometry of Pigments in the FMO Photosynthetic Antenna Protein. Biochemistry, 2011, 50, 3502-3511.	1.2	69
62	HX Addition and Photochemical H ₂ Elimination by Ni NHC Complexes. Inorganic Chemistry, 2011, 50, 714-716.	1.9	28
63	Conversion of Solar Energy to Fuels by Inorganic Heterogeneous Systems. Chinese Journal of Catalysis, 2011, 32, 879-890.	6.9	46
64	Energy Conversion in Photosynthesis: A Paradigm for Solar Fuel Production. Annual Review of Condensed Matter Physics, 2011, 2, 303-327.	5.2	129
65	Photosynthesis-inspired design approach of a liquid phase heterogeneous photoreactor. Green Chemistry, 2011, 13, 1784.	4.6	7
66	Lewis acid-activated oxidation of alcohols by permanganate. Chemical Communications, 2011, 47, 7143.	2.2	57
67	A Combination of Two Visible-Light Responsive Photocatalysts for Achieving the Z-Scheme in the Solid State. ACS Nano, 2011, 5, 4084-4090.	7.3	203
68	Chemical solutions for the closed-cycle storage of solar energy. Energy and Environmental Science, 2011, 4, 4449.	15.6	242
69	A supramolecular porphyrin–ferrocene–fullerene triad. New Journal of Chemistry, 2011, 35, 632.	1.4	26
70	Binuclear [(cod)(Cl)Ir(bpi)Ir(cod)] < sup>+ for Catalytic Water Oxidation. Organometallics, 2011, 30, 372-374.	1.1	58
71	Optofluidics for energy applications. Nature Photonics, 2011, 5, 583-590.	15.6	266
74	Quantum effects in energy and charge transfer in an artificial photosynthetic complex. Journal of Chemical Physics, 2011, 134, 244103.	1.2	40
75	Highly efficient photocatalytic oxygenation reactions using water as an oxygen source. Nature Chemistry, 2011, 3, 38-41.	6.6	126
76	Artificial Photosynthesis: From Molecular Catalysts for Lightâ€driven Water Splitting to Photoelectrochemical Cells. Photochemistry and Photobiology, 2011, 87, 946-964.	1.3	273
77	Photoinduced Protonâ€Coupled Electron Transfers in Biorelevant Phenolic Systems. Photochemistry and Photobiology, 2011, 87, 1190-1203.	1.3	36
78	Improving photosynthesis for algal biofuels: toward a green revolution. Trends in Biotechnology, 2011, 29, 615-623.	4.9	168
79	Photocatalytic H2 production on hybrid catalyst system composed of inorganic semiconductor and cobaloximes catalysts. Journal of Catalysis, 2011, 281, 318-324.	3.1	102
80	Modulation of cyanobacterial photosystem I deposition properties on alkanethiolate Au substrate by various experimental conditions. Colloids and Surfaces B: Biointerfaces, 2011, 88, 181-190.	2.5	23

#	Article	IF	CITATIONS
81	Polyoxometalates in the Design of Effective and Tunable Water Oxidation Catalysts. Israel Journal of Chemistry, 2011, 51, 238-246.	1.0	37
82	Manganese-based Materials Inspired by Photosynthesis for Water-Splitting. Materials, 2011, 4, 1693-1704.	1.3	64
83	Protonation states in a cobalt-oxide catalyst for water oxidation: fine comparison of ab initio molecular dynamics and X-ray absorption spectroscopy results. Physical Chemistry Chemical Physics, 2011, 13, 15437.	1.3	36
84	Photochemistry and Photophysics of a Pd(II) Metalloporphyrin: Re(I) Tricarbonyl Bipyridine Molecular Dyad and its Activity Toward the Photoreduction of CO ₂ to CO. Inorganic Chemistry, 2011, 50, 11877-11889.	1.9	91
85	An Insight into Artificial Leaves for Sustainable Energy Inspired by Natural Photosynthesis. ChemCatChem, 2011, 3, 513-528.	1.8	65
86	Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science, 2011, 332, 805-809.	6.0	1,369
87	Redox Properties of Tanaka's Water Oxidation Catalyst: Redox Noninnocent Ligands Dominate the Electronic Structure and Reactivity. Inorganic Chemistry, 2011, 50, 5946-5957.	1.9	35
88	Dynamics of photogenerated holes in nanocrystalline î±-Fe ₂ O ₃ electrodes for water oxidation probed by transient absorption spectroscopy. Chemical Communications, 2011, 47, 716-718.	2.2	261
89	Efficient Light-Driven Carbon-Free Cobalt-Based Molecular Catalyst for Water Oxidation. Journal of the American Chemical Society, 2011, 133, 2068-2071.	6.6	336
90	Efficient Solarâ€Driven Synthesis, Carbon Capture, and Desalinization, STEP: Solar Thermal Electrochemical Production of Fuels, Metals, Bleach. Advanced Materials, 2011, 23, 5592-5612.	11.1	119
91	A Doubleâ€Band Tandem Organic Dyeâ€sensitized Solar Cell with an Efficiency of 11.5 %. ChemSusChem, 2011, 4, 609-612.	3.6	33
94	Structural Modifications of Mononuclear Ruthenium Complexes:†A Combined Experimental and Theoretical Study on the Kinetics of Rutheniumâ€Catalyzed Water Oxidation. Angewandte Chemie - International Edition, 2011, 50, 445-449.	7.2	177
95	Splitting Water with Cobalt. Angewandte Chemie - International Edition, 2011, 50, 7238-7266.	7.2	1,231
96	Selfâ€Assembly Into Spheres of a Hybrid Diphenylalanine–Porphyrin: Increased Fluorescence Lifetime and Conserved Electronic Properties. Chemistry - A European Journal, 2011, 17, 7213-7219.	1.7	51
97	The OO Bonding in Water Oxidation: the Electronic Structure Portrayal of a Concerted Oxygen Atom–Proton Transfer Pathway. Chemistry - A European Journal, 2011, 17, 8313-8317.	1.7	40
98	Visibleâ€Lightâ€Driven H ₂ Generation from Water and CO ₂ Conversion by Using a Zwitterionic Cyclometalated Iridium(III) Complex. Chemistry - A European Journal, 2011, 17, 12891-12895.	1.7	61
99	High Pressure Processes in Biorefineries. Chemie-Ingenieur-Technik, 2011, 83, 1016-1025.	0.4	37
100	Recent progress in the studies of structure and function of photosystem II. Journal of Photochemistry and Photobiology B: Biology, 2011, 104, 1-8.	1.7	83

#	ARTICLE	IF	CITATIONS
101	A High Redox Potential Form of Cytochrome c550 in Photosystem II from Thermosynechococcus elongatus. Journal of Biological Chemistry, 2011, 286, 5985-5994.	1.6	16
102	Carboxylate Shifts Steer Interquinone Electron Transfer in Photosynthesis. Journal of Biological Chemistry, 2011, 286, 5368-5374.	1.6	32
103	Is the Presence of Oxygen on an Exoplanet a Reliable Biosignature?. Astrobiology, 2011, 11, 335-341.	1.5	37
104	Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). Pure and Applied Chemistry, 2011, 83, 931-1014.	0.9	333
105	1.1 The Solar Refinery. , 2012, , 1-34.		2
106	The Solar Refinery. Green, 2012, 2, .	0.4	13
107	Perspectives for Photobiology in Molecular Solar Fuels. Australian Journal of Chemistry, 2012, 65, 643.	0.5	3
108	Artificial Photosynthetic Systems Based on [FeFe]-Hydrogenase Mimics: the Road to High Efficiency for Light-Driven Hydrogen Evolution. ACS Catalysis, 2012, 2, 407-416.	5.5	175
109	Elucidating Molecular Iridium Water Oxidation Catalysts Using Metal–Organic Frameworks: A Comprehensive Structural, Catalytic, Spectroscopic, and Kinetic Study. Journal of the American Chemical Society, 2012, 134, 19895-19908.	6.6	322
110	Sites for High Efficient Photocatalytic Hydrogen Evolution on a Limited-Layered MoS ₂ Cocatalyst Confined on Graphene Sheets―The Role of Graphene. Journal of Physical Chemistry C, 2012, 116, 25415-25424.	1.5	323
111	Dendrimer-Encapsulated Pt Nanoparticles: An Artificial Enzyme for Hydrogen Production. Journal of Physical Chemistry C, 2012, 116, 10516-10521.	1.5	30
113	Water Oxidation by Singleâ€6ite Ruthenium Complexes: Using Ligands as Redox and Proton Transfer Mediators. Angewandte Chemie - International Edition, 2012, 51, 11589-11593.	7.2	94
114	Porphyrins in bio-inspired transformations: Light-harvesting to solar cell. Coordination Chemistry Reviews, 2012, 256, 2601-2627.	9.5	258
117	Water Oxidation Catalysis: Influence of Anionic Ligands upon the Redox Properties and Catalytic Performance of Mononuclear Ruthenium Complexes. Inorganic Chemistry, 2012, 51, 3388-3398.	1.9	77
119	Impact of Ligand Modification on Hydrogen Photogeneration and Light-Harvesting Applications Using Cyclometalated Iridium Complexes. Inorganic Chemistry, 2012, 51, 4123-4133.	1.9	101
120	Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels, 2012, 3, 71-86.	1.4	57
121	Mechanisms of metal ion-coupled electron transfer. Physical Chemistry Chemical Physics, 2012, 14, 8472.	1.3	62
122	Oxygen evolution at functionalized carbon surfaces: a strategy for immobilization of molecular water oxidation catalysts. Chemical Communications, 2012, 48, 10025.	2.2	61

#	ARTICLE	IF	CITATIONS
123	A manganese oxido complex bearing facially coordinating trispyridyl ligands – is coordination geometry crucial for water oxidation catalysis?. Dalton Transactions, 2012, 41, 6215.	1.6	16
124	Molecular systems for light driven hydrogen production. Dalton Transactions, 2012, 41, 13004.	1.6	346
125	Alternating electron and proton transfer steps in photosynthetic water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16035-16040.	3.3	172
126	Influence of a GC Base Pair on Excitation Energy Transfer in DNA-Assembled Phenanthrene π-Stacks. Bioconjugate Chemistry, 2012, 23, 2105-2113.	1.8	8
127	A copper(i) dye-sensitised TiO2-based system for efficient light harvesting and photoconversion of CO2 into hydrocarbon fuel. Dalton Transactions, 2012, 41, 9594.	1.6	62
128	Dye-cosensitized graphene/Pt photocatalyst for high efficient visible light hydrogen evolution. International Journal of Hydrogen Energy, 2012, 37, 10564-10574.	3.8	121
129	Chloroplast ultrastructure and thylakoid polypeptide composition are affected by different salt concentrations in the halophytic plant Arthrocnemum macrostachyum. Journal of Plant Physiology, 2012, 169, 111-116.	1.6	28
130	Metal–Organic Frameworks for Light Harvesting and Photocatalysis. ACS Catalysis, 2012, 2, 2630-2640.	5.5	714
132	Enhancing the Light Harvesting Capability of a Photosynthetic Reaction Center by a Tailored Molecular Fluorophore. Angewandte Chemie - International Edition, 2012, 51, 11019-11023.	7.2	45
133	Resonant elastic X-ray scattering in chemistry and materials science. European Physical Journal: Special Topics, 2012, 208, 245-257.	1.2	2
134	Oxygen evolution from water oxidation on molecular catalysts confined in the nanocages of mesoporous silicas. Energy and Environmental Science, 2012, 5, 8229.	15.6	58
135	Nano-sized manganese oxide: a proposed catalyst for water oxidation in the reaction of some manganese complexes and cerium(iv) ammonium nitrate. Dalton Transactions, 2012, 41, 10292.	1.6	91
136	Polyoxometalate water oxidation catalysts and the production of green fuel. Chemical Society Reviews, 2012, 41, 7572.	18.7	678
137	Can We Progress from Solipsistic Science to Frugal Innovation?. Daedalus, 2012, 141, 45-52.	0.9	37
138	CO2 photoreduction with long-wavelength light: dyads and monomers of zinc porphyrin and rhenium bipyridine. Chemical Communications, 2012, 48, 8189.	2.2	75
139	Metal-oxo-mediated O-O bond formation reactions in chemistry and biology. Bioinorganic Reaction Mechanisms, 2012, 8, .	0.5	7
140	A nickel containing polyoxometalate water oxidation catalyst. Dalton Transactions, 2012, 41, 13043.	1.6	111
142	Is [Co4(H2O)2(α-PW9O34)2]10â^ a genuine molecular catalyst in photochemical water oxidation? Answers from time-resolved hole scavenging experiments. Chemical Communications, 2012, 48, 8808.	2.2	90

#	Article	IF	Citations
143	Light-Harvesting Cross-Linked Polymers for Efficient Heterogeneous Photocatalysis. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2288-2294.	4.0	72
144	Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy and Environmental Science, 2012, 5, 6304-6312.	15.6	196
145	Towards Artificial Photosynthesis. Advances in Photosynthesis and Respiration, 2012, , 607-622.	1.0	0
146	The Challenge of Storage in the Hydrogen Energy Cycle: Nanostructured Hydrides as a Potential Solution. Australian Journal of Chemistry, 2012, 65, 656.	0.5	10
147	Exploring FÃ \P rster electronic energy transfer in a decoupled anthracenyl-based borondipyrromethene (bodipy) dyad. Physical Chemistry Chemical Physics, 2012, 14, 4447.	1.3	21
148	Butterflies: inspiration for solar cells and sunlight water-splitting catalysts. Energy and Environmental Science, 2012, 5, 9195.	15.6	97
149	Oxygen Reduction Reactions of Monometallic Rhodium Hydride Complexes. Inorganic Chemistry, 2012, 51, 7192-7201.	1.9	22
150	Dynamics of photogenerated charges in the phosphate modified TiO2 and the enhanced activity for photoelectrochemical water splitting. Energy and Environmental Science, 2012, 5, 6552.	15.6	143
151	Bioinspired High-Potential Porphyrin Photoanodes. Journal of Physical Chemistry C, 2012, 116, 4892-4902.	1.5	69
152	Nano-sized manganese oxide–bovine serum albumin was synthesized and characterized. It is promising and biomimetic catalyst for water oxidation. RSC Advances, 2012, 2, 11253.	1.7	38
153	Photosynthesis: How and Why?., 2012,,.		0
154	Cagedâ€Proteinâ€Confined Bimetallic Structural Assemblies with Mimetic Peroxidase Activity. Small, 2012, 8, 2948-2953.	5.2	41
155	Structure–Activity Correlations in a Nickel–Borate Oxygen Evolution Catalyst. Journal of the American Chemical Society, 2012, 134, 6801-6809.	6.6	612
156	Cobalt-Modified Porous Single-Crystalline LaTiO ₂ N for Highly Efficient Water Oxidation under Visible Light. Journal of the American Chemical Society, 2012, 134, 8348-8351.	6.6	382
157	Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light. Journal of Materials Chemistry, 2012, 22, 2733-2739.	6.7	89
158	The Artificial Leaf. Accounts of Chemical Research, 2012, 45, 767-776.	7.6	1,531
159	Enzymes and bio-inspired electrocatalysts in solar fuel devices. Energy and Environmental Science, 2012, 5, 7470.	15.6	127
160	Artificial photosynthesis for solar water-splitting. Nature Photonics, 2012, 6, 511-518.	15.6	1,790

#	Article	IF	CITATIONS
161	Protein Nanofibrils Balance Colours in Organic White‣ightâ€Emitting Diodes. Israel Journal of Chemistry, 2012, 52, 529-539.	1.0	26
162	Conjugated porous polymers for energy applications. Energy and Environmental Science, 2012, 5, 7819.	15.6	381
163	Recent advances in hybrid photocatalysts for solar fuel production. Energy and Environmental Science, 2012, 5, 5902.	15.6	563
164	In Situ Electrochemical Electron Microscopy Study of Oxygen Evolution Activity of Doped Manganite Perovskites. Advanced Functional Materials, 2012, 22, 3378-3388.	7.8	79
166	Hydrogenolysis Goes Bio: From Carbohydrates and Sugar Alcohols to Platform Chemicals. Angewandte Chemie - International Edition, 2012, 51, 2564-2601.	7.2	746
167	Interfacial Dynamics and Solar Fuel Formation in Dyeâ€Sensitized Photoelectrosynthesis Cells. ChemPhysChem, 2012, 13, 2882-2890.	1.0	41
168	Two-Dimensional Infrared Correlation Spectroscopy and Principal Component Analysis on the Carbonation of Sterically Hindered Alkanolamines. ChemPhysChem, 2012, 13, 3365-3369.	1.0	22
169	Towards Artificial Leaves for Solar Hydrogen and Fuels from Carbon Dioxide. ChemSusChem, 2012, 5, 500-521.	3.6	203
170	Steric effect for proton, hydrogen-atom, and hydride transfer reactions with geometric isomers of NADH–model ruthenium complexes. Faraday Discussions, 2012, 155, 129-144.	1.6	12
171	Leaf size control: complex coordination of cell division and expansion. Trends in Plant Science, 2012, 17, 332-340.	4.3	446
172	Splitting CO ₂ into CO and O ₂ by a single catalyst. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15606-15611.	3.3	168
173	Proton-Coupled Electron Transfer. Chemical Reviews, 2012, 112, 4016-4093.	23.0	1,389
174	Progress and perspectives in micro direct methanol fuel cell. International Journal of Hydrogen Energy, 2012, 37, 8765-8786.	3.8	123
175	Photosynthetic and biomimetic hydrogen production. International Journal of Hydrogen Energy, 2012, 37, 8744-8752.	3.8	54
176	Stimulatory effect of ascorbate, the alternative electron donor of photosystem II, on the hydrogen production of sulphur-deprived Chlamydomonas reinhardtii. International Journal of Hydrogen Energy, 2012, 37, 8864-8871.	3.8	11
177	Direct oxygen and hydrogen production by photo water splitting using a robust bioinspired manganese-oxo oligomer complex/tungsten oxide catalytic system. International Journal of Hydrogen Energy, 2012, 37, 8889-8896.	3.8	33
178	Voltammetry within structured liquid nanosystems: Towards the design of a flexible, three-dimensional framework for artificial photosystems. Electrochimica Acta, 2012, 70, 215-227.	2.6	3
179	Structural models of the manganese complex of photosystem II and mechanistic implications. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 88-105.	0.5	197

#	Article	IF	CITATIONS
180	Extended protein/water H-bond networks in photosynthetic water oxidation. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1177-1190.	0.5	78
181	Biological water oxidation: Lessons from Nature. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1110-1121.	0.5	82
182	Diironcarbonyl-coumarin complex: preparation, intramolecular electron transfer, and electro-generation of hydrogen. Open Chemistry, 2012, 10, 1218-1222.	1.0	2
183	DFT insight into o-semiquinone radicals and Ca2+ ion interaction: structure, g tensor, and stability. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	13
184	Strategies for Stabilization of Electrodeposited Metal Particles in Electropolymerized Films for H2O Oxidation and H+ Reduction. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7050-7057.	4.0	10
185	Assignment of the $\hat{l}\frac{1}{4}$ 4-O5 atom in catalytic center for water oxidation in photosystem II. Science Bulletin, 2013, 58, 3213-3216.	1.7	4
186	Mechanism, decomposition pathway and new evidence for self-healing of manganese oxides as efficient water oxidizing catalysts: new insights. Dalton Transactions, 2013, 42, 14603.	1.6	53
187	Fluorescent photochromes of diarylethene series: synthesis and properties. Russian Chemical Reviews, 2013, 82, 511-537.	2.5	42
188	Interface-directed assembly of a simple precursor of [FeFe]â€"H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. Energy and Environmental Science, 2013, 6, 2597.	15.6	115
189	Photobiological hydrogen production: Bioenergetics and challenges for its practical application. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 17, 1-25.	5.6	68
190	Experimentally Quantifying Small-Molecule Bond Activation Using Valence-to-Core X-ray Emission Spectroscopy. Journal of the American Chemical Society, 2013, 135, 11803-11808.	6.6	50
191	Applied Photochemistry. , 2013, , .		37
192	Carbon Dioxide Reduction Catalyzed by Dinuclear Ruthenium Polypyridyl Complexes. ChemCatChem, 2013, 5, 3897-3903.	1.8	11
193	Long-Range Charge Separation in a Ferrocene–(Zinc Porphyrin)–Naphthalenediimide Triad. Asymmetric Role of 1,2,3-Triazole Linkers. Journal of Physical Chemistry C, 2013, 117, 19334-19345.	1.5	37
194	Proton-Coupled Electron Transfers: pH-Dependent Driving Forces? Fundamentals and Artifacts. Journal of the American Chemical Society, 2013, 135, 14359-14366.	6.6	33
195	Electron transfer in proteins: theory, applications and future perspectives. Physical Chemistry Chemical Physics, 2013, 15, 15271.	1.3	28
196	Complex Systems: Photosynthesis. , 2013, , 385-422.		2
197	Synthesis and Photoinduced Electron Transfer Studies of a Tri(Phenothiazine)–Subphthalocyanine–Fullerene Pentad. Organic Letters, 2013, 15, 4612-4615.	2.4	35

#	Article	IF	CITATIONS
198	Water Oxidation. , 2013, , 505-523.		3
199	Butterfly wing architecture assisted CdS/Au/TiO2 Z-scheme type photocatalytic water splitting. International Journal of Hydrogen Energy, 2013, 38, 8244-8253.	3.8	89
200	Photocatalytic water oxidation with cobalt-containing tungstobismutates: tuning the metal core. Catalysis Science and Technology, 2013, 3, 3117.	2.1	47
201	Supramolecular BODIPY-Zn(ii)-bisporphyrin dyad and trinitrofluorenone encapsulated triad as models of antenna-reaction center: synthesis, structure and photophysical properties. Dalton Transactions, 2013, 42, 12381.	1.6	36
202	Coâ€immobilization of an Enzyme and a Metal into the Compartments of Mesoporous Silica for Cooperative Tandem Catalysis: An Artificial Metalloenzyme. Angewandte Chemie - International Edition, 2013, 52, 14006-14010.	7.2	196
203	Catalysing artificial photosynthesis. Nature Photonics, 2013, 7, 944-946.	15.6	56
204	Efficient Noble Metal-Free (Electro)Catalysis of Water and Alcohol Oxidations by Zinc–Cobalt Layered Double Hydroxide. Journal of the American Chemical Society, 2013, 135, 17242-17245.	6.6	381
205	Highly Effective Visibleâ€Lightâ€Induced H ₂ Generation by Singleâ€Layer 1Tâ€MoS ₂ an a Nanocomposite of Fewâ€Layer 2Hâ€MoS ₂ with Heavily Nitrogenated Graphene. Angewandte Chemie - International Edition, 2013, 52, 13057-13061.	d 7.2	438
206	Exceeding the Shockley–Queisser limit in solar energy conversion. Energy and Environmental Science, 2013, 6, 3508.	15.6	106
207	Reaction Pathways for Oxygen Evolution Promoted by Cobalt Catalyst. Journal of the American Chemical Society, 2013, 135, 15353-15363.	6.6	228
208	The S ₂ State of the Oxygenâ€Evolving Complex of Photosystemâ€II Explored by QM/MM Dynamics: Spin Surfaces and Metastable States Suggest a Reaction Path Towards the S ₃ State. Angewandte Chemie - International Edition, 2013, 52, 11744-11749.	7.2	148
209	Chemical and photocatalytic water oxidation by mononuclear Ru catalysts. Chinese Journal of Catalysis, 2013, 34, 1489-1495.	6.9	39
210	Facile deposition of nanostructured cobalt oxide catalysts from molecular cobaloximes for efficient water oxidation. Physical Chemistry Chemical Physics, 2013, 15, 12534.	1.3	41
211	Photocatalysis: progress using manganese-doped hematite nanocrystals. New Journal of Chemistry, 2013, 37, 4004.	1.4	25
212	Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with critical roles for the buffer base. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15579-15584.	3.3	312
213	Oxidation of water by a nonhaem diiron(iv) complex via proton-coupled electron transfer. Chemical Communications, 2013, 49, 10682.	2.2	29
214	Comproportionation Reactions to Manganese(III/IV) Pivalate Clusters: A New Half-Integer Spin Single-Molecule Magnet. Inorganic Chemistry, 2013, 52, 873-884.	1.9	31
215	Longâ€Lived Charge Separation in Novel Axial Donor–Porphyrin–Acceptor Triads Based on Tetrathiafulvalene, Aluminum(III) Porphyrin and Naphthalenediimide. Chemistry - A European Journal, 2013, 19, 3148-3161.	1.7	53

#	Article	IF	CITATIONS
216	Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel–Borate Thin Film Electrocatalyst. Journal of the American Chemical Society, 2013, 135, 3662-3674.	6.6	430
218	Photocatalytic Water Reduction with Copperâ€Based Photosensitizers: A Nobleâ€Metalâ€Free System. Angewandte Chemie - International Edition, 2013, 52, 419-423.	7.2	243
219	Chargeâ€Neutral Amidinateâ€Containing Iridium Complexes Capable of Efficient Photocatalytic Water Reduction. Chemistry - A European Journal, 2013, 19, 1303-1310.	1.7	37
220	Photocatalytic Oxidation of Organic Compounds in Water by Using Ruthenium(II)–Pyridylamine Complexes as Catalysts with High Efficiency and Selectivity. Chemistry - A European Journal, 2013, 19, 1563-1567.	1.7	49
221	Copper(II)-assisted charge transfer quenching of the excited state of a zinc(II) porphyrin complex bearing a peripheral bipyridine moiety. Inorganic Chemistry Communication, 2013, 38, 108-111.	1.8	7
222	Effect of copper on the performance of ZnO and ZnO1â°'xNx oxides as CO2 photoreduction catalysts. Catalysis Today, 2013, 209, 21-27.	2.2	62
223	Photoactivation of metal–halogen bonds in a Ni(ii) NHC complex. Dalton Transactions, 2013, 42, 2355.	1.6	19
224	Improving the Efficiency of the Photoinduced Charge-Separation Process in a Rhenium(I)–Zinc Porphyrin Dyad by Simple Chemical Functionalization. Inorganic Chemistry, 2013, 52, 3190-3197.	1.9	23
225	Forming Heterojunctions at the Nanoscale for Improved Photoelectrochemical Water Splitting by Semiconductor Materials: Case Studies on Hematite. Accounts of Chemical Research, 2013, 46, 1558-1566.	7.6	262
226	A Noble-Metal-Free Hydrogen Evolution Catalyst Grafted to Visible Light-Absorbing Semiconductors. Journal of Physical Chemistry Letters, 2013, 4, 568-572.	2.1	81
227	Tetrametallic molecular catalysts for photochemical water oxidation. Chemical Society Reviews, 2013, 42, 2262-2280.	18.7	310
228	Electronic and optoelectronic materials and devices inspired by nature. Reports on Progress in Physics, 2013, 76, 034501.	8.1	174
229	Self-Assembled via Metal–Ligand Coordination AzaBODIPY–Zinc Phthalocyanine and AzaBODIPY–Zinc Naphthalocyanine Conjugates: Synthesis, Structure, and Photoinduced Electron Transfer. Journal of Physical Chemistry C, 2013, 117, 5638-5649.	1.5	52
230	Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid. Nanoscale, 2013, 5, 1583.	2.8	7 2
231	Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nature Chemistry, 2013, 5, 403-409.	6.6	453
232	Recent progress in artificial photosynthesis: CO2 photoreduction to valuable chemicals in a heterogeneous system. Current Opinion in Chemical Engineering, 2013, 2, 200-206.	3.8	95
233	Longâ€Lived, Directional Photoinduced Charge Separation in Ru ^{II} Complexes Bearing Laminate Polypyridyl Ligands. Chemistry - A European Journal, 2013, 19, 8331-8341.	1.7	37
234	Photoassisted Preparation of Cobalt Phosphate/Graphene Oxide Composites: A Novel Oxygenâ€Evolving Catalyst with High Efficiency. Small, 2013, 9, 2709-2714.	5 . 2	50

#	Article	IF	CITATIONS
235	Water-soluble sulfonated–graphene–platinum nanocomposites: facile photochemical preparation with enhanced catalytic activity for hydrogen photogeneration. Catalysis Science and Technology, 2013, 3, 1815.	2.1	20
236	Tricyclometalated Iridium Complexes as Highly Stable Photosensitizers for Lightâ€Induced Hydrogen Evolution. Chemistry - A European Journal, 2013, 19, 6340-6349.	1.7	50
237	Balancing photovoltage generation and charge-transfer enhancement for catalyst-decorated photoelectrochemical water splitting: A case study of the hematite/MnOx combination. Journal of Catalysis, 2013, 304, 86-91.	3.1	113
238	The role of biofuels in the future energy supply. Energy and Environmental Science, 2013, 6, 1077.	15.6	145
239	Intermediate-Range Structure of Self-Assembled Cobalt-Based Oxygen-Evolving Catalyst. Journal of the American Chemical Society, 2013, 135, 6403-6406.	6.6	151
240	Solar Energy Conversion. , 2013, , 267-304.		2
241	A 2-(2-hydroxyphenyl)-1H-benzimidazole–manganese oxide hybrid as a promising structural model for the tyrosine 161/histidine 190-manganese cluster in photosystem II. Dalton Transactions, 2013, 42, 879.	1.6	46
242	A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting. Nano Letters, 2013, 13, 2989-2992.	4.5	506
243	Transformation of biomass via the selective hydrogenolysis of CO bonds by nanoscale metal catalysts. Current Opinion in Chemical Engineering, 2013, 2, 178-183.	3.8	42
244	Surface Interrogation Scanning Electrochemical Microscopy (SI-SECM) of Photoelectrochemistry at a W/Mo-BiVO ₄ Semiconductor Electrode: Quantification of Hydroxyl Radicals during Water Oxidation. Journal of Physical Chemistry C, 2013, 117, 12093-12102.	1.5	103
245	Catalytic Water Oxidation by Mononuclear Ru Complexes with an Anionic Ancillary Ligand. Inorganic Chemistry, 2013, 52, 2505-2518.	1.9	77
246	Remarkable Enhancement of Photocatalytic Hydrogen Evolution Efficiency Utilizing An Internal Cavity of Supramolecular Porphyrin Hexagonal Nanocylinders Under Visible-Light Irradiation. Journal of Physical Chemistry C, 2013, 117, 4441-4449.	1.5	41
247	Incorporating Graphene Oxide and Gold Nanoclusters: A Synergistic Catalyst with Surprisingly High Peroxidaseâ€Like Activity Over a Broad pH Range and its Application for Cancer Cell Detection. Advanced Materials, 2013, 25, 2594-2599.	11,1	441
248	Porphyrin-Based Supramolecular Nanoarchitectures for Solar Energy Conversion. Journal of Physical Chemistry Letters, 2013, 4, 1771-1780.	2.1	101
249	Coupling Photocatalysis and Redox Biocatalysis Toward Biocatalyzed Artificial Photosynthesis. Chemistry - A European Journal, 2013, 19, 4392-4406.	1.7	124
250	Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chemical Society Reviews, 2013, 42, 6060.	18.7	3,000
251	Photocatalytic reduction of carbon dioxide to formic acid, formaldehyde, and methanol using dye-sensitized TiO2 film. Applied Catalysis B: Environmental, 2013, 129, 599-605.	10.8	119
252	Water Oxidation at Hematite Photoelectrodes with an Iridium-Based Catalyst. Journal of Physical Chemistry C, 2013, 117, 3826-3833.	1.5	128

#	ARTICLE	IF	CITATIONS
253	Proton–Electron Transport and Transfer in Electrocatalytic Films. Application to a Cobalt-Based O2-Evolution Catalyst. Journal of the American Chemical Society, 2013, 135, 10492-10502.	6.6	151
254	Accumulation of Multiple Oxidative Equivalents at a Single Site by Cross-Surface Electron Transfer on TiO ₂ . Journal of the American Chemical Society, 2013, 135, 11587-11594.	6.6	68
255	Sulfurization-Assisted Cobalt Deposition on Sm ₂ Ti ₂ S ₂ O ₅ Photocatalyst for Water Oxidation under Visible Light Irradiation. Journal of Physical Chemistry C, 2013, 117, 376-382.	1.5	40
256	Tunable Biomimetic Chalcogels with Fe ₄ S ₄ Cores and $[Sn(i>n(i>)(i>n) = 1, 2, 4)$ Building Blocks for Solar Fuel Catalysis. Journal of the American Chemical Society, 2013, 135, 2330-2337.	6.6	43
257	Uncorrelated Dynamical Processes in Tetranuclear Carboxylate Clusters Studied by Variable-Temperature ¹ H NMR Spectroscopy Inorganic Chemistry, 2013, 52, 13004-13013.	1.9	10
258	Evaluation of the Parameters Affecting the Visible-Light-Induced Photocatalytic Activity of Monoclinic BiVO ₄ for Water Oxidation. Industrial & Engineering Chemistry Research, 2013, 52, 17414-17418.	1.8	72
259	Integration of Photoswitchable Proteins, Photosynthetic Reaction Centers and Semiconductor/Biomolecule Hybrids with Electrode Supports for Optobioelectronic Applications. Advanced Materials, 2013, 25, 349-377.	11.1	124
260	Examining Efficiency in Bioinspired Design. , 2013, , .		2
261	Solar Hydrogen Production. SpringerBriefs in Energy, 2013, , 27-71.	0.2	3
262	Transient absorption spectroscopy studies of proton-coupled electron transfers. Neuroscience of Decision Making, $2013,1,.$	1.3	10
263	Hollow micro/nanomaterials as nanoreactors for photocatalysis. APL Materials, 2013, 1, .	2.2	24
265	An Exceptional Artificial Photocatalyst, Ni _h dSe/CdS Core/Shell Hybrid, Made In Situ from CdSe Quantum Dots and Nickel Salts for Efficient Hydrogen Evolution. Advanced Materials, 2013, 25, 6613-6618.	11.1	140
266	Bis $(4\hat{a}\in^2-(4-\text{pyridyl})-2,2\hat{a}\in^2:6\hat{a}\in^2,2\hat{a}\in^2:4\text{-terpyridine})$ ruthenium(ii) complexes and their N-alkylated derivatives in catalytic light-driven water oxidation. RSC Advances, 2013, 3, 20647.	1.7	18
268	ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange. Optics Express, 2013, 21, 7240.	1.7	40
269	Thermal modelling of parabolic trough collectors. , 2013, , 189-212.		1
270	Oxygenic Photosynthesis in Cyanobacteria. , 2013, , 3-40.		23
272	Sensing the dynamics of oxidative stress using enhanced absorption in protein-loaded random media. Scientific Reports, 2013, 3, 3447.	1.6	24
273	Design and development of synthetic microbial platform cells for bioenergy. Frontiers in Microbiology, 2013, 4, 92.	1.5	37

#	Article	IF	CITATIONS
274	Bioenergy, Food Security and Poverty Reduction: Mitigating Tradeoffs and Promoting Synergies Along the Water-Energy-Food Security Nexus. SSRN Electronic Journal, 2014, , .	0.4	22
275	First synthesis of <i>meso</i> -substituted pyrrolo[1,2- <i>a</i>]quinoxalinoporphyrins. Beilstein Journal of Organic Chemistry, 2014, 10, 808-813.	1.3	12
276	Incorporating ATP into biomimetic catalysts for realizing exceptional enzymatic performance over a broad temperature range. NPG Asia Materials, 2014, 6, e114-e114.	3.8	42
277	Photocatalytic and Photovoltaic Properties of TiO ₂ Nanoparticles Investigated by Ab Initio Simulations. Journal of Physical Chemistry C, 2014, 118, 29928-29942.	1.5	31
278	Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials, 2014, 57, 70-100.	3. 5	446
279	Current challenges in photosynthesis: from natural to artificial. Frontiers in Plant Science, 2014, 5, 232.	1.7	15
280	Charge-displacement analysis for excited states. Journal of Chemical Physics, 2014, 140, 054110.	1.2	26
281	Photochemical, Electrochemical, and Photoelectrochemical Water Oxidation Catalyzed by Waterâ€Soluble Mononuclear Ruthenium Complexes. Chemistry - A European Journal, 2014, 20, 13957-13964.	1.7	29
282	Biogenic Manganese-Calcium Oxides on the Cell Walls of the AlgaeChara Corallina: Elemental Composition, Atomic Structure, and Water-Oxidation Catalysis. European Journal of Inorganic Chemistry, 2014, 2014, 780-790.	1.0	28
283	Combined Experimental and Theoretical Study of Efficient and Ultrafast Energy Transfer in a Molecular Dyad. Journal of Physical Chemistry C, 2014, 118, 23476-23486.	1.5	29
284	Direct growth of porous crystalline NiCo ₂ O ₄ nanowire arrays on a conductive electrode for high-performance electrocatalytic water oxidation. Journal of Materials Chemistry A, 2014, 2, 20823-20831.	5.2	111
285	Nanowires for Photovoltaics and Artificial Photosynthesis. RSC Smart Materials, 2014, , 277-311.	0.1	2
286	Visible-Light-Stimulated Enzymelike Activity of Graphene Oxide and Its Application for Facile Glucose Sensing. Journal of Physical Chemistry C, 2014, 118, 28109-28117.	1.5	70
287	Phenothiazine–azaBODIPY–fullerene supramolecules: syntheses, structural characterization, and photochemical studies. Physical Chemistry Chemical Physics, 2014, 16, 25537-25547.	1.3	21
288	Screenâ€Printed Calcium–Birnessite Electrodes for Water Oxidation at Neutral pH and an "Electrochemical Harriman Series― ChemSusChem, 2014, 7, 3442-3451.	3.6	61
289	Selfâ€Assembly of Metalloporphyrins into Lightâ€Harvesting Peptide Nanofiber Hydrogels for Solar Water Oxidation. Small, 2014, 10, 1272-1277.	5.2	53
291	Noble Metals Can Have Different Effects on Photocatalysis Over Metal–Organic Frameworks (MOFs): A Case Study on M/NH ₂ â€MILâ€125(Ti) (M=Pt and Au). Chemistry - A European Journal, 2014, 20, 4780-4788.	1.7	247
292	Chlorophylls, Symmetry, Chirality, and Photosynthesis. Symmetry, 2014, 6, 781-843.	1.1	169

#	Article	IF	CITATIONS
293	Photosynthesis in Hydrogen-Dominated Atmospheres. Life, 2014, 4, 716-744.	1.1	28
294	Elucidation of important parameters of BiVO4 responsible for photo-catalytic O2 evolution and insights about the rate of the catalytic process. Chemical Engineering Journal, 2014, 245, 124-132.	6.6	63
295	Mechanistic Approaches to Molecular Catalysts for Water Oxidation. European Journal of Inorganic Chemistry, 2014, 2014, 607-618.	1.0	43
296	Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Applied Energy, 2014, 113, 277-286.	5.1	133
297	The stability of organometallic ligands in oxidation catalysis. Journal of Organometallic Chemistry, 2014, 751, 174-180.	0.8	34
298	Musselâ€Inspired Plasmonic Nanohybrids for Light Harvesting. Advanced Materials, 2014, 26, 4463-4468.	11.1	72
299	Clawlike Tripodal Porphyrin Trimer: Ion-Controlled On–Off Fullerene Binding. Journal of Organic Chemistry, 2014, 79, 1184-1191.	1.7	24
300	SiO2/carbon nitride composite materials: The role of surfaces for enhanced photocatalysis. Catalysis Today, 2014, 225, 185-190.	2.2	56
301	Water-oxidation catalysis by synthetic manganese oxides – systematic variations of the calcium birnessite theme. Dalton Transactions, 2014, 43, 4370-4379.	1.6	109
302	Visible Light-Driven Hydrogen Evolution from Water Catalyzed by A Molecular Cobalt Complex. Journal of the American Chemical Society, 2014, 136, 4881-4884.	6.6	163
303	An integrated artificial photosynthesis system based on peptide nanotubes. Nanoscale, 2014, 6, 7832-7837.	2.8	20
304	Photo―and Electrocatalytic H ₂ Production by New Firstâ€Row Transitionâ€Metal Complexes Based on an Aminopyridine Pentadentate Ligand. Chemistry - A European Journal, 2014, 20, 6171-6183.	1.7	80
305	The first tyrosyl radical intermediate formed in the S2–S3 transition of photosystem II. Physical Chemistry Chemical Physics, 2014, 16, 11901.	1.3	68
306	Nano-sized layered Mn oxides as promising and biomimetic water oxidizing catalysts for water splitting in artificial photosynthetic systems. Journal of Photochemistry and Photobiology B: Biology, 2014, 133, 124-139.	1.7	27
307	Cobalt porphyrin electrode films for electrocatalytic water oxidation. Physical Chemistry Chemical Physics, 2014, 16, 11224-11232.	1.3	58
309	Boosting plant biology. Nature Materials, 2014, 13, 329-331.	13.3	19
310	The Effects of Electron-Donating Substituents on [Ir(bpy)Cp*Cl]+: Water Oxidation versus Ligand Oxidative Modifications. European Journal of Inorganic Chemistry, 2014, 2014, 698-707.	1.0	27
311	Polyoxometalate Multiâ€Electronâ€Transfer Catalytic Systems for Water Splitting. European Journal of Inorganic Chemistry, 2014, 2014, 635-644.	1.0	85

#	Article	IF	Citations
312	Photocatalytic Hydrogen Evolution from Glycerol and Water over Nickelâ€Hybrid Cadmium Sulfide Quantum Dots under Visibleâ€Light Irradiation. ChemSusChem, 2014, 7, 1468-1475.	3.6	91
313	Enhancement of the Efficiency of Photocatalytic Reduction of Protons to Hydrogen via Molecular Assembly. Accounts of Chemical Research, 2014, 47, 2177-2185.	7.6	237
314	A Biomimetic Copper Water Oxidation Catalyst with Low Overpotential. Journal of the American Chemical Society, 2014, 136, 273-281.	6.6	339
315	Molecular Water Oxidation Mechanisms Followed by Transition Metals: State of the Art. Accounts of Chemical Research, 2014, 47, 504-516.	7.6	276
316	Semiconductor Nanowires for Artificial Photosynthesis. Chemistry of Materials, 2014, 26, 415-422.	3.2	314
317	Water Oxidation Catalyzed by Mononuclear Ruthenium Complexes with a 2,2 \hat{a} \in 2-Bipyridine-6,6 \hat{a} \in 2-dicarboxylate (bda) Ligand: How Ligand Environment Influences the Catalytic Behavior. Inorganic Chemistry, 2014, 53, 1307-1319.	1.9	61
318	Bisdonor–azaBODIPY–Fullerene Supramolecules: Syntheses, Characterization, and Light-Induced Electron-Transfer Studies. Journal of Physical Chemistry C, 2014, 118, 2321-2332.	1.5	45
319	A water-soluble tin(<scp>iv</scp>) porphyrin as a bioinspired photosensitiser for light-driven proton-reduction. Physical Chemistry Chemical Physics, 2014, 16, 12029-12042.	1.3	77
320	Panchromatic Solar-to-H ₂ Conversion by a Hybrid Quantum Dots–Dye Dual Absorber Tandem Device. Journal of Physical Chemistry C, 2014, 118, 891-895.	1.5	27
321	Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews, 2014, 114, 11863-12001.	23.0	1,161
322	An [Feâ€Fe]â€Hydrogenase Mimic Immobilized on MCMâ€41 for the Photochemical Production of Hydrogen in Pure Water. Chinese Journal of Chemistry, 2014, 32, 479-484.	2.6	10
323	Photocatalytic applications with CdS • block copolymer/exfoliated graphene nanoensembles: hydrogen generation and degradation of Rhodamine B. Nanotechnology, 2014, 25, 445404.	1.3	4
324	Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity. Physical Chemistry Chemical Physics, 2014, 16, 11950.	1.3	64
325	One-step synthesis of multi-walled carbon nanotubes/ultra-thin Ni(OH) ₂ nanoplate composite as efficient catalysts for water oxidation. Journal of Materials Chemistry A, 2014, 2, 11799-11806.	5.2	129
326	Low-cost Nanomaterials. Green Energy and Technology, 2014, , .	0.4	16
327	Iron based photoanodes for solar fuel production. Physical Chemistry Chemical Physics, 2014, 16, 11834.	1.3	120
328	Design, synthesis and excited-state properties of mononuclear Ru(<scp>ii</scp>) complexes of tridentate heterocyclic ligands. Chemical Society Reviews, 2014, 43, 6184.	18.7	155
329	Electronic structural insights into efficient MnO _x catalysts. Journal of Materials Chemistry A, 2014, 2, 18199-18203.	5.2	40

#	Article	IF	CITATIONS
330	Nonâ€Sacrificial Water Photoâ€Oxidation Activity of Lamellar Calcium Niobate Induced by Exfoliation. Advanced Materials Interfaces, 2014, 1, 1400131.	1.9	30
331	A dinuclear iron complex with a single oxo bridge as an efficient water-oxidizing catalyst in the presence of cerium(<scp>iv</scp>) ammonium nitrate: new findings and current controversies. Catalysis Science and Technology, 2014, 4, 30-33.	2.1	55
332	Enhanced photocatalytic hydrogen production from an MCM-41-immobilized photosensitizerâ€"[Fe-Fe] hydrogenase mimic dyad. Photochemical and Photobiological Sciences, 2014, 13, 1590-1597.	1.6	24
333	A synthetic model for the oxygen-evolving complex in Sr ²⁺ -containing photosystem II. Chemical Communications, 2014, 50, 9263-9265.	2.2	28
334	Facile precursor-mediated synthesis of porous core–shell-type Co3O4 octahedra with large surface area for photochemical water oxidation. RSC Advances, 2014, 4, 22951.	1.7	16
335	Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15001-15006.	3.3	159
336	Stable Quantum Dot Photoelectrolysis Cell for Unassisted Visible Light Solar Water Splitting. ACS Nano, 2014, 8, 10403-10413.	7.3	162
337	Creating electrochemical gradients by light: from bio-inspired concepts to photoelectric conversion. Physical Chemistry Chemical Physics, 2014, 16, 19781-19789.	1.3	25
338	Photoâ€bioelectrochemical Cells for Energy Conversion, Sensing, and Optoelectronic Applications. ChemElectroChem, 2014, 1, 1778-1797.	1.7	54
340	Energy System Design to Maximize Net Energy Production Considering Uncertainty in Scale-up: A Case Study in Artificial Photosynthesis. Procedia CIRP, 2014, 15, 306-312.	1.0	8
341	Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Advances, 2014, 4, 49672-49722.	1.7	76
342	Hydrated Manganese(II) Phosphate (Mn ₃ (PO ₄) ₂ ·3H ₂ O) as a Water Oxidation Catalyst. Journal of the American Chemical Society, 2014, 136, 7435-7443.	6.6	324
343	Quantum Dot-Sensitized Solar Cells. Green Energy and Technology, 2014, , 89-136.	0.4	8
344	A review of helical nanostructures: growth theories, synthesis strategies and properties. Nanoscale, 2014, 6, 9366.	2.8	123
345	Bio-inspired carbon nitride mesoporous spheres for artificial photosynthesis: photocatalytic cofactor regeneration for sustainable enzymatic synthesis. Journal of Materials Chemistry A, 2014, 2, 7686-7693.	5.2	100
346	Nickel-Based Thin Film on Multiwalled Carbon Nanotubes as an Efficient Bifunctional Electrocatalyst for Water Splitting. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15395-15402.	4.0	112
347	Dual Responsive Enzyme Mimicking Activity of AgX ($X = Cl$, Br, I) Nanoparticles and Its Application for Cancer Cell Detection. ACS Applied Materials & Enzyme Square ($X = Cl$) Nanoparticles and Its Application for Cancer Cell Detection.	4.0	118
348	Cationic screening of charged surface groups (carboxylates) affects electron transfer steps in photosystem-II water oxidation and quinone reduction. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1625-1634.	0.5	16

#	Article	IF	CITATIONS
349	Preferential Through-Space Charge Separation and Charge Recombination in V-Type Configured Porphyrin–azaBODIPY–Fullerene Supramolecular Triads. Journal of Physical Chemistry C, 2014, 118, 18969-18982.	1.5	31
350	The Biophysics of Photosynthesis., 2014, , .		21
351	Electron Transfer Studies of High Potential Zinc Porphyrin–Fullerene Supramolecular Dyads. Journal of Physical Chemistry C, 2014, 118, 3994-4006.	1.5	103
352	A solar light-driven, eco-friendly protocol for highly enantioselective synthesis of chiral alcohols via photocatalytic/biocatalytic cascades. Green Chemistry, 2014, 16, 4389.	4.6	59
353	Incorporation of iron hydrogenase active sites into a highly stable metal–organic framework for photocatalytic hydrogen generation. Chemical Communications, 2014, 50, 10390.	2.2	172
354	Ternary polyaniline–graphene–TiO ₂ hybrid with enhanced activity for visible-light photo-electrocatalytic water oxidation. Journal of Materials Chemistry A, 2014, 2, 1068-1075.	5.2	68
356	Stabilization of Ruthenium(II) Polypyridyl Chromophores on Nanoparticle Metal-Oxide Electrodes in Water by Hydrophobic PMMA Overlayers. Journal of the American Chemical Society, 2014, 136, 13514-13517.	6.6	70
357	An exploration of how the thermodynamic efficiency of bioenergetic membrane systems varies with c-subunit stoichiometry of F1F0 ATP synthases. Journal of Bioenergetics and Biomembranes, 2014, 46, 229-241.	1.0	50
358	Water oxidation catalysis by manganese oxides: learning from evolution. Energy and Environmental Science, 2014, 7, 2203.	15.6	157
359	Quantum Biological Switch Based on Superradiance Transitions. Journal of Physical Chemistry C, 2014, 118, 20-26.	1.5	28
360	Photovoltaic devices in hydrogen production. International Journal of Hydrogen Energy, 2014, 39, 14166-14171.	3.8	15
361	Unraveling the Mechanism of Water Oxidation Catalyzed by Nonheme Iron Complexes. Chemistry - A European Journal, 2014, 20, 5696-5707.	1.7	75
362	A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid. Journal of the American Chemical Society, 2014, 136, 6002-6010.	6.6	474
363	Green Cobalt Oxide (CoO _{<i>x</i>}) Film with Nanoribbon Structures Electrodeposited from the BF ₂ -Annulated Cobaloxime Precursor for Efficient Water Oxidation. ACS Applied Materials & Diterraces, 2014, 6, 10929-10934.	4.0	47
365	Pathway for Mn-cluster oxidation by tyrosine-Z in the $\langle i \rangle S \langle i \rangle \langle sub \rangle 2 \langle sub \rangle$ state of photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8723-8728.	3.3	114
366	Microcrystallization techniques for serial femtosecond crystallography using photosystem II from <i>Thermosynechococcus elongatus < i > as a model system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130316.</i>	1.8	60
367	Magnetic interactions in the catalyst used by nature to split water: a DFT $+<$ i> $>$ U $>$ multiscale study on the Mn ₄ CaO ₅ core in photosystem II. New Journal of Physics, 2014, 16, 015020.	1.2	27
368	Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chemical Society Reviews, 2014, 43, 5982-5993.	18.7	1,879

#	Article	IF	CITATIONS
369	Bio-based products from solar energy and carbon dioxide. Trends in Biotechnology, 2014, 32, 5-10.	4.9	41
370	De novo protein components for oxidoreductase assembly and biological integration. Current Opinion in Chemical Biology, 2014, 19, 90-98.	2.8	26
371	Langmuir–Blodgett Films of Self-Assembled (Alkylether-Derivatized Zn) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 6 for Photoelectrochemical Studies. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8688-8701.	667 Td (Ph 4.0	thalocyanine) 13
372	Fragments of Layered Manganese Oxide Are the Real Water Oxidation Catalyst after Transformation of Molecular Precursor on Clay. Journal of the American Chemical Society, 2014, 136, 7245-7248.	6.6	127
373	Advances in Photofunctional Dendrimers for Solar Energy Conversion. Journal of Physical Chemistry Letters, 2014, 5, 2340-2350.	2.1	56
374	A New Water Oxidation Catalyst: Lithium Manganese Pyrophosphate with Tunable Mn Valency. Journal of the American Chemical Society, 2014, 136, 4201-4211.	6.6	136
375	An Exceptionally Fast Homogeneous Carbon-Free Cobalt-Based Water Oxidation Catalyst. Journal of the American Chemical Society, 2014, 136, 9268-9271.	6.6	260
376	Uniform Graphitic Carbon Nitride Nanorod for Efficient Photocatalytic Hydrogen Evolution and Sustained Photoenzymatic Catalysis. ACS Applied Materials & Interfaces, 2014, 6, 8434-8440.	4.0	184
377	Location and function of the high-affinity chloride in the oxygen-evolving complex – Implications from comparing studies on Clâ⁻'/Brâ⁻'/lâ⁻'-substituted photosystem II prepared using two different methods. Journal of Photochemistry and Photobiology B: Biology, 2014, 138, 249-255.	1.7	3
378	Iron–iron hydrogenase active subunit covalently linking to organic chromophore for light-driven hydrogen evolution. International Journal of Hydrogen Energy, 2014, 39, 10434-10444.	3.8	27
379	Multi-walled carbon nanotubes supported porous nickel oxide as noble metal-free electrocatalysts for efficient water oxidation. International Journal of Hydrogen Energy, 2014, 39, 10467-10475.	3.8	32
380	Hierarchical tree-like heterostructure arrays for enhanced photoeletrochemical activity. Electrochimica Acta, 2014, 136, 217-222.	2.6	13
381	3. Continuous-flow photochemistry in microstructured environment., 2014,, 63-98.		1
382	CO2 to Fuels. , 2014, , 93-122.		0
383	Learning from Biology: Biomimetic Catalysis. , 2015, , 96-125.		0
385	Efficient Lightâ€Driven Water Oxidation Catalysis by Dinuclear Ruthenium Complexes. ChemSusChem, 2015, 8, 3688-3696.	3.6	37
386	2D-GaS as a Photocatalyst for Water Splitting to Produce H ₂ . Small, 2015, 11, 4723-4730.	5.2	61
387	A Hierarchical Z-Scheme CdS-WO ₃ Photocatalyst with Enhanced CO ₂ Reduction Activity. Small, 2015, 11, 5262-5271.	5.2	682

#	Article	IF	CITATIONS
388	Redoxâ€State Dependent Ligand Exchange in Manganeseâ€Based Oxidation Catalysis. European Journal of Inorganic Chemistry, 2015, 2015, 3432-3456.	1.0	12
389	Resolving the Manganese Oxidation States in the Oxygenâ€evolving Catalyst of Natural Photosynthesis. Israel Journal of Chemistry, 2015, 55, 1219-1232.	1.0	25
390	Water Oxidation Catalysis by Synthetic Manganese Oxides with Different Structural Motifs: A Comparative Study. Chemistry - A European Journal, 2015, 21, 14958-14968.	1.7	42
391	Solar Water Splitting by TiO ₂ /CdS/Co–Pi Nanowire Array Photoanode Enhanced with Co–Pi as Hole Transfer Relay and CdS as Light Absorber. Advanced Functional Materials, 2015, 25, 5706-5713.	7.8	240
392	Systemic aspects of the transition to sustainable energy. EPJ Web of Conferences, 2015, 98, 04001.	0.1	2
393	Activity and Stability of the Tetramanganese Polyanion [Mn4(H2O)2(PW9O34)2]10â€" during Electrocatalytic Water Oxidation. Inorganics, 2015, 3, 332-340.	1.2	12
394	Applications of Natural and Artificial Phycobiliproteins in Solar Cells. Current Biotechnology, 2015, 4, 275-281.	0.2	10
395	Biomimetic Water-Oxidation Catalysts: Manganese Oxides. Topics in Current Chemistry, 2015, 371, 49-72.	4.0	29
396	Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis. Scientific Reports, 2015, 5, 10279.	1.6	99
397	Multidisciplinary approaches to solar hydrogen. Interface Focus, 2015, 5, 20140091.	1.5	24
398	Oxygen-tolerant proton reduction catalysis: much O ₂ about nothing?. Energy and Environmental Science, 2015, 8, 2283-2295.	15.6	72
399	Electrocatalytic Reduction of Carbon Dioxide using Sol-gel Processed Copper Indium Sulfide (CIS) Immobilized on ITO-Coated Glass Electrode. Electrocatalysis, 2015, 6, 405-413.	1.5	14
400	Size- and shape-dependent peroxidase-like catalytic activity of MnFe ₂ O ₄ Nanoparticles and their applications in highly efficient colorimetric detection of target cancer cells. Dalton Transactions, 2015, 44, 12871-12877.	1.6	76
401	Co-assembly of photosystem II/reduced graphene oxide multilayered biohybrid films for enhanced photocurrent. Nanoscale, 2015, 7, 10908-10911.	2.8	55
402	Energy efficiency of the sunlight harvesting and storing system in bacterial photosynthesis: comparison with semiconductor photovoltaic cells. Turkish Journal of Biology, 2015, 39, 276-283.	2.1	7
403	Supramolecular Porphyrin Nanorods for Light Energy Conversion. , 2015, , 475-491.		2
404	Toward a Methodology for Systematically Generating Energy- and Materials-Efficient Concepts Using Biological Analogies. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, .	1.7	7
405	DNA-Based Assemblies for Photochemical Upconversion. Journal of Physical Chemistry B, 2015, 119, 14045-14052.	1.2	16

#	Article	IF	CITATIONS
406	Role of chlorophyll in Spirulina on photocatalytic activity of CO 2 reduction under visible light over modified N-doped TiO 2 photocatalysts. Applied Catalysis B: Environmental, 2015, 168-169, 114-124.	10.8	70
407	Triplet–Triplet Excitation Transfer in Palladium Porphyrin–Fullerene and Platinum Porphyrin–Fullerene Dyads. Journal of Physical Chemistry C, 2015, 119, 176-185.	1.5	27
408	BiVO4 as photocatalyst for solar fuels production through water splitting: A short review. Applied Catalysis A: General, 2015, 504, 158-170.	2.2	140
409	Synergistic Oxygen Evolving Activity of a TiO ₂ -Rich Reconstructed SrTiO ₃ (001) Surface. Journal of the American Chemical Society, 2015, 137, 2939-2947.	6.6	58
410	Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015, 44, 2060-2086.	18.7	4,323
411	Nano-sized Mn oxide: A true catalyst in the water-oxidation reaction. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 127-132.	1.7	13
412	Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 468-485.	0.5	200
413	Damage Management in Water-Oxidizing Catalysts: From Photosystem II to Nanosized Metal Oxides. ACS Catalysis, 2015, 5, 1499-1512.	5.5	55
414	Assessment of the impact of photosystem I chlorophyll fluorescence on the pulse-amplitude modulated quenching analysis in leaves of Arabidopsis thaliana. Photosynthesis Research, 2015, 125, 179-189.	1.6	14
415	Artificial synthetic Mn ^{IV} Ca–oxido complexes mimic the oxygen-evolving complex in photosystem II. Dalton Transactions, 2015, 44, 4431-4435.	1.6	29
416	Comparison of the protective effectiveness of NPQ in Arabidopsis plants deficient in PsbS protein and zeaxanthin. Journal of Experimental Botany, 2015, 66, 1259-1270.	2.4	58
417	Electrostatically Assembled CdS-Co ₃ O ₄ Nanostructures for Photo-assisted Water Oxidation and Photocatalytic Reduction of Dye Molecules. Small, 2015, 11, 668-674.	5.2	39
418	Self-assembly of an organic–inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions. Chemical Communications, 2015, 51, 4386-4389.	2.2	143
419	Successive light-induced two electron transfers in a Ru–Fe supramolecular assembly: from Ru–Fe(<scp>ii</scp>)–OH ₂ to Ru–Fe(<scp>iv</scp>)–oxo. Chemical Science, 2015, 6, 2323-2327.	3.7	24
420	Water Oxidation Catalysis by Birnessite@Iron Oxide Core–Shell Nanocomposites. Inorganic Chemistry, 2015, 54, 2734-2741.	1.9	56
421	Molecular Systems for Solar H2: Path to a Renewable Future. Comments on Inorganic Chemistry, 2015, 35, 82-120.	3.0	7
422	Cobalt phosphate modified TiO ₂ nanowire arrays as co-catalysts for solar water splitting. Nanoscale, 2015, 7, 6722-6728.	2.8	136
423	Exergy efficiency of plant photosynthesis. Chemical Engineering Science, 2015, 130, 151-171.	1.9	31

#	Article	IF	CITATIONS
424	Cerium doped zirconium dioxide as a potential new photocatalytic material. The role of the preparation method on the properties of the material. Applied Catalysis A: General, 2015, 504, 338-343.	2.2	35
425	A water-soluble dinuclear copper electrocatalyst, [Cu(oxpn)Cu(OH)2] for both water reduction and oxidation. Electrochimica Acta, 2015, 161, 388-394.	2.6	58
426	Benchmarking of Homogeneous Electrocatalysts: Overpotential, Turnover Frequency, Limiting Turnover Number. Journal of the American Chemical Society, 2015, 137, 5461-5467.	6.6	141
427	Charge separation in supramolecular ferrocene(s)-zinc porphyrin-fullerene triads: A femtosecond transient absorption study. Journal of Porphyrins and Phthalocyanines, 2015, 19, 270-280.	0.4	9
428	Electrochemical Water Oxidation by <i>In Situ</i> -Generated Copper Oxide Film from [Cu(TEOA)(H ₂ 0) ₂][SO ₄] Complex. Inorganic Chemistry, 2015, 54, 3061-3067.	1.9	81
429	Atomistic Texture of Amorphous Manganese Oxides for Electrochemical Water Splitting Revealed by Ab Initio Calculations Combined with X-ray Spectroscopy. Journal of the American Chemical Society, 2015, 137, 10254-10267.	6.6	36
430	Electrochemical-driven water reduction catalyzed by a water soluble cobalt(III) complex with Schiff base ligand. Electrochimica Acta, 2015, 178, 368-373.	2.6	39
431	Light-Driven Proton Reduction in Aqueous Medium Catalyzed by a Family of Cobalt Complexes with Tetradentate Polypyridine-Type Ligands. Inorganic Chemistry, 2015, 54, 7873-7884.	1.9	24
432	PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 301-307.	1.7	48
433	New findings and the current controversies for water oxidation by a copper(<scp>ii</scp>)-azo complex: homogeneous or heterogeneous?. Dalton Transactions, 2015, 44, 15435-15440.	1.6	48
434	Sn ^{IV} Metalloporphyrin/Co ^{III} Complex: An All-Abundant-Element System for the Photocatalytic Production of H ₂ in Aqueous Solution. Journal of Physical Chemistry B, 2015, 119, 13698-13706.	1.2	23
435	Development of a Photosynthetic Microbial Electrochemical Cell (PMEC) Reactor Coupled with Dark Fermentation of Organic Wastes: Medium Term Perspectives. Energies, 2015, 8, 399-429.	1.6	33
436	Viral nano-hybrids for innovative energy conversion and storage schemes. Journal of Materials Chemistry B, 2015, 3, 6718-6730.	2.9	10
437	Metal-free hydrogen evolution with nanoparticles derived from pyrene via two-photon ionization induced by laser irradiation. Chemical Communications, 2015, 51, 11515-11518.	2.2	5
438	Photocurrent generation in a light-harvesting system with multifunctional artificial nanochannels. Chemical Communications, 2015, 51, 12286-12289.	2.2	17
439	Nickel-based cocatalysts for photocatalytic hydrogen production. Applied Surface Science, 2015, 351, 779-793.	3.1	213
440	Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm, 2015, 17, 6070-6093.	1.3	116
441	Photocatalytic CO ₂ Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal–Organic Framework. Inorganic Chemistry, 2015, 54, 6821-6828.	1.9	293

#	Article	IF	CITATIONS
442	Hydrogen photogeneration from water on the biomimetic hybrid artificial photocatalytic systems of semiconductors and earth-abundant metal complexes: progress and challenges. Catalysis Science and Technology, 2015, 5, 3084-3096.	2.1	40
443	Cyclic Voltammetry Analysis of Electrocatalytic Films. Journal of Physical Chemistry C, 2015, 119, 12174-12182.	1.5	41
444	Electrochemical-driven water splitting catalyzed by a water-soluble cobalt(II) complex supported by N,N′-bis(2′-pyridinecarboxamide)-1,2-benzene with high turnover frequency. Journal of Power Sources, 2015, 287, 50-57.	4.0	47
445	SDS–MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose. Talanta, 2015, 141, 47-52.	2.9	135
446	Porous Cobaltâ€Based Thin Film as a Bifunctional Catalyst for Hydrogen Generation and Oxygen Generation. Advanced Materials, 2015, 27, 3175-3180.	11.1	460
447	Structure–Function Relationships for Electrocatalytic Water Oxidation by Molecular [Mn ₁₂ O ₁₂] Clusters. Inorganic Chemistry, 2015, 54, 4550-4555.	1.9	26
448	Artificial photosynthesis based on ruthenium(II) tetrazole-dye-sensitized nanocrystalline TiO2 solar cells. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 4-13.	1.7	9
449	Pyrolyzed cobalt porphyrin-modified carbon nanomaterial as an active catalyst for electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2015, 40, 6538-6545.	3.8	45
450	Mechanistic Links in the inâ€situ Formation of Dinuclear Manganese Catalysts, H ₂ O ₂ Disproportionation, and Alkene Oxidation. European Journal of Inorganic Chemistry, 2015, 2015, 3532-3542.	1.0	7
451	Three dimensional nano-assemblies of noble metal nanoparticle–infinite coordination polymers as specific oxidase mimetics for degradation of methylene blue without adding any cosubstrate. Chemical Communications, 2015, 51, 2052-2055.	2.2	47
452	Design of a dinuclear ruthenium based catalyst with a rigid xanthene bridge for catalytic water oxidation. Inorganic Chemistry Communication, 2015, 55, 56-59.	1.8	12
453	Artificial switchable catalysts. Chemical Society Reviews, 2015, 44, 5341-5370.	18.7	571
454	Nanomaterials for Lighting and Solar Energy Conversion. NATO Science for Peace and Security Series B: Physics and Biophysics, 2015, , 373-414.	0.2	0
455	Reaction Pathways for Water Oxidation to Molecular Oxygen Mediated by Model Cobalt Oxide Dimer and Cubane Catalysts. Journal of Physical Chemistry C, 2015, 119, 11072-11085.	1.5	40
456	Electro- and photo-chemical driven water reduction catalyzed by a cobalt(III) complex with high turnover number. Journal of Molecular Catalysis A, 2015, 404-405, 227-232.	4.8	9
457	Layered transition metal oxyhydroxides as tri-functional electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 11920-11929.	5.2	80
458	A synthetic Mn ₄ Ca-cluster mimicking the oxygen-evolving center of photosynthesis. Science, 2015, 348, 690-693.	6.0	428
459	Revised force-field parameters for chlorophyll-a, pheophytin-a and plastoquinone-9. Journal of Molecular Graphics and Modelling, 2015, 58, 30-39.	1.3	16

#	ARTICLE	IF	CITATIONS
460	Electrosynthesis of Highly Transparent Cobalt Oxide Water Oxidation Catalyst Films from Cobalt Aminopolycarboxylate Complexes. ChemSusChem, 2015, 8, 1394-1403.	3.6	21
461	Engineering biological systems toward a sustainable bioeconomy. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 813-838.	1.4	46
462	Novel chlorophylls and new directions in photosynthesis research. Functional Plant Biology, 2015, 42, 493.	1.1	55
463	Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals. Nano Letters, 2015, 15, 3634-3639.	4.5	362
464	Phase Transformation Fabrication of a Cu ₂ S Nanoplate as an Efficient Catalyst for Water Oxidation with Glycine. Inorganic Chemistry, 2015, 54, 3281-3289.	1.9	102
465	Cobalt–Salen Complexes as Catalyst Precursors for Electrocatalytic Water Oxidation at Low Overpotential. Journal of Physical Chemistry C, 2015, 119, 8998-9004.	1.5	60
466	Red-light-driven photocatalytic hydrogen evolution using a ruthenium quaterpyridine complex. Chemical Communications, 2015, 51, 9261-9264.	2.2	43
467	Using computational chemistry to design Ru photosensitizers with directional charge transfer. Coordination Chemistry Reviews, 2015, 304-305, 146-165.	9.5	55
468	Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag. Nano Research, 2015, 8, 3621-3629.	5.8	65
469	Flexible Hybrid Membranes with Ni(OH) < sub > 2 < / sub > Nanoplatelets Vertically Grown on Electrospun Carbon Nanofibers for High-Performance Supercapacitors. ACS Applied Materials & amp; Interfaces, 2015, 7, 22669-22677.	4.0	153
470	A Gel-Based Approach To Design Hierarchical CuS Decorated Reduced Graphene Oxide Nanosheets for Enhanced Peroxidase-like Activity Leading to Colorimetric Detection of Dopamine. Journal of Physical Chemistry C, 2015, 119, 23790-23800.	1.5	124
471	Mechanistic Investigations of Water Oxidation by a Molecular Cobalt Oxide Analogue: Evidence for a Highly Oxidized Intermediate and Exclusive Terminal Oxo Participation. Journal of the American Chemical Society, 2015, 137, 12865-12872.	6.6	124
472	Direct electron transfer from photosystem II to hematite in a hybrid photoelectrochemical cell. Chemical Communications, 2015, 51, 16952-16955.	2.2	33
473	A selectively exposed crystal facet-engineered TiO2 thin film photoanode for the higher performance of the photoelectrochemical water splitting reaction. Energy and Environmental Science, 2015, 8, 3646-3653.	15.6	100
474	Synthesis, structure and electrochemical properties of a cobalt(II) complex supported by 2-tetrahydrofurfurylamino-N,N-bis(2-methylene-4-tert-butyl-6-methyl)phenol. Inorganic Chemistry Communication, 2015, 61, 97-99.	1.8	7
475	Antimony porphyrins as red-light powered photocatalysts for solar fuel production from halide solutions in the presence of air. Photochemical and Photobiological Sciences, 2015, 14, 1826-1830.	1.6	19
476	Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society, 2015, 137, 14887-14904.	6.6	359
477	Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6111-8.	3.3	103

#	Article	IF	CITATIONS
478	Absorption spectra and sunlight conversion efficiency in fullerene bonded supramolecules on nanostructured ZnO. Journal of the Korean Physical Society, 2015, 67, 1262-1267.	0.3	7
479	Ultrafast Photoinduced Electron Transfer and Charge Stabilization in Donor–Acceptor Dyads Capable of Harvesting Nearâ€Infrared Light. Chemistry - A European Journal, 2015, 21, 11483-11494.	1.7	49
480	Tandem photo-electrode of InGaN with two Si p-n junctions for CO2 conversion to HCOOH with the efficiency greater than biological photosynthesis. Applied Physics Letters, 2015, 106, .	1.5	38
481	Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy and Environmental Science, 2015, 8, 2791-2796.	15.6	162
482	Reorganization of Substrate Waters between the Closed and Open Cubane Conformers during the S ₂ to S ₃ Transition in the Oxygen Evolving Complex. Biochemistry, 2015, 54, 6439-6442.	1.2	63
483	A molecular cobalt catalyst supported by an amine-bis(phenolate) ligand for both electrolytic and photolytic water reduction. RSC Advances, 2015, 5, 84770-84775.	1.7	6
484	Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population. Genome Biology, 2015, 16, 168.	3.8	52
485	Characterization of the Sr ²⁺ - and Cd ²⁺ -Substituted Oxygen-Evolving Complex of Photosystem II by Quantum Mechanics/Molecular Mechanics Calculations. Biochemistry, 2015, 54, 5959-5968.	1.2	24
486	Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nature Communications, 2015, 6, 8253.	5.8	352
487	Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications. Advances in Colloid and Interface Science, 2015, 225, 177-193.	7.0	62
488	Metal–organic framework immobilized cobalt oxide nanoparticles for efficient photocatalytic water oxidation. Journal of Materials Chemistry A, 2015, 3, 20607-20613.	5.2	57
489	Improved Photoelectrochemical Water Oxidation by the WO ₃ /CuWO ₄ Composite with a Manganese Phosphate Electrocatalyst. Langmuir, 2015, 31, 10897-10903.	1.6	79
490	Zinc Porphyrin–Re(I) Bipyridyl–Fullerene Triad: Synthesis, Characterization, and Kinetics of the Stepwise Electron-Transfer Processes Initiated by Visible Excitation. Inorganic Chemistry, 2015, 54, 280-292.	1.9	20
491	Fate of methanol under one-pot artificial photosynthesis condition with metal-loaded TiO2 as photocatalysts. Catalysis Today, 2015, 243, 235-250.	2.2	11
492	Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy and Environmental Science, 2015, 8, 760-775.	15.6	363
493	Water Oxidation at Electrodes Modified with Earthâ€Abundant Transitionâ€Metal Catalysts. ChemElectroChem, 2015, 2, 37-50.	1.7	213
494	Vectorial Electron Transfer for Improved Hydrogen Evolution by Mercaptopropionicâ€Acidâ€Regulated CdSe Quantumâ€Dots–TiO ₂ –Ni(OH) ₂ Assembly. ChemSusChem, 2015, 8, 642-64	9. ^{3.6}	39
495	Catalysis of water oxidation in acetonitrile by iridium oxide nanoparticles. Chemical Science, 2015, 6, 1761-1769.	3.7	36

#	Article	IF	CITATIONS
496	Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chemical Society Reviews, 2015, 44, 623-636.	18.7	872
497	CdS quantum dot sensitized p-type NiO as photocathode with integrated cobaloxime in photoelectrochemical cell for water splitting. Chinese Chemical Letters, 2015, 26, 141-144.	4.8	20
498	A water-soluble iron electrocatalyst for water oxidation with high TOF. Applied Catalysis A: General, 2015, 490, 128-132.	2.2	39
499	Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredųn, Argentina. Renewable and Sustainable Energy Reviews, 2015, 41, 568-583.	8.2	75
500	Intrinsic enzyme mimicking activity of gold nanoclusters upon visible light triggering and its application for colorimetric trypsin detection. Biosensors and Bioelectronics, 2015, 64, 523-529.	5. 3	170
501	Recent progress in homogeneous multielectron transfer photocatalysis and artificial photosynthetic solar energy conversion. Coordination Chemistry Reviews, 2015, 304-305, 102-108.	9.5	71
502	Nano-Structures for Optics and Photonics. NATO Science for Peace and Security Series B: Physics and Biophysics, 2015, , .	0.2	8
503	Recent advances in photosynthetic energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 22, 19-33.	5.6	95
504	Visible Light-Driven Water Oxidation Catalyzed by Ruthenium Complexes. , 0, , .		0
505	Analysis of Products from Photoelectrochemical Reduction of ¹³ CO ₂ by GaN-Si Based Tandem Photoelectrode. Journal of Physical Chemistry C, 2016, 120, 13970-13975.	1.5	28
506	Electrocatalytic water oxidation using a chair-like tetranuclear copper(ii) complex in a neutral aqueous solution. Dalton Transactions, 2016, 45, 12685-12690.	1.6	53
507	Efficient molecular ruthenium catalysts containing anionic ligands for water oxidation. Dalton Transactions, 2016, 45, 18459-18464.	1.6	12
508	Functional Arrays for Light Energy Capture and Charge Separation. Chemical Record, 2016, 16, 1067-1081.	2.9	7
510	(040)â€Crystal Facet Engineering of BiVO ₄ Plate Photoanodes for Solar Fuel Production. Advanced Energy Materials, 2016, 6, 1501754.	10.2	136
511	Enhanced Reactivity of Water Clusters towards Oxidation in Water/Acetonitrile Mixtures. ChemElectroChem, 2016, 3, 2003-2007.	1.7	6
512	Controllable Electronic Structures and Photoinduced Processes of Bayâ€Linked Perylenediimide Dimers and a Ferroceneâ€Linked Triad. Chemistry - A European Journal, 2016, 22, 9631-9641.	1.7	20
513	Ca ²⁺ â€Induced Oxygen Generation by FeO ₄ ^{2â°'} at pHâ€9 â€" 1 Angewandte Chemie, 2016, 128, 3064-3068.	0. 1.6	7
514	Water Oxidation by Copper–Amino Acid Catalysts at Low Overpotentials. ChemCatChem, 2016, 8, 2165-2170.	1.8	22

#	Article	IF	CITATIONS
515	Excitation Dynamics in Heteroâ€bichromophoric Calixarene Systems. ChemPhysChem, 2016, 17, 1686-1706.	1.0	10
516	The Road to MOF-Related Functional Materials and Beyond: Desire, Design, Decoration, and Development. Chemical Record, 2016, 16, 1456-1476.	2.9	24
517	Ironâ€Based Metal–Organic Frameworks as Catalysts for Visible Lightâ€Driven Water Oxidation. Small, 2016, 12, 1351-1358.	5. 2	136
518	Electrosynthesis of Biomimetic Manganese–Calcium Oxides for Water Oxidation Catalysis—Atomic Structure and Functionality. ChemSusChem, 2016, 9, 379-387.	3.6	33
519	Further Investigation of a Nickelâ€Based Homogeneous Water Oxidation Catalyst with Two <i>cis</i> Labile Sites. ChemSusChem, 2016, 9, 485-491.	3.6	65
520	Imidazolium Ionic Liquids, Imidazolylidene Heterocyclic Carbenes, and Zeolitic Imidazolate Frameworks for CO ₂ Capture and Photochemical Reduction. Angewandte Chemie - International Edition, 2016, 55, 2308-2320.	7.2	377
521	Effect of Spacer Connecting the Secondary Electron Donor Phenothiazine in Subphthalocyanine–Fullerene Conjugates in Promoting Electron Transfer Followed by Hole Shift Process. Chemistry - an Asian Journal, 2016, 11, 1246-1256.	1.7	10
522	Efficient Photoinduced Charge Separation in a BODIPY–C ₆₀ Dyad. Journal of Physical Chemistry C, 2016, 120, 16526-16536.	1.5	25
523	Ca ²⁺ â€Induced Oxygen Generation by FeO ₄ ^{2â°'} at pHâ€9 â€" 10 Angewandte Chemie - International Edition, 2016, 55, 3012-3016.) _{7.2}	35
524	Imidazolatsysteme zur CO ₂ â€Abscheidung und photochemischen Reduktion. Angewandte Chemie, 2016, 128, 2352-2364.	1.6	52
525	Heterogene molekulare Systeme fýr eine photokatalytische CO ₂ â€Reduktion mit Wasseroxidation. Angewandte Chemie, 2016, 128, 15146-15174.	1.6	46
527	Rational Ligand Design for an Efficient Biomimetic Water Splitting Complex. Journal of Physical Chemistry A, 2016, 120, 10033-10042.	1.1	6
528	Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition. Chemistry - A European Journal, 2016, 22, 32-57.	1.7	303
529	Triacylglycerol Accumulation in Photosynthetic Cells in Plants and Algae. Sub-Cellular Biochemistry, 2016, 86, 179-205.	1.0	71
530	Photochemical water oxidation system using ruthenium catalysts embedded into vesicle membranes. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 151-160.	2.0	6
531	Toward "metalloMOFzymes― Metal–Organic Frameworks with Single-Site Metal Catalysts for Small-Molecule Transformations. Inorganic Chemistry, 2016, 55, 7281-7290.	1.9	96
532	Zirconium dioxide nanopowders with incorporated Si4+ ions as efficient photocatalyst for degradation of trichlorophenol using simulated solar light. Applied Catalysis B: Environmental, 2016, 195, 112-120.	10.8	43
533	Interface coassembly of mesoporous MoS ₂ based-frameworks for enhanced near-infrared light driven photocatalysis. Chemical Communications, 2016, 52, 6431-6434.	2.2	38

#	Article	IF	CITATIONS
534	Computational Investigation and Design of Cobalt Aqua Complexes for Homogeneous Water Oxidation. Journal of Physical Chemistry C, 2016, 120, 7966-7975.	1.5	37
535	Assessment of photosynthetic performance, carboxylase activities, and ATP content during tetrasporic development in Gracilariopsis lemaneiformis (Gracilariaceae, Rhodophyta). Journal of Applied Phycology, 2016, 28, 2939-2952.	1.5	14
536	A highly efficient covalent organic framework film photocatalyst for selective solar fuel production from CO ₂ . Journal of Materials Chemistry A, 2016, 4, 9413-9418.	5.2	148
537	A Novel Synthetic Route for the Preparation of an Amorphous Co/Fe Prussian Blue Coordination Compound with High Electrocatalytic Water Oxidation Activity. Inorganic Chemistry, 2016, 55, 4301-4307.	1.9	81
538	Reaction Progress Kinetic Analysis as a Tool To Reveal Ligand Effects in Ce(IV)-Driven IrCp*-Catalyzed Water Oxidation. ACS Catalysis, 2016, 6, 3418-3427.	5.5	32
539	Promoting visible light-driven hydrogen evolution over CdS nanorods using earth-abundant CoP as a cocatalyst. RSC Advances, 2016, 6, 33120-33125.	1.7	56
540	Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations?. Renewable and Sustainable Energy Reviews, 2016, 62, 134-163.	8.2	74
541	Sustainable Energy Systems: The Strategic Role of Chemical Energy Conversion. Topics in Catalysis, 2016, 59, 772-786.	1.3	48
542	Heterostructured semiconductor nanowire arrays for artificial photosynthesis. Materials Horizons, 2016, 3, 270-282.	6.4	95
543	Reduced Graphene Oxide-Immobilized Tris(bipyridine)ruthenium(II) Complex for Efficient Visible-Light-Driven Reductive Dehalogenation Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12141-12148.	4.0	33
544	The impact of modifying the ligands on hydrogen production electro-catalyzed by meso-tetra-p-X-phenylporphin cobalt complexes, CoT(X)PP. Journal of Molecular Catalysis A, 2016, 417, 101-106.	4.8	16
545	Synthesis of EDTA-assisted CeVO ₄ nanorods as robust peroxidase mimics towards colorimetric detection of H ₂ O ₂ . Journal of Materials Chemistry B, 2016, 4, 6316-6325.	2.9	42
546	Translational Science for Energy and Beyond. Inorganic Chemistry, 2016, 55, 9131-9143.	1.9	11
547	Metal–Organic Frameworks: Versatile Materials for Heterogeneous Photocatalysis. ACS Catalysis, 2016, 6, 7935-7947.	5.5	445
548	Heterogeneous Molecular Systems for Photocatalytic CO ₂ Reduction with Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 14924-14950.	7.2	360
549	Synthesis and electrocatalytic function for hydrogen generation of cobalt and nickel complexes supported by phenylenediamine ligand. Inorganic Chemistry Communication, 2016, 72, 100-104.	1.8	29
550	Merging Structural Information from X-ray Crystallography, Quantum Chemistry, and EXAFS Spectra: The Oxygen-Evolving Complex in PSII. Journal of Physical Chemistry B, 2016, 120, 10899-10922.	1.2	16
551	Microbial Electrochemical Systems with Future Perspectives using Advanced Nanomaterials and Microfluidics. Advanced Energy Materials, 2016, 6, 1600690.	10.2	20

#	ARTICLE	IF	CITATIONS
552	Evolution of Triplet Oxygen Molecule at the S ₄ State in Oxygen Evolving Complex of Photosystem II. A B3LYP Study. Chemistry Letters, 2016, 45, 1391-1393.	0.7	0
553	Visible-light-driven CO2 photo-catalytic reduction of Ru(II) and Ir(III) coordination complexes. Inorganic Chemistry Communication, 2016, 73, 80-89.	1.8	35
554	Charge-Transfer Dynamics in Nanorod Photocatalysts with Bimetallic Metal Tips. Journal of Physical Chemistry C, 2016, 120, 24491-24497.	1.5	26
555	Photonic contacting of gas–liquid phases in a falling film microreactor for continuous-flow photochemical catalysis with visible light. Reaction Chemistry and Engineering, 2016, 1, 636-648.	1.9	36
556	Mn ₄ Ca Cluster of Photosynthetic Oxygen-Evolving Center: Structure, Function and Evolution. Biochemistry, 2016, 55, 5901-5906.	1.2	42
557	Iron-Doped Nickel Phosphate as Synergistic Electrocatalyst for Water Oxidation. Chemistry of Materials, 2016, 28, 5659-5666.	3.2	262
558	Nanowire-Enabled Energy Conversion. Nanoscience and Technology, 2016, , 227-254.	1.5	0
559	Functionalized dye encapsulated polymer nanoparticles attached with a BSA scaffold as efficient antenna materials for artificial light harvesting. Nanoscale, 2016, 8, 16034-16043.	2.8	33
560	â€~Photosystem II: the water splitting enzyme of photosynthesis and the origin of oxygen in our atmosphere'. Quarterly Reviews of Biophysics, 2016, 49, e14.	2.4	56
561	Facile synthesis of porous CuO polyhedron from Cu-based metal organic framework (MOF-199) for electrocatalytic water oxidation. RSC Advances, 2016, 6, 77358-77365.	1.7	51
562	Mononuclear ruthenium polypyridine complexes that catalyze water oxidation. Chemical Science, 2016, 7, 6591-6603.	3.7	118
563	Tuning Optical and Electron Donor Properties by Peripheral Thio–Aryl Substitution of Subphthalocyanine: A New Series of Donor–Acceptor Hybrids for Photoinduced Charge Separation. Chemistry - A European Journal, 2016, 22, 13301-13311.	1.7	13
564	Crystallographic and Computational Analysis of the Barrel Part of the PsbO Protein of Photosystem II: Carboxylate–Water Clusters as Putative Proton Transfer Relays and Structural Switches. Biochemistry, 2016, 55, 4626-4635.	1.2	18
565	Room-Temperature Energy-Sampling $\hat{Kl^2}$ X-ray Emission Spectroscopy of the Mn ₄ Ca Complex of Photosynthesis Reveals Three Manganese-Centered Oxidation Steps and Suggests a Coordination Change Prior to O ₂ Formation. Biochemistry, 2016, 55, 4197-4211.	1.2	66
566	Spatially Separated Photosystem II and a Silicon Photoelectrochemical Cell for Overall Water Splitting: A Natural–Artificial Photosynthetic Hybrid. Angewandte Chemie, 2016, 128, 9375-9379.	1.6	15
567	Treated Nanolayered Mn Oxide by Oxidizable Compounds: A Strategy To Improve the Catalytic Activity toward Water Oxidation. Inorganic Chemistry, 2016, 55, 8827-8832.	1.9	29
568	Exploring a monothiolated \hat{l}^2 -cyclodextrin as the template to synthesize copper nanoclusters with exceptionally increased peroxidase-like activity. Mikrochimica Acta, 2016, 183, 2823-2830.	2.5	41
569	Dyeâ€Sensitized Solar Hydrogen Production: The Emerging Role of Metalâ€Free Organic Sensitizers. European Journal of Organic Chemistry, 2016, 2016, 5194-5215.	1.2	77

#	Article	IF	CITATIONS
570	The effects of chelating N ₄ ligand coordination on Co(<scp>ii</scp>)-catalysed photochemical conversion of CO ₂ to CO: reaction mechanism and DFT calculations. Catalysis Science and Technology, 2016, 6, 7408-7420.	2.1	59
571	Alternating current output from a photosynthesis-inspired photoelectrochemical cell. Nano Energy, 2016, 28, 188-194.	8.2	21
572	Charge Transport in Twoâ€Photon Semiconducting Structures for Solar Fuels. ChemSusChem, 2016, 9, 2878-2904.	3.6	39
573	An efficient and inexpensive water-oxidizing manganese-based oxide electrode. Dalton Transactions, 2016, 45, 16948-16954.	1.6	13
574	A Nickel(II) Complex as a Homogeneous Electrocatalyst for Water Oxidation at Neutral pH: Dual Role of HPO ₄ ^{2â^²} in Catalysis. ChemCatChem, 2016, 8, 3287-3293.	1.8	68
575	Facile Synthesis of Water-Soluble Cationic Tin(IV) Porphyrins and Water-Insoluble Tin(IV) Porphyrins in Water at Ambient Temperature. Bulletin of the Chemical Society of Japan, 2016, 89, 902-904.	2.0	6
576	Well–dispersed assembled porphyrin nanorods on graphene for the enhanced photocatalytic performance. ChemistrySelect, 2016, 1, 4430-4434.	0.7	31
577	One-Pot Facile Synthesis of Water-Soluble Cationic Aluminum(III) Porphyrins in a Unique Heterogeneous System at Ambient Temperature. Bulletin of the Chemical Society of Japan, 2016, 89, 334-336.	2.0	11
578	Advanced Materials for Biomedical Engineering Applications. , 2016, , 384-420.		0
579	Spatially Separated Photosystem II and a Silicon Photoelectrochemical Cell for Overall Water Splitting: A Natural–Artificial Photosynthetic Hybrid. Angewandte Chemie - International Edition, 2016, 55, 9229-9233.	7.2	49
580	Harnessing and storing visible light using a heterojunction of WO3 and CdS for sunlight-free catalysis. Photochemical and Photobiological Sciences, 2016, 15, 1006-1011.	1.6	13
581	Sub-100 fs Charge Separation and Subsequent Diffusive Solvation Observed for Asymmetric Bianthryl Derivative in Ionic Liquid. Journal of Physical Chemistry C, 2016, 120, 14502-14512.	1.5	9
582	Magnetic carbon nitride nanocomposites as enhanced peroxidase mimetics for use in colorimetric bioassays, and their application to the determination of H2O2 and glucose. Mikrochimica Acta, 2016, 183, 3191-3199.	2.5	58
583	Activity origin and catalyst design principles for Âelectrocatalytic hydrogen evolution on heteroatom-doped Âgraphene. Nature Energy, 2016, 1 , .	19.8	927
584	Dissection of Electronic Substituent Effects in Multielectron–Multistep Molecular Catalysis. Electrochemical CO ₂ -to-CO Conversion Catalyzed by Iron Porphyrins. Journal of Physical Chemistry C, 2016, 120, 28951-28960.	1.5	139
585	Microfluidic chip-based one-step fabrication of an artificial photosystem I for photocatalytic cofactor regeneration. RSC Advances, 2016, 6, 101974-101980.	1.7	29
586	Role of Electron Correlation along the Water Splitting Reaction. Journal of Chemical Theory and Computation, 2016, 12, 5803-5810.	2.3	5
587	In situ electrochemical formation of NiSe/NiO _x core/shell nano-electrocatalysts for superior oxygen evolution activity. Catalysis Science and Technology, 2016, 6, 8268-8275.	2.1	78

#	Article	IF	CITATIONS
588	Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical Reviews, 2016, 116, 14120-14136.	23.0	1,259
589	Quinones as Reversible Electron Relays in Artificial Photosynthesis. ChemPhysChem, 2016, 17, 1321-1328.	1.0	26
590	Solids Go Bio: Inorganic Nanoparticles as Enzyme Mimics. European Journal of Inorganic Chemistry, 2016, 2016, 1906-1915.	1.0	167
591	Enhanced Photocatalytic Hydrogen Production by Adsorption of an [FeFe]â€Hydrogenase Subunit Mimic on Selfâ€Assembled Membranes. European Journal of Inorganic Chemistry, 2016, 2016, 554-560.	1.0	26
592	Review of microalgae growth in palm oil mill effluent for lipid production. Clean Technologies and Environmental Policy, 2016, 18, 2347-2361.	2.1	27
593	Water oxidation catalysis – role of redox and structural dynamics in biological photosynthesis and inorganic manganese oxides. Energy and Environmental Science, 2016, 9, 2433-2443.	15.6	99
594	Synthesis of core–shell structured Ag ₃ PO ₄ @benzoxazine soft gel nanocomposites and their photocatalytic performance. RSC Advances, 2016, 6, 62244-62251.	1.7	6
595	Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chemical Society Reviews, 2016, 45, 4127-4170.	18.7	378
596	Natureâ€Inspired Design of Artificial Solarâ€toâ€Fuel Conversion Systems based on Copper Phosphate Microflowers. ChemSusChem, 2016, 9, 1575-1578.	3.6	10
597	Catalytic Water Oxidation by Ruthenium Complexes Containing Negatively Charged Ligand Frameworks. Chemical Record, 2016, 16, 940-963.	2.9	14
598	Mono―and dichromatic LED illumination leads to enhanced growth and energy conversion for highâ€efficiency cultivation of microalgae for application in space. Biotechnology Journal, 2016, 11, 1060-1071.	1.8	34
599	Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chemical Reviews, 2016, 116, 2886-2936.	23.0	549
600	Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy and Environmental Science, 2016, 9, 1327-1334.	15.6	332
601	Photodeposition as a facile route to tunable Pt photocatalysts for hydrogen production: on the role of methanol. Catalysis Science and Technology, 2016, 6, 81-88.	2.1	65
602	Water oxidation by a soluble iron(<scp>iii</scp>)–cyclen complex: new findings. Dalton Transactions, 2016, 45, 2618-2623.	1.6	43
603	Modulating the generation of long-lived charge separated states exclusively from the triplet excited states in palladium porphyrin–fullerene conjugates. Nanoscale, 2016, 8, 8333-8344.	2.8	38
604	Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Applied Catalysis B: Environmental, 2016, 191, 130-137.	10.8	344
605	An artificial photosynthetic system containing an inorganic semiconductor and a molecular catalyst for photocatalytic water oxidation. Journal of Catalysis, 2016, 338, 168-173.	3.1	66

#	Article	IF	CITATIONS
606	Visible Lightâ€Driven Hydrogen Evolution from Aqueous Solution in a Nobleâ€Metalâ€Free System Catalyzed by a Cobalt Phthalocyanine. ChemistrySelect, 2016, 1, 425-429.	0.7	13
607	Nanoscale cobalt metal–organic framework as a catalyst for visible light-driven and electrocatalytic water oxidation. New Journal of Chemistry, 2016, 40, 3032-3035.	1.4	38
608	Synthesis of an electro-catalyst based on a cobalt(II) complex with dimethylaminoethylamino-N,N-bis(2-methylene-4-tert-butyl-6-methylphenol). Journal of Coordination Chemistry, 2016, 69, 628-637.	0.8	4
609	Synthesis and electro- and photo-catalytic properties of a dinuclear cobalt(III) complex supported by 2-pyridylamino-N,N-bis(2-methylene-4,6-bimethyl)phenol. Polyhedron, 2016, 107, 83-88.	1.0	11
610	BiOI hierarchical nanoflowers as novel robust peroxidase mimetics for colorimetric detection of H ₂ O ₂ . RSC Advances, 2016, 6, 17483-17493.	1.7	38
611	Polyoxometalate-assisted synthesis of transition-metal cubane clusters as artificial mimics of the oxygen-evolving center of photosystem II. Coordination Chemistry Reviews, 2016, 313, 94-110.	9.5	111
612	Rational design of semiconductor-based photocatalysts for advanced photocatalytic hydrogen production: the case of cadmium chalcogenides. Inorganic Chemistry Frontiers, 2016, 3, 591-615.	3.0	151
613	A Molecular Tetrad That Generates a High-Energy Charge-Separated State by Mimicking the Photosynthetic Z-Scheme. Journal of the American Chemical Society, 2016, 138, 3752-3760.	6.6	66
614	Synthesis, structure and electrolytic properties of a dinuclear cobalt(III) complex with amine-bis(phenolate) ligands. Synthetic Metals, 2016, 212, 69-74.	2.1	5
615	Redox potential of the terminal quinone electron acceptor Q _B in photosystem II reveals the mechanism of electron transfer regulation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 620-625.	3.3	66
616	Electrochemistry of layered GaSe and GeS: applications to ORR, OER and HER. Physical Chemistry Chemical Physics, 2016, 18, 1699-1711.	1.3	77
617	Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-Edge X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 831-840.	1.5	146
618	Photocatalytic CO2 Reduction. Green Chemistry and Sustainable Technology, 2016, , 1-31.	0.4	1
619	Spin State as a Marker for the Structural Evolution of Nature's Water-Splitting Catalyst. Inorganic Chemistry, 2016, 55, 488-501.	1.9	87
620	A multicomponent molecular approach to artificial photosynthesis $\hat{a} \in \text{``the role of fullerenes and endohedral metallofullerenes. Chemical Society Reviews, 2016, 45, 612-630.}$	18.7	141
621	Dynamics of the Special Pair of Chlorophylls of Photosystem II. Journal of the American Chemical Society, 2016, 138, 257-264.	6.6	30
622	Crystallographic Structure and Morphology Transformation of MnO ₂ Nanorods as Efficient Electrocatalysts for Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2016, 163, H67-H73.	1.3	72
623	Exploration of the Copper Active Sites in Electrooxidation of Glucose on a Copper/Nitrogen Doped Graphene Nanocomposite. Journal of Physical Chemistry C, 2016, 120, 15593-15599.	1.5	17

#	Article	IF	CITATIONS
624	Pd–MgNi x nanospheres/black-TiO 2 porous films with highly efficient hydrogen production by near-complete suppression of surface recombination. Applied Catalysis B: Environmental, 2016, 183, 69-74.	10.8	26
625	Solar Energy for Fuels. Topics in Current Chemistry, 2016, , .	4.0	7
626	Synthesis of a nano-sized hybrid C ₃ N ₄ /TiO ₂ sample for enhanced and steady solar energy absorption and utilization. Sustainable Energy and Fuels, 2017, 1, 95-102.	2.5	22
627	The effect of oxidation state of metal on hydrogen production electro-catalyzed by nickel complexes supported by maleonitriledithiolate ligand. Journal of Electroanalytical Chemistry, 2017, 785, 58-64.	1.9	27
628	Emerging renewable and sustainable energy technologies: State of the art. Renewable and Sustainable Energy Reviews, 2017, 71, 12-28.	8.2	405
629	Self-assembly of biomimetic light-harvesting complexes capable of hydrogen evolution. Green Energy and Environment, 2017, 2, 58-63.	4.7	50
630	Molecular–Supramolecular Light Harvesting for Photochemical Energy Conversion: Making Every Photon Count. ACS Energy Letters, 2017, 2, 357-363.	8.8	47
631	Potential application of Ni and Co stabilized zirconia as oxygen reduction reaction catalyst. Catalysis Communications, 2017, 93, 37-42.	1.6	5
632	Crucial Roles of Electron–Proton Transport Relay in the Photosystem II-Photocatalytic Hybrid System for Overall Water Splitting. Journal of Physical Chemistry C, 2017, 121, 2605-2612.	1.5	15
633	Zinc-Blende CdS Nanocubes with Coordinated Facets for Photocatalytic Water Splitting. ACS Catalysis, 2017, 7, 1470-1477.	5.5	83
634	Solar energy conversion: From natural to artificial photosynthesis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 31, 36-83.	5.6	228
635	Hydrogen energy production using manganese/semiconductor system inspired by photosynthesis. International Journal of Hydrogen Energy, 2017, 42, 8530-8538.	3.8	11
636	Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: a combined first-principles calculation and experimental study. Nanoscale, 2017, 9, 4090-4096.	2.8	126
637	Sulfurated [NiFe]-based layered double hydroxides nanoparticles as efficient co-catalysts for photocatalytic hydrogen evolution using CdTe/CdS quantum dots. Applied Catalysis B: Environmental, 2017, 209, 155-160.	10.8	66
638	Photo-driven redox-neutral decarboxylative carbon-hydrogen trifluoromethylation of (hetero)arenes with trifluoroacetic acid. Nature Communications, 2017, 8, 14353.	5.8	75
639	Protection of Photosynthetic Algae against Ultraviolet Radiation by One-Step CeO ₂ Shellization. Langmuir, 2017, 33, 2454-2459.	1.6	29
640	Assembling metallic 1T-MoS ₂ nanosheets with inorganic-ligand stabilized quantum dots for exceptional solar hydrogen evolution. Chemical Communications, 2017, 53, 5606-5609.	2.2	39
641	Fabrication of a TiO ₂ @porphyrin nanofiber hybrid material: a highly efficient photocatalyst under simulated sunlight irradiation. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017, 8, 015009.	0.7	14

#	Article	IF	CITATIONS
642	Core-substituted naphthalenediimides anchored on BiVO ₄ for visible light-driven water splitting. Green Chemistry, 2017, 19, 2448-2462.	4.6	11
643	Fabrication of a Graphene@TiO ₂ @Porphyrin Hybrid Material and Its Photocatalytic Properties under Simulated Sunlight Irradiation. ChemistrySelect, 2017, 2, 3329-3333.	0.7	28
644	Photoinduced enzymatic conversion of CO ₂ gas to solar fuel on functional cellulose nanofiber films. Journal of Materials Chemistry A, 2017, 5, 9691-9701.	5.2	26
645	Layer-by-layer assembled photocatalysts for environmental remediation and solar energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 32, 1-20.	5.6	36
646	Self-Assembled Ruthenium(II)Porphyrin-Aluminium(III)Porphyrin-Fullerene Triad for Long-Lived Photoinduced Charge Separation. Journal of Physical Chemistry A, 2017, 121, 4242-4252.	1.1	25
647	Recent Methods for the Synthesis of Noble-Metal-Free Hydrogen-Evolution Electrocatalysts: From Nanoscale to Sub-nanoscale. Small Methods, 2017, 1, 1700118.	4.6	96
648	Homogeneous Electrocatalytic Water Oxidation by a Rigid Macrocyclic Copper(<scp>II</scp>) Complex. Chinese Journal of Chemistry, 2017, 35, 586-590.	2.6	17
649	Water splitting by CdS/Pt/WO 3 -CeO x photocatalysts with assisting of artificial blood perfluorodecalin. Journal of Catalysis, 2017, 350, 189-196.	3.1	56
650	Photoreduction of quinones by thiols sensitized by phthalocyanines. Photochemical and Photobiological Sciences, 2017, 16, 1043-1048.	1.6	4
651	Water oxidation mediated by ruthenium oxide nanoparticles supported on siliceous mesocellular foam. Catalysis Science and Technology, 2017, 7, 293-299.	2.1	13
653	Self-Healing in Nano-sized Manganese-Based Water-Oxidizing Catalysts. , 2017, , 333-341.		1
654	Artificial Enzymeâ€based Logic Operations to Mimic an Intracellular Enzymeâ€participated Redox Balance System. Chemistry - A European Journal, 2017, 23, 9156-9161.	1.7	16
655	Influence of the Electrostatic Interaction between a Molecular Catalyst and Semiconductor on Photocatalytic Hydrogen Evolution Activity in Cobaloxime/CdS Hybrid Systems. ACS Applied Materials & ACS ACS Applied Materials & ACS	4.0	31
656	"Superâ€Reducing―Photocatalysis: Consecutive Energy and Electron Transfers with Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2017, 56, 10280-10281.	7.2	27
657	Photoelectrochemical devices for solar water splitting – materials and challenges. Chemical Society Reviews, 2017, 46, 4645-4660.	18.7	1,140
658	Assembly of <scp>CdTe</scp> Quantum Dots and Photosystem <scp>II</scp> Multilayer Films with Enhanced Photocurrent. Chinese Journal of Chemistry, 2017, 35, 881-885.	2.6	12
659	A new preparation of a bifunctional crystalline heterogeneous copper electrocatalyst by electrodeposition using a Robson-type macrocyclic dinuclear copper complex for efficient hydrogen and oxygen evolution from water. Dalton Transactions, 2017, 46, 9131-9139.	1.6	13
660	An alkaline electro-activated Fe–Ni phosphide nanoparticle-stack array for high-performance oxygen evolution under alkaline and neutral conditions. Journal of Materials Chemistry A, 2017, 5, 13329-13335.	5.2	135

#	Article	IF	CITATIONS
661	Fullâ€Spectrum Solarâ€Lightâ€Activated Photocatalysts for Light–Chemical Energy Conversion. Advanced Energy Materials, 2017, 7, 1700473.	10.2	213
662	Electrochemical Harvesting of Photosynthetic Electrons from Unicellular Algae Population at the Preparative Scale by Using 2,6-dichlorobenzoquinone. Electrochimica Acta, 2017, 236, 337-342.	2.6	32
663	A dual enzyme–inorganic hybrid nanoflower incorporated microfluidic paper-based analytic device (Î⅓PAD) biosensor for sensitive visualized detection of glucose. Nanoscale, 2017, 9, 5658-5663.	2.8	95
664	A Spotlight on the Compatibility between XFEL and Ab Initio Structures of the Oxygen Evolving Complex in Photosystem II. Chemistry - A European Journal, 2017, 23, 6969-6973.	1.7	28
665	<scp>MoS₂â€Pt₃Au₁</scp> Nanocomposites with Enhanced Peroxidaseâ€Like Activities for Selective Colorimetric Detection of Phenol. Chinese Journal of Chemistry, 2017, 35, 605-612.	2.6	19
667	Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering. Chemistry of Materials, 2017, 29, 3006-3019.	3.2	176
668	Harvesting the photoexcited holes on a photocatalytic proton reduction metal–organic framework. Faraday Discussions, 2017, 201, 71-86.	1.6	14
669	Structural models of the biological oxygen-evolving complex: achievements, insights, and challenges for biomimicry. Green Chemistry, 2017, 19, 2309-2325.	4.6	74
670	Solar Fuels and Solar Chemicals Industry. Accounts of Chemical Research, 2017, 50, 616-619.	7.6	333
671	Crystalline Copper Phosphide Nanosheets as an Efficient Janus Catalyst for Overall Water Splitting. ACS Applied Materials & Diterfaces, 2017, 9, 2240-2248.	4.0	228
672	Excited State Charge Separation in Solution and in Electropolymerized Films of Terthiophene-Fullerene Dyad and Phenothiazine-Terthiophene-Fullerene Triad. ECS Journal of Solid State Science and Technology, 2017, 6, M3007-M3013.	0.9	2
673	Biomimetic electron transport via multiredox shuttles from photosystem II to a photoelectrochemical cell for solar water splitting. Energy and Environmental Science, 2017, 10, 765-771.	15.6	68
674	Arginine-induced porphyrin-based self-assembled nanostructures for photocatalytic applications under simulated sunlight irradiation. Photochemical and Photobiological Sciences, 2017, 16, 151-154.	1.6	35
675	Guest-Induced Modulation of the Energy Transfer Process in Porphyrin-Based Artificial Light Harvesting Dendrimers. Journal of the American Chemical Society, 2017, 139, 993-1002.	6.6	37
676	Photoinduced \hat{l} electron transfer in phenylene bridged Mo ₂ dimers. Physical Chemistry Chemical Physics, 2017, 19, 1740-1745.	1.3	1
677	Photosystem II Based Multilayers. , 2017, , 109-133.		0
678	Charge Generation in Organic Solar Cells: Interplay of Quantum Dynamics, Decoherence, and Recombination. Journal of Physical Chemistry C, 2017, 121, 23276-23286.	1.5	15
679	Visualizing the Nano Cocatalyst Aligned Electric Fields on Single Photocatalyst Particles. Nano Letters, 2017, 17, 6735-6741.	4.5	164

#	Article	IF	CITATIONS
680	Electrochemical and photochemical hydrogen generation by a water soluble cobalt(II) complex of 2,2-bipyridine. Transition Metal Chemistry, 2017, 42, 711-717.	0.7	6
681	Artificial Photosynthetic Systems for CO ₂ Reduction: Progress on Higher Efficiency with Cobalt Complexes as Catalysts. ChemSusChem, 2017, 10, 4393-4402.	3.6	70
682	Electronic Couplings for Charge Transfer across Molecule/Metal and Molecule/Semiconductor Interfaces: Performance of the Projector Operator-Based Diabatization Approach. Journal of Physical Chemistry C, 2017, 121, 19677-19689.	1.5	44
683	Plasma technology – a novel solution for CO ₂ conversion?. Chemical Society Reviews, 2017, 46, 5805-5863.	18.7	760
684	Axially Assembled Photosynthetic Antenna-Reaction Center Mimics Composed of Boron Dipyrromethenes, Aluminum Porphyrin, and Fullerene Derivatives. Inorganic Chemistry, 2017, 56, 10268-10280.	1.9	29
685	Structure dependence of intramolecular electron transfer reactions of simple dyads of a zinc(<scp>ii</scp>) porphyrin complex bearing a peripheral bipyridine moiety. Dalton Transactions, 2017, 46, 12645-12654.	1.6	3
686	Natural and Artificial Mn ₄ Ca Cluster for the Water Splitting Reaction. ChemSusChem, 2017, 10, 4403-4408.	3.6	36
687	PVP-assisted synthesis of porous CoO prisms with enhanced electrocatalytic oxygen evolution properties. Journal of Energy Chemistry, 2017, 26, 1210-1216.	7.1	26
688	CO ₂ Reduction: From the Electrochemical to Photochemical Approach. Advanced Science, 2017, 4, 1700194.	5.6	651
689	Bio-Optics and Bio-Inspired Optical Materials. Chemical Reviews, 2017, 117, 12705-12763.	23.0	286
690	Bio-Optics and Bio-Inspired Optical Materials. Chemical Reviews, 2017, 117, 12705-12763. Photon Harvesting in Conjugated Polymer-Based Functional Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 4608-4620.	23.0	31
	Photon Harvesting in Conjugated Polymer-Based Functional Nanoparticles. Journal of Physical		
690	Photon Harvesting in Conjugated Polymer-Based Functional Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 4608-4620. Selective photocatalytic hydroxylation and epoxidation reactions by an iron complex using water as	2.1	31
690 691	Photon Harvesting in Conjugated Polymer-Based Functional Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 4608-4620. Selective photocatalytic hydroxylation and epoxidation reactions by an iron complex using water as the oxygen source. Chemical Science, 2017, 8, 7545-7551. Quantum Chemical Modeling of Homogeneous Water Oxidation Catalysis. ChemSusChem, 2017, 10,	2.1	31 53
690 691 692	Photon Harvesting in Conjugated Polymer-Based Functional Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 4608-4620. Selective photocatalytic hydroxylation and epoxidation reactions by an iron complex using water as the oxygen source. Chemical Science, 2017, 8, 7545-7551. Quantum Chemical Modeling of Homogeneous Water Oxidation Catalysis. ChemSusChem, 2017, 10, 4236-4263. Current progress and challenges in engineering viable artificial leaf for solar water splitting.	2.1 3.7 3.6	315359
690 691 692	Photon Harvesting in Conjugated Polymer-Based Functional Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 4608-4620. Selective photocatalytic hydroxylation and epoxidation reactions by an iron complex using water as the oxygen source. Chemical Science, 2017, 8, 7545-7551. Quantum Chemical Modeling of Homogeneous Water Oxidation Catalysis. ChemSusChem, 2017, 10, 4236-4263. Current progress and challenges in engineering viable artificial leaf for solar water splitting. Journal of Science: Advanced Materials and Devices, 2017, 2, 399-417. Harnessing sunlight without a photosensitizer for highly efficient consecutive [3+2]/[4+2] annulation to synthesize fused benzobicyclic skeletons. Chemical Communications, 2017, 53,	2.1 3.7 3.6	31535926
690 691 692 693	Photon Harvesting in Conjugated Polymer-Based Functional Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 4608-4620. Selective photocatalytic hydroxylation and epoxidation reactions by an iron complex using water as the oxygen source. Chemical Science, 2017, 8, 7545-7551. Quantum Chemical Modeling of Homogeneous Water Oxidation Catalysis. ChemSusChem, 2017, 10, 4236-4263. Current progress and challenges in engineering viable artificial leaf for solar water splitting. Journal of Science: Advanced Materials and Devices, 2017, 2, 399-417. Harnessing sunlight without a photosensitizer for highly efficient consecutive [3+2]/[4+2] annulation to synthesize fused benzobicyclic skeletons. Chemical Communications, 2017, 53, 10707-10710. A pyrene-modified cobalt salophen complex immobilized on multiwalled carbon nanotubes acting as a	2.1 3.7 3.6 1.5	31 53 59 26 20

#	Article	IF	CITATIONS
698	Visible-light-driven photocatalytic system based on a nickel complex over CdS materials for hydrogen production from water. Applied Catalysis B: Environmental, 2017, 219, 353-361.	10.8	63
699	Optical, wetting and electrical properties of functionalized fulleropyrrolidine thin films. Applied Surface Science, 2017, 425, 1125-1129.	3.1	1
700	Frontiers of water oxidation: the quest for true catalysts. Chemical Society Reviews, 2017, 46, 6124-6147.	18.7	198
701	Light Sources for Photochemical Processes – Estimation of Technological Potentials. Chemie-Ingenieur-Technik, 2017, 89, 1159-1173.	0.4	79
702	Enhancing (crop) plant photosynthesis by introducing novel genetic diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160380.	1.8	26
703	Structural Diversities in Heterometallic Mna+"Ca Cluster Chemistry from the Use of Salicylhydroxamic Acid: {Mn ^{III} ₄ Ca ₂ }, {Mn ^{IIIII} ₆ Ca\sub>2}, {Mn ^{IIIIIV} ₈ Ca}, and {Mn ^{IIII} ₈ Ca ₂ } Complexes with Relevance to Both High- and	1.9	15
704	Perylene Diimide Aggregates on Sb-Doped SnO ₂ : Charge Transfer Dynamics Relevant to Solar Fuel Generation. Journal of Physical Chemistry C, 2017, 121, 17737-17745.	1.5	22
705	Strategic design of a ruthenium catalyst for both CO2 reduction and H2O oxidation: the electronic influence of the co-ligands. Chemical Communications, 2017, 53, 10006-10009.	2.2	20
706	Ultrafast Electron Dynamics in Solar Energy Conversion. Chemical Reviews, 2017, 117, 10940-11024.	23.0	266
707	Synthesis, crystal structure and water oxidation activity of [Ru(terpy)(bipy)Cl] ⁺ complexes: influence of ancillary ligands on O ₂ generation. RSC Advances, 2017, 7, 39325-39333.	1.7	6
708	Facile and fast fabrication of iron-phosphate supported on nickel foam as a highly efficient and stable oxygen evolution catalyst. Journal of Materials Chemistry A, 2017, 5, 18627-18633.	5.2	59
709	Biomimetic Oxygen-Evolving Photobacteria Based on Amino Acid and Porphyrin Hierarchical Self-Organization. ACS Nano, 2017, 11, 12840-12848.	7.3	26
710	Self-Assembled Core–Shell CdTe/Poly(3-hexylthiophene) Nanoensembles as Novel Donor–Acceptor Light-Harvesting Systems. ACS Applied Materials & Light-Harvesting Systems	4.0	8
711	Photosynthetic water splitting by the Mn ₄ Ca ²⁺ O _{<i>X</i>} catalyst of photosystem II: its structure, robustness and mechanism. Quarterly Reviews of Biophysics, 2017, 50, e13.	2.4	19
712	Mimicking horseradish peroxidase and oxidase using ruthenium nanomaterials. RSC Advances, 2017, 7, 52210-52217.	1.7	102
713	Interfacial charge transfer in semiconductor-molecular photocatalyst systems for proton reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 165-179.	5.6	35
714	Catalytic Water Oxidation by a Bio-inspired Nickel Complex with a Redox-Active Ligand. Inorganic Chemistry, 2017, 56, 13638-13641.	1.9	58
715	Transition-Metal Phosphide–Carbon Nanosheet Composites Derived from Two-Dimensional Metal-Organic Frameworks for Highly Efficient Electrocatalytic Water-Splitting. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40171-40179.	4.0	83

#	Article	IF	CITATIONS
716	Thermal oxidation synthesis of crystalline iron-oxide nanowires on low-cost steel substrates for solar water splitting. Semiconductor Science and Technology, 2017, 32, 084001.	1.0	20
717	Impact of molecular flexibility on the site energy shift of chlorophylls in Photosystem II. Biophysical Chemistry, 2017, 229, 93-98.	1.5	8
718	A coordinatively saturated cobalt complex as a new kind catalyst for efficient electro- and photo-catalytic hydrogen production in purely aqueous media. International Journal of Hydrogen Energy, 2017, 42, 16428-16435.	3.8	19
719	Unusual catalytic activity after simultaneous immobilization of two metalloporphyrins on hydrozincite/nanocrystalline anatase. Journal of Catalysis, 2017, 352, 442-451.	3.1	15
720	Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms. Journal of Nanobiotechnology, 2017, 15, 19.	4.2	13
721	A Spatially Separated Organic–Inorganic Hybrid Photoelectrochemical Cell for Unassisted Overall Water Splitting. ACS Catalysis, 2017, 7, 5308-5315.	5 . 5	33
722	Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2017, 5, 3230-3238.	5.2	621
723	Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chemical Reviews, 2017, 117, 3717-3797.	23.0	1,042
724	Strongly Coupled Oxasmaragdyrin–BF ₂ Chelated Dipyrrin Dyads: Syntheses, Xâ€ray Structure, Ground―and Excitedâ€5tate Chargeâ€Transfer Interactions. Chemistry - A European Journal, 2017, 23, 1546-1556.	1.7	13
725	Nanoscale Strategies for Light Harvesting. Chemical Reviews, 2017, 117, 712-757.	23.0	444
726	Native Mass Spectrometry Characterizes the Photosynthetic Reaction Center Complex from the Purple Bacterium <i>Rhodobacter sphaeroides</i> Journal of the American Society for Mass Spectrometry, 2017, 28, 87-95.	1.2	9
727	Sulfur rich electron donors – formation of singlet versus triplet radical ion pair states featuring different lifetimes in the same conjugate. Chemical Science, 2017, 8, 1360-1368.	3.7	12
728	Metal Dicyanamides as Efficient and Robust Waterâ€Oxidation Catalysts. ChemCatChem, 2017, 9, 300-307.	1.8	17
729	Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. Chemical Reviews, 2017, 117, 249-293.	23.0	802
730	Proposed mechanisms for water oxidation by Photosystem II and nanosized manganese oxides. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 156-174.	0.5	40
731	Self-assembly of urchin-like porphyrin/graphene microspheres for artificial photosynthetic production of formic acid from CO ₂ . Journal of Materials Chemistry A, 2017, 5, 155-164.	5.2	16
732	Facile one-step hydrothermal synthesis toward strongly coupled TiO2/graphene quantum dots photocatalysts for efficient hydrogen evolution. Applied Surface Science, 2017, 396, 1375-1382.	3.1	134
733	The Quest for Valueâ€Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study. ChemSusChem, 2017, 10, 409-424.	3.6	72

#	Article	IF	CITATIONS
734	Electrocatalytic water oxidation by a nickel oxide film derived from a molecular precursor. Chinese Journal of Catalysis, 2017, 38, 1812-1817.	6.9	7
735	Charge migration and charge transfer in molecular systems. Structural Dynamics, 2017, 4, 061508.	0.9	146
736	Arginine-Mediated Self-Assembly of Porphyrin on Graphene: A Photocatalyst for Degradation of Dyes. Applied Sciences (Switzerland), 2017, 7, 643.	1.3	38
737	Effective Charge Carrier Utilization in Visible-Light-Driven CO 2 Conversion. Semiconductors and Semimetals, 2017, 97, 429-467.	0.4	4
738	Analysis of the Panax ginseng stem/leaf transcriptome and gene expression during the leaf expansion period. Molecular Medicine Reports, 2017, 16, 6396-6404.	1.1	5
739	Quantum chemical approaches to [NiFe] hydrogenase. Essays in Biochemistry, 2017, 61, 293-303.	2.1	5
740	Biofuels: Greenhouse Gas Mitigation and Global Warming. , 2018, , .		22
741	A nickel complex, an efficient cocatalyst for both electrochemical and photochemical driven hydrogen production from water. Molecular Catalysis, 2018, 448, 10-17.	1.0	26
742	Unbiased Spontaneous Solar Fuel Production using Stable LaFeO3 Photoelectrode. Scientific Reports, 2018, 8, 3501.	1.6	61
743	Structural, optical and electrical properties of copper antimony sulfide thin films grown by a citrate-assisted single chemical bath deposition. Applied Surface Science, 2018, 427, 1099-1106.	3.1	32
744	Two tetranuclear 3dâ€"4f heterometal complexes Mn ₂ Ln ₂ (Ln = Dy, Gd): synthesis, structure, magnetism, and electrocatalytic reactivity for water oxidation. New Journal of Chemistry, 2018, 42, 5798-5805.	1.4	26
745	Thermalâ€Responsive Phosphorescent Nanoamplifiers Assembled from Two Metallophosphors. Angewandte Chemie, 2018, 130, 7946-7951.	1.6	9
746	Thermalâ€Responsive Phosphorescent Nanoamplifiers Assembled from Two Metallophosphors. Angewandte Chemie - International Edition, 2018, 57, 7820-7825.	7.2	37
747	Self-assembled inorganic clusters of semiconducting quantum dots for effective solar hydrogen evolution. Chemical Communications, 2018, 54, 4858-4861.	2.2	14
748	Construction of photo-driven bioanodes using thylakoid membranes and multi-walled carbon nanotubes. Bioelectrochemistry, 2018, 122, 158-163.	2.4	24
749	Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection–absorption spectroscopy. Chemical Communications, 2018, 54, 4216-4230.	2.2	26
750	Ultrafast fabrication of nanostructure WO3 photoanodes by hybrid microwave annealing with enhanced photoelectrochemical and photoelectrocatalytic activities. International Journal of Hydrogen Energy, 2018, 43, 8770-8778.	3.8	16
751	Bioinspired Design of Fe ³⁺ â€Doped Mesoporous Carbon Nanospheres for Enhanced Nanozyme Activity. Chemistry - A European Journal, 2018, 24, 7259-7263.	1.7	69

#	Article	IF	CITATIONS
752	Snapshots of Light Induced Accumulation of Two Charges on Methylviologen using a Sequential Nanosecond Pump–Pump Photoexcitation. Journal of Physical Chemistry Letters, 2018, 9, 1086-1091.	2.1	22
7 53	Recent developments of metallic nanoparticle-graphene nanocatalysts. Progress in Materials Science, 2018, 94, 306-383.	16.0	102
754	Highly Efficient Artificial Lightâ€Harvesting Systems Constructed in Aqueous Solution Based on Supramolecular Selfâ€Assembly. Angewandte Chemie, 2018, 130, 3217-3221.	1.6	59
755	Synthetic and Semisynthetic Metabolic Pathways for Biofuel Production. , 2018, , 421-432.		2
756	Highly Efficient Artificial Lightâ€Harvesting Systems Constructed in Aqueous Solution Based on Supramolecular Selfâ€Assembly. Angewandte Chemie - International Edition, 2018, 57, 3163-3167.	7.2	264
757	Au@Nb@H x K1-xNbO3 nanopeapods with near-infrared active plasmonic hot-electron injection for water splitting. Nature Communications, 2018, 9, 232.	5.8	55
758	Mimicking the Key Functions of Photosystem II in Artificial Photosynthesis for Photoelectrocatalytic Water Splitting. Journal of the American Chemical Society, 2018, 140, 3250-3256.	6.6	224
7 59	Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chemical Reviews, 2018, 118, 2491-2553.	23.0	686
760	Artificial Photosynthesis for Formaldehyde Production with 85% of Faradaic Efficiency by Tuning the Reduction Potential. ACS Catalysis, 2018, 8, 968-974.	5.5	36
761	Facile Synthesis of Co ₉ S ₈ Hollow Spheres as a High-Performance Electrocatalyst for the Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 1863-1871.	3.2	82
762	Copper oxide nanosheets prepared by molten salt method for efficient electrocatalytic oxygen evolution reaction with low catalyst loading. Electrochimica Acta, 2018, 263, 318-327.	2.6	44
763	Synthesis of manganese phosphate hybrid nanoflowers by collagen-templated biomineralization. RSC Advances, 2018, 8, 2708-2713.	1.7	17
764	Photocatalytic Generation of Hydrogen Using Dinuclear Ï€â€Extended Porphyrin–Platinum Compounds. Chemistry - A European Journal, 2018, 24, 3225-3233.	1.7	31
765	Synthesis, Structure, and Water Oxidation Activity of Ruthenium(II) Complexes: Influence of Intramolecular Redox Process on O2 Evolution. European Journal of Inorganic Chemistry, 2018, 2018, 2826-2834.	1.0	8
766	Environmental Catalysis. Nanostructure Science and Technology, 2018, , 61-99.	0.1	0
767	Structurally characterized terminal manganese(<scp>iv</scp>) oxo tris(alkoxide) complex. Chemical Science, 2018, 9, 4524-4528.	3.7	28
768	An artificial photosynthetic system for photoaccumulation of two electrons on a fused dipyridophenazine (dppz)–pyridoquinolinone ligand. Chemical Science, 2018, 9, 4152-4159.	3.7	48
769	Evaluation of an ultrasonic-assisted mechanical stirring technique for the synthesis of an efficient nano-photocatalyst. Research on Chemical Intermediates, 2018, 44, 4015-4028.	1.3	4

#	Article	IF	CITATIONS
770	Hydrogen derived from water as a sustainable solar fuel: learning from biology. Sustainable Energy and Fuels, 2018, 2, 927-935.	2.5	28
771	Building of peculiar heterostructure of Ag/two-dimensional fullerene shell-WO3-x for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2018, 231, 381-390.	10.8	54
772	Boosting photocatalytic overall water splitting by Co doping into Mn ₃ O ₄ nanoparticles as oxygen evolution cocatalysts. Nanoscale, 2018, 10, 10420-10427.	2.8	56
773	Selenium-functionalized metal-organic frameworks as enzyme mimics. Nano Research, 2018, 11, 5761-5768.	5.8	35
774	Solarâ€ŧoâ€Hydrogen Energy Conversion Based on Water Splitting. Advanced Energy Materials, 2018, 8, 1701620.	10.2	429
775	Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 2018, 224, 563-571.	10.8	114
776	Many ways towards â€~solar fuel': quantitative analysis of the most promising strategies and the main challenges during scale-up. Energy and Environmental Science, 2018, 11, 10-22.	15.6	46
777	Hydrothermal reduction of NaHCO3 into formate with hexanehexol. Catalysis Today, 2018, 318, 10-14.	2.2	8
778	Simultaneous two-electron transfer from photoirradiated semiconductor to molecular catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 332-337.	2.0	2
779	Preparation of nanostructured Cu(OH) ₂ and CuO electrocatalysts for water oxidation by electrophoresis deposition. Journal of Materials Research, 2018, 33, 581-589.	1.2	33
780	Carbon Nanotube–Graphitic Carbon Nitride Hybrid Films for Flavoenzymeâ€Catalyzed Photoelectrochemical Cells. Advanced Functional Materials, 2018, 28, 1705232.	7.8	64
781	Metagenomic investigation of bacterial diversity of hot spring soil from Manikaran, Himachal Pradesh, India. Ecological Genetics and Genomics, 2018, 6, 16-21.	0.3	7
782	Pristine Metal–Organic Frameworks and their Composites for Energy Storage and Conversion. Advanced Materials, 2018, 30, e1702891.	11.1	525
783	Molecular catalysts of Co, Ni, Fe, and Mo for hydrogen generation in artificial photosynthetic systems. Coordination Chemistry Reviews, 2018, 373, 295-316.	9.5	107
784	Sonochemical synthesis of SrMnO3 nanoparticles as an efficient and new catalyst for O2 evolution from water splitting reaction. Ultrasonics Sonochemistry, 2018, 40, 651-663.	3.8	48
785	Copper(<scp>i</scp>) tertiary phosphine xanthate complexes as single source precursors for copper sulfide and their application in the OER. New Journal of Chemistry, 2018, 42, 18759-18764.	1.4	13
786	Dual Responsive Enzyme Mimicking of Ternary Polyanilineâ€"MnO ₂ â€"Pd Nanowires and Its Application in Colorimetric Biosensing. ACS Sustainable Chemistry and Engineering, 2018, 6, 16482-16492.	3.2	32
787	Photo-Induced Charge Separation vs. Degradation of a BODIPY-Based Photosensitizer Assessed by TDDFT and RASPT2. Catalysts, 2018, 8, 520.	1.6	11

#	Article	IF	CITATIONS
789	Construction of Highly Hierarchical Layered Structure Consisting of Titanate Nanosheets, Tungstate Nanosheets, Ru(bpy) ₃ ²⁺ , and Pt(terpy) for Vectorial Photoinduced Z-Scheme Electron Transfer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37150-37162.	4.0	12
790	Enhanced Photocurrent via π-Bridge Extension of Perylenemonoimide-Based Dyes for p-Type Dye-Sensitized Solar Cells and Photoelectrochemical Cells. ACS Omega, 2018, 3, 14448-14456.	1.6	10
791	Visible-Light Driven Overall Conversion of CO ₂ and H ₂ O to CH ₄ and O ₂ on 3D-SiC@2D-MoS ₂ Heterostructure. Journal of the American Chemical Society, 2018, 140, 14595-14598.	6.6	361
792	Selective CO ₂ Reduction on 2D Mesoporous Bi Nanosheets. Advanced Energy Materials, 2018, 8, 1801536.	10.2	274
793	Effect of Ionic Liquids as Cosurfactants on Photoinduced Electron Transfer in Tetronic Micelles. Journal of Physical Chemistry B, 2018, 122, 10190-10201.	1.2	10
794	Two-dimensional titanium oxide nanosheets rich in titanium vacancies as an efficient cocatalyst for photocatalytic water oxidation. Journal of Catalysis, 2018, 367, 296-305.	3.1	24
795	A pH-Resolved Colorimetric Biosensor for Simultaneous Multiple Target Detection. ACS Sensors, 2018, 3, 2159-2165.	4.0	62
796	Phosphorus-doped nickel sulfides/nickel foam as electrode materials for electrocatalytic water splitting. International Journal of Hydrogen Energy, 2018, 43, 19002-19009.	3.8	43
797	Photocatalytic system with water soluble nickel complex of S,S′-bis(2-pyridylmethyl)-1,2-thioethane over CdS nanorods for hydrogen evolution from water under visible light. International Journal of Hydrogen Energy, 2018, 43, 19047-19056.	3.8	17
798	Photosynthesis-inspired bifunctional energy-harvesting devices that convert light and salinity gradients into electricity. Chemical Communications, 2018, 54, 12310-12313.	2.2	8
799	Recent progress in iron oxide based photoanodes for solar water splitting. Journal Physics D: Applied Physics, 2018, 51, 473002.	1.3	44
800	Perspective of dye-encapsulated conjugated polymer nanoparticles for potential applications. Bulletin of Materials Science, 2018, 41, 1.	0.8	13
801	Efficient Photochemical Reduction of Quinone into Hydroquinone Promoted by Imidazolyl <i>N</i> H Proton. Chemistry Letters, 2018, 47, 1343-1345.	0.7	1
802	Investigation of photocurrents resulting from a living unicellular algae suspension with quinones over time. Chemical Science, 2018, 9, 8271-8281.	3.7	53
803	Azobenzene-based solar thermal fuels: design, properties, and applications. Chemical Society Reviews, 2018, 47, 7339-7368.	18.7	306
804	Organic Sensitizers for Photoanode Water Splitting in Dyeâ€Sensitized Photoelectrochemical Cells. ChemElectroChem, 2018, 5, 2395-2402.	1.7	10
805	Double Photosystems-Based â€~Z-Scheme' Photoelectrochemical Sensing Mode for Ultrasensitive Detection of Disease Biomarker Accompanying Three-Dimensional DNA Walker. Analytical Chemistry, 2018, 90, 7086-7093.	3.2	259
806	Photoinduced electron transfer in a molecular dyad by nanosecond pumpâ€"pumpâ€"probe spectroscopy. Photochemical and Photobiological Sciences, 2018, 17, 903-909.	1.6	11

#	Article	IF	CITATIONS
807	Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections. Nano Letters, 2018, 18, 3344-3351.	4.5	199
808	Peroxidase mimetic activity of fluorescent NS-carbon quantum dots and their application in colorimetric detection of H ₂ O ₂ and glutathione in human blood serum. Journal of Materials Chemistry B, 2018, 6, 5256-5268.	2.9	76
809	Scale-Up Technologies for Advanced Nanomaterials for Green Energy. , 2018, , 433-455.		14
810	Kα X-ray Emission Spectroscopy on the Photosynthetic Oxygen-Evolving Complex Supports Manganese Oxidation and Water Binding in the S ₃ State. Inorganic Chemistry, 2018, 57, 10424-10430.	1.9	33
811	Photosensitized Hydrogen Evolution on a Floating Electrocatalyst Coupled to Electrochemical Recycling. Journal of the American Chemical Society, 2018, 140, 10149-10152.	6.6	16
812	Designing effective Si/Ag interface <i>via</i> controlled chemical etching for photoelectrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 21906-21912.	5.2	50
813	Semiconducting quantum dots forÂartificial photosynthesis. Nature Reviews Chemistry, 2018, 2, 160-173.	13.8	334
814	lron(<scp>iii</scp>)-based metal–organic frameworks as oxygen-evolving photocatalysts for water oxidation. Sustainable Energy and Fuels, 2018, 2, 2109-2114.	2.5	33
815	Water oxidation by a manganese–potassium cluster: Mn oxide as a kinetically dominant "true―catalyst for water oxidation. Catalysis Science and Technology, 2018, 8, 4390-4398.	2.1	16
816	A cobalt complex, a highly efficient catalyst for electro- and photochemical driven hydrogen generation in purely aqueous media. Polyhedron, 2018, 154, 295-301.	1.0	14
817	"Click―Methodology for the Functionalization of Water Oxidation Catalyst Iridium Oxide Nanoparticles with Hydrophobic Dyes for Artificial Photosynthetic Constructs. Methods in Molecular Biology, 2018, 1770, 319-334.	0.4	0
818	Homogeneous and heterogeneous photocatalytic water oxidation by polyoxometalates containing the most earth-abundant transition metal, iron. Applied Catalysis B: Environmental, 2018, 237, 1091-1100.	10.8	47
819	A water soluble cocatalyst based on a cobalt(II) complex of S,S'-bis(2-pyridylmethyl)-1,2-thioethane for photochemical driven hydrogen evolution from water under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 650-656.	2.0	8
820	Effects of the Aqueous Environment on the Stability and Chemistry of \hat{l}^2 -NiOOH Surfaces. Chemistry of Materials, 2018, 30, 5205-5219.	3.2	41
821	Photoelectrocatalytic Reduction of CO2 to Chemicals via ZnO@Nickel Foam: Controlling C–C Coupling by Ligand or Morphology. Topics in Catalysis, 2018, 61, 1563-1573.	1.3	9
822	2D Polymers as Emerging Materials for Photocatalytic Overall Water Splitting. Advanced Materials, 2018, 30, e1801955.	11.1	211
823	Near-IR Light-Induced Electron Transfer via Dynamic Quenching. Journal of Physical Chemistry C, 2018, 122, 11282-11287.	1.5	6
824	Tetronic Star Block Copolymer Micelles: Photophysical Characterization of Microenvironments and Applicability for Tuning Electron Transfer Reactions. Journal of Physical Chemistry B, 2018, 122, 6079-6093.	1.2	22

#	Article	IF	CITATIONS
825	Recent advances in the field of light-driven water oxidation catalyzed by transition-metal substituted polyoxometalates. Dalton Transactions, 2018, 47, 8180-8188.	1.6	56
826	Electrochemical measurements of molecular compounds in homogeneous solution under photoirradiation. Coordination Chemistry Reviews, 2018, 374, 416-429.	9.5	3
827	Exogenous spermidine enhances the photosynthetic and antioxidant capacity of rice under heat stress during early grain-filling period. Functional Plant Biology, 2018, 45, 911.	1.1	46
828	Ultrafast Energy Transfer Followed by Electron Transfer in a Polymeric Nanoantenna-Based Light Harvesting System. Journal of Physical Chemistry C, 2018, 122, 20144-20152.	1.5	16
829	Photoinduced Oxygen Evolution Catalysis Promoted by Polyoxometalate Salts of Cationic Photosensitizers. Frontiers in Chemistry, 2018, 6, 302.	1.8	8
830	Nanostructured NiFe (oxy)hydroxide with easily oxidized Ni towards efficient oxygen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 16810-16817.	5.2	61
831	Biomimetic Approach to CO ₂ Reduction. Bioinorganic Chemistry and Applications, 2018, 2018, 1-14.	1.8	40
832	Artificial Photosynthesis Inspired by PSII: Water Splitting on Heterogeneous Photocatalysts. , 2018, , 327-333.		1
833	Novel high performance reduced graphene oxide based nanocatalyst decorated with Rh2O3/Rh-NPs for CO2 photoreduction. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 344-354.	2.0	30
834	Evolution from S ₃ to S ₄ States of the Oxygenâ€Evolving Complex in Photosystemâ€II Monitored by Quantum Mechanics/Molecular Mechanics (QM/MM) Dynamics. Chemistry - A European Journal, 2018, 24, 10820-10828.	1.7	24
835	Au nanoparticle-doped Co ₃ O ₄ as a catalyst for visible-light-driven water oxidation. New Journal of Chemistry, 2018, 42, 14757-14765.	1.4	13
836	Insight into pHâ€Dependent Formation of Manganese Oxide Phases in Electrodeposited Catalytic Films Probed by Soft Xâ€Ray Absorption Spectroscopy. ChemPlusChem, 2018, 83, 721-727.	1.3	5
837	Ter-lonic Complex that Forms a Bond Upon Visible Light Absorption. Journal of the American Chemical Society, 2018, 140, 7799-7802.	6.6	16
838	Hollow Nanostructures for Photocatalysis: Advantages and Challenges. Advanced Materials, 2019, 31, e1801369.	11.1	506
839	Design and synthesis of covalent organic frameworks towards energy and environment fields. Chemical Engineering Journal, 2019, 355, 602-623.	6.6	197
840	Modeling of Si–B–N Sheets and Derivatives as a Potential Sorbent Material for the Adsorption of Li ⁺ lon and CO ₂ Gas Molecule. ACS Omega, 2019, 4, 13808-13823.	1.6	14
841	Optical Shading Induces an Inâ€Plane Potential Gradient in a Semiartificial Photosynthetic System Bringing Photoelectric Synergy. Advanced Energy Materials, 2019, 9, 1901449.	10.2	22
842	Photochemical oxidation of water catalysed by cyclometalated Ir(iii) complexes bearing Schiff-base ligands. New Journal of Chemistry, 2019, 43, 13662-13669.	1.4	4

#	Article	IF	CITATIONS
843	Slow induction of chlorophyll a fluorescence excited by blue and red light in Tradescantia leaves acclimated to high and low light. Photosynthesis Research, 2019, 142, 265-282.	1.6	11
844	Catalytic recycling of NAD(P)H. Journal of Inorganic Biochemistry, 2019, 199, 110777.	1.5	38
845	Simulation of shading and algal growth in experimental raceways. Algal Research, 2019, 41, 101575.	2.4	4
846	Protonâ€Coupled Electron Transfer Induced by Nearâ€Infrared Light. Chemistry - an Asian Journal, 2019, 14, 2806-2809.	1.7	1
847	Tuning the Electron Storage Potential of a Chargeâ€Photoaccumulating Ru ^{II} Complex by a DFTâ€Guided Approach. Chemistry - A European Journal, 2019, 25, 13911-13920.	1.7	5
848	Nanowire Photoelectrochemistry. Chemical Reviews, 2019, 119, 9221-9259.	23.0	158
849	Geometric and electronic structure of a crystallographically characterized thiolate-ligated binuclear peroxo-bridged cobalt(III) complex. Journal of Biological Inorganic Chemistry, 2019, 24, 919-926.	1.1	5
850	Quantitative Accuracy in Calculating Charge Transfer State Energies in Solvated Molecular Complexes Using a Screened Range Separated Hybrid Functional within a Polarized Continuum Model. Journal of Chemical Theory and Computation, 2019, 15, 4305-4311.	2.3	53
851	Semiconductor Quantum Dots: An Emerging Candidate for CO ₂ Photoreduction. Advanced Materials, 2019, 31, e1900709.	11.1	316
852	Water Oxidation Catalysts for Artificial Photosynthesis. Advanced Materials, 2019, 31, e1902069.	11.1	215
853	Hydrogen from photo-electrocatalytic water splitting. , 2019, , 419-486.		17
855	Does the water-oxidizing Mn4CaO5 cluster regulate the redox potential of the primary quinone electron acceptor QA in photosystem II? A study by Fourier transform infrared spectroelectrochemistry. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 148082.	0.5	11
856	Unraveling the Photocatalytic Water Dissociation Pathways on Twoâ€Dimensional Conjugated Polymers. ChemCatChem, 2019, 11, 6236-6243.	1.8	8
857	Spatial Heterogeneity of Cadmium Effects on Salvia sclarea Leaves Revealed by Chlorophyll Fluorescence Imaging Analysis and Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Materials, 2019, 12, 2953.	1.3	38
859	Selfâ€Unfolding Flexible Microelectrode Arrays Based on Shape Memory Polymers. Advanced Materials Technologies, 2019, 4, 1900566.	3.0	46
860	Two-dimensional delafossite cobalt oxyhydroxide as a toxic gas sensor. Applied Surface Science, 2019, 476, 198-204.	3.1	43
861	Design of D–A ₁ –A ₂ Covalent Triazine Frameworks via Copolymerization for Photocatalytic Hydrogen Evolution. ACS Catalysis, 2019, 9, 9438-9445.	5 . 5	172
862	Single molecule protein patterning using hole mask colloidal lithography. Nanoscale, 2019, 11, 16228-16234.	2.8	9

#	ARTICLE	IF	CITATIONS
863	DNA-Assembled Multilayer Sliding Nanosystems. Nano Letters, 2019, 19, 6385-6390.	4.5	12
864	A photosystem I monolayer with anisotropic electron flow enables Z-scheme like photosynthetic water splitting. Energy and Environmental Science, 2019, 12, 3133-3143.	15.6	39
865	Pushing the activity of CO2 electroreduction by system engineering. Science Bulletin, 2019, 64, 1805-1816.	4.3	30
866	Artificial bioconversion of carbon dioxide. Chinese Journal of Catalysis, 2019, 40, 1421-1437.	6.9	23
867	The Self-Passivation Mechanism in Degradation of BiVO4 Photoanode. IScience, 2019, 19, 976-985.	1.9	40
868	Radio frequency alternating electromagnetic field enhanced tetraruthenium polyoxometalate electrocatalytic water oxidation. Chemical Communications, 2019, 55, 1032-1035.	2.2	8
869	Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chemical Society Reviews, 2019, 48, 2109-2125.	18.7	1,639
870	2D-MoS ₂ photocatalyzed cross dehydrogenative coupling reaction synchronized with hydrogen evolution reaction. Catalysis Science and Technology, 2019, 9, 1201-1207.	2.1	26
871	WO ₃ /BiVO ₄ : impact of charge separation at the timescale of water oxidation. Chemical Science, 2019, 10, 2643-2652.	3.7	59
872	Structure–Activity Relationships of Hierarchical Three-Dimensional Electrodes with Photosystem II for Semiartificial Photosynthesis. Nano Letters, 2019, 19, 1844-1850.	4.5	61
873	Activation of Metal Oxo and Nitrido Complexes by Lewis Acids. Journal of the American Chemical Society, 2019, 141, 3755-3766.	6.6	69
874	The role of oxygen vacancies in water oxidation for perovskite cobalt oxide electrocatalysts: are more better?. Chemical Communications, 2019, 55, 1442-1445.	2.2	100
875	Efficient hydrogen production using photosystem I enhanced by artificial light harvesting dye. Photochemical and Photobiological Sciences, 2019, 18, 309-313.	1.6	25
876	TiO2 Based Nanostructures for Photocatalytic CO2 Conversion to Valuable Chemicals. Micromachines, 2019, 10, 326.	1.4	42
877	Kinetics and Energetics of Ultrafast Bimolecular Photoinduced Electron Transfer Reactions in Pluronic-Surfactant Supramolecular Assemblies. Journal of Physical Chemistry B, 2019, 123, 5942-5953.	1.2	7
878	Hierarchical Assembly of Peptoidâ€Based Cylindrical Micelles Exhibiting Efficient Resonance Energy Transfer in Aqueous Solution. Angewandte Chemie - International Edition, 2019, 58, 12223-12230.	7.2	34
879	Hierarchical Assembly of Peptoidâ€Based Cylindrical Micelles Exhibiting Efficient Resonance Energy Transfer in Aqueous Solution. Angewandte Chemie, 2019, 131, 12351-12358.	1.6	1
880	Amphiphilic micellar CdSe QD as microreactors to self-assemble nickel complexes for photosynthetic hydrogen evolution in water. International Journal of Hydrogen Energy, 2019, 44, 20079-20084.	3.8	1

#	Article	IF	CITATIONS
881	Structural features of molecular electrocatalysts in multi-electron redox processes for renewable energy – recent advances. Sustainable Energy and Fuels, 2019, 3, 2159-2175.	2.5	31
882	Investigating the Structure and Dynamics of Apoâ€Photosystem II. ChemCatChem, 2019, 11, 4072-4080.	1.8	5
883	A sensitive photoelectrochemical methyltransferase activity assay based on a novel "Z-scheme―CdSe QD/afGQD heterojunction and multiple signal amplification strategies. Chemical Communications, 2019, 55, 8166-8169.	2.2	12
884	Investigation of electronic energy transfer in a BODIPY-decorated calix[4]arene. Dyes and Pigments, 2019, 171, 107652.	2.0	9
885	Supramolecular nanomaterials with photocatalytic activity obtained via self-assembly of a fluorinated porphyrin derivative. Fuel, 2019, 254, 115639.	3 . 4	24
886	Artificial photosynthesis – concluding remarks. Faraday Discussions, 2019, 215, 439-451.	1.6	14
887	Structure, magnetism and reactivity of a $\{MnIII(\hat{l}/4-O)2MnIV\}3+$ core towards oxidation of phenols. Polyhedron, 2019, 172, 226-235.	1.0	9
888	An earth-abundant system for light-driven CO ₂ reduction to CO using a pyridinophane iron catalyst. Chemical Communications, 2019, 55, 8552-8555.	2.2	43
889	WO3 cocatalyst improves hydrogen evolution capacity of ZnCdS under visible light irradiation. International Journal of Hydrogen Energy, 2019, 44, 16327-16335.	3.8	48
890	Artificial photosynthesis systems for catalytic water oxidation. Advances in Inorganic Chemistry, 2019, 74, 3-59.	0.4	35
891	A Bio-solar Cell with Thylakoid Membranes and Bilirubin Oxidase. Chemistry Letters, 2019, 48, 686-689.	0.7	16
892	Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials. Nano Research, 2019, 12, 2184-2199.	5.8	51
893	Installing earth-abundant metal active centers to covalent organic frameworks for efficient heterogeneous photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2019, 254, 624-633.	10.8	212
894	Tunable catalytic activity of cobalt-intercalated layered MnO2 for water oxidation through confinement and local ordering. Journal of Catalysis, 2019, 374, 143-149.	3.1	13
895	Electrochemistry of Layered Semiconducting A ^{III} B ^{VI} Chalcogenides: Indium Monochalcogenides (InS, InSe, InTe). ChemCatChem, 2019, 11, 2634-2642.	1.8	20
896	Synthesis, self-assembly and applications of functional polymers based on porphyrins. Progress in Polymer Science, 2019, 95, 65-117.	11.8	117
897	Excited-state dynamics of heteroleptic copper(i) photosensitizers and their electrochemically reduced forms containing a dipyridophenazine moiety $\hat{a} \in \hat{a}$ a spectroelectrochemical transient absorption study. Physical Chemistry Chemical Physics, 2019, 21, 10716-10725.	1.3	18
899	Novel Supramolecular Photocatalyst Based on Conjugation of Cucurbit[7]uril to Nonâ€Metallated Porphyrin for Electrophotocatalytic Hydrogen Generation from Water Splitting. ChemCatChem, 2019, 11, 2994-2999.	1.8	11

#	Article	IF	CITATIONS
900	Electrocatalytic materials design for oxygen evolution reaction. Advances in Inorganic Chemistry, 2019, , 241-303.	0.4	14
901	Semiconductor Nanocatalysts for CO2 Photoconversion Giving Organic Compounds: Design and Physicochemical Characteristics: A Review. Theoretical and Experimental Chemistry, 2019, 55, 2-28.	0.2	3
902	Blocking backward reaction on hydrogen evolution cocatalyst in a photosystem II hybrid Z-scheme water splitting system. Chinese Journal of Catalysis, 2019, 40, 486-494.	6.9	18
903	Synthetic Fuels. , 2019, , 191-223.		0
904	Efficiency and stability of narrow-gap semiconductor-based photoelectrodes. Energy and Environmental Science, 2019, 12, 2345-2374.	15.6	88
905	Biophotovoltaics: Green Power Generation From Sunlight and Water. Frontiers in Microbiology, 2019, 10, 866.	1.5	123
906	Aqueous Platinum(II) ageâ€Based Lightâ€Harvesting System for Photocatalytic Crossâ€Coupling Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 8954-8958.	1.6	50
907	Aqueous Platinum(II) ageâ€Based Lightâ€Harvesting System for Photocatalytic Cross oupling Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 8862-8866.	7.2	237
908	The S3 State of the Oxygen-Evolving Complex: Overview of Spectroscopy and XFEL Crystallography with a Critical Evaluation of Early-Onset Models for O–O Bond Formation. Inorganics, 2019, 7, 55.	1.2	28
909	A photocatalytic system with a bis(thiosemicarbazonato)â€'nickel over CdS nanorods for hydrogen evolution from water under visible light. Inorganic Chemistry Communication, 2019, 102, 5-9.	1.8	12
910	Building Supramolecular DNAâ€Inspired Nanowires on Gold Surfaces: From 2D to 3D. Angewandte Chemie - International Edition, 2019, 58, 7308-7312.	7.2	10
911	Molecular Heterostructures of Covalent Triazine Frameworks for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2019, 58, 8676-8680.	7.2	230
912	Electrochemical, Spectroelectrochemical, and Structural Studies of Mono- and Diphosphorylated Zinc Porphyrins and Their Self-Assemblies. Inorganic Chemistry, 2019, 58, 4665-4678.	1.9	10
913	Molecular Heterostructures of Covalent Triazine Frameworks for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie, 2019, 131, 8768-8772.	1.6	67
914	Quantum Dot Assembly for Lightâ€Driven Multielectron Redox Reactions, such as Hydrogen Evolution and CO 2 Reduction. Angewandte Chemie, 2019, 131, 10918-10925.	1.6	20
915	Visible-Light-Induced Nanoparticle Assembly for Effective Hydrogen Photogeneration. ACS Sustainable Chemistry and Engineering, 2019, 7, 7286-7293.	3.2	12
916	Artificial Thylakoid for the Coordinated Photoenzymatic Reduction of Carbon Dioxide. ACS Catalysis, 2019, 9, 3913-3925.	5.5	89
917	Photoâ€reducible plastoquinone pools in chloroplasts of <i>Tradescentia</i> plants acclimated to high and low light. FEBS Letters, 2019, 593, 788-798.	1.3	17

#	Article	IF	CITATIONS
918	HPW-Anchored UiO-66 Metal–Organic Framework: A Promising Photocatalyst Effective toward Tetracycline Hydrochloride Degradation and H ₂ Evolution via Z-Scheme Charge Dynamics. Inorganic Chemistry, 2019, 58, 4921-4934.	1.9	129
919	All-solid-state metal-mediated Z-scheme photoelectrochemical immunoassay with enhanced photoexcited charge-separation for monitoring of prostate-specific antigen. Biosensors and Bioelectronics, 2019, 134, 1-7.	5.3	62
920	Binary molecular-semiconductor p–n junctions for photoelectrocatalytic CO2 reduction. Nature Energy, 2019, 4, 290-299.	19.8	149
921	Self-assembled porphyrin and macrocycle derivatives: From synthesis to function. MRS Bulletin, 2019, 44, 167-171.	1.7	18
922	Highly Sensitive Method to Isolate Photocurrent Signals from Large Background Redox Currents on Proteinâ€Modified Electrodes. ChemElectroChem, 2019, 6, 2870-2875.	1.7	5
923	A donor-chromophore-catalyst assembly for solar CO ₂ reduction. Chemical Science, 2019, 10, 4436-4444.	3.7	23
924	Overview of Dye-Sensitized Solar Cells. , 2019, , 1-49.		10
925	Ultrathin FeOOH nanosheets as an efficient cocatalyst for photocatalytic water oxidation. Journal of Materials Chemistry A, 2019, 7, 9222-9229.	5.2	100
926	The Art of Splitting Water: Storing Energy in a Readily Available and Convenient Form. European Journal of Inorganic Chemistry, 2019, 2019, 2020-2024.	1.0	8
927	Building Supramolecular DNAâ€Inspired Nanowires on Gold Surfaces: From 2D to 3D. Angewandte Chemie, 2019, 131, 7386-7390.	1.6	2
928	Significance of hydrogen bonding networks in the proton-coupled electron transfer reactions of photosystem II from a quantum-mechanics perspective. Physical Chemistry Chemical Physics, 2019, 21, 8721-8728.	1.3	3
929	Oxygen Vacancy Engineering of Bi ₂₄ O ₃₁ Cl ₁₀ for Boosted Photocatalytic CO ₂ Conversion. ChemSusChem, 2019, 12, 2740-2747.	3.6	92
930	Structure Effects of Metal Corroles on Energy-Related Small Molecule Activation Reactions. ACS Catalysis, 2019, 9, 4320-4344.	5.5	138
931	Direct evidence for hydrated protons as the active species in artificial photocatalytic water reduction into hydrogen. Science China Chemistry, 2019, 62, 199-204.	4.2	23
932	Stabilization of Ruthenium(II) Polypyridyl Chromophores on Mesoporous TiO ₂ Electrodes: Surface Reductive Electropolymerization and Silane Chemistry. ACS Central Science, 2019, 5, 506-514.	5.3	15
933	Dual Protection Layer Strategy to Increase Photoelectrode–Catalyst Interfacial Stability: A Case Study on Black Silicon Photoelectrodes. Advanced Materials Interfaces, 2019, 6, 1802085.	1.9	13
934	Efficient Photoelectrochemical Water Splitting Reaction using Electrodeposited Co3Se4 Catalyst. Applied Sciences (Switzerland), 2019, 9, 16.	1.3	26
935	Cooperative desorption of H2O and CO from photo-excited cobalt oxide clusters: The evidence of photo-catalytic coupling. Chemical Physics Letters, 2019, 719, 72-77.	1.2	1

#	Article	IF	CITATIONS
936	Quantum Dot Assembly for Lightâ€Driven Multielectron Redox Reactions, such as Hydrogen Evolution and CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 10804-10811.	7.2	91
937	Rational Design of Peroxymonosulfate Activation and Photoinduced Catalysis Tandem Systems for Artificial Conversion of Solar Light to Chemical Energy. ACS Omega, 2019, 4, 4113-4128.	1.6	11
938	Bismuth vanadate single crystal particles modified with tungsten for efficient photoeletrochemical water oxidation. Catalysis Today, 2019, 335, 511-519.	2.2	12
939	Fully Conjugated Twoâ€Dimensional sp ² â€Carbon Covalent Organic Frameworks as Artificial Photosystemâ€I with High Efficiency. Angewandte Chemie - International Edition, 2019, 58, 5376-5381.	7.2	230
940	Fully Conjugated Twoâ€Dimensional sp ² â€Carbon Covalent Organic Frameworks as Artificial Photosystemâ€I with High Efficiency. Angewandte Chemie, 2019, 131, 5430-5435.	1.6	59
941	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	23.0	1,591
942	Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chemical Reviews, 2019, 119, 2752-2875.	23.0	615
943	Watching Intermolecular Light-Induced Charge Accumulation on Naphthalene Diimide by Tris(bipyridyl)ruthenium(II) Photosensitizer. Journal of Physical Chemistry C, 2019, 123, 28651-28658.	1.5	8
944	Photo-modulated nanozymes for biosensing and biomedical applications. Analytical Methods, 2019, 11, 5081-5088.	1.3	33
945	Visible light-mediated selective α-functionalization of 1,3-dicarbonyl compounds <i>via</i> disulfide induced aerobic oxidation. Chemical Communications, 2019, 55, 13008-13011.	2.2	21
946	Multi-layered photocathodes based on Cu2ZnSnSe4 absorber and MoS2 catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 24320-24327.	5.2	8
947	Photo-induced Charge Separation and Photoredox Catalysis in Cerium-Based Metal–Organic Frameworks. ACS Symposium Series, 2019, , 309-326.	0.5	5
948	Carbon fibre paper coated by a layered manganese oxide: a nano-structured electrocatalyst for water-oxidation with high activity over a very wide pH range. Journal of Materials Chemistry A, 2019, 7, 25333-25346.	5.2	22
949	DNA-assembled nanoarchitectures with multiple components in regulated and coordinated motion. Science Advances, 2019, 5, eaax6023.	4.7	37
950	Recent Progress and Approaches on Carbon-Free Energy from Water Splitting. Nano-Micro Letters, 2019, 11, 103.	14.4	41
951	The technological and economic prospects for CO2 utilization and removal. Nature, 2019, 575, 87-97.	13.7	1,142
952	Copper nanoparticles selectively encapsulated in an ultrathin carbon cage loaded on SrTiO ₃ as stable photocatalysts for visible-light H ₂ evolution <i>via</i> water splitting. Chemical Communications, 2019, 55, 12900-12903.	2.2	37
953	Photoinduced electron transfer in semiconductor–clay binary nanosheet colloids controlled by clay particles as a turnout switch. Applied Catalysis B: Environmental, 2019, 241, 499-505.	10.8	10

#	Article	IF	CITATIONS
954	Bioethanol From Sugarcane Bagasse: Status and Perspectives. , 2019, , 187-212.		18
955	Amorphous Carbon Nitride as a Robust Photocatalyst for Biocatalytic Solar-to-Chemical Conversion. ACS Sustainable Chemistry and Engineering, 2019, 7, 2545-2552.	3.2	49
956	Novel cobalt-fumarate framework as a robust and efficient electrocatalyst for water oxidation at neutral pH. Electrochimica Acta, 2019, 298, 248-253.	2.6	17
957	Visible Light Driven Hydrogen Evolution by Molecular Nickel Catalysts with Time-Resolved Spectroscopic and DFT Insights. Inorganic Chemistry, 2019, 58, 1469-1480.	1.9	16
958	Cooperative Chirality and Sequential Energy Transfer in a Supramolecular Lightâ€Harvesting Nanotube. Angewandte Chemie - International Edition, 2019, 58, 844-848.	7.2	199
959	Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation. Chinese Journal of Polymer Science (English Edition), 2019, 37, 101-114.	2.0	12
960	Cooperative Chirality and Sequential Energy Transfer in a Supramolecular Lightâ€Harvesting Nanotube. Angewandte Chemie, 2019, 131, 854-858.	1.6	32
961	A sandwich-type polyoxometalate for efficient noble-metal-free hydrogen evolution upon visible light irradiation. Journal of Catalysis, 2019, 369, 54-59.	3.1	16
962	Bifunctional and Efficient CoS ₂ –C@MoS ₂ Core–Shell Nanofiber Electrocatalyst for Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 2899-2905.	3.2	91
963	Artificial Mn ₄ Ca Clusters with Exchangeable Solvent Molecules Mimicking the Oxygenâ€Evolving Center in Photosynthesis. Angewandte Chemie - International Edition, 2019, 58, 3939-3942.	7.2	46
964	Artificial light-driven ion pump for photoelectric energy conversion. Nature Communications, 2019, 10, 74.	5.8	167
965	Artificial Mn 4 Ca Clusters with Exchangeable Solvent Molecules Mimicking the Oxygenâ€Evolving Center in Photosynthesis. Angewandte Chemie, 2019, 131, 3979-3982.	1.6	14
966	Covalent bonding photosensitizer–catalyst dyads of ruthenium-based complexes designed for enhanced visible-light-driven water oxidation performance. Transition Metal Chemistry, 2019, 44, 349-354.	0.7	4
967	Recent advances in photoinduced catalysis for water splitting and environmental applications. Journal of Industrial and Engineering Chemistry, 2019, 72, 31-49.	2.9	43
968	Ploidy and hybridity effects on leaf size, cell size and related genes expression in triploids, diploids and their parents in Populus. Planta, 2019, 249, 635-646.	1.6	32
969	IrO ₂ and Pt Doped Mesoporous SnO ₂ Nanospheres as Efficient Electrocatalysts for the Facile OER and HER. ChemCatChem, 2019, 11, 583-592.	1.8	82
970	Photosubstitution reactions in ruthenium(II) trisdiimine complexes: Implications for photoredox catalysis. Polyhedron, 2019, 160, 1-9.	1.0	19
971	Effect of Thickness of Chromium Hydroxide Layer on Ag Cocatalyst Surface for Highly Selective Photocatalytic Conversion of CO ₂ by H ₂ O. ACS Sustainable Chemistry and Engineering, 2019, 7, 2083-2090.	3.2	32

#	Article	IF	CITATIONS
972	Dye-sensitized solar cells based on natural and artificial phycobiliproteins to capture low light underwater. International Journal of Hydrogen Energy, 2019, 44, 1182-1191.	3.8	22
973	Atomic layer deposition of cobalt phosphate thin films for the oxygen evolution reaction. Electrochemistry Communications, 2019, 98, 73-77.	2.3	19
974	How does cobalt phosphate modify the structure of TiO2 nanotube array photoanodes for solar water splitting?. Catalysis Today, 2019, 335, 306-311.	2.2	3
975	High-Energy Charge-Separated States by Reductive Electron Transfer Followed by Electron Shift in the Tetraphenylethylene–Aluminum(III) Porphyrin–Fullerene Triad. Journal of Physical Chemistry C, 2019, 123, 131-143.	1.5	24
976	Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation. Nature Chemistry, 2019, 11, 146-153.	6.6	132
977	Charge transportation at cascade energy structure interfaces of CulnxGa1-xSeyS2-y/CdS/ZnS for spontaneous water splitting. Electrochimica Acta, 2019, 297, 633-640.	2.6	11
978	Unequal misses during the flash-induced advancement of photosystem II: effects of the S state and acceptor side cycles. Photosynthesis Research, 2019, 139, 93-106.	1.6	10
979	All-solid-state artificial Z-scheme porous g-C3N4/Sn2S3-DETA heterostructure photocatalyst with enhanced performance in photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2019, 241, 528-538.	10.8	350
980	Designed fabrication of biomimetic metal–organic frameworks for catalytic applications. Coordination Chemistry Reviews, 2019, 378, 445-465.	9.5	131
981	Perowskitoxidâ€Elektroden zur leistungsstarken photoelektrochemischen Wasserspaltung. Angewandte Chemie, 2020, 132, 140-158.	1.6	8
982	Perovskite Oxide Based Electrodes for Highâ€Performance Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 136-152.	7.2	253
983	A Supramolecular Artificial Lightâ€Harvesting System with Twoâ€Step Sequential Energy Transfer for Photochemical Catalysis. Angewandte Chemie - International Edition, 2020, 59, 10095-10100.	7.2	204
984	Artificial light-harvesting supramolecular assemblies with different morphology formed by cucurbit[n]urils-based host-guest complexation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112135.	2.0	20
985	A Supramolecular Artificial Lightâ€Harvesting System with Twoâ€Step Sequential Energy Transfer for Photochemical Catalysis. Angewandte Chemie, 2020, 132, 10181-10186.	1.6	35
986	Cobaloximeâ€Catalyzed Hydrogen Evolution in Photoredoxâ€Facilitated Smallâ€Molecule Functionalization. European Journal of Organic Chemistry, 2020, 2020, 1245-1258.	1.2	40
987	Coupling biology to synthetic nanomaterials for semi-artificial photosynthesis. Photosynthesis Research, 2020, 143, 193-203.	1.6	26
988	Selective Deposition of Cobalt and Copper Oxides on BiVO (sub) 4 (sub) Facets for Enhancement of CO (sub) Photocatalytic Reduction to Hydrocarbons. ChemCatChem, 2020, 12, 740-749.	1.8	28
989	Steric hindrances and spectral distributions affecting energy transfer rate: A comparative study on specifically designed donor-acceptor pairs. Dyes and Pigments, 2020, 174, 108010.	2.0	1

#	Article	IF	CITATIONS
990	Principles of solar energy storage. Energy Storage, 2020, 2, e96.	2.3	13
991	Effects of bloom-forming species dinoflagellate Karenia mikimotoi on the development and photosynthetic characteristics of the sexually propagated embryos of macroalga Sargassum fusiformis. Journal of Applied Phycology, 2020, 32, 1263-1273.	1.5	8
992	Conjugated polymers for visible-light-driven photocatalysis. Energy and Environmental Science, 2020, 13, 24-52.	15.6	452
993	Phase segregated Cu _{2â^'x} Se/Ni ₃ Se ₄ bimetallic selenide nanocrystals formed through the cation exchange reaction for active water oxidation precatalysts. Chemical Science, 2020, 11, 1523-1530.	3.7	26
994	Insights into the mechanism of photosynthetic H ₂ evolution catalyzed by a heptacoordinate cobalt complex. Sustainable Energy and Fuels, 2020, 4, 589-599.	2.5	18
995	Water-Oxidation Electrocatalysis by Manganese Oxides: Syntheses, Electrode Preparations, Electrolytes and Two Fundamental Questions. Zeitschrift Fur Physikalische Chemie, 2020, 234, 925-978.	1.4	41
996	An artificial photosynthesis system comprising a covalent triazine framework as an electron relay facilitator for photochemical carbon dioxide reduction. Journal of Materials Chemistry C, 2020, 8, 192-200.	2.7	43
997	Nanocluster materials in photosynthetic machines. Chemical Engineering Journal, 2020, 385, 123951.	6.6	18
998	Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nature Reviews Chemistry, 2020, 4, 6-21.	13.8	146
999	An efficient catalyst based on a waterâ€soluble cobalt(II) complex of <i>S< i>,<i>S< i>,<i>\$6. description of the complex of</i></i></i>	en7	11
1000	Self-assembled carbon nitride/cobalt (III) porphyrin photocatalyst for mimicking natural photosynthesis. Diamond and Related Materials, 2020, 101, 107648.	1.8	36
1001	Ni foam-supported azo linkage cobalt phthalocyanine as an efficient electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2020, 449, 227516.	4.0	52
1002	Promises of Main Group Metal–Based Nanostructured Materials for Electrochemical CO ₂ Reduction to Formate. Advanced Energy Materials, 2020, 10, 1902338.	10.2	384
1003	Iron Complex as a Water-Oxidizing Catalyst: Free-Energy Barriers, Proton-Coupled Electron Transfer, Spin Dynamics, and Role of Water Molecules in the Reaction Mechanism. Journal of Physical Chemistry C, 2020, 124, 205-218.	1.5	15
1004	Photomechanical Luminescence from Throughâ€Space Conjugated AlEgens. Angewandte Chemie, 2020, 132, 8913-8917.	1.6	12
1005	Photomechanical Luminescence from Throughâ€Space Conjugated AlEgens. Angewandte Chemie - International Edition, 2020, 59, 8828-8832.	7.2	67
1006	Acetylene and Diacetylene Functionalized Covalent Triazine Frameworks as Metalâ€Free Photocatalysts for Hydrogen Peroxide Production: A New Twoâ€Electron Water Oxidation Pathway. Advanced Materials, 2020, 32, e1904433.	11.1	225
1007	Oxygen Evolution on Metalâ€oxyâ€hydroxides: Beneficial Role of Mixing Fe, Co, Ni Explained via Bifunctional Edge/acceptor Route. ChemCatChem, 2020, 12, 1436-1442.	1.8	21

#	ARTICLE	IF	CITATIONS
1008	High-Redox-Potential Chromophores for Visible-Light-Driven Water Oxidation at Low pH. ACS Catalysis, 2020, 10, 580-585.	5 . 5	11
1009	Effects of light quality on growth rates and pigments of Chaetoceros gracilis (Bacillariophyceae). Journal of Oceanology and Limnology, 2020, 38, 795-801.	0.6	8
1010	Factorial design fingerprint discrimination of Coffea arabica beans under elevated carbon dioxide and limited water conditions. Talanta, 2020, 209, 120591.	2.9	14
1011	Atropisomeric Hydrogen Bonding Control for CO ₂ Binding and Enhancement of Electrocatalytic Reduction at Iron Porphyrins. Angewandte Chemie, 2020, 132, 22637-22641.	1.6	20
1012	Surfactant Assisted Crystallization of Porphyrin Molecules for Well-Defined Nanocrystals. ACS Symposium Series, 2020, , 311-329.	0.5	2
1013	Efficient photocatalytic degradation of crystal violet by using graphene oxide/nickel sulphide nanocomposites. Bulletin of Materials Science, 2020, 43, 1.	0.8	17
1014	In need of a second-hand? The second coordination sphere of ruthenium complexes enables water oxidation with improved catalytic activity. Dalton Transactions, 2020, 49, 16034-16046.	1.6	9
1015	Enhanced CO evolution for photocatalytic conversion of CO2 by H2O over Ca modified Ga2O3. Communications Chemistry, 2020, 3, .	2.0	26
1016	Computational mechanistic study on molecular catalysis of water oxidation by cyclam ligand-based iron complex. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	6
1017	The first amino acid bound manganese–calcium clusters: a {[Mnlll3Ca] < sub > 2 < / sub > } methylalanine complex, and a [Mnlll6Ca] trigonal prism. Dalton Transactions, 2020, 49, 10339-10343.	1.6	4
1018	Synergie von elektrostatischen und Ï€â€Ï€â€Wechselwirkungen für die Verwirklichung von künstlichen photosynthetischen Modellsystemen auf Nanoâ€Ebene. Angewandte Chemie, 2020, 132, 18946-18955.	1.6	4
1019	Synergy of Electrostatic and π–π Interactions in the Realization of Nanoscale Artificial Photosynthetic Model Systems. Angewandte Chemie - International Edition, 2020, 59, 18786-18794.	7.2	10
1020	Electron transport in Tradescantia leaves acclimated to high and low light: thermoluminescence, PAM-fluorometry, and EPR studies. Photosynthesis Research, 2020, 146, 123-141.	1.6	9
1021	Tailored self-assembled photocatalytic nanofibres for visible-light-driven hydrogen production. Nature Chemistry, 2020, 12, 1150-1156.	6.6	98
1022	Light-driven formation of manganese oxide by today's photosystem II supports evolutionarily ancient manganese-oxidizing photosynthesis. Nature Communications, 2020, 11, 6110.	5.8	34
1023	Highly efficient heterojunction solar cells enabled by edge-modified tellurene nanoribbons. Physical Chemistry Chemical Physics, 2020, 22, 28414-28422.	1.3	8
1024	HYSCORE and DFT Studies of Proton-Coupled Electron Transfer in a Bioinspired Artificial Photosynthetic Reaction Center. IScience, 2020, 23, 101366.	1.9	2
1025	Two-dimensional semiconducting covalent organic frameworks for photocatalytic solar fuel production. Materials Today, 2020, 40, 160-172.	8.3	56

#	Article	IF	Citations
1026	Laser-Induced Electron Transfer in the Dissociative Multiple Ionization of Argon Dimers. Physical Review Letters, 2020, 125, 063202.	2.9	6
1027	Electrodeposition-fabricated catalysts for polymer electrolyte water electrolysis. Korean Journal of Chemical Engineering, 2020, 37, 1275-1294.	1.2	6
1028	Efficient photocatalysis of organic dyes under simulated sunlight irradiation by a novel magnetic CuFe2O4@porphyrin nanofiber hybrid material fabricated via self-assembly. Fuel, 2020, 281, 118655.	3.4	29
1029	NiOx nanoparticles as active water splitting catalysts for the improved photostability of a n-GaN photoanode. Solar Energy Materials and Solar Cells, 2020, 216, 110723.	3.0	6
1030	A sunlight-responsive metal–organic framework system for sustainable water desalination. Nature Sustainability, 2020, 3, 1052-1058.	11.5	131
1031	Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chemical Science, 2020, 11, 9741-9756.	3.7	157
1032	Photodynamical behaviour of MOFs and related composites: Relevance to emerging photon-based science and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 44, 100355.	5.6	32
1033	Oxygen-mediated water splitting on metal-free heterogeneous photocatalyst under visible light. Applied Catalysis B: Environmental, 2020, 279, 119378.	10.8	14
1034	Efficient Renewable-to-Hydrogen Conversion via Decoupled Electrochemical Water Splitting. Cell Reports Physical Science, 2020, 1, 100138.	2.8	43
1035	Semiconductor nanocrystals for small molecule activation (i) artificial photosynthesis. Chemical Society Reviews, 2020, 49, 9028-9056.	18.7	127
1036	Analysis of Photosynthetic Systems and Their Applications with Mathematical and Computational Models. Applied Sciences (Switzerland), 2020, 10, 6821.	1.3	4
1037	A hydrazone-based covalent organic framework/iridium (III) complex for photochemical CO2 reduction with enhanced efficiency and durability. Journal of Catalysis, 2020, 392, 49-55.	3.1	20
1038	Harnessing photo/electro-catalytic activity <i>via</i> nano-junctions in ternary nanocomposites for clean energy. Nanoscale, 2020, 12, 23461-23479.	2.8	18
1040	Modulating Surface/Interface Structure of Emerging InGaN Nanowires for Efficient Photoelectrochemical Water Splitting. Advanced Functional Materials, 2020, 30, 2005677.	7.8	51
1042	Emulating photosynthetic processes with light harvesting synthetic protein (maquette) assemblies on titanium dioxide. Materials Advances, 2020, 1, 1877-1885.	2.6	2
1043	Molecular Scylla and Charybdis: Maneuvering between pH Sensitivity and Excited-State Localization in Ruthenium Bi(benz)imidazole Complexes. Inorganic Chemistry, 2020, 59, 12097-12110.	1.9	19
1044	Water Oxidizing Diruthenium Electrocatalysts Immobilized on Carbon Nanotubes: Effects of the Number and Positioning of Pyrene Anchors. ACS Catalysis, 2020, 10, 10614-10626.	5 . 5	12
1045	Toward Enhanced Fixation of CO2 in Aquatic Biomass: Focus on Microalgae. Frontiers in Energy Research, 2020, 8, .	1.2	28

#	Article	IF	Citations
1046	Nanocrystal–Molecular Hybrids for the Photocatalytic Oxidation of Water. ACS Applied Energy Materials, 2020, 3, 10008-10014.	2.5	5
1047	Atropisomeric Hydrogen Bonding Control for CO ₂ Binding and Enhancement of Electrocatalytic Reduction at Iron Porphyrins. Angewandte Chemie - International Edition, 2020, 59, 22451-22455.	7.2	55
1048	Electron-Based Bioscience and Biotechnology. , 2020, , .		3
1049	Nonfullerene Bulk Heterojunctionâ€Based Photocathodes for Highly Efficient Solar Hydrogen Production in Acidic and Neutral Solutions. Advanced Functional Materials, 2020, 30, 2003399.	7.8	19
1050	Amidine/Amidinate Cobalt Complexes: One-Pot Synthesis, Mechanism, and Photocatalytic Application for Hydrogen Production. Inorganic Chemistry, 2020, 59, 14910-14919.	1.9	8
1051	Bandgap engineering of novel peryleno[1,12- <i>bcd</i>]thiophene sulfone-based conjugated co-polymers for significantly enhanced hydrogen evolution without co-catalyst. Journal of Materials Chemistry A, 2020, 8, 20062-20071.	5.2	19
1052	Design and synthesis of phenylphosphine oxide-based polymer photocatalysts for highly efficient visible-light-driven hydrogen evolution. Sustainable Energy and Fuels, 2020, 4, 5264-5270.	2.5	42
1053	Solar Energy Harvesting with Photosynthetic Pigment-Protein Complexes. Green Energy and Technology, 2020, , .	0.4	1
1054	Producing Enhanced Yield and Nutritional Pigmentation in Lollo Rosso Through Manipulating the Irradiance, Duration, and Periodicity of LEDs in the Visible Region of Light. Frontiers in Plant Science, 2020, 11, 598082.	1.7	16
1055	Photons to Formate: A Review on Photocatalytic Reduction of CO2 to Formic Acid. Nanomaterials, 2020, 10, 2422.	1.9	43
1056	Direct energy transfer from photosystem II to photosystem I confers winter sustainability in Scots Pine. Nature Communications, 2020, 11, 6388.	5 . 8	50
1057	Activation energies for two steps in the S2â€^→ S3 transition of photosynthetic water oxidation from time-resolved single-frequency infrared spectroscopy. Journal of Chemical Physics, 2020, 153, 215101.	1.2	20
1058	Highly Efficient and Selective Visible-Light Driven CO ₂ Reduction by Two Co-Based Catalysts in Aqueous Solution. Inorganic Chemistry, 2020, 59, 17464-17472.	1.9	18
1059	Mimicking Natural Photosynthesis: Designing Ultrafast Photosensitized Electron Transfer into Multiheme Cytochrome Protein Nanowires. Nanomaterials, 2020, 10, 2143.	1.9	2
1060	Redox-active ligand assisted electrocatalytic water oxidation by a mononuclear cobalt complex. Dalton Transactions, 2020, 49, 7155-7165.	1.6	40
1061	Engineering of a highly stable metal-organic Co-film for efficient electrocatalytic water oxidation in acidic media. Materials Today Energy, 2020, 17, 100437.	2.5	9
1062	Altering the nature of coupling by changing the oxidation state in a {Mn6} cage. Dalton Transactions, 2020, 49, 8086-8095.	1.6	2
1063	Microbial Photosynthesis. , 2020, , .		4

#	Article	IF	CITATIONS
1064	Fabrication of nanohybrids assisted by protein-based materials for catalytic applications. Catalysis Science and Technology, 2020, 10, 3515-3531.	2.1	9
1065	Atomic layer deposition of cobalt phosphate from cobaltocene, trimethylphosphate, and O2 plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	5
1066	Active and selective CO2 electroreduction on a hierarchically nanoporous Au-Ag shell. Chemical Physics Letters, 2020, 753, 137563.	1.2	8
1067	Semi-biological approaches to solar-to-chemical conversion. Chemical Society Reviews, 2020, 49, 4926-4952.	18.7	157
1068	Photocatalytic H2 evolution and CO2 reduction over phosphorus-doped g-C3N4 nanostructures: Electronic, Optical, and Surface properties. Renewable and Sustainable Energy Reviews, 2020, 130, 109957.	8.2	59
1069	A Modified Vilsmeier–Haack Strategy to Construct β-Pyridine-Fused 5,10,15,20-Tetraarylporphyrins. SynOpen, 2020, 04, 44-50.	0.8	5
1070	Auxin Is Involved in Magnesium-Mediated Photoprotection in Photosystems of Alfalfa Seedlings Under Aluminum Stress. Frontiers in Plant Science, 2020, 11, 746.	1.7	14
1071	New findings and current controversies in the reaction of ruthenium red and ammonium cerium(iv) nitrate: focus on the precipitated compound. Catalysis Science and Technology, 2020, 10, 2491-2502.	2.1	2
1072	The genetic control of leaf allometry in the common bean, Phaseolus vulgaris. BMC Genetics, 2020, 21, 29.	2.7	8
1073	A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts. Angewandte Chemie - International Edition, 2020, 59, 9653-9658.	7.2	167
1074	Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nature Catalysis, 2020, 3, 245-255.	16.1	237
1075	A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts. Angewandte Chemie, 2020, 132, 9740-9745.	1.6	27
1076	Supramolecular Energy Materials. Advanced Materials, 2020, 32, e1907247.	11.1	101
1077	Graphitic carbon nitride nanoplatelets incorporated titania based type-II heterostructure and its enhanced performance in photoelectrocatalytic water splitting. SN Applied Sciences, 2020, 2, 1.	1.5	26
1078	Unravelling the water oxidation mechanism on NaTaO ₃ -based photocatalysts. Journal of Materials Chemistry A, 2020, 8, 6812-6821.	5.2	23
1079	Copper facilitated nickel oxy-hydroxide films as efficient synergistic oxygen evolution electrocatalyst. Journal of Catalysis, 2020, 384, 189-198.	3.1	5
1080	Construction of coumarin-fused pyrido[2,3- <i>b</i>) porphyrins through a trichloroacetic acid-accelerated domino approach. Organic and Biomolecular Chemistry, 2020, 18, 2516-2523.	1.5	10
1081	Surface plasmon resonance and defects on tungsten oxides synergistically boost high-selective CO2 reduction for ethylene. Applied Materials Today, 2020, 20, 100744.	2.3	23

#	Article	IF	CITATIONS
1082	Rational Design of Hierarchical CoO/NiO Nanosheets on Conductive Polypyrrole Nanotubes for Peroxidase Mimicking and Sensing Application. ACS Sustainable Chemistry and Engineering, 2020, 8, 11069-11078.	3.2	31
1083	Reassessing the rationale behind herbicide biosensors: The case of a photosystem II/redox polymer-based bioelectrode. Bioelectrochemistry, 2020, 136, 107597.	2.4	10
1084	Facile synthesis and photoelectrochemical properties of novel TiN/C3N4/CdS nanotube core/shell arrays. Chinese Journal of Catalysis, 2020, 41, 1645-1653.	6.9	11
1085	Enhancing the activity of photocatalytic hydrogen evolution from CdSe quantum dots with a polyoxovanadate cluster. Chemical Communications, 2020, 56, 8762-8765.	2.2	21
1086	Nanostructure-based photoelectrochemical sensing platforms for biomedical applications. Journal of Materials Chemistry B, 2020, 8, 2541-2561.	2.9	103
1087	Comparative evaluation of the structural and other features governing photo-electrochemical oxygen evolution by Ca/Mn oxides. Catalysis Science and Technology, 2020, 10, 2152-2164.	2.1	6
1088	Solar activation of fungus coated in photothermal cloth. Journal of Materials Chemistry B, 2020, 8, 2466-2470.	2.9	10
1089	A type-II interband alignment heterojunction architecture of cobalt titanate integrated UiO-66-NH2: A visible light mediated photocatalytic approach directed towards Norfloxacin degradation and green energy (Hydrogen) evolution. Journal of Colloid and Interface Science, 2020, 568, 89-105.	5.0	112
1090	A dynamic model of RuBP-regeneration limited photosynthesis accounting for photoinhibition, heat and water stress. Agricultural and Forest Meteorology, 2020, 285-286, 107911.	1.9	10
1091	Biopolymeric photonic structures: design, fabrication, and emerging applications. Chemical Society Reviews, 2020, 49, 983-1031.	18.7	138
1092	Structural and dynamical characterization of the S4 state of the Kok-Joliot's cycle by means of QM/MM Molecular Dynamics Simulations. Chemical Physics Letters, 2020, 742, 137111.	1.2	7
1093	Synthesis, crystal structure, characterization of pyrazine diaminotriazine based complexes and their systematic comparative study with pyridyl diaminotriazine based complexes for light-driven hydrogen production. Polyhedron, 2020, 180, 114412.	1.0	8
1094	Potential and Challenges of Improving Photosynthesis in Algae. Plants, 2020, 9, 67.	1.6	72
1095	Decelerating Charge Recombination Using Fluorinated Porphyrins in ⟨i>N,N⟨ i>-Bis(3,4,5-trimethoxyphenyl)aniline—Aluminum(III) Porphyrin—Fullerene Reaction Center Models. Journal of the American Chemical Society, 2020, 142, 10008-10024.	6.6	33
1096	CO2 transformation to multicarbon products by photocatalysis and electrocatalysis. Materials Today Advances, 2020, 6, 100071.	2.5	55
1097	Nanostructured TiO2 for light-driven CO2 conversion into solar fuels. APL Materials, 2020, 8, .	2.2	22
1098	COFs-based Porous Materials for Photocatalytic Applications. Chinese Journal of Polymer Science (English Edition), 2020, 38, 673-684.	2.0	31
1099	Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. National Science Review, 2020, 7, 1638-1646.	4.6	57

#	Article	IF	CITATIONS
1100	Direct Zâ€Scheme Heterojunction of SnS ₂ /Sulfurâ€Bridged Covalent Triazine Frameworks for Visibleâ€Lightâ€Driven CO ₂ Photoreduction. ChemSusChem, 2020, 13, 6278-6283.	3.6	48
1101	Highly efficient and selective photocatalytic CO ₂ reduction based on water-soluble CdS QDs modified by the mixed ligands in one pot. Catalysis Science and Technology, 2020, 10, 2821-2829.	2.1	21
1102	Photosynthetic, anatomical and biochemical responses of olive tree (<i>Olea europaea</i>) cultivars under water stress. Plant Biosystems, 2021, 155, 740-746.	0.8	8
1103	Bio-inspired Green Power: A Thermocurrent Generator. Transactions on Electrical and Electronic Materials, 2021, 22, 257-266.	1.0	0
1104	Homogeneous Catalysts Based on Firstâ€Row Transitionâ€Metals for Electrochemical Water Oxidation. ChemSusChem, 2021, 14, 234-250.	3.6	64
1105	New 3-D Mn(II) coordination polymer with redox active oxalate linker; an efficient and robust electrocatalyst for oxygen evolution reaction. Inorganica Chimica Acta, 2021, 514, 119982.	1.2	3
1106	CO2 towards fuels: A review of catalytic conversion of carbon dioxide to hydrocarbons. Journal of Environmental Chemical Engineering, 2021, 9, 104756.	3.3	147
1107	Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO ₂ . Chemical Science, 2021, 12, 946-959.	3.7	12
1108	Electrocatalytic Water Oxidation by a Phosphorus–Nitrogen Oâ•PN3-Pincer Cobalt Complex. Inorganic Chemistry, 2021, 60, 614-622.	1.9	14
1109	Electrochemical Polymerization Provides a Functionâ€Integrated System for Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 5965-5969.	7.2	13
1110	Electrochemical Polymerization Provides a Functionâ€Integrated System for Water Oxidation. Angewandte Chemie, 2021, 133, 6030-6034.	1.6	5
1111	Time-resolved infrared spectroscopic investigation of Ga2O3 photocatalysts loaded with Cr2O3-Rh cocatalysts for photocatalytic water splitting. Chinese Journal of Catalysis, 2021, 42, 808-816.	6.9	14
1112	Beyond hydrogen production: Solarâ^'driven H2Sâ^'donating valueâ^'added chemical production over MnxCd1xS/CdyMn1yS catalyst. Applied Catalysis B: Environmental, 2021, 284, 119706.	10.8	21
1113	Transition metal chelates with multifunctional 1,10-phenanthroline derivative towards production of hydrogen as alternative fuel from sea water: Design, synthesis, characterization and catalytic studies. International Journal of Hydrogen Energy, 2021, 46, 6573-6587.	3.8	6
1114	Cooperative activating effects of metal ion and BrÃ,nsted acid on a metal oxo species. Chemical Science, 2021, 12, 632-638.	3.7	6
1115	Augmenting photosynthesis through facile AlEgen-chloroplast conjugation and efficient solar energy utilization. Materials Horizons, 2021, 8, 1433-1438.	6.4	21
1116	Visible-light-driven photocatalytic water oxidation over LaNbON ₂ â€"LaMg _{2/3} Nb _{1/3} O ₃ solid solutions. Inorganic Chemistry Frontiers, 2021, 8, 2365-2372.	3.0	8
1117	Interfacialâ€Potentialâ€Gradient Induced a Significant Enhancement of Photoelectric Conversion: Thiophene Polyelectrolyte (PTEâ€BS) and Bipyridine Ruthenium (N3) Cooperative Regulated Biomimetic Nanochannels. Advanced Energy Materials, 2021, 11, 2003340.	10.2	9

#	Article	IF	CITATIONS
1118	Eosin-Y and sulfur-codoped g-C ₃ N ₄ composite for photocatalytic applications: the regeneration of NADH/NADPH and the oxidation of sulfide to sulfoxide. Catalysis Science and Technology, 2021, 11, 6401-6410.	2.1	29
1119	Catalysis of CO ₂ reduction by diazapyridinophane complexes of Fe, Co, and Ni: CO ₂ binding triggered by combined frontier MO associations involving a SOMO. Dalton Transactions, 2021, 50, 15983-15995.	1.6	3
1120	Mn4Ca-Cluster: Photosynthetic Water-Splitting Catalyst. , 2021, , 454-465.		1
1121	Bioinspired solar cells: contribution of biology to light harvesting systems. , 2021, , 593-632.		3
1122	An Integrated Methodology for Screening Hydrogen Evolution Reaction Catalysts: Pt/Mo2C as an Example. Springer Series in Materials Science, 2021, , 719-731.	0.4	0
1123	Redox tuning in Pt(bpy)-viologen catalyst-acceptor dyads enabling photocatalytic hydrogen evolution from water. Chemical Communications, 2021, 57, 5183-5186.	2.2	12
1124	Porous framework-based hybrid materials for solar-to-chemical energy conversion: from powder photocatalysts to photoelectrodes. Inorganic Chemistry Frontiers, 2021, 8, 4107-4148.	3.0	18
1125	Nanomaterials for Water Splitting: A Greener Approach to Generate Hydrogen., 2021,, 1201-1220.		2
1126	Hybrid artificial photosynthetic systems constructed using quantum dots and molecular catalysts for solar fuel production: development and advances. Journal of Materials Chemistry A, 2021, 9, 19346-19368.	5.2	19
1127	Early-stage formation of (hydr)oxo bridges in transition-metal catalysts for photosynthetic processes. Catalysis Science and Technology, 2021, 11, 1801-1813.	2.1	1
1128	Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chemical Communications, 2021, 57, 3952-3974.	2.2	24
1129	Mechanism and Electronic Perspective of Oxygen Evolution Reactions Catalyzed by [Fe(OTf)2(bpbp)]. Journal of Physical Chemistry C, 2021, 125, 1313-1322.	1.5	8
1130	A supramolecular single-site photocatalyst based on multi-to-one Förster resonance energy transfer. Chemical Communications, 2021, 57, 4174-4177.	2.2	12
1131	Toward Molecular Mechanisms of Solar Water Splitting in Semiconductor/Manganese Materials and Photosystem II. Advances in Photosynthesis and Respiration, 2021, , 105-129.	1.0	1
1132	Applying the Influence of Conformational Freedom on the Network Topologies Showing Impressive Proton Conductivity. Crystal Growth and Design, 2021, 21, 1461-1472.	1.4	7
1133	Lightâ€Induced Electron Transfer in Manganese(V)–Oxo Corroles. ChemPhotoChem, 2021, 5, 426-430.	1.5	0
1134	Efficiency enhancement in a single bandgap silicon solar cell considering hot-carrier extraction using selective energy contacts. Optics Express, 2021, 29, 5068.	1.7	5
1135	Synthesis and Photophysical Properties of Lightâ€Harvesting Gold Nanoclusters Fully Functionalized with Antenna Chromophores. Small, 2021, 17, e2004836.	5.2	13

#	Article	IF	CITATIONS
1136	Effect of nickel on combustion synthesized copper/ <scp> fumedâ€6iO ₂ </scp> catalyst for selective reduction of <scp> CO ₂ </scp> to <scp> CO</scp> . International Journal of Energy Research, 2022, 46, 441-451.	2.2	8
1138	Reconciling carbonâ€cycle processes from ecosystem to global scales. Frontiers in Ecology and the Environment, 2021, 19, 57-65.	1.9	12
1139	The Effect of Red & Blue Rich LEDs vs Fluorescent Light on Lollo Rosso Lettuce Morphology and Physiology. Frontiers in Plant Science, 2021, 12, 603411.	1.7	17
1140	Novel polyoxometalate-based composite as efficient electrocatalyst for alkaline water oxidation reaction. Journal of the Iranian Chemical Society, 2021, 18, 2079.	1.2	2
1141	Effect of lhcsr gene dosage on oxidative stress and light use efficiency by Chlamydomonas reinhardtii cultures. Journal of Biotechnology, 2021, 328, 12-22.	1.9	10
1142	Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nature Chemistry, 2021, 13, 358-366.	6.6	168
1143	Structureâ€Induced Stability in Sinuous Black Silicon for Enhanced Hydrogen Evolution Reaction Performance. Advanced Functional Materials, 2021, 31, 2008888.	7.8	5
1144	Anthraceneâ€based <scp> gâ€C ₃ N ₄ </scp> photocatalyst for regeneration of <scp>NAD</scp> (P)H and sulfide oxidation based on Zâ€scheme nature. International Journal of Energy Research, 2021, 45, 13117-13129.	2.2	17
1146	Bioconjugated nanoflower for estimation of glucose from saliva using nanozymes. Materials Technology, 0 , 1 -7.	1.5	3
1147	Plasma-Initiated Graft Polymerization of Acrylic Acid onto Fluorine-Doped Tin Oxide as a Platform for Immobilization of Water-Oxidation Catalysts. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14077-14090.	4.0	10
1149	Biophotovoltaics for Energy Generation. , 2021, , .		0
1150	Photosystem II-based biomimetic assembly for enhanced photosynthesis. National Science Review, 2021, 8, nwab051.	4.6	19
1151	Emerging polymeric carbon nitride Z-scheme systems for photocatalysis. Cell Reports Physical Science, 2021, 2, 100355.	2.8	99
1152	Hybrid Photocathodes for Carbon Dioxide Reduction: Interfaces for Charge Separation and Selective Catalysis. ChemPhotoChem, 2021, 5, 595-610.	1.5	6
1153	Nanomaterials for adsorption and conversion of CO2 under gentle conditions. Materials Today, 2021, 50, 385-399.	8.3	21
1154	Human hand as a powerless and multiplexed infrared light source for information decryption and complex signal generation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
1155	Synthesis and characterizations of graphene/Sm doped BiFeO3 composites photoanode for efficient photo-electrochemical water splitting. International Journal of Hydrogen Energy, 2021, 46, 15550-15560.	3.8	22
1156	Nature-inspired organic semiconductor via solvophobic self-assembly of porphyrin derivative as an effective photocatalyst for degradation of rhodamine B dye. Journal of Water Process Engineering, 2021, 40, 101876.	2.6	15

#	Article	IF	CITATIONS
1157	The desert green algae <i>Chlorella ohadii</i> thrives at excessively high light intensities by exceptionally enhancing the mechanisms that protect photosynthesis from photoinhibition. Plant Journal, 2021, 106, 1260-1277.	2.8	24
1158	Research Progress on Catalytic Water Splitting Based on Polyoxometalate/Semiconductor Composites. Catalysts, 2021, 11, 524.	1.6	15
1159	Artificial light-harvesting supramolecular assemblies with controllable fluorescence intensity formed by cyclodextrin-based host-gost complexation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 410, 113182.	2.0	4
1160	An Overview of the Recent Progress in Polymeric Carbon Nitride Based Photocatalysis. Chemical Record, 2021, 21, 1811-1844.	2.9	29
1161	Recent Advances in TiO2-Based Heterojunctions for Photocatalytic CO2 Reduction With Water Oxidation: A Review. Frontiers in Chemistry, 2021, 9, 637501.	1.8	26
1162	Decoration of AgOx hole collector to boost photocatalytic water oxidation activity of BiVO4 photoanode. Materials Today Energy, 2021, 21, 100762.	2.5	4
1163	High-valence-state nickel-iron phosphonates with urchin-like hierarchical architecture for highly efficient oxygen evolution reaction. Journal of Alloys and Compounds, 2021, 861, 158614.	2.8	15
1164	A mononuclear copper complex as bifunctional electrocatalyst for CO2 reduction and water oxidation. Journal of Electroanalytical Chemistry, 2021, 886, 115106.	1.9	4
1165	Controlling Radical Intermediates in Photocatalytic Conversion of Low-Carbon-Number Alcohols. ACS Sustainable Chemistry and Engineering, 2021, 9, 6188-6202.	3.2	18
1166	Technicalâ€scale biophotovoltaics for longâ€term photoâ€current generation from <i>Synechocystis</i> sp. PCC6803. Biotechnology and Bioengineering, 2021, 118, 2637-2648.	1.7	17
1167	Catalytic properties of supramolecular polymetallated porphyrins. ChemistrySelect, 2023, 8, 1045-1068.	0.7	1
1168	Photoinduced Intramolecular Electron Transfer in Phenylene Ethynylene Naphthalimide Oligomers. Journal of Physical Chemistry A, 2021, 125, 3863-3873.	1.1	8
1169	Correlating structural assemblies of photosynthetic reaction centers on a gold electrode and the photocurrent - potential response. IScience, 2021, 24, 102500.	1.9	3
1170	Direct growth of hematite film on p+n-silicon micro-pyramid arrays for low-bias water splitting. Solar Energy Materials and Solar Cells, 2021, 224, 110987.	3.0	4
1171	Roles of sulfur-edge sites, metal-edge sites, terrace sites, and defects in metal sulfides for photocatalysis. Chem Catalysis, 2021, 1, 44-68.	2.9	83
1172	Synthesis of BiOBr/Mg metal organic frameworks catalyst application for degrade organic dyes rhodamine B under the visible light. Applied Organometallic Chemistry, 2021, 35, e6324.	1.7	13
1173	Rational Modification of Two-Dimensional Donorâ€"Acceptor Covalent Organic Frameworks for Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Diterfaces, 2021, 13, 27041-27048.	4.0	80
1174	Synthesis, structural characterization and photocatalytic water-oxidation properties of mononuclear bis(o-phenanthroline) ruthenium(II) complexes with dithiocarbamate ligands. Journal of Molecular Structure, 2021, 1233, 130078.	1.8	2

#	Article	IF	CITATIONS
1175	Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate. Renewable and Sustainable Energy Reviews, 2021, 143, 110952.	8.2	55
1176	Inâ€depth Understanding of the Effects of Intramolecular Charge Transfer on Carbon Nitride Based Photocatalystsâ€. Chinese Journal of Chemistry, 2021, 39, 2044-2053.	2.6	18
1177	Advances in engineering perovskite oxides for photochemical and photoelectrochemical water splitting. Applied Physics Reviews, 2021, 8, .	5.5	19
1178	Self-Assembly-Directed Organization of a Fullerene–Bisporphyrin into Supramolecular Giant Donut Structures for Excited-State Charge Stabilization. Journal of the American Chemical Society, 2021, 143, 11199-11208.	6.6	6
1179	Self-Assembling Peptidic Bolaamphiphiles for Biomimetic Applications. ACS Biomaterials Science and Engineering, 2021, 7, 3545-3572.	2.6	6
1180	Sizeâ€Selective Photoelectrochemical Reactions in Microporous Environments: Clark Probe Investigation of Pt@gâ€C ₃ N ₄ Embedded into Intrinsically Microporous Polymer (PIMâ€1). ChemElectroChem, 2021, 8, 3499-3505.	1.7	6
1181	Photoinduced electron transfer reactions in mixed micelles of a star block copolymer and surface active ionic liquids: Role of the anion. Journal of Molecular Liquids, 2021, 342, 116951.	2.3	4
1182	Wholeâ€Cellâ€Based Photosynthetic Biohybrid Systems for Energy and Environmental Applications. ChemPlusChem, 2021, 86, 1021-1036.	1.3	9
1183	Mechanistic Insight into the O ₂ Evolution Catalyzed by Copper Complexes with Tetra- and Pentadentate Ligands. Journal of Physical Chemistry A, 2021, 125, 6461-6473.	1.1	4
1184	Unassisted Photoelectrochemical Cell with Multimediator Modulation for Solar Water Splitting Exceeding 4% Solar-to-Hydrogen Efficiency. Journal of the American Chemical Society, 2021, 143, 12499-12508.	6.6	157
1185	Highly porous Zr-MCM-48 immobilized Cu-porphyrin for photocatalytic reduction of CO2 to methanol in a slurry reactor. Journal of Materials Science: Materials in Electronics, 2021, 32, 22060-22075.	1.1	1
1186	Designing four naphthalene di-imide based small organic solar cells with 5,6-difluoro-3-oxo-2,3-dihydro-indene non-fullerene acceptors. Optical and Quantum Electronics, 2021, 53, 1.	1.5	5
1187	Boosting electron transport over controllable N ligand doping for electrochemical conversion of CO2 to syngas. Electrochimica Acta, 2021, 388, 138647.	2.6	3
1188	Bio-Inspired Molecular Catalysts for Water Oxidation. Catalysts, 2021, 11, 1068.	1.6	3
1189	Construction of Core–Shell MOF@COF Hybrids with Controllable Morphology Adjustment of COF Shell as a Novel Platform for Photocatalytic Cascade Reactions. Advanced Science, 2021, 8, e2101884.	5.6	79
1190	Laser-subcycle control of electronic excitation across system boundaries. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 164004.	0.6	2
1191	O–O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. Chinese Journal of Catalysis, 2021, 42, 1253-1268.	6.9	86
1192	Nonequilibrium thermodynamics of light-induced reactions. Journal of Chemical Physics, 2021, 155, 114101.	1.2	16

#	Article	IF	CITATIONS
1193	Isolated metal atoms and clusters for alkane activation: Translating knowledge from enzymatic and homogeneous to heterogeneous systems. CheM, 2021, 7, 2347-2384.	5.8	25
1194	Natural and synthetic layered hydroxide salts (LHS): Recent advances and application perspectives emphasizing catalysis. Progress in Solid State Chemistry, 2021, 64, 100335.	3.9	18
1195	Photocatalyst with Chloroplastâ€like Structure for Enhancing Hydrogen Evolution Reaction. Energy and Environmental Materials, 2022, 5, 1229-1237.	7.3	15
1196	Molecular insights and future frontiers in cell photosensitization for solar-driven CO2 conversion. IScience, 2021, 24, 102952.	1.9	17
1197	Evaluation of Manganese Cubanoid Clusters for Water Oxidation Catalysis: From Wellâ€Defined Molecular Coordination Complexes to Catalytically Active Amorphous Films. ChemSusChem, 2021, 14, 4741-4751.	3.6	2
1198	Eutectic iodide-based salt as a melem-to-PTI conversion stopping agent for all-in-one graphitic carbon nitride. Applied Catalysis B: Environmental, 2021, 294, 120222.	10.8	13
1199	Efficient solar water splitting using a CdS quantum dot decorated TiO2/Ag2Se photoanode. International Journal of Hydrogen Energy, 2021, 46, 34079-34088.	3.8	21
1200	Efficient photoelectrochemical reduction of carbon dioxide into alcohols assisted by photoanode driven water oxidation with gold nanoparticles decorated titania nanotubes. Journal of CO2 Utilization, 2021, 52, 101684.	3.3	14
1201	Photochemical Energy Conversion with Artificial Molecular Machines. Energy & Energy	2.5	13
1202	Conversion of CO2 to formic acid by integrated all-solar-driven artificial photosynthetic system. Journal of Power Sources, 2021, 512, 230532.	4.0	21
1203	Toward practical solar-driven photocatalytic water splitting on two-dimensional MoS2 based solid-state Z-scheme and S-scheme heterostructure. Fuel, 2021, 303, 121302.	3.4	26
1204	Photoinduced energy and electron transfer in a cofacial aluminum(III) porphyrin – Phosphorus(V) porphyrin heterodimer. Journal of Photochemistry and Photobiology, 2021, 8, 100069.	1.1	2
1205	Bimetallic water oxidation: One-site catalysis with two-sites oxidation. Journal of Energy Chemistry, 2021, 63, 1-7.	7.1	11
1206	Bioinspired molecular clusters for water oxidation. Coordination Chemistry Reviews, 2021, 448, 214164.	9.5	24
1207	Perovskite-type lanthanum ferrite based photocatalysts: Preparation, properties, and applications. Journal of Energy Chemistry, 2022, 66, 314-338.	7.1	88
1208	Facile fabrication of BiOlO3/MIL-88B heterostructured photocatalysts for removal of pollutants under visible light irradiation. Journal of Colloid and Interface Science, 2022, 607, 595-606.	5.0	33
1209	Effect of light on growth and chlorophyll development in kiwifruit ex vitro and in vitro. Scientia Horticulturae, 2022, 291, 110599.	1.7	12
1210	CHAPTER 10. Biotechnology Applications of Nanocarbons in Plant and Algal Systems. RSC Nanoscience and Nanotechnology, 2021, , 331-355.	0.2	O

#	Article	IF	CITATIONS
1211	CO ₂ electrochemical reduction boosted by the regulated electronic properties of metalloporphyrins through tuning an atomic environment. New Journal of Chemistry, 2021, 45, 10664-10671.	1.4	2
1212	A supramolecular dual-donor artificial light-harvesting system with efficient visible light-harvesting capacity. Organic Chemistry Frontiers, 2021, 8, 5250-5257.	2.3	27
1213	Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators. Nature Communications, 2021, 12, 123.	5.8	75
1214	Understanding the role of fluorination in the mechanistic nature of the water splitting process catalyzed by cobalt tris-(2-pyridylmethyl)amine complexes. Sustainable Energy and Fuels, 2021, 5, 2313-2324.	2.5	7
1216	Ferritin-catalyzed synthesis of ferrihydrite nanoparticles with high mimetic peroxidase activity for biomolecule detection. RSC Advances, 2021, 11, 26211-26217.	1.7	7
1217	An Overview of the Photocatalytic Water Splitting over Suspended Particles. Catalysts, 2021, 11, 60.	1.6	35
1218	Interface engineering of heterojunction photocatalysts based on 1D nanomaterials. Catalysis Science and Technology, 2021, 11, 27-42.	2.1	86
1219	Simultaneous oxidative and reductive reactions in one system by atomic design. Nature Catalysis, 2021, 4, 134-143.	16.1	132
1221	A Supramolecular Artificial Lightâ€Harvesting System with an Ultrahigh Antenna Effect. Advanced Materials, 2017, 29, 1701905.	11.1	209
1222	Coordination Changes of Carboxyl Ligands at the QAFeQB Triad in Photosynthetic Reaction Centers Studied by Density-Functional Theory. Advanced Topics in Science and Technology in China, 2013, , 95-101.	0.0	1
1223	Energiespeicher im Wandel der Zeit., 2014,, 3-23.		2
1224	Antriebe. , 2016, , 253-573.		1
1225	Green organic synthesis by photochemical protocol. , 2020, , 155-198.		4
1226	Switchable iridium hydride catalysts for controlling selectivity of alcohol oxidation. Journal of Organometallic Chemistry, 2020, 920, 121290.	0.8	3
1228	Highly efficient and selective photocatalytic CO ₂ to CO conversion in aqueous solution. Chemical Communications, 2020, 56, 3851-3854.	2.2	28
1229	Solar-driven water-splitting provides a solution to the energy problem underpinning climate change. Biochemical Society Transactions, 2020, 48, 2865-2874.	1.6	18
1231	Enhancement of Arabidopsis growth characteristics using genome interrogation with artificial transcription factors. PLoS ONE, 2017, 12, e0174236.	1.1	7
1233	Mimicking the Catalytic Center for the Water-Splitting Reaction in Photosystem II. Catalysts, 2020, 10, 185.	1.6	21

#	Article	IF	CITATIONS
1234	Spectroscopic Evidence of Energy Transfer in BODIPY-Incorporated Nano-Porphyrinic Metal-Organic Frameworks. Nanomaterials, 2020, 10, 1925.	1.9	8
1235	Extrapolations on the Use of Rhizobium Inoculants Supplemented with Phosphorus (P) and Potassium (K) on Growth and Nutrition of Legumes. Agricultural Sciences, 2014, 05, 1207-1226.	0.2	17
1236	Preparation of Eu-Doped ZnO/MIL-53(Fe) Photocatalyst and Its Catalytic Performance for Selective Oxidation of Alcohols. Acta Chimica Sinica, 2019, 77, 1184.	0.5	2
1237	Structural insights into the light-driven auto-assembly process of the water-oxidizing Mn4CaO5-cluster in photosystem II. ELife, 2017, 6, .	2.8	62
1238	Insights from Crystal Size and Band Gap on the Catalytic Activity of Monoclinic BiVO4. International Journal of Chemical Engineering and Applications (IJCEA), 0, , 305-309.	0.3	8
1239	A cyanine dye based supramolecular photosensitizer enabling visible-light-driven organic reaction in water. Chemical Communications, 2021, 57, 11217-11220.	2.2	12
1240	Investigating the Effects of a Consciousness Field on Enzyme-Like Behavior of Gold Nanozyme. SSRN Electronic Journal, 0, , .	0.4	0
1241	Boron doped cryptomelane as a highly efficient electrocatalyst for the oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 39810-39821.	3.8	8
1242	Liberating photoinhibition through nongenetic drainage of electrons from photosynthesis. Natural Sciences, 2021, 1, e20210038.	1.0	8
1243	Fabrication of Functionâ€Integrated Water Oxidation Catalysts by Electrochemical Polymerization of Ruthenium Complexes. ChemElectroChem, 2022, 9, e202101363.	1.7	2
1244	Rare-Earth Elements Can Structurally and Energetically Replace the Calcium in a Synthetic Mn ₄ CaO ₄ -Cluster Mimicking the Oxygen-Evolving Center in Photosynthesis. Journal of the American Chemical Society, 2021, 143, 17360-17365.	6.6	30
1245	Photoswitchable Nitrogen Superbases: Using Light for Reversible Carbon Dioxide Capture. Angewandte Chemie - International Edition, 2021, , .	7.2	8
1246	Photoswitchable Nitrogen Superbases: Using Light for Reversible Carbon Dioxide Capture. Angewandte Chemie, 0, , .	1.6	2
1247	CO2 — ein Rohstoff mit großer Zukunft. , 2011, , 135-149.		2
1248	Multi-electron Transfer Catalysts for Air-Based Organic Oxidations and Water Oxidation. NATO Science for Peace and Security Series B: Physics and Biophysics, 2012, , 229-242.	0.2	0
1249	Quinone Photochemistry. , 2012, , 983-714.		O
1250	Engineering Photobiological H2-Production. , 2014, , 203-216.		0
1253	Energy Changes in Photosynthetic Electron Transport: Probing Photosynthesis by Pulsed Photoacoustics. , 2014, , 171-190.		O

#	Article	IF	Citations
1254	Nanotechnology, Plasma, Hydrogen from Artificial Photosynthesis, and Fuel Cells: Powering the Developing World to the Sustainocene., 2014,, 273-290.		0
1255	Protein Nanopatterning. Springer Series in Biomaterials Science and Engineering, 2016, , 445-480.	0.7	1
1257	2 Devices for Solar-Driven Water Splitting to Hydrogen Fuel and Their Technical and Economic Assessments., 2016,, 9-46.		0
1258	Systems Metabolic Engineering of Saccharomyces cerevisiae for Production of Biochemicals from Biomass., 2017,, 31-65.		0
1259	A Robust PS II Mimic: Using Manganese/Tungsten Oxide Nanostructures for Photo Water Splitting. , 2017, , 343-358.		0
1260	Concepts in Photochemical Water Splitting. Electrochemical Energy Storage and Conversion, 2017, , 41-84.	0.0	0
1262	Modular Electrochemical Reactivity for Photovoltaics' Machines. Springer Proceedings in Energy, 2018, , 405-420.	0.2	0
1263	Energy Storage Through the Ages. , 2019, , 3-22.		0
1264	The Self-Passivation Mechanism in Degradation of BiVO $\langle \text{sub} \rangle 4 \langle \text{sub} \rangle$ Photoanode. SSRN Electronic Journal, 0, , .	0.4	0
1265	How Biology Solved Its Energy Problem and Implications for the Future of Humankind. , 2019, , 1-30.		0
1266	Mimicking the Mn4CaO5-Cluster in Photosystem II. , 2020, , 263-284.		0
1267	Smart microgel-metal hybrid particles of PNIPAM-co-PAA@AgAu: synthesis, characterizations and modulated catalytic activity. Journal of Physics Condensed Matter, 2020, 33, 084002.	0.7	12
1269	Mechanism and Dynamics of Formation of Bisoxo Intermediates and O–O Bond in the Catalytic Water Oxidation Process. Journal of Physical Chemistry A, 2021, 125, 279-290.	1.1	5
1270	Two-step sequential energy transfer of molecular assemblies based on host-guest interactions for the construction of photochemically catalyzed artificial light-harvesting systems. Dyes and Pigments, 2022, 197, 109895.	2.0	9
1271	Artificial leaf for light-driven CO2 reduction: Basic concepts, advanced structures and selective solar-to-chemical products. Chemical Engineering Journal, 2022, 430, 133031.	6.6	48
1272	An Insight into Biological Photovoltaic Cell Based Electrochemical System. , 2020, , 53-70.		1
1273	The Application of Pincer Ligand in Catalytic Water Splitting. Topics in Organometallic Chemistry, 2020, , 379.	0.7	0
1274	Bioelectrochemical and Reversible Interconversion in the Proton/Hydrogen and Carbon Dioxide/Formate Redox Systems and Its Significance in Future Energy Systems. , 2020, , 81-99.		2

#	Article	IF	CITATIONS
1275	Nanomaterials for Water Splitting: A Greener Approach to Generate Hydrogen., 2020, , 1-20.		0
1276	Synthetic Biology and Future Production of Biofuels and High–Value Products. , 2020, , 271-302.		4
1277	The effect of oxidation state of metal on electrochemical and photochemical driven hydrogen evolution catalyzed by nickel complexes of maleonitriledithiolate ligands. Inorganic and Nano-Metal Chemistry, 2020, 50, 521-528.	0.9	2
1278	Bio-Schottky Semi-Artificial Photosynthetic Devices. Green Energy and Technology, 2020, , 141-156.	0.4	O
1279	Boosting Cyanobacteria Growth by Fivefold with Aggregation-Induced Emission Luminogens: Toward the Development of a Biofactory. ACS Sustainable Chemistry and Engineering, 2021, 9, 15258-15266.	3.2	9
1280	Comparison of photosynthesis and fluorescent parameters between Dendrobium officinale and Dendrobium loddigesii. International Journal of Clinical and Experimental Medicine, 2015, 8, 13163-70.	1.3	1
1281	Structural and dynamic insights into Mn ₄ Ca cluster-depleted Photosystem II. Physical Chemistry Chemical Physics, 2021, 23, 27428-27436.	1.3	3
1282	Strain-tuneable photocatalytic ability of <mml:math altimg="si4.svg" display="inline" id="d1e374" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>B</mml:mi><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mi>C</mml:mi></mml:msub></mml:mrow><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td>w^{1.4}mml:n</td><td>12 nrow><mrnk< td=""></mrnk<></td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	w ^{1.4} mml:n	12 nrow> <mrnk< td=""></mrnk<>
1283	Rational Utilization of Photoelectrochemistry of Photosystem II for Self-Powered Photocathodic Detection of MicroRNA in Cells. Analytical Chemistry, 2021, 93, 15761-15767.	3.2	7
1284	Visible-Light-Driven Water Oxidation on Self-Assembled Metal-Free Organic@Carbon Junctions at Neutral pH. Jacs Au, 2021, 1, 2294-2302.	3.6	5
1285	James Barber (1940-2020): A very remarkable biochemist of our time. Photosynthetica, 2021, 59, 606-614.	0.9	0
1286	Advances in photoelectroreduction of CO2 to hydrocarbons fuels: Contributions of functional materials. Journal of CO2 Utilization, 2022, 55, 101810.	3.3	15
1287	Advancing Photoelectrochemical Energy Conversion through Atomic Design of Catalysts. Advanced Science, 2022, 9, e2104363.	5.6	21
1288	Bioinspired Artificial Photosynthetic Systems. Chemistry - A European Journal, 2022, 28, .	1.7	9
1289	Isolobal and isospin analogy between organic and inorganic open-shell moleculesâ€"Application to oxygenation reactions by active oxygen and oxy-radicals and water oxidation in the native and artificial photosynthesis. Advances in Quantum Chemistry, 2021, , 425-564.	0.4	1
1290	Site dependent catalytic water dissociation on anisotropic buckled black phosphorous surface. Physical Chemistry Chemical Physics, 2022, 24, 2582-2591.	1.3	2
1291	Photosynthetic efficiency, growth and secondary metabolism of common buckwheat (Fagopyrum) Tj ETQq0 0 0 rg 2022, 12, 257.	gBT /Overl	lock 10 Tf 50 12
1292	Panoramic insights into semi-artificial photosynthesis: origin, development, and future perspective. Energy and Environmental Science, 2022, 15, 529-549.	15.6	30

#	Article	IF	CITATIONS
1293	Teaching a fluorophore new tricks: Exploiting the light-driven organic oxidase nanozyme properties of thiazolothiazole for highly sensitive biomedical detection. Sensors and Actuators B: Chemical, 2022, 354, 131226.	4.0	16
1294	Proton-Coupled Electron Transfer: The Engine of Energy Conversion and Storage. Journal of the American Chemical Society, 2022, 144, 1069-1081.	6.6	72
1295	Efficient photoelectrodes based on two-dimensional transition metal dichalcogenides heterostructures: from design to construction. Rare Metals, 2022, 41, 1142-1159.	3.6	15
1296	Synthesizing Mechanism of the Mn 4 Ca Cluster Mimicking the Oxygenâ€Evolving Center in Photosynthesis. ChemSusChem, 2022, , .	3.6	5
1298	Black Phosphorus Nanosheets Enhance Photophosphorylation by Positive Feedback. Chinese Journal of Chemistry, 0, , .	2.6	3
1299	Controlling electrocatalytic, photoelectrocatalytic, and load release processes using soft material-modified electrodes. Journal of Electroanalytical Chemistry, 2022, 904, 115926.	1.9	2
1300	Maximizing Photosynthesis-Driven Baeyer–Villiger Oxidation Efficiency in Recombinant Synechocystis sp. PCC6803. Frontiers in Catalysis, 2022, 1, .	1.8	14
1301	An Optical Sensing Platform for Beta-Glucosidase Activity Using Protein-Inorganic Hybrid Nanoflowers. Journal of Fluorescence, 2022, 32, 669-680.	1.3	5
1302	Lightâ€powered Ion Pumping in a Cationâ€selective Conducting Polymer Membrane. Angewandte Chemie, 0,	1.6	2
1303	Lightâ€Powered Ion Pumping in a Cationâ€Selective Conducting Polymer Membrane. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
1304	Nanometer-Thick Hematite Films as Photoanodes for Solar Water Splitting. ACS Applied Nano Materials, 2022, 5, 2897-2905.	2.4	5
1305	Photocatalytic Aqueous CO ₂ Reduction to CO and CH ₄ Sensitized by Ullazine Supramolecular Polymers. Journal of the American Chemical Society, 2022, 144, 3127-3136.	6.6	43
1306	Heat–Electricity Coupling Driven Cascade Oxidation Reaction of Redox Couple and Water. Journal of Physical Chemistry Letters, 2022, 13, 49-57.	2.1	8
1307	Enhanced HClO production from chloride by dual cocatalyst loaded WO ₃ under visible light. Catalysis Science and Technology, 2022, 12, 2935-2942.	2.1	8
1308	Not that innocent – ammonium ions boost homogeneous light-driven hydrogen evolution. Chemical Communications, 2022, 58, 4603-4606.	2.2	4
1309	Multi-stepwise charge transfer <i>via</i> MOF@MOF/TiO ₂ dual-heterojunction photocatalysts towards hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 9717-9725.	5.2	37
1310	Catalytic Mechanism of Competing Proton Transfer Events from Water and Acetic Acid by [Co ^I (bpbH ₂)Cl ₂] for Water Splitting Processes. Journal of Physical Chemistry A, 2022, 126, 1321-1328.	1.1	0
1311	Covalent Triazine Frameworks(CTFs) for Photocatalytic Applications. Chemical Research in Chinese Universities, 2022, 38, 310-324.	1.3	10

#	Article	IF	CITATIONS
1313	Regioisomer-Directed Self-Assembly of Alternating Copolymers for Highly Enhanced Photocatalytic H ₂ Evolution. ACS Macro Letters, 2022, 11, 434-440.	2.3	4
1314	Hormesis in photosystem II: a mechanistic understanding. Current Opinion in Toxicology, 2022, 29, 57-64.	2.6	45
1315	Making Photocatalysis Comparable Using a Modular and Characterized Openâ€Source Photoreactor**. ChemPhotoChem, 2022, 6, .	1.5	14
1316	Electrochemical Polymerization of a Carbazoleâ€Tethered Cobalt Phthalocyanine for Electrocatalytic Water Oxidation. ChemNanoMat, 0, , .	1.5	1
1317	Connecting Organic Redoxâ€Active Building Blocks through Mild Noncatalytic Câ^'H Activation. European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
1318	Advances and prospects of porphyrin-based nanomaterials via self-assembly for photocatalytic applications in environmental treatment. Coordination Chemistry Reviews, 2022, 463, 214543.	9.5	22
1319	Inorganometallic Photocatalyst for CO ₂ Reduction. Accounts of Chemical Research, 2021, 54, 4530-4544.	7.6	57
1320	Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chemical Society Reviews, 2022, 51, 3561-3608.	18.7	273
1321	Metal-free synthesis of pyridyl conjugated microporous polymers with tunable bandgaps for efficient visible-light-driven hydrogen evolution. Chinese Chemical Letters, 2023, 34, 107440.	4.8	5
1322	Tetraphenylethylene-embedded pillar[5]arene-based orthogonal self-assembly for efficient photocatalysis in water. Beilstein Journal of Organic Chemistry, 2022, 18, 429-437.	1.3	10
1323	Cu, Fe Dualâ^'modified Ni3S2 nanosheets on nickel foam for bifunctional electrocatalytic water spitting. FlatChem, 2022, 33, 100368.	2.8	7
1335	Reaction Pathways toward Sustainable Photosynthesis of Hydrogen Peroxide by Polymer Photocatalysts. Chemistry of Materials, 2022, 34, 4259-4273.	3.2	60
1336	Chemical and electrochemical water oxidation catalyzed by heteroleptic Ru(III) complexes of anionic 2,6 pyridine dicarboxylate ligand: Experimental and theoretical study. Polyhedron, 2022, 222, 115898.	1.0	2
1337	Activation effect of nickel phosphate co-catalysts on the photoelectrochemical water oxidation performance of TiO2 nanotubes. Journal of Saudi Chemical Society, 2022, 26, 101484.	2.4	8
1338	Hostâ€Guest Assemblies of Cyanostilbenes and Cucurbit[8]uril: Luminescence Modulation, Photoreactivity Control and Energy Transfer Studies. ChemNanoMat, 2022, 8, .	1.5	1
1339	Remembering James Barber (1940–2020). Photosynthesis Research, 2022, , 1.	1.6	0
1340	Photovoltaic/photo-electrocatalysis integration for green hydrogen: A review. Energy Conversion and Management, 2022, 261, 115648.	4.4	48
1341	Polarization-induced carrier separation in conjugated polyimide for boosted visible light driven H2O2 production. Applied Surface Science, 2022, 594, 153478.	3.1	10

#	Article	IF	CITATIONS
1342	Artificial Photosynthesis (AP): From Molecular Catalysts to Heterogeneous Materials. Chemical Research in Chinese Universities, 0 , , 1 .	1.3	0
1343	Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022, 51, 4583-4762.	18.7	453
1344	Mechanistic Insights into Cobalt-Based Water Oxidation Catalysis by DFT-Based Molecular Dynamics Simulations. Journal of Physical Chemistry A, 2022, 126, 3301-3310.	1.1	5
1345	Peony-like 3D-MoS2/graphene nanostructures with enhanced mimic peroxidase performance for colorimetric determination of dopamine. Talanta, 2022, 247, 123553.	2.9	9
1346	Insight into the huge difference in redox potential between the structural OEC analogues Mn3CaO4 and Mn4CaO4. Inorganica Chimica Acta, 2022, 539, 121023.	1.2	0
1348	Photocatalytic Material-Microorganism Hybrid System and Its Application—A Review. Micromachines, 2022, 13, 861.	1.4	4
1349	Sequential electron transfer in a bis(styryl)BODIPY-aluminum(III) porphyrin – naphthalenediimide reaction center mimic. Journal of Porphyrins and Phthalocyanines, 2022, 26, 407-417.	0.4	4
1350	New microporous nickel phosphonate derivatives N, P-codoped nickel oxides and N, O-codoped nickel phosphides: Potential electrocatalysts for water oxidation. Catalysis Today, 2023, 424, 113771.	2.2	4
1351	2D Covalent Organic Frameworks Toward Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2022, 15, .	3.6	35
1352	Photofunctional molecular assembly for artificial photosynthesis: Beyond a simple dye sensitization strategy. Coordination Chemistry Reviews, 2022, 467, 214624.	9.5	20
1353	Metalâ^'Organic Frameworks as Photocatalysts for Hydrogen Evolution. ACS Symposium Series, 0, , 499-511.	0.5	0
1354	Catalytic Synergism in Mn-Heterostructured Molybdenum Oxysulfide Hybridized with Transition Metal Phosphates: A Robust Amorphous Water Oxidation Catalyst. SSRN Electronic Journal, 0, , .	0.4	0
1355	Reversible Structural Isomerization of Nature's Water Oxidation Catalyst Prior to O–O Bond Formation. Journal of the American Chemical Society, 2022, 144, 11736-11747.	6.6	15
1356	Research advances on photo-assisted CO2 conversion to methanol. Applied Catalysis A: General, 2022, 643, 118738.	2.2	8
1357	Dinitrosyl iron complexes (<scp>DNICs</scp>) acting as catalyst for photocatalytic hydrogen evolution reaction (<scp>HER</scp>). Journal of the Chinese Chemical Society, 2022, 69, 1406-1418.	0.8	3
1358	Optical Metasurfaces for Energy Conversion. Chemical Reviews, 2022, 122, 15082-15176.	23.0	52
1359	Exogenous Application of Methyl Jasmonate at the Booting Stage Improves Rice's Heat Tolerance by Enhancing Antioxidant and Photosynthetic Activities. Agronomy, 2022, 12, 1573.	1.3	4
1360	åŸå•‰å∓控自组装åŠå…¶åº"甓. Scientia Sinica Chimica, 2022, , .	0.2	2

#	Article	IF	CITATIONS
1361	Homogeneity of Supported Singleâ€Atom Active Sites Boosting the Selective Catalytic Transformations. Advanced Science, 2022, 9, .	5.6	47
1362	Integrated Photovoltaic Charging and Energy Storage Systems: Mechanism, Optimization, and Future. Small, 2022, 18, .	5.2	16
1363	Photoelectrochemical sensors based on heterogeneous nanostructures for in vitro diagnostics. Biosensors and Bioelectronics: X, 2022, 11, 100200.	0.9	1
1364	Mimicking the Oxygen-Evolving Center in Photosynthesis. Frontiers in Plant Science, 0, 13, .	1.7	2
1365	Defect-rich ultrathin poly-heptazine-imide-framework nanosheets with alkali-ion doping for photocatalytic solar hydrogen and selective benzylamine oxidation. Nano Research, 2022, 15, 8760-8770.	5.8	7
1366	Cationâ€Selective Oxide Semiconductor Mesoporous Membranes for Biomimetic Ion Rectification and Lightâ€Powered Ion Pumping. Small, 0, , 2202910.	5.2	3
1367	Ligandâ€toâ€Metal Charge Transfer (LMCT) Photochemistry at 3dâ€Metal Complexes: An Emerging Tool for Sustainable Organic Synthesis. ChemCatChem, 2022, 14, .	1.8	82
1368	Carbonate-catalyzed reverse water-gas shift to produce gas fermentation feedstocks for renewable liquid fuel synthesis. Cell Reports Physical Science, 2022, 3, 101021.	2.8	1
1370	A plausible mechanism in premicellar aggregates for photocurrent generation in photogalvanic cell for simultaneously solar power conversion and storage. Energy Conversion and Management, 2022, 268, 116039.	4.4	2
1371	Geometric, electronic and spin structures of the CaMn4O5 catalyst for water oxidation in oxygen-evolving photosystem II. Interplay between experiments and theoretical computations. Coordination Chemistry Reviews, 2022, 471, 214742.	9.5	12
1372	Synthesis, crystal structures and electrocatalytic water oxidation by Mn(II), Co(II) and Ni(II) complexes of thiophene-2-carbohydrazide. Journal of Molecular Structure, 2022, 1270, 133886.	1.8	1
1373	Photocatalytic H2O2 production Systems: Design strategies and environmental applications. Chemical Engineering Journal, 2023, 451, 138489.	6.6	67
1374	Confined catalysis of MOF-818 nanozyme and colorimetric aptasensing for cardiac troponin I. Talanta, 2023, 252, 123830.	2.9	7
1375	Light-responsive nanochannels based on the supramolecular host–guest system. Frontiers in Chemistry, 0, 10, .	1.8	4
1376	Artificial light-harvesting systems based on self-assembled fluorescent palladium(II)-metallacycle in aqueous solution. Dyes and Pigments, 2022, 207, 110749.	2.0	4
1377	Elucidation of a multiple S3 intermediates model for water oxidation in the oxygen evolving complex of photosystem II. Calcium-assisted concerted O O bond formation. Chemical Physics Letters, 2022, 806, 140042.	1.2	7
1378	Solvent-regulated energy transfer efficiency and white light emitting in amphiphilic glutamide-cyanostilbene based supramolecular gel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130209.	2.3	1
1379	Water Oxidation Catalysis in Natural and Artificial Photosynthesis. , 2022, , .		1

#	Article	IF	CITATIONS
1380	Non-Sacrificial Photocatalysis. , 2022, , .		4
1381	Surface-active site engineering: Synergy of photo- and supermolecular catalysis in hydrogen transfer enables biomass upgrading and H2 evolution. Chemical Engineering Journal, 2023, 452, 139477.	6.6	22
1382	Photocatalytic Carbon Dioxide Reduction and Density Functional Theory Investigation of 2,6-(Pyridin-2-yl)-1,3,5-triazine-2,4-diamine and Its Cobalt and Nickel Complexes. ACS Applied Energy Materials, 2022, 5, 11077-11090.	2.5	4
1383	A Covalent Organic Framework for Cooperative Water Oxidation. Journal of the American Chemical Society, 2022, 144, 17661-17670.	6.6	18
1384	Artificial Light-Harvesting System with White-Light Emission in a Bicontinuous Ionic Medium. Journal of Physical Chemistry Letters, 2022, 13, 8999-9006.	2.1	5
1385	Transcriptome profiling of barley and tomato shoot and root meristems unravels physiological variations underlying photoperiodic sensitivity. PLoS ONE, 2022, 17, e0265981.	1.1	O
1386	Quantum rate efficiency of the charge transfer mediated by quantum capacitive states. Electrochimica Acta, 2022, 434, 141194.	2.6	4
1387	Main-chain engineering of polymer photocatalysts with hydrophilic non-conjugated segments for visible-light-driven hydrogen evolution. Nature Communications, 2022, 13, .	5.8	24
1388	Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chemical Reviews, 2022, 122, 16294-16328.	23.0	32
1389	Catalytic synergism in Mn-heterostructured molybdenum oxysulfide hybridized with transition metal phosphides: A robust amorphous water oxidation catalyst. Electrochimica Acta, 2022, 433, 141249.	2.6	3
1390	Electrocatalytic NAD ⁺ reduction <i>via</i> hydrogen atom-coupled electron transfer. Chemical Science, 2022, 13, 13361-13367.	3.7	6
1391	Simplification of the potassium ferrioxalate actinometer through carbon dioxide monitoring. Canadian Journal of Chemistry, 0, , .	0.6	1
1392	Recent Advances in Design and Fabrication of Highly Active Nanozymes. ACS Symposium Series, 0, , 37-65.	0.5	1
1393	Use of images for early identification of water stress. Brazilian Journal of Biosystems Engineering, 0, 16 , .	0.0	0
1394	Mechanistic Insights into the Charge Transfer Dynamics of Photocatalytic Water Oxidation at the Lipid Bilayer–Water Interface. Journal of the American Chemical Society, 2022, 144, 19353-19364.	6.6	7
1395	A Minimal Lightâ€Driven System to Study the Enzymatic CO ₂ Reduction of Formate Dehydrogenase. ChemCatChem, 2022, 14, .	1.8	5
1396	Surface-chemistry-driven water dissociation on cobalt-based graphene hybrid from molecular dynamics simulations. Physical Chemistry Chemical Physics, 0, , .	1.3	0
1397	Recent advances in subphthalocyanines and related subporphyrinoids. Chemical Society Reviews, 2022, 51, 9482-9619.	18.7	34

#	Article	IF	Citations
1398	Synthesis, crystal structure and properties of electro-catalysis for hydrogen production of a molecular nickel catalyst based on bis(1,2,5-thiadiazole-3,4-dithiolate) ligand. Journal of Molecular Structure, 2023, 1274, 134501.	1.8	3
1399	Sustainable Carbon Dioxide Reduction of the P3HT Polymer-Sensitized TiO ₂ /Re(I) Photocatalyst. ACS Applied Materials & Samp; Interfaces, 2022, 14, 50718-50730.	4.0	4
1400	Self-assembled supramolecular materials for photocatalytic H ₂ production and CO ₂ reduction. Materials Futures, 2022, 1, 042104.	3.1	9
1401	Ruthenium complexes of rigid, dianionic, tetradentate Nâ€donor ligands and their potential as catalysts for water oxidation. European Journal of Inorganic Chemistry, 0, , .	1.0	2
1402	Cascade energy transfer augmented circular polarization in photofluorochromic cholesteric texture. Chemical Communications, 2023, 59, 567-570.	2.2	5
1403	Utilizing Cyanobacteria in Biophotovoltaics: An Emerging Field in Bioelectrochemistry. Advances in Biochemical Engineering/Biotechnology, 2022, , 281-302.	0.6	0
1404	Tuning electrocatalytic water oxidation by MnO _{<i>x</i>} through the incorporation of abundant metal cations. Sustainable Energy and Fuels, 2022, 7, 92-105.	2.5	3
1405	Crystal phase engineering SiC nanosheets for enhancing photocatalytic CO ₂ reduction. Environmental Science Advances, 0, , .	1.0	1
1406	A 1,3,5-triazine and benzodithiophene based donor-acceptor type semiconducting conjugated polymer for photocatalytic overall water splitting. Journal of Solid State Chemistry, 2023, 318, 123769.	1.4	5
1407	基于类囊体膜的光能å^©ç""å'Œå…‰åŠ"åŠ›å¦æ²»ç−−. Chinese Science Bulletin, 2022, , .	0.4	0
1408	Early Drought Stress Warning in Plants: Color Pictures of Photosystem II Photochemistry. Climate, 2022, 10, 179.	1.2	24
1409	2-Hydroxychalcone as a Novel Natural Photosynthesis Inhibitor against Bloom-Forming Cyanobacteria. Journal of Agricultural and Food Chemistry, 2022, 70, 15069-15079.	2.4	4
1410	Biomimetic Approach toward Visible Light-Driven Hydrogen Generation Based on a Porphyrin-Based Coordination Polymer Gel. ACS Applied Materials & Driver (1988) (198	4.0	6
1411	Application of Zirconia/Alumina Composite Oxide Ceramics as Photocatalysts for Removal of 2,4,6-Trichlorophenol from Water. Photochem, 2022, 2, 905-917.	1.3	3
1413	Photocatalytic H2 generation from ethanol and glucose aqueous solutions by PtOx/TiO2 composites. International Journal of Hydrogen Energy, 2023, 48, 22366-22378.	3.8	8
1414	Assembled Porphyrin Nanofiber on the Surface of g-C3N4 Nanomaterials for Enhanced Photocatalytic Degradation of Organic Dyes. Catalysts, 2022, 12, 1630.	1.6	5
1415	Improving crop yield potential: Underlying biological processes and future prospects. Food and Energy Security, 2023, 12, .	2.0	18
1416	Synthesis of 2â€Arylpyrimido[4,5â€∢i>b) porphyrins via Cyclization Reaction with Ammonia. European Journal of Organic Chemistry, 2023, 26, .	1.2	2

#	Article	IF	CITATIONS
1417	Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catalysis, 2023, 13, 308-341.	5.5	6
1418	Ferritin-Enhanced Direct MicroRNA Detection via Controlled Radical Polymerization. Analytical Chemistry, 0, , .	3.2	1
1419	Sunlight harvesting. Computers and Chemical Engineering, 2023, 170, 108103.	2.0	1
1420	Editorial: Current challenges in photosynthesis: From natural to artificial, volume II. Frontiers in Plant Science, 0, 13, .	1.7	2
1421	Closing the green gap of photosystem I with synthetic fluorophores for enhanced photocurrent generation in photobiocathodes. Chemical Science, 2023, 14, 1696-1708.	3.7	6
1422	Tuning primary and secondary coordination spheres of ruthenium complexes for the homogeneous water oxidation reaction: a perspective from catalytic activity and overpotential. Catalysis Science and Technology, 2023, 13, 1598-1622.	2.1	4
1423	Three-Electron Two-Centered Bond and Single-Electron Transfer Mechanism of Water Splitting via a Copper–Bipyridine Complex. Journal of Physical Chemistry A, 2023, 127, 160-168.	1.1	1
1424	Study on the Feasibility of Preparing ZnIn ₂ 5 ₄ /g-C ₃ N ₄ Z-Type Heterojunction for Tetracycline Degradation. Hans Journal of Chemical Engineering and Technology, 2023, 13, 43-61.	0.0	0
1425	Electrodeposition of Stable Noble-Metal-Free Co-P Electrocatalysts for Hydrogen Evolution Reaction. Materials, 2023, 16, 593.	1.3	4
1426	Rapid charge transfer in covalent organic framework via through-bond for enhanced photocatalytic CO2 reduction. Chemical Engineering Journal, 2023, 458, 141360.	6.6	11
1427	Potential capture and conversion of CO2 from oceanwater through mineral carbonation. Science of the Total Environment, 2023, 867, 161589.	3.9	7
1428	Photoelectrocatalytic CO2 reduction. , 2023, , 335-359.		0
1429	Selectively converting CO2 to HCOOH on Cu-alloys integrated in hematite-driven artificial photosynthetic cells. Journal of Energy Chemistry, 2023, 79, 601-610.	7.1	8
1430	Orthogonal integration of holographic and fluorescent dual images based on energy transfer from liquid crystals to a photocleavable AlEgen. Journal of Materials Chemistry C, 2023, 11, 3504-3512.	2.7	2
1431	Light-Driven Ion Transport through Single-Heterojunction Nanopores. Nano Letters, 2023, 23, 1010-1016.	4.5	3
1432	Advances in Genetic Engineering in Improving Photosynthesis and Microalgal Productivity. International Journal of Molecular Sciences, 2023, 24, 1898.	1.8	10
1433	Abscisic acid agonists suitable for optimizing plant water use. Frontiers in Plant Science, 0, 13, .	1.7	1
1434	Recent progress in C–N coupling for electrochemical CO2 reduction with inorganic nitrogenous species in aqueous solution. Materials Reports Energy, 2023, 3, 100178.	1.7	2

#	Article	IF	CITATIONS
1435	Polystyrene-based eosin-Y as a photocatalyst for solar light-mediated NADH/NADPH regeneration and organic transformations. Reaction Chemistry and Engineering, 2023, 8, 1072-1082.	1.9	3
1436	Recent advances of aggregation-induced emission materials in enhancing solar energy utilization. Nanoscale Horizons, 0 , , .	4.1	2
1437	A Simple, Fast, and Facile Demonstration of a Photochemical Redox Reaction Using Visible Light. Journal of Chemical Education, 2023, 100, 1076-1080.	1.1	1
1438	Singleâ€Site Molecular Ruthenium(II) Waterâ€Oxidation Catalysts Grafted into a Polymerâ€Modified Surface for Improved Stability and Efficiency. ChemElectroChem, 2023, 10, .	1.7	0
1439	Alternative Mechanism for O ₂ Formation in Natural Photosynthesis via Nucleophilic Oxo–Oxo Coupling. Journal of the American Chemical Society, 2023, 145, 4129-4141.	6.6	16
1440	Electron transfer in strong-field three-body fragmentation of ArKr2 trimers. Journal of Chemical Physics, 2023, 158, .	1.2	3
1441	Effects of photocatalysis using a photocatalytic concrete board on water qualities and microbial communities in the aquaculture wastewater. Separation and Purification Technology, 2023, 313, 123517.	3.9	1
1442	Substoichiometric covalent organic frameworks with uncondensed aldehyde for highly efficient hydrogen peroxide photosynthesis in pure water. Applied Catalysis B: Environmental, 2023, 331, 122691.	10.8	38
1443	Photoreforming of Waste Polymers for Sustainable Hydrogen Fuel and Chemicals Feedstock: Waste to Energy. Chemical Reviews, 2023, 123, 4443-4509.	23.0	47
1444	Graphene Mediates Charge Transfer between Lead Chromate and a Cobalt Cubane Cocatalyst for Photocatalytic Water Oxidation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
1445	Pr2CrMnO6 double perovskite as new electrode material for electrochemical energy storage. Materials Chemistry and Physics, 2023, 302, 127726.	2.0	9
1446	Cyanobacteria as whole-cell factories: current status and future prospectives. Current Opinion in Biotechnology, 2023, 80, 102892.	3.3	11
1447	Hormesis effects in tomato plant growth and photosynthesis due to acephate exposure based on physiology and transcriptomic analysis. Pest Management Science, 2023, 79, 2029-2039.	1.7	7
1448	The Sustainable Synthesis of Methanol – Renewable Energy, Carbon Dioxide and an Anthropogenic Carbon Cycle. , 2014, , 193-258.		0
1449	Photocatalytic Regeneration of a Nicotinamide Adenine Nucleotide Mimic with Water-Soluble Iridium(III) Complexes. Inorganic Chemistry, 2023, 62, 7636-7643.	1.9	3
1450	Biohybrid Moleculeâ€Based Photocatalysts for Water Splitting Hydrogen Evolution. ChemPlusChem, 2023, 88, .	1.3	1
1451	Bi-functional LaMxFe1-xO3 (M = Cu, Co, Ni) for photo-fenton degradation of methylene blue and photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2023, 48, 17536-17552.	3.8	4
1452	Stability of Photocathodes: A Review on Principles, Design, and Strategies. ChemSusChem, 2023, 16, .	3.6	7

#	Article	IF	CITATIONS
1453	Covalent Organic Frameworkâ€Semiconductorâ€Based Heterostructures for Photocatalytic Applications. ChemSusChem, 2023, 16, .	3.6	10
1454	Million-atom molecular dynamics simulations reveal the interfacial interactions and assembly of plant PSII-LHCII supercomplex. RSC Advances, 2023, 13, 6699-6712.	1.7	6
1455	Decoupled Artificial Photosynthesis. Angewandte Chemie, 2023, 135, .	1.6	0
1456	Decoupled Artificial Photosynthesis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	17
1457	Carbonaceous Nanostructures-Based Photocatalysts for Sustainable H2 Production. Materials Horizons, 2023, , 257-283.	0.3	0
1458	Electrocatalytic properties of a novel ruthenium(<scp>ii</scp>) terpyridine-based complex towards CO ₂ reduction. Dalton Transactions, 2023, 52, 4442-4455.	1.6	1
1459	Hierarchical Waterweed-like Photoanodes for Sustainable Photoelectrochemical Hydrogen Production. ACS Applied Energy Materials, 2023, 6, 3460-3467.	2.5	0
1460	Recent Developments in (Oxy)nitride Photocatalysts With Narrow Bandgaps for Solar-driven Water Splitting., 2023,, 53-91.		0
1461	Graphene Mediates Charge Transfer between Lead Chromate and a Cobalt Cubane Cocatalyst for Photocatalytic Water Oxidation. Angewandte Chemie, 2023, 135, .	1.6	0
1462	Efficient light harvesting in self-assembled organic luminescent nanotubes. Chemical Science, 2023, 14, 4363-4374.	3.7	2
1463	Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chemical Reviews, 2023, 123, 5347-5420.	23.0	37
1464	Recent Advances in Water-Splitting Electrocatalysts Based on Electrodeposition. Materials, 2023, 16, 3044.	1.3	8
1465	Engineering Singleâ€Atom Nanozymes for Catalytic Biomedical Applications. Small, 2023, 19, .	5. 2	18
1466	Coherence Maps and Flow of Excitation Energy in the Bacterial Light Harvesting Complex 2. Journal of Physical Chemistry Letters, 2023, 14, 3835-3843.	2.1	1
1467	Enhancing overall carbon fixation and energy conversion with formate in green microalga Chlamydomonas reinhardtii. Algal Research, 2023, 72, 103108.	2.4	1
1468	Plasmonic Solar Energy Harvesting by ZnO Nanostructures and Their Composite Interfaces: A Review on Fundamentals, Recent Advances, and Applications. Energy Technology, 2023, 11, .	1.8	2
1469	<i>>g</i> â€ <i>B</i> ₃ <i>C</i> ₂ <i>N</i> ₃ : A Potential Two Dimensional Metalâ€free Photocatalyst for Overall Water Splitting**. ChemPhysChem, 2023, 24, .	1.0	2
1471	Photo-Driven Biocatalytic Seawater Splitting. , 2023, , 329-400.		0

#	Article	IF	CITATIONS
1475	Progress in Photocatalysis for Organic Chemistry. Journal of Organic Chemistry, 2023, 88, 6281-6283.	1.7	5
1486	Multi-functional photocatalytic systems for solar fuel production. Journal of Materials Chemistry A, 2023, 11, 14614-14629.	5.2	1
1503	Semiconductor nanomaterials in mimicking photosynthesis. , 2023, , 353-376.		0
1504	Main-group porphyrins in artificial photosynthesis. , 2023, , 165-195.		O
1505	Photosynthesis and nanotechnology. , 2023, , 493-501.		0
1510	Making the connections: Physical and electric interactions in biohybrid photosynthetic systems. Energy and Environmental Science, 0, , .	15.6	0
1512	Advances in bio-inspired electrocatalysts for clean energy future. Nano Research, 2024, 17, 515-533.	5.8	7
1516	Strategies to improve the photocatalytic performance of covalent triazine frameworks. Journal of Materials Chemistry A, 2023, 11, 21470-21497.	5.2	3
1517	Single-atom nanozymes: classification, regulation strategy, and safety concerns. Journal of Materials Chemistry B, 2023, 11, 9840-9866.	2.9	2
1540	Regulatory Role of Melatonin in Photosynthesis and Respiration. , 2023, , 81-113.		O
1557	A heterogeneous cobalt cubane polymer co-catalyst for cooperative water oxidation. Dalton Transactions, 2024, 53, 3975-3979.	1.6	0