Selection of candidate coding DNA barcoding regions for

Botanical Journal of the Linnean Society 159, 1-11

DOI: 10.1111/j.1095-8339.2008.00938.x

Citation Report

#	Article	IF	CITATIONS
2	A stuttering start to plant DNA barcoding: microsatellites present a previously overlooked problem in nonâ€coding plastid regions. Taxon, 2009, 58, 7-15.	0.4	56
3	Identification of Amazonian Trees with DNA Barcodes. PLoS ONE, 2009, 4, e7483.	1.1	176
4	Identifying a mysterious aquatic fern gametophyte. Plant Systematics and Evolution, 2009, 281, 77-86.	0.3	44
5	A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12794-12797.	3.3	2,120
6	Testing plant barcoding in a sister species complex of pantropical <i>Acacia</i> (Mimosoideae,) Tj ETQq0 0 0 rgBT	lOverlock 2:2	10 Tf 50 58
7	New insights into the species problem. Science China Life Sciences, 2010, 53, 964-972.	2.3	4
8	Which moss is which? Identification of the threatened moss Orthodontium gracile using molecular and morphological techniques. Conservation Genetics, 2010, 11, 1033-1042.	0.8	12
9	Evaluation of 10 plant barcodes in Bryophyta (Mosses). Journal of Systematics and Evolution, 2010, 48, 36-46.	1.6	66
10	Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species. Food Chemistry, 2010, 123, 494-500.	4.2	92
11	A Test of Seven Candidate Barcode Regions from the Plastome in <i>Picea</i> (Pinaceae). Journal of Integrative Plant Biology, 2010, 52, 1109-1126.	4.1	42
12	Broad-scale amplification of matK for DNA barcoding plants, a technical note. Botanical Journal of the Linnean Society, 0, 164, 1-9.	0.8	139
13	Phylogenetic analysis of eastern Asian and eastern North American disjunct Lespedeza (Fabaceae) inferred from nuclear ribosomal ITS and plastid region sequences. Botanical Journal of the Linnean Society, 2010, 164, 221-235.	0.8	16
14	BAC-HAPPY Mapping (BAP Mapping): A New and Efficient Protocol for Physical Mapping. PLoS ONE, 2010, 5, e9089.	1.1	6
15	Molecular Species Identification with Rich Floristic Sampling: DNA Barcoding the Pteridophyte Flora of Japan. PLoS ONE, 2010, 5, e15136.	1.1	108
16	Plant DNA barcoding: A test using Macaronesian taxa of <i>Tolpis</i> (Asteraceae). Taxon, 2010, 59, 581-587.	0.4	14
17	Stopping the stutter: Improvements in sequence quality from regions with mononucleotide repeats can increase the usefulness of non–coding regions for DNA barcoding. Taxon, 2010, 59, 694-697.	0.4	11
18	DNA barcoding of African Podostemaceae (riverâ€weeds): A test of proposed barcode regions. Taxon, 2010, 59, 251-260.	0.4	36
19	The MexBOL initiative. Mitochondrial DNA, 2010, 21, 1-2.	0.6	2

#	ARTICLE	IF	CITATIONS
20	Character-based, population-level DNA barcoding in Mexican species of ZamiaL. (Zamiaceae: Cycadales). Mitochondrial DNA, 2010, 21, 51-59.	0.6	15
21	A regional approach to plant DNA barcoding provides high species resolution of sedges (Carex and) Tj ETQq1 1 69-91.).784314 ı 2.2	gBT /Overlo 36
22	Species identification of $\langle i \rangle$ Alnus $\langle i \rangle$ (Betulaceae) using nrDNA and cpDNA genetic markers. Molecular Ecology Resources, 2010, 10, 594-605.	2.2	106
24	Prospects of barcoding the Italian wild dendroflora: oaks reveal severe limitations to tracking species identity. Molecular Ecology Resources, 2011, 11, 72-83.	2.2	88
25	DNA barcoding for the discrimination of Eurasian yews (<i>Taxus</i> L., Taxaceae) and the discovery of cryptic species. Molecular Ecology Resources, 2011, 11, 89-100.	2.2	154
26	Evaluation of candidate DNA barcoding loci for economically important timber species of the mahogany family (Meliaceae). Molecular Ecology Resources, 2011, 11, 450-460.	2.2	72
27	A case study of DNA barcoding in Chinese Grimmiaceae and a moss recorded in China for the first time. Taxon, 2011, 60, 185-193.	0.4	21
28	Identification of the genus Epimedium with DNA barcodes. Journal of Medicinal Plants Research, 2011, 5, .	0.2	8
29	Strengthening the scientific contribution of botanic gardens to the second phase of the Global Strategy for Plant Conservation. Botanical Journal of the Linnean Society, 2011, 166, 267-281.	0.8	38
30	A character-based approach in the Mexican cycads supports diverse multigene combinations for DNA barcoding. Cladistics, 2011, 27, 150-164.	1.5	23
31	High universality of <i>matK</i> primers for barcoding gymnosperms. Journal of Systematics and Evolution, 2011, 49, 169-175.	1.6	33
32	Testing four barcoding markers for species identification of Potamogetonaceae. Journal of Systematics and Evolution, 2011, 49, 246-251.	1.6	26
33	Testing four proposed barcoding markers for the identification of species within <i>Ligustrum</i> L. (Oleaceae). Journal of Systematics and Evolution, 2011, 49, 213-224.	1.6	26
34	DNA barcoding of <i>Gaultheria</i> L. in China (Ericaceae: Vaccinioideae). Journal of Systematics and Evolution, 2011, 49, 411-424.	1.6	10
35	A set of plastid DNA-specific universal primers for flowering plants. Russian Journal of Genetics, 2011, 47, 1066-1077.	0.2	7
36	Chloroplast-specific universal primers and their uses in plant studies. Biologia Plantarum, 2011, 55, 225-236.	1.9	17
37	Choosing and Using a Plant DNA Barcode. PLoS ONE, 2011, 6, e19254.	1.1	946
38	What does it take to resolve relationships and to identify species with molecular markers? An example from the epiphytic Rhipsalideae (Cactaceae). American Journal of Botany, 2011, 98, 1549-1572.	0.8	51

#	Article	IF	Citations
39	DNA Barcoding as an Effective Tool in Improving a Digital Plant Identification System: A Case Study for the Area of Mt. Valerio, Trieste (NE Italy). PLoS ONE, 2012, 7, e43256.	1.1	48
40	Testing DNA barcoding in closely related groups of <i>Lysimachia</i> L. (Myrsinaceae). Molecular Ecology Resources, 2012, 12, 98-108.	2.2	85
41	Validation of DNA barcoding as an efficient tool for taxon identification and detection of species diversity in Italian conifers. European Journal of Forest Research, 2012, 131, 1337-1353.	1.1	40
42	Phylogeny and diversification of Valerianaceae (Dipsacales) in the southern Andes. Molecular Phylogenetics and Evolution, 2012, 63, 724-737.	1.2	44
43	Molecular phylogenetics of the Brazilian giant bromeliads (Alcantarea, Bromeliaceae): implications for morphological evolution and biogeography. Molecular Phylogenetics and Evolution, 2012, 64, 177-189.	1.2	77
44	Identification of meat species by PCR-RFLP of the mitochondrial COI gene. Meat Science, 2012, 90, 490-493.	2.7	82
45	Barcoding success as a function of phylogenetic relatedness in Viburnum, a clade of woody angiosperms. BMC Evolutionary Biology, 2012, 12, 73.	3.2	64
46	Challenges in the DNA Barcoding of Plant Material. Methods in Molecular Biology, 2012, 862, 23-33.	0.4	25
47	DNA barcoding of the Mexican sedative and anxiolytic plant Galphimia glauca. Journal of Ethnopharmacology, 2012, 144, 371-378.	2.0	22
48	Development of a DNA Barcoding System for Seagrasses: Successful but Not Simple. PLoS ONE, 2012, 7, e29987.	1.1	59
49	Straightening out the screwÂpines: A first step in understanding phylogenetic relationships within Pandanaceae. Taxon, 2012, 61, 1010-1020.	0.4	39
50	DNA barcoding in native plants of the Labiatae (Lamiaceae) family from Chios Island (Greece) and the adjacent ÇeÅŸmeâ€Karaburun Peninsula (Turkey). Molecular Ecology Resources, 2012, 12, 620-633.	2.2	64
51	Evaluation of six candidate DNA barcoding loci in Ficus (Moraceae) of China. Molecular Ecology Resources, 2012, 12, 783-790.	2.2	51
52	A multi-marker DNA barcoding approach to save time and resources in vegetation surveys. Botanical Journal of the Linnean Society, 2012, 169, 518-529.	0.8	38
53	Differentiation of <i>Populus</i> species using chloroplast single nucleotide polymorphism (SNP) markers – essential for comprehensible and reliable poplar breeding. Plant Biology, 2012, 14, 374-381.	1.8	35
54	Monosaccharide analysis of succulent leaf tissue in Aloe. Phytochemistry, 2013, 93, 79-87.	1.4	29
55	DNA Barcoding in Endangered Mesoamerican Groups of Plants. Botanical Review, The, 2013, 79, 469-482.	1.7	12
56	Diversity and biogeography of Ni-hyperaccumulators of <i>Alyssum </i> section <i>Odontarrhena </i> (Brassicaceae) in the central western Mediterranean: evidence from karyology, morphology and DNA sequence data. Botanical Journal of the Linnean Society. 2013. 173. 269-289.	0.8	27

#	Article	IF	CITATIONS
57	Variability of leaf morphology and marker genes of members of the halophila complex collected in Viet Nam. Aquatic Botany, 2013, 110, 6-15.	0.8	16
58	DNA barcoding to analyse taxonomically complex groups in plants: the case of <i>Thymus</i> (Lamiaceae). Botanical Journal of the Linnean Society, 2013, 171, 687-699.	0.8	49
59	Genetic and DNA-Based Techniques. Comprehensive Analytical Chemistry, 2013, , 195-220.	0.7	0
60	Barcoding in the dark?: A critical view of the sufficiency of zoological DNA barcoding databases and a plea for broader integration of taxonomic knowledge. Molecular Phylogenetics and Evolution, 2013, 69, 39-45.	1.2	114
61	<scp>DNA</scp> barcoding for conservation, seed banking and ecological restoration of <i>Acacia</i> in the Midwest of Western Australia. Molecular Ecology Resources, 2013, 13, 1033-1042.	2.2	15
62	Persicaria Amphibia, a Serious Terrestrial Weed in Northern Greece: A Combined Molecular and Morphological Approach to Identification and Taxonomy. Biotechnology and Biotechnological Equipment, 2013, 27, 4236-4242.	0.5	3
63	DNA barcoding as a complementary tool for conservation and valorisation of forest resources. ZooKeys, 2013, 365, 197-213.	0.5	19
64	Phylogenetic Relationships between Four Salix L. Species Based on DArT Markers. International Journal of Molecular Sciences, 2013, 14, 24113-24125.	1.8	12
65	DNA Barcoding the Canadian Arctic Flora: Core Plastid Barcodes (rbcL + matK) for 490 Vascular Plant Species. PLoS ONE, 2013, 8, e77982.	1.1	76
66	Patterns of plastid and nuclear variation among apomictic polyploids of Hieracium: evolutionary processes and taxonomic implications. Annals of Botany, 2013, 111, 591-609.	1.4	9
67	How Effective Are DNA Barcodes in the Identification of African Rainforest Trees?. PLoS ONE, 2013, 8, e54921.	1.1	81
68	Complete genomic congruence but nonâ€monophyly of <i>Cymodocea</i> (Cymodoceaceae), a small group of seagrasses. Taxon, 2014, 63, 3-8.	0.4	14
69	Evaluation of 11 singleâ€locus and seven multilocus <scp>DNA</scp> barcodes in <i><scp>L</scp>amium </i> <scp>L</scp> amiaceae). Molecular Ecology Resources, 2014, 14, 272-285.	2.2	44
70	DNA Barcoding Reveals Limited Accuracy of Identifications Based on Folk Taxonomy. PLoS ONE, 2014, 9, e84291.	1.1	46
72	Analysis of Variation in Chloroplast DNA Sequences. Methods in Molecular Biology, 2014, 1115, 85-120.	0.4	3
73	DNA Barcoding to Detect Chilli Adulteration in Traded Black Pepper Powder. Food Biotechnology, 2014, 28, 25-40.	0.6	82
74	DNA barcodes successfully identified Macaronesian Lotus (Leguminosae) species within early diverged lineages of Cape Verde and mainland Africa. AoB PLANTS, 2014, 6, plu050-plu050.	1.2	16
75	Evaluation of pyrosequencing for large-scale identificationof plant species (grasses as a model). Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2015, 39, 730-741.	0.8	1

#	Article	IF	Citations
76	Evaluation of the DNA Barcodes in Dendrobium (Orchidaceae) from Mainland Asia. PLoS ONE, 2015, 10, e0115168.	1.1	64
77	Application of DNA Barcodes in Asian Tropical Trees – A Case Study from Xishuangbanna Nature Reserve, Southwest China. PLoS ONE, 2015, 10, e0129295.	1.1	25
78	ITS and trnH-psbA as Efficient DNA Barcodes to Identify Threatened Commercial Woody Angiosperms from Southern Brazilian Atlantic Rainforests. PLoS ONE, 2015, 10, e0143049.	1.1	57
79	Molecular taxonomic identification in the absence of a  barcoding gap': a test with the endemic flora of the <scp>C</scp> anarian oceanic hotspot. Molecular Ecology Resources, 2015, 15, 42-56.	2.2	15
80	Testing <scp>DNA</scp> barcodes in closely related species of <i><scp>C</scp>urcuma</i> (Zingiberaceae) from <scp>M</scp> yanmar and <scp>C</scp> hina. Molecular Ecology Resources, 2015, 15, 337-348.	2.2	66
81	Development of species-specific environmental DNA (eDNA) markers for invasive aquatic plants. Aquatic Botany, 2015, 122, 27-31.	0.8	68
82	DNA barcoding to assess species adulteration in raw drug trade of "Bala―(genus: Sida L.) herbal products in South India. Biochemical Systematics and Ecology, 2015, 61, 501-509.	0.6	29
83	Phylogeny, systematics, and trait evolution of Carexsection Glareosae. American Journal of Botany, 2015, 102, 1128-1144.	0.8	19
84	DNA Barcoding and Pharmacovigilance of Herbal Medicines. Drug Safety, 2015, 38, 611-620.	1.4	151
85	Detection of plant-based adulterants in turmeric powder using DNA barcoding. Pharmaceutical Biology, 2015, 53, 1774-1779.	1.3	58
86	DNA Barcoding Evaluation and Its Taxonomic Implications in the Species-Rich Genus Primula L. in China. PLoS ONE, 2015, 10, e0122903.	1.1	36
87	ycf1, the most promising plastid DNA barcode of land plants. Scientific Reports, 2015, 5, 8348.	1.6	355
88	Species delimitation and relationships: The dance of the seven veils. Taxon, 2015, 64, 3-16.	0.4	146
89	Ethnopharmacological Investigation and Rapid Authentication of Mongolian Patent Medicines Digeda. Chinese Herbal Medicines, 2015, 7, 223-237.	1.2	4
90	Assessing product adulteration in natural health products for laxative yielding plants, Cassia, Senna, and Chamaecrista, in Southern India using DNA barcoding. International Journal of Legal Medicine, 2015, 129, 693-700.	1.2	101
91	First record of the genus Tropidia Lindl. (Orchidaceae) for Brazil. Hoehnea (revista), 2016, 43, 521-528.	0.2	2
92	Pollen DNA barcoding: current applications and future prospects. Genome, 2016, 59, 629-640.	0.9	166
93	Multi-locus DNA barcoding identifies $\langle i \rangle$ matK $\langle i \rangle$ as a suitable marker for species identification in $\langle i \rangle$ Hibiscus $\langle i \rangle$ L Genome, 2016, 59, 1150-1156.	0.9	18

#	Article	IF	CITATIONS
94	Assessment of mangroves from Goa, west coast India using DNA barcode. SpringerPlus, 2016, 5, 1554.	1.2	24
95	DNA barcodes identify Chinese medicinal plants and detect geographical patterns of <i>Sinosenecio</i> (Asteraceae). Journal of Systematics and Evolution, 2016, 54, 83-91.	1.6	12
96	Universal multiplexable <i>matK</i> primers for DNA barcoding of angiosperms. Applications in Plant Sciences, 2016, 4, 1500137.	0.8	27
97	Phylogeny of the Alismatales (Monocotyledons) and the relationship of <i><scp>A</scp>corus</i> (<scp>A</scp> corales?). Cladistics, 2016, 32, 141-159.	1.5	28
98	GM risk assessment: Pollen carriage from Brassica napus to B. rapa varies widely between pollinators. Basic and Applied Ecology, 2017, 19, 36-44.	1.2	5
99	Replacing Sanger with Next Generation Sequencing to improve coverage and quality of reference DNA barcodes for plants. Scientific Reports, 2017, 7, 46040.	1.6	45
100	Applying pollen DNA metabarcoding to the study of plant–pollinator interactions. Applications in Plant Sciences, 2017, 5, 1600124.	0.8	115
101	New Insights into the Systematics of the Schoenoxiphium Clade (<i>Carex</i> , Cyperaceae). International Journal of Plant Sciences, 2017, 178, 320-329.	0.6	7
102	Identification of effective DNA barcodes for Triticum plants through chloroplast genome-wide analysis. Computational Biology and Chemistry, 2017, 71, 20-31.	1.1	28
103	Genome size dynamics in tribe Gilliesieae (Amaryllidaceae, subfamily Allioideae) in the context of polyploidy and unusual incidence of Robertsonian translocations. Botanical Journal of the Linnean Society, 2017, 184, 16-31.	0.8	24
104	Utility of <scp>DNA</scp> barcoding to identify rare endemic vascular plant species in Trinidad. Ecology and Evolution, 2017, 7, 7311-7333.	0.8	23
105	Character-based DNA barcoding for authentication and conservation of IUCN Red listed threatened species of genus Decalepis (Apocynaceae). Scientific Reports, 2017, 7, 14910.	1.6	25
106	An analysis of Echinacea chloroplast genomes: Implications for future botanical identification. Scientific Reports, 2017, 7, 216.	1.6	52
107	Discriminatory power of rbcL barcode locus for authentication of some of United Arab Emirates (UAE) native plants. 3 Biotech, 2017, 7, 144.	1.1	28
108	Spatial phylogenetics of the native California flora. BMC Biology, 2017, 15, 96.	1.7	104
109	Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo). PLoS ONE, 2017, 12, e0185861.	1.1	15
110	Evolutionary history and systematics of Campylocentrum (Orchidaceae: Vandeae: Angraecinae): a phylogenetic and biogeographical approach. Botanical Journal of the Linnean Society, 2018, 186, 158-178.	0.8	20
111	Plastid super-barcodes as a tool for species discrimination in feather grasses (Poaceae: Stipa). Scientific Reports, 2018, 8, 1924.	1.6	72

#	ARTICLE	IF	CITATIONS
112	Integrative analyses of <i>Nervilia</i> (Orchidaceae) section <i>Linervia</i> reveal further undescribed cryptic diversity in Thailand. Systematics and Biodiversity, 2018, 16, 377-396.	0.5	9
113	Quantitative market survey of non-woody plants sold at Kariakoo Market in Dar es Salaam, Tanzania. Journal of Ethnopharmacology, 2018, 222, 280-287.	2.0	12
114	A New Species of Telipogon (Orchidaceae) from Mexico and its Phylogenetic Position Among Mesoamerican Species. Systematic Botany, 2018, 43, 9-16.	0.2	0
115	Plant core DNA barcode performance at a local scale: identification of the conifers of the state of Hidalgo, Mexico. Systematics and Biodiversity, 2018, 16, 791-806.	0.5	4
116	DNA barcoding the flowering plants from the tropical coral islands of Xisha (China). Ecology and Evolution, 2018, 8, 10587-10593.	0.8	8
117	An expanded molecular phylogeny of Plumbaginaceae, with emphasis on <i>Limonium</i> (sea) Tj ETQq1 1 0.78-12397-12424.	4314 rgB1 0.8	「Overlock 」 37
118	The potential of aerosol eDNA sampling for the characterisation of commercial seed lots. PLoS ONE, 2018, 13, e0201617.	1.1	5
119	An assessment of plant DNA barcodes for the identification of cultivated Lavandula (Lamiaceae) taxa. Biocatalysis and Agricultural Biotechnology, 2018, 16, 459-466.	1.5	5
120	New Saussurea (Asteraceae) species from Bogeda Mountain, eastern Tianshan, China, and inference of its evolutionary history and medical usage. PLoS ONE, 2018, 13, e0199416.	1.1	7
121	<i>Clivia</i> taxonomy revisited, using DNA barcode regions. Acta Horticulturae, 2018, , 503-514.	0.1	0
122	Decoding ice plants: challenges associated with barcoding and phylogenetics in the diverse succulent family Aizoaceae. Genome, 2018, 61, 815-821.	0.9	3
123	Markers for distinguishing Orostachys species by SYBR Green-based real-time PCR and verification of their application in commercial O. japonica food products. Applied Biological Chemistry, 2018, 61, 499-508.	0.7	8
124	Contribution of genetics for implementing population translocation of the threatened Arnica montana. Conservation Genetics, 2018, 19, 1185-1198.	0.8	20
125	Identification of plant species using variable length chloroplast DNA sequences. Forensic Science International: Genetics, 2018, 36, 1 -12.	1.6	15
126	A phylogenetic analysis of the genus Aloe (Asphodelaceae) in Madagascar and the Mascarene Islands. Botanical Journal of the Linnean Society, 2018, 187, 428-440.	0.8	11
127	Jumping through the hoops: the challenges of daffodil (Narcissus) classification. Botanical Journal of the Linnean Society, 2019, 190, 389-404.	0.8	3
128	Effects of taxon sampling and tree reconstruction methods on phylodiversity metrics. Ecology and Evolution, 2019, 9, 9479-9499.	0.8	23
129	Distribution and Community Assembly of Trees Along an Andean Elevational Gradient. Plants, 2019, 8, 326.	1.6	11

#	Article	IF	CITATIONS
130	Morphological plasticity in a Fijian Seagrass: Halophila ovalis subsp. bullosa. Regional Studies in Marine Science, 2019, 32, 100809.	0.4	5
131	Assessment of seasonal variation of diet composition in rodents using DNA barcoding and Real-Time PCR. Scientific Reports, 2019, 9, 14124.	1.6	6
132	Identification of species and materia medica within <i>Saussurea</i> subg. <i>Amphilaena</i> based on DNA barcodes. PeerJ, 2019, 7, e6357.	0.9	6
133	DNA Barcoding: Methods and Approaches. Biology Bulletin Reviews, 2019, 9, 475-483.	0.3	5
134	Identification and Monitoring of Amomi Fructus and its Adulterants Based on DNA Barcoding Analysis and Designed DNA Markers. Molecules, 2019, 24, 4193.	1.7	11
135	Approaches to integrating genetic data into ecological networks. Molecular Ecology, 2019, 28, 503-519.	2.0	37
136	Employing barcoding markers to authenticate selected endangered medicinal plants traded in Indian markets. Physiology and Molecular Biology of Plants, 2019, 25, 327-337.	1.4	11
137	The use of plant DNA barcoding coupled with HRM analysis to differentiate edible vegetables from poisonous plants for food safety. Food Control, 2020, 109, 106896.	2.8	21
138	DNA barcoding augments conventional methods for identification of medicinal plant species traded at Tanzanian markets. Journal of Ethnopharmacology, 2020, 250, 112495.	2.0	23
139	Chemotaxonomic Monitoring of Genetically Authenticated Amomi Fructus Using High-Performance Liquid Chromatography–Diode Array Detector with Chemometric Analysis. Molecules, 2020, 25, 4581.	1.7	4
140	Chloroplast-based DNA barcode analysis indicates high discriminatory potential of matK locus in Himalayan temperate bamboos. 3 Biotech, 2020, 10, 534.	1.1	2
141	DNA-Based Authentication and Metabolomics Analysis of Medicinal Plants Samples by DNA Barcoding and Ultra-High-Performance Liquid Chromatography/Triple Quadrupole Mass Spectrometry (UHPLC-MS). Plants, 2020, 9, 1601.	1.6	14
142	DNA barcoding of Indian Alysicarpus (Fabaceae): ITS alone distinguishes species. Vegetos, 2020, 33, 592-600.	0.8	1
143	Preliminary insights into the molecular barcoding data of Turraea socotrana (Meliaceae) from Socotra (Yemen). Rendiconti Lincei, 2020, 31, 637-644.	1.0	2
144	The low copy nuclear region, RPB2 as a novel DNA barcode region for species identification in the rattan genus Calamus (Arecaceae). Physiology and Molecular Biology of Plants, 2020, 26, 1875-1887.	1.4	5
145	SPInDel Analysis of the Non-Coding Regions of cpDNA as a More Useful Tool for the Identification of Rye (Poaceae: Secale) Species. International Journal of Molecular Sciences, 2020, 21, 9421.	1.8	1
146	Molecular delimitation of European leafy liverworts of the genus Calypogeia based on plastid super-barcodes. BMC Plant Biology, 2020, 20, 243.	1.6	25
147	Dual-locus DNA metabarcoding reveals southern hairy-nosed wombats (Lasiorhinus latifrons Owen) have a summer diet dominated by toxic invasive plants. PLoS ONE, 2020, 15, e0229390.	1.1	9

#	Article	IF	CITATIONS
148	The Increase of Simple Sequence Repeats during Diversification of Marchantiidae, An Early Land Plant Lineage, Leads to the First Known Expansion of Inverted Repeats in the Evolutionarily-Stable Structure of Liverwort Plastomes. Genes, 2020, 11, 299.	1.0	11
149	The Chemistry of Kratom [<i>Mitragyna speciosa</i>]: Updated Characterization Data and Methods to Elucidate Indole and Oxindole Alkaloids. Journal of Natural Products, 2020, 83, 2165-2177.	1.5	61
150	DNA barcoding of Momordica species and assessment of adulteration in Momordica herbal products, an anti-diabetic drug. Plant Gene, 2020, 22, 100227.	1.4	9
151	Rapid mitochondrial genome sequencing based on Oxford Nanopore Sequencing and a proxy for vertebrate species identification. Ecology and Evolution, 2020, 10, 3544-3560.	0.8	20
152	A powerful long metabarcoding method for the determination of complex diets from faecal analysis of the European pond turtle (<i>Emys orbicularis</i> , L. 1758). Molecular Ecology Resources, 2021, 21, 433-447.	2.2	7
154	DNA barcoding of some taxa of genus Acacia and their phylogenetic relationship. International Journal of Transgender Health, 2021, 14, 588-598.	1.1	1
155	Quality control of Dalchini (Cinnamomum zeylanicum): a review. Advances in Traditional Medicine, 2023, 23, 1-10.	1.0	3
156	Phylogenetic relationships and DNA barcoding of nine endangered medicinal plant species endemic to Saint Katherine protectorate. Saudi Journal of Biological Sciences, 2021, 28, 1919-1930.	1.8	7
157	DNA barcoding of some medicinally important plant species of Lamiaceae family in India. Molecular Biology Reports, 2021, 48, 3097-3106.	1.0	9
158	An Indomalesian origin in the Miocene for the diphyletic New World jewel orchids (Goodyerinae,) Tj ETQq1 1 0.78 Neotropical genera. Botanical Journal of the Linnean Society, 2021, 197, 322-349.	34314 rgB 0.8	T /Overlock 5
159	Metagenomics: A viable tool for reconstructing herbivore diet. Molecular Ecology Resources, 2021, 21, 2249-2263.	2.2	16
160	Plant DNA Barcode as a Tool for Root Identification in Hypogea: The Case of the Etruscan Tombs of Tarquinia (Central Italy). Plants, 2021, 10, 1138.	1.6	8
161	Evolution of crassulacean acid metabolism (CAM) as an escape from ecological niche conservatism in Malagasy <i>Bulbophyllum</i> (Orchidaceae). New Phytologist, 2021, 231, 1236-1248.	3.5	16
162	Identification of Tinomiscium petiolare from Vietnam using the DNA barcode. Proceedings on Applied Botany, Genetics and Breeding, 2021, 182, 114-122.	0.1	1
163	Quercus ngochoaensis (Fagaceae), a new species from Ba Vi National Park, northern, Vietnam. Phytotaxa, 2021, 516, .	0.1	3
164	Genotypic identification of Panicum spp. in New South Wales, Australia using DNA barcoding. Scientific Reports, 2021, 11, 16055.	1.6	2
165	Diet and trophic niche overlap among a native waterbird and two non-native herbivores in Pampas grasslands. Food Webs, 2021, 28, e00201.	0.5	2
166	Nutritive Value of 11 Bee Pollen Samples from Major Floral Sources in Taiwan. Foods, 2021, 10, 2229.	1.9	16

#	Article	IF	CITATIONS
167	DNA barcoding evaluation of geophytes: Comparative efficiency of three barcode loci for <i>Anemone (Ranunculaceae)</i> and <i>Gladiolus (Iridaceae)</i> Plant Biosystems, 2022, 156, 926-937.	0.8	2
169	DNA Barcoding for Plants. Methods in Molecular Biology, 2015, 1245, 101-118.	0.4	47
170	DNA-Based Authentication of TCM-Plants: Current Progress and Future Perspectives. , 2013, , 27-85.		8
171	Allopatric speciation despite historical gene flow: Divergence and hybridization in <i>Carex furva</i> and <i>C.Âlucennoiberica</i> (Cyperaceae) inferred from plastid and nuclear <scp>RAD</scp> â€seq data. Molecular Ecology, 2017, 26, 5646-5662.	2.0	35
172	Deciduous Trees and the Application of Universal DNA Barcodes: A Case Study on the Circumpolar Fraxinus. PLoS ONE, 2012, 7, e34089.	1.1	40
173	Phylogenetic Relationships of American Willows (Salix L., Salicaceae). PLoS ONE, 2015, 10, e0121965.	1.1	63
174	Promise and Challenge of DNA Barcoding in Venus Slipper (Paphiopedilum). PLoS ONE, 2016, 11, e0146880.	1.1	27
175	The Use of DNA Barcoding on Recently Diverged Species in the Genus Gentiana (Gentianaceae) in China. PLoS ONE, 2016, 11, e0153008.	1.1	29
176	Evaluation of six candidate DNA barcode loci for identification of five important invasive grasses in eastern Australia. PLoS ONE, 2017, 12, e0175338.	1.1	14
177	Evaluation of single and multilocus DNA barcodes towards species delineation in complex tree genus Terminalia. PLoS ONE, 2017, 12, e0182836.	1.1	24
178	Morphological, biochemical and DNA barcoding characteristics for some Lantana L. cultivars growing in Egypt. Tropical Plant Research, 2018, 5, 207-216.	0.4	1
179	A taxonomic study of Quercus langbianensis complex based on morphology and DNA barcodes of classic and next generation sequences. PhytoKeys, 2018, 95, 37-70.	0.4	18
180	DNA Barcoding: An Alternative for the Identification of the Medicinal Plants Employed in Mexico. Journal of Plant Sciences, 2015, 10, 116-127.	0.2	3
181	DNA Barcoding and Identification of Medicinal Plants in the Kingdom of Bahrain. American Journal of Plant Sciences, 2018, 09, 2757-2774.	0.3	10
182	Selection of a marker gene to construct a reference library for wetland plants, and the application of metabarcoding to analyze the diet of wintering herbivorous waterbirds. PeerJ, 2016, 4, e2345.	0.9	24
183	Multiple Approach for Plant Biodiversity Conservation in Restoring Forests. , 0, , .		1
184	DNA barcoding as an effective tool to complement wetland management: A case study of a protected area in Italy. Plant Biosystems, 2015, 149, 757-766.	0.8	0
185	Discovery of Highly Accurate Plant DNA Barcodes via Novel Iterative Methodologies. International Journal of Biology, 2015, 7, .	0.1	0

#	Article	IF	CITATIONS
186	Determination of Different Species of Animal from their Meats by Using PCR-RFLP Technique of Mitochondria Gene COI. Basrah Journal of Agricultural Sciences, 2017, 30, 59-64.	0.2	0
187	ANALISE BIOINFORMĂTICA PARA O DESENVOLVIMENTO DE INICIADORES PARA O GENE MATK DE ESP‰CIES DA FAMÂŁIA ASTERACEAE VISANDO O CONTROLE DE QUALIDADE DE FITOTERAPICOS. , 0, , .	1	O
188	Aquatic Plant Biodiversity and DNA Barcoding. , 2018, , 197-214.		0
189	Assessing <i>Clivia</i> taxonomy using the core DNA barcode regions, <i>matK</i> and <i>rbcLa</i> . Bothalia, 2018, 48, .	0.2	1
191	MatK ve trnH-psbA Barkot Genleri Kullanılarak Bazı Bitki Taksonlarının Moleküler Olarak Sınıflandırılması. Türkiye Tarımsal Araştırmalar Dergisi, 2019, 6, 87-93.	0.5	2
192	Playing the Taxonomic Cupid: Matching Pistillate and Staminate Conspecifics in Dioecious <i>Clusia</i> (Clusiaceae). Systematic Botany, 2019, 44, 548-559.	0.2	8
193	Resolving Taxonomic Ambiguity Between Two Morphological Similar Plant Taxa Using Maturase K Gene Analysis. Journal of Biological Sciences, 2019, 20, 13-21.	0.1	1
195	DNA barcoding of two narrow endemic plants; Astragalus argaeus and Astragalus stenosemioides from Mount Erciyes, Turkey. Conservation Genetics Resources, 0, , 1.	0.4	0
196	Caps DNA Barcoding for Field Laboratory Identification of Grass Species (British Grasses as a Model). Agriculture, 2020, 66, 74-86.	0.2	1
197	Use of DNA Barcoding for Plant Species Identification. , 2021, , 1-24.		0
198	Primer Design for the Analysis of Closely Related Species: Application of Noncoding mtDNA and cpDNA Sequences. Methods in Molecular Biology, 2022, 2392, 83-91.	0.4	1
199	Assessing candidate DNA barcodes for Chinese and internationally traded timber species. Molecular Ecology Resources, 2022, 22, 1478-1492.	2.2	9
200	Combining DNA Barcoding and Chemical fingerprints to authenticate Lavender raw material. International Journal of Cosmetic Science, 2022, 44, 91-102.	1.2	4
201	Authentication of Balaa in selected traditional formulations using ITS2 and matK DNA barcoding markers. Journal of Non-timber Forest Products, 2018, 25, 63-72.	0.0	1
202	DNA barcodes and microsatellites: How they complement for species identification in the complex genus <i>Tamarix</i> (Tamaricaceae). Journal of Systematics and Evolution, 2022, 60, 1140-1157.	1.6	5
203	Assessing Population Genetic Status for Designing Plant Translocations. Frontiers in Conservation Science, 2022, 3, .	0.9	8
204	Data Release: DNA Barcodes of Plant Species Collected for the Global Genome Initiative for Gardens (GGI-Gardens) II. Diversity, 2022, 14, 234.	0.7	2
205	Chemotaxonomic Classification of Peucedanum japonicum and Its Chemical Correlation with Peucedanum praeruptorum, Angelica decursiva, and Saposhnikovia divaricata by Liquid Chromatography Combined with Chemometrics. Molecules, 2022, 27, 1675.	1.7	2

#	Article	IF	CITATIONS
206	Use of DNA Barcoding for Plant Species Identification. , 2022, , 911-933.		0
207	Assessment of ITS2 Region Relevance for Taxa Discrimination and Phylogenetic Inference among Pinaceae. Plants, 2022, 11, 1078.	1.6	4
208	Distribution analysis, updated checklist, and DNA barcodes of the endemic vascular flora of the Altai mountains, a Siberian biodiversity hotspot. Systematics and Biodiversity, 2022, 20, 1-30.	0.5	6
209	Development of a DNA barcode library of plants in the Thai Herbal Pharmacopoeia and Monographs for authentication of herbal products. Scientific Reports, 2022, 12, .	1.6	3
210	Phylogeny and historical biogeography of the Panamaâ€hat family (Cyclanthaceae, Pandanales). Taxon, 2022, 71, 963-980.	0.4	3
211	In-vitro antiproliferative efficacy of Abrus precatorius seed extracts on cervical carcinoma. Scientific Reports, 2022, 12, .	1.6	7
212	Relationships within Mcneillia Indicate a Complex Evolutionary History and Reveal a New Species of Minuartiella (Caryophyllaceae, Alsinoideae). Plants, 2022, 11, 2118.	1.6	4
213	Trait-linked phylogenetic framework of Paphiopedilum distributed in India revealed species passport trait to prevent unethical trade through in-silico study. South African Journal of Botany, 2022, 150, 420-430.	1.2	3
214	Essential Oil Chemotypes and Genetic Variability of Cinnamomum verum Leaf Samples Commercialized and Cultivated in the Amazon. Molecules, 2022, 27, 7337.	1.7	4
215	Phylogeny, biogeography, and character evolution in the genus ScillaÂs.l. and its close relatives Chionodoxa, Gemicia, Puschkinia, and Prospero (Asparagaceae). Plant Systematics and Evolution, 2022, 308, .	0.3	3
216	Diversity and phylogeny of seagrasses in Singapore. Aquatic Botany, 2023, 187, 103648.	0.8	0
217	Structure vs. chemistry: Alternate mechanisms for controlling leaf microbiomes. PLoS ONE, 2023, 18, e0275734.	1.1	0
218	Comparison of phylogenetic and taxonomic diversity of pitcher plant bogs in Georgia's Coastal Plain. Plant Ecology, 2023, 224, 523-537.	0.7	1
219	Applications of environmental DNA (eDNA) to detect subterranean and aquatic invasive species: A critical review on the challenges and limitations of eDNA metabarcoding. Environmental Advances, 2023, 12, 100370.	2.2	10
226	DNA Barcoding for Assessing Biodiversity. , 2023, , 21-45.		0